
PHD THESIS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF BLIDA1
INSTITUTE OF AERONAUTICS AND SPACE STUDIES

Speciality: AVIONICS

BY:

KHAMES WALID

Advanced Processing of Sensing Big
Data: A Multicore Architecture-Based

Skyline Model
Thesis Directors: ALLEL HADJALI & MOHAND LAGHA

Defended on 30 January 2025 in front of a jury committee

-JURY-
BOUKRAA Salah Professor President of the jury University Blida1
HADJALI Allel Professor Thesis Director ENSMA Poitiers France
LAGHA Mohand Professor Thesis Director University Blida1
BENBLIDIA Nadjia Professor Examiner University Blida1
FADLOUN Samiha MCA Examiner ESI Alger
MEZIANE Abdelkrim Research Director Examiner CERIST Alger

ii

This thesis is dedicated to all those who have supported
and guided me throughout my academic journey. …

iv

ABSTRACT
Rising communication speeds, increased processing power, and the widespread use of hardware
and software sensors have all contributed to our capacity for information creation rapidly ex-
panding in recent years. This data is frequently available in the form of continuous streaming
data, and the capacity to collect and analyze it in order to obtain insights and find trends repre-
sents tremendous potential for many enterprises and scientific applications. Recently, there has
been an increase in activity in the academic world about Query Processing Over Data Stream
(QPODS). From the development of computationally efficient algorithms to the design of pro-
gramming and real-time systems to enable their execution, there are many difficulties to over-
come while creating QPODS applications. Two major problems will be addressed in this thesis:

Continuous Skyline Processing Over Data Stream: SPODS applications are long-running
(24 hr/7 d), so they are exposed to changes in arrival rates andworkload properties. The ability of
applications to process incoming data in real time is crucial so that they can effectively manage
the dynamic workload and provide a cost-effective overall performance.

The necessity of high-performance skyline queries: When dealing with SPODS challenges,
having both high throughput and low latency is essential. Software needs to efficiently utilize
parallel hardware like multi-core processors.

There is a lack of dynamic strategies with well-known properties of real-time processing, no
delay response, and energy efficient performance in the current approaches to the development
of SPODS applications, and there is inefficient exploitation of the parallelism of existing mul-
ticore architectures. This study makes an attempt to address these gaps by applying established
methods like parallel programming and QPoDS.

When it comes to data streams, sliding windowed queries are among the most common
types. The most recent data that has been received is processed. The content and size of win-
dows can change over time because they are dynamic data structures. Since various window-
ing methods (time- or count-based) have specific requirements in terms of data distribution
and management policies, the SPODS domain necessitates particular expertise and enhanced
features relative to conventional parallel techniques. The time and effort required for parallel
programming can be minimized with the help of a well-organized strategy (ex: openMP API).
It also makes it easier to understand the relationship between a parallel solution’s throughput,
latency, and other performance metrics.

While numerous articles have been published regarding the parallelization of regular skyline
queries, there is a limited amount of research dedicated specifically to the parallel processing of
continuous skyline queries. This study introduces a Parallel Range Search Skyline (PRSS), a
continuous skyline technique for multicore processors specifically designed for sliding window-
based high dimensional data streams. The efficacy of the proposed parallel implementation is
demonstrated through tests conducted on both real-world and synthetic datasets, encompassing
various point distributions, arrival rates, and window widths. The experimental results for a
dataset characterized by a large number of dimensions and cardinality demonstrate significant
acceleration.

Keywords: Data Management, Big Data, Sensors, Multicore Architecture, continuous
skyline, Data Stream , High-dimensionality, Parallel processing.

v

اिऻڪٌۘ
ل؇دة ز ሒᇭ ༇ံاଫଊܳوا اݿྥލأ؇ر ۏ۳ݞة اܳٷޚ؇ق اܳިاݿؕ واݿٺ༱ڎام اଐৎاࢴࣖة، ۰أ؇ࠍৎا وڢިة اଐৎاࢴࣖة، اّݱ؇ل ༟ང؇ت ݿ؇ᆇᆅب ܳگڎ
اܳگڎرة وஓټܭ ݁ފٺ݄ݠة، ݁ٺڎڣگ۰ ਃಸ؇َ؇ت ႟ၽނ ሒᇭ ༚؇ܳٴً؇ اܳٴ٭؇َ؇ت ۱ڍه ਐಾިڣݠ اଫଃ༠ة. اܳފٷިات ሒᇭ ۰༟๎ื اৎأߺࠊ݁؇ت إ૰؇ء আॻ༟ ؇ಾڢڎر
اܳأగఒ٭۰. واܳٺޚٴ٭گ؇ت اႤ၍དྷܳت ݆݁ ይዧأڎࢴࣖ ᄭᄥ۱؇ف إႤၽَ݁؇ت اູ؇۱؇ت আॻ༟ واܳأټިر رؤى আॻ༟ اࠍݱިل أ༥ܭ ݆݁ وොູܹ٭۳ܹ؇ ᆇᅹأ۳؇ আॻ༟
ّޚިߌߵ ݆݁ اܳٴ٭؇َ؇ت. ࣁࣖڣݑ ଫଊ༟ اݿٺأఈః݁؇ت ۰݁أ؇ࠍ ۋިل اႤ၍دஓ୷ ቕረ؇اܳأ ሒᇭ اܳྡྷލ؇ط ሒᇭ ل؇دة ز ۱ٷ؇ك Ⴄ၍ن اଫଃ༠ة، او۰َ ሒᇭ
ຬص มฆܳا اܳݱأިً؇ت ݆݁ اܳأڎࢴࣖ ۱ٷ؇ك ಾڰ٭ڍ۱؇، ඔ൹ࡺ࢘ࢦܝ ঌॻاܳڰأ اܳިڢب ሒᇭ واَޙ۰݄ ۰ଫଊܳا ّݱ݄ࡗࡲ ሌᇿإ ؇ًਃಸ؇ۋފ ᄭᄟ؇اܳڰأ اࠍިارز݁٭؇ت

اܳٴ٭؇َ؇ت. ࣁࣖڣݑ ّޚٴ٭گ؇ت إ૰؇ء أು؇ء ؇ዛዀܹ༟ اܳٺ؞ܹص
:۰༡ޗݠوا ۱ڍه ሒᇭ ඔ൹ٺފཬر ඔ൹ٺၯၽ݁ލ ಾ؇ول ݿ٭ࡤࡲ

݁أڎت ሒᇭ ይዧٺ؞ଫଃات ݁أݠݪ۰ ڣ۳ ዻዧᄳᄟ أل؇م)، 7 / ۰༟؇ݿ 24) ا݁ڎ ᄭᄥل ޗި اܳٺޚٴ٭گ؇ت اܳٴ٭؇َ؇ت: ࣁࣖڣݑ ڣިق ݁ފٺ݄ݠ أڣݑ
റണܝ݆ ปฆۋ اᆇᆅ٭۰ ؐܳ؇ً ਵਦأ ঌॻاܳڰأ اܳިڢب ሒᇭ اܳިاردة اܳٴ٭؇َ؇ت ۰݁أ؇ࠍ আॻ༟ اܳٺޚٴ٭گ؇ت ڢڎرة إن اܳأ݄ܭ. صء وۊݱ؇فݧ اܳިݬިل

اܳٺၯၽڰ۰. ۋ٭ت ݆݁ ڣأ؇ل ༟؇م أداء ଫଃوّިڣ ڣأ؇ل ႟ၽ૰ ௧ௌ݁٭؇ಱᄴᄟا اܳأ݄ܭ صء إدارة ݆݁
وز݆݁ ਵਦّڰؕ إਐ؇ج ݁أڎل আॻ༟ اࠍݱިل ڣ؆ن اܳٴ٭؇َ؇ت، ࣁࣖڣݑ ොູڎل؇ت ؕ݁ اܳٺأ؇݁ܭ ٷڎ اداء: ༟؇ܳ٭۰ اڣݑ اݿٺأఈః݁؇ت ཚورة

اܳٷިاة. ݁ٺأڎدة اৎأ؇ࠍ؇ت ݁ټܭ ل۰ اৎٺިاز اۏ۳ݞة ݆݁ ًܝڰ؇ءة اݿٺڰ؇دة ሌᇿإ ༇ံ؇َଫଊܳا ොຬٺ؇ج ཚوري. ਵਦأ ݁ٷۛڰݥ وݬިل
،ଫଃ༠؊ّ ۰ً؇༶اݿٺ وۏިد و༟ڎم ،ঌॻاܳڰأ اܳިڢب ሒᇭ ۰أ؇ࠍగጻዧ اৎأݠوڣ۰ اࠍݱ؇فݧ ذات اಱᄴᄟ؇݁٭ܝ٭۰ اݿଫଐا౯ళ٭؇ت ሒᇭ َگݧ ۱ٷ؇ك
ඔ൹ً ይዧٺިازي ڣأ؇ل ଫଃ༚ اݿٺ؞ఈఃل و۱ٷ؇ك اܳٴ٭؇َ؇ت، ࣁࣖڣݑ ّޚٴ٭گ؇ت ଫଊ༟ اڣݑ ۰݁أ؇ࠍ ܳٺޚިߌߵ اࠍ؇ܳ٭۰ اݿ؇ܳ٭ص ሒᇭ ይዧޚ؇ڢ۰ اৎިڣݠ واداء

اࠍ؇ܳ٭۰. اܳٷިاة ݁ٺأڎدة ႟၍؇۱٭
۰݁أ؇ࠍ ّࡤࡲ .؇ً༟ިނ٭ اَިاع ଫأ܋ ඔ൹ً ݆݁ ሒሃ اৎܳگ۰ اܳٷިاڣڍ ذات اݿٺأఈః݁؇ت ڣ؆ن اܳٴ٭؇َ؇ت، ਐಸڎڣگ؇ت ਵਦا ੯੩أਐಱ ٷڎ݁؇
ن َޙݠاً دಱ؇݁٭ܝ٭۰. ਃಸ؇َ؇ت ႟၍؇۱٭ ؇ዛኡ اܳިڢب ஓݠور اܳٷިاڣڍ ܾو ොٺިى ଫଃ؞ਐಱ أن ஓ୷ܝ݆ .؇ዛᔻఈఃاݿٺ ቕቆ มฆܳا اܳٴ٭؇َ؇ت أ༡ڎث
ࣁࣖڣݑ ؇ل ڣ؆ن اܳٴ٭؇َ؇ت، وᎂدارة لؕ ّިز ݿ٭؇ݿ؇ت ۋ٭ت ݆݁ ොڎدة ݁ٺޚܹٴ؇ت ؇ୖ اܳأڎ) أو اܳިڢب আॻ༟ ۰ஓ୴؇اܳگ) ا௰௯௫ٺܹڰ۰ اܳٷިاڣڍ ޗݠق
ل۰ اৎٺިاز ۰ଫଊይዧ ඔ൹ًޚߺࠊৎا واࠍ۳ڎ اܳިڢب ّگܹ٭ܭ ஓ୷ܝ݆ اܳٺگܹ٭ڎل۰. ل۰ اৎٺިاز ይዧٺگٷ٭؇ت ૭ྟ٭ً؇ ොފٷ۰ وଃ݁ات ༠؇ݬ۰ ଫଊ༠ة ਐಱޚܹص اܳٴ٭؇َ؇ت

ۏ٭ڎاً. ݁ٷޙ۰݄ اݿଫଐا౯ళ٭۰ ஓފ؇༟ڎة
اරඝى. اداء و݁گ؇ݴ اܳިݬިل، وز݆݁ اৎިازي، اࠍܭ إਐ؇ۏ٭۰ ݁أڎل ඔ൹ً اܳأఈఃڢ۰ ڣ۳ܾ اዝངܭ ݆݁ ຬأܭ أَ۬ პაႰ

ا௰௯௫ݱݱ۰ اොຳ؇ث ݆݁ ොڎود ڢڎر ۱ٷ؇ك اܳأ؇دل۰، اڣݑ اݿٺأఈః݁؇ت ሒᇭ ً؇ܳٺިازي ੯੩أਐಱ ڣ٭݄؇ اৎگ؇ت ݆݁ اܳأڎࢴࣖ ๑ฺ ቕቆ ྲྀٷ݄؇
݁ٺأڎدة గጻዧأ؇ࠍ؇ت ݁ފٺ݄ݠة أڣݑ ّگٷ٭۰ ሒሃو ߓߵݿݴ، اᄴᄟراݿ۰ ۱ڍه ّگڎم اৎފٺ݄ݠة. اڣݑ ݿٺأఈః݁؇ت ل۰ اৎٺިاز ۰أ؇ࠍగጻዧ ۊݱ٭ݱً؇
اۊٺٴ؇رات ఈః༠ل ݆݁ اৎگଫଐح اৎިازي اܳٺٷڰ٭ڍ ڣأ؇ܳ٭۰ إਊು؇ت لࡤࡲ اৎܳگ۰. اܳٷިاڣڍ আॻ༟ ۰ஓ୴؇اܳگ اܳٴ٭؇َ؇ت ܳٺڎڣگ؇ت ۊݱ٭ݱً؇ ݁ݱ۰݄݄ اܳٷިاة
اܳިݬިل، و݁أڎت ا௰௯௫ٺܹڰ۰، اܳٷگ؇ط لأ؇ت ّިز ૰݄ܭ มฆܳوا واݬޚٷ؇٭۰، اܳިاڢأ٭۰ اܳٴ٭؇َ؇ت ༟ިᆇ؇ت ݆݁ ႟၍ আॻ༟ ಱරජأ มฆܳا

܋ٴଫଃاً. ؇ً༟ر؇૭ اݿ؇ݿ٭۰ ཛྷ؇واܳأٷ اًأ؇د ݆݁ ଫଃ܋ٴ ًأڎد ଃറണ มฆܳا اܳٴ٭؇َ؇ت ۰༟ި݄௵௯௫ اܳٺ۠ݠྟ٭۰ ༇؇اܳٷٺ ّޙ۳ݠ اܳٷިاڣڍ. وਵض
اिऻءոؼמ١: اڤոஈت

١ݾո֔िऻا اڤո֔ڤמ١، اոּ֔ॊूد اڤץמոֿոت، ࠲ࡇؔۂ اिऻۻڵۑ، اॊूؔۂ اڤרܙاة، ڲ֔دة ༓מ١ ا༖۰ेू۾ո֔ر، أـ٤ۏة اڤٌ۠ڵ١، اڤץמոֿոت اڤץמոֿոت، إدارة
.١ֵ اिऻܙاز

CONTENTS

Abstract v

Contents vii

List of Acronyms xv

I Introduction 1

1 Introduction 3
1.1 Big Data and Skyline Processing over Data Streams (SPODS) 3
1.2 SPODS challenges . 4
1.3 Inspiring works . 5

1.3.1 Aviation applications . 5
1.3.2 Predictive analytics with aviation big data 6
1.3.3 Aircraft sensor data streams . 6
1.3.4 Civil Aircraft Big Data Platform . 7
1.3.5 On-the-fly Mobility Event Detection over Aircraft Trajectories 8
1.3.6 Research on Aircraft Air Conditioning Performance Monitoring and

Trend Predicting . 9
1.3.7 Skyline in Network applications . 9
1.3.8 Skyline on Social media analysis . 10

1.4 High performance SPODS applications . 10
1.4.1 Parallelism opportunities in SPODS applications 11

1.5 Contributions of the thesis . 12
1.6 Outline of the thesis . 12

II Background on Data Stream Processing 15

2 Background on query processing with Data stream 17
2.1 Characteristics of a SPODS application . 17

2.1.1 Function state . 18
2.1.2 Windowing approaches and State type 19

2.2 Data Stream Processing systems . 20
2.2.1 Data Stream Management Systems . 21
2.2.2 Complex Event Processing systems . 22
2.2.3 Stream Processing Engines SPE . 22

2.3 Parallelism exploitation in SPODS systems . 23

2.3.1 Parallelism in QPODS systems . 23
2.3.2 Literature approaches . 24

2.4 Conclusion . 25

III Skyline Queries 27

3 Continuous Skyline Queries 29
3.1 Entities and Attributes . 30
3.2 The Concept of Dominance . 31

3.2.1 Skyline Queries . 32
3.2.2 Main-Memory Computation (in-core skyline queries) 33
3.2.3 Algorithms for Secondary Memory (out of core skyline queries) 34

3.3 Advanced Skyline Processing . 34
3.3.1 Skylines in Dynamic Environments . 34
3.3.2 Distributed and Parallel Techniques . 40
3.3.3 A High-Level Approach to Parallel Programming 42
3.3.4 Parallel Paradigms for Skyline Queries Over Data Stream (SPODS) . . 44
3.3.5 Parallel Patterns for Windowed Functions 53
3.3.6 Parallel Patterns Taxonomy . 53
3.3.7 Categories of Parallel Patterns for Windowed Functions 53
3.3.8 Pane Farming . 55
3.3.9 Window Partitioning . 56

3.4 Skyline Cardinality . 58
3.5 Conclusion . 63

4 Variations of Skyline Queries 65
4.0.1 Dynamic Skyline Queries . 66
4.0.2 Group skyline computation . 67
4.0.3 Spatial Skyline Queries . 68
4.0.4 Metric Space Skyline Queries . 75
4.0.5 Constrained Skyline Query . 78
4.0.6 Range-Based Skyline Queries . 79
4.0.7 Reverse skyline queries . 82

4.1 Applications of Skyline-Based Queries . 83
4.1.1 Multi-criteria decision making . 83
4.1.2 Machine learning . 84
4.1.3 Network analysis . 86
4.1.4 Other interesting applications . 86

4.2 Conclusion . 89

IV Parallel Range Search Skyline 91

5 Parallel Range Search Skyline 93
5.1 Problem Definition . 93

5.1.1 Dimension Indexing . 93
5.2 Parallel RSS over data stream . 105

5.2.1 Parallel Range Search Skyline PRSS . 105

viii

5.2.2 Optimization of the dominate() Function using AVX2 110
5.2.3 Parallel implementation details . 114

5.3 Performance Evaluation . 115
5.3.1 Experimental Setup . 115
5.3.2 Experimental Results . 117

5.4 Conclusion . 127

V Outlooks and conclusion 129
5.5 Conclusion . 131
5.6 List of Publications . 132

List of Publications 132

VI Bibliography 133

Bibliography 135

ix

x

LIST OF FIGURES

1.1 Skyline query over Flight Data. 6
1.2 Skyline query usage for IoT devices selections. 7
1.3 An example of skyline over data stream processing. 11

2.1 Sliding window vs Tumbling window. 20
2.2 Count Based sliding window VS Time based Sliding Window. 20
2.3 History of various DaSP Systems. 21

3.1 The concept of dominance. 32
3.2 Taxonomy of Skyline query processing over Data Stream. 35
3.3 Handling Insertions and Deletions. 35
3.4 Incomparable Points. 36
3.5 Gid-based (right) and Angle-based (left) Partitioning. 42
3.6 Pipeline parallel pattern [26]. 45
3.7 Task Farm parallel pattern [26]. 46
3.8 Map pattern with 4 cores [26]. 47
3.9 Window Farming with two cores. In the figure |W | = 3 and δ = 1. w x

i is the
i-th window of substream X. F (wi) is the result of the processing function over
a window [26]. 54

3.10 Key Partitioning with fine-grained distribution. Substream X is routed to the
first Core, substream Y to the second one [26]. 55

3.11 Sliding window created with 4 different panes. Each pane is identified in 4
consecutive windows [26]. 56

3.12 Window Partitioning with 4 cores and one key. In the figure |W | = 8 and δ= 4
[26]. 57

3.13 Correlated, anticorrelated, and independent data distributions. 58

4.1 Dynamic Skyline Query. 67
4.2 Spatial Skyline Query. 69
4.3 Nearest and the Farthest Spatial Skyline Queries. 70
4.4 Spatio-textual Skyline Query. 71
4.5 Direction-based Skyline Query. 72
4.6 Metric Skyline Query. 78
4.7 Constrained Skyline Query. 79
4.8 Type of Range-skyline Query developed in [236]. 79
4.9 Range Skyline Query. 81
4.10 Illustration of Service Workflow and Airplane Service Pruning. 85
4.11 Naive Bayesian Classifier Model. 85
4.12 Hash BBS Skyline Process. 87

LIST OF FIGURES

4.13 Monitor Process. 88
4.14 Dynamic Skyline Sensor Selection. 89

5.1 Dimension index system. 95
5.2 Dimension index for multidimensional dataset in table 3.2. 95
5.3 Skyline Maintenance with a new Incoming Tuple. 96
5.4 Load Balancing on Cores. 105
5.5 Step-by-step Skyline Index Update. 110
5.6 Tuples comparisons using AVX2. 111
5.7 Various load-balancing strategies. 115
5.8 RSS vs PRSS (Anticorrelated Count-Based window, Different Cardinalities). . 116
5.9 RSS vs PRSS (Correlated Count-Based Window, Different Cardinalities). . . . 116
5.10 RSS vs PRSS (Independent Count-Based Window, Different Cardinalities). . . 117
5.11 RSS vs PRSS (Anticorrelated Count-Based Window, Different Dimensionalities).118
5.12 RSS vs PRSS (Correlated Count-Based Window, Different Dimensionalities). . 118
5.13 RSS vs PRSS (Independent Count-Based Window, Different Dimensionalities). 119
5.14 PRSS scalability (Anticorrelated Count-Based Window, Different Numbers of

Threads). 119
5.15 Memory consumption of RSS vs PRSS (Anti, Corr, Ind data, Different Dimen-

sionalities). 122
5.16 Tracking Memory consumption of RSS vs PRSS. 123
5.17 RSS vs PRSS vs BskyTree (Anticorrelated Count-Based Windows, Different

Cardinalities). 124
5.18 RSS vs PRSS vs BskyTree (Correlated Count-Based Windows, Different Car-

dinalities). 124
5.19 RSS vs PRSS vs BskyTree (Independent Count-BasedWindows, Different Car-

dinalities). 125
5.20 RSS vs PRSS vs BskyTree (Anticorrelated Count-Based Windows, Different

Dimensionalities). 125
5.21 RSS vs PRSS vs BskyTree (Correlated Count-Based Windows, Different di-

mensionalities). 126
5.22 RSS vs PRSS vs BskyTree (Independent Count-Based windows, Different Di-

mensionalities). 126

xii

LIST OF TABLES

3.1 Summary of Notations. 32
3.2 A sample database with A = 6, Z = 10, and m = 5. 33
3.3 Comparison of Window Partitioning and Window Farming 57
3.4 Summary of Parallel Patterns for Skyline Queries [26]. 58
3.5 An example of approaches to sequential continuous skyline techniques over a

complete data stream. 59
3.6 Examples of approaches to sequential continuous skyline techniques over In-

complete and Uncertain data streams. 60
3.7 Example of approaches to parallel continuous skyline techniques. 61

4.1 Flight ticket price and duration for group travelers. 68
4.2 Flight ticket prices, distances, and airline preferences. 71
4.3 Comparison of different skyline query variations. 84

5.1 Data Chunk Assignment . 114
5.2 RSS vs Parallel RSS vs BskyTree with Real-World Datasets. 117

LIST OF TABLES

xiv

LIST OF ACRONYMS

Acronym Definition
SPODS Skyline Processing Over Data Stream
QPODS Query Processing Over Data Stream
DaSP Data Stream Processing
CRSQs Continuous Range-based Skyline Queries
SPM Sectro photo meter
LBA landmark-based
IBA index-based
exabytes 1 million terabytes (TB) or 1 billion gigabytes (GB)
BR&T Boeing Research & Technology
AATM Advanced Air Traffic Management
ASDI Aircraft Situation Display to Industry
DBMS Database Management System
PHM Prognostic Health Management for aircraft
AI Artificial Intilligence
CBM Condition-based maintenance
AL autonomous logistics
AHM Aircraft Health Management
AiRTHM Aircraft Integrated Real-Time Health Monitoring
ATM air traffic management
ADS-B Automatic Dependent Surveillance-Broadcast
SPP structured parallel programming
OpenMP Open Multi-Processing
Openacc Open Accelerators
SYCL Standard for Heterogeneous Programming in C++
IDE Integrated Development Environment
HPC High-Performance Computing
PRSS Parallel Range Search Skyline
DSMS Data Stream Management Systems
CEP Complex Event Processing
SPE Stream Processing Engines
DSMS Data Stream Management Systems

LIST OF TABLES

Acronym Definition
DSMSs Distributed Stream Processing Systems
SQL Structured Query Languag
SQuAl Stream Query Language
QoS quality of service
IT Information Technology
GCP Google Cloud Platform
GPU Graphical Processing Unit
Sky(t) Skyline of t
BBS Branch Bound Skyline
NN Nearest Neighbor
P2P networks Peer-to-Peer Networks
SSP method Scalable Skyline Processing Method
MANETs mobile ad-hoc networks
RP Random Partitioning
GP Grid-based partitioning
AP Angle-based Partitioning
DR Dominance Region
ADR Anti-dominance Regions
WSN Wirless networks

xvi

Part I

Introduction

1

CHAPTER

1
INTRODUCTION

Chapter content
1.1 Big Data and Skyline Processing over Data Streams (SPODS) 3
1.2 SPODS challenges . 4
1.3 Inspiring works . 5

1.3.1 Aviation applications . 5
1.3.2 Predictive analytics with aviation big data 6
1.3.3 Aircraft sensor data streams . 6
1.3.4 Civil Aircraft Big Data Platform . 7
1.3.5 On-the-fly Mobility Event Detection over Aircraft Trajectories 8
1.3.6 Research on Aircraft Air Conditioning Performance Monitoring and

Trend Predicting . 9
1.3.7 Skyline in Network applications . 9
1.3.8 Skyline on Social media analysis . 10

1.4 High performance SPODS applications . 10
1.4.1 Parallelism opportunities in SPODS applications 11

1.5 Contributions of the thesis . 12
1.6 Outline of the thesis . 12

1.1 Big Data and Skyline Processing over Data Streams (SPODS)
The rapid evolution of Big Data is transforming various domains at an unprecedented scale
[1]. Sensors, infrastructure systems, and global stock markets are among the many sources of
continuous data streams, with human interactions on social media also serving as significant data
generators. Every day, approximately 2.5 exabytes of new data are generated, and astonishingly,
90% of all existing data has been produced within the past two years alone [2]. By 2030, it is
expected that tens of billions of devices and physical hardware components will be connected
to the internet, driven by the widespread adoption of sensor technology [3].

Real-time data is typically transmitted as a continuous stream, and the ability to collect and
analyze it to derive insights and identify patterns is proving to be invaluable across various in-
dustries and academic fields. These applications are used in various domains and typically have
strict performance requirements [4]. Examples of such applications include high-frequency

1.2. SPODS CHALLENGES

trading systems [5], healthcare [6], network security [7], and disaster management [8]. These
systems require real-time processing of large volumes of data to detect anomalies and take
timely corrective actions. Any delay in response is ineffective and can even lead to harmful
consequences.

Time-sensitive applications cannot depend on traditional store-then-process (or batch) ar-
chitectures, which are designed for environments where data is highly structured. As a result,
a new method for managing and analyzing streaming data, called Query Processing Over Data
Streams (QPODS), has been developed. Some of its key features, as highlighted by Babcock et
al. [9] and Andrade et al. [10], are as follows:

• Data is represented not as static ”in-memory” structures, as in traditional applications,
but as continuous streams that flow over time;

• Data analysis systems cannot change the way data is delivered during processing;

• Data processing must occur in real-time, or at most, with limited memory, due to the
continuous input and strict performance demands. This may require the use of windowing
techniques or approximate processing methods.

When processing large volumes of data, Skyline Processing over Data Streams (SPODS) is
often employed. The five key characteristics of Big Data ”volume, velocity, variety, veracity, and
value” are essential for understanding its complexity [11]. Volume refers to the massive amount
of data generated, while velocity describes the speed at which data is produced and transmitted.
Variety involves the different forms and types of data, and veracity refers to the accuracy and
trustworthiness of the data. Value signifies the potential worth derived from analyzing the data.
SPODS mainly focuses on handling the velocity and variety aspects of the ”Big Data Challeng”
in contrast to traditional batch processing systems, which primarily address volume and variety.

1.2 SPODS challenges
From creating efficient algorithms for real-time processing to developing programming environ-
ments and runtime systems for deployment and execution, SPODS applications present several
challenges in various database management contexts [12], [10]. Some of these challenges, par-
ticularly those related to modern hardware and software required to implement and run these
applications, will be discussed.

The analytical results from stream processing computations need to be of high quality and
delivered quickly enough to keep up with the rate at which data is being received. Therefore,
SPODS applications have to utilize parallel hardware and parallel systems, such as multi/many-
cores or a cluster of multicores, to achieve high throughput and low latency. the intended prefer-
ence of the user are expressed by the overall performance requirements, which are preconditions
on quantitative metrics presenting the application’s efficiency degree such as: reduce delays,
optimized bandwidth, energy-efficient.

In this context, ”the mean response time of the application must be less than or equal to a
given threshold” and ”the applicationmust have the capacity to maintain a given throughput” are
examples of common worries. The continuous style (24 h/7 d) and dynamic execution scenario
of SPODS applications have an impact on them and cause unexpected shifts in their workload
characteristics.

These are all problems that the HPC and data base community is familiar with, but the
persistent nature of the issue calls for additional consideration here. Many SPODS algorithms

4

CHAPTER 1. INTRODUCTION

have been proposed in recent years, and a great deal of research has been conducted on this
topic in both the academic and commercial sectors. This is because, in addition to being an
engaging and complicated research topic, it can be of strategic importance to many different
types of businesses. The SPODS community has not yet resolved all of these issues.

This thesis aims to investigate the difficulties associated with skyline computation and pro-
pose a new parallel solution to these difficulties. Here, we’ll go over a number of compelling
use cases for SPODS that illustrate its main features. Then we present our outlook and method
for overcoming the aforementioned difficulties.

1.3 Inspiring works
In different situations, scenarios of real use that convey the aforementioned characteristics can be
found. We’ll go over a few of them below, but there are countless others in fields like automobiles
[13], medicine [6], and the Internet of Things [14]. What kinds of uses will emerge in the coming
years as a result of this ”Big Data revolution” no one can guess. But one thing is certain: data
stream processing is here to stay, and all this massive amount of real-time data will be worthless
unless applications can quickly and accurately ingest and analyze it [10].

1.3.1 Aviation applications

The advent of algorithmic trading and high-frequency trading in the financial markets 10 years
ago was a game-changer. As a result, high-frequency trading moves from traditional exchanges
to digital ones, where computer programs are in charge of managing and monitoring it. Real-
time data distribution services, such as Aviation Financial applications, continuously dissemi-
nate information about aircraft maintenance, safety factors, ticket prices, and sales transactions
taking place across various global sale agencies [2]. Flight companies must analyze these mar-
ket data feeds in order to identify trends and opportunities. Simple computations include fil-
tering and aggregation while more complex computations involve correlating multiple streams.
Among the many techniques used to manage how ticket prices will adapt in the future is the
identification of recognizable patterns in aviation market charts as illustrated in Figure 1.1. Au-
tomatic trading actions can be taken to predict competitors’ actions if the most recently received
marketing information for a given market (say, ”the last 1000”) exhibits well-defined action [2].

Flight time is one of the most important design factors in aviation financial applications. If
a flight company experiences significant latency when analyzing the market, the data they use to
make their decisions will be outdated. However, if processing times can be guaranteed to within
a few milliseconds, that could be a huge advantage over competitors. The rise of algorithmic
and electronic trading, on the other hand, has resulted in a persistent acceleration of data rates
over the past few years. According to recent studies [2], the maximum number of messages
that can be sent in 100 milliseconds in a single stream conveying information about different
market symbols is expected to rise to 400 thousand in 2025 [15]. Average rates are much lower,
frequently by an order of magnitude, highlighting a highly dynamic environment where spikes
are the result of outside events (such as news, public sentiment, and political decisions) and
may only apply to a portion of the information market. To process this rapidly rising feed rate
economically, high-performance solutions are required.

5

1.3. INSPIRING WORKS

Duration h

Price $

100

200

300

400

1 2 3 4

Flight1

Flight2

Flight3

Flight4
Flight5

Flight6

Flight7

Flight8

Flight9

Flight10

Skyline

Dynamic Skyline at t i me = t1

Dominance
Region

Duration h

Price $

100

200

300

400

1 2 3 4

Expired
Flight1

Flight2

Flight3

Flight4

Flight5

Expired
Flight6 Expired

Flight7

Flight8
Flight9

Flight10

Skyline

Dynamic Skyline at t i me = t2 > t1

Dominance
Region

Figure 1.1: Skyline query over Flight Data.

1.3.2 Predictive analytics with aviation big data
BoeingResearch&Technology (BR&T) created theAdvancedAir TrafficManagement (AATM)
system, which is capable of making predictions using descriptive patterns found in a lot of avia-
tion data [1]. For over two years, Boeing AATM has been archiving real-time information from
the Aircraft Situation Display to Industry (ASDI). There is currently no straightforward method
to analyze the data. It is necessary to correlate the incoming ASDI data with other flight data,
and it is large and compressed. Once the ASDI data was pushed into the data warehouse, it
was necessary for us to process the incoming data in near real-time so that users could begin
conducting analytics.

Big data refers to information that defies conventional methods of storage and retrieval.
Since it will be too big to fit on a single disk, multiple processors will need to work on it simul-
taneously. When used in monitoring applications, a DBMS’s job is to sound the alarmwhenever
anything out of the ordinary occurs.

The scenario involves calculating the unique traffic volume within a boundary or airway
segment at any future time in 15-minute buckets for a given airspace (sector, center, airspace
volume of interest, boundary, or airway segment). Near-real-time business analytics refers to
the practice of reducing the lag time between the collection of data and the implementation of
a decision based on that data. Here, we’re hoping to propose alternative flight paths and warn
of congestion caused by flow control areas or weather if certain thresholds are met.

1.3.3 Aircraft sensor data streams
Time is a crucial factor in many contexts where prompt decisions must be made. Specifically,
it necessitates real-time processing of data streams. This necessitates the real-time processing
of information gathered from sensor observations. Incorporating data compression, data stream
abstraction, continuous queries, and the generation of links in real time are just a few examples
of the sorts of changes that need to be made to the conventional static data publishing process
to meet this need.

A growing number of businesses, academic institutions, engineering fields, and even gov-
ernments are investing in the race to develop effective management queries for handling what

6

CHAPTER 1. INTRODUCTION

Energy Efficiency

Data Accuracy
Communication

Reliability

— device 0
— device 1
- - device 2
— device 3
- - device 4

1

User Input: Criteria
~ Energy Efficiency
ó Data Accuracy
ñ Communication
Reliability

Data from IoT
Devices

d½ÇÂ�|

Skyline QueryResult: Skyline
Devices

Figure 1.2: Skyline query usage for IoT devices selections.

is referred to as ”big data”. Large industries, such as the aviation industry, as shown in Fig.
1.2, sensor manufacturing, IoT, and others, will significantly depend on the ability to retrieve
relevant patterns and information from enormous volumes of high-speed streamed data, making
this a rapidly expanding and promising field.

The aviation industry was practically developed in the age of big data [16]. There are mil-
lions of components and dozens of systems in an airplane, and sensors allow for the collection
and storage of massive amounts of information about their operation. Big data’s innovative tools
improve passengers’ trips and boost airlines’ bottom lines. Pratt & Whitney’s big data analysis
services can currently collect around 1000 parameters per engine per flight, with a projected
increase to 5000 parameters per engine per flight for the next generation of geared turbofan
engines [15].

1.3.4 Civil Aircraft Big Data Platform
Scheduling Flights Using Predictive Analytics

The regularity of flights has an impact on airlines revenue. When arranging flights, airlines look
for ways to cut down on wait times, boost customer satisfaction, and lower overhead expenses.
Weather, aircraft type, route, flight order, air traffic control, airline planning, airport security
capabilities, operation model, passenger density, and passenger composition are among the pri-
mary contributors to flight delays. The civil aircraft big data platform performs essential flight
arrangement tasks like real-time flight position tracking, flight arrival time forecasting, weather
analysis, flight planning, and marketing analysis. The system is able to minimize both flight
delays and energy usage [2].

Health and fault management for aircraft

Aircraft contain a plethora of sensors and other monitoring equipment. Large amounts of in-
formation can be collected through high-frequency, extended sampling while in flight. Cabin
pressure, altitude, and fuel consumption data from a Boeing 787 flight, for instance, total more
than half a terabyte. Aircraft health and performance can be tracked and potential problems
identified with the help of big data analytics applied to intelligent fault diagnosis systems. The
big data platform for civil aviation keeps tabs on the aircraft’s deteriorating performance, fore-
casts its future dependability, detects mutation faults, and sounds alarms before a complete

7

1.3. INSPIRING WORKS

breakdown occurs. Prognostic Health Management (PHM) technology went through two major
shifts due to the rise of big data and advances in AI. First, moving from intelligent system di-
agnosis and prediction based on sensor data Secondly, switching from scheduled maintenance
(maintenance at specific times) to maintenance based on the current state [2].

Plan for Maintenance

Intelligent aircraft maintenance is possible with the help of big data and PHM technology. The
civil aviation industry can take advantage of the big data platform to analyze trends in flight
and historical data for health monitoring, fault diagnosis, and fault prediction. The platform
can calculate when the aircraft will need to be inspected for routine maintenance. In order
to improve maintenance productivity and reduce maintenance costs, airlines can prepare for
potential maintenance by doing things like making maintenance plans and ordering repair parts
in advance [2].

A Big-Data-Powered Fuel-Saving System

By analyzing flight plan data, actual flight data, load balancing data, airport weather conditions,
pilot operation, and engine fuel loss, the civil aircraft big data platform can aid airlines in mak-
ing noise alternate field decisions. Using a large database of flights as input, the platform’s
prediction model can estimate how much fuel will be used during each flight. A more manage-
able amount of reserve oil can be carried, and the use of any oil left over after landing can be
optimized to save money on fuel [2].

1.3.5 On-the-fly Mobility Event Detection over Aircraft Trajectories

Hundreds of millions of people use commercial airlines every year to go on vacation or for
business. Every day, there are over 26,000 flights within Europe [17]. Worries about safety
and its possible significant effect on the already congested skies have been raised as the air
transport industry, which is a strategic industry, is anticipated to expand by 5% annually until
2030. Airlines must carefully plan their routes, maintenance services, crew rotations, and ticket
prices due to intense competition and low profit margins resulting from rising costs of both labor
and fuel [17].

In order to reduce direct operating expenses, air traffic management (ATM) systems use
flight plans as an accurate representation of aircraft’s intended routes. Due to the critical nature
of accurate and predictable aircraft trajectories in ATM systems, a model-based approach is typ-
ically used. However, this has limitations due to inherent inaccuracies, varying sources of error,
and the impact of uncertainty (weather, traffic, etc.). Yet, with today’s technology, planes can be
monitored in real time, either through Automatic Dependent Surveillance-Broadcast (ADS-B)
messages broadcast by planes or by terrestrial radar stations. Therefore, a data-driven strategy
for trajectory management may contribute to better ATM performance. Since flight plans for
many planes in the sky may need to be changed at the last minute due to weather or other unfore-
seen circumstances, accurate and timely trajectory representation for all active flights across a
large region is essential [17].

8

CHAPTER 1. INTRODUCTION

1.3.6 Research on Aircraft Air Conditioning Performance Monitoring and
Trend Predicting

There are six primary aircraft systems that have a major impact on flight safety. System compo-
nents include HVAC (pack), air bleed, hydraulics, flight controls, landing gear, and generators.
Therefore, those systems’ failures are also the primary cause of airline flight delays and can-
cellations [8]. The air conditioning system of A320 aircraft accounts for a high percentage of
all types of malfunctions, which has a significant impact on flight punctuality. Most weather
phenomena occur in the boundary layer, the lowest layer of the atmosphere. The variables and
factors that influence the weather on a daily basis are numerous and inaccessible. As a result,
weather forecasts can only be as accurate as the data used to create them [8].

Historically, meteorologists have relied on weather balloons and stationary weather stations
to compile their data. However, weather stations have significant limitations in their measure-
ments due to their stationary location and close proximity to the earth’s surface [8]. They are
limited in their ability to collect data from the boundary layer because they must remain on the
ground.

Drones, on the other hand, are exempt from this rule and, with the proper authorization, can
be flown at altitudes greater than 1 kilometer (3500 feet) [8]. In order to gather information
from a specific location at a specific altitude, weather drones are so easy to pilot that they can
be flown directly into the wind or even into storms. Drones can also be programmed to go back
to their home base. This enables the installation of a wide variety of high-priced sensors and
other devices on a weather drone.

Making quick and reliable decisions about how and when a specific weather scenario will
impact a flight is one of the greatest obstacles faced by operators throughout all segments of
aviation. With Schneider Electric’s new 4D Flight Route Alerting solution, pilots and flight
dispatchers can receive real-time alerts that include altitude, position, and time components to
help aircraft avoid areas of heavy turbulence or severe weather. Despite advances in aviation
technology, human error is still a problem, which is why we need decision-making support
systems to help pilots out while they’re in the air.

1.3.7 Skyline in Network applications
Maintaining control of a sizable data communications infrastructure calls for round-the-clock
network monitoring. The goals of an analysis may vary greatly. For instance, traffic monitoring
on traffic summaries generated by network equipment may be of interest to network adminis-
trators. Analysis of system load (e.g., how much bandwidth is used by which applications or
which parts of the network) is computed frequently, as are analyses of flow characteristics (e.g.,
distribution of life time and size) and session characteristics [18].

In addition to infrastructure management, traffic monitoring also includes the equally press-
ing issue of cyber security. Data theft, economic losses, and lost productivity are all avoidable if
security threats are managed. In order to combat this issue, detection systems for network intru-
sions were recently implemented. Detecting potential attacks in real time, they then issue alerts
as quickly as possible so that countermeasures can be taken [19]. Their detection algorithms
are typically complex, requiring the line speed to be able to process and analyze multiple traffic
flows simultaneously. For an appropriately big corporate network, especially during working
hours, similar systems have to handle streaming data from multiple sources at collected rates
approaching several to tens of gigabytes per second. The desired detection latencies must be on
the order of milliseconds, andmeeting these requirements is essential because delayed responses

9

1.4. HIGH PERFORMANCE SPODS APPLICATIONS

can have serious consequences for both the economy and security.

1.3.8 Skyline on Social media analysis
For establishing connections with others and sending information, social media are now indis-
pensable. Among these is Twitter (rebrand as X) [20], a microblogging service that has quickly
become a go-to for people looking to share their thoughts, break news, or just chat with strangers.
It has been instrumental in reporting on and discussing major sociopolitical events like the Arab
Spring and Occupy Wall Street, as well as natural disasters. As Twitter has grown in popularity,
researchers and developers have found new ways to put the platform to use. For example, data
mining methods can be used to increase scientists’ ability to comprehend novel phenomena.
Real-world event identification via Twitter reasoning is a common form of online reasoning.
In the past, event identification has been carried out using static document collections that are
all connected through a web of unknown occurrences. Recent Twitter projects have begun to
process data in real time as it is generated. Many of them seek to locate specific types of events,
like breaking news or natural disasters like earthquakes and typhoons. It’s possible that emer-
gency workers would benefit from reduced latency, especially in the event of a natural disaster.
Other works attempt to solve the issue of event identification (and tweet about it) without any
prior context. Here, we employ a wide range of methods, from statistical to online clustering.
The most recent data, which is more relevant to end users, is usually the primary focus of these
analyses [21].

Research into the relationship between tweets and the stock market is another promising
avenue. Twitter is a popular platform for disseminating stock market-related news and analysis
among traders, investors, analysts, and media outlets. This means that certain stocks can gen-
erate thousands of tweets per day. The volume of tweets about a stock typically rises and falls
over the course of a few days but can suddenly spike if there has been a significant change in
sentiment about the stock. The sentiment in tweets could be used to inform stock option trading
strategies [20].

