

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND RESEARCH

S A A D D A H L E B B L I D A - 1 U N I V E R S I T Y

 F A C U LT Y O F S C I E N C E S

C o m p u t e r S c i e n c e D e p a r t m e n t

DOCTORAL THESIS

Option: Data Sciences and Computing

Semantic Matching of Big

Ontologies

 Author:

Meriem Ali Khoudja

Jury:

Nadjia Benblidia Professor University of Blida 1 President

Narhimene Boustia Professor University of Blida 1 Examiner

Leila Zemmouchi Associate professor ENST of Algiers Examiner

Hafida Bouarfa Professor University of Blida 1 Supervisor

Messaouda Fareh Associate professor University of Blida 1 Co-supervisor

June, 2023

 إلى أمي.. جنتي...

 عطرها...وأبي..

 أهدي هذا العمل

Acknowledgments

Alhamdulillah. All praises to ALLAH, the Almighty for without His graces and blessings, this study

would not have been possible. All thanks to ALLAH for giving me the wisdom, strength, support and

knowledge in exploring things, for all the opportunities and the guidance in helping surpass all the

trials that I encountered, and for giving me determination to complete this assignment. My humblest

gratitude to the holy Prophet Mohamed (Peace be upon him) whose way of life has been a continuous

guidance for us from wickedness to the truth of Islam.

I am forever indebted to my family who, understanding the importance of this work, suffered my

hectic working hours. Special thanks are conveyed to them for the sincere love and support they have

shown to me throughout my entire life. I eagerly await the day when I can share the joy of this

achievement with them.

I would like to earnestly thank my loving parents, Mohamed and Nadjet, for their moral

encouragement, active participation and non-stop assistance, as well as for every effort that they have

done to support and encourage me in every path I take. May ALLAH gives chance for me to make them

happy more than what they did.

My deepest appreciation is presented to my brothers, Abderraouf, Amine and Abdesselam, and to

my sister, Hadjer, for their support, helping and encouragements that they have spent for me during the

process of realizing this project. May ALLAH shower them with success and honour in their lives.

My sincere gratitude goes to my husband, Mounir, for his time, patience and endless help to finish

this research. I express my sincerest appreciation for the strength and motivation from him, and for his

assistance in any way that I may have asked.

I would like to deeply thank my unborn baby for bearing the potential impact of my rigorous work

schedule and sleepless nights. Its presence has been a constant reminder of the importance of

perseverance and dedication to pursue my academic goals.

I acknowledge my supervisor Pr. Hafida Bouarfa and my co-supervisor Dr. Messaouda Fareh for

the continuous support and guidance throughout the preparation of this research, with their immense

knowledge ant their directions.

I would sincerely like to thank the jury members for accepting to review this thesis, and for their

constructive and valuable comments.

I warmly thank my bountiful friend, Aicha, who have ever right by my side until the completion of

this study. I really appreciate her encouragements, never-ending support and meaningful advices

during this work.

I am also deeply indebted to my former supervisor, Dr. A.C Mazari, for his invaluable advice and

his effort in giving me clear insights, suggestions and recommendations to improve this study.

Last but not least, I would like to extend my deepest sincerest gratitude to all the people who helped

me in any manner in order to make this research a reality. Nothing can reward their generosity and

helping, but ALLAH can give them both the greatest rewards in the world and the Day After.

Meriem ALI KHOUDJA

Abstract

Ontology matching is an efficient method to establish interoperability among heterogeneous

ontologies. Large-scale ontology matching still remains a big challenge for its long time and

large memory space consumption. The actual solution to this problem is ontology

partitioning which is also challenging.

Artificial neural networks are powerful computational models biologically inspired

from the human brain, and the way how they learn and process information. Deep learning

is a promising avenue of research and an important step toward artificial intelligence,

emulating the human brain’s mechanisms especially for extremely complex problems. Deep

learning techniques have been particularly successful when dealing with high-dimensional

and massive amounts of data. However, they have limited use in ontology matching,

particularly in large-scale ontology matching.

In this research, we propose three different semantic solutions to deal with the large-

scale ontology matching challenges without partitioning. (1) The first solution is NeuralOM,

a supervised reuse approach based on artificial neural networks. It consists of combining

the mappings of the top ranked matching systems by means of a single layer perceptron, to

define a matching function that leads to generate a better alignment between ontologies. (2)

The second solution is DeepOM, an ontology matching system that we propose to deal with

the large-scale heterogeneity problem using deep learning techniques. It consists on

creating semantic embeddings for concepts of input ontologies using a reference ontology,

and use them to train an auto-encoder in order to learn more accurate and less dimensional

representations for concepts on which similarities are computed. (3) The third solution is

SemBigOM, the global methodology of this research that combines NeuralOM and DeepOM

in order to perfectly and independently achieve the large-scale ontology matching process.

It consists on exploiting DeepOM to generate initial mappings that NeuralOM requires as

input to be reused so as to output the final matching results.

The experimental results of evaluating the proposed solutions on different test cases

from the Ontology Alignment Evaluation Initiative, and comparing them with all participant

systems of these tracks are very encouraging. They demonstrate the high efficiency of the

proposed work to increase the performance of the ontology matching task, and to tackle the

large-scale ontology matching issue.

Keywords

Large-Scale Ontology Matching, Ontology Alignment, Semantic Web, Artificial Neural

Networks, Deep Learning, Auto-Encoder, Semantics, Embeddings, OAEI.

Résumé

L’appariement d'ontologies est une méthode efficace pour établir l'interopérabilité entre les

ontologies hétérogènes. L'alignement d'ontologies à grande échelle reste toujours un grand

défi pour sa longue durée et sa grande consommation d'espace mémoire. La solution

actuelle à ce problème est le partitionnement d'ontologies, qui est également un défi et

présente aussi des difficultés.

Les réseaux de neurones artificiels sont de puissants modèles de calcul biologiquement

inspirés du cerveau humain et de la manière dont il apprend et traite les informations.

L'apprentissage profond est une voie de recherche prometteuse et une étape importante vers

l'intelligence artificielle, imitant les mécanismes du cerveau humain, en particulier pour les

problèmes extrêmement complexes. Les techniques d'apprentissage profond sont

particulièrement efficaces lorsqu'il s'agit de traiter des quantités de données massives.

