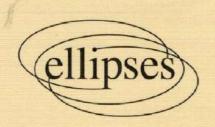
TECHNOSUP


Les FILIÈRES TECHNOLOGIQUES des ENSEIGNEMENTS SUPÉRIEURS

ENERGÉTIQUE

Machines à froid et pompes à chaleur

De la théorie à la pratique Cours et problèmes corrigés

André LALLEMAND

2-621-2-1

TECHNOSUP

2 621 2

Les FILIÈRES TECHNOLOGIQUES des ENSEIGNEMENTS SUPÉRIEURS

Machines à froid et pompes à chaleur

De la théorie à la pratique Cours et problèmes corrigés

André LALLEMAND

Professeur émérite INSA de Lyon

SOMMAIRE

SOMMAIRE	. V
NOMENCLATURE	. X
Chapitre I. CONVERSION DE L'ÉNERGIE – MACHINES THERMIQUES	1
1. Rappels de thermodynamique	1
1.1. Définitions et conventions	1
1.2. Conservation de l'énergie en systèmes fermés ou ouverts – Bilan enthalpique	4
1.3. Qualité de l'énergie - Entropie - Irréversibilités - Bilan entropique	7
2. Cycles thermodynamiques – Convertisseurs thermomécaniques – Rendements	10
2.1. Cycles d'évolution – Moteurs et générateurs thermomécaniques	10
2.2. Rendements	11
2.3. Convertisseurs de Carnot	13
2.4. Convertisseurs à cycles quelconques	14
3. Exergie – Anergie – Bilans exergétiques	15
3.1. Définition de l'exergie	15
3.2. Exergie et irréversibilités	16
3.3. Transferts thermiques et flux exergétiques	17
3.4. Bilans exergétiques et anergétiques	19
3.5. Application à un convertisseur thermique	20
hapitre II. CARACTÉRISTIQUES DES FLUIDES, ÉVOLUTIONS, TRANSFERTS.	22
1. Variation des fonctions d'état des fluides purs	
1.1. Expressions des échanges thermiques - Coefficients calorimétriques	22
1.2. Expressions des variations des fonctions d'état	23
2. Caractéristiques des fluides - Diagrammes	24
2.1. Gaz parfait	24
2.2. Gaz réels et vapeurs	27
2.3. Liquides	31
2.4. Fluides diphasiques	33
2.5. Diagrammes complets	36
2.6. Cas des mélanges	37

Polytropes et autres évolutions particulières	40
3.1. Évolutions polytropiques	41
3.2. Énergies mises en œuvre - Rendements	42
3.3. Laminage	43
3.4. Compressions refroidies et étagées	43
4. Transferts de masse, de chaleur et de quantité de mouvement	45
4.1. Bilan de la masse, de la quantité de mouvement et de l'énergie cinétique	45
4.2. Bilan de l'énergie – Énergie thermique	48
4.3. Similitude et analyse dimensionnelle	50
Chapitre III. CYCLES DE BASE DES GÉNÉRATEURS À COMPRESSEURS	53
Générateurs thermiques à gaz	
1.1. Générateurs à cycles de Stirling ou d'Ericsson	53
1.2. Générateurs à cycle de Joule	60
1.3. Applications des cycles à gaz	67
2. Générateurs à compression de vapeur	67
2.1. Cycle de base – cycle de Carnot	67
2.2. Cycle modifié – Cycle de Hirn inversé	68
2.3. Cycle réel à surchauffe et sous-refroidissement	70
2.4. Cycles particuliers	74
3. Bilans énergétiques et exergétiques	85
3.1. Cas d'une machine frigorifique	85
3.2. Cas d'une pompe à chaleur	89
Chapitre IV. FLUIDES FRIGORIGÈNES, CALOPORTEURS, FRIGOPORTEURS	92
1. Fluides frigorigènes	92
1.1. Historique et contraintes environnementales	92
1.2. Nomenclature	94
1.3. Caractéristiques et critères de choix	95
1.4. Fluides préconisés pour les divers domaines d'application	97
1.5. Cas particuliers d'utilisation des mélanges zéotropiques et du CO ₂	98
2. Fluides caloporteurs	100
2.1. Cas des pompes à chaleur (PAC)	100
2.2. Cas des machines frigorifiques (MAF)	101
3. Fluides frigoporteurs	101
3.1. Cas des PAC	101
3.2. Cas des MAF	103
3.3. Critères de choix d'un frigoporteur	112