These fascinating applications must deal with Twitter’s inherent characteristics. There are
currently over 611 million active users on Twitter, who collectively post an average of 5,700
tweets per second [21]. In response to a specific social event, for instance, the rate of tweets on
that topic may spike by multiple orders of magnitude in a short period of time. System behavior
must adjust to the volume of arriving data in order to deliver timely results, as timely topics or
events tend to come and go quickly.

1.4 High performance SPODS applications
Processing skyline queries over data stream can be expressed in a generalized form using a
computation graph as illustrated in Figure 1.3. query inputs consist of one or more continuous
data streams, and query outputs may be received as yet additional continuous updated skyline
flows. The query can be broken down into its component parts thanks to internal nodes that
express intermediate computations [10, 22].

In most cases, an intermediate function takes in data and processes it in accordance with
its own internal logic. Both stateless and stateful functions exist. Each piece of data fed into
a stateless function is handled separately. In contrast, stateful functions maintain state infor-
mation as they process data streams [10]. The value of the internal state, which is constantly
updated whenever a new item is received, determines the output results. The issue of having

10

CHAPTER 1. INTRODUCTION

Filter Tuples

Compare Tuples Insert Tuples

Remove Expired Append Skyline

Update Skyline
Incoming
Tuples

Updated Skyline

SPoDS Applications

Figure 1.3: An example of skyline over data stream processing.

to store only a subset of continuous data streams arises from the fact that these streams could
theoretically go on forever. In many contexts, more recent data is preferable to older data. A
common workaround is to keep only the most recent data in a temporary window buffer and
then run the skyline computation on that.

Various stream processing frameworks provide mechanisms for creating functions, streams,
and so on, making it easier for developers to map their applications into a computation graph
[10]. In order to boost developers’ efficiency, it is common practice to supply them with a
set of reusable functions that can be used in a wide variety of programs. Filters, joins, update,
compare, sorts, aggregates (sum, count, max) andwindowed functions are just a few examples of
relational functions that transform data from one format to another, allowing it to be used within
a skyline query. In addition, modern frameworks (like Apache Storm[23], Apache Flink [24],
MapReduce [25]) generally support programmable functions written in a generic language. The
abstract computation is then run using a collection of computers. With the help of the runtime
system, computation can be mapped into a collection of interacting threads or processes, which
can then be deployed and managed using the available resources (CPU cores).

1.4.1 Parallelism opportunities in SPODS applications
High throughput (i.e. applications must be capable of handling a high volume of arriving data)
and low latency (i.e. results must be obtained in a short period of time) are two requirements
that SPODS applications must meet. Inter-function parallelism, in which multiple functions
run simultaneously on multiple processing elements, provides the first parallelism opportunity
due to the independence of graph functions. The computation graph needs to be reorganized if
inter-function parallelism is insufficient. The slowest sequential function must be identified and
parallelized. The goal is to produce a computation graph with the same functional properties as
the original graph but with some nodes transformed by internal parallelization like parallelising
the dominance test or the insertion of new incoming tuples and the deletion of outdated ones
[26].

In all but the most exceptional circumstances, manual parallelization is discouraged. Such
low-level approaches not only limit software productivity and shorten development times, but
they also prevent code and performance portability and can cause problems like race condi-
tions since they are hard to find in complex applications. High-level approaches to parallel
programming are commonly used in the high-performance computing (HPC) community to
circumvent these issues [27–29]. For developers to easily put together a parallel application,
the programming environment must provide them with access to high-level parallel constructs.
This increases the level of abstraction which simplifies programming:

With only an abstract, high-level view of the parallel program, the programmer is free to
focus on the computational aspects of the code while leaving the most important implemen-

11

1.5. CONTRIBUTIONS OF THE THESIS

tation decisions to the programming tool and runtime assistance. In addition, this will make
the program’s architecture portable, allowing for consistent performance expectations across
platforms.

We argue that the SPODS setting might benefit from a structured parallel programming
(SPP) method [30]. Structured parallel programming’s fundamental concept is to allow the
developer to specify an application in terms of preexisting parallel patterns (also known as
paradigms). Parametric implementations of communications and computation patterns are well-
defined, as are the parallel patterns that arise in the realization of many real-world algorithms
and applications. The programmer needs only choose the appropriate pattern and then describe
the sequential code when using parallel paradigms (ex: OpenMP[31], Openacc, SYCL[32]).
The IDE and runtime automatically generate the remaining code. Once a bottleneck function
has been identified, a suitable parallelization can be found by exploring a small, manageable
group of options. The ability to accurately predict and measure the overall performance pro-
vided by the parallel computation across a range of execution and environmental conditions is a
key feature of this method. Performance portability across different architectures relies on these
characteristics as their foundation. Additionally, SPP makes it easier to think about the features
of a parallel solution with respect to throughput, latency, and memory occupancy, in addition
to reducing the effort and complexity of parallel programming. To put it simply, this is what
intra-function parallelism requires [26].

When it comes to high-level parallel models, structured parallel programming is by far the
most interesting [26], [33], [34],[35]. Academic institutions and HPC communities have been
using it extensively for quite some time. Based on the foregoing, we think that parallel patterns
are a viable option for achieving intra-function parallelism in SPODS applications.

1.5 Contributions of the thesis
Dynamic parallel strategies and reconfiguration mechanisms with well-known properties of sta-
bility, overall performance, energy-efficient and low latency are still lacking in today’s approach
to the development of SPODS applications. To speed up the parallel implementation of SPODS
functions, we follow existing parallel patterns in the parallelization process. We use existing par-
allel frameworks like OpenMP to deliver easily parallel SPODS application. With these aims in
mind, the thesis’s research contributions can be summed up. The following are the main results:

• Finding patterns of parallelism through the identification of high bottleneck computation
functions.

• An extensive literature review and a research proposal for a parallel-based strategy to
provide reasonably high performance guarantees, either in terms of throughput or latency.

• The use of a shared-memory architecture to realize and implement the proposed parallel
SPODS algorithm called Parallel Range Search Skyline PRSS [36].

• To evaluate the efficacy of our proposed method, extensive experimental setups on a
shared memory architecture has been evaluated.

1.6 Outline of the thesis
This thesis has four main sections, accompanied by an introduction. The second Chapter ad-
dresses the concept of data stream processing. Chapter 3 focus on the concept of skyline query

12

CHAPTER 1. INTRODUCTION

and some existing skyline techniques. Chapter 4 focus on developed skyline query variations
and parallel algorithms and investigating strategies and reconfiguration mechanisms for paral-
lel SPODS patterns. In Chapter 5, we will go over our developed parallel skyline algorithm
PRSS [36]. We argue for a more high-level approach to parallel application development. This
chapter provides a brief overview of the PRSS algorithm. Then we provides an in-depth exper-
imental analysis of the proposed skyline method over a real and synthetic public available data,
evaluating its applicability, performance impacts, and drawbacks in the context of a multi-core,
shared-memory architecture. Finally, We presents the thesis’s conclusions and depicts poten-
tial future works through experimental evaluation of the proposed solutions on shared memory
architectures.

13

1.6. OUTLINE OF THE THESIS

14

Part II

Background on Data Stream Processing

15

CHAPTER

2
BACKGROUND ON QUERY PROCESSING
WITH DATA STREAM

“Only dead fish go with the stream.”MALCOLM MUGGERIDGE

Chapter content
2.1 Characteristics of a SPODS application . 17

2.1.1 Function state . 18
2.1.2 Windowing approaches and State type 19

2.2 Data Stream Processing systems . 20
2.2.1 Data Stream Management Systems . 21
2.2.2 Complex Event Processing systems . 22
2.2.3 Stream Processing Engines SPE . 22

2.3 Parallelism exploitation in SPODS systems 23
2.3.1 Parallelism in QPODS systems . 23
2.3.2 Literature approaches . 24

2.4 Conclusion . 25

The fundamental ideas behind Skyline Processing over Data Stream (SPODS) applications
and current frameworks are introduced in this chapter. The first section focuses on the key
attributes of a SPODS application; we will introduce the terms stream and tuples as well as the
key characteristics of stream processing functions, such as the existence of internal state and
the notion of windowing. The programming environment, in terms of functionality, functions,
and features that they provide to programmers, will be a major focus of the second part of
our review of various SPODS frameworks. We’ll talk about how parallelism is used in related
algorithms. This will provide a clear starting point for this thesis work by outlining the features
and restrictions of the current algorithms as well as research methodologies in the field.

2.1 Characteristics of a SPODS application
Data is continuously and theoretically infinitely entering from external (remote) sources into a
SPODS application. In order to give users prompt responses, the business logic of the applica-

2.1. CHARACTERISTICS OF A SPODS APPLICATION

tion has to handle the data in real time as it comes in.
A typical representation of a SPODS application is a direct graph with functions as its ver-

tices and streams as its arcs [10]. The application consumes and analyzes a series of individual
data items from the input stream that reflect events that occurred or, in general, useful data then
outputs the result to assist the user in decision making. A tuple is the basic, or atomic, data item
included in a data stream and handled by the application. The term ”tuple” will be used here to
refer to input data. A group of named and typed attributes (or fields) make up its structure such
as temperature, pressure, price, fuel, noise, distance,..., Each occurrence of an attribute has a
corresponding value. In this way, we can think of a data stream as an endless sequence of tuples
that share a common schema.

In many data stream application a physical input stream carries multiplexed tuples from
different logical substreams [37]. It is typical to take into account a key attribute of the tuple in
order to determine the correspondence between tuples and substreams [26]. The stock symbol
to which this information refers, for instance, can be a key in trades and ticket prices sent from
flight markets [38]. Similarly, in networking management, a stream can be divided into sections
based on IP addresses. Different applications must independently compute on each substream
based on the multiplexed streams. Referring to the earlier examples, it might be necessary to
analyze data by IP source or destination or perform pattern recognition independently for each
stock on the financial market [39].

In most cases, a function takes the input tuples and uses them to apply a transformation in
accordance with its internal processing logic. Because of this, the functionmay emit fresh tuples
as new streams, possibly with different schemas. The selectivity of the function is measured by
how many output tuples are generated for every tuple that is consumed.

2.1.1 Function state
Multiple categories exist for stream intermediate functions. Based on the work of Andrade et
al. [10], we will divide them into three categories with regard to state management:

• A stateless function is one that processes data tuple by tuple without saving any interme-
diate results or retaining any data structures produced by the computation. Examples of
stateless functions include selection, filtering, and projection, in which the processing of
one tuple does not affect the processing of any preceding tuples;

• A stateful function, on the other hand, keeps and updates an internal data structure while
operating on input data. The current value of the internal state affects the outcome of the
processing logic inside. Examples include sorting, joining, and the Cartesian product;

• Lastly, a keyed stateful (or partitioned) function is a crucial category of stateful function.
For a keyed stream, the function performs the same calculation separately on each sub-
stream. Because of this, the data structures that maintain the internal state are partitioned
off in their own places based on the relative substream.

Given the inherent difficulty that can arise when designing a parallel implementation of a
stateful or partitioned stateful function, these two types of functions are the most interesting to
study.

18

CHAPTER 2. BACKGROUND ON QUERY PROCESSING WITH DATA
STREAM

2.1.2 Windowing approaches and State type
The unbounded nature of input streams makes it impractical for a stateful function to keep track
of the entire stream history. There are two approaches to fixing this issue:

• Aggarwal and Yu [40] suggest using clear data structures like synopses, sketches, his-
tograms, and wavelets to implement the state and keep track of aggregate summary met-
rics. In this case, we don’t keep track of tuples separately.

• Tuples must be kept in a single internal state for a variety of applications. Fortunately,
in many applications, the importance of each tuple decreases over time, and recent data
is where the focus should be. To solve this problem, the state can be implemented as a
window buffer, where only the most recently used tuples are stored [41].

Windows are the most common abstraction for implementing SPODS functions’ internal
state, andmany frameworks offer windowed functions. Themeaning of a window can be defined
in various ways. We will divide windows into two categories [10]:

a) based on what kinds of tuples the buffer can store (or the eviction policy);

b) depending on the windows’ behavior when moving over new tuples (triggering policy).
The first criterion allows for the classification of policies into many categories. Both count-

based and time-based windows are extremely common. If N is a constant, then the window will
always contain N consecutive stream elements, such as ”the last 1000 received tuples,” at any
given time. The elements received in the last 30 seconds would be part of a time-based window,
which contains all the elements received in the interval T. Due to the fact that the number of
active tuples may change over time, the window size is not a constant. Time-based windows
require each data stream element to have a timestamp attribute, either automatically from the
data source or manually when it reaches the application’s boundaries. Delta-based windows are
less common [10], and they are defined by a delta threshold value and a tuple attribute named
the delta attribute. The threshold value determines how much deviation there is between the
oldest and newest tuples in the window. For instance, we can define a delta-based window that
”contains all the tuples having a timestamp within one minute, one from the other,” by using a
timestamp attribute of the tuple.

The second criterion for categorization is the window’s movement. Tumbling and sliding
windows are both possible. When a tumbling window is completely stuffed, the data in it is
ready for analysis. Figure 2.1a depicts the eviction of all tuples from windows once processing
of those windows is complete. Consequential activations of the function logic will apply to
distinct tuples in this manner [10].

The most recent tuples are kept up-to-date in a continuously sliding window, however. Only
the oldest tuples are removed from the windowwhen it is full. Delta δ, a sliding factor, expresses
when the function’s algorithm processes the window’s content, for example, upon the arrival
of Delta δ tuples (Figure 2.1b). In count-based sliding window the window slides through
the stream of data, always maintaining the most recent tuples for skyline computation. In this
approach, the window moves after a fixed number of tuples have been processed. As new tuples
arrive, the oldest ones are removed once the count limit is reached. The dynamic nature of this
window ensures that only the most recent set of tuples is analyzed as illustrated in figure 2.2a.

In time-based sliding windows, tuples expire over time, which means that the function’s
logic may be invoked independently of a tuple’s arrival, depending on the implementation.
Count-based sliding windows and time-based sliding windows are the most common, but all
four combinations of the previous characteristics are useful. Tuples enter and exit the window

19

2.2. DATA STREAM PROCESSING SYSTEMS

t4t3 t2 t1t2 t1t1

(a) The evolution of a count-based tumbling window with size = 3. Numbers illustrate the order of incoming tuples
[10].

t5 t4 t3t4 t3 t2t3 t2 t1t2 t1t1

(b) The evolution of a count-based sliding window with size = 3 and sliding factor = 2 [10].

Figure 2.1: Sliding window vs Tumbling window.

Tuple 0 (d1 , d2 , d3) Tuple 1 (d1 , d2 , d3) Tuple 2 (d1 , d2 , d3) Tuple 3 (d1 , d2 , d3) Tuple 4 (d1 , d2 , d3) Tuple 5 (d1 , d2 , d3) Tuple 6 (d1 , d2 , d3) Tuple 7 (d1 , d2 , d3) Tuple 8 (d1 , d2 , d3)Tuple 3 (d1 , d2 , d3) Tuple 4 (d1 , d2 , d3) Tuple 5 (d1 , d2 , d3)

Fixed Number of Tuples

Walid Khames (ASSI) Advanced Processing of Sensing Big Data January, 2025 4/9

(a) Count Based sliding window

Tuple 0 (d1 , d2 , d3) Tuple 1 (d1 , d2 , d3) Tuple 2 (d1 , d2 , d3) Tuple 3 (d1 , d2 , d3) Tuple 4 (d1 , d2 , d3) Tuple 5 (d1 , d2 , d3) Tuple 6 (d1 , d2 , d3) Tuple 7 (d1 , d2 , d3) Tuple 8 (d1 , d2 , d3)

Fixed Time Window

Walid Khames (ASSI) Advanced Processing of Sensing Big Data January, 2025 4/10

(b) Time based Sliding Window

Figure 2.2: Count Based sliding window VS Time based Sliding Window.

based on time rather than count. As time progresses, old tuples expire, and new ones are in-
cluded in the window. Unlike the count-based approach, the window continuously slides over
time, ensuring that only the most recent tuples within the time window are considered as illus-
trated in figure 2.2b.

2.2 Data Stream Processing systems
Coding from scratch has always been the go-to method for fixing issues with data stream pro-
cessing. The inflexibility, high cost of development and maintenance, and slow response time
to new feature requests are the most obvious drawbacks of this strategy.

The early twenty-first century saw the re-branding and marketing of several established soft-
ware technologies, including main memory database management systems and rule engines
[38], to this market. Modern and generalized SPODS systems owe a great deal to the innova-
tions and proposals made in these areas [10].

The following discussion involves a retrospective analysis of the evolution of data processing
systems, tracing the trajectory from the initial Data Stream Management Systems (DSMS) and
Complex Event Processing (CEP) systems to the present-day Stream Processing Engines (SPE).
The present study will center on the programming environment, encompassing the various high-

20

CHAPTER 2. BACKGROUND ON QUERY PROCESSING WITH DATA
STREAM

level functionalities that are made available to programmers for the purpose of composing their
applications. Additionally, attention will be directed towards the runtime, which refers to the
underlying infrastructure that furnishes the necessary mechanisms and support for executing
an SPODS application. Figure 2.3 demonstrates the various systems that the academic, open-
source, and business communities have developed in recent years. This emphasizes that the
subject matter is not only a captivating and demanding area of research but also holds significant
strategic value for applications that rely on data and communication.

Time
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

academicopen-sourceProprietary

DSMS

CEP

SPE

Aurora

Gscope

STREAM

TelegraphCQ

Borealis

StreamCloud

Esper

SASE

T-Rex

Oracle CEP

TIBCO StreamBase

Yahoo / Apache S4

Heron

SEEP

Apache Flink

Apache Spark Streaming

IBM InfoSphere Streams

Twitter Apache Storm

MillWheel

Timestream

ChronoStream

Figure 2.3: History of various DaSP Systems.

2.2.1 Data Stream Management Systems
Conventional database management systems (DBMS) are constructed with a durable storage
mechanism that houses every relevant piece of data and receives updates that are comparatively
uncommon. These systems are not optimized for efficient and consistent loading of individual
data or prompt query responses [26]. The database community developed a novel class of sys-
tems with the goal of quickly and effectively handling large data streams in order to address the
aforementioned constraints. This category of systems is known as Data Stream Management
Systems” (DSMS). Distributed Stream Processing Systems (DSMSs) are distinguished from
conventional Database Management Systems (DBMSs) due to their specialization in handling
dynamic information that receives constant updates. The system is capable of performing con-
tinuous queries that operate incessantly and supply revised responses as new data is received.
The users are not required to explicitly request updated information, as the system proactively
notifies them in accordance with the installed queries. Distributed Stream Processing Manage-
ment Systems (DSMSs) provide software developers with a declarative language similar to SQL
for the purpose of specifying continuous queries.

Numerous software infrastructures for DSMS have been proposed since the early 2000s.

21

2.2. DATA STREAM PROCESSING SYSTEMS

TelegraphCQ [42], STREAM [43], and StreamCloud [44] are among the frameworks that ex-
emplify this category. Certain tools have been created with a specific focus area in mind, such
as Gigascope (AT&T Labs) [45], which was developed specifically for the purpose of analyz-
ing network traffic. Of the proposals presented, Aurora and Borealis are deemed to be the most
significant. The collaborative development of Aurora [46] involved the participation of Bran-
deis University, Brown University, and MIT. The programming paradigm of the system was
established in a graphical programming language known as SQuAl (Stream Query Language).
The inheritance of SQUAL operators by relational algebra is a notable feature. These opera-
tors can be categorized as either single-tuple operators or windowed operators. Aurora boasts
a comprehensive runtime system, which encompasses a scheduler, a quality of service (QoS)
monitor, and a load shedder. The scope of the project has been expanded to explore the do-
main of distributed processing utilizing the Medusa framework, as documented by [46]. The
exchange of information among processors occurs through a distributed data transport layer
that involves flexible associations between operators and flows. The Borealis project, as docu-
mented by [12], incorporated the capabilities of the aforementioned projects while also intro-
ducing novel functionalities, including the capacity for dynamic deployment and adaptation of
the application. Although their progress was impeded in the past, the Aurora and Borealis sys-
tems introduced several innovative concepts that have since been integrated into contemporary
commercial SPODS (Stream Processing on Demand Systems) platforms.

2.2.2 Complex Event Processing systems
Event-driven systems are common in the IT industry [47]. All incoming data is treated as a
notification of some external event that must be sorted and combined in order to make sense of
it. One system that could prove useful in implementing such applications is a complex event
processing (CEP) system, which takes as input a number of streams of primitive events and
analyzes them to look for patterns that represent complex events whose occurrence necessitates
notification to interested parties. These programs are essentially pattern-matching engines that
check incoming events against an established set of rules.

From the academic community (such as Sase [48] and T-Rex [22]) to businesses (such as
Oracle CEP [49] and Tibco Streambase CEP [50]) and the open-source community (such as
Esper [51]), many CEP systems have been proposed, and many are still available and in produc-
tion. All of them place a strong emphasis on rule-based detection tasks expressed in terms of
complex patterns and provide a windowed operator to enable the programmer to specify con-
straints in terms of time or number of events for the validity of a match. However, the language,
which forbids altering incoming data, as well as their inability to handle unstructured data or
complex calculations beyond rule-based logic, place limitations on them.

2.2.3 Stream Processing Engines SPE
DSMSs and CEP engines offer concise and easy-to-implement solutions to many streaming
problems, but the operational flow of an imperative language is better suited to expressing com-
plex application logics. The need for greater latitude in application definition has led to the
development of more generic frameworks, such as the Stream Processing Engine (SPE). Oper-
ators can contain user-defined code and be composed in any way [5]. At the same time, they
provide a full runtime environment for the setup and maintenance of programs, usually on stan-
dard clusters. We will now examine a selection of these that together represent the cutting edge
of this research area.

22

CHAPTER 2. BACKGROUND ON QUERY PROCESSING WITH DATA
STREAM

1. Apache Kafka Streams: A stream processing library and framework that is part of the
Apache Kafka ecosystem. It provides a simple and scalable approach to process and
analyze data streams in real-time [21].

2. Apache Flink: An open-source stream processing framework with strong event time sup-
port, fault-tolerance, and high throughput. It offers a rich set of APIs for building real-time
applications and supports batch processing as well [24].

3. Apache Storm: A distributed real-time computation system. It provides a fault-tolerant
mechanism for processing streams of data with low-latency and high throughput [23].

4. AmazonKinesis Data Streams: A fullymanaged service byAmazonWeb Services (AWS)
for real-time data streaming and processing. It enables you to ingest, process, and analyze
streaming data at scale [52].

5. Apache Spark Streaming: A component of Apache Spark that enables scalable, high-
throughput, and fault-tolerant stream processing. It integrates with the Spark ecosystem
and allows for the combination of batch and streaming processing [53].

6. Google Cloud Dataflow: A fully managed service on Google Cloud Platform (GCP) for
both batch and stream processing. It offers a unified programming model for developing
data processing pipelines [54].

7. Microsoft Azure Stream Analytics: A real-time analytics service provided by Microsoft
Azure. It enables processing and analyzing streaming data from various sources, includ-
ing IoT devices, logs, and social media feeds [55].

8. IBM Streams: A platform for developing and executing streaming applications. It pro-
vides a high-performance runtime environment for processing continuous data streams in
real-time [56].

2.3 Parallelism exploitation in SPODS systems
To achieve the typical performance requirements, SPODS applications must utilize parallel sys-
tems [57]. This thesis takes a methodical approach to the topic of intra-function parallelism
where the intra-function of the skyline computation parallelized on a shared memory machine.
We will describe and analyze the ways in which SPODS algorithms currently make use of this
kind of parallelism. Existing frameworks typically use overly simplistic representations of intra-
function parallelism. Assigning input tuples to the replicas in a load-balanced fashion is themost
common approach for stateless ones that involve replicating the function multiple times accord-
ing to a parallelism degree. While there are many proposed solutions for the unkeyed case, the
parallel solution for partitioned stateful functions is to use replicas, each of which works on a
subset of the keys.

2.3.1 Parallelism in QPODS systems
Most modern systems (at least in theory) make quasi-transparent use of parallelism in QPODS
applications. One common method for accomplishing this is through the use of parallel execu-
tion of certain high-level programming constructs.

23

2.3. PARALLELISM EXPLOITATION IN SPODS SYSTEMS

1. Storm: A programmer can specify the level of parallelism (parallelism hint) they want
Storm to use, and the system will then replicate bolts in accordance with that setting [58],
[59]. Tuples can be partitioned among multiple functions of an operator to express vari-
ous parallelizations. A round-robin distribution, the result of shuffling, is practical for a
stateless function. However, tuples with the same key are always sent to the same replica
using a field grouping distribution, which is practical for keyed functions. The program-
mer can define new patterns by using arbitrary grouping. The programmer must fully
specify the nature of cooperation between the function’s replicas if they are to interact
with one another.

2. Spark Streaming: Each function in Spark Streaming is converted into a series of tasks
with the correct precedencies and dependencies that are carried out as soon as possible
on the available resources [60], [61]. This conforms to the user constraint that states
that window-related functions must be associative. The level of parallelism here is also
programmer-controlled.

3. IBM Infosphere: Developer-defined parallelism is available in IBM Infosphere Streams.
A function’s replica count (or channel count, in their lingo) is an annotation posed at
the beginning of the function that specifies how many copies of the function must be
created [34]. Using a splitter, developers can divide the streaming records using either
round-robin or hash-based algorithms for keyed streams. The level of parallelism is a
compile-time option. In addition, programmers can optimize application performance by
mandating that parallel channels execute on separate hosts.

4. Flink: Operations on streams are decomposed into tasks in Flink, which are then placed
in task slots and run as quickly as possible using the available resources [4]. There is
only one task per key when evaluating a window on a keyed stream in parallel. When
evaluating an unkeyed stream, a windowed function only evaluates one task at a time,
resulting in sequential execution.

2.3.2 Literature approaches
The parallelization of specific computations is at the center of much of the study of the topic.
Several works in the field of parallelizing continuous queries concentrate on the parallelization
of a specific relational operator. Some specific applications include parallelizing join evaluation
over windows [[62]; [63]; [64]] and skyline queries over windows [Lu et al. [65]; [41], [66],
[67], [68]]. A quite general approach is taken in Streamcloud [44], where the programmer indi-
cates continuous queries that are then automatically parallelized for a shared-nothing execution
environment. Even for stateful functions like windowed, Streamcloud allows for intra-function
parallelism. However, ad hoc solutions are put forward because of the function’s restrictions
(e.g., aggregates, joins, and cartesian products). Functions are replicated, and tuples are care-
fully distributed and collected while taking into account the semantics of the function.

Recent works in complex event processing have focused on parallelizing single rules. To
facilitate the execution of rules in parallel over keyed streams, the author of [69] suggests ex-
tending the IBM SPQ language. Normal parallel processing for pattern evaluation on events
with different keys is possible. For unkeyed streams, other methods attempt to parallelize rule
evaluation. In [70], an evaluation algorithm is proposed that is parallelized on a GPU for win-
dowed matches, while in [71], the parallelization focuses on commodity multicore processors.

24

CHAPTER 2. BACKGROUND ON QUERY PROCESSING WITH DATA
STREAM

In Wu et al. [72], the authors discuss a more general strategy for the parallelization of
stateful functions in SPODS systems. To enable parallelization, we propose a distributed shared
state mechanism. Tuples are typically distributed in a round-robin fashion among the available
function replicas. Access to the shared state may need to be synchronized (protected by locks)
because multiple replicas can run in parallel. Also included is a theoretical model for figuring
out how much parallelism is optimal. This method does not effectively manage the case of
partitioned stateful parallelism, and it requires the explicit use of synchronization on shared
state, which can have a negative impact on performance. Schneider et al. [73] take on the same
issue, but they focus on a different aspect of the problem: the generic stateless or keyed stateful
function with dynamic selectivity. The proposed solution is similar to those in Storm and IIS,
but in this case, the ordering of the output is also considered. While these two methods are
useful for parallelizing generic states and windows, they still require sequential execution over
individual windows.

Balkesen and Tatbul [74] is one of the few methods that addresses the issue of parallelizing
the computation of aggregate computation on a single window. Each window is separated into
non-overlapping, contiguous partitions called panes, a concept introduced by the authors in
[75]. It is possible to compute sub-aggregates in parallel across panes and then aggregate the
results. This obviously necessitates the computation of certain properties of the function over
the window.

2.4 Conclusion
In this chapter, we provided an overview of query processing in data stream environments, em-
phasizing the characteristics and challenges of Stream Processing Over Data Streams (SPODS)
applications. We explored key aspects such as function state management and various window-
ing approaches, which play a crucial role in handling continuous data streams effectively.

Furthermore, we reviewed different data stream processing systems, including Data Stream
Management Systems (DSMS), Complex Event Processing (CEP) systems, and Stream Process-
ing Engines (SPE). Each of these systems offers unique capabilities for real-time data analysis,
enabling efficient handling of high-velocity data streams.

To address the growing computational demands of stream processing, we discussed paral-
lelism exploitation in SPODS systems. We examined parallelism strategies within Query Pro-
cessing Over Data Streams (QPODS) systems and highlighted key literature approaches that
enhance performance by leveraging parallel architectures.

Overall, this chapter established a strong foundation for understanding the fundamental prin-
ciples of data stream processing and its parallel execution. The insights presented here serve
as a basis for the subsequent chapters, where we delve deeper into optimizing skyline query
processing in multicore architectures.

25

2.4. CONCLUSION

26

Part III

Skyline Queries

27

CHAPTER

3
CONTINUOUS SKYLINE QUERIES

“We all make decisions, but in the end, our decisions make
us.” KEN LEVINE

Chapter content
3.1 Entities and Attributes . 30

3.2 The Concept of Dominance . 31

3.2.1 Skyline Queries . 32

3.2.2 Main-Memory Computation (in-core skyline queries) 33

3.2.3 Algorithms for Secondary Memory (out of core skyline queries) . . . 34

3.3 Advanced Skyline Processing . 34

3.3.1 Skylines in Dynamic Environments . 34

3.3.2 Distributed and Parallel Techniques . 40

3.3.3 A High-Level Approach to Parallel Programming 42

3.3.4 Parallel Paradigms for Skyline Queries Over Data Stream (SPODS) . 44

3.3.5 Parallel Patterns for Windowed Functions 53

3.3.6 Parallel Patterns Taxonomy . 53

3.3.7 Categories of Parallel Patterns for Windowed Functions 53

3.3.8 Pane Farming . 55

3.3.9 Window Partitioning . 56

3.4 Skyline Cardinality . 58

3.5 Conclusion . 63

In this chapter, we’ll establish the foundation for understanding some fundamental concepts
in skyline-based query processing. It defines some important terms and provides an overview of
the background to the principle of dominance. We examine dominance from the point of view
of a database.

3.1. ENTITIES AND ATTRIBUTES

3.1 Entities and Attributes

In real-world applications, entities are typically modeled as objects with associated attributes.
For example, a drone can be described by characteristics such as flight time, cost, and camera
quality. When comparing two drones, d1 and d2, the selection process is straightforward if
based on a single criterion. For instance, if price is the only factor considered, the optimal
choice would be the drone with the lowest price, assuming all other factors remain equal.

However, solely prioritizing cost can lead to suboptimal choices. For example, the least
expensive drone might have a 10-megapixel camera and weigh 5 kg, which may not align with
user requirements. This limitation arises because price was the only criterion used to assess
quality. As more attributes are introduced into the decision-making process, selecting the best
option becomes increasingly complex.

The number of dimensions corresponds to the number of attributes, and objects are repre-
sented as points in this space. For simplicity, all attributes are assumed to have numeric values
(integers or floats). Thus, an object can be represented as a point t = (t .x1, t .x2, . . . , t .xd) ∈ Rd ,
where d is the number of dimensions and xi is the value of the i -th dimension. However, in
real-world applications, attributes may belong to different categories, requiring distinct treat-
ment.

The number of attributes associated with objects can vary significantly depending on the
application. Generally, problems are easier to solve in low-dimensional spaces than in high-
dimensional ones. Many computational geometry problems can be solved in O(n logn) time in
two-dimensional space, but their complexity increases exponentially with the number of dimen-
sions, a phenomenon known as the curse of dimensionality [76]. Despite the presence of many
attributes, users often focus on only a subset of them. For instance, a drone may have numer-
ous characteristics, yet a specific user might only be interested in its cost and storage capacity,
effectively reducing the problem to a two-dimensional space.

A common approach to handling high-dimensional data is to use a user-defined ranking
function (also called a scoring function) to map high-dimensional objects to a single value [77].
This function determines the quality of an object. The simplest implementation considers all or
a subset of the attributes and returns a value between 0 and 1, where values closer to 1 indicate
high-quality objects, and values closer to 0 indicate low-quality ones.

The ranking function is assumed to be monotonic with respect to attribute values, meaning
that if an attribute value improves, the overall score of the object also improves [77]. A straight-
forward example of a ranking function is the sum of attribute values. However, since summing
values from different attributes can introduce bias, a weighted sum is typically used instead.
Specifically, a weighted-sum ranking function can be defined as [77]:

F (t) =
d∑

i=1
wi · t .xi , F (t) ∈ [0,1] (3.1)

where wi represents the weight assigned to attribute i , reflecting its importance in the rank-
ing process.

Defining a ranking function can be challenging, especially when dealing with different at-
tribute types or a large number of objects. Moreover, since ranking functions are typically
user-defined, different functions may lead to different outcomes. This raises an important ques-
tion: What can be done if a ranking function does not exist? The subsequent discussion will
address this issue in detail.

30

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

3.2 The Concept of Dominance
Users’ preferences can be expressed through a ranking function or through a directive to max-
imize (have the highest possible) or minimize (have the lowest possible) the attributes of the
objects returned by the query. We focus on the second class of algorithmic techniques that
make use of the concept of dominance to provide a natural way of ranking without requiring
an explicit user-defined ranking function. To dominate signifies that one thing t is superior to
another thing q . In this case, we use multi-dimensional points to symbolize three-dimensional
objects. Without limiting ourselves too much, we’ll say that small values are better in every
dimension. It’s important to keep in mind that even if larger values are preferred in some situa-
tions, we can often reframe the issue so that smaller values are preferred.

Imagine a passenger searching for an optimal flight ticket based on two main criteria as
illustrated in figure 3.1:

• Price (p): Lower is better.

• Flight Duration (d): Shorter is better.

Airlines offer different flight options, some with layovers and others direct, leading to a diverse
set of choices.

We represent each flight option with an airplane icon as a tuple ti = (p,d) where:

• p represents the price of the ticket.

• d represents the total flight duration.

Consider the following flight options:
A tuple ta = (pa ,da) dominates another tuple tb = (pb ,db) if:

1. pa ≤ pb and da ≤ db (better or equal in all attributes).

2. At least one of these inequalities is strict: pa < pb or da < db .

Applying this rule:

• t7 dominates t1, t2, t3, t4, t5 because it is cheaper and/or has a shorter or equal flight dura-
tion.

• t6 is not dominated by t7.

Thus, the Skyline Set (Pareto-optimal flights) consists of t6 and t7.
The dominance region of a tuple t includes all tuples that it dominates. The dominance

region of t7 consists of flights that are:

• More expensive.

• Longer in duration.

This means that t7 creates a dominance region including t9, t2, t3, t4, t5, meaning these flights
are suboptimal choices.

31

3.2. THE CONCEPT OF DOMINANCE

Duration h

Price $

100

200

300

400

1 2 3 4

�t2

�t3

�t4
�t5

�t6
�t7

�t9

Duration h

Price $

DR(t7)
Dominance Region

100

200

300

400

1 2 3 4

�t2

�t3

�t4
�t5

�t6
�t7

�t9

Figure 3.1: The concept of dominance.

3.2.1 Skyline Queries
Since Borzsonyi’s [78] development of the skyline operator, this approach to extracting inter-
esting objects from multi-dimensional datasets has become a major issue in database research.
The Skyline operator’s widespread effectiveness in fields as wide-ranging as quantitative eco-
nomics, market research, environmental monitoring, data mining, and visualization is largely
responsible for its enormous reputation. In such contexts, the database tuples are considered
a set of multidimensional data points, and the skyline query determines the points that are the
best choices between the different dimensions without using cumulative functions to identify
the best results but instead based on the user’s preferences.

Table 3.1: Summary of Notations.

Notation Meaning

T Input data stream for processing skyline
N Number of dimensions of T

A N −di mensi onal index
Ai one dimensional index (1 ≤ i ≤N)

Z the size of streaming window (count or time based window)
x1, x2, x3 tuples in the streaming data
s Skyline tuple
v i

x dimensional value of the incoming tuple x on dimension i.
MT Set of skyline tuples of T

x1 ≺ x2 x1 dominates x2

x1 6≺ x2 x1 does not dominate x2

x1 ≁ x2 x1 is incomparable to x2

Definition 1 (Dominance [79]). Given x an N −dimensional tuple, let’s denote the value of the
tuple x at the dimension i by x[i] where 1 ≤ i ≤N . let x and x ′ two tuples, x[i] ≺ x ′[i] denotes
that x[i] is better than x ′[i] and x[i] ¹ x ′[i], it means, (x[i] ≺ x ′[i])∨(x[i] = x ′[i]), Denotes that
x ′[i] is not worse than x[i]. Therefore, x[i] ≺ x ′[i] ⇒ x[i] ¹ x ′[i].

32

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

A tuple x dominates a tuple x ′, represented by x ≺ x ′, iff for every dimension 1 ≤ i ≤ N ,
we get x[i] ¹ x ′[i], and at a minimum one dimension 1 ≤ m ≤ N , we get x[m] ≺ x ′[m]. let x
and x ′ two tuples, we represent x 6≺ x ′ such x does not dominate x ′, and we represent x ≁ x ′

namely x and x ′ are incomparable, it means, (x 6≺ x ′)∧ (x ′ 6≺ x). We expand ≺, 6≺,≁ to sets of
tuples, similarly, x ≺ X denotes that the tuple x dominates every tuple in X , x ≁ X denotes that
the tuple x is incomparable with every tuple in X .

Tuple ID N cores RAM (gigabytes) Storage (gigabytes) Camera (megapixels) Battery (mAh) Screen (pixels) Skyline
Phone0 8 13 220 33 3600 210 Yes
Phone1 2 31 330 41 2200 310 Yes
Phone2 16 58 310 36.1 4800 550 No
Phone3 4 27 330 38 4000 550 Yes
Phone4 8 22 290 35 2700 550 Yes
Phone5 64 51 350 33 5500 420 No
Phone6 4 44 190 37 1700 180 Yes
Phone7 4 44 330 39 4500 670 No
Phone8 6 34 370 42 3100 620 No
Phone9 16 62 260 40 6100 450 No

Table 3.2: A sample database with A = 6, Z = 10, and m = 5.

Table 3.2 shows a sample sliding window of 6 dimensions (A = 6) that includes 10 tuples
(Z = 10), of which 5 are skyline tuples (|M | = 5) while the greater than order is applied to all
dimensions.

Example 1. from the set of 10 tuples phone0, phone1, ..., phone9 in table 3.2, phone1 ≺
phone8, phone4 ≺ phone2, phone6 ≺ phone7, phone6 ≺ phone9 and phone0 ≺ phone5,
and no tuple dominates phone3, and phone3 does not dominate any tuples. Therefore the
Skyline is M = {phone0, phone1, phone3, phone4, phone6}.

Definition 2 (Icomparability [79]). Given two N −dimensional tuples x, x′ ∈T , it is said that
x and x′ are incomparable on T , that is, if x and x′ do not dominate each other simultaneously.
denoted as x ≁ x′, iff x 6≺ x′ and x′ 6≺ x.

This property facilitates checking if one or more tuples can be Skyline tuples. A tuple in the
skyline set needs to be incomparable to all other tuples in the set.

Definition 3 (Continuous Skyline [79]). Given T a N −dimensional dynamic dataset, a tuple
x ∈T is a skyline tuple iff ∄ x ′ ∈T where x ′ ≺ x. The skyline M of dynamic dataset T is the
total set of skyline tuples such that, M = {x ∈T | ∄ x′ ∈T , x′ ≺ x}.

The Skyline algorithms have proven to be powerful queries in related database development
studies after being the subject of extensive study and different applications such as environment
monitoring [80], IoT [14], Aviation industry [81, 82] Social Media analisys [21]. Generally, the
introduced skyline techniques can be grouped into algorithms that extract the skyline of a dataset
T that can be stored in main memory(in-core algorithms) and algorithms that use secondary
memory(out-of-core) [77].

3.2.2 Main-Memory Computation (in-core skyline queries)
queries to identify the skyline when the dataset can be contained in main memory. Main mem-
ory algorithms, also known as in-core algorithms, are those developed specifically for process-
ing data that can be loaded entirely within a machine’s main memory simultaneously such as

33

3.3. ADVANCED SKYLINE PROCESSING

the brute-force BF skyline and the Sort-based SB skyline algorithms presented in [77]. Obvi-
ously, query processing can be done more efficiently if the entire data set can be stored in main
memory [83]. But generally, the dataset is much bigger than the volume of main memory that
is commonly available [84]. Therefore, effective methods are needed to obtain the skyline for
data stored on disk [78].

3.2.3 Algorithms for Secondary Memory (out of core skyline queries)
Although it is preferable to launch skyline processing in main memory, there are cases in which
this is not practical [84]. Since modern applications typically utilize very sizable datasets, such
datasets would require more storage than is available in the machine’s main memory. Because
of this, there is a need for algorithmic ways to compute skylines that can be used on data sets that
are stored on disk [78]. The primary solution does not require any unique indexing methods.
Many datasets, for example, are collected and stored without ever being indexed. The second
solution is the use of methods that rely on a particular indexing mechanism for points in multiple
dimensions [77]. In fact, indexes are generally widely accessible and can be employed to speed
up skyline computation [85].

• Index-Free Techniques: Methods that do not require to index the set of tuples T are
called ”index-free” B N L and D&C [78], I sk yl i ne [86], V P and K I SB [87], and Object
Space Partitioning (OSP) [88]. As a result, their cost will exceed that of index-based
methods. Such algorithms suffer from the problem of high-cost computations, such as
presorting or point-to-point comparisons, which needs to be fixed [77].

• Index-Based Techniques: you can quickly get to the data you need using an index with-
out having to search through data that’s not related to your objective. It is possible that
the running time of these skyline queries could be significantly accelerated by utilizing
an index on particular attributes [85]. Algorithms using an R − tr ee [89, 90], B tr ee
[91], [92], [93], [94] Sk y M ap a trie-based index [95]. Index-basesd techniques will face
challenges of availability for only a specific data type or the cost of the indexing struc-
ture that will outweigh its advantages. There are also dominance relation-based skyline
query techniques that decrease comparisons between tuples, control the skyline with tree
or lattice structures, and utilize the incomparability to skip unnecessary comparison tests
BSk yTr ee [96] and B JRtr ee [97].

3.3 Advanced Skyline Processing
The literature on the topic is rich in parallel and distributedmethods aswell as skyline algorithms
in dynamic environments, in addition to the aforementioned main-memory and secondary-
memory skyline processing methods. Scalable skyline computation depends heavily on the
effective use of numerous resources and the careful management of insertions and deletions as
illustrated in figure 3.2.

3.3.1 Skylines in Dynamic Environments
The dynamic nature of real-world applications is the norm, not the exception. Datasets are
typically dynamic in nature in practical applications, which means that object insertions and

34

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Skyline Query
over Data Stream

Type of Sliding Window

Count Based Time Based

Type of Query

Single Query Multi Query

Processing Type

Distributed Centralized

CPU with many cores

Cloud

Algorithm Approach

Sequential Parallel

Type of Data

Uncertain Data Certain Data

Our Algorithm

Figure 3.2: Taxonomy of Skyline query processing over Data Stream.

deletions can typically occur at will. The following elementary techniques are required for use
in a dynamic environment:

Flight data changes over time due to delays, cancellations, and fully booked flights. A con-
tinuous skyline query dynamically updates the skyline set when new flights are added or old
flights are removed as illustrated in figure 3.3.

• Handling Insertions: When a new flight tuple t1 arrives, it is compared against existing
skyline tuples. If t1 dominates any skyline tuples, they are removed, and t1 is added to
the skyline set. Otherwise, it is discarded.