Cependant, ils ont une utilisation limitée dans l'appariement d'ontologies, en particulier

dans l'appariement d'ontologies à grande échelle.

Dans cette recherche, nous proposons trois solutions sémantiques différentes pour

faire face aux défis d'appariement d'ontologies à grande échelle sans partitionnement. (1)

La première solution est NeuralOM, une approche de réutilisation supervisée basée sur des

réseaux de neurones artificiels. Elle consiste à combiner les résultats des systèmes

d'appariement les mieux classés au moyen d'un perceptron à une seule couche, pour définir

une fonction d'appariement qui conduit à générer un meilleur alignement entre les

ontologies. (2) La deuxième solution est DeepOM, un système d'alignement d'ontologies que

nous proposons pour traiter le problème d'hétérogénéité à grande échelle en utilisant des

techniques d'apprentissage profond. Il consiste à créer des représentations sémantiques

pour les concepts d'ontologies d'entrée à l'aide d'une ontologie de référence, et à les utiliser

pour entraîner un auto-encodeur afin d'apprendre des représentations plus précises et moins

dimensionnelles pour les concepts sur lesquels les similarités sont calculées. (3) La troisième

solution est SemBigOM, la méthodologie globale de cette recherche qui combine NeuralOM

et DeepOM afin de réaliser parfaitement et indépendamment le processus d'appariement

d'ontologies à grande échelle. Il consiste à exploiter DeepOM pour générer des alignements

initiaux dont NeuralOM a besoin en entrée pour être réutilisés afin de produire les résultats

finaux d’appariement.

Les résultats expérimentaux de l'évaluation des solutions proposées sur différents cas

de test de l'initiative d'évaluation de l'appariement d'ontologies (OAEI), et de leur

comparaison avec tous les systèmes participants de ces défis d’appariement sont très

encourageants. Ils démontrent la grande efficacité du travail proposé pour augmenter les

performances de la tâche d'appariement d'ontologies et pour résoudre le problème

d'appariement d'ontologies à grande échelle.

Mots-clés

Alignement d'ontologies à grande échelle, web sémantique, réseaux de neurones artificiels,

apprentissage profond, Auto-Encoder, OAEI.

 ملخص

لا تزال مطابقة .البيني بين الأنطولوجيا غير المتجانسة هي طريقة فعالة لتأسيس قابلية التشغيلمطابقة الأنطولوجيا

الحل الفعلي لهذه .الأنطولوجيا على نطاق واسع تمثل تحدياً كبيرًا نظرا لطول الوقت واستهلاك مساحة كبيرة من الذاكرة

 .المشكلة هو تقسيم الأنطولوجيا الذي يمثل تحدياً أيضًا

ابية قوية مستوحاة بيولوجياً من الدماغ البشري، والطريقة التي يتعلم الشبكات العصبية الاصطناعية هي نماذج حس

التعلم العميق هو وسيلة واعدة للبحث وخطوة مهمة نحو الذكاء الاصطناعي خاصة بالنسبة .بها المعلومات ويعالجها

ومع ذلك، فإن .البيانات إنه ناجح بشكل خاص عند التعامل مع كميات هائلة وعالية الأبعاد من .للمشاكل المعقدة للغاية

 .استخدامه محدود في مطابقة الأنطولوجيا، لا سيما في مطابقة الأنطولوجيا على نطاق واسع

مختلفة للتعامل مع تحديات مطابقة الأنطولوجيا واسعة النطاق دون دلالية في هذا البحث، نقترح ثلاثة حلول

إعادة استخدام خاضع للإشراف يعتمد على الشبكات العصبية ، وهو نهج NeuralOM الحل الأول هو (1) تقسيمها.

وهو ينص على الجمع بين نتائج أنظمة المطابقة الأعلى مرتبة عن طريق شبكة اصطناعية، لتحديد معادلة .الاصطناعية

، وهو نظام مطابقة DeepOMالحل الثاني هو (2) مطابقة تؤدي إلى إنشاء محاذاة أفضل بين الأنطولوجيات.

وهو ينص على .نطولوجيا الذي نقترحه للتعامل مع مشكلة عدم التجانس واسعة النطاق باستخدام تقنيات التعلم العميقالأ

إنشاء تمثيلات دلالية لمفاهيم الأنطولوجيا باستخدام أنطولوجيا مرجعية من أجل الحصول على تمثيلات أكثر دقة وأقل

، وهي المنهجية العامة لهذا البحث SemBigOM الحل الثالث هو (3) .شابهأبعاداً للمفاهيم التي تحُسب عليها أوجه الت

من أجل تحقيق عملية مطابقة الأنطولوجيا على نطاق واسع بشكل مثالي DeepOM و NeuralOM التي تجمع بين

امها كمدخل لإعادة استخد NeuralOM للحصول على نتائج أولية يتطلبها DeepOM وهو ينص على استعمال .ومستقل

 .لإخراج نتائج المطابقة النهائية

ومقارنتها مع جميع الأنظمة OAEIالنتائج التجريبية لتقييم الحلول المقترحة في حالات الاختبار المختلفة من

إنها تثبت الكفاءة العالية للعمل المقترح لتحسين أداء مطابقة الأنطولوجيا، .المشارك في هذه المسارات مشجعة للغاية

 .مسألة مطابقة الأنطولوجيا على نطاق واسع ومعالجة

 الكلمات المفتاحية

مطابقة علم الوجود على نطاق واسع، محاذاة علم الوجود، الويب الدلالي، الشبكات العصبية الاصطناعية، التعلم العميق،