SOMMAIRE	
----------	--

VII

Chapitre V. MACHINES TRITHERMES	113
1. Couplage moteur-générateur thermiques	113
1.1. Machines quadrithermes	113
1.2. Machines trithermes	114
2. Machines trithermes mécaniques	117
2.1. Machines trithermes à motocompresseur	117
2.2. Machines à éjectocompression	118
3. Machines à sorption	123
3.1. Machines à absorption	123
3.2. Machines à résorption	135
3.3. Machine à adsorption	136
Chapitre VI. MACHINES ET PROCÉDÉS PARTICULIERS	140
1. Thermofrigopompes	140
2. Machines hybrides	141
2.1. Machines à compression-absorption	141
2.2. Machines à compression-éjection	141
3. Recompression mécanique de vapeurs (RMV)	145
4. Systèmes basés sur des phénomènes physiques particuliers	146
4.1. Machines à gaz permanent	146
4.2. Production de froid ou de chaleur par effet thermoélectrique	151
Chapitre VII. MACHINES CRYOGÉNIQUES	157
1. Couplage de machines dithermes	157
1.1. Machines à cycles polyétagés et fluide unique	157
1.2. Machines en cascade	159
2. Liquéfaction des gaz	162
2.1. Méthode par refroidissement externe	
2.2. Méthode par compression et détente	163
3. Couplage de machines en cascade et de machines de liquéfaction	172
4. Effets thermomagnétiques	175
Chapitre VIII. COMPRESSEURS FRIGORIFIQUES	178
1. Compresseurs volumétriques	178
1.1. Compresseurs alternatifs	178
1.2. Compresseurs rotatifs	184
1.3. Particularités de fonctionnement et dispositifs	188
2. Compresseurs dynamiques	190
2.1. Présentation générale - Utilisation	190

	2.2. Principe de fonctionnement - Caractéristiques	190
	2.3. Fonctionnements semblables	197
	2.4. Application aux machines à froid	197
Cha	pitre IX. ÉCHANGEURS THERMIQUES	199
1	. Types d'échangeurs	199
2	. Échangeurs sans changement de phase	. 201
	2.1. Coefficient d'échange thermique global	201
	2.2. Coefficients de transfert convectif	203
	2.3. Pertes de charge	204
	2.4. Moyenne logarithmique des différences de température (DTLM)	204
	2.5. Efficacité d'un échangeur	208
	2.6. Nombre d'unités de transfert (NUT)	211
	2.7. Utilisation des diverses méthodes de calcul	212
3	. Échangeurs avec changements de phase	213
	3.1. Condensation	213
	3.2. Ébullition	214
	3.3. Condenseurs et évaporateurs	216
4	. Analyse exergétique des échangeurs	
	pitre X. PROBLÈMES D'APPLICATIONS	
	. Générateurs thermiques à gaz	
	1.1. Machine frigorifique à air à deux étages de compression : axial et centrifuge	
	1.2. Pompe à chaleur à air à compresseur axial à quatre étages	224
2	. Générateurs thermiques à compression de vapeur	
	2.1. Réfrigération d'une chambre froide par une machine frigorifique au R1234yf	
	2.2. Machine frigorifique à ammoniac et compresseur à piston mono-étagé	231
	2.3. Pompe à chaleur au butane - Compresseur à piston - Condenseur, évaporate	
	2.4. Machine frigorifique utilisant de l'isobutane et un compresseur centrifuge	236
	2.5. Machine frigorifique au CO ₂ et compresseur à piston	240
3.	. Machines multi-étagées à refroidissement intermédiaire	242
	3.1. Machine frigorifique à compresseur à pistons bi-étagé et refroidissem	ent
	intermédiaire	242
	3.2. Climatiseur au CO2 – Compresseur centrifuge bi-étagé à aubages normaux	244
	3.3. Machine frigorifique bi-étagée avec un échangeur intermédiaire à mélange	246
	 3.4. Machine frigorifique à compression et détente étagées – Compresseur à pist Influence du volume mort 	ons 249
	3.5. Pompe à chaleur à compression et détente bi-étagées, échangeur intermédiair surface d'échange et ballon séparateur de phases	re à 252

	4. Comparaison générateur à gaz /générateur à vapeur	256
	4.1. Machine frigorifique au propane avec compresseur à pistons différentiels	256
	4.2. Pompe à chaleur à très haute température - Cycles à vapeur en cascades	259
	5. Machines trithermes	263
	5.1. Machine frigorifique à absorption – Couple ammoniac-eau	263
	5.2. Transformateur thermique à absorption – Couple eau/bromure de lithiu Calcul d'un échangeur thermique	m – 266
	5.3. Machine de climatisation solaire à éjectocompresseur	271
	6. Machines particulières	274
	6.1. Thermofrigopompe à deux étages avec un compresseur à vis	274
	62. Concentration d'un lactosérum par compression mécanique de vapeur (CMV	7)276
	63 Réfrigération par effet Peltier	279
	7. Machines cryogéniques	280
	7.1. Machine de congélation à air - Compresseur centrifuge et turbine de détente	280
	7.2. Production frigorifique à -140 °C à l'aide de trois machines en cascade – É des irréversibilités composant par composant	
	7.3. Liquéfaction - Comparaison entre machine de Hampton et machine de Clau	de292
C	hapitre XI. ANNEXES	301
	1. Tables thermodynamiques	
	2. Figures et diagrammes	
	3. Références bibliographiques	
B	DEX 18	