• Handling Deletions: If flights t11 and t12 expire due to cancellations or bookings, they
are removed from the skyline. This may result in previously dominated tuples becoming
skyline candidates again, requiring reevaluation of the skyline set.

Duration h

Price $

100

200

300

400

1 2 3 4

�t1

�t2 �t3

�t4
�t5�t6

�t7

�t8 �t9

�t10

�t11
�t12

�z

DR(z)

(a) Insertion of a Point t1

Duration h

Price $

100

200

300

400

1 2 3 4

�t1

�t2 �t3

�t4
�t5�t6

�t7

�t8 �t9

�t10

�t11 �t12
�z

DR(z)

(b) Deletion of a Point t11,t12

Figure 3.3: Handling Insertions and Deletions.

35

3.3. ADVANCED SKYLINE PROCESSING

Yu et al. [98] propose a window-based algorithm for skyline queries, which splits skyline
queries into a large number of dynamic window queries. Lin et al. [99] propose a different
sliding window method that uses an efficient pruning technique to cut down on the number of
necessary elements. Tao and Papadias [100] also investigate sliding window horizons on data
streams, proposing algorithms that continuously monitor data entry and perform incremental
skyline maintenance.

In addition to the static dimensions, the dynamic ones are also required for a continuous sky-
line query. Creating a time-variant, continuously accurate skyline summary is a useful com-
putation over such streaming data sets. In Morse et al. [101], the authors propose a skyline
algorithm that works well over a continuous time interval. In Huang et al. [102], they propose
using a kinetic-based data structure to simplify the processing of skyline queries for mobile
objects.

By using a region-level lattice to determine the cost-optimal pivot point, the BSk yTr ee al-
gorithm that Lee and Hwang proposed takes into account both dominance and incomparability.
The concept of incomparability helps reduce unnecessary comparisons by identifying tuples
that neither dominate nor are dominated by each other. As illustrated in figure 3.4, incompara-
ble points are highlighted, illustrating cases where direct comparisons do not lead to dominance
relationships. Instead of checking every tuple against all others, skyline algorithms can use this
property to:

Partition data into comparable and incomparable sets, skip comparisons between tuples that
will never dominate each other and optimize search structures to reduce redundant dominance
checks. The whole Partitions 1 and 3 are incomparable in the same way as illustrated in figure
3.4. (1 3). On the other hand, partition 2 can be safely removed if partition 4 is not empty.

Lee andHwang [103] have proposed two instantiations, namely BSk yTr ee−S and BSk yTr eeP .
These instantiations can be considered optimized algorithms in sorting- and partitioning-based
schemes, respectively. BSk yTr ee employed point-based space partitioning to optimize both
dominance and incomparability relationships.

The BSk yTr ee algorithm is founded on the Divide and Conquer (D&C) paradigm, which
involves partitioning the dataset into smaller subsets. The algorithm then proceeds to extract
local skylines from each partition and subsequently merges all local skylines to produce the final
skyline output.

The BSk yTr ee algorithm is founded on the divide-and-conquer principle, whereby the
dataset is partitioned into smaller subsets. Local skylines are subsequently extracted from each
partition, and the resulting skylines are merged to generate the final skyline output.

Figure 3.4: Incomparable Points.

The utilization of skyline queries is attracting significant interest in facilitating multi-criteria
analysis within datasets of substantial size. The computation of a multidimensional subspace

36

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

skyline was at the center of Lee and Hwang’s [76] study. The authors proposed a method to re-
duce the full space skyline, thereby enabling users to take into account the subspace skyline that
aligns with their preferences. The authors have identified that there is potential for additional
enhancements and have suggested a more effective algorithm based on space partitioning for
the computation of Skycube, which they have named QSkycube. Skycube and QSk ycube are
centered on devising effective techniques for computing multiple subspace skyline queries. The
Lattice and Skycube data structures are utilized for the purpose of managing complexity. The
QSk yCube algorithm employs a hierarchical approach to generate the skyline for individual
cuboids, or subsets of dimensions, through the utilization of a tree-based structure. Neverthe-
less, the size of the lattice may prove excessive when attempting to construct a skycube.

The Skyline query operator has proven to be a valuable tool in demanding applications, par-
ticularly in the field of data exploration. Chester et al. [104] conducted an experimental study
to look into how much the skyline changes as users alter their constraints. However, the limi-
tations imposed can significantly influence the outcome of the query, resulting in the inclusion
or exclusion of skyline points. Both of these works evaluate the influence on the user resulting
from their engagement with the skyline. However, neither of them offer solutions for facilitating
the user’s refinement of their inquiries towards their intended goal.

To handle skyline-join queries across multiple nodes, Bai et al. [105] presented the dis-
tributed skyline-join query algorithm (DSJQ). However, none of these computations handles
the work with incomplete databases.

The researchers in this study are using a distributed database to compare data points in par-
allel to find solutions to problems more quickly. One can learn about the state of data objects
and their dimensional attributes with the help of a data set skyline query. Consideration of the
advantages and disadvantages of attribute values yields the dominant relationship between the
data objects in the data set, which then yields the data objects not subject to the dominant rela-
tionship and the Skyline result set. But as data sizes grow, Skyline Join becomes infeasible.

To gain access to user preference profiles represented as DAGs and assist with the cache-
based skyline query computation with partially ordered domains, Hsueh et al. [106] presented
an extended depth-first search indexing method. However, these methods suffer from the issue
of high mapping costs and are best suited to centralized environment extensions. The authors
introduced a refinement process to answer queries using cached queries. Let q and q′ represent
two queries, and q.R and q′.R their preferences. q is a refinement of q′ iff q′.R inclus in q.R.
In such case it is easy to see that Sk yq.R inclus in Sk yq′.R . Let’s believe that q is a completely
new query submission and that Q is a cached set of already submitted queries. The key to their
strategy is locating a refinement q′ in Q of q and then applying q’s evaluation to q . The authors
suggest using an indexing structure to track down a refinement after providing a query. This
index is not comprehensive because it may miss some refinement points.

Some studies are concentrating on data transmission in an effort to decrease energy con-
sumption [107]. The authors propose a regional division strategy that is based on a sub-region
clustering strategy [107] to lay the basis for data node tree-based spatial skyline queries and
parallel queries of non-spatial skyline data. Most WSN skyline query algorithms use a pruning
strategy [107] to decrease the energy cost of data transmission between nodes. For multidi-
mensional sensing data, Wang et al. [107] offer an energy-efficient skyline query method, and
they also introduce several effective data reduction techniques like the dynamic filter and the

37

3.3. ADVANCED SKYLINE PROCESSING

tuple-cutting strategy, among others. Additionally, such an algorithm is only useful for handling
skyline queries and cannot be used for regaining access to original sensory datasets. The tech-
nique employs a node cut strategy to dynamically produce filtering tuples rather than issuing
filtered queries in order to collect query results.

Using dominance size as a measure of a set’s ”representativeness,” Bai et al. [108] proposed
LDS queries. They’re looking for the most dominant set possible. In particular, the volume of
dominance region is one of the criteria used to evaluate a point’s quality or significance. Cal-
culated points on the skyline that maximize the dominated area or volume represente the entire
skyline’s ”contour” in the same way. The k-representative skylines algorithm yields a prede-
termined number of k skyline points, which are chosen based on measurements that take into
account the volume of their respective dominance regions. Li [109] introduced a circular dis-
tributed Skyline query (PDS) algorithm.

The authors [110] conducted a study and demonstrated that the Eager approach, as presented
in [110], exhibits superior efficiency in terms of execution time. However, it necessitates a
greater amount of memory due to the need to maintain the event list.

Bai et al. [111] presented a set of maintenance techniques for handling subspace global
skyline (SGS) queries in dynamic databases.

In order to achieve efficient computation of the skyline, the [112] authors introduce a new
approach for partitioning data space that is suitable for parallel and distributed skyline com-
putation. This approach involves two phases, namely diagonal and entropy score curve-based
partitioning.

Koizumi et al. [97] study has expanded upon the BJR-tree algorithm for efficient computa-
tion of skyline queries by incorporating a tree structure based on dominance relations.

The concept of skyline probability applies to the probability that a data object with uncertain
attributes will be determined as a ”skyline point”. By setting a lower threshold for Skyline
probability, it is possible to effectively exclude smaller values. When the threshold is denoted
as a probability event, the corresponding skyline is commonly referred to as the ”q-skyline”.

The authors, Zheng et al. [113], have presented a method for computing the continuous
skyline using an incremental motion model. This approach involves moving the query point
incrementally in discrete time steps without any constraints or predictability. The authors’ re-
search is centered on the processing of skyline queries in Euclidean spaces. This involves the
computation of the distance between objects purely based on their locations rather than taking
into account the connectivity of the road network.

A novel technique, HashSkyline [114], has been introduced for executing parallel skyline
queries on high-dimensional datasets utilizing GPUs, with a focus on correlation awareness.
The HashSkyline algorithm employs a technique based on hashing to enhance the efficiency of
skyline queries for datasets that exhibit correlation.

Huang [115] has presented a study on the processing of queries in a dynamic road network
that includes the skyline. The authors’ methodology for query processing relies on the domi-
nance and distance of object attributes.

It is crucial to quickly determine whether the time-varying information has an impact on the
K-nearest skyline objects (K N SOs) in order to handle real-time processing of time-varying in-
formation effectively. Subsequently, any necessary updates to the K N SOs must be immediately
implemented. In order to attain the objective, the study employs three distinct data structures
that were developed in [115]. These include the object attribute dominating matrix (O ADM),

38

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

the road distance sorted list (RDSL), and the skyline object expansion tree (SOET). These
structures are utilized to effectively store pertinent information about both data objects and the
road network. The primary objective of these data structures is to streamline the process of
identifying the temporal information that impacts the query outcome. The C K N N −SQ updat-
ing algorithm is introduced as a proficient approach for promptly assessing the latest outcome
of KNSOs, utilizing data structures.

Kertiou et al. [14] noted that the information obtained from the Internet of Things (I oT)
layer could be reduced and refined through the use of self-governing sensor selection in response
to user requests. The utilized methodology in this context is denoted as Skyline. The method-
ology extracts the most crucial sensor information from a diverse array of Internet of Things
(I oT) sensor data.

Authors use the dynamic skylines operator in conjunction with context data from sensors to
effectively narrow the search space and then find the best sensors that meet the user’s unique
needs. In order to achieve scalability, the authors suggest the implementation of distributed
gateways that are linked to a central server. Each gateway is responsible for handling local
requests made by users.

In contrast to the fast nondominated algorithm, the dynamic skyline algorithm shows re-
duced time complexity. However, it is not advisable to require that users provide ideal values
for sensor properties.

The method under consideration receives the user’s request and performs a computation of
the local dynamic skyline in order to minimize the sensor dataset. Subsequently, the acquisition
of a group of sensor data that has undergone local filtration is conducted in order to calculate
the dynamic skyline. Ultimately, the SAW [14] algorithm was employed to prioritize the sensor
dataset.

The new cognitive problem of serendipitous discovery [116], best summed up as ”unexpec-
tantly finding surprisingly interesting points,” is concerned with cell discovery via continuous
skyline queries. Similar to a dominance graph, but in a temporal setting.

Using a dominance relation that can be determined through point-to-point comparisons,
the data points for Object-based Space Partitioning Skyline, a balanced joint-rooted BJR-tree
[116], are partitioned into regions of the multi-dimensional data space. The next step is to
build a tree representing the dominance relationship between the partitioned regions so that the
incomparability can be quickly and easily determined. These trees reduce the amount of time
spent on dominance testing by figuring out where an input data point fits within the tree and
finding other similar regions. The primary benefit of employing these techniques lies in their
ability to perform dominance tests exclusively on the data points associated with the respective
regions.

The skyline query techniques that rely on dominance relations have been found to effec-
tively decrease the frequency of dominance tests. This is achieved by utilizing the dominance
relationship that is obtained through the dominance test and then bypassing the need for domi-
nance tests in cases where the items are incomparable. Nevertheless, the utilization of skyline
query techniques is restricted to comparisons between two points only. Furthermore, the appli-
cation of the concept of dominance relation to alternative methodologies is challenging due to
the structural inter-dependencies inherent in current dominance relation-based approaches.

Han et al. [117] have proposed a method for processing dynamic skyline queries on large
datasets. Their method entails retrieving tuples from dynamically sorted lists in a round-robin

39

3.3. ADVANCED SKYLINE PROCESSING

fashion up until an early termination criterion is satisfied, then computing the dynamic skyline
results.

Huang et al. [118] made improvements to the C K N N −SQ algorithm proposed in [119] to
enable its implementation in a dynamic road network. The improved algorithm utilized a com-
bination of three data structures to facilitate the efficient updating of K-nearest skyline objects
(K N SOs).

In the work of [4], researchers have implemented the lattice of cuboids algorithm as a
means of minimizing the computational costs associated with conducting skyline queries on
data streams with high dimensions. However, the time complexity of these methods tends to
increase as the number of dimensions increases. The present study aims to effectively calcu-
late skyline queries featuring multiple attraction points across more than two dimensions while
maintaining a predetermined upper limit on time complexity.

The computation of skylines initially appeared based on a single point of attraction within
two-dimensional systems. Over time, the skyline has been expanded beyond two dimensions
and has been analyzed with multiple points of attraction.

Tang et al. [120] conduct research on skyline queries concerning mobile entities on dynamic
road networks, where the weights of the edges may also receive modifications. The authors used
a grid partition technique to achieve a quick response time.

Liu et al. [79] proposed a Dynamic Dimension Indexing skyline algorithm called range
search skyline RSS for high dimensional data stream that supports both count and time based
sliding windows.

3.3.2 Distributed and Parallel Techniques
One way to ensure scalable query processing is to make use of multiple resources. Skyline
queries, like many others, may benefit significantly from parallel or distributed processing.
Skyline queries can be efficiently executed in distributed environments using the index-based
algorithms presented in Balke et al. [91] and Lo et al. [92]. Wu et al. [121] present another
investigation into the issue of parallelizing Skyline query execution across a large number of
machines by means of content-based data partitioning. The proposed algorithm, named DSL
for distributed skyline query processing, finds the skyline points incrementally.

Wang et al. [122] investigate the use of P2P networks for processing skyline queries. To
better regulate the peers accessed and search messages when processing skyline query, authors
proposed a method called SSP that partitions and numbers the data space between the peer
nodes. Wang et al. [123] present the SKYFRAME method, a generalization of the SSP method
that allows skyline processing to be performed without identifying the starting peer.

Since it is nearly impossible to ensure full and accurate query answers without an exhaustive
search, Hose [124] presents a study on the effective processing of skyline queries in large-scale
P2P systems. To reduce the load on nodes, approximate algorithms backed by probabilistic
guarantees are proposed. When obtaining precise answers to skyline queries is prohibitively
expensive, approximate algorithms are proposed as an alternative, as suggested in Li et al. [125].
The proposed algorithms use heuristics based on the local semantics of peer nodes, which yield
high-quality results. In addition, Hose and Vlachou [39] present a comprehensive review of
skyline processing in highly distributed environments.

In order to reduce the amount of data transferred over the network connecting the peers, Vla-
chou et al. [124] propose a threshold-based algorithm for efficient subspace skyline processing
in a P2P environment called SKYPEER.

40

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Skyline query processing methods in mobile ad-hoc networks (MANETs) are examined in
Huang et al. [126], with the primary goal of minimizing communication overhead between
nodes and maximizing device throughput. Li and Xiong [127] investigate query processing and
optimization strategies for WSNs. Later they proposed the SKY-SEARCH algorithm, which
efficiently calculates the skyline with the highest existential probability.

Vlachou et al. [128] first proposed and designed a method to operate in shared-nothing
architectures. A master node that serves as the coordinator and a group of core nodes constitute
the abstract architecture. The coordinator’s job is to accept requests and assign tasks to the
related cores. For the remainder of the discussion, N will stand for the number of servers. It is
presumed that all machines communicate via a fast network. This indicates that network latency
must be considered.

The dataset P, is made up of a set of d-dimensional points that must be partitioned across
N servers. Where 1 ≤ i ≤ N , each partition Pi contains some subset of the points in P . For
effective parallel processing, a user-friendly data partitioning scheme is required. There are
three stages to the algorithm:

• Partitioning Phase: The data is partitioned among all of the available core nodes.

• Local Processing Phase: Based just on local data, each core calculates the skyline.

• Merging Phase: Based on the local results that the cores produced in the earlier phase,
the coordinator calculates the final skyline result.

After deciding on a partitioning method, the remaining processing (local processing and merg-
ing) is simple. Therefore, let’s examine various partitioning options with an eye toward evalu-
ating their effect on query processing generally. Random Partitioning (RP) is the simplest and
most adaptable partitioning strategy because it provides nearly equal points to each core and
assigns them at random (or via a hash function, or via round-robin). Grid-based partitioning
(GP), in which the address space is divided into cells and each core receives the points that fall
on a particular cell, is another partitioning strategy that is very simple to implement. A single
core, however, may be assigned multiple cells to process. Angle-based Partitioning (AP), pro-
posed by Vlachou et al. [128], is a partitioning strategy that uses conical regions with respect
to the coordinate system’s origin to divide the address space.

Figure 3.5 provides an illustration of the distinction between GP and AP before we dive
into an analysis of the effects of each partitioning method. To keep things straightforward, let’s
assume that the grid decomposition has to ensure that each cell has roughly the same number
of points. While this isn’t strictly necessary for the algorithm to work, load imbalances may
seriously impact performance. There are a variety of grid structures usable, and their cell sizes
need not be uniform. Using a uniform grid partitioning where each cell contains three points,
as shown in Figure 3.5 (right), is one way to decompose the address space. Figure 3.5 (left)
depicts the decomposition of the address space using angle-based partitioning.

Given the success of grid-based and angle-based partitioning strategies, it stands to reason
that the RP strategy will perform poorly because it does not adhere to a consistent method for
dividing up data among cores. The experimental results reported by Vlachou et al. [128] con-
firm the theoretical prediction that RP incurs a high network latency cost, which has a direct
negative impact on performance. This also confirms that AP has the highest performance of
any partitioning strategy tested. The authors of Vlachou et al. [128] also talk about dynamic
angle-based partitioning, which is like an adaptive grid, and equi-volume angle-based partition-
ing, which is like a uniform grid. When it comes to runtime performance and scalability, AP

41

3.3. ADVANCED SKYLINE PROCESSING

Duration h

Price $

100

200

300

400

1 2 3 4

�t1

�t2 �t3

�t4
�t5�t6

�t7

�t8 �t9

�t10

�t11

�t12

Duration h

Price $

100

200

300

400

1 2 3 4

�t1

�t2 �t3

�
t4

�t5�t6

�t7

�t8 �t9

�t10

�t11

�t12

Figure 3.5: Gid-based (right) and Angle-based (left) Partitioning.

consistently outperforms the competition. This is true regardless of the size of the dataset or the
number of dimensional dimensions present in the data.

3.3.3 A High-Level Approach to Parallel Programming
With the exponential growth in computational power, communication bandwidth, and storage
capacity, parallel programming has become an essential paradigm in modern computing. Tra-
ditionally, parallel programmers relied on low-level parallelization techniques and specialized
libraries to maintain complete control over parallel applications. These methods enabled man-
ual optimization of code to maximize hardware utilization. However, such low-level approaches
often impede software productivity, limit development efficiency, and hinder both code porta-
bility and performance portability [26].

Code portability refers to the ability to compile and execute the same code across multi-
ple architectures without modification. Performance portability, on the other hand, ensures that
an application can efficiently leverage different parallel architectures without requiring signifi-
cant re-engineering. Given the diversity of modern computing platforms—including multicore
CPUs, heterogeneous architectures, and cloud environments—ensuring performance portability
has become a crucial requirement [57]. Continuous adaptation and manual tuning for each new
hardware configuration are neither practical nor cost-effective for individuals or organizations
[34].

The database community has traditionally addressed these challenges by adopting high-level
abstraction techniques that simplify parallel programming. High-level programming models
significantly reduce development time and costs by concealing hardware complexities. These
models enhance productivity and ensure economic sustainability through improved portability
and efficient performance [Darlington et al. [27]; Skillicorn and Talia [28]; Cole [29]; McCool
et al. [33]]. To enable the development of parallel applications, programming environments
must provide high-level constructs that allow developers to focus primarily on computational
logic while abstracting parallel execution details.

Modern runtime environments and programming tools, such as OpenMP [129], handle crit-
ical implementation decisions, allowing a single program to leverage multiple runtime systems
for different execution architectures. This abstraction facilitates architecture-independent de-
velopment, enabling reliable performance predictions across diverse hardware platforms.

Various low-level mechanisms, including POSIX threads [130] and message-passing li-

42

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

braries such as MPI [131], as well as hybrid approaches like OpenMP [31], provide certain
aspects of high-level parallel programming. However, effective parallel programming often
requires developers to define an explicit parallel schema, which may involve restructuring se-
quential code to incorporate parallel directives and constructs. This necessity has led to the
emergence of structured parallel programming (SPP) as a robust and compelling methodology
for high-level parallel programming [Bacci et al. [132]; Vanneschi [133]; Aldinucci et al. [134];
Cole [29]; Vanneschi [135]].

Structured parallel programming is founded on the use of parallel paradigms (or patterns)
to define applications. Many real-world algorithms exhibit well-defined parametric implemen-
tations of communication and computation patterns. These paradigms, which represent fun-
damental schemas of parallel computation, provide a structured approach to parallel software
development. Leveraging these patterns enables efficient application configuration, adaptive
execution, and performance optimization.

From cluster-based computing [136] to shared-memory architectures [137], and from grid
computing [138] to cloud and pervasive environments [139], structured parallel programming
has demonstrated its effectiveness. Our developed algorithm successfully applies a high-level
parallel approach to skyline queries over data streams, demonstrating its applicability to large-
scale data processing. Moreover, structured parallelism has significantly contributed to ad-
vancements in various domains, including data mining [140], signal processing [141], and com-
putational biology [142].

By embracing high-level abstractions and structured parallel paradigms, modern parallel
programming can achieve greater efficiency, maintainability, and scalability, making it an in-
dispensable approach for future computing challenges.

The work in [143] introduced the concepts of reverse k-skyband queries and ranked reverse
skyline queries, which aim to modify or relax the constraints of the conventional reverse skyline
query to retrieve a greater number of objects that are considered important.

De Matteis et al. [41] introduced a parallelized algorithm designed for window-based sky-
line computation on modern hardware such as multicore CPUs. The authors concentrate on
enhancing the efficiency of the reduction phase and establishing effective load-balancing tech-
niques. The utilization of Skyline Influence Time is a technique employed by authors to facilitate
the parallelization of the eager algorithm.

De Matteis et al. [5] have proposed a parallelization algorithm for efficient processing of
skyline queries. The algorithm is designed to achieve near-optimal speedup and incorporates
several load-balancing strategies.

The authors in [5] have presented a proposal for parallelizing the eager algorithm, which
is based on the concept of Skyline Influence Time. Through the implementation of various
load-balancing strategies, they have been able to achieve a speedup that is close to optimal. The
proposals have been demonstrated to be effective and efficient through a comprehensive set of
experimental results. De Matteis et al. [5] introduced join query processing, which involves
incorporating multiple operators within a primary attribute and subsequently coordinating their
functions. An efficient parallel continuous skyline approach has been investigated by the au-
thors in the context of [144] where the dataset points have been sorted in accordance with the
Manhattan distance metric.

In their study, Koizumi et al. [145] employed a Joint Rooted Tree data structure to retrieve
the skyline periodically for a large set of input points. Each point in the set is characterized by

43

3.3. ADVANCED SKYLINE PROCESSING

an entry time (Tstart) and an expiration time (Tend). Once the input point has expired, it will
not be initiated again. On an Intel Core i7 processor, the authors implemented the algorithms
using POSIX threads.

The investigation conducted by IsIam et al. [146] applied to the examination of parallel re-
verse skyline queries on shared-nothing clusters. A quad-tree was constructed to facilitate data
partitioning, and the search area was minimized by expanding the concept of midpoint-based
pruning. The dynamic skyline query enables users to define a query object, denoted as q, and
subsequently obtain the skyline objects in relation to q.

Zhu et al. [147] introduced a parallelized variant of the Usky-base algorithm [148] named
Parallel-sky. This algorithm is designed to calculate the probability of Skyline over uncertain
preferences using a multicore architecture. The technique of ”parallel sky” was examined under
dynamic scenarios involving the addition and removal of points from a given dataset.

Zhang et al. [68] introduced the Naive Parallel Sliding Window Join (NP-SWJ) and In-
cremental Parallel Sliding Window Join (IP-SWJ) algorithms. The following two parallel al-
gorithms are designed to find the skyline-join on multiple streams of data. The technique of
NP-SWJ concurrently examines multiple pairs of windows in order to identify the skyline join.
The IP-SWJ algorithm employs a progressive computational approach that relies on the inter-
section of consecutive windows.

Alami et al. [149] proposed the negative skycube to find the subspaces skyline over contin-
uous multi-dimensional data stream.

3.3.4 Parallel Paradigms for Skyline Queries Over Data Stream (SPODS)
Parallel SPODS applications can be effectively represented using a computation graph with-
out loss of generality. In this model, nodes correspond to intermediate functions, which serve
as modular components of the overall application. Data streams act as communication chan-
nels through which computations take place. When certain functions create performance bot-
tlenecks, they must be internally parallelized using appropriate parallelism paradigms to meet
performance requirements [135, 150–152]. These paradigms exhibit the following characteris-
tics:

• Identification of high-performance bottleneck functions.

• Enforcement of specific pre-established parallel computing patterns.

• Capability to be composed together to form highly complex computations.

• Establishment of an overall performance model.

This approach alleviates the programmer from concerns regarding the mapping of parallel
computation schemes to specific parallel architectures. By utilizing performance models, effi-
ciencymetrics can be assessed as functions of various parameters, including application-specific
factors (e.g., computation time and data size) and architectural properties (e.g., processor per-
formance and memory access latency).

In this section, we examine a collection of well-established parallel patterns for query pro-
cessing over data streams, with a focus on their key characteristics and performance implications.

44

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

A Basic Set of Parallel Patterns

Consider a network of air quality monitoring sensors deployed across a smart city. Each sensor
collects multiple attributes:
Temperature (◦C), Air pollution levels (PM2.5, CO2, NOx, etc.), Humidity (%), Battery life
(remaining energy percentage).

A skyline query helps identify the best sensors based on accuracy, energy efficiency, and
strategic placement. Due to the high volume of incoming sensor data, parallel computing is
essential for efficient processing. The following sections map various parallel patterns to real-
world skyline query processing steps.
Pipeline:

St ag e1 St ag e2 . . . St ag en

Functi on1 Functi on2 Functi onn

Figure 3.6: Pipeline parallel pattern [26].

The pipeline paradigm provides a sequential composition of functions applied to input elements,
formulated as:

F (x) = Fn(Fn−1(. . . (F1x) . . .)) (3.2)

A linear arrangement of n execution stages allows parallelization, as shown in Figure 3.6. This
approach increases throughput but may introduce communication overhead between stages, po-
tentially affecting latency [34].
Pipeline Processing:

• Breaks computation into multiple sequential stages.

• Each stage transforms data before passing it to the next stage.

• Improves throughput, but overall latency depends on the slowest stage.

Example in Skyline Query:

• Stage 1: Read sensor data from streams.

• Stage 2: Filter noisy or incomplete sensor readings.

• Stage 3: Compute skyline candidates using dominance checks.

• Stage 4: Output skyline sensors for decision-making.

Use Case: Suitable for real-time environmentalmonitoring, ensuring accurate and timely sensor
data processing.

Parallel patterns provide structured methodologies for parallel computing. These patterns
can be broadly categorized into two types:

1. Task Parallel Paradigms: These patterns operate effectively on homogeneous data
streams. Parallelism is achieved by processing multiple elements concurrently, thereby increas-
ing throughput rather than reducing computation latency for a single element [34].

45

3.3. ADVANCED SKYLINE PROCESSING

2. Data Parallel Paradigms: These paradigms apply parallelization at the individual com-
putation level, often requiring data partitioning, which leads to parallel execution of computa-
tions [34]. Unlike task parallelism, this approach can enhance computation latency.

Parallel paradigms define the interaction structure among various computational entities.
These entities include cores (executors in shared memory systems), a Splitter that distributes
data, and a Merger that aggregates results from cores before passing them to the output stream.

Splitter

1

= F ()

..
.

i
..

.

n

Merger

Figure 3.7: Task Farm parallel pattern [26].

Task Farm:
The task-farm paradigm replicates a stateless function F across multiple cores [34]. The Splitter
assigns input elements to cores based on a scheduling policy (e.g., round-robin for uniform
workloads). The Merger collects results and forwards them to the output stream (Figure 3.7).
This pattern increases throughput while maintaining the computation latency of each element.

• Replicates the same task across multiple cores.

• A load balancer distributes sensor data to multiple processors.

• Best for independent computations with low variance.

Example in Skyline Query:

• Each core processes a batch of sensor data to check for dominance relationships.

• High parallelism is achieved when sensor readings are independent.

Use Case: Useful when pre-filtered sensor data allows skyline computations without depen-
dencies.

Data Parallelism:
This paradigm involves both function and data partitioning, enabling independent execution of
the same operation on different data partitions [34]. The Splitter distributes data among cores,
and the Merger aggregates results (Figure 3.8). Since cores work independently, there is no
need for direct inter-core coordination.

46

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Splitter

scatter

1

= F ()

..
.

i

..
.

n

Merger

gather

Figure 3.8: Map pattern with 4 cores [26].

• Splits data into partitions, processed in parallel.

• Each core operates on its assigned data chunk.

• cores may exchange intermediate results to refine skyline computations.
Example in Skyline Query:

• Divide sensor data by geographic regions (e.g., North, South, East, West).

• Compute skylines for each region in parallel.

• Merge results to obtain a global skyline.
Use Case: Optimized for large-scale smart city monitoring with regional sensor clusters. In
some cases, computations exhibit dependencies across partitions, such as stencil-based compu-
tations, which require information exchange between cores. Data parallel paradigms can reduce
computation latency for individual elements and increase overall throughput [34].

Reduce:
The reduce pattern applies to computations of the form:

y = x1
⊕

x2
⊕

. . .
⊕

xn (3.3)

where an associative function
⊕

is applied to aggregate input elements. The data is partitioned
among cores, each performing a local reduction before a final global reduction [34].

• Computes a single aggregated result from multiple parallel computations.

• Uses an associative function (e.g., min, max, sum, average).

Example in Skyline Query:
• Each core computes a local skyline for a subset of sensors.

• A global reduction step merges all local skylines into the final skyline set.
Use Case: Used in distributed skyline computation where each processor finds partial skylines,
and a central reducer merges them.

47

3.3. ADVANCED SKYLINE PROCESSING

Patterns Composition

Complex structures can be constructed by combining parallel paradigms. In stream-based com-
putations, it is common to integrate data-parallel and stream-parallel techniques. For instance, a
pipeline can include one or more stages implemented as a map [34]. A widely used algorithmic
approach is the ”map and reduce” paradigm [34], where a function is applied to each element
of a data structure, followed by a reduction operation that aggregates the results. The MapRe-
duce programming model, introduced by Google [153], adopts this concept. Its open-source
implementation, Hadoop [154], has gained significant traction in batch processing, demonstrat-
ing the efficacy of high-level programming approaches when supported by an efficient runtime
environment.

Skyline with MapReduce

MapReduce, developed by Google, simplifies the development of parallel applications capable
of processing large datasets on clusters of cost-effective machines. An effective MapReduce
framework should ensure load balancing across the participating machines while optimizing
space utilization, CPU and I/O operations, and network transfer efficiency.

Zhang et al. [155] elaborated three distinct algorithms for skyline computation that have
been suitably modified to operate within the MapReduce computational framework. The MR-
BNL approach utilizes the MapReduce framework to partition the data space into subspaces of
two dimensions based on the medians of each dimension. Subsequently, the local skyline for
each subspace is computed using the BNL algorithm. Next, the merging of all local skylines
is executed on one machine for the purpose of computing the global skyline. The MR-SFS al-
gorithm is a modification of the MR-BNL algorithm that incorporates presorting through the
implementation of a Sort-Filter-Skyline approach based on the MapReduce framework. The
MR-Bitmap technique utilizes MapReduce to construct a bitmap structure, enabling parallel ex-
amination of individual objects. Both the MR-BNL and MR-SFS algorithms focus on a single
machine for the purpose of computing the global skyline. Individuals may experience a dimen-
sional curse issue whereby the size of the local skyline is significantly raised in cases where
the dimensionality is high. If the bitmap structure exceeds the capacity of the main memory,
MR-Bitmap necessitates a significant amount of disk space for storage. MR-Bitmap incurs the
highest input and output costs.

Park et al. [156] designed a method for executing parallel dynamic SKY-M and reverse
skyline RSKY-MR queries through the utilization of MapReduce. This approach involves the
implementation of both a pruning approach and a data partitioning technique. The researchers
employ a quad-tree index, which is generated from arbitrary subsamples of the dataset, to exe-
cute their partitioning. The optimality of quad-tree indexes for query grouping is limited due to
their dependence on queries.

The SKY-MR technique begins by constructing a histogram via the sampling of a subset of
the dataset. This methodology is utilized with the intention of eliminating non-skyline points
in advance. The method is commonly utilized to divide data points into separate and inde-
pendent regions. Subsequently, the candidate skyline points are computed for each respective
region. Next, each candidate point gets an evaluation procedure for determining its classification
as a skyline point. The execution of two separate MapReduce tasks is required for the imple-
mentation of this approach. However, the current methodology lacks the ability to incorporate
uncertain data and may benefit from further development to address this limitation.

48

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

TheMR-GPMRS [157] partitioning scheme is based on a grid structure, employs a recursive
approach to divide certain dimensions of the data into multiple segments. Subsequently, sky-
line candidates are computed for each partition. The utilization of a bit-string by Mullesgaard et
al. [157] for the purpose of grid-based partitioning has facilitated the ability to prune a greater
number of data points prior to the ultimate computation of the skyline. The MR-GPMRS algo-
rithm employs a strategy of utilizing multiple reducers in order to effectively calculate the global
skyline from a set of skyline candidates. Thier study examines the impact of parallelization on
skyline computation across diverse datasets with variations in dimensionality, cardinality, and
execution buffers.

Zhang et al. [158] presented a parallel algorithm, named PGPS, for executing skyline queries
within the MapReduce framework. The PPF-PGPS algorithm comprises three distinct phases,
namely partitioning, local skyline, and global skyline. During the partitioning phase, angle-
based partitioning and filtering approaches are utilized to eliminate unqualified tuples within
each partition. Following this, the reduce function is applied to filter out objects subsequent to
their aggregation from map functions. During the local skyline phase, PGPS employs a mapper
machine to calculate a local skyline for each angle-based partition in a parallel fashion using
the map function. After that, during the phase of global skyline computation, PPF-PGPS com-
bines the individual skylines of the mappers into only one node, resulting in the ultimate global
skyline, which is executed through the reduce function. A technique known as partial presort
has been proposed as a way to enhance the merging performance of local skylines. Grid par-
titioning, then sorting, are the steps involved in the partial-presort method for dividing local
skylines. The partitions located in proximity to the origin are prioritized for processing. This
method is effective in quickly eliminating tuples within the dominated partitions. Despite the
MapReduce Skyline algorithm’s efficacy, its failure to account for workload balancing may re-
sult in a decline in algorithmic performance. According to the results of the study conducted
in [159], it has been observed that the initial phase’s filtering methodology is not successful for
anti-correlated data.

Y. Li et al. [160] developed a system model capable of facilitating subspace skyline queries
in a mobile distributed environment. Additionally, Li et al. introduced an efficient algorithm
for processing skyline queries through the utilization of MapReduce. The algorithm employs
the mapreduce technique to derive a significant subset of points from a complete set of skyline
points within any given subspace.

Park et al. introduced the SKY-MR+ [161] framework as a means of enhancing the efficacy
and scalability of SKY-MR [156]. This was achieved through the utilization of an adaptive
quadtree generation method and techniques aimed at balancing the workload across machines.
Sky-MR+ employs a distinct approach for constructing the Quadtree, utilizing a histogram based
on the quadtree for partitioning space and implementing the dominance power filtering tech-
nique to efficiently eliminate non-skyline points. The construction of the Quadtree necessitates
the presence of samples. The efficacy of these two algorithms is dependent upon the utilization
of sample data points for the construction of a Quadtree.

Jia-Ling et al. [162] has introduced a parallel algorithm, MR-SKETCH, for computing the
skyline using the MapReduce framework. The purpose of this algorithm is to avoid bottlenecks
that may arise during the computation of the global skyline from local skylines in a sequential
manner. The MR-SKETCHmethodology comprises three distinct stages: a data filtering phase,

49

3.3. ADVANCED SKYLINE PROCESSING

a computation phase for dominated subsets, and a final step for merging results.
Following the partitioning of a dataset, the MR-SKETCH algorithm proceeds to the filtering

stage, wherein each partition selects tuples at random to preserve the set of sample points. The
sample points are employed in the computation of a skyline, which serves as a filter. Following
the elimination of tuples that are dominated by their respective filters, the MR-SKETCH algo-
rithm proceeds to calculate a subset of dominated tuples for each partition. This subset includes
tuples that are incapable of being a global skyline. During the merging phase, the algorithm
combines the surviving tuples from both the filtering and dominated subsets for each partition.
Subsequently, it eliminates the dominated subset from the surviving tuples to establish the final
global skyline. The MR-SKETCH methodology formulates regulations for reducing the size of
dominated subsets, thereby decreasing the network costs associated with their distribution. The
experimental results indicate that MR-SKETCH outperformed other algorithms that are cur-
rently available. When performing parallel skyline computation on the MapReduce platform,
the researchers’ approach showed a number of limitations despite its potential benefits.

The MR-SKETCH algorithm employs a filtering strategy that relies on randomly selected
filter points. In contrast, other filtering strategies deliberately select filter points to achieve more
effective pruning capabilities. Thus, the efficacy of its filter points selected at random is notably
inferior to alternative filtering methodologies when assessing their filtering efficacy with an
equivalent number of filter points. As a result, a decrease in filtering power leads to an increase
in the size of map outputs, resulting in higher computation and network costs. Furthermore, the
aforementioned approach fails to account for the computational expenses incurred by dominated
subsets. Consequently, as the magnitude of the dataset or the number of dimensions increases,
there is a significant computational expense associated with calculating the dominated subsets.

The absence of scalability results in a reduction in the performance enhancement achieved
through parallel processing. The algorithms utilized depend upon partitioning schemes that
split every data dimension into just two halves. This approach poses a challenge for expanding
the skyline computation as the dataset size grows, necessitating a greater number of partitions
to effectively process the datasets in parallel. Despite attempts to overcome limitations by in-
creasing the number of partitions through a generalized partitioning scheme that divides each
dimension into k partitions, the approach still exhibits limitations in terms of scalability. This is
due to the significant increase in network costs associated with transmitting dominated subsets
as the number of partitions increases. Furthermore, in the MR-SKETCH algorithm, the process
of calculating dominated subsets within a reducer necessitates a double reading of input data,
once for the creation of a hash table and again for the computation of dominated subsets. As
a result of this particular attribute, it is necessary to retain all input tuples of every reducer in
the primary memory, given that the input values of the reducers are capable of being iterated.
Therefore, the processing of large amounts of data presents a challenge.

Thirdly, theMR-SKETCHmethod is subject to a constraint on the extent of parallelism. The
authors present a methodology to address the issue of high network costs associated with trans-
mitting dominated subsets. This issue cannot be ignored even when partitions are generated
by dividing each data dimension into only two halves. The proposed solution aims to reduce
network costs. In order to address this issue, a strategy is employed whereby the calculations
pertaining to lower subsets are delayed until after their transmission. Nonetheless, this method-
ology results in the parallel computation of dominated subsets returning to serial computation.
Moreover, the outcomes of the reducers and the dominated subsets are passed on to an indepen-
dent node for the purpose of merging the results towards the conclusion of MR-SKETCH. The
merging step of the result is executed sequentially, which poses a bottleneck for computing the
skyline as the dataset size or dimensionality increases.

50

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Jang et al. [163] developed a filtering approach that utilizes multiple regression analysis
within the MapReduce framework to decrease the number of possible objects beyond the sky-
line threshold. Simultaneously, the filter threshold and grid-based threshold were taken into
consideration to guarantee the accuracy of the skyline.

Kim et al. [164] introduced a skyline query in the MapReduce framework, which leverages
parallel computing in a distributed parallel framework to efficiently compute and update skyline
query results. The methods presented suggest a new two-phase strategy within the MapReduce
framework. During the initial phase, the dataset is partitioned into multiple subsets, follow-
ing which local skylines are computed exclusively for the qualified subsets. During the second
phase, the determination of global skyline points is performed by utilizing the local skyline
points. The present paper introduces two distinct filtering techniques, namely outer-cell fil-
tering and inner-cell filtering. The experimental results indicate that the suggested techniques
exhibit suitable levels of effectiveness and scalability.

Wang et al. [165] implemented the spatial skyline computation NSSQ within the MapRe-
duce framework, utilizing a grid-based partitioning scheme to recursively divide the data dimen-
sions into multiple parts. The fundamental concept requires that every search region comprise
multiple disks that establish a distinct region while searching for spatial skyline points. As a
result, the researchers decided to focus their search on the independent region pivot, which is
defined by the designated point p E P. This enabled them to transform the problem into M inde-
pendent problems, with each disk that defines the search region corresponding to one of these
problems. The M problems are concurrently resolved. The authors propose a solution based on
MapReduce that consists of three phases. During the initial phase, the computation of CH(Q)
takes place, where Q is subjected to partitioning. Next, multiple local convex hulls are gen-
erated, which are eventually combined to generate the global convex hull. During the second
phase of MapReduce, the focus is on identifying the independent region pivot. This involves
identifying the point p ∈ P that has the smallest search region. The minimization of search re-
gion areas occurs first at a local level and then at a global level. In the third phase, each point of
P is linked to the independent regions that determine the exploration area of the selected pivot,
within which it is covered. The solution involves addressing |E(Q)| independent spatial sky-
line problems concurrently, utilizing only the points that are included within the independent
region. The use of pruning regions, which have circular ring sectors, facilitates the minimiza-
tion of dominance tests. This is due to the fact that the points located within these regions
are subject to dominance. The algorithm employs a pair of multi-level grids and leads to the
removal of potentially duplicated skyline points. This is a necessary step as identical skylines
may be derived from distinct and independent regions, resulting in duplication within the output.

in the work of [166] Li et al. demonstrate an enhancement to the location query through the
utilization of the MapReduce framework during the map stage. The processing of ”big data”
is facilitated in a distributed environment, and the algorithm will speed the identification of an
optimal location on a map.

Hyeong-Cheol Ryu et al. [167] employed the adaptive two-level grids (T LG) technique to
execute the skyline query within a single job in the MapReduce framework. In order to reduce
the network communication cost between the map and reduce phases, it is recommended [25]
to incorporate the primary pruning mechanism of a MapReduce job into the map phase. The

51

3.3. ADVANCED SKYLINE PROCESSING

authors effectively convey the idea of creating a dynamic index during the map phase to remove
a sizable portion of the dataset. Additional techniques for refinement can be implemented during
the combiner and reduce phases.

Adequacy of Parallel Patterns for Data Stream Processing

A pertinent question arises: Are the aforementioned parallel patterns sufficient for handling
intra-operator parallelism in SPoDS applications? The answer is: not entirely. While stream-
parallel patterns remain applicable and effective for stateless computations, stateful operators
introduce significant complexity.

Stateful operators in SPoDS iteratively process sequences of input values from one or more
streams to produce final results. Windows define continuous segmentations of the input streams,
determining subsets of elements that must be considered for output generation at any given time.
Traditional stream-parallel paradigms, which treat stream elements separately, and data-parallel
paradigms, which assume finite-size elements, fall short in handling such dynamic and evolving
structures.