 .OAEIالدلالات،

Table of Contents

Introduction .. 1

Research Context ... 1

Problem Statement and Challenges ... 2

Objectives and Contributions ... 3

Manuscript Outline .. 8

Published Work .. 10

Part I State of the Art

1 Ontology Matching ... 11

1.1. Introduction ... 12

1.2. Ontology Background ... 12

1.2.1. Knowledge Engineering .. 12

1.2.2. Data, Information and Knowledge .. 13

1.2.3. Knowledge Representation Models ... 14

1.2.4. Ontology Engineering ... 15

1.2.4.1. What is an Ontology? ... 15

1.2.4.2. Ontology Components ... 18

1.2.4.3. Ontology Example ... 19

1.2.4.4. Ontology Languages .. 20

1.3. Ontology Matching ... 25

1.3.1. Why Ontology Matching ... 25

1.3.2. Terminology .. 26

1.3.3. The Matching Process ... 27

1.3.4. Ontology Matching Techniques .. 28

1.3.5. Ontology Matching Evaluation ... 31

1.3.5.1. Evaluation Principles ... 31

1.3.5.2. Types of Evaluations .. 32

1.3.5.3. Evaluation Measures .. 33

1.3.5.4. Ontology Alignment Evaluation Initiative ... 35

1.3.6. Applications of Ontology Matching .. 36

1.4. Conclusion .. 38

2 Large-Scale Ontology Matching .. 39

2.1. Introduction ... 40

2.2. Need for Scaling Ontology Matching ... 40

2.3. Large-Scale Ontology Matching Techniques ... 44

2.3.1. Partitioning-based Large-Scale Ontology Matching ... 44

2.3.1.1. Ontology Partitioning for Ontology Matching ... 44

2.3.1.2. Partitioning Methodology .. 44

2.3.1.3. Ontology Partitioning Algorithms.. 47

2.3.2. Parallel Large-Scale Ontology Matching .. 49

2.3.2.1. Inter-Matcher Parallelization ... 49

2.3.2.2. Intra-Matcher Parallelization ... 50

2.3.3. Reuse of Previous Matching Results ... 50

2.4. Related Literature ... 50

2.4.1. Review of Large-Scale Matching Tools .. 50

2.4.2. Analytical Summary .. 54

2.5. Conclusion .. 57

3 Deep Learning for Ontology Matching ... 59

3.1. Introduction ... 60

3.2. Deep Learning Basics ... 60

3.2.1. Challenges Motivating Deep Learning .. 61

3.2.2. Artificial Neural Networks ... 62

3.2.2.1. Biological Inspiration .. 62

3.2.2.2. Artificial Neuron ... 62

3.2.2.3. Fundamental Neural Network Architectures ... 64

3.2.2.4. Activation Functions ... 65

3.2.2.5. Learning Methods .. 66

3.2.3. Deep Learning Architectures ... 69

3.2.3.1. Auto-Encoders ... 69

3.2.3.2. Embedding Models .. 70

3.3. Review of the Literature ... 71

3.3.1. Ontology Matching with Artificial Neural Networks .. 71

3.3.2. Deep Learning Solutions for Ontology Matching Tasks 75

3.3.3. Analytical Summary ... 76

3.4. Conclusion .. 83

Part II Contributions

4 Reuse-based Semantic Approach for Large-Scale Ontology Matching 84

4.1. Introduction ... 85

4.2. Brief Overview ... 85

4.3. Neural Ontology Matching ... 87

4.3.1. Constructing the Dataset .. 89

4.3.2. Network Training ... 89

4.3.3. Matching Ontologies .. 91

4.4. Evaluation Framework .. 92

4.4.1. Small-Scale Evaluation .. 93

4.4.1.1. Evaluation for Conference Track .. 93

4.4.1.2. Evaluation for Biodiversity and Ecology Track .. 94

4.4.1.3. Evaluation for Process Model Matching Track ... 95

4.4.1.4. Evaluation for Ontology Alignment for Query Answering Track 96

4.4.1.5. Discussion of Results .. 97

4.4.2. Large-Scale Evaluation .. 99

4.4.2.1. Evaluation for Anatomy Track .. 99

4.4.2.2. Evaluation for Disease and Phenotype Track .. 101

4.4.2.3. Evaluation for Large Biomedical Ontologies Track 103

4.4.2.4. Discussion of Results .. 106

4.4.3. Experimental Summary .. 108

4.5. Conclusion .. 109

5 Deep Embedding Learning with Auto-Encoder for Large-Scale Ontology Matching

 ... 110

5.1. Introduction ... 111

5.2. DeepOM Overview ... 111

5.3. Deep Ontology Matching .. 113

5.3.1. Pre-Matching .. 116

5.3.1.1. Extracting Ontological Information .. 116

5.3.1.2. Pre-Processing of Ontological Components .. 118

5.3.2. Creating Semantic Embeddings for Concepts.. 119

5.3.2.1. Defining Reference Ontology .. 120

5.3.2.2. Similarity Measurement .. 120

5.3.3. Deep Ontology Matching with Auto-Encoder ... 122

5.3.4. Generating Ontology1-Ontology2 Alignment ... 123

5.3.4.1. Measuring Embeddings Similarity .. 124

5.3.4.2. Pruning Generated Alignment ... 124

5.4. Evaluation Framework .. 124

5.4.1. Experimental Design .. 124

5.4.2. Experimental Results ... 125

5.4.2.1. Evaluate the Matching Quality .. 126

5.4.2.2. Evaluate the Matching Complexity ... 127

5.4.3. Experimental Summary .. 128

5.5. Conclusion .. 128

6 Matching Big Ontologies Semantically by Combining NeuralOM and DeepOM .. 130

6.1. Introduction ... 131

6.2. SemBigOM Overview .. 131

6.3. Semantic Big Ontology Matching .. 134

6.3.1. Pre-Matching .. 137

6.3.2. Deep Embedding of Concepts .. 137

6.3.3. Ontology1-Ontology2 Matching .. 139

6.3.4. Neural Mapping Reuse ... 140

6.3.5. Post-Matching .. 142

6.4. Evaluation Strategy ... 142

6.4.1. Experimental Settings .. 142

6.4.2. Experimental Results ... 147

6.4.2.1. First Sketch - Evaluation against OAEI’2022 Systems 147

6.4.2.2. Second Sketch - Evaluation against NeuralOM and DeepOM 151

6.4.3. Synopsis ... 153

6.5. Conclusion .. 155

Conclusion and Open Issues ... 156

Main Contributions .. 156

Opens issues ... 157

Bibliography ... 159

List of Figures

Figure 1. Research Methodology Overview………………………………………………..7

Figure 2. Organization of the manuscript…………………………………………………..8

Figure 1.1. Data, Information and Knowledge Hierarchy………………………………...14

Figure 1.2. Ontology example from the domain of organizing conferences……………...20

Figure 1.3. Traditional ontology languages…………………………………………....21

Figure 1.4. Ontology markup languages………………………………………………….22

Figure 1.5. The matching process…………………………………………………………27

Figure 1.6. Basic evaluation design……………………………………………………….32

Figure 1.7. The resulted alignment (A) as compared-with the reference alignment (R)…34