Recent research has explored Hadoop and, by extension, theMapReduce pattern as potential
frameworks for real-time stream processing. Condie et al. [168] introduced MapReduce Online
(HOP) to facilitate continuous querying, where reducers receive results as soon as they are
produced by mapper nodes. However, small windows may suffer from low throughput due to
the frequent application of reduce functions, such as aggregation operations [169].

Brito et al. [169] proposed StreamMapReduce, which remains compatible with theMapRe-
duce API but disrupts its abstraction. Here, stateless operators are implemented as mappers,
while stateful ones function as reducers, allowing for low or sliding windows. Similarly, M3
[170] introduced an in-memory data path between mappers and reducers to mitigate overhead
caused by HDFS, the default distributed file system, which introduces significant delays unsuit-
able for streaming applications. These approaches forceMapReduce into an ill-fitting paradigm,
ultimately leading to suboptimal performance.

We argue that SPoDS applications require specialized enhancements in data distribution,
management policies, and windowing techniques beyond those provided by conventional pat-
terns. Achieving intra-operator parallelism necessitates partitioningwindows among computing
cores. Given their dynamic nature—where buffered tuples evolve due to triggering and evic-
tion policies—window distributions must be carefully managed. Moreover, when time-based
semantics are involved, the arrival rate of stream elements determines window cardinality, ne-
cessitating efficient mechanisms for data expiration and update.

Key challenges in this context include:

• Efficiently managing input streams and maintaining up-to-date windows. This requires
well-defined distribution policies for incoming elements and effective expiration policies
to remove outdated data.

• Ensuring balanced workload distribution among cores while keeping window partitions
synchronized and evenly allocated.

Despite these challenges, we believe that parallelization in SPoDS computation remains fea-
sible using structured parallel programming (SPP) paradigms. These paradigms simplify rea-
soning about throughput, latency, and memory occupancy while reducing development effort.
Addressing these requirements will necessitate refining existing parallel patterns and introduc-
ing new ones tailored to the unique demands of SPoDS applications.

52

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

3.3.5 Parallel Patterns for Windowed Functions
When a SPoDS application fails to meet user-defined performance requirements, such as main-
taining a specified input rate or ensuring a constant response time, it becomes necessary to
restructure its execution. Bottlenecks typically arise in stateful functions, which maintain and
update internal data structures while processing data. This introduces dependencies between
the processing of individual tuples, making it crucial to preserve the sequential semantics of
stateful functions when parallelizing them.

Several authors [26, 33–35] have advocated for the use of structured parallel patterns to
address parallelization challenges due to their reusability and ease of implementation in win-
dowed functions. Windows serve as a fundamental state abstraction in such functions, with their
semantics defined by eviction and triggering policies. To generalize the concept, a window is
characterized by the following attributes:

• Window Size (|W |): This can be expressed as a duration (e.g., seconds, minutes, or hours)
for time-based windows or as a count of tuples for count-based windows.

• Sliding Factor (δ): This parameter defines the movement of the window. Similar to
window size, it can be expressed in time units or in the number of tuples. A tumbling
window is characterized by δ= |W |, whereas a sliding window has δ< |W | [10].

It is important to note that a single tuple may belong to multiple consecutive windows due
to overlap, particularly in sliding windows, where a window may include newly arriving tuples
while still retaining older ones.

3.3.6 Parallel Patterns Taxonomy
Task parallelism in window-based functions can be uniquely characterized by the way input
tuples are grouped and processed. Instead of treating individual tuples as tasks, modern parallel
paradigms consider a task as a subset of the input stream that encompasses all tuples belonging
to a given window [10]. The fundamental performance metrics for parallel SPoDS applications,
as defined by experts [10], include:

Throughput and Service Time: The throughput of a window is defined as the average
number of windows processed per unit time. The inverse of service time represents the average
interval between the execution of two consecutive windows.

Latency: Latency refers to the average duration required to process a single task or compute
a window.

Response Time: This metric quantifies the time taken to produce an output after receiving
the last tuple that triggers a window computation.

DeMatteis et al. [26] introduced the concept of scalability to assess the efficiency of parallel
solutions:

Scalability: Scalability measures the performance improvement gained by increasing the
level of parallelism. It is quantified as the ratio of throughput achieved with n parallel cores to
the throughput achieved with a single core.

3.3.7 Categories of Parallel Patterns for Windowed Functions
Parallel patterns for windowed functions can be categorized into two primary paradigms:

53

3.3. ADVANCED SKYLINE PROCESSING

Window-Parallel Paradigms: These patterns enable concurrent processing of multiple
time windows. While they enhance throughput by allowing multiple windows to be computed
simultaneously, they do not reduce the computation latency for individual windows [34].

Data-Parallel Paradigms: These patterns partition a single window across multiple paral-
lel executors. By distributing the workload among identical processing units, they effectively
reduce computation latency [34]. This approach is utilized in the parallelized version of the
RSS algorithm, where windows are partitioned among the CPU’s available cores [36].

As with all parallel patterns, the structure and definition of a pattern influence its impact
on key performance factors such as throughput, latency, and memory usage. One particularly
critical aspect is data distribution, given that windows are dynamic structures with evolving
tuple content and cardinality. This distribution process can be examined from two perspectives:

• Splitter Functionality: The Splitter is responsible for distributing input elements to mul-
tiple cores at varying granularities. This distribution can occur at the level of individual
tuples, tuple groups, or entire windows.

• Window Assignment Policy: This refers to the policy governing how windows are se-
quentially assigned to parallel processing cores.

Splitter

1

2

Merger

canonical copy
of the windows

re-ordering
of results

787. . .

F (ωx
1)F (ωy

1)F (ωx
2). . .

456ω
y
4

456ω
y
4

234ω
y
2

234ωx
2

123ωx
1

123ω
y
1

345ωx
3

345ω
y
3

F (ωx
2)

F (ωy
2)

F (ωx
4)

F (ωy
4)

F (ωx
1)

F (ωy
1)

F (ωx
3)

F (ωy
3)

456
456

Figure 3.9: Window Farming with two cores. In the figure |W | = 3 and δ= 1. w x
i is the i-th window of

substream X. F (wi) is the result of the processing function over a window [26].

Window Farming

The term farming in task farming is analogous to agriculture, where farmers divide land into
smaller plots, cultivate crops, and harvest them. Similarly, in computing, task farming involves
distributing computational tasks among multiple processing units to maximize efficiency [150].

• Uses task-farming to assign entire windows to different cores.

Example in Skyline Query:

• Each core computes the skyline for different time windows (e.g., morning, afternoon,
evening).

54

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Use Case: Efficient load balancing when analyzing time-based skyline queries. This pattern
follows a straightforward intuition [34]. If each window activation involves applying a function
F to its contents without dependencies on other windows—whether from the same or different
logical streams—then a simple adaptation of the traditional task farm pattern can be utilized
(illustrated in Figure 3.9).

Splitter

1

2

Merger565. . .

F (ωx
1)F (ωy

1)F (ωx
2). . .

1
2

3
4

1
2

3
4

F (ωy
1)

F (ωy
2)

F (ωx
1)

F (ωx
2)

Figure 3.10: Key Partitioning with fine-grained distribution. Substream X is routed to the first Core,
substream Y to the second one [26].

Key Partitioning

Key partitioning, a specialized form of window farming, employs a restricted assignment policy
to distribute keys across processing cores. Given a set of keys K , the goal is to create n partitions,
where n corresponds to the number of available cores. Each window associated with a particular
key is consistently assigned to the same core, ensuring efficient and organized processing [34].

If window distribution is uniform, core workloads remain balanced. However, with fine-
grained distribution, cores actively manage window boundaries (see Figure 3.10). The merger
component then collects and orders the results, preserving partial ordering by default.

• Distributes data based on keys, ensuring related elements go to the same core.

Example in Skyline Query:

• Partition sensor data based on sensor ID or location.

• Ensures that all readings from a single sensor are processed by the same core.

Use Case: Used in stateful streaming skyline queries that track historical sensor trends.

3.3.8 Pane Farming
For centralized processing of sliding window aggregates, Li et al. [75] proposed a pane-based
approach to improve efficiency by sub-aggregating and sharing computation. A parallel im-
plementation of this approach was later introduced by Balkesen and Tatbul [74], leading to a
pattern with desirable throughput, latency, and memory characteristics.

Each window consists of non-overlapping, continuous partitions called panes, with a pane
size defined as σp = gcd(|W |,δ). Each window w comprises r disjoint panes: w = {P1, . . . ,Pr },
where r = |W |/σp .

55

3.3. ADVANCED SKYLINE PROCESSING

W1

W2

W3

W4

W5

P1 P2 P3 P4 P5 P6 P7 P8

W
in

do
w

s
Panes

Figure 3.11: Sliding window created with 4 different panes. Each pane is identified in 4 consecutive
windows [26].

• Optimizes sliding windows by breaking them into smaller panes.

• Reduces redundant computations for overlapping windows.

Example in Skyline Query:

• Instead of recomputing a full skyline every second, reuse previous computations for over-
lapping time intervals.

Use Case: Best for continuous skyline queries with small sliding windows, reducing computa-
tional overhead.

3.3.9 Window Partitioning
Window partitioning extends the map-reduce paradigm to data streams. If the computation can
be expressed as a map function over window elements, the window can be divided among n
cores, each responsible for computing the function F on their partition. A subsequent reduce
phase may be required for aggregation.

• Divides incoming data streams into sliding or tumbling windows.

• Assigns different windows to parallel cores.

Example in Skyline Query:

• Sensors generate continuous air quality readings.

56

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Splitter

1

2

4

3

Merger

attributes partition-
ing with 4 Cores

Merging of results

. . . 37 38 39
F (ω1)F (ω2). . .

282930

31
3233

34
35

36

25

26

27

09101112 01 02
removed

13141516 03 04
removed

17 18 19 20 05 06
removed

21 22 23 24 07 08
removed

Figure 3.12: Window Partitioning with 4 cores and one key. In the figure |W | = 8 and δ= 4 [26].

• Skyline queries are computed for recent windows (e.g., last 10 minutes).

• Each window computation runs independently.

Use Case: Suitable for real-time air quality monitoring with continuous updates.
Figure 3.12 illustrates this pattern, where tuples are assigned to two cores in a round-robin

fashion. This approach is feasible if cores can process their partitions independently. Otherwise,
alternative distributions ensuring data integrity are necessary. In a keyed scenario, each core
maintains a partition for its logical substream.

The window partitioning pattern is particularly useful when computations follow a map op-
eration, potentially followed by a reduction step. Iterative applications of map-reduce functions
are also supported, including for keyed streams. The pattern enhances latency and throughput
in proportion to the number of active cores. As tuples are partitioned without replication, load
balancing challenges may arise if processing time varies significantly based on data values.

Comparison of Window Partitioning and Window Farming: Table 3.3 presents the dif-
ference between Window Partitioning and Window Farming patterns and table 3.4 summarises
well known Parallel Patterns for Skyline Queries.

Feature Window Partitioning Window Farming
Data Splitting Splits a single window into partitions Assigns entire windows to different cores

Parallelism Focus Within a window Across multiple windows
Use Case Single-window parallel skyline queries Multi-window parallel skyline queries

Table 3.3: Comparison of Window Partitioning and Window Farming

Summary of Parallel Patterns for Skyline Queries

Tables 3.5, 3.6 and 3.7 summarize several developed skyline queries and their characteristics
over complete and incomplete datasets.

57

3.4. SKYLINE CARDINALITY

Parallel Pattern Definition Example in Skyline Query
Pipeline Sequential stages Preprocessing → Skyline filtering → Output

Task-Farm Independent tasks on cores Parallel skyline computation for independent sensor data
Data Parallelism Partitioned data processed independently Skyline per geographic region

Reduce Aggregates results Merging regional skyline results
Window Partitioning Parallelizes within a window Skyline for one time window split across cores

Key Partitioning Assigns data based on key Ensuring same sensor data is processed by one core
Window Farming Parallelizes across windows Skyline for morning, afternoon, night in parallel
Pane Farming Optimizes sliding windows Avoid recomputing skylines for overlapping windows

Table 3.4: Summary of Parallel Patterns for Skyline Queries [26].

3.4 Skyline Cardinality
The skyline query allows users to specify whether they want attribute values minimized or max-
imized. Despite its apparent simplicity, the skyline query has significant computational impli-
cations. One of the fundamental challenges is determining the cardinality of the skyline set,
denoted as |SK Y (P)|, which is influenced by both the number of dimensions and the data distri-
bution. The skyline cardinality can range between a single point and the total number of points
in the dataset [78]:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Variable A

V
ar
ia
b
le

B

Data with Positive Correlation

(a) Positively correlated data dis-
tribution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Variable A

V
ar
ia
b
le

B

Data with Negative Correlation

(b) Negatively correlated data dis-
tribution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Variable A

V
a
ri
ab

le
B
Data with No Correlation (Uniform Distribution)

(c) Independent data distribution.

Figure 3.13: Correlated, anticorrelated, and independent data distributions.

1 ≤ |SK Y (P)| ≤ |P | (3.4)

Understanding the factors that affect skyline cardinality is essential for efficient query pro-
cessing and optimization.
Impact of Data Distribution: The distribution of data significantly influences skyline cardi-
nality. Figure 3.13 illustrates three common types of data distributions—correlated, uniform,
and anticorrelated—in a two-dimensional space. These distributions are widely used to evaluate
the performance of skyline query algorithms.

• Correlated Distribution (Figure 3.13a): In this distribution, a high value in one di-
mension corresponds to a high value in another. Since the points tend to align along a
diagonal, skyline cardinality remains low. In an extreme case, all points lie on a straight
line, making the problem effectively one-dimensional.

58

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Approach Computation Data Technique Query Processing Window Data
year Space Type Type Type type Partitioning

Lazy, Eager Partial Complete - skyline Centralized Both -
2006[100]
LookOut - Complete - skyline Centralized Time-based -
2007[101]
MSQ - Complete metric index metric skyline Centralized - -
2008[171]
FSQW - Complete - Frequent skyline Centralized Time-based Angle-based
2009[172]
BOCS Partial Complete Index R-tree skyline Distributed time-based horizontally split data
2010[90]
mMR-SUDS - Complete - - Cloud Time-based -
2013[173]
skyline group - Complete - group skyline Centralized Time based -
2015[174]
DSJQ - Complete - Skyline join Distributed - -
2016[105]
k-LDS, PBA, ϵ-greedy - Complete - k Representative Centralized Count based -
2016[108]
LookOut, Lazy, Eager - Complete - skyline Centralized Both -
2016[110]
Gsky Partial Complete Clustering top-k,multi-Query Centralized Count-Time grid-based
2018[120]
BJR-tree, NDcache - Complete Index skyline Centralized - Object-based
2019[116] BJR-tree
NSCt framework - Complete - negative-skyline Centralized Both -
2020[21]
IMSS, OIMSS, PMSS - Complete - Mutual skyline Centralized - -
2020[175]
Dynamic k-dominant Skyline - Complete Clustering k-dominant Centralized - -
2021[176]

Table 3.5: An example of approaches to sequential continuous skyline techniques over a complete data
stream.

59

3.4. SKYLINE CARDINALITY

Approach Computation Data Technique Query Processing Window Data
year Space Type Type Type type Partitioning
Replacement, Bucket, Iskyline Full space Incomplete Clustering skyline Centralized Count-Time -
2008[86] Non-Index
OURS - Uncertain - Probabilistic Skyline Centralized - -
2009[177]
SSKY, MSKY, QSKY - Uncertain - q-skyline Centralized Both -
2009[178]
DCRS - Uncertain DC-tree index Reverse skyline Distributed - -
2009[179]
TDG algorithm - Uncertain Clustering Probabilistic Centralized Time based -
2010[180]
RBSSQ Full space Incomplete Clustering skyline Centralized - -
2016[181] Index
SIDS Full space Incomplete Sorting skyline Centralized - -
2013[182] Index
SPQ Partial Incomplete Sorting skyline distributed - -
2017[183] Index
ESB, UBB, BIG, IBIG Full space Incomplete Clustering top-k Centralized - -
2015[184] Index
pnN, pmnN - Uncertain - n-of-N Skyline Centralized Time based -
2015[185]
Baseline, DAG, BIB Full space Incomplete Clustering K-dominant Centralized - -
2016[186] Index
uncertain reverse skyline - Uncertain R-tree Index bichromatic Reverse Distributed - Angle-based
2017[187] midpoint based
GSS+ - Incomplete - Spatial skyline Centralized - -
2018[188]
PFSIDS Partial Incomplete Clustering top-k,multi-Query Centralized Count-Time Angle-based
2021[189]
CrowdSJ, PSJCrowd, ASJCrowd - Incomplete - skyline join Distributed - -
2021[190] Index

Table 3.6: Examples of approaches to sequential continuous skyline techniques over Incomplete and
Uncertain data streams.

60

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

Approach Data Technique Skyline Processing Window Data
year Type Variant Type Variant Partitioning
CMS, AMS, DMS, APS Uncertain - Probabilistic Cloud - -
2013[191]
SPM, APM, DPM Uncertain - skyline Cloud count based -
2014[67]
DPF, PSS Uncertain grid index skyline Centralized - -
2014[66]
JRtree skyline complete sorting skyline join Distributed - -
2015[145]
APSS,CPSS,CUDA-Based PSS Complete - Probabilistic skyline Centralized - -
2015[41]
skyline Manhattan distance Complete - - Centralized - -
2015[144]
parallel eager Complete - skyline Centralized Both -
2016[5]
Q+tree Uncertain Quad Tree Indexing Reverse Distributed - -
2016[192]
HashSkylineGPU complete Clustering hash skyline Centralized - -
2017[193]
uncertain reverse skyline Uncertain R-tree Index bichromatic Reverse Distributed - Angle-based
2017[187] midpoint based
parallel uncertain n-of-N Uncertain - n-of-N skyline Centralized - -
2018[194]
NP-SWJ, IP-SWJ complete Clustering skyline join Distributed - -
2018[68]
parallel uncertain n-of-N sky Uncertain - n-of-N skyline Centralized - -
2019[195]
PKDS Uncertain Capability Index k-dominant Centralized - -
2019[196]
pruning+monitoring reverse sky Uncertain - Reverse Distributed - Angle-based
2019[197]
dySky Complete - skyline Centralized - -
2021[198]
Basic, Parallel_Basic, Parallel_PS Complete - skyline Centralized - -
2021[199]

Table 3.7: Example of approaches to parallel continuous skyline techniques.

61

3.4. SKYLINE CARDINALITY

• Uniform Distribution (Figure 3.13c): Here, points are evenly spread across the space.
This results in a higher skyline cardinality than the correlated distribution, but typically
lower than the anticorrelated distribution. Although real-world datasets rarely exhibit
perfect uniformity, this distribution is commonly used as a baseline for algorithm analysis.

• Anticorrelated Distribution (Figure 3.13b): In this case, a high value in one dimension
corresponds to a low value in another. This distribution tends to produce the highest
skyline cardinality. In the extreme case, where all points form a wide Pareto front, every
point may become a skyline point, leading to |SK Y (P)| = |P |.

Impact of Dimensionality: The number of dimensions (d) plays a crucial role in deter-
mining skyline cardinality. For a fixed dataset, increasing the number of dimensions generally
results in a larger skyline set:

|SK Y (Pd)| ≤ |SK Y (Pd+1)| (3.5)

For example, in a one-dimensional dataset where all values are unique, there is only one
skyline point. However, as d increases, the number of skyline points grows. A theoretical
estimation of skyline cardinality is given by Bentley et al. [200], who derived an approximation
based on assumptions of uniformity and independence:

|SK Y (P)| =O((lnn)d−1) (3.6)

Buchta [201] provided a more refined bound:

|SK Y (P)| = (lnn)d−1

(d −1)!
(3.7)

Further refinements by Godfrey [202] and Tiakas et al. [203] offer more precise estimates,
which are crucial for cost estimation and query optimization.

Challenges of High Skyline Cardinality:
For high-dimensional datasets, skyline cardinality can grow significantly. According to

Börzsönyi et al. [78], for a dataset with n = 100,000 points in a ten-dimensional space, skyline
cardinality can reach approximately:

• 25,000 points for a uniform distribution.

• 75,000 points for an anticorrelated distribution.

Such large skyline sets are impractical for manual inspection, necessitating techniques to
reduce skyline result sizes.

Techniques for Reducing Skyline Cardinality:
Several strategies can be employed to mitigate the issue of excessive skyline cardinality:

• Ranking-Based Reduction: Valkanas et al. [204] proposed ranking skyline points based
on dominance relationships. For instance, returning the top-k skyline points based on a
ranking function can significantly reduce result size.

• Dimensionality Reduction: Tao et al. [100] and Xia et al. [205] suggested comput-
ing skylines in a reduced number of dimensions (d ′ < d). Since higher dimensionality
increases skyline size, reducing the number of attributes can help control cardinality.

62

CHAPTER 3. CONTINUOUS SKYLINE QUERIES

• Diversity-Based Selection: Tao [206] and Valkanas et al. [207] introduced diversity-
aware skyline selection. This method ensures that the selected skyline points are well
spread across the space, enhancing representativeness while limiting redundancy.

By applying these techniques, it is possible to obtain a manageable subset of skyline points
without losing essential information for decision-making.

3.5 Conclusion
This chapter has provided a comprehensive exploration of continuous skyline queries, detailing
their fundamental concepts, computation techniques, and advanced processing methods. Be-
ginning with an overview of entities and attributes, we established the foundational principles
of skyline queries, including the concept of dominance, dataset representation, and dominance
regions. These fundamental aspects are critical for understanding how skyline queries identify
optimal data points in multidimensional spaces.

We then examined various computation strategies, distinguishing between in-core (main-
memory) and out-of-core (secondary memory) skyline processing techniques. This distinction
is particularly relevant for handling large-scale datasets where memory constraints necessitate
efficient algorithms. Additionally, we discussed skyline queries in dynamic environments, high-
lighting the challenges posed by evolving datasets and the need for adaptive computational tech-
niques.

Given the increasing volume of data and the necessity for real-time processing, we explored
distributed and parallel approaches to skyline computation. We introduced high-level parallel
programming models and specific parallel paradigms, such as SPODS, which enable efficient
skyline computations over streaming data. Furthermore, we presented a taxonomy of parallel
patterns tailored for windowed functions, including pipeline processing, task farming, data par-
allelism, and various windowing strategies. To illustrate these concepts practically, we provided
a real-world example using environmental sensor data, demonstrating how different parallel pro-
cessing patterns can optimize skyline computation in smart city applications.

A critical challenge in skyline computation is the rapid growth of skyline cardinality as
the number of dimensions increases. We analyzed the impact of data distribution on skyline
result sizes, differentiating between correlated, uniform, and anticorrelated datasets. Moreover,
we examined mathematical models that estimate skyline cardinality, which are essential for
optimizing query execution and reducing computational complexity.

In summary, this chapter has highlighted the theoretical foundations, computational strate-
gies, and optimization challenges of skyline queries in continuous and high-dimensional set-
tings. The insights provided here lay the groundwork for further research into efficient skyline
computation techniques, particularly in real-time, parallel, and distributed environments. Fu-
ture work may focus on refining parallel models, improving skyline estimation techniques, and
developing adaptive algorithms for dynamic and large-scale datasets.

63

3.5. CONCLUSION

64

CHAPTER

4
VARIATIONS OF SKYLINE QUERIES

“Repetition makes us feel secure and variation makes us
feel free.” ROBERT HASS

Chapter content
4.0.1 Dynamic Skyline Queries . 66

4.0.2 Group skyline computation . 67

4.0.3 Spatial Skyline Queries . 68

4.0.4 Metric Space Skyline Queries . 75

4.0.5 Constrained Skyline Query . 78

4.0.6 Range-Based Skyline Queries . 79

4.0.7 Reverse skyline queries . 82

4.1 Applications of Skyline-Based Queries . 83

4.1.1 Multi-criteria decision making . 83

4.1.2 Machine learning . 84

4.1.3 Network analysis . 86

4.1.4 Other interesting applications . 86

4.2 Conclusion . 89

Due to their broad range of applications in areas like multi-preference analysis and decision-
making, skyline queries have attracted a lot of attention. Several research groups have proposed
expanding the definition of skyline based on variations of the dominance relationship in order to
better meet the needs of various applications. This chapter looks at how the traditional skyline
query has been modified to generate various variants of dominance-based queries in light of the
growing number of proposed alternatives. It examines the many features that remain unchanged
in a variant of the dominance relationship, which keeps the original benefits but allows for
greater adaptability to new uses. It also explores alternative dominance arrangements proposed
by scholars and obtained by altering the conventional dominance arrangement’s characteristics.

4.0.1 Dynamic Skyline Queries

A dynamic skyline query extends the traditional skyline query by considering a reference point
that can change dynamically. Instead of comparing points directly using fixed attributes, the
query first transforms the data according to a given reference and then applies the skyline com-
putation.

Consider a traveler who wants to purchase a flight ticket. The traveler has two preferences:
(1) minimize the ticket price and (2) minimize the flight duration. However, the traveler’s loca-
tion may vary (e.g., they might be at different airports). This means that the perceived advantage
of a flight depends on the traveler’s current location.

If the traveler is currently in location LocX, then the dynamic skyline will compute the
skyline using only relevant flights (e.g., those from LocX or those that require a short additional
journey to the departure airport). This dynamic consideration ensures that the query result is
adapted to the user’s specific context.

Historically, Papadias et al.’s [89] dynamic skyline query is among the earliest and most
widely used variants of the classical skyline query. Processing algorithms for the classical sky-
line query assume static attribute values for database objects; processing algorithms for the
dynamic skyline query, on the other hand, either calculate the attributes of the data objects ”on-
the-fly” during the execution of their algorithmic steps or pre-process them based on the static
attribute values of the objects. The concept of dynamic dominance is central to this query type.
A data object t is considered to dynamically dominate a different object r in relation to a query
point q if and only if t is closer to q than r is on at least one axis and is not further away from q
than r is on all the other axes, under the assumption that lower values are preferable on all the
axes (attributes) of the space. To determine how close an object is along every axis, Authors
use the Euclidean distance between the query point and the object’s respective static attributes.
Therefore, in this field, unlike in static domains, the skyline of a dataset is generated dynam-
ically based on a user’s preference q . In other words, the classical skyline query is a special
case of the dynamic skyline query with the query point q at the space’s origin, provided that all
attributes have only positive values.

The example of a traveler looking for inexpensive flight ticket price with optimal flight du-
ration is illustrated in Figure 4.1. The query point q(qx, q y) in the figure may represent the
preference expressed for a flight ticket costing qy dollars (y-axis) that takes qx durations. All
qualified tickets that are not dominated by another in relation to q must be obtained in order to
find the ”ideal” ticket q that meets the passenger’s budget and personal preferences.

A skyline analysis will suggest the most compatible match. Every ticket’s data point t is
projected onto a new space where its coordinate in each dimension is equal to the absolute
difference between the data point t and the query point q . That’s why the dynamic duration
between two tickets t (t x, t y) is equal to |t y − qx| and the dynamic price between two tickets
t (t x, t y) is equal to |t x − qx|. All tickets outside of q’s quadrant A will have their dynamic
attributes calculated as if they were in q’s quadrant A. A ”static” skyline in the projected space
consists of the points t1, t6, and t10, which are the tickets that do not currently dominate any
other ticket in the data set in relation to the query predicate q .

Papadias et al. [89] propose an efficient algorithm to process the dynamic skyline query,
which is an extension of the well-known BBS algorithm for handling the static skyline query
given an indexed dataset using the R-tree. The only difference between this and the BBS algo-
rithm is that the R-tree entries are now added into the heap and ordered based on their mindist
distance to the query point, which mindist is determined on-the-fly when the entry is considered
for the first time (recall that in the classical BBS algorithm, the R-tree entries are inserted into

66

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

x

x ′

y y ′

q AB

C D
Duration h

Price $

100

200

300

400

1 2 3 4

�t1

�t ′8

�t ′4

�t4

�t ′1

�t6

�t7

�t8

�t ′6
�t10

Figure 4.1: Dynamic Skyline Query.

the heap and ordered according to their distance to the origin point of the space). It takes little
effort to adapt some other well-known methods for processing the static skyline to processing
the dynamic skyline query, too. For unindexed data sets, Borzsonyi et al.’s [78] simple exten-
sion of the BNL algorithm calculates all dynamic coordinates on the fly and then evaluates each
data point independently.

To safely prune parts of the dataset and speed up the execution of any future queries, Sacharidis
et al. [208] propose a cache-aware algorithm that makes use of the results of the most valuable
of the past executions of the dynamic skyline query. On top of that, Han et al. [117] recently
developed a strategy to efficiently process the dynamic skyline query over massive data by first
retrieving the tuples in dynamic sorted lists in a round-robin fashion till an early termination
condition is satisfied and then computing the dynamic skyline results.

Finally, several recent research efforts, such as Zeighami et al.[19] and Wang et al. [209],
have introduced frameworks to address the demand for a secure skyline calculation in encrypted
datasets for services in which dealing with sensitive data is an essential concern, such as health-
care or data outsourcing. Since the dynamic skyline set must be located through processing
the encrypted data objects, this formulation of the problem necessitates that this framework’s
primary objective be security. In addition, the proposed query processing algorithm needs to
be protected by strong guarantees that no sensitive information (either related to the stored data
or to the preferences of the query issuer) will be leaked to any third party spying on the data
during its execution.

4.0.2 Group skyline computation
A group skyline query extends skyline queries to groups of points rather than individual points.
The goal is to select a group of objects such that each group member collectively dominates
other possible groups based on certain criteria.

Consider a travel agency that wants to offer bundled flight packages for group travelers. The
agency must select a set of flights where the collective ticket prices and travel durations form
an optimal skyline.

For instance, assume a group of three travelers must book tickets from different airlines, and
their preferences are to minimize the total cost and average duration. Given the following flight

67

options:

Traveler Ticket Price ($) Duration (hours)
T1 (Flight A) 400 6
T2 (Flight B) 450 5.5
T3 (Flight C) 420 5

Table 4.1: Flight ticket price and duration for group travelers.

A group skyline computation would identify sets of flights where the total ticket price and
the average duration are minimized, avoiding combinations that are dominated by others.

Et al. [83] conducted a study on the group skyline query, which relies on the dominance
relationship between groups of equal size. The evaluation of the dominance relationship is
conducted based on the collective attributes’ values.

The authors found the dominance relationship between groups by using the aggregate points
in the conventional way, with a single aggregate point representing each group. The aggregate
point is the result of applying an aggregate function to the attribute values of each individual
point in the set. However, only a small subset of aggregate functions, such as SUM, MIN,
and MAX, have been discussed in prior works for calculating aggregate points. To aggregate
the points, [83] employed SUM. SUM intuitively represents the sum total of a group’s indi-
vidual strengths. Due to the inability to capture all Pareto optimal groups, the skyline groups
constructed using these methods are incomplete.

Using the same attribute values of k points to form a group, [83] defined and studied the
group skyline query, and then compared the dominance relation between the groups using con-
ventional dominance. Some aggregate functions, like SUM, were the most popular among the
calculate functions used in these tasks. In practice, it can be challenging to determine which
aggregate function is best.

Using a hash table, dominance graph, and matrix to store dominance information and incre-
mentally update the results, the paper [210] developed an effective skyline group algorithm in
a data stream, but it was not helpful to the Pareto optimal groups.

Over the data stream in a wireless sensor network, Dong et al. [211] looked at the problem
of locating G-Skyline groups. The authors provided the sharing strategy and then proposed two
algorithms (PAA and PEA) for efficiently computing new G-Skyline groups whenever a new
point arrives or an existing point expires.

4.0.3 Spatial Skyline Queries
Spatial skyline queries focus on skyline computations where objects have spatial locations. The
skyline is determined based on spatial attributes, such as distance to a reference point.

Consider a traveler choosing a flight based on two factors: (1) minimizing ticket price and
(2) minimizing the distance between the destination airport and their hotel as illustrated in figure
4.2.

A spatial skyline query returns flights that are not dominated by others in terms of both
price and distance. In this case, flights t1, t6 and t7 might be in the skyline, while other flights
t2, t3, t4, t5, t8, t9, t10 is dominated because it has both a higher price and a greater distance
than t6.

68

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

Every dynamic attribute is calculated as the distance of the data objects to a query point
in the multi-source spatial skyline query, which is an extension of the dynamic skyline query.
To be more precise, the spatial skyline query, given a set T of data points and a set Q of query
points, returns those points of T that are not spatially dominated by any other point of T. The
distance between the data objects to all query points is used to determine the spatial dominance.
In other words, a data point t is considered to spatially dominate another point r with respect to
Q if and only if d(t , q) ≤ d(r, qi) for all qi ∈ Q andd(t , q j) < d(r, q j) for some q j ∈ Q, where
d(t , q) is the Euclidean distance between p and q as illustrated in figure 4.2.

Business planning, crisis management, vacation planning, recommender systems, etc. are
just some of the many possible applications of spatial skyline queries. It’s possible, for instance,
that a traveler would rather stay at one of the hotels in the city’s spatial skyline than at one of
the attractions, provided that the attractions remain in their usual locations.

As far as we know, the first people to investigate the spatial skyline query analysis problem
were Sharifzadeh and Shahabi [212]. Specifically, they proposed two index-based algorithms,
the B 2S2 (branch and bound spatial skyline) algorithm and the V S2 (Voronoi-based spatial sky-
line) algorithm to process this query quickly and effectively. B 2S2 uses a top-to-bottom traversal
of the conventional R-tree spatial index to look for candidate points along the spatial skyline.
After identifying a candidate point on the spatial skyline, B 2S2 uses the R-tree’s expansion to
reach the node with the smallest mindist distance to the identified data point and then verifies
the node’s dominance relative to the other candidate points.

Di st ance km

Pr i ce $

100

200

300

400

10 20 30 40

d(t,q1)

O

d(
t,q

2)

x

y

�t1

�t2

�t3

�t4
�t5

�t6
�t7

�t8

�t9
�t10

�q2 �q1

�t1
�t4

�t3

�t7

�t2
�t5 �t6

�t8
�t9 �t10

spatial query

Figure 4.2: Spatial Skyline Query.

The V S2 algorithm, on the other hand, uses a Voronoi diagram built from the data points
provided as input. To maintain locality, the input data points are sorted into disk pages based
on their Hilbert values. Following the end of the convex hull calculation, VS2 begins its search
with the data points closest to the query points and proceeds to the neighbors of the data points it
has already visited using the Voronoi diagram. In order to determine spatial skyline dominance,
VS2 compares each data point to all the spatial skylines discovered thus far. Until all Voronoi
cells (or data points) that could contain spatial skyline points have been visited, the process will
continue. Because of the high computational cost, Son et al. [213] modified VS2 by performing
fewer spatial dominance tests.

While the aforementioned techniques examine the spatial skyline query using the Euclidean
(or L2) distance, this measure is inefficient in constraint-based environments such as urban
neighborhoods or road systems. Using the Manhattan (or L1) distance as an example, Son et
al. [214] propose a method for computing the spatial skyline in a grid network, with a focus on

69

urban residential areas. However, Deng et al. [215] looked into the spatial skyline query issue
in transportation networks. In this context, we can think of the shortest path distance between
the data and query points as the equivalent of the Euclidean distance. Given a set P of data
objects and a set Q of query points on a road network, we can map each data object onto a |Q|-
dimensional point, where the value of the i-th dimension indicates the shortest path from the
object to the i -th query point. The data objects that are not dominated by the |Q| dimensions are
then retrieved by the multi-source skyline query. Safar et al. [216] offer a different approach to
the same issue.

Nearest and Farthest Spatial Skyline Queries

Nearest and Farthest Spatial Skyline Queries extend spatial skyline queries by focusing on ob-
jects that are either closest or farthest from a reference point, while still considering skyline
criteria as illustrated in figure 4.3.

A traveler may want to book a flight not only based on price but also based on proximity to
a major city. Depending on their goal, they may be interested in either:

• Nearest Spatial Skyline: Finding flights with the lowest ticket prices that land at the
closest airport to the city center.

• Farthest Spatial Skyline: Finding flights that are inexpensive but land at the farthest
airport (e.g., to avoid congestion or for better transfer options).

For the Nearest Spatial Skyline Query, t1, t6 and t7 might be in the skyline, as they offer a
balance of cost and proximity as presented in figure 4.3. For the Farthest Spatial Skyline Query,
t2, t9 and t3 might be a dominant option since it offers a low price while being farther from the
city center.

Di st ance km

Pr i ce $

100

200

300

400

10 20 30 40

d(t,q1)

O

d(
t,q

2)

x

y

�t1

�t2

�t3

�t4
�t5

�t6
�t7

�t8

�t9
�t10

The nearest skyline
The furthest skyline

Figure 4.3: Nearest and the Farthest Spatial Skyline Queries.

You et al. [217] present the farthest spatial skyline query, which obtains the data points that
are farther than all the other data points from the query points and thus satisfy the opposite goal
of identifying eligible points that are the furthest from location query points. This query also
has a wide range of applications, including but not limited to assisting with decision-making
processes, trip and event planning, facility location, crisis management, and so on.

70

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

Fort et al. [218] also investigate the same topic. Whenmaking recommendations to a mobile
user (a single query point), Kodama et al. [219] use the spatial skyline query to account for
the user’s location and preferences when suggesting nearby objects, such as restaurants. The
non-spatial attributes of the objects here serve as a proxy for the user’s preferences. Since this
approach incorporates non-spatial attributes into the spatial skyline query, it has a wide variety
of potential uses, such as location recommendation, trip planning, and advertising.

Spatio-Textual Skyline Query

A spatio-textual skyline query extends traditional skyline queries by considering both spatial
attributes (e.g., distance) and textual relevance. This variation is particularly useful in applica-
tions where users search for spatially relevant objects that also match specific textual keywords
as illustrated in figure 4.4 and table 4.2.

Consider a traveler who wants to book a flight while considering two factors: (1) mini-
mizing ticket price and (2) minimizing the distance from the destination airport to their hotel.
Additionally, the traveler prefers specific airlines based on past experience or loyalty programs.

Given the following flight options:

Flight Ticket Price ($) Distance to Hotel (km) Airline
t1 320 7 Air France
t6 180 10 Lufthansa
t7 140 22 Air France

Table 4.2: Flight ticket prices, distances, and airline preferences.

A spatio-textual skyline query ensures that flights are selected not only based on price and
distance but also on the textual keyword constraint (e.g., preferred airline). If the traveler prefers
Air France, the skyline will prioritize flights t6 and t7 while eliminating those that are dominated
as illustrated in figure 4.4.

Di st ance km

Pr i ce $

100

200

300

400

10 20 30 40

d(t,q1)

O

d(
t,q

2)

x

y

�t1

�t2

�t3

�t4
�t5

�t6
�t7

�t8

�t9
�t10

Figure 4.4: Spatio-textual Skyline Query.

In their paper, Shi et al. [220] propose an extension of the above problem in which the
query takes into account multiple query points; they refer to this form of query as a spatio-
textual skyline query. As a result, the skyline points in this query can be chosen based on both

71

their distance from a set of locations and their relevance to a location of set keywords. Modern
applications havemade it common practice to elaborate on preferences with textual descriptions,
so this query is specially developed for such situations.

Direction-Based Skyline Query

A direction-based skyline query incorporates directional constraints into skyline computation.
This is particularly relevant in transportation applications where users are interested in flights
heading in a specific direction as illustrated in figure 4.5.

Consider a traveler who needs a flight that (1) minimizes ticket price, (2) minimizes the
distance from the destination airport to their hotel, and (3) heads toward a specific geographic
region, such as Europe or North America.

If the traveler specifically wants flights heading toward Europe, the skyline query will filter
out non-European flights and return t1 and t3 as the optimal choices.

The direction-based spatial skyline query introduced byGuo et al. [221] retrieves the nearest
points around a mobile user (a single query point) by considering not only the distance between
these points and the mobile user but also the direction. In Figure 4.5, there are eight potential
destinations surrounding the query point q (origin point), which represents the user’s location.
In the diagram, q is the source of the vectors t1 till t8. If the angle between two vectors is
less than some specified acceptable threshold, for instance, less than 60 degrees, then the two
vectors are considered to be pointing in the same direction. This indicates that points t2 and
t3 are also moving in the same direction as t1, as shown in figure 4.5 t2 is the most favorable
recommendation because it is the closest to q out of t1, t2, and t3. t2 also dominates the other
two data points in the same direction. The same holds true for the comparisons between points
5 and 4, 7 and 6, and 8, with no other data point moving in the same direction. Points 2, 5, 7, and
8 make up the direction-based spatial skyline in relation to q because no other object dominates
them.

For situations where the user is moving in a straight line, the solution proposed by Guo et
al. [221] for direction-based spatial skyline analysis allows for maintaining continuous spatial
skyline results.

x

y

�t1

�
t2

�t3

�t4

�t5

�t6

�t7

�t8

θ1

Vector θ

t1 45◦

t2 75◦

t3 100◦

t4 160◦

t5 185◦

t6 245◦

t7 260◦

t8 325◦

direction 1

direction 2

direction 3

direction 4

Figure 4.5: Direction-based Skyline Query.

Shen et al. [222] conducted an in-depth analysis of the aforementioned work, and they
concluded that it presented issues that burdened its effectiveness and could not be ignored. Too

72

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

many data points may be returned by the method described above by Guo et al. if an acceptance
threshold is set so that a small angle (say 10 degrees) indicates that two data points belong in
the same direction. Alternatively, if the acceptance threshold angle is set to greater values (for
example, 60deg), then only a small number of data objects will be contained in the direction-
based spatial skyline (hence the too few answers problem), which is also disappointing in terms
of obtaining a sufficient selection of surrounding data objects for the user.

In order to overcome these limitations, Shen et al. [222] proposed a new method for solving
the direction-based spatial skyline problem that retrieves the most relevant points in the clos-
est area. Shen et al. also proposed algorithms for the same query problem that can manage
and retrieve non-dominated surrounding data objects of arbitrary shape in relation to the user’s
location.

Wang et al. [165] noted that due to the exponential growth of spatial data, it is no longer
feasible to use a single processing node to answer the spatial skyline query on massive spatial
datasets. To deal with the typical spatial skyline query on massive datasets, they developed a
state-of-the-art parallel framework based on Map Reduce. The method begins by determining
the convex hull of the query points. The authors then suggested the idea of independent regions,
which they use to classify input data points into distinct groups. In the end, we calculate the
local spatial skyline in each autonomous region simultaneously and build the global spatial sky-
line from the union of all the local spatial skyline sets.

Multi-source skyline queries in Euclidean space have been the subject of research in [212].
Unfortunately, this work is based on Euclidean distance, which prevents its use for network
distances. In this paper, the authors discuss relative skyline queries, in which the user-provided
data points rather than the static attribute values of the data space determine the minimization.
Dynamic skyline queries, or relative skyline queries, are also used.

The processing of skyline queries on road networks has gained a lot of attention in recent
years. Deng et al. [215] introduce themulti-source skyline query (or MSQ for short) by applying
the concept of the spatial skyline sharifzadeh2006spatial to road networks. Given a set of m
query objects and a set of n data objects in a road network, we can map each data object o
to an m-dimensional point, where the value of the i-th dimension represents the road distance
between o and the i-th query object. Then, MSQ gets the vantage points from the skyline that
aren’t dominated by m. Deng et al. [215] suggest a group of algorithms: the Euclidean Distance
Constraint (EDC), the Lower BoundConstraint (LBC), and the Collaborative Expansion (C E) to
address theMSQ issue. EDC and LBC both use Euclidean distance as a minimum road distance
to cut down on data objects in order to speed up the search process. Concerning C E , the pruning
strategy involves first searching the road network for potential skyline objects, beginning with
the m query objects. When an item has been seen m times, we can get rid of the ones that have
never been seen before. But these algorithms may produce an excessive number of candidates,
leading to an inefficient calculation of travel time and fuel costs. The authors take into account
a number of query objects concurrently.

Numerous situations in which there is inherent data uncertainty are distributed, such as when
integrating information from multiple, distributed data sources using fuzzy similarity scores. In
contrast to the standard skyline query, processing a skyline query in road networks necessitates
considering the location of the query object.

As the shortest path lengths on road networks from data to query objects were defined, the
dynamic attributes of each mapped point were also defined. The developed algorithms can only
be used for road network applications and not for generic metric skyline retrieval in any other
metric space.

73

By demonstrating the efficiency of a pruning dynamic skyline query, Chen et al. [171] not
only solved dynamic skyline queries in metric spaces but also provided an appropriate pruning
technique to calculate dynamic skyline.

When applied to spaces with dynamic attributes defined in metric spaces, the proposed
method calculates the dynamic skyline. To resolve metric skyline queries via metric index, they
proposed a pruning mechanism that is both efficient and effective. To safely and efficiently
prune the dataset (since distance computation is very expensive in metric spaces), the authors
used a triangle-based pruning technique that includes the triangle inequality property.

You et al. investigated the furthest spatial skyline query (F SSQ) problem from the standpoint
of facility or business locations in [217]. These spatial queries are useful for finding places far
from problematic areas, such as unpleasant facilities or competitors.

Initially, the issue is addressed through the utilization of a basic algorithm, followed by the
presentation of a more streamlined and effective progressive algorithm. The latter exhibits su-
perior performance in comparison to the former by leveraging spatial locality. Additionally,
they have devised an effective algorithm that allows for a balance between precision and expe-
diency. They invert the concept of proximity to represent distance. A point of interest, denoted
as p, within the set P is considered desirable if it satisfies the condition of being the farthest
point from all query points within the set Q, without any other point p′ in P being farther. In
contrast to the spatial skyline points in close proximity that tend to cluster within the confines of
the query convex hull, those located at greater distances are more evenly distributed throughout
the data space. The authors demonstrate the absence of duality between the nearest and farthest
spatial skylines.

There are two suggested solutions. One that uses an R-tree to implement [217]’s Improved
Distributed Skyline (I DS) algorithm, which transforms the original problem into an n-dimensional
general skyline problem. The Branch and Bound Farthest Spatial Skyline (BBF S) improves
upon the original proposal by making use of the geometric properties of the problem, which the
initial one did not.

The attributes of objects in real-world applications are constantly evolving. In order to ac-
commodate location-based queries for objects with time-varying attributes, Huang [223] devel-
oped the continuous d-Skyline query. By fusing two delicate data structures (the object attribute
control matrix and the road distance sorting list), we are able to address the issue of C dϵ−SQ
attributes evolving over time in the road network.

Sohail et al. [224] propose two new kinds of queries that add social relevance components
to the semantics of traditional spatial queries.

In recent times, the spatial skyline problem has experienced expansion in various dimen-
sions, including but not limited to uncertainty and semantics. Elmi and Min [188] have devised
effective methodologies for computing the spatial skyline over imprecise data regarding a col-
lection of query points situated in diverse locales. The utilized data structures are R-tree and
Voronoi diagrams.

The present study introduces an algorithm [218] designed to address spatial queries within
the Euclidean plane. This is achieved through the consolidation of geometric attributes associ-
ated with both the nearest and farthest spatial skyline queries.

In contrast, [225] investigated the issue of range-based skyline queries (C RSQs) in road net-
works. However, it has been argued by [225] that the current methodologies employed for the

74

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

continuous skyline query impose constraints on the scope of the skyline query, restricting it to
a particular region within the road network. Consequently, this limitation results in the absence
of valuable query outcomes. Three algorithms were proposed to decrease the number of inter-
section nodes in the road network. These algorithms include the intersection node aggregation
algorithm (I N A A), the link remolding algorithm (LM A), and the link fitting algorithm (LF A).

Parallel Spatial Skyline queries

Parallel spatial skyline queries optimize skyline computation by leveraging parallel processing
techniques. This is essential when dealing with large datasets, such as global flight schedules.

Consider an airline booking system that processes thousands of flight options daily. The
system must compute skyline queries based on ticket price and distance while ensuring fast
response times.

Parallelization Approach:
1. Partition the flight dataset into smaller subsets, each handled by a different processor.

2. Compute local skylines within each subset in parallel.

3. Merge local skylines to derive the final skyline set.
The study conducted by Siddique et al. [226] applies to the effective maintenance of all

outcomes of k-dominant skyline queries. The utilization of dataset properties has been employed
by the authors to facilitate the processing of skyline queries, a task that can prove to be difficult
for datasets that are both update-intensive and voluminous.

In their publication, Wenly et al. [165] present a parallel solution for the N SSQ problem
utilizing the MapReduce technique. The authors employ a grid-based partitioning scheme to
recursively divide the dimensions of the data into multiple parts. The framework presented
applies to the utilization of MapReduce in the computation of independent regions following
the generation of a query’s convex hull. The ultimate skyline is the combination of all the regions
that constitute the skyline.

The authors have noted that due to the exponential increase in spatial data, it is no longer
feasible to execute the spatial skyline query on extensive spatial datasets using a single process-
ing node. An advanced parallel framework based on MapReduce was introduced to tackle the
conventional spatial skyline query on datasets of significant scale. The methodology initially
computes the convex hull of the queried points. The authors propose the idea of independent
regions, which entails partitioning the input data points according to their corresponding in-
dependent regions. Ultimately, the concurrent computation of the local spatial skyline within
each autonomous area is executed, culminating in the establishment of the comprehensive spa-
tial skyline through the combination of all local spatial skyline sets.

The spatial-GPU [227]methodology employs amulti-level approach to separate autonomous
regions for the purpose of examining potential data points. Skyline queries are evaluated con-
currently in various autonomous regions. Hence, this approach has the capability to operate
concurrently with GPUs or MapReduce. This methodology has been specifically developed
for a specific kind of skyline query known as spatial skylines. The solution’s applicability to
general skyline queries is not readily extensible.

4.0.4 Metric Space Skyline Queries
Metric space skyline queries extend skyline computation to non-Euclidean spaces where dis-
tances are defined by a metric function instead of traditional Euclidean distance as illustrated in

75

figure 4.6.
Consider a traveler booking a flight based on two criteria: (1) minimizing ticket price and (2)

minimizing an alternative distance metric, such as travel time instead of geographical distance.
Instead of using Euclidean distance, this skyline query considers travel time as the metric

function, leading to a different optimal selection than a standard spatial skyline query.
Chen and Lian [228] proposed the metric skyline query as an extension of the spatial skyline

query. This query involves computing the dynamic attributes of each data object using a set of
dimension functions. The dissimilarity between spatial and metric skyline queries originates
mainly from the utilization of diverse distance functions in the latter, which encompasses not
only the Euclidean distance function but also other metric functions. The metric skyline query
stands in contrast to the spatial skyline query in that it is a more all-encompassing query type,
not limited to spatial data application domains where objects can be expressed as Euclidean
vectors.

To enhance the precision of an image similarity search, multiple query images could be
employed. These pictures might come from a scene in a video sequence or from footage of a
place that various security cameras have recorded. This instance showcasing the practicality
of the metric skyline query involves the mapping of images onto a metric space, where the
similarity between any two images can be evaluated usingmetrics such as the Hausdorff distance
Huttenlocher et al. [229]. Thus, in a given set of query images, image p is said to dominate
image r if it exhibits greater or equal similarity to all query images compared to image r . The
metric skyline query aims to retrieve images from a database that do not dominate any other
images in relation to a specific set of query images.

In a real-world scenario, the database of user profiles (data points) in one online social net-
work may be vulnerable to an attack using the metric skyline query after identification and
validation of the user profiles (query points) maintained by a particular physical entity across
various online social networks. This attack aims to identify potentially suitable profiles, in-
cluding the profile of the aforementioned physical entity in the said online social network. The
aforementioned scenario exemplifies the challenge of establishing connections between diverse
social identities across disparate virtual social platforms. In this problem, a mixed function can
be utilized to perform a distance-based comparison between any two user profiles. The function
will determine the overall weighted similarity score of the text-based personal attributes of the
profiles, utilizing a text similarity comparison metric as surveyed in Elmagarmid et al. [230].
Additionally, the function will consider the profile images, if available, in the two separate pro-
files using the Hausdorff comparison metric. This approach follows a profile correlation model
similar to that proposed in Kokkos et al. [231].

It is crucial to keep in mind that the processing of skyline queries in a metric space is un-
able to utilize any geometric information for the purpose of guiding the pruning process. The
applicability of certain techniques, such as the method used to obtain the spatial skyline in Eu-
clidean space, is limited in the context of generic metric skyline scenarios. In the context of a
metric space, it is necessary for the distance function d() utilized in the metric skyline query
to adhere to four distinct properties when considering any given set of three points p,r, and q .
The distance metric d satisfies four properties: (i) positivity, which states that d(p, q) is greater
than or equal to zero; (ii) identity, which states that d(p,r) equals zero if and only if p equals r;
(iii) symmetry, which states that d(p, q) equals d(q, p); and (iv) the triangle inequality, which
states that d(p,r) is less than or equal to the sum of d(p, q) and d(q,r). Consequently, these
aforementioned properties represent the exclusive means by which to enable the metric skyline
search.

Chen and Lian [228] proposed the metric skyline query and utilized indices in the metric

76

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

space to execute the query. The utilization of indices can effectively diminish the search space
by promptly eliminating unqualified data objects. The proposed approach employs the M-tree, a
dynamic access technique for data objects in ametric space that was introduced in Skopal’s [232]
work. The M-tree algorithm employs a technique wherein a subset of data objects is designated
as centers or local pivots of hyper-spheres. The remaining objects are then distributed among
these hyperspheres to construct a well-proportioned and condensed hierarchy. The illustration
presented in Figure 4.6 showcases a compact M-tree that exists within a two-dimensional metric
space. This M-tree comprises ten distinct data points, namely t1, t2, . . . , and t10, along with
minimum bounding circles e0,e1, . . . , and e6 that have been constructed over these data entities.
e0 is a representation of the M-tree’s root. The Euclidean distance is utilized as the similarity
measure for the purpose of demonstration. The given instance presupposes the presence of two
distinct inquiry points, namely q1 and q2.

By building the M-tree from its root up and using the BBS algorithm, Papadias et al. [89]
proposed a best-first method of searching for metric skyline points. The algorithm retrieves the
root node e0 from the tree in the first stage, then inserts its descendant nodes e1 and e2 into an
auxiliary heap with the structure (entry; key). The key value is computed as the aggregate of
the minimum distances between the entry (e.g., e1) and each query point. Given that q1 and
q2 are located within the cycle of e1, the first step entails removing entry e1 from the heap and
then inserting its descendant nodes e3 and e4 into the heap. Following that, the element e3 is
extracted from the heap, and its constituent data entries, namely t1 and t2, are subsequently
reinserted into the heap. Subsequently, the heap is subjected to a pop operation on t2, owing to
the fact that this particular data point exhibits a comparatively smaller sum of metric distances
to q1 and q2. Consequently, t2 is incorporated into the metric skyline set. Subsequently, the
element e4 is extracted from the heap, leading to the return of its associated data entries t3, t4,
and t5 to the heap. Subsequently, the element denoted as t3 is extracted from the heap. As
per the available data entries, it possesses the minimum metric distance to q2, and thus, it is
incorporated into the metric skyline set. Subsequently, employing an analogous methodology,
the heap is queried to retrieve the data entry t1. It is noteworthy that the attribute vector of p2
surpasses that of t1, thereby leading to the elimination of t1. Upon completion of the procedure,
which follows the identical steps of the conventional BBS algorithm, the metric skyline set is
constituted by the points t2 and t3. The utilization of the M-tree and the BBS algorithm offers a
significant benefit in that certain branches of the tree can be eliminated, thereby circumventing
the typically resource-intensive computation of metric distance functions between the query
points and a substantial portion of the dataset.

The approach put forth in Chen and Lian’s [228] work shares some similarities with the
metric skyline query processing method that Skopal and Lokoc [233] propose. The primary
distinction lies in the replacement of the M-tree with the PM-tree Skopal [232] in the latter
approach, which is likewise a proficient metric access technique. The operational mechanism
involves the utilization of a series of hyper-rings, centered by pivots, to further truncate the
original hyperspheres of the M-tree. This results in a more condensed region volume for each
node of the tree.

Fuhry et al. [234] identified noteworthy correlations in the metric space between the skyline
query and other commonly used similarity queries, including the nearest neighbor and range
queries. The techniques devised by the authors leverage these relationships in order to effectively
eliminate non-skyline points from the search space. Based on the aforementioned discovery, the
authors put forth optimized algorithms that aim to decrease the frequency of dominance tests
and the computation of costly metric distance functions during the process.

Jiang et al. [235] proposed the concept of a top-k combinatorial metric skyline query. This

77

e1 e2

e3 e4

t1 t2 t3 t4 t5

e5 e6

t6 t7 t8 t9 t10

e0

e1

e3

e2

e4 e5 e6

M-tree

�q2�q1

�t1

�t3

�t5

�t4

�t2�t6
�t7 �t8

�t9

�t10

e0

e1

e2

e3
e4

e6
e5

Figure 4.6: Metric Skyline Query.

query is designed to identify the optimal k combinations of data points in a metric space based
on a strictly monotonic preference function. The objective is to ensure that each of these com-
binations includes a specified point p in its metric skyline. This inquiry is specifically suited
for facility location scenarios, as exemplified by an enterprise endeavoring to identify suitable
locations for two novel franchise stores in close proximity to an existing warehouse, denoted as
"p". From a pool of eligible locations, one can choose among several available options. In order
to mitigate redundant competition among internal divisions and expand their consumer base, it
is recommended that both of the proposed sites be situated at a considerable distance from any
of the company’s current establishments. In order to adhere to a location strategy of this nature,
it is imperative that the metric skyline of point p be present in the combinations of the two lo-
cations. It is noteworthy to mention that the algorithms discussed in the preceding section have
solely concentrated on individual data objects and have not taken into account combinations of
data objects. Consequently, they are not applicable to the specific problem at hand.

In summary, it is evident that the quantity of query points utilized in a metric skyline query
scenario, as well as in the spatial skyline query scenario previously addressed, constitutes a sig-
nificant parameter that necessitates meticulous calibration in each application. In the scenario
where a single query point is employed, the metric skyline query is transformed into the con-
ventional 1-nearest neighbor query. In contrast, when the quantity of query points increases,
it is probable that the magnitude of the skyline will significantly expand, resulting in its lim-
ited or negligible utility to the query initiator. Hence, in order to furnish a discerning outcome
that holds significance for the query issuer, it is recommended that the metric skyline query
commence with a limited number of query points, such as a maximum of five query points,
contingent upon the nature of the problem at hand.

4.0.5 Constrained Skyline Query
A constrained skyline query extends the traditional skyline by imposing additional constraints on
the query results. These constraints could be based on user preferences, predefined conditions,
or business rules.

Consider a traveler who wants to book a flight while minimizing both ticket price and flight
duration as illustrated in figure 4.7. However, the traveler imposes the following constraints:

• The ticket price must not exceed 380 dollars.

78

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

• The flight duration must be at most 3.7 hours.

Dur ati on H

Pr i ce $

100

200

300

400

1 2 3 4

�t1

�t2

�t3

�t4

�t5 �t7

�t8

�
t6

�t10

Figure 4.7: Constrained Skyline Query.

Applying the constrained skyline query, flight t2 and t8 are eliminated due to their high
price, leaving flights t5, t6, and t10 as the optimal choices as illustrated in figure 4.7.

4.0.6 Range-Based Skyline Queries
Range-based skyline queries allow users to specify a range for attributes to restrict the skyline
computation within a certain interval.

Suppose a traveler is interested in flights where:

• The ticket price is between $200 and $380.

• The flight duration is between 2 and 4 hours.

Given the same flight dataset as before, only flights that fall within these ranges will be
considered for skyline computation as illustrated in figure 4.8.

Dur ati on H

Pr i ce $

100

200

300

400

1 2 3 4

�t1

�t2

�t3

�t4

�t5 �t7

�t8

�
t ′6

�t10

Ticket Price Duration

t1 390 1.5

t2 480 3.8

t3 290 4.5

t4 160 4.5

t5 385 2.8

Figure 4.8: Type of Range-skyline Query developed in [236].

79

The range skyline search is a query type that is oriented towards preferences and combines
the characteristics of the conventional range query and the point-based skyline query. As a result,
it is expected that none of the current point-based skyline search algorithms are appropriate for
this particular query. In 2003, Papadias and et al. [89] proposed the constrained skyline query.
This query modifies the conventional skyline query by restricting the output to only those data
points that fall within a predetermined range of coordinate values and are considered to be the
most significant.

The study conducted by Chen et al. [237] aimed to expand upon previous research by ad-
dressing scenarios in which data of interest is spread across various locations in unorganized
distributed environments.

Huang et al. [102] introduced the concept of continuous monitoring of the conventional
point-based skyline. This approach involves the constant movement of both the query point and
the data points along a line at a uniform speed in all dimensions.

Their suggested solution avoids having to calculate the skyline from scratch each time. In-
stead, potential changes are made each time or after new incoming tuples, ensuring that the sky-
line query result is updated and continuously accessible. The method can be especially helpful
in real-time applications like video games and digital war systems, such as when a player in a
field-fighting game wants to keep an eye on the enemies who are moving close to them and pose
the greatest threat in terms of a number of factors (health, firepower, tactical acumen, and so
on).

Lai et al. [238] additionally focus on the distributed domain over mobile wireless sensor
networks, where only the data points within a specified maximum distance (radius) of the query
point q can be candidates for the conventional point-based skyline query. The query node q
extends the range-based skyline query to its neighbor nodes in the first step of the suggested
method. After that, the neighbors of q derive their local range-skyline results using their own
local data and return them to the query node q . Q examines the dominance relations between
all of the candidate data points after receiving the local range-skyline results from its neighbors.
Q then derives the complete set of range-skylines. Later, Lai et al. [239] expand their strategy
to account for node mobility because the sensor nodes’ movement may result in the answer
changing frequently.

A range-based skyline query with respect to a range query Q considers only those points
that satisfy a predefined query range before performing skyline computation as illustrated in
figure 4.9.

In their study, Rahul and Janardan [236] presented a technique aimed at retrieving the local
skyline of data points situated in a specified query region on the xy-plane. The method focuses
on identifying all data points within a small neighborhood of interest.

In a more general setting, the authors partition the s-dimensional space that denotes the data
point coordinates and the t-dimensional space that represents the data point features in order
to identify the most suitable data points using the conventional skyline search approach. The
skyline set is defined as the subset of data points that fall within a specified range of values for
the first s attributes and are non-dominated with respect to the last t attributes.

The use of privacy-preserving range-based skyline queries in mobile applications has be-
come necessary due to the growing significance of maintaining confidentiality of user prefer-
ences and location.

In their study, Lin et al. [240] proposed a model for estimating the approximate location of
the user issuing a query in a 2-dimensional space. They then proceeded to calculate the skyline
by establishing a dominance relationship between two data points. This relation was based on
the distance of the data points to the imprecise range-based location of the user, as well as the

80

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

monotonic order of any other attribute that was available.

Dur ati on H

Pr i ce $

x

y

q1
x ′

y ′

x ′′

y ′′

100

200

300

400

1 2 3 4

�t1

� t ′8

�
t ′4

�t4

�

t ′1

�t6

� t7

�
t8

�t ′6

�t10Q

Figure 4.9: Range Skyline Query.

The study conducted by Lin et al. [240] was the first study to focus on range-based sky-
line queries in mobile environments. The authors presented two algorithms, namely I-SKY and
N-SKY. The I-SKY algorithm is based on an index. The proposed approach involves the com-
putation of the skyline scope for individual objects based on their dominance relations prior
to query processing. Authors utilize the MX-CIf quadtree to index the skyline scope, which is
independent of the query issuer. By traversing the index tree, a range-based skyline query can
be efficiently processed. N-SKY is an algorithm that is not indexed and is designed to handle
highly dynamic data sets. It achieves this by converting a range-based skyline query into multi-
ple segment-based skyline queries. Their methodology is only relevant to Euclidean space due
to the difference between the road network and Euclidean space.

The incremental construction of the I-SKY index was developed as a solution to address the
issue associated with the continuous RSQ query. The probabilistic RSQ query problemwas also
investigated by them. The scope of their work is extensive, as it encompasses both stationary
and dynamic entities. The comparable approach was similar to the approach to authenticating
Skyline queries.

Rather than specifying an exact location or following a specific line segment, the authors as-
sumed that the query point a was moving in a predefined spatial range. The incremental version
of the line-based skyline solution has been developed to handle the movement of the querying
objects, thereby reducing the size of the result set and the computational cost.

Since the aforementioned method only takes Euclidean space into account, Fu et al. [241]
expanded it to take into account objects moving through a road network’s space. This range-
based skyline query that protects user privacy also accepts the spatial range Q of the user’s
hidden location as an input. However, in this instance, the shortest path distance to each potential
query point q of the user’s location and the non-spatial attributes of the objects are used to
define the dominance relationship between these data objects. The authors also take into account
scenarios where users and data objects move over time on a road network. Fu et al. [241] look

81

into continuous range-based skyline queries (CRSQs) in road networks, and they propose two
effective algorithms: landmark-based (LBA) and index-based (IBA). They define the dominance
relation between two data points based on both their distance to the query and the monotonic
order in any other attribute, and then compute the skyline by modeling the approximate location
of the moving query as a range on the 2-d road network. Their method focuses exclusively on
the ”static” skyline and the spatial network domain.

By handling the query as a range in every dimension rather than as a point, Wang et al.
[242] were the first to propose an algorithm for processing dynamic skyline queries. A data
point can only be in the range skyline given the query range if it is not dynamically dominated
by any other data point with respect to every query point in the given range. The method prunes
the vast majority of data points that cannot be included in the dynamic skyline using a grid
index and a variation of the well-known Z-order curve. The final range skyline set is able to be
obtained utilizing a non-index skyline processing technique, like the SF S algorithm proposed
by Chomicki et al. [243].

Finally, Tzouramanis et al. [244] extend the previous work in a number of ways while
focusing on a more general case. First, their method takes into account that a data point can be
in the range skyline if it is not dynamically dominated by any other data point in relation to any
specific query point in the d-dimensional range, and thus is not required to be in relation to all
of the query points in the range. The second point is that their suggested solution specifies the
sub-region (within the given range) to which a data point may belong in the range skyline set.
Last but not least, their method does not require the implementation of additional procedures or
the use of non-index skyline processing algorithms to remove false hits as the method of Wang
et al. [242] is required to do. Instead, it uses a traditional spatial index to prune all the data
points that do not belong to the dynamic skyline in relation to the given range.

The aforementioned modifications greatly expand the scope of potential domains in which
the range skyline query model can be implemented.

In their study of range-based skyline queries in road networks, Miao et al. [245] focused on
”why not” questions. They proposed three solutions: (1) adjusting the query range; (2) altering
the why-not point’s attributes; and (3) making changes to both. Keep in mind that when we talk
about their ”range,” we’re talking about distance.

4.0.7 Reverse skyline queries
Reverse skyline queries identify points that consider a given query point as part of their skyline.
This is useful for scenarios where one wants to determine how competitive a particular option
is.

Consider a new flight option Fnew with a ticket price of $470 and a duration of 6.5 hours.
The reverse skyline query finds all flights that would consider Fnew as part of their skyline.

Lian and Chen [246] investigate efficient and accurate probabilistic reverse skyline query
processing on monochromatic and bichromatic data. There is a probability distribution function
for each object.

The probabilistic reverse furthest skyline (PRFS) was proposed in [246], which is an exten-
sion of the work from [247] and takes into account the scenario in which preference minimiza-
tion is sought after rather than maximization. Another proposal is a twist on the probabilistic
reverse skyline (PRS) query that provides the k most probable objects. The authors also looked
into a ranking method for PRS query results called top-k reverse skyline, which retrieves the k
points with the most dynamic skylines at the highest probabilities.

Using DC-trees as an index and the pruning technique for reducing the search space, Zhu et

82

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

al. [179] proposed a reverse skyline query algorithm. Sensor node power is extremely valuable
in wireless sensor networks (WSNs). In such conditions, the reverse skyline algorithm must
not only perform well but also minimize power consumption. Due to the constant flow of new
information, it can be challenging to keep an index on a dynamic dataset up-to-date. In this
manner, we implement DCRS, a divide-and-conquer algorithm for reverse skyline retrieval on
data streams. The DCRS employs efficient pruning methods to reduce the search space by using
the DC-Tree as the index.

In [248], the authors investigate the issue of WSN reverse skyline computation. The reduc-
tion of wasteful transmissions is the foundation of their proposed energy-efficient strategy. The
authors also made some evaluations regarding range and reverse skyline queries.

For the multiple-objective decision analysis of these sensing data, skyline query algorithms
are widely adopted as one of the main monitoring methods in safe production monitoring and
disaster early-warning applications [248]. Power-grid transmission lines, for instance, are prone
to icing in ice-disaster warning systems under conditions like low wind speed, low temperature,
and high humidity. To detect iced or soon-to-be iced transmission lines, the centralized control
sends a skyline query of the speed, temperature, and humidity dimensions to sensor networks
installed in the power grid’s transmission lines.

Reverse k-skyband [143] query and best skyline object management and identification. The
former method is based on a weighted object search pattern, and it has been tested with five
different algorithms. The threshold value required by most methods is frequently difficult to
configure. Higher settings cause data loss, while lower settings decrease the quality of the final
result. In order to return more engaging objects, the proposed method attempts to modify or
relax the conditions imposed by the initial reverse skyline query.

Lim developed a parallel Skyline query algorithm that uses angle partitioning of data sets
[197] to achieve better load balancing. In order to mesh the data, the algorithm first projects it
onto a hypersphere and then uses the angle coordinates to do so.

Banaei Kashani investigated the SSP algorithm [249], a distributed version of the Skyline
query algorithm used in the BATON overlay network. The algorithm arranges the baton net-
work’s nodes in a balanced binary tree. There is a range of data objects that each node is respon-
sible for processing. The SSP algorithm maps multi-dimensional data to a dimensional order
address using the Z-order address.

Summary of Skyline Query Variations: Table 4.3 summarizes the differences between
the skyline query variations discussed above.

4.1 Applications of Skyline-Based Queries
Several useful programs employ the dominance idea. Many different kinds of software rely on
dominance-based query processing capabilities as elementary components for more advanced
tasks. Multi-criteria decision-making, machine learning, and network analysis are three exam-
ples of broad fields of application.

4.1.1 Multi-criteria decision making
The skyline operator identifies a group of undominated points. In this sense, the skyline points
make excellent candidates to support our decision if we have to make one based on a partic-

83

4.1. APPLICATIONS OF SKYLINE-BASED QUERIES

Skyline Variation Definition
Constrained Skyline Query Applies user-defined constraints before skyline computation.
Range-Based Skyline Query Considers only points within a specified range.
Range-Based Skyline with
Query Q

Processes only data points satisfying a range query before skyline com-
putation.

Reverse Skyline Query Identifies points that consider the query point as part of their skyline.
Continuous Skyline Query Maintains and updates the skyline dynamically as new data points arrive

in a streaming environment.
Group-Based Skyline Query Identifies the best group of objects instead of individual objects by con-

sidering group dominance.
Spatial Skyline Nearest
Query

Computes the skyline of objects based on their nearest distance to a given
query location.

Spatial Skyline Farthest
Query

Determines the skyline of objects based on their farthest distance from
a query point.

Metric Skyline Query Generalizes the skyline query for complex metric spaces where tradi-
tional Euclidean distance may not apply.

Table 4.3: Comparison of different skyline query variations.

ular dataset. The field of multi-criteria decision making and quality of service (QoS) evalua-
tion encompasses a large portion of the applications that use the skyline or other variations of
dominance-based queries in the recent literature.

Service composition

the authors of Wang et al. [250] suggest a method for service composition by combining re-
inforcement learning (RL) and skyline computation. Building an effective process based on
user-defined preference criteria is the main goal of this study. Effective service selection is the
end result of this work.

Assume a service provider offers a travel itinerary based on the user’s preferences. The
flight schedule will specify lodging and transportation details. Each of these parameters may
include a variety of options. For instance, the transportation parameter may include the modes
of transportation of airplane, train, and ship, with a variety of services available for each. The
characteristics of the same option’s services are the same. Response time, throughput, and reli-
ability are just a few examples of the services offered by an airplane. The number of candidates
will be lowered when the skyline algorithm is used, and only services that are not dominated
will remain. Figure 4.10a provides a service pruning example.

Figure 4.10b shows the process as a Web Service Composition Markov Decision Process
(W SC − MDP) model. The process has two parts: one uses RL to choose the path with the
greatest rewards, and the other uses skyline computation to minimize the search space of the
various candidates.

4.1.2 Machine learning
Intrusion detection

The work of Abdelkader et al. [251] is an extremely fascinating application that combines the
skyline operator with machine learning and computer security. In network security systems,
intrusion detection systems (I DS) are critical. The main purpose of these systems is to detect
or predict unauthorized activity. The system’s alert misfires, such as false negatives (real attacks

84

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

(a) Service Workflow Model. (b) Airplane Service Pruning.

Figure 4.10: Illustration of Service Workflow and Airplane Service Pruning.

that went unnoticed) or false positives (activities that were mistakenly flagged as attacks), should
be reduced in order to lessen the threat. Additionally, because a person may review the alerts, a
high rate of false-positive alerts will overwhelm the reviewer and raise the likelihood that a real
attack event will go unnoticed.

Given this, anomaly detection and misuse detection are two categories of intrusion detec-
tion. While misuse detection identifies the system’s normal behavior and distinguishes between
normal and abnormal behavior, anomaly detection looks for attacks with known signatures. The
suggested model, which is shown in Figure 4.11, is built on two levels. In terms of accuracy,
detection rate, and false alert rate, the first level has the best classifiers. The decision is based
on three main criteria and the skyline computation:

Increase the accuracy, increase the detection rate and decrease the false alerts rate.
The second level employs a naive Bayesian classifier to make the final determination after

factoring in the first level’s findings.

Figure 4.11: Naive Bayesian Classifier Model.

85

4.1. APPLICATIONS OF SKYLINE-BASED QUERIES

4.1.3 Network analysis
Everywhere you look, there are networks! They are used in many application domains because
of how well they can model interactions between entities. In this section, we examine a few
significant uses of network analysis that call for the use of dominance.

Graph clustering

Dhifli et al. [252] propose a graph clustering approach for mining clusters in large attributed
graphs based on the dominance relationship. Each skyline solution receives simultaneous opti-
mization for a number of fitness functions, each of which is defined over the graph topology or
over a specific set of attributes obtained from various data sources.

The proposed method is experimentally tested using a sizable protein-protein interaction
network of the human interactome that has been enriched with sizable collections of heteroge-
neous attributes related to cancer. The authors of Dhifli et al. [252] noted that the following
summarizes their methodology:

• In order to create potential candidate graph clusters, disjoint powerset systems are first
built from potential node combinations.

• Then, a personalized initialization algorithm that prefers the density and connectivity of
the first candidate clustering solutions builds a set of chromosomes.

• Then, iteratively create new optimized chromosomes using personalized genetic operators
in the initial population. The evaluation of these new chromosomes then takes place using
a variety of objective functions that are defined over the graph topology and/or node or
edge attributes. Encoding and decoding functions are also defined to map the contents
of the chromosomes to the appropriate sets (i.e., candidate clusters) in the corresponding
powerset system. A set of approximate non-dominated graph clustering solutions based
on the skyline operator is obtained after repeating this procedure for a predetermined
number of iterations.

4.1.4 Other interesting applications
Applications from other fields, such as image retrieval, scientometrics, chemical process moni-
toring, wireless routing, sensor selection, e-commerce, and indoor route search, are briefly dis-
cussed in this section. We also go over how database management systems can accommodate
queries that are based on dominance.

Image retrieval

An image retrieval application from Georgiadis et al. [253] is the first illustration. To take ad-
vantage of the natural qualities of images, the skyline is used in this case. Themost crucial image
characteristics are encoded into a straightforward vector representation by feature vectors or de-
scriptor vectors, which are typically created from images. Depending on the transformation or
feature extraction technique used on the raw data, these vectors are typically high-dimensional,
ranging from a few tens to hundreds or even thousands. Only a portion of the data from the orig-
inal image such as color information, shape, texture, or a combination of these factors remains
in the final vector.

86

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

Without establishing any similarity or distance function, the intrinsic skyline of images can
be captured by locating the skyline using their descriptor vectors. This study’s practical appli-
cation is that the similarity of the entire image collection can be grouped or clustered using the
seeds found in the skyline. In order to support scalability, the proposed method combines a
number of skyline methods with four cutting-edge hashing algorithms for effective data parti-
tioning and indexing in secondary memory. Figure 4.12 shows the suggested model.

In the clustering evaluation, the outcomes of two fundamental clustering algorithms are
compared in order to evaluate the initial cluster centers’ distance and similarity when the algo-
rithm is started randomly versus when the skyline items start it. According to the study’s results,
cluster centers created using skyline items as seeds are comparable to and close to centers cre-
ated using random initialization. In the current evaluation, it has also been noted that starting
the algorithm with skyline items causes the clustering to converge more quickly.

Input File

Data Partitioning

01100001011001000110111101101101

Buckets

. . . 01101100 01100001

Priority Queue

BBS Skyline Algorithm

Skyline Items

Data Partitioning is
Performed by One
Hash Algorithm,
e.g. LHS, ITQ,
DSH, SpH,...

Figure 4.12: Hash BBS Skyline Process.

Monitor of chemical process

The next application is from the chemical process sector. The Wang et al. [254] paper proposes
a method to keep track of the operational state of chemical equipment. The system has a wireless
sensor network that gathers data from the ongoing chemical reaction. A distributed environment
is used to collect and store the data. The authors suggest a monitoring strategy that can quickly
identify abnormal equipment in order to identify a process fault. The dynamic skyline query,
which is used to locate equipment that is approaching its threshold for potential explosion, is at
the center of the process. The early detection of a condition like this allows for timely prevention.
Figure 4.13 shows how the monitor works.

Wireless routing

According to Yakine et al. [255], a wireless ad hoc network uses the skyline operator to effi-
ciently route communications. Without the use of infrastructure or centralized administration,
a wireless ad hoc network can communicate. An ad-hoc network’s main function is to facilitate

87

4.1. APPLICATIONS OF SKYLINE-BASED QUERIES

WSN

WSN2

. . .

WSN4
Management

Node

HDFS

Hadoop
Mapper/Reducer

Data Analysis and Processing

Detection
Curve

Analysis

Monitoring
Query

Detection
Curve
Display

Query
Result

WSN5

Abnormal
Condition

Query

Remote
Node

Monitor Center

Figure 4.13: Monitor Process.

communication among its nodes, which include both routing and end-point nodes. If commu-
nication between nodes that are not directly connected is about to occur, an intermediary node
must be used. Every node must choose a single-hop path because of the network’s dynamic
nature. In order to find routes in a wireless network that respect QoS parameters like hop count,
delay, bandwidth, and cost, the proposed method uses the skyline computation.

Sensor selection

Other IoT systems can make use of the data produced by the IoT sensors. The difficult part is
deciding which sensors, out of a very large number, are best suited to the user’s needs. The
authors of Kertiou et al. [14] address this issue. The suggested solution is demonstrated in
the example below. There are likely three gateways G1, G2, and G3 each of which controls a
number of sensors. Attributes such as ID, location, type, accuracy, dependability, and cost are
present in the sensors. These attributes each have a unique set of values for each sensor. The
following processes take place when a user requests a specific kind of sensor:

1. The server gets the request.

2. Each gateway calculates the local dynamic skyline in accordance with the preferences
given by the user.

3. The process involves combining all of the dynamic skylines received by the server into a
single global dynamic skyline.

4. The user applies the weights for each proximity-based requirement before accessing the
sensor values in ranked order.

The above example is demonstrated in Figure 4.14.

Indoor route search

The application that follows aims to solve the issue of route planning in an indoor environ-
ment. Salgado’s [256] authors use the skyline query to identify undominated routes. The

88

CHAPTER 4. VARIATIONS OF SKYLINE QUERIES

Server

G2G1

G3

Sensors Con-
nected to G1

Sensors Con-
nected to G2

Sensors Con-
nected to G3

Local Skyline Calcu-
lation of G1 Sensors

Local Skyline Calcu-
lation of G2 Sensors

Local Skyline Calcu-
lation of G3 Sensors

Ranking

User

Global Skyline
Calculation

Figure 4.14: Dynamic Skyline Sensor Selection.

study suggests a new route search issue called Skyline Routes (KSR) Query, which stands for
keyword-aware skyline routes. KSR’s route planning queries differ from traditional route plan-
ning queries in that they take into account the number of stores the proposed route should contain
in addition to distance and time considerations. For instance, a customer wants to purchase three
items while visiting a sizable shopping mall. The user might get a plan telling her to visit three
different stores if she issues a traditional route hop query that returns the fastest or shortest route.
However, it may take longer to wait at three different counters than it would to purchase each
item separately. In order to find the best route, one parameter to take into account is the number
of stores a route visits. To respond to KSR queries, the authors of Salgado [256] suggest an
exact algorithm. Despite the fact that the problem is demonstrated to be NPhard, the suggested
solution is effective if there are few keywords, which is the majority of the time.

4.2 Conclusion
The concept of a skyline query has garnered significant interest due to its fundamental role
in expressing information requests and facilitating efficient retrieval of vast, multidimensional
datasets. Nonetheless, while the traditional skyline definition has proven successful in cer-
tain applications, it falls short in addressing a variety of other applications that possess unique
characteristics and complexities. As a result, there is a need for adaptations and expansions to
the conventional skyline definition. In response to this identified requirement, numerous re-
search groups have introduced novel adaptations to the traditional skyline problem within the
past twenty years, along with proficient algorithms for handling these adaptations in relational
databases.

The present chapter has centered on various types of skyline queries, namely dynamic sky-
line queries, spatial skyline queries, metric skyline queries, and range-based skyline queries,
which are considered prominent extensions of the conventional skyline query in the field of
databases. These inquiries have garnered significant interest due to their improved capacity to

89

4.2. CONCLUSION

address contemporary needs and their applicability to a diverse array of fields, including but
not limited to multi-preference analysis and decision-making support, business planning, stock
market trading, advertisement, healthcare, molecular biology, geographic information systems,
location-aware computing, trip advising and event planning, facility location and place rec-
ommendation, traffic networks, physical environment monitoring, crisis management, and e-
games. These intriguing novel inquiries demonstrate the need for more sophisticated method-
ologies, and the notable advancements they contain portend a promising future. Numerous
research avenues are yet to be explored, which will concentrate on enhancing the performance
of current query processing algorithms through advancements in their pruning power or com-
putational speed. Alternatively, researchers may investigate new queries in emerging domains
that necessitate preference-based computation.

90

Part IV

Parallel Range Search Skyline

91

CHAPTER

5
PARALLEL RANGE SEARCH SKYLINE

“When the terrain disagrees with the map trust the terrain.

” SWISS ARMY PROVERB

Chapter content
5.1 Problem Definition . 93

5.1.1 Dimension Indexing . 93
5.2 Parallel RSS over data stream . 105

5.2.1 Parallel Range Search Skyline PRSS 105
5.2.2 Optimization of the dominate() Function using AVX2 110
5.2.3 Parallel implementation details . 114

5.3 Performance Evaluation . 115
5.3.1 Experimental Setup . 115
5.3.2 Experimental Results . 117

5.4 Conclusion . 127
5.5 Conclusion . 131
5.6 List of Publications . 132

5.1 Problem Definition
Within this section, we will initially introduce the symbols and explanations of the terminology
employed in this document.

5.1.1 Dimension Indexing
The RSS (Range Search Skyline) method relies on the indexing of dataset dimensions based
on the total order of each dimension. This enables obtaining the skyline without the need for
dominance comparisons involving the entire dataset or the entire current skyline [79]. While
determining skyline tuples, notice that the name Range Search represents the bounded search
range [79].

5.1. PROBLEM DEFINITION

To find the skyline of the dataset in table 3.2 using a basic skyline technique, we would
compare smartphones based on each feature. A smartphone is considered in the skyline if it is
not worse than any other smartphone in all features and strictly better in at least one feature.
Let’s consider the comparison:

we’ll use the dominance relationship. A Phone A dominates Phone B if A is not worse than
B in any dimension and is strictly better in at least one dimension. First, let’s go through each
phone and check if it is dominated by any other phone. If a phone is not dominated, it belongs to
the skyline. we Start with an empty set for the skyline. For each phone, check if it is dominated
by any other phone in the current skyline. If not, add it to the skyline.

Phone1: Add to the skyline (no phones dominate it). Phone2: Add to the skyline (no
phones dominate it). Phone3: Add to the skyline (no phones dominate it). Phone4: Dominated
by Phone3 (Phone3 has equal or better values in all dimensions).
Phone5: Dominated by Phone7 (Phone7 has equal or better values in all dimensions).
Phone6: Add to the skyline (no phones dominate it). Phone7: Add to the skyline (no phones
dominate it). Phone8: Dominated by Phone6 (Phone6 has equal or better values in all dimen-
sions).
Phone9: Dominated by Phone7 (Phone7 has equal or better values in all dimensions).
Phone10: Dominated by Phone5 (Phone5 has equal or better values in all dimensions).

The Final Skyline: Phone1: (8, 12, 64, 5, 3000, 500) Phone2: (10, 16, 128, 8, 4000, 600)
Phone3: (12, 20, 256, 10, 4500, 700) Phone6: (7, 10, 32, 4, 2500, 450) Phone7: (14, 22, 512,
12, 5000, 800). These phones form the skyline based on the given dominance relationships.
They are not dominated by any other phones in the dataset.

Definition 4. (Dimension Index[79]) Let T be an N -dimensional(N attributes) continuous
dataset. The dimension index A of T is constructed by the set of N sorted collections of index
entries. such that each index entry represents a single tuple, that includes a header pointer that
points to the header of the tuple, the value at this dimension and a dimension pointer that points
to the dimension value in the next dimension of the same tuple. All index entries of the same
dimension Ai ∈ A , 1 ≤ i ≤N , are sorted by value with the preference order ≺ .

Figure 5.1 demonstrates the data structure of the dimension index, all index entries n1
k ,n2

k , . . . ,nd
k

of the same tuple xk are linked on all dimensions 1,2, . . .k. the node hdrk represents the header
of the tuple xk . for example, n2∗ represents the value of a tuple ∗ on the dimension 2. This data
structure of linked index entries permits quick tuple browsing from any dimension.

Theorem 1. (conditions under which a tuple is classified as a skyline tuple [79]) Given A the
attribute(dimension) index of anN −dimensional continuous datasetT , let Ai ∈ A be a random
sub-index of A, and x be a tuple. Therefore, x is a skyline tuple iff ∄ x ′ ∈ T where (x ′[i] =
x[i])∧ (x ′ ≺ x) and one of the conditions below is respected: (1) ∄ p ∈T where p[i] ≺ x[i], or
(2) ∀m ∈M where m[i] ≺ x[i] ⇒ m 6≺ x.

Fig. 5.2 illustrates the dimension indexing of RSS algorithm for multidimensional dataset
in table 3.2 that includes 6 sub-indexes A1, A2, . . . , A6 and 10 tuples in all. The dashed lines
represents dimension links between index entries of the same tuple.

Based on Theorem 1, we can determine from A6, A5, and A3 independently that Phone6 is a
skyline tuple. From dimension A4, we obtain both Phone0[4] = Phone5[4] and there is no tuple
in this dimension that is better than Phone0 and Phone5, for which both Phone0 ≺ Phone5 and
Phone5 ≺ Phone0 must be checked to find if Phone0 and Phone5 are skyline tuples (actually
we have Phone0 ≺ Phone5 and Phone5 6≺ Phone0).

94

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

hdrk

header

nk
1

nk
2

nk
3

-
-
-
-
-
-

nN
k

null

n1
∗. . .n1

∗ ..
.

A1

n2
∗. . .n2

∗ ..
.

A2

n3
∗. . .n3

∗ ..
.

A3

Dimension
Link

Header
Link

nN
∗

. . .nN
∗ ..

.

AN

Entry

Sub-Index

Figure 5.1: Dimension index system.