Figure 2.1. Partitioning framework for matching large ontologies……………………….45

Figure 2.2. Inter-Matcher Parallelization (a) and Intra-Matcher Parallelization (b)……..49

Figure 2.3. Classification of large-scale ontology matching tools………………………..56

Figure 3.1. Biological neuron Versus Artificial neuron…………………………………..63

Figure 3.2. Single-layer feedforward neural network (a) Versus Multi-layer feedforward

neural network (b)…………………………………………………………………………65

Figure 3.3. General architecture of auto-encoder…………………………………………69

Figure 3.4. Publication activity on using artificial neural networks for ontology

matching…………………………………………………………………………………...81

Figure 4.1. NeuralOM Overview………………………………………………………….86

Figure 4.2. Processing flow of NeuralOM………………………………………………..88

Figure 4.3. Neural Network Structure…………………………………………………….90

Figure 4.4. Evaluation results of NeuralOM against OAEI systems for Conference'18

track………………………………………………………………………………………..93

Figure 4.5. Evaluation results of NeuralOM against OAEI systems for BioDiv-FLOPO-

PTO'18 track……………………………………………………………………………….94

Figure 4.6. Evaluation results of NeuralOM against OAEI systems for BioDiv-ENVO-

SWEET'18 track…………………………………………………………………………...95

Figure 4.7. Evaluation results of NeuralOM against OAEI systems for PM-UA'17

track………………………………………………………………………………………..95

Figure 4.8. Evaluation results of NeuralOM against OAEI systems for PM-BR'17

track………………………………………………………………………………………..96

Figure 4.9. Evaluation results of NeuralOM against OAEI systems for OA4QA'15

track………………………………………………………………………………………..97

Figure 4.10. Evaluation results of NeuralOM against OAEI systems for Anatomy’18

track………………………………………………………………………………………100

Figure 4.11. Runtime analysis of NeuralOM and OAEI systems for Anatomy’18

track……………………………………………………………………………………....100

Figure 4.12. Evaluation results of NeuralOM against OAEI systems for Phenotype-HP-

MP’18 sub-track………………………………………………………………………….101

Figure 4.13. Evaluation results of NeuralOM against OAEI systems for Phenotype-DOID-

ORDO’18 sub-track……………………………………………………………………...102

Figure 4.14. Runtime analysis of NeuralOM and OAEI systems for Phenotype’18

track………………………………………………………………………………………103

Figure 4.15. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

FMA-NCI’18 sub-track…………………………………………………………………..104

Figure 4.16. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

FMA-SNOMED’18 sub-track……………………………………………………………104

Figure 4.17. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

SNOMED-NCI’18 sub-track……………………………………………………………..105

Figure 4.18. Runtime analysis of NeuralOM and OAEI systems for LargeBioMed’18

track………………………………………………………………………………………106

Figure 5.1. DeepOM Overview………………………………………………………….112

Figure 5.2. Processing Workflow of DeepOM…………………………………………..115

Figure 5.3. Ontology concept by three dimensions……….……………………………..117

Figure 5.4. Architecture of the Auto-Encoder Model…………………………………...123

Figure 5.5. Matching Quality evaluation results of DeepOM for OAEI-Anatomy’20

track………………………………………………………………………………………126

Figure 5.6. Matching Complexity evaluation results of DeepOM for OAEI-Anatomy’20

track………………………………………………………………………………………127

Figure 6.1. SemBigOM Overview.………………………………………………………132

Figure 6.2. Processing Workflow of SemBigOM……………………………………….136

Figure 6.3. Creating Semantic Embeddings and Deep Matching of Concepts………….138

Figure 6.4. Neural Mapping Reuse………………………………………………………140

Figure 6.5. Matching quality evaluation results of SemBigOM against OAEI’22 systems

for Anatomy track……………………………………………………………………......149

Figure 6.6. Matching complexity evaluation results of SemBigOM against OAEI’22

systems for Anatomy track……………………………………………………………….150

Figure 6.7. Matching quality evaluation results of SemBigOM against NeuralOM and

DeepOM for Anatomy track……………………………………………………………...152

Figure 6.8. Matching complexity evaluation results of SemBigOM against NeuralOM and

DeepOM for Anatomy track……………………………………………………………...153

List of Tables

Table 2.1. Examples of large real-life ontologies…………………………………………42

Table 2.2. Summary of large-scale ontology matching tools……………………………..55

Table 3.1. Summary of ontology matching tools based on neural networks……………...81

Table 5.1. Evaluation results of DeepOM for OAEI-Anatomy’20 track………………..126

Table 6.1. Overview of OAEI Conference test ontologies………………………………144

Table 6.2. Evaluation results of SemBigOM against OAEI’2022 systems for Anatomy

track………………………………………………………………………………………148

Table 6.3. Evaluation results of SemBigOM against NeuralOM and DeepOM for Anatomy