2

N cores

4

4

4

6

8

8

16

16

64

A1

Phone1

Phone3

Phone6

Phone7

Phone8

Phone4

Phone0

Phone9

Phone2

Phone5

13

RAM

22

27

31

34

44

44

51

58

62

A2

190

Storage

220

260

290

310

330

330

330

350

370

A3

33

camera

33

35

36.1

37

38

39

40

41

42

A4

1700

battery

2200

2700

3100

3600

4000

4500

4800

5500

6100

A5

180

screen

210

310

420

450

550

550

550

620

670

A6

(Phone6)

(Phone5)

(Phone0)

(Phone3)

(Phone2)

skyline Non skyline

Figure 5.2: Dimension index for multidimensional dataset in table 3.2.

95

5.1. PROBLEM DEFINITION

...

A1

Phonex

Phone0

Phone1

Phone2

...

A2

...

A3

...

A4

...

A5

...

A6

skyline Non skylineincoming Upper-bounded zone

Lower-bounded zone

Figure 5.3: Skyline Maintenance with a new Incoming Tuple.

If we use Theorem 1 only on dimension A2, Phone0 is directly a skyline tuple, additionally
we have (Phone0[2] ≺ Phone5[2])∧ (Phone0 ≺ Phone5), so Phone5 is not a skyline tuple; if
we continue down, the next entry is not skyline tuple none of them until we reach Phone3, where
(Phone0[2] < Phone3[2])∧ (Phone0 6≺ Phone3), therefore Phone3 is a skyline tuple. Finally,
with dimension A6 only, 3 consecutive entries include the dimension value 550 so these 3 tuples
have to be first locally compared to extract local skyline tuples, in this example, Phone3, then
we apply Theorem 1. this skyline tuples locally identified in dimensions A4 and A6 are called
the local skyline. clearly, each distinct dimension value is a local skyline.

To maintain the correctness of the skyline when new incoming tuples are received based on
Theorem 1 Liu et al.[79] introduced a technique to update the dimension index, as illustrated in
Fig. 5.3, where they assumed that all values at each dimension are distinct. To keep the example
simple, the symbol . . . represents the rest of the index entries (values). Let’s assume an incoming
tuple Phonex enters our dataset, We start by locating the index entry positions of Phonex on all
dimensions with reference to the preference order ≺ (as the blue star pattern entries). Next we
identify a lower-bounded dimension Alower that includes the lowest number of skyline tuples
Phonel (lower bounded skyline) provided that Phonel [Alower] ≺ Phonex[Alower]. Then we
use theorem 1 to compare the incoming tuple Phonex with these lower-bounded skyline tuples
and check if Phonex is a skyline tuple. As illustrated in Fig. 5.3 comparing the incoming
tuple Phonex to the lower-bounded skyline in dimension A3, where Phonex and Phone2 are
incomparable, making Phonex a skyline tuple. Theorem 1 can be used to filter any existing
skyline tuples that could be dominated by the incoming tuple Phonex .

If Phonex is a skyline tuple, we identify the upper-bounded dimension of Phonex that con-
tains the lowest number of skyline tuples Phoneu where Phonex[Aupper] ≺ Phoneu[Aupper].

96

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

If Phonex ≺ Phoneu for every tuple Phoneu in the upper-bounded skyline, later Phoneu will
be cleared out of the skyline, else There is no need for upper-bounded skyline identification. In
Fig. 5.3, skyline tuples Phone1 and Phone2 are dominated by Phonex , so they will be cleared
out of the skyline.

To identify the upper-bounded Aupper and lower-bounded Alower dimensions for an incom-
ing tuple Phonex , Liu et al.[79] used the following estimation equation:

Alower = ar g Ai mi n(| (v i
x −mi n(Ai))

(max(Ai)−mi n(Ai))
|)

Aupper = ar g Ai max(| (v i
x −mi n(Ai))

(max(Ai)−mi n(Ai))
|)

v i
x : dimensional value of the incoming tuple x on dimension i. HereWhen the number of dimen-

sions (attributes) increases, parallelizing the building of the dimension index and the identifica-
tion of upper-bounded Aupper and lower-bounded Alower dimensions in addition to the parallel
insertion and removal of tuples will boost the whole skyline computation’s performance.

The estimation formulas for the lower and upper bounds in [79] are used to determine the
most promising dimensions for processing.

1. Lower Bound Estimation Formula:

Alower = argmin
Ai

(∣∣∣∣∣ v i
t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
)

2. Upper Bound Estimation Formula:

Aupper = argmax
Ai

(∣∣∣∣∣ v i
t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
)

The goal of these formulas is to select the dimensions that are most promising for maintain-
ing efficient skyline computation. This involves normalizing the value of the incoming tuple
with respect to the range of values in each dimension.

The term v i
t−min(Ai)

max(Ai)−min(Ai) normalizes the value v i
t of the incoming tuple in dimension i to

a range between 0 and 1. This is important because it allows for comparison across different
dimensions, which might have vastly different scales.

By considering the absolute value |·|, the formulas focus on how far the normalized value
v i

t is from the extremes (minimum and maximum) of the values seen so far in that dimension.
The lower bound formula selects the dimension Ai where the normalized value v i

t is closest
to the minimum value. This is because in skyline computations, dimensions where the incoming
tuple is close to the minimum are less likely to be dominated by other tuples. Hence, argmin is
used to find the dimension where this deviation is minimal.

Conversely, the upper bound formula selects the dimension Ai where the normalized value
v i

t is closest to the maximum value. This dimension is most likely to have a strong influence
on whether the tuple is dominated, as it is far from being minimal in that dimension. Hence,
argmax is used to find the dimension where this deviation is maximal.

• For each dimension i , normalize the value of the incoming tuple v i
t :

Normalized value= v i
t −min(Ai)

max(Ai)−min(Ai)

97

5.1. PROBLEM DEFINITION

• Absolute Deviation: Calculate the absolute deviation of the normalized value from the
extremes (0 and 1).

• Minimize for Lower Bound: Select the dimension where this deviation is minimal:

Alower = argmin
Ai

(∣∣∣∣∣ v i
t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
)

• Maximize for Upper Bound: Select the dimension where this deviation is maximal:

Aupper = argmax
Ai

(∣∣∣∣∣ v i
t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
)

- Lower Bound: Dimensions where the value is close to the minimum are less likely to be
dominated, making it a lower bound for potential skyline membership.
- Upper Bound: Dimensions where the value is close to the maximum have higher chances of
being dominated, setting an upper bound for skyline consideration.

The authors [79] derived these formulas based on the need to efficiently prune the search
space by focusing on the most promising dimensions. The normalization process ensures that
comparisons are scale-independent, and the use of absolute deviation helps in identifying di-
mensions where the tuple stands out, either as a potential skyline point (lower bound) or as a
likely dominated point (upper bound).

The estimation formulas for lower and upper bounds are intended to prioritize the dimen-
sions that are most likely to help quickly determine whether a new incoming tuple is a skyline
point. By focusing on these dimensions, the algorithm can efficiently prune non-promising
tuples, reducing computational overhead.

Step-by-Step Derivation:

• Normalization is a crucial step to ensure that comparisons across different dimensions
(which may have different scales) are fair and meaningful.
- For a given dimension i :
- v i

t is the value of the incoming tuple t in dimension i .
- min(Ai) and max(Ai) are the minimum and maximum values seen so far in dimension
i .
The normalized value of v i

t in dimension i is calculated as:

Normalized value= v i
t −min(Ai)

max(Ai)−min(Ai)

This normalization scales the value v i
t to a range between 0 and 1, where: - 0 corresponds

to min(Ai) - 1 corresponds to max(Ai)

• The absolute deviation of the normalized value from 0 and 1 indicates how close v i
t is

to the minimum or maximum value in that dimension. This helps in understanding the
potential of the tuple being a skyline point.∣∣∣∣∣ v i

t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
98

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

- If the deviation is small (close to 0), v i
t is near the minimum value in that dimension.

- If the deviation is large (close to 1), v i
t is near the maximum value in that dimension.

• Lower Bound Calculation: For the lower bound estimation, the goal is to identify the
dimension where v i

t is closest to the minimum value. This dimension is less likely to
have tuples that dominate v i

t , making it a strong candidate for being part of the skyline.
- We use the argmin function to find the dimension Alower that minimizes the absolute
deviation:

Alower = argmin
Ai

(∣∣∣∣∣ v i
t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
)

This selects the dimension where the normalized value is closest to 0 (the minimum
value).

• Upper Bound Calculation: For the upper bound estimation, the goal is to identify the
dimension where v i

t is closest to the maximum value. This dimension is more likely to
have tuples that dominate v i

t , making it a less likely candidate for being part of the skyline.
- We use the argmax function to find the dimension Aupper that maximizes the absolute
deviation:

Aupper = argmax
Ai

(∣∣∣∣∣ v i
t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
)

This selects the dimension where the normalized value is closest to 1 (the maximum
value).
- Lower Bound (Minimization): By choosing the dimension where v i

t is closest to the
minimum value, we are identifying the dimension in which the incoming tuple is least
likely to be dominated. This helps in quickly including potential skyline points.
- Upper Bound (Maximization): By choosing the dimension where v i

t is closest to the
maximum value, we are identifying the dimension in which the incoming tuple is most
likely to be dominated. This helps in quickly excluding non-promising tuples.
Methods Used:
1. Normalization: To handle different scales in different dimensions. 2. Absolute Devia-
tion: To measure how far the tuple’s value is from the extremes (minimum or maximum)
in a normalized space. 3. Optimization Functions (argmin and argmax): To identify the
most promising dimensions for inclusion (lower bound) or exclusion (upper bound).

Theorem 1: Let A be the dimension index of a d-dimensional database D, Ai ∈ A be an arbi-
trary sub-index of A, and t be a tuple. Then, t is a skyline tuple if and only if 6 ∃r ∈ D such that
(r [i] = t [i]) and (r ≺ t) and one of the following conditions is satisfied: 1. 6 ∃u ∈ D such that
u[i] ≺ t [i], or 2. ∀s ∈ S such that s[i] ≺ t [i] ⇒ s 6≺ t .

Proof: To show that a tuple t is a skyline tuple if and only if no other tuple r exists such
that r equals t in one dimension and dominates t , and one of two conditions holds.

- Skyline Tuple: A tuple t is part of the skyline if no other tuple in the database D dominates
t . - Dominance: Tuple r dominates tuple t (r ≺ t) if r is at least as good as t in all dimensions
and better in at least one dimension.

1. Conditions Without Repeated Dimension Values:
- Consider an arbitrary dimension i , where 1 ≤ i ≤ d .
- Assume no tuples r exist such that r [i] = t [i].

99

5.1. PROBLEM DEFINITION

Condition (1): - t appears at the top of Ai . - If 6 ∃u ∈ D such that u[i] ≺ t [i], then no tuple
is better than t in the i -th dimension. - Thus, t is a skyline tuple because no tuple dominates t
in any dimension.

Condition (2): - Let s be a skyline tuple such that t [i] ≺ s[i].
- If s 6≺ t for all skyline tuples s such that s[i] ≺ t [i], then t is incomparable to any skyline tuple
s.
- Therefore, t must be a skyline tuple because no skyline tuple s can dominate t .

2. Conditions With Repeated Dimension Values: - Now, consider the case where ∃r ∈ D
such that r [i] = t [i].

Condition (1) Fails: - Condition (1) does not account for (r [i] = t [i]) and r ≺ t . - Simply
stating 6 ∃u ∈ D such that u[i] ≺ t [i] does not exclude r ≺ t when r [i] = t [i].

Condition (2) Fails: - Condition (2) does not cover the case where r ∈ S (skyline set). -
Stating ∀s ∈ S such that s[i] ≺ t [i] ⇒ s 6≺ t does not prevent r from dominating t if r [i] = t [i].

3. Establishing Correctness: - For conditions (1) and (2) to be valid, we must ensure that
for any r ∈ D such that r [i] = t [i], r 6≺ t .
- This ensures that no tuple r can dominate t when they are equal in dimension i , making t a
skyline tuple.

- The proof combines the conditions without repeated dimension values and extends them
to handle cases where dimension values are repeated.
- The key insight is ensuring no tuple r with r [i] = t [i] can dominate t .
- This comprehensive approach confirms that the specified conditions correctly identify skyline
tuples.

This step-by-step breakdown aligns with the logical flow in the proof, confirming that t is
a skyline tuple if and only if it satisfies the given conditions, preventing any other tuple from
dominating it while sharing the same dimension value.

Theorem 2: The update of non-skyline tuples dominated by expired tuples listed in Algo-
rithm 1 (lines 7-14) is correct and complete.

Proof: If a tuple x is dominated by a tuple s and s is incomparable with the incoming tuple
t , then s and x must expire before t . Therefore, x will not be considered while removing t .

1. Skyline Queries:
- A skyline query retrieves a set of points from a dataset such that each point is not dominated
by any other point.
- A point p dominates another point q if p is as good or better in all dimensions and strictly
better in at least one dimension.

2. Sliding Window Model:
- In data streams, the sliding window model is used to handle only the most recent data points.
- Tuples (data points) within this window are considered for skyline computation.

3. Algorithm 1 Overview:
- The algorithm processes incoming tuples to maintain the skyline over a sliding window.
- When a new tuple t arrives, the algorithm updates the skyline by adding t and removing any
tuples that are now dominated by t .

Explanation of Theorem 2:
1. Expired Tuples: - Tuples that are outside the sliding window are considered expired.

- Expired tuples are removed from the skyline.
2. Dominated Tuples: - If a tuple x is dominated by an expired tuple s, x should be reeval-

uated because s is no longer part of the dataset.
3. Correctness and Completeness: - The theorem asserts that the process of updating the

skyline by removing dominated tuples is both correct (no false positives or negatives) and com-

100

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

plete (all necessary tuples are considered).
Proof Steps:
1. Dominance and Expiry:

- Assume a tuple x is dominated by a tuple s.
- If s is incomparable with the incoming tuple t (meaning s and t do not dominate each other),
the relationship between x and s remains unaffected by t .

2. Expiration Before t :
- Both s and x must expire before t because they are older than the current window’s scope.
- Once s expires, x is reevaluated to check if it can now be a part of the skyline or if it is
dominated by another tuple.

3. Tuple Removal:
- When t arrives, tuples dominated by t are removed.
- Since s and x are already expired, they are no longer considered for removal or inclusion in
the skyline.

- Correctness: The procedure correctly identifies tuples that are dominated by expired tu-
ples and ensures they are not considered part of the skyline. - Completeness: The procedure
considers all relevant tuples, ensuring that no skyline tuple is missed.

Efficiency Analysis:
- Time Complexity: The estimation of bounded dimensions requires O(d) time, where d is

the number of dimensions. This is efficient compared to the exact computation of skyline sizes.
- Skyline Maintenance: Given a sliding window W and a skyline size M , the dominance test
requires O(d) time, making the overall process efficient for dynamic data streams.

The theorem ensures that the algorithm correctly and completely updates the skyline by
handling expired tuples and dominated tuples appropriately. The use of estimation formulas
helps in maintaining efficiency while ensuring that the most relevant dimensions are considered
for skyline computation.
To thoroughly understand Theorem 3 and its proof, let’s break down the theorem and each part
of the proof step by step.

Theorem 3: In the worst case, RSS inserts an incoming skyline tuple t in time

O

(
d log |W |+2(d +M)+ M

d
(d + (|W |−M)(d +M)

d
)

)
.

Proof: To describe and justify the time complexity of inserting a new skyline tuple t in the
RSS algorithm.

Components of the Time Complexity Expression:

1. Insertion into Sub-Indexes:
O(d log |W |)

- The RSS algorithm maintains d B-tree based sub-indexes, one for each dimension.
- Inserting t into each of these sub-indexes requires O(log |W |) time, where |W | is the size of
the sliding window.
- Since there are d dimensions, the total time for this step is O(d log |W |).

2. Finding Lower-Bounded and Upper-Bounded Dimensions:

O(2d)

- If t is a skyline tuple, we need to determine its lower-bounded and upper-bounded dimensions.
- This involves calculating the estimation formulas (1) and (2), which require O(d) time each.
- Thus, finding both bounds takes O(2d) time.

101

5.1. PROBLEM DEFINITION

3. Dominance Tests with Bounded Skylines:

O(2d +2M)

- According to Theorem 1, for each bounded skyline, M
d dominance tests are required.

- Since there are two bounded skylines (lower-bounded and upper-bounded), the total time is
O(2d +2M).

4. Handling Dominated Tuples: - In the worst case, t may dominate all M
d tuples in the

upper-bounded skyline.
- For each of these tuples, we need to find their lower-bounded dimension, which takes O(d)
time.
- Each upper-bounded skyline tuple may dominate (|W |−M)

d non-skyline tuples.
- For each of these non-skyline tuples, we need to perform O(d) time operations to find the
lower-bounded dimension and potentially update the skyline.

Detailed Steps of the Proof:
1. Insertion into Sub-Indexes:

- The incoming tuple t is inserted into d B-tree based sub-indexes.
- Each insertion requires O(log |W |) time.
- Since there are d dimensions, the total time for this step is:

O(d log |W |)
2. Finding Lower-Bounded and Upper-Bounded Dimensions:

- To determine if t is a skyline tuple, the algorithm needs to find its lower-bounded and upper-
bounded dimensions using the estimation formulas.
- Each calculation takes O(d) time, so both calculations take:

O(2d)

3. Dominance Tests with Bounded Skylines:
- If t is a skyline tuple, it needs to be tested against the lower-bounded and upper-bounded
skylines.
- Each skyline has M

d tuples.
- Performing M

d dominance tests for each bounded skyline (lower and upper) takes:

O(2 · M

d
) =O(2M)

- Adding the time for finding the bounded dimensions, the total time is:

O(2d +2M)

4. Handling Dominated Tuples:
- In the worst case, t may dominate all M

d tuples in the upper-bounded skyline.
- For each of these M

d tuples, finding the upper-bounded dimension takes O(d) time:

O(d · M

d
) =O(M)

- Each of these upper-bounded skyline tuples can dominate (|W |−M)
d non-skyline tuples.

- For each of these non-skyline tuples, the algorithm performsO(d) time operations to determine
if they become skyline tuples:

O

(|W |−M

d
·d

)
=O(|W |−M)

102

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

- Each dominance test involves an additional O(d +M) time in the worst case, so the total time
is:

O

(
(|W |−M)

d
· (d +M)

)
Combining the Components:
- The total time complexity is the sum of all these components:

O(d log |W |)+O(2d)+O(2M)+O (M)+O

(
(|W |−M)

d
· (d +M)

)
- Simplifying the expression:

O

(
d log |W |+2d +2M +M + (|W |−M)(d +M)

d

)
- Since O(2d) and O(M) are lower-order terms compared to others, they can be combined

for a more concise representation:

O

(
d log |W |+2(d +M)+ M

d
(d + (|W |−M)(d +M)

d
)

)
The proof of Theorem 3 justifies that the time complexity for inserting a skyline tuple t in

the worst case involves:
- Inserting t into the sub-indexes.
- Finding the lower-bounded and upper-bounded dimensions.
- Performing dominance tests with the bounded skylines.
- Handling any non-skyline tuples that may be affected by t .

This step-by-step analysis ensures that the time complexity expression accurately reflects
the algorithm’s performance in the worst-case scenario.
Theorem 4:

In the worst case, RSS deletes an expired skyline tuple t in time:

O

(
d + (|W |−M)(d +M)

d
+d log |W |

)
Proof: To describe and justify the time complexity for deleting an expired skyline tuple t

in the RSS algorithm.
Components of the Time Complexity Expression
1. Finding the Upper-Bounded Dimension:

O(d)

- This step involves determining the upper-bounded dimension of the tuple t .
- Using the estimation formula, this takes O(d) time.

2. Testing Non-Skyline Tuples:

O

(
(|W |−M)

d
(d +M)

)
- According to the proof of Theorem 3, (|W |−M)

d non-skyline tuples in the upper-bounded zone
need to be tested in the worst case.
- Each test requires O(d +M) time.

103

5.1. PROBLEM DEFINITION

3. Removing Index Entries:
O(d log |W |)

- Finally, the algorithm needs to remove d index entries from the B-trees.
- Removing each entry takes O(log |W |) time, so removing d entries takes O(d log |W |) time.

Detailed Steps of the Proof:
1. Finding the Upper-Bounded Dimension:

- When deleting a skyline tuple t , the algorithm needs to find the upper-bounded dimension.
- This involves calculating the estimation formula:

Aupper = argmax
Ai

∣∣∣∣∣ v i
t −min(Ai)

max(Ai)−min(Ai)

∣∣∣∣∣
- This calculation takes O(d) time.

2. Testing Non-Skyline Tuples:
- In the worst case, the expired skyline tuple t may have dominated (|W |−M)

d non-skyline tuples.
- Each of these non-skyline tuples needs to be tested to determine if they can now become part
of the skyline.
- Each test involves:
- O(d) time to find the lower-bounded and upper-bounded dimensions.
- O(M) time to test if the tuple becomes part of the skyline.
- Thus, each test takes O(d +M) time, and for (|W |−M)

d non-skyline tuples, the total time is:

O

(
(|W |−M)

d
(d +M)

)
3. Removing Index Entries:

- To delete t , the algorithm needs to remove its entries from the d B-tree based sub-indexes.
- Each removal operation from a B-tree takes O(log |W |) time.
- Removing d entries takes:

O(d log |W |)
Combining the Components:
- The total time complexity for deleting an expired skyline tuple t is the sum of all these

components:

O(d)+O

(
(|W |−M)

d
(d +M)

)
+O(d log |W |)

- Simplifying the expression, we get:

O

(
d + (|W |−M)(d +M)

d
+d log |W |

)
The proof of Theorem 4 justifies that the time complexity for deleting an expired skyline

tuple t in the worst case involves:
- Finding the upper-bounded dimension of t .
- Testing non-skyline tuples that may become skyline tuples after t is deleted.
- Removing the index entries of t from the sub-indexes.

This step-by-step analysis ensures that the time complexity expression accurately reflects
the algorithm’s performance in the worst-case scenario.

104

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

5.2 Parallel RSS over data stream
5.2.1 Parallel Range Search Skyline PRSS

This section outlines the process of developing a parallel version of the sequential RSS algo-
rithm, which we have named parallel RSS (PRSS) [36].. Within PRSS, the arrival of new tuples
triggers the incremental update of the skyline and the removal of expired tuples. PRSS updates
the skyline incrementally by adding each incoming tuple when the window is not yet full. The
algorithm efficiently removes expired tuples, changes dominance relationships, and adjusts the
skyline for filled windows. PRSS utilizes dominance lists to keep track of tuples that are directly
dominated, enabling efficient updates when tuples are added or removed. PRSS examines the

Splitter

core1

core2

core4

core3
Merger

window partition-
ing with 4 cores
each core com-
putes skyline

on sub-window

re-ordering
of results

. . . 37 38 39

F(ω1)F(ω2). . .

28
29

30

31
32

33

34

35

36

25

26

27

09101112 01 02

removed

13141516 03 04

removed

17 18 19 20 05 06
removed

21 22 23 24 07 08
removed

Figure 5.4: Load Balancing on Cores.

collection of expired skyline tuples to determine if any dominated tuples could potentially be
recent skyline tuples. Subsequently, eliminate the tuples that have reached their expiration date
and incorporate the newly inputted tuples into the window. This algorithm 1, referred to as
PRSS, discusses the concept of PRSS. The inputs for this process include a data stream T , a
window size Z , and a dimensionality N (representing the number of attributes), the start and
end of the chunk given for each processor core. As the window Z moves over the data stream
T , the algorithm maintains the updated skyline index S after it receives each tuple x.
PRSS begins by initializing two indices: Dimension Index A = ; : An empty index used to
manage the tuples based on their dimensions (Used to store the index entries for each dimen-
sion). Skyline Index Skyline Index S = ; : An empty set that will store and keep track of the
current skyline tuples. PRSS continuously processes tuples from the data stream T . For each
new tuple x read from the stream, the following steps are performed: The technique of PRSS
begins by removing expired tuples from the dimension index A (lines 5-17). The function PRSS
retrieves the set V of all expired tuples based on the type of the window Z (either count-based or
time-based) at line 4. The set E consists of all tuples that are directly dominated by each expired
skyline tuple v ∈V (line 7). This identification is done using the par al lel Domi natedTuples
method.

Subsequently, the variable v is deactivated in A to guarantee that subsequent dominance tests
remain unaffected (Mark v as inactive in the dimension index A) . Disabling and Removing Tu-
ples will ensure the integrity of the index and skyline by properly handling the expired tuples and
maintaining an accurate skyline set. The PRSS function utilizes the par al lel Rang eSear ch
algorithm (Algorithm 2) to identify additional skyline tuples for each tuple e ∈ E (lines 9-13).

105

5.2. PARALLEL RSS OVER DATA STREAM

If the element v belongs to the set S, the PRSS algorithm removes v from the skyline index S
at line 14. In order to stop the deletion process of the tuple, PRSS permanently deletes v from
the set A at line 16. Following that, PRSS initiates the process of inserting incoming tuples
into A (lines 18-25). The PRSS function is called on line 18 to determine whether x is a sky-
line tuple using the PRang eSear ch algorithm. If the incoming tuple x is a skyline, the PRSS
algorithm calls the par al lel Domi natedTuples function to retrieve the tuples R that are di-
rectly dominated by x. It then proceeds to simultaneously remove each tuple r ∈ R in parallel,
as indicated in lines 19-22. Ultimately, the PRSS appends the value x to the set S at line 23
and concurrently inserts x into the set A at line 25. The attributes of an incoming tuple x will
be distributed among the CPU cores (workers), as shown in Figure 5.4. If PRSS is unable to
retrieve any expired tuples, it will promptly proceed with the insertion of new tuples.

The par al lel Rang eSear ch algorithm determines whether a given tuple x is a skyline
tuple by checking against the current dimension index A and updating the skyline index S as
necessary. The algorithm begins by initializing the skyline index S .

If x passes the initial dominance check, the algorithm retrieves the skyline tuples S for the
lower bounded dimension. It iterates over each skyline tuple s in S . If any of these skyline
tuples dominate x , the algorithm returns false. Lower Bounded Range Search: It identifies the
lower bounded dimension for the tuple x using the LowerBoundedDimension function. This
dimension helps in locating the relevant blocks of tuples that could potentially dominate x. De-
termine the lower bounded dimension ”lower”: lower ←− Lower BoundedDi mensi on(A, x)
this function identifies the dimension with the least value where x is bounded.

Summary of PRSS steps:
1. Initialization: Set up empty indices for dimensions and skylines.
2. Process Each Tuple in Data Stream: Identify and handle expired tuples, If an expired tuple is
in the skyline, update the skyline by re-evaluating dominated tuples. Insert the incoming tuple,
Determine if it should be part of the skyline. Update the dimension index and skyline accord-
ingly.

Key Functions: E xpi r edTupl es(A,Z): Identifies tuples that have expired based on the
window W.

Domi natedTuples(A, v): Finds tuples directly dominated by a given tuple.
PRang eSear ch(A, x): Checks if a tuple is a skyline tuple and updates necessary indices.
The par al lel Rang eSear ch method is demonstrated in Algorithm 2, which concurrently

determines the upper and lower bounds of the skyline for an incoming tuple x in the dimension
index A. Upon the arrival of a new tuple x in our datasets, the PRang eSear ch algorithm initi-
ates by determining the dimension with the lowest lower bound for x (as outlined in Algorithm
3) in order to perform dominance tests (line 2).

According to Theorem 1, PRangeSearch employs the embedded B N L algorithm to compare
x with all tuples B that share the same value at the same dimension (line 3). The algorithm
retrieves the block of tuples B from the dimension index A corresponding to this lower bounded
dimension. (B ←−GetBl ock(x, Alower)) The block is a subset of tuples in the dimension index
A that are relevant for comparison with x in the lower dimension.

If x is determined to be a local skyline, the function PRang eSear ch will return true. Oth-
erwise, the function will stop executing (lines 4-6). uses a Block Nested Loop (B N L) method to
check if any tuple in block B dominates x . If any tuple in B dominates x , the algorithm returns
false, indicating that x is not a skyline tuple. B N L checks if x can be a skyline tuple within the
block B . If BNL returns false, x is not a skyline tuple, and the function exits early.

106

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

If x is a local skyline, the PRang eSear ch algorithm also concurrently identifies the lower-
bounded skyline S for the tuple x (line 7), and subsequently compares S with x to determine if
x is a skyline. If the condition is not met, the PRang eSear ch function terminates immediately
(lines 8-12), and returns false.

If x is identified as a skyline tuple, the PRang eSear ch identifies the upper bounded dimen-
sion for x (line 13) using theUpper BoundedDi mensi on(A, x) function in order to eliminate
skyline tuples that are ultimately dominated by x. This helps in locating another set of relevant
blocks of tuples.

The skyline tuples b that have the same dimension value as x (lines 14-20) need to be re-
moved from the skyline index. PRang eSear ch Fetches the block B associated with the upper
bounded dimension: It retrieves the block of tuples B from the dimension index A correspond-
ing to this upper bounded dimension. B ←− GetBl ock(x, Aupper) the block is a subset of
tuples in the dimension index A that are relevant for comparison with x in the upper dimension.
Check each tuple b in block B : For each tuple b in block B , if b is part of the current skyline
and x dominates b , the algorithm updates the dominance list to reflect that x now dominates b
. It then removes b from the skyline index S . The algorithm retrieves the skyline tuples S for
the upper bounded dimension. It iterates over each skyline tuple s in S . If x dominates any of
these skyline tuples, it updates the dominance list Upd ateDomi nanceLi st (x,b) accordingly
and removes the dominated skyline tuples from S. for each tuple b in B , if b is in the skyline
index S and x dominates b (x ≺ b), update the dominance list for x and remove b from S.

The PRang eSear ch algorithm identifies the upper-bounded skyline S of x (line 21) and
removes any skyline tuple that is dominated by x (lines 22-27). If x is a skyline, the function
PRang eSear ch will return a value of true. Retrieve the skyline tuples in the upper bounded
dimension: S ←− Upper BoundedSk yl i ne(Aupper, x) this function gets the set of skyline
tuples that are relevant to the upper bounded dimension upper. Check dominance against tuples
in S: For each skyline tuple s in S, if x dominates s (x ≺ s), update the dominance list for x and
remove s from S.

PRang eSear ch algorithm returns true indicating that x is a skyline tuple: If x passes all
these checks without being dominated by any other tuple, and after updating the skyline index
S as necessary, the algorithm concludes that x is a skyline tuple and returns true.

in summary PRang eSear ch algorithm does Lower Bounded Range Search where it iden-
tifies the lower bounded dimension. Fetches relevant block and checks dominance using BNL.
Compares against current skyline tuples and updates if necessary. Then does Upper Bounded
Range Search where it identifies the upper bounded dimension. Fetches relevant block and com-
pares against current skyline tuples. Updates dominance lists and skyline tuples as necessary.
Finally Returns True: Concludes that x is a skyline tuple if all checks pass.

Key Functions: Lower BoundedDi mensi on(A, x) /Upper BoundedDi mensi on(A, x):
Determines the lower/upper dimension bounds for x. GetBl ock(x, A): Retrieves the relevant
block of tuples for comparison. B N L(B , x): Checks if x can be a skyline tuple within the block
B . Lower BoundedSk yl i ne(A, x) / Upper BoundedSk yl i ne(A, x): Retrieves the skyline
tuples in the lower/upper bounded dimension. The Upd ateDomi nanceLi st () function, as
shown in Algorithm 2, is responsible for updating the dominance indexes when the incoming
tuple dominates the existing skyline tuples. When the functionUpd ateDomi nanceLi st (x,b)
is called, the dominance index of b is appended to the dominance index of x.

By systematically checking both lower and upper bounded dimensions, PRang eSear ch al-
gorithm ensures efficient skyline tuple maintenance by narrowing down the range of dominance
checks and updating the skyline index continuously.

107

5.2. PARALLEL RSS OVER DATA STREAM

Algorithm 1: PRSS (Parallel Range Search for Stream)
Input : Data stream T , Window Z , Dimensionality N , start, end
Output
:

Instant update of skyline S.

1 Dimension Index A =;
2 Skyline Index S =; // deletes expired tuples from the dimension index A.
3 while t = st ar t and t < end do
4 V ←− E xpi r edTupl es(A,Z) // Gets the set V of all expired tuples w.r.t

Count or Time-based window Z.
5 foreach v ∈V do
6 if v ∈ S then
7 E ←− Domi natedTuples(A, v) // For each expired skyline tuple

v ∈V , PRSS finds by Domi natedTuples the set E of all tuples
directly dominated by v

8 Disable v ∈ A // Disables v ∈ A for not affecting following
dominance tests.

9 foreach e ∈ E do
10 if PRang eSear ch(A,e) then
11 S ←− S ∪ {e} // For each tuple e ∈ E, PRSS calls PRangeSearch

to determine new skyline tuples
12 end
13 end
14 S ←− S \ {v} // To finish tuple deletion, PRSS removes u from the

skyline index S if v ∈ S

15 end
16 Remove v from A // and definitively removes v from A.
17 end
18 // PRSS inserts the incoming tuple x into A.
19
20 if PRang eSear ch(A, x) then
21 R ←− Domi natedTuples(A, x) // If x is a skyline tuple, PRSS calls

Domi natedTuples that returns the set R of the tuples directly
dominated by x

22
23 foreach r ∈ R do
24 Remove r from A // and removes each tuple r ∈ R.
25 end
26 S ←− S ∪ {x} // Finally, PRSS adds x to S

27 end
28 foreach x ∈N do
29 Insert x to A // and commits the insertion of x to A.
30 end
31 end

108

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

Algorithm 2: Parallel RangeSearch
Input : Dimension index A, tuple x, Dimensionality N .
Output
:

true if x is a skyline tuple.

1 Skyline Index S
2 lower ←− Lower BoundedDi mensi on(A, x) // PRang eSear ch first calculates

the lower-bounded dimension for x in order to perform dominance tests.

3 B ←−GetBl ock(x, Alower) // PRang eSear ch tests whether x is a local skyline
in the set B of all tuples having the same dimension value by the
embedded BNL algorithm, which returns true if x is a local skyline.

4 if not B N L(B , x) then
5 return false // otherwise PRangeSearch stops.
6 end
7 S ←− Lower BoundedSk yl i ne(Alower , x) // If x is a local skyline,

PRang eSear ch further retrieves the lower-bounded skyline S for x.
8 foreach s ∈ S do
9 if s ≺ x then

10 return false // then tests x is a true skyline against S: if not,
PRang eSear ch stops by returning false.

11 end
12 end
13 upper ←−Upper BoundedDi mensi on(A, x) // If x is found being a skyline

tuple, PRang eSear ch calculates the upper-bounded dimension for x in
order to eliminate skyline tuples eventually dominated by x.

14 B ←−GetBl ock(x, Aupper) // At this step, repeated dimension values shall
also be taken into account:

15 foreach b ∈ B do
16 if b ∈ S and x ≺ b then
17 Upd ateDomi nanceLi st (x,b) // if x dominates any skyline tuple b

having the same dimension values
18 S = S \ {b} // then b must be removed from the skyline index.
19 end
20 end
21 S ←−Upper BoundedSk yl i ne(Aupper , x) // PRang eSear ch retrieves the

upper-bounded skyline S for x.
22 foreach s ∈ S do
23 if x ≺ s then
24 Upd ateDomi nanceLi st (x, s) // removes all skyline tuples dominated by

x.
25 S = S \ {s}

26 end
27 end
28 return true // PRang eSear ch returns true if x is a skyline tuple.

However, After processing new incoming tuples, computing the updated skyline, and remov-
ing expired data points, it is essential to maintain an efficient indexing structure. Now Let’s see
howOur algorithm updates the dimensional index to ensures that the index remains accurate and
efficient, facilitating rapid skyline computations in a continuously evolving data environment.

Figure 5.5 shows how dominance indexes are updated while an incoming tuple 38 dominates
existing skyline tuples, as an example a count-based window W = 15 is concerned. The update

109

5.2. PARALLEL RSS OVER DATA STREAM

Window W = 15

Skyline Index

23 26 36 37

Initial Skyline Status

Step 1

15
24
30

18
20
28
29
33

35

Window W = 15

Skyline Index

23

(expired)

26 36 37 38

incoming tuple 38 added

Step 2

18
20
28
29
33

35

Window W = 15

Skyline Index

26 30
(Skyline)

36 37 38

38 (Dominates 26)
Tuple 30 becomes skyline

Step 3

18
20
28
29
33

35

Window W = 15

Skyline Index

30 36 37 38

Tuple 26 moved, index updated

Step 4

26
18
20
28
29
33

35

Figure 5.5: Step-by-step Skyline Index Update.

of dominance indexes can be illustrated by the following steps (let the gray band depict the
skyline index and assume that the incoming tuple 38 is a skyline tuple): (a) the incoming tuple
38 makes the current earliest tuple 23 expired;

(b) while removing the expired tuple 23, assume that tuple 30 becomes skyline tuple, and
assume that the incoming tuple 38 dominates the skyline tuple 26;

(c) tuple 26 is appended to the tuple 38 and removed from the skyline index and its domi-
nance entries are moved to tuple 38.

5.2.2 Optimization of the dominate() Function using AVX2
The dominate() function Indicates whether the first tuple dominates the second tuple. It Iterates
through each element (dimension) of the tuples. Compares the corresponding elements of the
two tuples: If the element in the first tuple (”*p1”) is greater than the element in the second tu-
ple (”*p2”), the first tuple does not dominate, and ”false” is returned. If the element in the first
tuple is less than the element in the second tuple and dominance hasn’t been established (”!dom-
inating”), it sets ”dominating” to ”true”. If the iteration completes without returning ”false”, it
means the first tuple dominates the second tuple if ”dominating” is ”true”. Returns the result.

110

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

Koizumi et al. [145] used Intel SSE/AVX instructions to decrease the number of instructions in

AVX2 SIMD accelerates comparisons by processing multiple
elements simultaneously in 256-bit registers.

Vector 1: {x1,x2, . . . ,x8}

Vector 2: {y1,y2, . . . ,y8}

Compare Result: Dominance Check

2.1 3.5 4.8 1.7 5.2 3.1 6.4 7.3

Vector 1 (Row1)

1.9 4.1 3.8 2.2 5.0 3.3 5.9 8.1

Vector 2 (Row2)

> < > < > < > <

1

0

1

0

1

0

1

0

Result: 1 = True, 0 = False

Figure 5.6: Tuples comparisons using AVX2.

the dominates() function. In our case we used the AVX2 which is an abbreviation for Advanced
Vector Extensions 2, which serves as an extension to the x86 instruction set architecture. AVX2
is specifically engineered to enhance the speed of vectorized calculations, especially when it
comes to SIMD (Single Instruction, Multiple Data) operations. AVX2 introduces vector reg-
isters that are 256 bits wide, which is double the width of the registers in SSE and AVX. This
enables the concurrent processing of a greater number of data elements within a single instruc-
tion [257] as illustrated in figure 5.6. AVX2 is a component of a wider range of improvements in
SIMD technology that focuses on utilizing parallelism in contemporary processors. SIMD in-
structions enable the execution of a single instruction on multiple data elements simultaneously,
resulting in notable performance enhancements for specific computational tasks [145].

Listing 5.1: AVX2 source code of dominates() function
1 // assume width is always a multiple of 8
2 inline bool dominate_avx2_x8(double *row1, double *row2, size_t width) {
3 __m256d dominating = _mm256_setzero_pd();
4
5 for (size_t i = 0; i < width; i += 8) {
6 __m256d vec1 = _mm256_loadu_pd(&row1[i]);
7 __m256d vec2 = _mm256_loadu_pd(&row2[i]);
8
9 // Compare vectors

10 __m256d cmp_result = _mm256_cmp_pd(vec1, vec2, _CMP_GT_OQ);
11
12 // Logical OR with dominating
13 dominating = _mm256_or_pd(dominating , cmp_result);
14
15 // Check for dominance
16 if (!_mm256_testz_pd(cmp_result , cmp_result)) {
17 return false;
18 }
19 }
20
21 // Check if any element in the dominating vector is true
22 return !_mm256_testz_pd(dominating , dominating);
23 }

The domi nate_av x2() function is an AVX2-optimized version of the original ”dominate”
function As shown in Listing 5.1. It leverages AVX2 intrinsics to perform SIMD operations,
processing multiple elements in parallel. Compares corresponding elements of two tuples us-
ing AVX2 vectorized instructions. Takes advantage of AVX2’s ability to execute multiple com-
parisons in a single instruction. Generates a mask indicating the dominance relationship for

111

5.2. PARALLEL RSS OVER DATA STREAM

each element. Combines individual element comparisons using AVX2 intrinsics. This AVX2-
optimized function enhances the efficiency of dominance checking in the context of skyline
computations, leveraging advanced vectorized instructions for improved parallelism.

Algorithm 3: dominate(Tupl e1,Tupl e2,N)
Input : Tupl e1, Tuple2, Dimensionality N .
Output
:

Tr ue or F al se.

1 procedure dominate(dataset; a: index; b: index)
2 flag ← 0
3 for d = 0 to N −1 do
4 if dataset[a][d] > dataset[b][d] then
5 return 0
6 end
7 else if dataset[a][d] < dataset[b][d] then
8 flag ← 1
9 end

10 end
11 return flag

The time complexity of the following AVX2-optimized code is O(m/8), where ’m’ is the
width of the vectors being compared. The implementation harnesses the power of Intel AVX2
instructions, which enable Single Instruction, Multiple Data (SIMD) operations for 256-bit
operands. In the context of AVX2, the _mm256_set zer o_pd() function initializes a 256bi t
AVX register (__m256d) with all elements set to zero. This register, named domi nati ng , is
used to accumulate comparison results during the vectorized processing of the input vectors.
The code iterates over the vectors in chunks of eight elements at a time, leveraging the 256-bit
wide AVX2 registers. For each iteration, two 256-bit vectors (vec1 and vec2) are loaded from
memory using the _mm256_loadu_pd intrinsic. This enables simultaneous loading of eight
double-precision floating-point values. The _mm256_cmp_pd intrinsic is then employed to
compare corresponding elements of vec1 and vec2. The comparison mode _C MP_GT_OQ
checks if the values in vec1 are greater than those in vec2. The resulting vector (cmp_r esul t)
holds the comparison outcomes.

To determine if any dominance exists in the current set of eight elements, a logical OR op-
eration is performed between the ’dominating’ register and cmp_r esul t . This update ensures
that if any element in the current chunk indicates dominance, it will be reflected in the ’dom-
inating’ register. Following the vectorized comparison, the code checks if any element in the
’dominating’ register is non-zero using the _mm256_test z_pd intrinsic. If true, it means that
no dominance was found in the current chunk, and the loop continues to the next set of eight
elements. If false, the function returns false as dominance is detected. Finally, the function
returns true if any element in the ’dominating’ register is non-zero after processing all chunks,
indicating the presence of dominance in the entire vector. This AVX2-optimized implemen-
tation significantly improves performance by exploiting parallelism in the comparison opera-
tions, leading to reduced instruction count and enhanced efficiency in processing large datasets.

112

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

Algorithm 4: Main Algorithm for Computing Skylines in Parallel
Input : Window Z , Dimensionality N , d at at y pe, d at asi ze, number_o f _cor es
Output
:

g lobalSk yl i ne[]

1 d at a ← readDataStream(d at asi ze, N , d at at y pe)
2 step ← d at asi ze / number_o f _cor es +1
3 localSk yl i nes[]
4 # pragma omp parallel for schedule(dynamic)
5 for i ← number_o f _cor es −1 to 0 do
6 // i ∗ step start of the data chunk
7 // mi n((i +1)∗ step, wi ndow) Chunk End
8 localSk yl i ne[] ←

PRSS(d at a,di mensi onal i t y, wi ndow, i ∗ step,mi n((i +1)∗ step, wi ndow))
9 // Combine local skylines outside the parallel region

10 critical section: append localSk yl i ne[] to localSk yl i nes[]
11 end
12 g lobalSk yl i ne[] = combi ne_sk yl i nes(localSk yl i nes[])

Understanding Data Chunk Assignment to Cores:
The main algorithm 4 distributes data chunks to multiple cores using OpenMP for parallel exe-
cution.