track………………………………………………………………………………………151

List of Abbreviations

OM Ontology Matching

OAEI Ontology Alignment Evaluation Initiative

NeuralOM Neural Ontology Matching

DeepOM Deep Ontology Matching

SemBigOM Semantic Big Ontology Matching

ANN Artificial Neural Networks

DL Deep Learning

AE Auto Encoder

DIK Data Information Knowledge

KIF Knowledge Interchange Format

ISI Information Science Institute

OCML Operational Conceptual Modeling Language

F-Logic Frame-Logic

SHOE Simple Html Ontology Extensions

XML EXtended Markup Language

SGML Standard General Markup Language

W3C World Wide Web Consortium

XOL Xml Ontology Language

RDF Resource Description Framework

DAML DARPA Agent Markup Language

OIL Ontology Inference Layer

OWL Web Ontology Language

P2P Peer-to-Peer

AGRO AGRonomy Ontology

DRON Drug Ontology

ECTO Environmental conditions, treatments and exposure ontology

CIDO Coronavirus Infectious Disease Ontology

CLO Cell Line Ontology

ONS Ontology for Nutritional Studies

OMIT Ontology for MicroRNA Target

MOM Modularisation-based Ontology Matching

OPM Ontology Parsing graph-based Mapping

SGD Stochastic gradient descent

MSE Mean Squared Error

NLTK Natural Language ToolKit

AEO Anatomical Entity Ontology

CARO Common Anatomy Reference Ontology

MeSH Medical Subject Headings

GPU Graphics Processing Unit

TPU Tensor Processing Unit

HP Human Phenotype

MP Mammalian Phenotype

DOID Human Disease Ontology

ORDO Orphanet and Rare Diseases Ontology

FMA Foundational Model of Anatomy

NCI National Cancer Institute Thesaurus

SNOMED-CT Systematized Nomenclature Of MEDicine-Clinical Terms

FLOPO Flora Phenotype Ontology

PTO Plant Trait Ontology

ENVO Environment Ontology

SWEET Semantic Web for Earth and Environment Technology Ontology

PM Process Model

UA University Admission

BR Birth Registration

OA4QA Ontology Alignment for Query Answering

List of Algorithms

Algorithm 4.1. Training the neural network to learn tools’ weights……………………...91

Algorithm 5.1. Creating concepts’ embeddings for input ontologies…………………...119

Algorithm 5.2. Measuring semantic similarity between two given concepts…………...122

1

Introduction

Research Context

In computer science, knowledge engineering is a field dedicated to collect information about

the world, model this information and represent it in a way that a computer system can use

to solve complex problems. Knowledge representation is one of the three main aspects of

knowledge engineering. It is a field dedicated to represent and organize human knowledge

in order to be used and shared, between humans, between computer systems, as well as

between humans and computer systems.

Ontologies are representation methods. They allow representing a given domain so that its

knowledge can be used and unified for all applications developed in different ways.

Ontologies, first appeared in the 90s in many research axes, are the cornerstone of the

semantic web. They helped to solve several problems, and improve the knowledge

engineering process. An ontology [1] is a specification of a conceptualization, that is, a

description of the concepts and relationships that may exist for a particular domain. An

ontology is an explicit description of the concepts, properties, relationships and individuals

that may exist for a particular domain. It reflects knowledge from a certain domain of

discourse [2].

However, most applications require access to multiple ontologies and need to use

information from different data sources. They often use multiple ontologies from different

fields, and sometimes for the same field. Also, ontology construction is a very complex and

critical task, because the main goal is to represent the real world. So, it is reasonable to think

that two persons can have different points of view about the world, and how to represent it.

Thus, due to the rapid development of the semantic web, the construction of ontologies by

various experts leads to heterogeneity at different levels: terminological level, syntactic

level, semantic level and semiotic level. Moreover, the necessary information for web users

is often located in independent heterogeneous and distributed data sources [3].

Therefore, it is very interesting to identify correspondences between semantically related

entities of heterogeneous ontologies. That allows agents using different ontologies to inter-

2

operate. These correspondences, called alignment or mapping, are the backbone of the

ontology matching task which is the promising solution to this ontology semantic

heterogeneity problem. It is generally based on computing similarity between the

heterogeneous ontologies to be matched, in order to find semantic equivalences between

them. Ontology matching can be applied to numerous fields, such as information integration,

web service composition, ontology engineering, autonomous communication systems, peer-

to-peer information sharing, navigation and query answering on the web [4].

Problem Statement and Challenges

Nowadays, ontologies of most applications are of big size, like in medicine and astronomy.

And, large ontologies include a high conceptual heterogeneity. That could decrease the

efficiency of ontology matching systems facing other challenges as shortage of memory and

long-time processing. Such issue makes scaling up the ontology matching process a very

interesting problem.

Although a wide number of systems have been developed in order to address ontology

matching issue at the small-scale [3]; [4]; [5], large-scale ontology matching still presents

several challenges. Much more work is required at this scale. Current ontology matching

systems have to deal with big ontologies containing thousands to millions of entities each.

Thus, they suffer from some difficulties related to memory consumption and processing time

at the large-scale scene.

Partitioning large ontologies is the wide commonly used solution to deal with identifying

semantic correspondences between different ontologies at the large scene [5] [6] [7] [8] [9].

It consists on dividing the input ontologies into several sub-ontologies. The overall result of

matching is obtained after combining the individual results of matching sub-ontologies.

However, partitioning ontologies also suffers from interesting challenges. It may decrease

the matching quality, owing to the fact that, several semantic links inside ontologies are

expected to be lost in the matching process, while they actually exist. Also, the partitioning

parameters (number of partitions, size of each partition, number of elements per partition,

how to divide ontologies, how to align these divisions, …etc) are also interesting and affect

the matching performance. Moreover, ontology partitioning also suffers from the high time

and space complexity while creating partitions. This has a direct impact on the efficiency of

the ontology matching process.

3

Parallel large-scale ontology matching emerges as a complementary solution to the gaps of

partitioning-based techniques. It is an effective solution at the large scale, but still has

demands for ontology partitioning methods.

Reusing the previous matching results for large-scale ontology matching is another solution

which is not very used in ontology matching. This is due to the fact that, they undergo some

difficulties, even if they provide both high quality and low complexity of matching.

Artificial neural networks, often called neural networks, are one of the main tools used in

machine learning. They are biologically inspired from human brain in a way to replicate the

sort how human brains learn. In the last decades, they have become a major part of artificial

intelligence, and have been used for various tasks such as image processing, speech

recognition, natural language processing, and many others. This is due to their excellent

ability to solve non-linear problems by learning, which is such a complicated and difficult

task.

Deep learning techniques have been recently used to address important problems in many

research axes, such as image processing, natural language processing, information retrieval,

signal processing and many others. These techniques are very appropriate for dealing with

large datasets. They have the ability to analyse and interpret massive amounts of data, that

require efficient and effective computational tools. However, they have limited use in

ontology matching. Moreover, the few approaches that employ these computational models

aim at enhancing the performance of the ontology matching task, and not at handling the

large-scale heterogeneity problem [10] [11] [12] [13] [14]. Besides, they tested their methods

on ontologies of small sizes.

Objectives and Contributions

This research aims at addressing the large-scale ontology matching challenges, and

developing a solution that exploits semantics inside ontologies and which is adapted to the

requirements of big ontologies.

 The main objective of this study is to achieve both high quality and low complexity

in large-scale ontology matching, and keeping these factors at the small scale as well.

In other words, we aim at achieving high quality in small-scale matching where the

complexity is obviously low, then passing these two factors to the large scale.

4

 The particular objective of this work is to overcome the limits of the existing

solutions for large-scale ontology matching, and find a solution for this issue without

partitioning.

We attempted to achieve these research objectives by proposing three different solutions for

the large-scale ontology matching issue.

Solution 1- Reuse-based semantic approach for large-scale ontology matching

We propose NeuralOM, a new automatic ontology matching approach based on artificial

neural networks, with focus on large-scale matching. It consists of reusing the alignments of

the most effective ontology matching systems basing on artificial neural networks in order

to define a matching function which leads to generate the ideal alignment between input

ontologies. The aim behind training the involved network is to adjust a weight for each

matcher according to its efficiency. This refining strategy using artificial neural networks

serves to have optimal matching results and to increase the performance of the ontology

matching task.

The main contribution of the approach proposed in this work is that, it combines, according

to a very detailed state-of-the-art on the existing ontology matching techniques, the produced

mappings of the most efficient matching systems aiming to refine their results that have been

validated through various test cases. We aim by refining these results to achieve a perfect

ontology matching. NeuralOM considers the input mappings generated by the selected

candidate matchers as initial alignment that takes the matching process as parameter.

Reusing and refining ontology matching results denotes working on a higher and more

precise level. Moreover, unlike the actual ontology matching techniques that combine

several similarity measures, NeuralOM combines several mappings which that have been

generated through complicated processes and validated by various tests. This matching reuse

is performed using artificial neural networks which are very appropriate for such

combination tasks. Furthermore, as the selected matching tools work differently, NeuralOM

acquires a great chance to provide a maximal number of correct correspondences for the

reason that it benefits from different matching strategies.

We evaluate this matching approach through a very detailed experimental study according

to twelve different test cases from different campaigns of the Ontology Alignment

Evaluation Initiative (OAEI). The results of the performed experiments show that NeuralOM

has proven its efficiency in front of all OAEI matching systems in terms of the different

5

measures adopted for evaluation. It has achieved very excellent scores for all matching tasks

and with negligible matching time even for dealing with large ontologies. That shows a very

high accuracy of ontology matching especially at the large-scale.

Solution 2- Deep embedding learning with auto-encoder for large-scale ontology

matching

We propose a new ontology matching system, called DeepOM, which employs deep learning

techniques in order to efficiently match huge ontologies without partitioning them, and at

the lowest time process and memory space cost.

The idea behind DeepOM is to automatically treat the large-scale ontology matching issue

in two main stages. At each stage, it aims to provide more representative and less

dimensional real-valued vectors for concepts of input ontologies. DeepOM first transform

the ontological concepts of input ontologies into numerical vectors that deep learning models

can use as input. This embedding process is based on the semantic similarity between them

and the concepts of a smaller and well selected reference ontology. Second, DeepOM trains

an auto-encoder on the generated vectors, so as to learn high-level and more compact

representations for concepts of input ontologies. Similarities of the generated

correspondences is then computed using the cosine similarity between the compressed

representations of concepts. At each stage, DeepOM improves the performance and reduces

the complexity of large-scale ontology matching.

The proposed system provides several contributions. The core contribution is that it employs

deep learning techniques which are very appropriate for dealing with huge amounts of data

to represent the concepts of input ontologies in a multi-dimensional embedding space. The

aim behind this procedure is to transform the concepts into richer and more precise

representations which serves to reduce the matching complexity, and that deep learning

models can use. Moreover, the embedding process is based on using a smaller and well

selected reference ontology which has a great impact on the matching results. Furthermore,

an auto-encoder is trained on the produced embeddings, in order to learn more accurate and

more compact representations for input concepts. Exploiting such models which are great at

representation learning leads to better performance and less complexity as well. This is due

to the fact that this dimensionality reduction serves for keeping the most important attributes

of the input vectors in the lower dimensional compressed representations.

6

The results of evaluating DeepOM on large OAEI ontologies, and its comparison with

ontology matching systems which have participated to the same test case, demonstrate its

high ability to tackle the large-scale ontology matching problems. All the matching factors

of DeepOM are positive towards perfecting the matching performance and reducing its

complexity.

Solution 3- Matching large-scale ontologies semantically by combining NeuralOM and

DeepOM

The two solutions previously described, NeuralOM and DeepOM address the challenges and

respond to the main as well as the particular objectives of this study. NeuralOM is

characterized by its excellent matching results, but it is related to initial mappings of other

matching systems. DeepOM is totally independent, but its results are poorer than the results

of NeuralOM.

As we aim for an ideal ontology matching, we propose SemBigOM, the global methodology

of this research that combines the two proposed solutions in order to achieve excellent

matching results independently. SemBigOM seeks for tackling the challenges of large-scale

ontology matching and overcoming the limits of NeuralOM and DeepOM. The basic idea of

SemBigOM is that, it makes use of DeepOM to output initial mappings that NeuralOM

requires as input to be reused so as to generate the final matching results. In other words,

SemBigOM exploits NeuralOM to refine the matching results of DeepOM so as to perfectly

and independently achieve the large-scale ontology matching process. Figure 1 illustrates an

overview of the research methodology.

7

Figure 1. Research Methodology Overview.

As we aim for exploiting semantics inside ontologies, SemBigOM first generates three

different mappings between input ontologies basing on the different aspects of the

ontological concept, and using three different versions of DeepOM: Terminological-based

DeepOM, Structural-based DeepOM and Extensional-based DeepOM. Each matcher

represents concepts of ontologies in a numerical multi-dimensional vector space using a

reference ontology. An auto-encoder is then trained in order to transform the produced

numerical vectors into finer and smaller representations for concepts. Similarities of the

initial mappings are computed using the cosine similarity. After that, the three generated

mappings are reused by NeuralOM which defines the matching function that leads to

generate, after a filtering procedure, an ideal mapping between input ontologies.