• The dataset has datasize tuples.

• The number of available cores is number_of_cores.

• The step size for each core is computed as:

step = d at asi ze

number_o f _cor es
+1 (5.1)

This ensures that all tuples are processed, even if datasize is not perfectly divisible by
number_of_cores.

• Each core i is assigned a contiguous chunk of data:

Start index= i × step

End index= min((i +1)× step, wi ndow)

The Parallel Loop Execution:
#pragma omp parallel for schedule(dynamic)

For(i ← number_of_cores - 1 To 0)
This loop executes in parallel across the available cores.

• #pragma omp parallel for schedule(dynamic):

– Each iteration runs independently on a different core.
– Dynamic scheduling ensures efficient workload balancing.

• Loop direction (number_of_cores - 1 to 0):

– Processing starts from the highest indexed core.

113

5.2. PARALLEL RSS OVER DATA STREAM

Each core calls:

localSk yl i ne[] ← PRSS(d at a,di mensi onal i t y, wi ndow, i∗step,mi n((i+1)∗step, wi ndow))

Synchronization and Combining Local Skylines: After computing localSkyline[]:
Critical section to avoid race conditions

append localSkyline[] to localSkylines[]
Finally, local skylines are merged:
globalSkyline[] = combine_skylines(localSkylines[])

Execution Example:
For datasize = 1000 and number_of_cores = 4:

step = 1000

4
+1 = 251 (5.2)

Core Index (i) Start Index End Index
Core 3 753 1000
Core 2 502 753
Core 1 251 502
Core 0 0 251

Table 5.1: Data Chunk Assignment

Summary of Execution:

1. The dataset of 1000 tuples is divided into 4 chunks.

2. Each core processes its chunk independently.

3. Local skylines are computed per chunk.

4. Local skylines are merged to form the global skyline.

5.2.3 Parallel implementation details
Utilizing multi-core platforms can effectively reduce the execution time for continuous Skyline
computation. We focus on studying optimization techniques that are specifically related to the
distribution of computation across multi-core processors [144]. We examine the impact of var-
ious load-balancing strategies. In our proposed implementation, the workloads are distributed
among the cores. Once a core completes its computation, it takes on a portion of the remaining
tasks. Consequently, an effective load balancing is ensured. Furthermore, based on the number
of cores that are available, we use two distinct solutions for loop iterations scheduling among
threads as illustrated in figure 5.7.
1. Static Scheduling: iterations of the loop are divided into chunks at compile time. Each

thread is assigned a fixed-size chunk of iterations to process before the loop begins. The chunk
size remains constant throughout the execution of the loop. Static scheduling is often used when
the workload per iteration is known to be uniform, and the overhead of chunk distribution is neg-
ligible compared to the overall computation.

114

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

Thread 4

Thread 3

Thread 2

Thread 1

Thread 4

Thread 3

Thread 2

Thread 1

Figure 5.7: Various load-balancing strategies.

2. Dynamic Scheduling: iterations of the loop are distributed dynamically among the avail-
able threads at runtime. Threads request work (iterations) dynamically from a shared pool of
iterations until all iterations are completed. The chunk size may vary dynamically based on
the workload of each thread and the availability of iterations in the pool. Dynamic scheduling
can be beneficial when the workload per iteration is unpredictable or when the workload varies
significantly across iterations.

We employed OpenMP to parallelize the calculation of local skylines across a sliding win-
dow. The data is partitioned into segments according to the number of cores (cor e_number),
and each core processes a subset of the data. Within the parallel region, every core initial-
izes a skyline instance and calculates the local skyline for its designated data subset. The local
skylines are stored in a temporary vector called localSkyline. Following the parallel region, a
critical section is employed to merge the individual skylines into a collective localSkylines vec-
tor. The global skyline is computed by utilizing the combined local skylines outside the parallel
region.

5.3 Performance Evaluation
5.3.1 Experimental Setup
We assess the performance of our PRSS system using both count and time-based windows on
synthetic and real data streams. The PRSS and RSS implementations are written in C++ and
compiled using g++ (v11.3.0) with the -O3 optimization flag. The OpenMP API (v5.0) library
is employed for implementing multi-threading algorithms.The simulations were executed on an
Intel i7 4.2 GHz processor, which has 6 cores, along with 16 GB of DDR4 RAM. The oper-
ating system used was Windows 10. We assess the scalability and runtime efficiency of our
algorithm by conducting a comprehensive experimental simulation, comparing it to the sequen-
tial RSS algorithm. The PRSS c++ source code has been published on GitHub as well1. In
order to compare our parallel algorithm with its sequential counterpart RSS, we employed the
original implementation developed by the original author2. Datasets:We employed the Sky-
line benchmarking data generator3. The parameters utilized in the current skyline techniques
are employed to directly compare the outcomes. As an illustration, we vary the dimensionality
d, ranging from 8 to 64, and the cardinality, varying from n = 100k to 500k. In addition, we
conduct benchmarking using real datasets, specifically the Covertype4 and weather5 datasets.
Covertype: The Covertype dataset contains data on cartographic variables, including elevation,

1https://github.com/avionicscode/multicore-prss, accessed on August, 2023
2https://github.com/skyline-sdi/sdi-rss, accessed on October , 2022
3http://pgfoundry.org/projects/randdataset, accessed on February, 2020
4https://doi.org/10.24432/C50K5N, accessed on August, 2023
5https://crudata.uea.ac.uk/cru/data//hrg/tmc/, accessed on August, 2023

115

https://github.com/avionicscode/multicore-prss
https://github.com/skyline-sdi/sdi-rss
http://pgfoundry.org/projects/randdataset
https://doi.org/10.24432/C50K5N
https://crudata.uea.ac.uk/cru/data//hrg/tmc/

5.3. PERFORMANCE EVALUATION

50 100 150 200 250 300 350 400 450 500

102

103

Cardinality(x 103)

R
u
n
-t
im

e,
se
c

rss VS parallel rss with Anticorrelated Data

rss-count D=8 parallel rss-count D=8

Figure 5.8: RSS vs PRSS (Anticorrelated Count-Based window, Different Cardinalities).

50 100 150 200 250 300 350 400 450 500

102

103

Cardinality(x 103)

R
u
n
-t
im

e,
se
c

rss VS parallel rss with Correlated Data

rss-count D=8 parallel rss-count D=8

Figure 5.9: RSS vs PRSS (Correlated Count-Based Window, Different Cardinalities).

116

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

50 100 150 200 250 300 350 400 450 500

102

103

Cardinality(x 103)

R
u
n
-t
im

e,
se
c

rss VS parallel rss with Independent Data

rss-count D=8 parallel rss-count D=8

Figure 5.10: RSS vs PRSS (Independent Count-Based Window, Different Cardinalities).

proximity to the nearest roadway, and slope. The data is accessible for grid cells with dimen-
sions of 30 m x 30 m in the Roosevelt National Forest located in Colorado, USA. Skyline points
represent forested areas that have unique cartographic characteristics.

Weather: The Weather dataset offers monthly data on precipitation, along with the geo-
graphical coordinates (latitude and longitude) and elevation for 566,268 terrestrial locations
across the globe. Each record corresponds to a cell that measures 10 degrees of latitude and
longitude. A skyline record refers to a distinct pattern of months that experience unusually
high levels of rainfall based on its three-dimensional location, with a preference for higher and
northeastern areas.

5.3.2 Experimental Results

Data Window Dimensions RSS PRSS BskyTree
Name Size Number Time (sec) Time (sec) Time (sec)

Covertype 100000 10 62.9839 41.3117 3.978
Weather 100000 15 54.6236 21.2429 140.563

Table 5.2: RSS vs Parallel RSS vs BskyTree with Real-World Datasets.

Runtime Efficiency Comparison

To evaluate the performance of our proposed PRSS (Parallel Range Search Skyline) algorithm,
we conducted extensive experiments comparing it with the sequential RSS algorithm and the

117

5.3. PERFORMANCE EVALUATION

10 20 30 40 50 60

60

80

100

120

140

160

180

200

220

240

260

280

300

Dimensionality

R
u
n
-t
im

e,
se
c

rss VS parallel rss with Anticorrelated Data

rss-count W=100k parallel rss-count W=100k

Figure 5.11: RSS vs PRSS (Anticorrelated Count-Based Window, Different Dimensionalities).

10 20 30 40 50 60
101

101.2

101.4

101.6

101.8

102

102.2

102.4

Dimensionality

R
u
n
-t
im

e,
se
c

rss VS parallel rss with Correlated Data

rss-count W=100k parallel rss-count W=100k

Figure 5.12: RSS vs PRSS (Correlated Count-Based Window, Different Dimensionalities).

118

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

10 20 30 40 50 60
101

101.2

101.4

101.6

101.8

102

102.2

102.4

Dimensionality

R
u
n
-t
im

e,
se
c

rss VS parallel rss with Independent Data

rss-count W=100k parallel rss-count W=100k

Figure 5.13: RSS vs PRSS (Independent Count-Based Window, Different Dimensionalities).

0 2 4 6 8 10 12 14

103

number of threads

R
u

n
-t

im
e,

se
c

parallel rss with different number of threads

parallel rss W = 500k and dim = 8

Figure 5.14: PRSS scalability (Anticorrelated Count-Based Window, Different Numbers of Threads).

119

5.3. PERFORMANCE EVALUATION

well-known BskyTree algorithm. Our benchmarking focuses on different cases involving vary-
ing dimensionalities, cardinalities, and numbers of processing threads.

The runtime in seconds displayed in the figures accounts for the entire skyline maintenance
process, including:

• Reception of new tuples.

• Computing the skyline.

• Updating the skyline with new tuples.

• Maintaining skyline indices.

• Removing expired tuples from the sliding window.

For example, if the window size is set to 500K, our experiments initially process 450K
tuples to extract the skyline. Upon receiving an additional 50K tuples, the skyline is updated
accordingly. This comprehensive measurement ensures a realistic evaluation of skyline query
processing in streaming environments.

Initially, a comparison is made between the run-time efficiency of PRSS and the sequential
RSS method. The comparison results of the algorithms are displayed in Figures 5.8, 5.9, 5.10
and 5.11, 5.12, 5.13. The lines represent the quantity of attributes present in the datasets, while
the bars indicate the duration of the running times, measured in seconds. The experiment uti-
lized sliding window sizes ranging from 100k to 500k tuples for the count-based window, and
from 8 to 64 for the dimensionality.

• Effect of data Dimensionality: Figures 5.11, 5.12 and 5.13 demonstrates benchmarking
results of RSS and PRSSwith a fixed cardinality of 100Kwhile increasing dimensionality
from 10 to 60 with anti-correlated, correlated, and independent data, respectively.

• PRSS consistently outperforms RSS in all cases, demonstrating better scalability with
higher dimensionalities. However, the key observation lies in the rate of this increase.
Parallel RSS consistently outperforms its sequential counterpart, showcasing a notable
improvement in speed. This improvement is particularly significant when dealing with
datasets of higher dimensionality, as demonstrated by the steeper slopes in the execution
time curves of PRSS. The parallelization strategy implemented in PRSS efficiently han-
dles the increased computational load induced by higher dimensionality and cardinality,
resulting in superior scalability.

• Effect of data Cardinality: Figures 5.8, 5.9 and 5.10 presents the benchmarking results
for PRSS and RSS with a fixed dimensionality of 8 while varying the window size from
100K to 500K with anti-correlated, correlated, and independent data, respectively.

• Our PRSS algorithm consistently outperforms RSS by leveraging parallel processing, re-
ducing execution time as the window size increases.

• Effect of real dataset: In order to demonstrate the efficiency of Skyline queries, it is nec-
essary to evaluate them using real datasets that may contain duplicate values. In table 5.2,
using real data for weather condition monitoring with 15 attributes, our parallel RSS al-
gorithm continues to demonstrate superior performance compared to the sequential RSS
algorithm. Hence, our parallel version exhibits superiority not only on synthetic dataset

120

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

but also on real-world data. In real-world scenarios where datasets may contain dupli-
cate values and exhibit more complex structures, the parallel version of the algorithm
maintains its efficiency. The ability of PRSS to handle real-world datasets underscores
its practical applicability and reinforces the significance of the parallelization strategy
employed.

• Effect of number of threads: In Fig. 5.14, We showcase the capacity of PRSS to effec-
tively utilize the complete parallel processing capabilities of the CPU. This is achieved by
executing the parallel version of PRSS on a dataset with a fixed window size and dimen-
sionality, while varying the number of CPU threads employed from 1 to 12. Observing
a fixed dataset window size (100k) and dimensionality (8), it is evident that the execu-
tion time of PRSS decreases almost linearly with an increase in the number of threads.
The decrease in execution time is nearly linear as the number of threads increases from
1 to 12, highlighting the efficiency of parallelization. This behavior indicates that PRSS
can efficiently distribute the workload across multiple threads, minimizing idle time and
maximizing CPU utilization. The scalability of PRSS is crucial in scenarios where com-
putational resources can be dynamically allocated, providing a significant advantage over
the sequential approach, especially in modern multicore architectures. This demonstrates
the effective utilization of the CPU’s parallel processing capabilities by PRSS.

• Consistency Across Diverse Datasets: One noteworthy aspect of PRSS’s performance is
its consistency across diverse datasets. Whether dealing with synthetic datasets of vary-
ing dimensionality and cardinality or real-world datasets with complex structures, PRSS
consistently outperforms its sequential counterpart. This consistency emphasizes the ro-
bustness of the parallelization strategy employed in PRSS, showcasing its adaptability to
different data characteristics and scenarios.

In conclusion, the experimental results and expanded explanations collectively provide a
comprehensive understanding of the effectiveness and advantages of the parallel skyline
algorithm (PRSS) over its sequential counterpart. The consistent performance across
diverse datasets, scalability with the number of threads, and applicability to real-world
scenarios highlight the robustness and practicality of the proposed parallelization strategy.

Memory Consumption Comparison

It’s important to understand that efficiency in parallel computing is not solely determined by
memory consumption. While higher memory usage may raise concerns, the efficiency of par-
allelization should be evaluated based on various factors, including speedup, scalability, and
resource utilization.

Here are some points to consider:
1. Speedup: based on our Runtime Efficiency Comparison our parallel algorithm demon-

strates significant speedup compared to the sequential version, it indicates that our paralleliza-
tion approach is effective in utilizing multiple processing units. This speedup can lead to faster
overall execution times, which is a primary goal of parallel computing.

2. Scalability: Awell-designed parallel algorithm should scale efficiently with an increasing
number of threads. Scalability refers to the ability of the parallel algorithm to maintain or
improve performance as the system size grows. our parallel algorithm exhibits good scalability,
thus the parallelization approach is well-suited for larger problem sizes.

121

5.3. PERFORMANCE EVALUATION

8 12 16

0

100

200

27
50

62

143

199

249

Dimensionality

P
ro

c
e
ss

M
e
m
o
ry

(m
e
g
a
b
y
te
)

RSS vs Parallel RSS (Anti correlated Data, size = 100k)

RSS Parallel RSS

8 12 16

100

200

36
48

60

133

195

249

Dimensionality

P
ro

c
e
ss

M
e
m
o
ry

(m
e
g
a
b
y
te
)

RSS vs Parallel RSS (correlated Data, size = 100k)

RSS Parallel RSS

8 12 16

100

200

35
49

61

124

190

250

Dimensionality

P
ro

c
e
ss

M
e
m
o
ry

(m
e
g
a
b
y
te
)

RSS vs Parallel RSS (Independent Data, size = 100k)

RSS Parallel RSS

Figure 5.15: Memory consumption of RSS vs PRSS (Anti, Corr, Ind data, Different Dimensionalities).

3. Resource Utilization: While higher memory consumption may raise concerns, it’s essen-
tial to assess whether the memory usage is justified by the performance gains achieved through
parallelization. Efficient utilization of available resources, including CPU cores and memory,
is a key aspect of parallel computing. our parallel algorithm effectively leverages resources to
achieve better performance, thus the higher memory usage is acceptable.

4. Trade-offs: Parallel computing often involves trade-offs between factors such as memory
consumption, speedup, and scalability. It’s essential to consider these trade-offs in the context
of our specific application requirements and system constraints. The increase in memory usage
for PRSS algorithm has a reasonable trade-off for significant performance improvements.

Liu et al. [79] provides insights into the memory consumption of the sequential RSS al-
gorithm based on the data structures used, specifically a dynamic dimension index based on
B-trees. Let’s break down the key points of the analysis:

1. Tuple Memory Requirements: Each d-dimensional tuple requires 24xd bytes to store all
index entries, including values, header links, and dimension links. Additionally, a header for
each tuple requires 20 bytes to store a tuple ID, a dominance list pointer, and a skyline flag.

2. Space Complexity of B-tree: The space complexity of the B-tree is O(N), where N is the
number of nodes. Assuming 2 64-bit pointers per node to maintain the tree, the total memory
required by the dynamic dimension index is calculated as 16 x N x (24 x d + 20) bytes.

3. Memory Requirement Example: The analysis provides an example stating that 100 MB
of memory space is sufficient to handle a 10 K window of 20-dimensional streaming data.

Using Microsoft Visual Studio’s memory tool, we analyzed the Impact of Parallelism on

122

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

(a) Memory consumption of Sequential RSS

(b) Memory consumption of Parallel RSS

Figure 5.16: Tracking Memory consumption of RSS vs PRSS.

Memory Consumption of PRSS as illustrated in figure 5.16. While PRSS offers significant
performance improvements, it does come with higher memory usage, particularly due to the
parallel overhead, including thread stack space and duplicated data across CPU cores. However,
this trade-off is justified by the algorithm’s faster processing times, especially in high-demand,
real-time applications. And as we see the memory usage rises only at the begining Fig. 5.16b
as each thread allocates its private variables but stabilizes as the algorithm progresses. PRSS
employs dynamic memory allocation to optimize resource usage based on the dataset size and
workload, minimizing memory overhead. Additionally, cache optimization reduces memory
access times, and memory management techniques prevent leaks, ensuring stability. Overall,
while PRSS consumes more memory, the performance gains in execution speed and scalability
make this trade-off worthwhile.

our parallel PRSS algorithm consumesmore memory than the sequential RSSwhile running
faster can be attributed to several factors:

1. Parallel Overhead: When we parallelize The RSS algorithm using OpenMP, it creates
multiple threads to execute computation in parallel. Each thread requires its own stack space,
which adds to the overall memory consumption. Additionally, OpenMP might allocate addi-
tional resources for thread management and synchronization, contributing to increased memory
usage.

2. Data Duplication: In parallel computing, some data needs to be duplicated or partitioned
across threads to ensure each thread has access to the required data independently. This replica-
tion or partitioning can lead to higher memory consumption compared to the sequential version,
where data might be processed in-place.

3. ParallelizationOverheads: - Each thread running the sequential RSS algorithm on a chunk
of data will incur memory overhead for thread stack space and local variables used within the
thread. - The number of threads spawned in parallel and the size of the data chunks processed
by each thread will determine the overall memory consumption during parallel execution.

4. Combining Global Results: - After processing chunks of data in parallel, PRSS combines
the global results outside the parallel region. This step requires additional memory for storing
the aggregated results before the final skyline computation.

Despite the increased memory consumption, our parallel PRSS version can still run faster
due to the parallel execution of computation across multiple threads. This increased speed can
result from exploiting available CPU resources more effectively, reducing overall execution time
despite the higher memory footprint.

123

5.3. PERFORMANCE EVALUATION

40 50 60 70 80 90 100

102

103

104

Cardinality(x 103)

R
u
n
-t
im

e,
se
co
n
d
s

rss VS parallel rss VS BskyTree with Anticorrelated Data (d 16)

rss-count parallel rss-count BskyTree

Figure 5.17: RSS vs PRSS vs BskyTree (Anticorrelated Count-Based Windows, Different Cardinalities).

40 50 60 70 80 90 100
100.6

100.8

101

101.2

101.4

101.6

101.8

Cardinality(x 103)

R
u
n
-t
im

e,
se
co
n
d
s

rss VS parallel rss vs BskyTree with Correlated Data (d 16)

rss-count parallel rss-count BskyTree

Figure 5.18: RSS vs PRSS vs BskyTree (Correlated Count-Based Windows, Different Cardinalities).

124

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

40 50 60 70 80 90 100

102

103

104

Cardinality(x 103)

R
u
n
-t
im

e,
se
c

rss VS parallel rss vs BskyTree with Independent Data (d 16)

rss-count parallel rss-count BskyTree

Figure 5.19: RSS vs PRSS vs BskyTree (Independent Count-Based Windows, Different Cardinalities).

7 8 9 10 11 12 13 14 15 16

101

102

103

104

Dimensionality

R
u
n
-t
im

e,
se
c

rss VS parallel rss vs BskyTree with Anticorrelated Data (card 100k)

rss-count parallel rss-count BskyTree

Figure 5.20: RSS vs PRSS vs BskyTree (Anticorrelated Count-Based Windows, Different Dimensionali-
ties).

125

5.3. PERFORMANCE EVALUATION

7 8 9 10 11 12 13 14 15 16

100

101

102

Dimensionality

R
u
n
-t
im

e,
se
co
n
d
s

rss VS parallel rss vs BskyTree with Correlated Data (card 100k)

rss-count parallel rss-count BskyTree

Figure 5.21: RSS vs PRSS vs BskyTree (Correlated Count-Based Windows, Different dimensionalities).

7 8 9 10 11 12 13 14 15 16

100

101

102

103

104

Dimensionality

R
u
n
-t
im

e,
se
c

rss VS parallel rss vs BskyTree with Independent Data (card 100k)

rss-count parallel rss-count BskyTree

Figure 5.22: RSS vs PRSS vs BskyTree (Independent Count-Based windows, Different Dimensionalities).

126

CHAPTER 5. PARALLEL RANGE SEARCH SKYLINE

Comparison of RSS and PRSS with BSkyTree

To assess the performance of our parallel algorithm, we compare it (i) to a baseline approach
which computes the skyline using state of the art algorithm BSkyTree [96]. The goal of this
comparison is to show that (i) without any index structure, the best skyline algorithm known so
far is unable to handle multidimensional skyline queries when the dimensionality is moderately
large in a streaming context on both synthetic datasets and real world datasets.

First, the effects of (1) dimensionality and (2) cardinality of data have been evaluated. For
(1), the cardinality is fixed to 100K and for (2), the dimensionality of data is fixed to 16.

PRSS and RSS outperform BSkyTree in high dimensionality domains on AC (d > 10) and
Corr data (d > 14) and Independent data (d > 12) but is less efficient than BSkyTree in low
dimensionalities. PRSS systematically outperforms RSS and BSkyTree on all data.

We point out two observations from this experiment:
1. PRSS is faster with more than one order of magnitude in most cases where d > 10.

2. state of the art algorithm BSkyTree algorithm takes a lot of time to extract skyline when
dimensionality d > 10 thus it is unefficient in high dimensionality domains.

RSS vs PRSS vs BskyTree on Count-Based Windows with Different Cardinalities:
Figures 5.17, 5.18 and 5.19 shows the comparison of RSS, PRSS and BskyTree with a fixed di-
mensionality of 16 and varyingwindow sizes from 50K to 100Kwith anti-correlated, correlated,
and independent data, respectively.

PRSS significantly outperforms both RSS and BskyTree due to its parallel execution and
efficient indexing techniques.

RSS vs PRSS vs BskyTree on Count-Based Windows with Different Dimensionalities:
Figures 5.20, 5.21 and 5.22 shows the comparison of RSS, PRSS and BskyTree with a fixed
cardinality of 100K while varying dimensions from 8 to 16 with anti-correlated, correlated, and
independent data, respectively.

The PRSS algorithm continues to outperform the sequential RSS and BskyTree algorithms,
maintaining superior efficiency as dimensionality increases.

5.4 Conclusion
The results confirm that PRSS is significantly faster than RSS and BskyTree in all tested scenar-
ios. By effectively utilizing parallel processing, PRSS reduces runtime across varying window
sizes, dimensionalities, and dataset distributions. The scalability analysis further demonstrates
that PRSS efficiently leverages multicore architectures, making it a robust solution for skyline
computation in high-dimensional data streams.

PRSS achieves superior performance through its novel indexing mechanism that dynami-
cally adjusts to varying dimensionalities, ensuring efficient tuple organization. The window
partitioning strategy enables effective load balancing, allowing PRSS to distribute workload
evenly across processing cores. Optimizations such as AVX2 instruction sets significantly accel-
erate tuple comparisons, reducing computational overhead. Furthermore, PRSS scales well as
additional threads are introduced, maintaining its efficiency in high-throughput environments.

Experimental results with real-world datasets validate PRSS’s effectiveness, showcasing its
adaptability to diverse data distributions. Its ability to handle large-scale skyline queries effi-
ciently makes PRSS a compelling choice for practical applications requiring real-time skyline
computation. These advantages collectively establish PRSS as a state-of-the-art solution, out-
performing both the sequential RSS algorithm and the well-known BskyTree algorithm.

127

5.4. CONCLUSION

128

Part V

Outlooks and conclusion

129

CONCLUSION

5.5 Conclusion
In this study, we have systematically investigated the parallelization of a well-known sequen-
tial Skyline algorithm on a multicore processor, aiming to enhance its scalability and overall
performance. Our research introduced the Parallel Range Search Skyline (PRSS) algorithm,
a highly efficient method specifically designed to extract skyline points from continuous data
streams. To optimize dominance tests within the sliding window, we employed a dynamic di-
mension indexing technique, which significantly reduced computational overhead and improved
processing speed. Through extensive experimentation, we evaluated the PRSS algorithm un-
der various conditions, utilizing count-based sliding windows on both synthetic and real-world
datasets with high dimensionality. The results demonstrated a substantial performance gain over
both the sequential implementation and the state-of-the-art BSkyTree algorithm, underscoring
the practical utility of our approach in real-world applications.

The significance of our study extends beyond performance improvements, as it highlights
the broader potential of parallel computing in large-scale, high-dimensional data processing.
The effectiveness of multicore architectures in real-time skyline computation, as showcased
in our experiments, presents new opportunities for scalable and high-performance data stream
analysis. In particular, our work emphasizes the importance of efficient parallelization strate-
gies in handling the inherent complexities of continuous and dynamic data environments. The
insights gained from this research can inform the development of future skyline query process-
ing techniques in domains such as financial analytics, transportation systems, and sensor-based
monitoring.

Despite the advancements introduced in this study, several challenges remain open for future
exploration. One key limitation lies in the potential overhead introduced by parallel processing
in cases where data distributions lead to load imbalances among processing cores. Address-
ing this issue requires the development of adaptive load-balancing mechanisms to further op-
timize parallel skyline computation. Additionally, while our PRSS algorithm leverages AVX2
instructions for dominance test optimization, future work could explore the integration of more
advanced vectorization techniques or specialized hardware accelerators to further enhance per-
formance.

Furthermore, a promising direction for extending this research is the deployment of PRSS on
heterogeneous computing architectures, such as Graphics Processing Units (GPUs) and Field-
Programmable Gate Arrays (FPGAs). These architectures offer the potential for even greater
parallelism and energy efficiency, making them well-suited for real-time applications involving
high-velocity and high-volume streaming data. Additionally, investigating skyline computation
in the presence of incomplete and uncertain data remains an important avenue for future study.
Extending PRSS to support probabilistic skyline queries and other uncertainty-aware models
would significantly enhance its applicability in real-world scenarios.

In conclusion, this research contributes to both theoretical and practical advancements in

5.6. LIST OF PUBLICATIONS

skyline computation over data streams, demonstrating the feasibility and effectiveness of par-
allelization techniques in multicore environments. By bridging the gap between parallel com-
puting and skyline query processing, our work paves the way for further innovations in high-
performance big data analytics. The promising results obtained in this study reinforce the crit-
ical role of parallelism in managing complex data-intensive applications, providing a strong
foundation for future developments in this field.

5.6 List of Publications
This Section lists the publications that have resulted from the research conducted during my
PhD.

[1] Walid Khames, Allel Hadjali, and Mohand Lagha. “Parallel continuous skyline query
over high-dimensional data stream windows”. In: Distributed and Parallel Databases
(2024), pp. 1–56.

[2] Walid Khames, Allel Hadjali, and Mohand Lagha. “Skyline Computation on Multi-
core Architectures: A Survey”. In: 2020 International Conference on Data Analytics for
Business and Industry: Way Towards a Sustainable Economy (ICDABI). IEEE. 2020,
pp. 1–6.

132

Part VI

Bibliography

133

BIBLIOGRAPHY

136

BIBLIOGRAPHY

[1] Samet Ayhan et al. “Predictive analytics with aviation big data”. In: 2013 Integrated
Communications, Navigation and Surveillance Conference (ICNS). IEEE. 2013, pp. 1–
13 Cited on pages 3, 6.

[2] Sujie Li et al. “Civil aircraft big data platform”. In: 2017 IEEE 11th International Con-
ference on Semantic Computing (ICSC). IEEE. 2017, pp. 328–333 Cited on pages 3, 5,
7, 8.

[3] Anastasia Yastrebova et al. “Future networks 2030: Architecture and requirements”. In:
2018 10th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT). IEEE. 2018, pp. 1–8 Cited on page 3.

[4] Lena Rudenko and Markus Endres. “Real-time skyline computation on data streams”.
In: New Trends in Databases and Information Systems: ADBIS 2018 Short Papers and
Workshops, AI* QA, BIGPMED, CSACDB, M2U, BigDataMAPS, ISTREND, DC, Bu-
dapest, Hungary, September, 2-5, 2018, Proceedings 22. Springer. 2018, pp. 20–28
Cited on pages 3, 24, 40.

[5] Tiziano De Matteis, Salvatore Di Girolamo, and Gabriele Mencagli. “Continuous sky-
line queries on multicore architectures”. In: Concurrency and Computation: Practice
and Experience 28.12 (2016), pp. 3503–3522 Cited on pages 4, 22, 43, 61.

[6] Songnian Zhang et al. “PPsky: Privacy-Preserving Skyline Queries with Secret Sharing
in eHealthcare”. In: GLOBECOM 2022-2022 IEEE Global Communications Confer-
ence. IEEE. 2022, pp. 5469–5474 Cited on pages 4,
5.

[7] Xiaofeng Ding et al. “Efficient and privacy-preserving multi-party skyline queries over
encrypted data”. In: IEEETransactions on Information Forensics and Security 16 (2021),
pp. 4589–4604 Cited on page 4.

[8] Yumei Luo, Honghua Zhao, and Binhua Xiong. “Research on Air Conditioning Perfor-
manceMonitoring and Trend Prediction of A320 Aircraft Based on Big Data Analysis”.
In: 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information
Technology (ICCASIT). IEEE. 2021, pp. 375–379 Cited on pages 4, 9.

[9] Brian Babcock et al. “Models and issues in data stream systems”. In: Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 2002, pp. 1–16 Cited on page 4.

[10] Henrique CM Andrade, Buğra Gedik, and Deepak S Turaga. Fundamentals of stream
processing: application design, systems, and analytics. Cambridge University Press,
2014 Cited on pages 4, 5, 10, 11, 18–20, 53.

BIBLIOGRAPHY

[11] Quoc-Cuong To, Juan Soto, and Volker Markl. “A survey of state management in big
data processing systems”. In: The VLDB Journal 27.6 (2018), pp. 847–872 Cited on
page 4.

[12] Michael Stonebraker, U?ur Çetintemel, and Stan Zdonik. “The 8 requirements of real-
time stream processing”. In: ACM Sigmod Record 34.4 (2005), pp. 42–47 Cited on
pages 4, 22.

[13] Zhi Cai et al. “Continuous Road Network-Based Skyline Query for Moving Objects”.
In: IEEE Transactions on Intelligent Transportation Systems 22.12 (2020), pp. 7383–
7394 Cited on page 5.

[14] Ismail Kertiou et al. “A dynamic skyline technique for a context-aware selection of the
best sensors in an IoT architecture”. In: Ad Hoc Networks 81 (2018), pp. 183–196 Cited
on pages 5, 33, 39, 88.

[15] Sujie Li, Guigang Zhang, and Jian Wang. “Civil aircraft health management research
based on big data and deep learning technologies”. In: 2017 IEEE International Con-
ference on Prognostics and Health Management (ICPHM). IEEE. 2017, pp. 154–159
Cited on pages 5, 7.

[16] Kathrin Rodriguez Llanes, Marco Antonio Casanova, and Noel Moreno Lemus. “From
sensor data streams to linked streaming data: a survey of main approaches”. In: Journal
of Information and Data Management 7.2 (2016), pp. 130–130 Cited on page 7.

[17] Kostas Patroumpas, Nikos Pelekis, and Yannis Theodoridis. “On-the-fly mobility event
detection over aircraft trajectories”. In: Proceedings of the 26th ACM SIGSPATIAL in-
ternational conference on advances in geographic information systems. 2018, pp. 259–
268 Cited on page 8.

[18] Thomas Plagemann et al. “Using data stream management systems for traffic analysis–a
case study–”. In:Passive and Active NetworkMeasurement: 5th InternationalWorkshop,
PAM 2004, Antibes Juan-les-Pins, France, April 19-20, 2004. Proceedings 5. Springer.
2004, pp. 215–226 Cited on page 9.

[19] Sepanta Zeighami, Gabriel Ghinita, andCyrus Shahabi. “Secure dynamic skyline queries
using result materialization”. In: 2021 IEEE 37th International Conference on Data En-
gineering (ICDE). IEEE. 2021, pp. 157–168 Cited on pages 9,
67.

[20] Johan Bollen, HuinaMao, and Xiaojun Zeng. “Twitter mood predicts the stock market”.
In: Journal of computational science 2.1 (2011), pp. 1–8 Cited on page 10.

[21] Karim Alami and Sofian Maabout. “A framework for multidimensional skyline queries
over streaming data”. In: Data & Knowledge Engineering 127 (2020), p. 101792 Cited
on pages 10, 23, 33, 59.

[22] Gianpaolo Cugola and Alessandro Margara. “Complex event processing with T-REX”.
In: Journal of Systems and Software 85.8 (2012), pp. 1709–1728 Cited on pages 10, 22.

[23] Apache Storm. https://storm.apache.org/ Cited on pages 11, 23.

[24] Apache Flink. https://flink.apache.org/ Cited on pages 11, 23.

[25] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113 Cited on pages 11,
51.

138

BIBLIOGRAPHY

[26] Tiziano De Matteis. “Parallel Patterns for Adaptive Data Stream Processing”. PhD the-
sis. PhD thesis, University of Pisa, Italy, 2016 Cited on pages 11, 12, 18, 21, 42, 45–47,
53–58.

[27] John Darlington et al. “Parallel skeletons for structured composition”. In: Proceedings
of the Fifth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming. 1995, pp. 19–28 Cited on pages 11,
42.

[28] David B Skillicorn and Domenico Talia. “Models and languages for parallel computa-
tion”. In: Acm Computing Surveys (Csur) 30.2 (1998), pp. 123–169 Cited on pages 11,
42.

[29] Murray Cole. “Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming”. In: Parallel computing 30.3 (2004), pp. 389–406 Cited on
pages 11, 42, 43.

[30] Hyeonseung Im, Jonghyun Park, and Sungwoo Park. “Parallel skyline computation on
multicore architectures”. In: Information Systems 36.4 (2011), pp. 808–823 Cited on
page 12.

[31] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard API for shared-
memory programming”. In: IEEE computational science and engineering 5.1 (1998),
pp. 46–55 Cited on pages 12, 43.

[32] Jose Carlos Romero et al. “SkyFlow: Heterogeneous streaming for skyline computation
using FlowGraph and SYCL”. In: Future Generation Computer Systems 141 (2023),
pp. 269–283 Cited on page 12.

[33] Michael McCool, James Reinders, and Arch Robison. Structured parallel program-
ming: patterns for efficient computation. Elsevier, 2012 Cited on pages 12, 42,
53.

[34] Tiziano DeMatteis and Gabriele Mencagli. “Parallel patterns for window-based stateful
operators on data streams: an algorithmic skeleton approach”. In: International Journal
of Parallel Programming 45.2 (2017), pp. 382–401 Cited on pages 12, 24, 42, 45–48,
53–55.

[35] David del Rio Astorga et al. “AC++ generic parallel pattern interface for stream process-
ing”. In: Algorithms and Architectures for Parallel Processing: 16th International Con-
ference, ICA3PP 2016, Granada, Spain, December 14-16, 2016, Proceedings. Springer.
2016, pp. 74–87 Cited on pages 12, 53.

[36] Walid Khames, Allel Hadjali, and Mohand Lagha. “Parallel continuous skyline query
over high-dimensional data stream windows”. In: Distributed and Parallel Databases
(2024), pp. 1–56 Cited on pages 12, 13, 54, 105.

[37] Mark Sullivan and Andrew Heybey. “A system for managing large databases of network
traffic”. In: Proceedings of USENIX. 1998 Cited on page 18.

[38] Henrique Andrade et al. “Scale-up strategies for processing high-rate data streams in
System S”. In: 2009 IEEE 25th International Conference on Data Engineering. IEEE.
2009, pp. 1375–1378 Cited on pages 18, 20.

[39] Katja Hose and Akrivi Vlachou. “A survey of skyline processing in highly distributed
environments”. In: The VLDB Journal 21 (2012), pp. 359–384 Cited on pages 18, 40.

139

BIBLIOGRAPHY

[40] Charu CAggarwal and Philip S Yu. “A survey of synopsis construction in data streams”.
In: Data streams: models and algorithms (2007), pp. 169–207 Cited on page 19.

[41] Tiziano De Matteis, Salvatore Di Girolamo, and Gabriele Mencagli. “A multicore par-
allelization of continuous skyline queries on data streams”. In: European Conference
on Parallel Processing. Springer. 2015, pp. 402–413 Cited on pages 19, 24, 43, 61.

[42] Sirish Chandrasekaran et al. “TelegraphCQ: continuous dataflow processing”. In: Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management of data.
2003, pp. 668–668 Cited on page 22.

[43] STREAMGroup et al. STREAM: The stanford stream data manager. Tech. rep. Stanford
InfoLab, 2003 Cited on page 22.

[44] Vincenzo Gulisano et al. “Streamcloud: An elastic and scalable data streaming system”.
In: IEEE Transactions on Parallel andDistributed Systems 23.12 (2012), pp. 2351–2365
Cited on pages 22, 24.

[45] Chuck Cranor et al. “Gigascope: A stream database for network applications”. In: Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management of data.
2003, pp. 647–651 Cited on page 22.

[46] Daniel J Abadi et al. “Aurora: a new model and architecture for data stream manage-
ment”. In: the VLDB Journal 12 (2003), pp. 120–139 Cited on
page 22.

[47] Opher Etzion and Peter Niblett. Event processing in action. Manning Publications Co.,
2010 Cited on page 22.

[48] EugeneWu, Yanlei Diao, and Shariq Rizvi. “High-performance complex event process-
ing over streams”. In: Proceedings of the 2006 ACM SIGMOD international conference
on Management of data. 2006, pp. 407–418 Cited on page 22.

[49] Oracle StreamAnalytics. https://www.oracle.com/middleware/technologies/stream-processing.html
Cited on page 22.

[50] TIBCO® Streaming. https://www.tibco.com/products/tibco-streaming Cited on page 22.

[51] Esper - EsperTech. https://www.espertech.com/esper/. Mar. 2022 Cited on page 22.

[52] Amazon Kinesis Data Streams. https://aws.amazon.com/kinesis/data-streams/ Cited on
page 23.

[53] Apache Spark. https://spark.apache.org/ Cited on page 23.

[54] SPT Krishnan et al. “Google cloud dataflow”. In: Building Your Next Big Thing with
Google Cloud Platform: A Guide for Developers and Enterprise Architects (2015),
pp. 255–275 Cited on page 23.

[55] Anindita Basak et al. Stream Analytics with Microsoft Azure: Real-time data processing
for quick insights using Azure Stream Analytics. Packt Publishing Ltd, 2017 Cited on
page 23.

[56] Chuck Ballard et al. Ibm infosphere streams: Assembling continuous insight in the in-
formation revolution. IBM Redbooks, 2012 Cited on
page 23.

140

BIBLIOGRAPHY

[57] Walid Khames, Allel Hadjali, and Mohand Lagha. “Skyline Computation on Multi-
core Architectures: A Survey”. In: 2020 International Conference on Data Analytics for
Business and Industry: Way Towards a Sustainable Economy (ICDABI). IEEE. 2020,
pp. 1–6 Cited on pages 23, 42.

[58] Anders Fredrik Ulvig Kiær. “Skyline Computing over multiple Data Streams with a
Storm Cluster.” MA thesis. NTNU, 2014 Cited on page 24.

[59] Ze Deng et al. “Spatial-keyword skyline publish/subscribe query processing over dis-
tributed sliding window streaming data”. In: IEEE Transactions on Computers 71.10
(2022), pp. 2659–2674 Cited on page 24.

[60] JimmyMing-TaiWu et al. “Mining Skyline Patterns from Big Data Environments based
on a Spark Framework”. In: Journal of Grid Computing 21.2 (2023), p. 22 Cited on
page 24.

[61] Ioanna Papanikolaou. “Distributed Algorithms for Skyline Computation using Apache
Spark”. In: (2020) Cited on page 24.

[62] Bugra Gedik et al. “Grubjoin: An adaptive, multi-way, windowed stream join with time
correlation-aware cpu load shedding”. In: IEEE Transactions on Knowledge and Data
Engineering 19.10 (2007), pp. 1363–1380 Cited on page 24.

[63] Jens Teubner and Rene Mueller. “How soccer players would do stream joins”. In: Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Management of data.
2011, pp. 625–636 Cited on page 24.

[64] Daniele Buono, Tiziano De Matteis, and Gabriele Mencagli. “A high-throughput and
low-latency parallelization of window-based stream joins onmulticores”. In: 2014 IEEE
International Symposium on Parallel and Distributed Processing with Applications.
IEEE. 2014, pp. 117–126 Cited on page 24.

[65] Hua Lu, Yongluan Zhou, and Jonas Haustad. “Efficient and scalable continuous skyline
monitoring in two-tier streaming settings”. In: Information Systems 38.1 (2013), pp. 68–
81 Cited on page 24.

[66] Xiaoyong Li et al. “Parallelizing skyline queries over uncertain data streams with slid-
ing window partitioning and grid index”. In: Knowledge and Information Systems 41.2
(2014), pp. 277–309 Cited on pages 24, 61.

[67] Xiaoyong Li et al. “Parallel skyline queries over uncertain data streams in cloud com-
puting environments”. In: International Journal of Web and Grid Services 10.1 (2014),
pp. 24–53 Cited on pages 24, 61.

[68] Jinchao Zhang et al. “Efficient algorithms of parallel Skyline join over data streams”.
In: International Conference on Algorithms and Architectures for Parallel Processing.
Springer. 2018, pp. 184–199 Cited on pages 24, 44, 61.

[69] Martin Hirzel. “Partition and compose: Parallel complex event processing”. In: Pro-
ceedings of the 6th ACM International Conference on Distributed Event-Based Systems.
2012, pp. 191–200 Cited on page 24.

[70] Gianpaolo Cugola and Alessandro Margara. “Low latency complex event processing
on parallel hardware”. In: Journal of Parallel and Distributed Computing 72.2 (2012),
pp. 205–218 Cited on page 24.

141

BIBLIOGRAPHY

[71] Cagri Balkesen et al. “Rip: Run-based intra-query parallelism for scalable complex
event processing”. In: Proceedings of the 7th ACM international conference on Dis-
tributed event-based systems. 2013, pp. 3–14 Cited on
page 24.

[72] Sai Wu et al. “Parallelizing stateful operators in a distributed stream processing system:
how, should you and how much?” In: Proceedings of the 6th ACM International Con-
ference on Distributed Event-Based Systems. 2012, pp. 278–289 Cited on
page 25.

[73] Scott Schneider et al. “Safe data parallelism for general streaming”. In: IEEE transac-
tions on computers 64.2 (2013), pp. 504–517 Cited on
page 25.