The proposed methodology provides several contributions. The basic contribution is that, it

is advantages of providing a correct alignment, since it exploits semantics of input ontologies

and benefits from covering all aspects of their concepts. Also, it exploits background

knowledge resources for measuring the required similarities. In addition, SemBigOM treats

the large-scale ontology matching problem at two main stages aiming for perfecting and

simplifying the matching process at each stage. First, SemBigOM involves deep learning

methods, in order to create semantic embeddings for concepts of input ontologies, and

compress them to a lower-dimensional vector space using an auto-encoder. That provides

better matching performance and decreases the matching complexity. Second, SemBigOM

Ontology2 Ontology1

NeuralOM

Matching

Results

Terminological
DeepOM

Structural
DeepOM

Extensional

DeepOM

8

performs a refining procedure on its initial mappings in order to generate an ideal mapping.

Likewise, that allows perfecting the matching process with negligible matching complexity.

Moreover, SemBigOM adapts for parallelization any multiple tasks that can run in parallel,

aiming for reducing the complexity of large-scale ontology matching.

The results of evaluating SemBigOM on large OAEI ontologies against the different

ontology matching systems participants to the same case as well as NeuralOM and DeepOM,

demonstrate a high accuracy of matching. It has proven its efficiency to match large-scale

ontologies, to address the large-scale ontology matching problems, and to achieve all

objectives which have motivated this work.

Manuscript Outline

This manuscript is structured in six chapters divided into two main parts. The first part is

composed of three chapters of the state of the art. The second part comprises three chapters

which presents our contributions. Figure 2 shows the organization of the remaining chapters

of this manuscript.

Figure 2. Organization of the manuscript.

9

Part I. State-of-the-Art

 Chapter 1 marks the beginning of the theoretical background of this thesis. It is

divided in two main parts. In the first part we introduce the central component of this

work which is “ontology”, where we present the knowledge engineering field,

knowledge representation models, the background of ontologies, their components

and their expressing languages. The second part is dedicated to ontology matching,

where we present the need behind ontology matching, ontology matching evaluation

and its different applications. We also review and classify the different ontology

matching techniques with a part of prominent ontology matching systems.

 Chapter 2 reviews a state-of-the-art on large-scale ontology matching. It includes

three main sections: the first one focuses on studying the motivations behind this

issue and the need for matching large ontologies; the second section describes the

different possible strategies to deal with large-scale matching, and proposes a

classification of these techniques; the third section reviews the existing ontology

matching systems which have been developed to handle the large-scale matching

problems, and provides an analytical summary of these tools.

 Chapter 3 reviews the existing work related to employing deep learning techniques

for ontology matching. It is organized into two major parts. In the first part, we

describe the basic concepts of deep learning, artificial neural networks, their

architectures, auto-encoders, embedding models, activation functions and learning

methods. The second part is dedicated to the related literature on the existing

ontology matching tools based on artificial neural networks, and particularly on deep

neural networks. We also provide an analytical summary and discuss the presented

techniques.

Part II. Contributions

 Chapter 4 presents NeuralOM, the first solution that we propose to address the large-

scale ontology matching challenges basing on artificial neural networks. After

describing the proposed matching method, we present the evaluation framework

where we conduct our experiments on twelve different test cases from the open

Ontology Alignment Evaluation Initiative (OAEI) in both small and large scales. We

discuss the results of these experiments and study the performance of our approach.

10

 Chapter 5 presents DeepOM, another different solution that we propose to deal with

the large-scale heterogeneity problem using deep learning techniques. After

introducing the proposed ontology matching system and its detailed workflow, we

describe the evaluation of our system, conducted on the Anatomy track from the 2020

campaign of the OAEI Initiative. We also analysis the results of these experiments

and discuss the performance of DeepOM.

 Chapter 6 presents SemBigOM, a solution that we propose for addressing the current

challenges of large-scale ontology matching, as well as the challenges of NeuralOM

and DeepOM. It combines the previous two proposed solutions and represents the

global methodology of this research. After reviewing the methodology and

presenting its contributions, we describe its workflow. We also present the strategy

followed and the adaptations made for evaluating this research. And, we present and

analysis the results of evaluating SemBigOM according to the Anatomy track from

the most recent campaign of the OAEI Initiative, and we discuss its efficiency.

This manuscript ends with a conclusion which summarizes the thesis with a discussion about

the different results, and concludes with some perspectives for future research directions.

Published Work

The following published papers are partial outputs of this thesis.

Ali Khoudja, M., M. Fareh, and H. Bouarfa, Deep Embedding Learning With Auto-

Encoder for Large-Scale Ontology Matching. International Journal on Semantic Web

and Information Systems (IJSWIS), 2022. 18(1): p. 1-18.

Ali Khoudja, M., M. Fareh, and H. Bouarfa. A new supervised learning based

ontology matching approach using neural networks. in International Conference

Europe Middle East & North Africa Information Systems and Technologies to

Support Learning. 2018. Springer.

Ali Khoudja, M., M. Fareh, and H. Bouarfa. Ontology matching using neural

networks: Evaluation for OAEI tracks. in International Symposium on Modelling and

Implementation of Complex Systems. 2020. Springer.

Ali Khoudja, M., M. Fareh, and H. Bouarfa. Ontology matching using neural

networks: survey and analysis. in 2018 International Conference on Applied Smart

Systems (ICASS). 2018. IEEE.

11

Chapter 1

Ontology Matching

Contents
1.1. Introduction ... 12

1.2. Ontology Background ... 12

1.2.1. Knowledge Engineering .. 12

1.2.2. Data, Information and Knowledge .. 13

1.2.3. Knowledge Representation Models ... 14

1.2.4. Ontology Engineering ... 15

1.2.4.1. What is an Ontology? ... 15

1.2.4.2. Ontology Components ... 18

1.2.4.3. Ontology Example ... 19

1.2.4.4. Ontology Languages .. 20

1.3. Ontology Matching ... 25

1.3.1. Why Ontology Matching ... 25

1.3.2. Terminology .. 26

1.3.3. The Matching Process ... 27

1.3.4. Ontology Matching Techniques .. 28

1.3.5. Ontology Matching Evaluation ... 31

1.3.5.1. Evaluation Principles ... 31

1.3.5.2. Types of Evaluations .. 32

1.3.5.3. Evaluation Measures .. 33

1.3.5.4. Ontology Alignment Evaluation Initiative ... 35

1.3.6. Applications of Ontology Matching .. 36

1.4. Conclusion 38

12

1.1. Introduction

Ontologies are the cornerstone of the semantic web. They are highly heterogeneous.