[74] Cagri Balkesen and Nesime Tatbul. “Scalable data partitioning techniques for parallel
sliding window processing over data streams”. In: International workshop on data man-
agement for sensor networks (DMSN). 2011 Cited on pages 25,
55.

[75] Jin Li et al. “No pane, no gain: efficient evaluation of sliding-window aggregates over
data streams”. In: Acm Sigmod Record 34.1 (2005), pp. 39–44 Cited on pages 25, 55.

[76] Jongwuk Lee and Seung-won Hwang. “Toward efficient multidimensional subspace
skyline computation”. In: The VLDB Journal 23 (2014), pp. 129–145 Cited on
pages 30, 37.

[77] Apostolos N Papadopoulos et al. “Skylines and Other Dominance-Based Queries”. In:
Synthesis Lectures on Data Management 15.2 (2020), pp. 1–158 Cited on pages 30, 33,
34.

[78] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. “The skyline operator”. In:
Proceedings 17th international conference on data engineering. IEEE. 2001, pp. 421–
430 Cited on pages 32, 34, 58, 62, 67.

[79] Rui Liu and Dominique Li. “Dynamic Dimension Indexing for Efficient Skyline Main-
tenance on Data Streams”. In: International Conference on Database Systems for Ad-
vanced Applications. Springer. 2020, pp. 272–287 Cited on pages 32, 33, 40, 93, 94,
96–98, 122.

[80] Hua Lu, Yongluan Zhou, and Jonas Haustad. “Continuous skyline monitoring over dis-
tributed data streams”. In: Scientific and Statistical Database Management: 22nd In-
ternational Conference, SSDBM 2010, Heidelberg, Germany, June 30–July 2, 2010.
Proceedings 22. Springer. 2010, pp. 565–583 Cited on page 33.

[81] Atish Das Sarma et al. “Randomized multi-pass streaming skyline algorithms”. In: Pro-
ceedings of the VLDB Endowment 2.1 (2009), pp. 85–96 Cited on
page 33.

[82] FanGuo et al. “Robust andAutomatic Skyline Detection AlgorithmBased onMSSDN”.
In: Journal of Advanced Computational Intelligence and Intelligent Informatics 24.6
(2020), pp. 750–762 Cited on page 33.

[83] Hyeonseung Im and Sungwoo Park. “Group skyline computation”. In: Information Sci-
ences 188 (2012), pp. 151–169 Cited on pages 34,
68.

142

BIBLIOGRAPHY

[84] Cheng Sheng and Yufei Tao. “On finding skylines in external memory”. In: Proceedings
of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on principles of database
systems. 2011, pp. 107–116 Cited on page 34.

[85] Markus Endres and Erich Glaser. “Indexing for Skyline Computation: A Comparison
Study”. In: Flexible Query Answering Systems: 13th International Conference, FQAS
2019, Amantea, Italy, July 2–5, 2019, Proceedings 13. Springer. 2019, pp. 31–42 Cited
on page 34.

[86] Mohamed E Khalefa, Mohamed F Mokbel, and Justin J Levandoski. “Skyline query
processing for incomplete data”. In: 2008 IEEE 24th international conference on data
engineering. IEEE. 2008, pp. 556–565 Cited on pages 34, 60.

[87] Yunjun Gao et al. “Processing k-skyband, constrained skyline, and group-by skyline
queries on incomplete data”. In:Expert Systemswith Applications 41.10 (2014), pp. 4959–
4974 Cited on
page 34.

[88] Shiming Zhang, Nikos Mamoulis, and David W Cheung. “Scalable skyline computa-
tion using object-based space partitioning”. In: Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 2009, pp. 483–494 Cited on page 34.

[89] Dimitris Papadias et al. “An optimal and progressive algorithm for skyline queries”. In:
Proceedings of the 2003 ACM SIGMOD international conference on Management of
data. 2003, pp. 467–478 Cited on pages 34, 66, 77, 80.

[90] Shengli Sun et al. “Efficientmonitoring of skyline queries over distributed data streams”.
In: Knowledge and information systems 25.3 (2010), pp. 575–606 Cited on pages 34, 59.

[91] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. “Efficient distributed skylin-
ing for web information systems”. In: Advances in Database Technology-EDBT 2004:
9th International Conference on Extending Database Technology, Heraklion, Crete,
Greece, March 14-18, 2004 9. Springer. 2004, pp. 256–273 Cited on pages 34, 40.

[92] Eric Lo et al. “Progressive skylining over web-accessible databases”. In:Data &Knowl-
edge Engineering 57.2 (2006), pp. 122–147 Cited on pages 34,
40.

[93] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi, et al. “Efficient progressive skyline
computation”. In: VLDB. Vol. 1. 2001, pp. 301–310 Cited on page 34.

[94] Ken CK Lee et al. “Z-SKY: an efficient skyline query processing framework based on
Z-order”. In: The VLDB Journal 19 (2010), pp. 333–362 Cited on page 34.

[95] Joachim Selke and Wolf-Tilo Balke. “SkyMap: a trie-based index structure for high-
performance skyline query processing”. In: International Conference on Database and
Expert Systems Applications. Springer. 2011, pp. 350–365 Cited on page 34.

[96] Jongwuk Lee and Seung-won Hwang. “BSkyTree: scalable skyline computation using
a balanced pivot selection”. In: Proceedings of the 13th International Conference on
Extending Database Technology. 2010, pp. 195–206 Cited on pages 34, 127.

[97] Kenichi Koizumi et al. “BJR-tree: fast skyline computation algorithm for serendipitous
searching problems”. In: 2017 IEEE International Conference on Data Science and
Advanced Analytics (DSAA). IEEE. 2017, pp. 272–282 Cited on pages 34, 38.

143

BIBLIOGRAPHY

[98] Jing Yu, Xin Liu, and Guo-hua Liu. “A window-based algorithm for skyline queries”.
In: Sixth International Conference on Parallel and Distributed Computing Applications
and Technologies (PDCAT’05). IEEE. 2005, pp. 907–909 Cited on page 36.

[99] Xuemin Lin et al. “Stabbing the sky: Efficient skyline computation over sliding win-
dows”. In: 21st International Conference on Data Engineering (ICDE’05). IEEE. 2005,
pp. 502–513 Cited on page 36.

[100] Yufei Tao andDimitris Papadias. “Maintaining slidingwindow skylines on data streams”.
In: IEEE Transactions on Knowledge and Data Engineering 18.3 (2006), pp. 377–391
Cited on pages 36, 59, 62.

[101] Michael Morse, Jignesh M Patel, and William I Grosky. “Efficient continuous skyline
computation”. In: Information Sciences 177.17 (2007), pp. 3411–3437 Cited on
pages 36, 59.

[102] Zhiyong Huang et al. “Continuous skyline queries for moving objects”. In: IEEE trans-
actions on knowledge and data engineering 18.12 (2006), pp. 1645–1658 Cited on
pages 36, 80.

[103] Jongwuk Lee and Seung-Won Hwang. “Scalable skyline computation using a balanced
pivot selection technique”. In: Information Systems 39 (2014), pp. 1–21 Cited on
page 36.

[104] Sean Chester, Michael L Mortensen, and Ira Assent. “On the Suitability of Skyline
Queries for Data Exploration.” In: EDBT/ICDT Workshops. 2014, pp. 161–166 Cited
on page 37.

[105] Mei Bai et al. “Skyline-join query processing in distributed databases”. In: Frontiers of
Computer Science 10.2 (2016), pp. 330–352 Cited on pages 37, 59.

[106] Yu-Ling Hsueh, Chia-Chun Lin, and Chia-Che Chang. “An efficient indexing method
for skyline computations with partially ordered domains”. In: IEEE Transactions on
Knowledge and Data Engineering 29.5 (2017), pp. 963–976 Cited on page 37.

[107] Yan Wang et al. “An energy-efficient skyline query for massively multidimensional
sensing data”. In: Sensors 16.1 (2016), p. 83 Cited on page 37.

[108] Mei Bai et al. “Discovering the k representative skyline over a sliding window”. In:
IEEE Transactions on Knowledge and Data Engineering 28.8 (2016), pp. 2041–2056
Cited on pages 38, 59.

[109] He Li and Jaesoo Yoo. “Efficient continuous skyline query processing scheme over large
dynamic data sets”. In: ETRI Journal 38.6 (2016), pp. 1197–1206 Cited on page 38.

[110] Alexander Tzanakas, Eleftherios Tiakas, andYannisManolopoulos. “Skyline algorithms
on streams of multidimensional data”. In: East European Conference on Advances in
Databases and Information Systems. Springer. 2016, pp. 63–71 Cited on pages 38, 59.

[111] Mei Bai et al. “The subspace global skyline query processing over dynamic databases”.
In: World Wide Web 20.2 (2017), pp. 291–324 Cited on page 38.

[112] Aziz Nasridinov, Jong-Hyeok Choi, and Young-Ho Park. “A two-phase data space par-
titioning for efficient skyline computation”. In:Cluster Computing 20 (2017), pp. 3617–
3628 Cited on page 38.

[113] Jiping Zheng, Jialiang Chen, and Haixiang Wang. “Efficient geometric pruning strate-
gies for continuous skyline queries”. In: ISPRS International Journal of Geo-Information
6.3 (2017), p. 91 Cited on page 38.

144

BIBLIOGRAPHY

[114] Boseon Yu, Wonik Choi, and Ling Liu. “Exploring correlation for fast skyline compu-
tation”. In: The Journal of Supercomputing 73.11 (2017), pp. 5071–5102 Cited on
page 38.

[115] Yuan-Ko Huang. “Within skyline query processing in dynamic road networks”. In: IS-
PRS International Journal of Geo-Information 6.5 (2017), p. 137 Cited on
page 38.

[116] Kenichi Koizumi et al. “BJR-tree: fast skyline computation algorithm using dominance
relation-based tree structure”. In: International Journal of Data Science and Analytics
7 (2019), pp. 17–34 Cited on pages 39, 59.

[117] Xixian Han, BailingWang, and Guojun Lai. “Dynamic skyline computation on massive
data”. In: Knowledge and Information Systems 59.3 (2019), pp. 571–599 Cited on
pages 39, 67.

[118] Yuan-Ko Huang, Chien-Pang Lee, and Cheng-Yuan Tsai. “Evaluating KNN-skyline
queries in dynamic road networks”. In: 2018 27th Wireless and Optical Communication
Conference (WOCC). IEEE. 2018, pp. 1–2 Cited on page 40.

[119] Yuan-Ko Huang, Chia-Heng Chang, and Chiang Lee. “Continuous distance-based sky-
line queries in road networks”. In: Information Systems 37.7 (2012), pp. 611–633 Cited
on page 40.

[120] Yingfeng Tang and Shiping Chen. “Supporting Continuous Skyline Queries in Dy-
namically Weighted Road Networks”. In:Mathematical Problems in Engineering 2018
(2018) Cited on pages 40, 59.

[121] Ping Wu et al. “Parallelizing skyline queries for scalable distribution”. In: Advances in
Database Technology-EDBT 2006: 10th International Conference on ExtendingDatabase
Technology, Munich, Germany, March 26-31, 2006 10. Springer. 2006, pp. 112–130
Cited on page 40.

[122] Shiyuan Wang et al. “Efficient skyline query processing on peer-to-peer networks”. In:
2007 IEEE 23rd International Conference on Data Engineering. IEEE. 2006, pp. 1126–
1135 Cited on page 40.

[123] Shiyuan Wang et al. “Skyframe: a framework for skyline query processing in peer-to-
peer systems”. In: The VLDB Journal 18 (2009), pp. 345–362 Cited on
page 40.

[124] Katja Hose. “Processing skyline queries in P2P systems”. In: VLDB 2005 PhD Work-
shop. Citeseer. 2005, pp. 36–40 Cited on
page 40.

[125] Huajing Li, Qingzhao Tan, and Wang-Chien Lee. “Efficient progressive processing of
skyline queries in peer-to-peer systems”. In: Proceedings of the 1st international con-
ference on Scalable information systems. 2006, 26–es Cited on
page 40.

[126] Zhiyong Huang et al. “Skyline queries against mobile lightweight devices inMANETs”.
In: 22nd International Conference onData Engineering (ICDE’06). IEEE. 2006, pp. 66–
66 Cited on
page 41.

145

BIBLIOGRAPHY

[127] Jianzhong Li, Shuguang Xiong, et al. “Efficient Pr-skyline query processing and opti-
mization in wireless sensor networks”. In:Wireless Sensor Network 2.11 (2010), p. 838
Cited on page 41.

[128] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. “Angle-based space parti-
tioning for efficient parallel skyline computation”. In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. 2008, pp. 227–238 Cited
on page 41.

[129] Renato B Hoffmann et al. “OpenMP as runtime for providing high-level stream paral-
lelism on multi-cores”. In: The Journal of Supercomputing (2022), pp. 1–22 Cited on
page 42.

[130] David R Butenhof. Programming with POSIX threads. Addison-Wesley Professional,
1997 Cited on page 42.

[131] William Gropp et al. “A high-performance, portable implementation of the MPI mes-
sage passing interface standard”. In: Parallel computing 22.6 (1996), pp. 789–828 Cited
on page 43.

[132] Bruno Bacci et al. “P3 L: A structured high-level parallel language, and its structured
support”. In: Concurrency: practice and experience 7.3 (1995), pp. 225–255 Cited on
page 43.

[133] Marco Vanneschi. “The programming model of ASSIST, an environment for parallel
and distributed portable applications”. In: Parallel computing 28.12 (2002), pp. 1709–
1732 Cited on page 43.

[134] Marco Aldinucci, Marco Danelutto, and Paolo Teti. “An advanced environment sup-
porting structured parallel programming in Java”. In: Future Generation Computer Sys-
tems 19.5 (2003), pp. 611–626 Cited on
page 43.

[135] Marco Vanneschi. “High performance computing: parallel processing models and ar-
chitectures”. In: High performance computing. Pisa University Press. 2014, pp. 1–552
Cited on pages 43, 44.

[136] Marco Danelutto. “Efficient support for skeletons on workstation clusters”. In: Parallel
Processing Letters 11.01 (2001), pp. 41–56 Cited on page 43.

[137] Marco Aldinucci et al. “Fastflow: High-Level and Efficient Streaming onMulticore”. In:
Programming multi-core and many-core computing systems (2017), pp. 261–280 Cited
on page 43.

[138] Omer F Rana and Jose Cardoso Cunha. Grid computing: software environments and
tools. Springer Science & Business Media, 2007 Cited on page 43.

[139] Athanasios V Vasilakos et al. Autonomic Computing and Communications Systems:
Third International ICST Conference, Autonomics 2009, Limassol, Cyprus, September
9-11, 2009, Revised Selected Papers. Vol. 23. Springer, 2010 Cited on page 43.

[140] MassimoCoppola andMarcoVanneschi. “High-performance dataminingwith skeleton-
based structured parallel programming”. In: Parallel Computing 28.5 (2002), pp. 793–
813 Cited on page 43.

146

BIBLIOGRAPHY

[141] Daniele Buono et al. “Performance analysis and structured parallelisation of the space–
time adaptive processing computational kernel on multi-core architectures”. In: Inter-
national Journal of Parallel, Emergent and Distributed Systems 29.5 (2014), pp. 460–
498 Cited on page 43.

[142] Marco Aldinucci et al. “Parallel stochastic systems biology in the cloud”. In: Briefings
in Bioinformatics 15.5 (2014), pp. 798–813 Cited on page 43.

[143] YunjunGao et al. “On processing reverse k-skyband and ranked reverse skyline queries”.
In: Information Sciences 293 (2015), pp. 11–34 Cited on pages 43, 83.

[144] Ehsan Montahaie et al. “Efficient continuous skyline computation on multi-core pro-
cessors based on manhattan distance”. In: 2015 ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE). IEEE. 2015, pp. 56–59
Cited on pages 43, 61, 114.

[145] Kenichi Koizumi, Mary Inaba, and Kei Hiraki. “Efficient implementation of continu-
ous skyline computation on a multi-core processor”. In: 2015 ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE). IEEE. 2015,
pp. 52–55 Cited on pages 43, 61, 111.

[146] Md Saiful Islam et al. “Q+ tree: An efficient quad tree based data indexing for paralleliz-
ing dynamic and reverse skylines”. In: Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. 2016, pp. 1291–1300 Cited
on page 44.

[147] Haoyang Zhu et al. “Parallelization of skyline probability computation over uncertain
preferences”. In:Concurrency andComputation: Practice and Experience 29.18 (2017),
e4201 Cited on page 44.

[148] Arun K Pujari et al. “Efficient computation for probabilistic skyline over uncertain pref-
erences”. In: Information Sciences 324 (2015), pp. 146–162 Cited on
page 44.

[149] KarimAlami et al. “The negative skycube”. In: Information Systems 88 (2020), p. 101443
Cited on page 44.

[150] Murray I Cole. Algorithmic skeletons: structured management of parallel computation.
Pitman London, 1989 Cited on pages 44, 54.

[151] Susanna Pelagatti. “A methodology for the development and the support of massively
parallel programs”. In: BULLETIN-EUROPEAN ASSOCIATION FOR THEORETICAL
COMPUTER SCIENCE 50 (1993), pp. 540–540 Cited on page 44.

[152] S Orlando et al. “P3L: a Structured High-level Parallel Language and its Structured
Support””. In: Concurrency: Practice and Experience 7.3 (1995), pp. 225–255 Cited
on page 44.

[153] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified data processing on large
clusters”. In: (2004) Cited on page 48.

[154] Apache Hadoop. https://hadoop.apache.org/ Cited on page 48.

[155] Boliang Zhang, Shuigeng Zhou, and Jihong Guan. “Adapting skyline computation to
the mapreduce framework: Algorithms and experiments”. In: Database Systems for
Adanced Applications: 16th International Conference, DASFAA 2011, International
Workshops: GDB, SIM3, FlashDB, SNSMW, DaMEN, DQIS, Hong Kong, China, April
22-25, 2011. Proceedings 16. Springer. 2011, pp. 403–414 Cited on page 48.

147

BIBLIOGRAPHY

[156] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. “Parallel computation of skyline and
reverse skyline queries using mapreduce”. In: Proceedings of the VLDB Endowment
6.14 (2013), pp. 2002–2013 Cited on pages 48, 49.

[157] Kasper Mullesgaard et al. “Efficient Skyline Computation in MapReduce.” In: EDBT.
2014, pp. 37–48 Cited on page 49.

[158] Ji Zhang et al. “Efficient parallel skyline evaluation usingMapReduce”. In: IEEE Trans-
actions on Parallel and Distributed Systems 27.7 (2015), pp. 1996–2009 Cited on
page 49.

[159] Heri Wijayanto et al. “LShape Partitioning: Parallel Skyline Query Processing Using
MapReduce”. In: IEEE Transactions on Knowledge and Data Engineering 34.7 (2020),
pp. 3363–3376 Cited on page 49.

[160] Yuanyuan Li et al. “Efficient subspace skyline query based on user preference using
MapReduce”. In: Ad Hoc Networks 35 (2015), pp. 105–115 Cited on page 49.

[161] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. “Efficient processing of skyline queries
using mapreduce”. In: IEEE Transactions on Knowledge and Data Engineering 29.5
(2017), pp. 1031–1044 Cited on page 49.

[162] Jia-Ling Koh et al. “MapReduce skyline query processing with partitioning and dis-
tributed dominance tests”. In: Information Sciences 375 (2017), pp. 114–137 Cited on
page 49.

[163] Miyoung Jang, Youngho Song, and Jae-Woo Chang. “A parallel computation of skyline
using multiple regression analysis-based filtering on MapReduce”. In: Distributed and
Parallel Databases 35 (2017), pp. 383–409 Cited on page 51.

[164] Junsu Kim and Myoung Ho Kim. “An efficient parallel processing method for skyline
queries in MapReduce”. In: The Journal of Supercomputing 74 (2018), pp. 886–935
Cited on page 51.

[165] Wenlu Wang et al. “Efficient parallel spatial skyline evaluation using mapreduce”. In:
Proceedings of the 20th international conference on extending database technology.
2017 Cited on pages 51, 73, 75.

[166] Chen Li, Asif Zaman, Yasuhiko Morimoto, et al. “MapReduce-based computation of
area skyline query for selecting good locations in a map”. In: 2017 IEEE International
Conference on Big Data (Big Data). IEEE. 2017, pp. 4779–4782 Cited on page 51.

[167] Hyeong-Cheol Ryu and Sungwon Jung. “MapReduce-based skyline query processing
scheme using adaptive two-level grids”. In: Cluster Computing 20 (2017), pp. 3605–
3616 Cited on page 51.

[168] Tyson Condie et al. “MapReduce online.” In: Nsdi. Vol. 10. 4. 2010, p. 20 Cited on
page 52.

[169] Andrey Brito et al. “Scalable and low-latency data processing with stream mapreduce”.
In: 2011 IEEE Third International Conference on Cloud Computing Technology and
Science. IEEE. 2011, pp. 48–58 Cited on page 52.

[170] Ahmed M Aly et al. “M3: Stream processing on main-memory mapreduce”. In: 2012
IEEE 28th International Conference on Data Engineering. IEEE. 2012, pp. 1253–1256
Cited on page 52.

148

BIBLIOGRAPHY

[171] Lei Chen and Xiang Lian. “Dynamic skyline queries in metric spaces”. In: Proceedings
of the 11th international conference on extending database technology: advances in
database technology. 2008, pp. 333–343 Cited on pages 59, 74.

[172] Zhenjie Zhang et al. “Minimizing the communication cost for continuous skyline main-
tenance”. In:Proceedings of the 2009 ACMSIGMOD International Conference onMan-
agement of data. 2009, pp. 495–508 Cited on
page 59.

[173] Wang Hanning et al. “Efficient processing of continuous skyline query over smarter
traffic data stream for cloud computing”. In: Discrete Dynamics in Nature and Society
2013 (2013) Cited on page 59.

[174] Aziguli Wulamu et al. “Processing Skyline Groups on Data Streams”. In: 2015 IEEE
12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf
on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Com-
puting and Communications and Its AssociatedWorkshops (UIC-ATC-ScalCom). IEEE.
2015, pp. 935–942 Cited on page 59.

[175] Tao Jiang et al. “Efficient column-oriented processing formutual subspace skyline queries”.
In: Soft Computing 24.20 (2020), pp. 15427–15445 Cited on page 59.

[176] Zhiyun Zheng et al. “k-dominant Skyline query algorithm for dynamic datasets”. In:
Frontiers of Computer Science 15 (2021), pp. 1–9 Cited on page 59.

[177] Mikhail J Atallah and Yinian Qi. “Computing all skyline probabilities for uncertain
data”. In: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems. 2009, pp. 279–287 Cited on
page 60.

[178] Wenjie Zhang et al. “Probabilistic skyline operator over sliding windows”. In: 2009
IEEE 25th International Conference on Data Engineering. IEEE. 2009, pp. 1060–1071
Cited on page 60.

[179] Ling Zhu, Cuiping Li, and Hong Chen. “Efficient computation of reverse skyline on
data stream”. In: 2009 International Joint Conference on Computational Sciences and
Optimization. Vol. 1. IEEE. 2009, pp. 735–739 Cited on pages 60, 83.

[180] Hui Zhu Su, En Tzu Wang, and Arbee LP Chen. “Continuous probabilistic skyline
queries over uncertain data streams”. In: International Conference on Database and
Expert Systems Applications. Springer. 2010, pp. 105–121 Cited on page 60.

[181] Mohammad Shamsul Arefin and Yasuhiko Morimoto. “Skyline sets queries for incom-
plete data”. In: AIRCC’s International Journal of Computer Science and Information
Technology 4.5 (2016), pp. 67–80 Cited on page 60.

[182] Rahul Bharuka and P Sreenivasa Kumar. “Finding skylines for incomplete data”. In:
Proceedings of the Twenty-Fourth AustralasianDatabase Conference-Volume 137. 2013,
pp. 109–117 Cited on page 60.

[183] Yan Wang et al. “Skyline preference query based on massive and incomplete dataset”.
In: IEEE Access 5 (2017), pp. 3183–3192 Cited on page 60.

[184] Xiaoye Miao et al. “Top-k dominating queries on incomplete data”. In: IEEE Transac-
tions on Knowledge and Data Engineering 28.1 (2015), pp. 252–266 Cited on
page 60.

149

BIBLIOGRAPHY

[185] Wenjie Zhang et al. “Probabilistic n-of-N skyline computation over uncertain data streams”.
In: World Wide Web 18.5 (2015), pp. 1331–1350 Cited on page 60.

[186] Xiaoye Miao et al. “K-dominant skyline queries on incomplete data”. In: Information
Sciences 367 (2016), pp. 990–1011 Cited on page 60.

[187] Md Saiful Islam et al. “Computing influence of a product through uncertain reverse sky-
line”. In: Proceedings of the 29th International Conference on Scientific and Statistical
Database Management. 2017, pp. 1–12 Cited on pages 60, 61.

[188] Sayda Elmi and Jun-Ki Min. “Spatial skyline queries over incomplete data for smart
cities”. In: Journal of Systems Architecture 90 (2018), pp. 1–14 Cited on pages 60, 74.

[189] Chuang-Ming Liu, Denis Pak, and Ari Ernesto Ortiz Castellanos. “Priority-Based Sky-
line Query Processing for Incomplete Data”. In: Proceedings of the 25th International
Database Engineering & Applications Symposium. 2021, pp. 204–211 Cited on
page 60.

[190] Linlin Ding et al. “CrowdSJ: Skyline-join query processing of incomplete datasets with
crowdsourcing”. In: IEEE Access 9 (2021), pp. 73216–73229 Cited on page 60.

[191] Xiaoyong Li et al. “Parallelizing probabilistic streaming skyline operator in cloud com-
puting environments”. In: 2013 IEEE 37th Annual Computer Software and Applications
Conference. IEEE. 2013, pp. 84–89 Cited on page 61.

[192] Md Saiful Islam et al. “Q+ tree: An efficient quad tree based data indexing for paralleliz-
ing dynamic and reverse skylines”. In: Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. 2016, pp. 1291–1300 Cited
on page 61.

[193] Haoyang Zhu et al. “Parallelization of skyline probability computation over uncertain
preferences”. In:Concurrency andComputation: Practice and Experience 29.18 (2017),
e4201 Cited on page 61.

[194] Jun Liu et al. “Parallel n-of-N skyline queries over uncertain data streams”. In: Inter-
national Conference on Database and Expert Systems Applications. Springer. 2018,
pp. 176–184 Cited on page 61.

[195] Jun Liu et al. “Parallelizing uncertain skyline computation against n-of-N data stream-
ing model”. In: Concurrency and Computation: Practice and Experience 31.4 (2019),
e4848 Cited on page 61.

[196] Xiaoyong Li et al. “Parallel k-dominant skyline queries over uncertain data streams
with capability index”. In: 2019 IEEE 21st International Conference on High Perfor-
mance Computing and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartC-
ity/DSS). IEEE. 2019, pp. 1556–1563 Cited on
page 61.

[197] Jongtae Lim, Kyoungsoo Bok, and Jaesoo Yoo. “A continuous reverse skyline query
processing scheme for multimedia data sharing in mobile environments”. In: Multime-
dia Tools and Applications 78.20 (2019), pp. 28357–28373 Cited on pages 61,
83.

[198] Karim Alami and Sofian Maabout. “A Partitioning Approach for Skyline Queries in
Presence of Partial and Dynamic Orders”. In: Transactions on Large-Scale Data-and
Knowledge-Centered Systems XLIX. Springer, 2021, pp. 70–96 Cited on page 61.

150

BIBLIOGRAPHY

[199] Liang Kuang Tai, En Tzu Wang, and Arbee LP Chen. “Finding the most profitable can-
didate product by dynamic skyline and parallel processing”. In:Distributed and Parallel
Databases 39 (2021), pp. 979–1008 Cited on page 61.

[200] Jon Louis Bentley et al. “On the average number of maxima in a set of vectors and
applications”. In: Journal of the ACM (JACM) 25.4 (1978), pp. 536–543 Cited on
page 62.

[201] Christian Buchta. “On the average number of maxima in a set of vectors”. In: Informa-
tion Processing Letters 33.2 (1989), pp. 63–65 Cited on
page 62.

[202] Parke Godfrey. “Skyline cardinality for relational processing: how many vectors are
maximal?” In: Foundations of Information and Knowledge Systems: Third International
Symposium, FoIKS 2004 Wilheminenburg Castle, Austria, February 17-20, 2004 Pro-
ceedings 3. Springer. 2004, pp. 78–97 Cited on
page 62.

[203] Eleftherios Tiakas, Apostolos N Papadopoulos, andYannisManolopoulos. “On estimat-
ing the maximum domination value and the skyline cardinality of multi-dimensional
data sets”. In: International Journal of Knowledge-Based Organizations (IJKBO) 3.4
(2013), pp. 61–83 Cited on page 62.

[204] GeorgeValkanas, ApostolosNPapadopoulos, andDimitriosGunopulos. “Skyline Rank-
ing à la IR.” In: EDBT/ICDT Workshops. 2014, pp. 182–187 Cited on
page 62.

[205] Tian Xia et al. “Online subspace skyline query processing using the compressed sky-
cube”. In: ACM Transactions on Database Systems (TODS) 37.2 (2012), pp. 1–36 Cited
on page 62.

[206] Yufei Tao. “Diversity in Skylines.” In: IEEE Data Eng. Bull. 32.4 (2009), pp. 65–72
Cited on page 63.

[207] George Valkanas, Apostolos N Papadopoulos, and Dimitrios Gunopulos. “Skydiver: a
framework for skyline diversification”. In: Proceedings of the 16th International Con-
ference on Extending Database Technology. 2013, pp. 406–417 Cited on
page 63.

[208] Dimitris Sacharidis, Panagiotis Bouros, and Timos Sellis. “Caching dynamic skyline
queries”. In: Scientific and Statistical Database Management: 20th International Con-
ference, SSDBM 2008, Hong Kong, China, July 9-11, 2008 Proceedings 20. Springer.
2008, pp. 455–472 Cited on page 67.

[209] Weiguo Wang et al. “An efficient secure dynamic skyline query model”. In: arXiv
preprint arXiv:2002.07511 (2020) Cited on page 67.

[210] Xi Guo et al. “Efficient processing of skyline group queries over a data stream”. In:
Tsinghua Science and Technology 21.1 (2016), pp. 29–39 Cited on page 68.

[211] Leigang Dong et al. “G-skyline query over data stream in wireless sensor network”. In:
Wireless Networks 26 (2020), pp. 129–144 Cited on page 68.

[212] Mehdi Sharifzadeh and Cyrus Shahabi. “The spatial skyline queries”. In: Proceedings
of the 32nd international conference on Very large data bases. 2006, pp. 751–762 Cited
on pages 69, 73.

151

BIBLIOGRAPHY

[213] Wanbin Son et al. “Spatial skyline queries: An efficient geometric algorithm”. In: Ad-
vances in Spatial and Temporal Databases: 11th International Symposium, SSTD 2009
Aalborg, Denmark, July 8-10, 2009 Proceedings 11. Springer. 2009, pp. 247–264 Cited
on page 69.

[214] Wanbin Son, Seung-Won Hwang, and Hee-Kap Ahn. “MSSQ: Manhattan spatial sky-
line queries”. In: Information Systems 40 (2014), pp. 67–83 Cited on
page 69.

[215] Ke Deng, Xiaofang Zhou, and Heng Tao Shen. “Multi-source skyline query processing
in road networks”. In: 2007 IEEE 23rd international conference on data engineering.
IEEE. 2006, pp. 796–805 Cited on pages 70, 73.

[216] Maytham Safar, Dalal El-Amin, and David Taniar. “Optimized skyline queries on road
networks using nearest neighbors”. In: Personal and Ubiquitous Computing 15 (2011),
pp. 845–856 Cited on page 70.

[217] Gae-won You et al. “The farthest spatial skyline queries”. In: Information Systems 38.3
(2013), pp. 286–301 Cited on pages 70, 74.

[218] Marta Fort, J Antoni Sellarès, and Nacho Valladares. “Nearest and farthest spatial sky-
line queries under multiplicative weighted Euclidean distances”. In: Knowledge-Based
Systems 192 (2020), p. 105299 Cited on pages 71, 74.

[219] Kazuki Kodama et al. “Skyline queries based on user locations and preferences for mak-
ing location-based recommendations”. In: Proceedings of the 2009 International Work-
shop on Location Based Social Networks. 2009, pp. 9–16 Cited on
page 71.

[220] Jieming Shi, DingmingWu, and Nikos Mamoulis. “Textually relevant spatial skylines”.
In: IEEE Transactions on Knowledge and Data Engineering 28.1 (2015), pp. 224–237
Cited on page 71.

[221] Xi Guo, Yoshiharu Ishikawa, and Yunjun Gao. “Direction-based spatial skylines”. In:
Proceedings of the Ninth ACM International Workshop on Data Engineering for Wire-
less and Mobile Access. 2010, pp. 73–80 Cited on
page 72.

[222] Bojie Shen et al. “Direction-based spatial skyline for retrieving surrounding objects”.
In: World Wide Web 23 (2020), pp. 207–239 Cited on pages 72, 73.

[223] Yuan-Ko Huang. “Continuous dε-Skyline Queries for Objects with Time-Varying At-
tribute in Road Networks”. In: 2017 IEEE 31st International Conference on Advanced
Information Networking and Applications (AINA). IEEE. 2017, pp. 439–446 Cited on
page 74.

[224] Ammar Sohail, Muhammad Aamir Cheema, and David Taniar. “Social-aware spatial
top-k and skyline queries”. In: The Computer Journal 61.11 (2018), pp. 1620–1638
Cited on page 74.

[225] Zhi Cai et al. “Speed and Direction Aware Skyline Query forMoving Objects”. In: IEEE
Transactions on Intelligent Transportation Systems 23.4 (2020), pp. 3000–3011 Cited
on page 74.

[226] Md Anisuzzaman Siddique et al. “Multicore Based Spatialk-dominant Skyline Compu-
tation”. In: 2012 Third International Conference on Networking and Computing. IEEE.
2012, pp. 188–194 Cited on page 75.

152

BIBLIOGRAPHY

[227] Wenlu Wang et al. “A scalable spatial skyline evaluation system utilizing parallel inde-
pendent region groups”. In: The VLDB Journal 28 (2019), pp. 73–98 Cited on
page 75.

[228] Lei Chen and Xiang Lian. “Efficient processing of metric skyline queries”. In: IEEE
Transactions on Knowledge and Data Engineering 21.3 (2008), pp. 351–365 Cited on
pages 76, 77.

[229] Daniel P Huttenlocher, Gregory A. Klanderman, andWilliam J Rucklidge. “Comparing
images using the Hausdorff distance”. In: IEEE Transactions on pattern analysis and
machine intelligence 15.9 (1993), pp. 850–863 Cited on page 76.

[230] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. “Duplicate
record detection: A survey”. In: IEEE Transactions on knowledge and data engineering
19.1 (2006), pp. 1–16 Cited on page 76.

[231] Athanasios Kokkos, Theodoros Tzouramanis, and Yannis Manolopoulos. “A hybrid
model for linkingmultiple social identities across heterogeneous online social networks”.
In: SOFSEM 2017: Theory and Practice of Computer Science: 43rd International Con-
ference on Current Trends in Theory and Practice of Computer Science, Limerick, Ire-
land, January 16-20, 2017, Proceedings 43. Springer. 2017, pp. 423–435 Cited on
page 76.

[232] Tomás Skopal. “PivotingM-tree: AMetricAccessMethod for Efficient Similarity Search.”
In: DATESO. Vol. 4. 2004, pp. 27–37 Cited on page 77.

[233] Tomás Skopal and Jakub Lokoc. “Answering Metric Skyline Queries by PM-tree.” In:
DATESO. Citeseer. 2010, pp. 22–37 Cited on page 77.

[234] David Fuhry, Ruoming Jin, and Donghui Zhang. “Efficient skyline computation in met-
ric space”. In: Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology. 2009, pp. 1042–1051 Cited on page 77.

[235] Tao Jiang et al. “Incremental evaluation of top-k combinatorial metric skyline query”.
In: Knowledge-Based Systems 74 (2015), pp. 89–105 Cited on page 77.

[236] Saladi Rahul and Ravi Janardan. “Algorithms for range-skyline queries”. In: Proceed-
ings of the 20th International Conference on Advances in Geographic Information Sys-
tems. 2012, pp. 526–529 Cited on pages 79,
80.

[237] Lijiang Chen, Bin Cui, and Hua Lu. “Constrained skyline query processing against dis-
tributed data sites”. In: IEEE Transactions on Knowledge and Data Engineering 23.2
(2010), pp. 204–217 Cited on page 80.

[238] Chuan-Chi Lai, Zulhaydar Fairozal Akbar, andChuan-Ming Liu. “A cooperativemethod
for processing range-skyline queries in mobile wireless sensor networks”. In: Proceed-
ings of the Sixth International Conference on Emerging Databases: Technologies, Ap-
plications, and Theory. 2016, pp. 1–8 Cited on
page 80.

[239] Chuan-Chi Lai et al. “Distributed continuous range-skyline query monitoring over the
internet of mobile things”. In: IEEE Internet of Things Journal 6.4 (2019), pp. 6652–
6667 Cited on page 80.

153

BIBLIOGRAPHY

[240] Xin Lin, Jianliang Xu, and Haibo Hu. “Range-based skyline queries in mobile envi-
ronments”. In: IEEE Transactions on Knowledge and Data Engineering 25.4 (2011),
pp. 835–849 Cited on pages 80, 81.

[241] Xiaoyi Fu et al. “Continuous range-based skyline queries in road networks”. In: World
Wide Web 20 (2017), pp. 1443–1467 Cited on page 81.

[242] Wen-Chi Wang, En Tzu Wang, and Arbee LP Chen. “Dynamic skylines considering
range queries”. In: Database Systems for Advanced Applications: 16th International
Conference, DASFAA 2011, Hong Kong, China, April 22-25, 2011, Proceedings, Part
II 16. Springer. 2011, pp. 235–250 Cited on page 82.

[243] Jan Chomicki et al. “Skyline with presorting: Theory and optimizations”. In: Intelli-
gent Information Processing and Web Mining: Proceedings of the International IIS:
IIPWM’05 Conference held in Gdansk, Poland, June 13–16, 2005. Springer. 2005,
pp. 595–604 Cited on page 82.

[244] Theodoros Tzouramanis et al. “The range skyline query”. In: Proceedings of the 27th
ACM International Conference on Information andKnowledgeManagement. 2018, pp. 47–
56 Cited on
page 82.

[245] Xiaoye Miao et al. “On efficiently answering why-not range-based skyline queries in
road networks”. In: IEEETransactions onKnowledge andData Engineering 30.9 (2018),
pp. 1697–1711 Cited on page 82.

[246] Xiang Lian and Lei Chen. “Reverse skyline search in uncertain databases”. In: ACM
Transactions on Database Systems (TODS) 35.1 (2008), pp. 1–49 Cited on page 82.

[247] Xiang Lian and Lei Chen. “Monochromatic and bichromatic reverse skyline search over
uncertain databases”. In: Proceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data. 2008, pp. 213–226 Cited on
page 82.

[248] Guoren Wang et al. “Energy-efficient reverse skyline query processing over wireless
sensor networks”. In: IEEE Transactions on Knowledge and Data Engineering 24.7
(2011), pp. 1259–1275 Cited on page 83.

[249] Farnoush Banaei-Kashani et al. “Efficient maximal reverse skyline query processing”.
In: GeoInformatica 21 (2017), pp. 549–572 Cited on page 83.

[250] Hongbing Wang et al. “Integrating reinforcement learning and skyline computing for
adaptive service composition”. In: Information Sciences 519 (2020), pp. 141–160 Cited
on page 84.

[251] Abdelkader Alem, Youcef Dahmani, and BendaoudMebarek. “Skyline computation for
improving naı̈ve Bayesian classifier in intrusion detection system”. In: Journal home-
page: http://iieta. org/journals/isi 24.5 (2019), pp. 513–518 Cited on
page 84.

[252] Wajdi Dhifli, Nour El Islem Karabadji, and Mohamed Elati. “Evolutionary mining of
skyline clusters of attributed graph data”. In: Information Sciences 509 (2020), pp. 501–
514 Cited on page 86.

[253] Nikolaos Georgiadis et al. “Skyline-based dissimilarity of images”. In: Journal of Intel-
ligent Information Systems 53 (2019), pp. 509–545 Cited on
page 86.

154

BIBLIOGRAPHY

[254] Shiqing Wang et al. “Surveillance Methods of Running Condition of Chemical Equip-
ments Based on Skyline”. In: 2016 IEEETrustcom/BigDataSE/ISPA. IEEE. 2016, pp. 2246–
2250 Cited on
page 87.

[255] Fadoua Yakine, Manar Abourezq, and Abdellah Idrissi. “Skyline method in wireless ad-
hoc networks routing”. In:WSEASTransactions onCommunications 15 (2016), pp. 137–
146 Cited on
page 87.

[256] Chaluka Salgado. “Keyword-aware skyline routes search in indoor venues”. In: Pro-
ceedings of the 9th ACMSIGSPATIAL InternationalWorkshop on Indoor Spatial Aware-
ness. 2018, pp. 25–31 Cited on pages 88,
89.

[257] Kenneth S Bøgh et al. “Template skycube algorithms for heterogeneous parallelism on
multicore and gpu architectures”. In: Proceedings of the 2017 ACM International Con-
ference on Management of Data. 2017, pp. 447–462 Cited on
page 111.

155

	Abstract
	Contents
	List of Acronyms
	I Introduction
	Introduction
	Big Data and Skyline Processing over Data Streams (SPODS)
	SPODS challenges
	Inspiring works
	Aviation applications
	Predictive analytics with aviation big data
	Aircraft sensor data streams
	Civil Aircraft Big Data Platform
	On-the-fly Mobility Event Detection over Aircraft Trajectories
	Research on Aircraft Air Conditioning Performance Monitoring and Trend Predicting
	Skyline in Network applications
	Skyline on Social media analysis

	High performance SPODS applications
	Parallelism opportunities in SPODS applications

	Contributions of the thesis
	Outline of the thesis

	II Background on Data Stream Processing
	Background on query processing with Data stream
	Characteristics of a SPODS application
	Function state
	Windowing approaches and State type

	Data Stream Processing systems
	Data Stream Management Systems
	Complex Event Processing systems
	Stream Processing Engines SPE

	Parallelism exploitation in SPODS systems
	Parallelism in QPODS systems
	Literature approaches

	Conclusion

	III Skyline Queries
	Continuous Skyline Queries
	Entities and Attributes
	The Concept of Dominance
	Skyline Queries
	Main-Memory Computation (in-core skyline queries)
	Algorithms for Secondary Memory (out of core skyline queries)

	Advanced Skyline Processing
	Skylines in Dynamic Environments
	Distributed and Parallel Techniques
	A High-Level Approach to Parallel Programming
	Parallel Paradigms for Skyline Queries Over Data Stream (SPODS)
	Parallel Patterns for Windowed Functions
	Parallel Patterns Taxonomy
	Categories of Parallel Patterns for Windowed Functions
	Pane Farming
	Window Partitioning

	Skyline Cardinality
	Conclusion

	Variations of Skyline Queries
	Dynamic Skyline Queries
	Group skyline computation
	Spatial Skyline Queries
	Metric Space Skyline Queries
	Constrained Skyline Query
	Range-Based Skyline Queries
	Reverse skyline queries

	Applications of Skyline-Based Queries
	Multi-criteria decision making
	Machine learning
	Network analysis
	Other interesting applications

	Conclusion

	IV Parallel Range Search Skyline
	Parallel Range Search Skyline
	Problem Definition
	Dimension Indexing

	Parallel RSS over data stream
	Parallel Range Search Skyline PRSS
	Optimization of the dominate() Function using AVX2
	Parallel implementation details

	Performance Evaluation
	Experimental Setup
	Experimental Results

	Conclusion

	V Outlooks and conclusion
	Conclusion
	List of Publications

	List of Publications

	VI Bibliography
	Bibliography