Ontology matching is the most adapted solution to ontology heterogeneity problems.

Therefore, it has become a crucial task in semantic web applications. Several ontology

matching systems have been developed in the scientific literature in order to define semantic

correspondences between entities of heterogeneous ontologies.

Since our work lay in the context of ontology matching, this chapter marks the

beginning of the theoretical background of this thesis. It is divided in two main parts; in the

first part we introduce the central component of this work which is “ontology”, and the

second one is dedicated to ontology matching. We first present the background of ontologies;

the knowledge engineering field, and we outline the different models of knowledge

representation. Then, we review ontology engineering, starting with what ontologies are and

their origins rooted in philosophy, defining their components and describing the various

languages in which ontologies can be expressed. After that, we present the need behind

ontology matching and heterogeneity problems. The matching process and some used

terminologies are also defined. Then, we describe and classify the different ontology

matching techniques, and give a brief overview of some prominent ontology matching

systems. We also discuss ontology matching evaluation; evaluation principles, types of

evaluation and evaluation measures. Finally, we present several applications which can take

advantage of ontology matching.

1.2. Ontology Background

1.2.1. Knowledge Engineering

Knowledge engineering has evolved from the late 1970s onward, and consists of

constructing different aspect models of human knowledge [15]. In computer science,

knowledge engineering focuses on the identification, creation, storage, provision and

representation of knowledge in order to be used and shared. Like any engineering,

knowledge engineering goes through several stages:

 Collection of information about the world;

 Modelling this information;

 Representation of knowledge in a way that a computer system can use to solve

complex problems.

13

This study fits into the third stage which we explain by the following. Before

presenting the main concepts related to knowledge representation, it is necessary to define

the meaning of the word “knowledge”. However, this meaning is difficult to define because

knowledge very much depends on context. We thus clarify this notion in confront to the

terms “data” and “information”.

1.2.2. Data, Information and Knowledge

In computer science, data, information and knowledge belong closely together and have

slightly different meanings. They are distinguished by the level of interpretation associated

with them. We briefly define them as follows:

Data (the lowest point of the pyramid). Data are unstructured and uninterpreted facts, figures

and signals that reach our senses by the zillions every minute, but have the least impact on

our decisions.

Information (the next level). Information is data equipped with meaning. It is considered as

structured data in a given context;

Knowledge (the highest level). Knowledge is closely linked to practice. It is the collection

of data and information that we bring to practical use in order to carry out actions and create

new information.

Data, information, and knowledge can be represented by a pyramid. Figure 1.1

presents the DIK pyramid with an illustrating example. As shown by this example:

- “Red” is a data;

- “The color of the traffic light is red” is an information;

- For a human car driver, a red traffic light is not just a signal of some

colored object, but it is interpreted as an indication to stop, this is a

knowledge.

14

Figure 1.1. Data, Information and Knowledge Hierarchy.

1.2.3. Knowledge Representation Models

The vast data irreversible movement that is leading us towards a world of knowledge

highlights the importance of representing this knowledge in a structured, visual and

transmissible way. Knowledge representation is defined by the set of tools of which the

objective is to identify, structure, and organize human knowledge in a schematic

representation in order to make it usable and shareable between machines and between

humans and machines. In the following, we present the main models of knowledge

representation. Their definitions are adapted from [16].

1. Tags and Folksonomies

Tags and folksonomies are used in popular web sites. They are used as very simple ways to

describe the content by tagging it, i.e., describe a corpus of knowledge by just giving names,

called tags, to them.

2. Directories

A taxonomy is a partially ordered set of taxons (classes) where one taxon is greater than

another one only if what is denoted by the former includes what the latter denotes. A

directory or a classification is a taxonomy which is used by companies to present goods on

sale, by libraries to store books, or by individuals to sort files on a personal computer.

15

3. Relational Database Schemas

Relational databases organize data in a predefined way in terms of tables and relations. A

relational schema specifies the names and the types of columns of each table. The relational

model includes the notion of a key for each table. i.e., the subset of columns which uniquely

identifies each row. And, a column in a table may point to a column in another table via a

foreign key. This is intended to support referential constraints among various entities.

4. XML Schemas

XML schemas have been introduced for the purpose of specifying the structure of XML

documents. Their main components are elements, attributes, and types. XML schemas are

complementary to directories.

5. Conceptual Models

Conceptual models allow specifying entities in a domain with a high level of expressivity.

They provide constructors for both organising classes in a hierarchy and describing the

internal structure of objects. Thus, they offer the best of both directories and databases.

6. Ontologies

Ontologies, first appeared in 90s, are the most used models for representing knowledge. The

representation models presented previously can be considered as variations of ontologies

with various differences and degrees of formality and expressivity. The primary objective of

an ontology is to represent a given domain, so that its knowledge can be used and unified for

all its applications developed in different and independent ways. For this purpose, ontologies

are used in artificial intelligence, semantic web, software engineering, biomedical

informatics, information retrieval and many other domains. In the next section, we provide

a more detailed explanation of ontologies.

1.2.4. Ontology Engineering

1.2.4.1. What is an Ontology?

In philosophy, ontology denotes the theory of "the nature of being or the kinds of existents"

[17]. It is a term that appeared in Metaphysics with the Greek philosophers Socrates and

Aristotle, who were the first creators of ontology foundations. Socrates introduced the notion

of a hierarchy of abstract ideas and class-instance relations. Later, Aristotle formed the

logical basis of ontologies by adding logical associations. The resulted model is well-

structured and capable to describe and represent knowledge about the real world. In this

context, an ontology is the philosophical study of the nature of being and existence, i.e., the

16

study of the general properties of what exists, by defining all the knowledge about the world.

The first papers introducing the philosophical ontology area were published around 1960

[18].

Afterward, the term "Ontology" has become widely used in the field of Computer

Science. It appeared for the first time, at the beginning of the 90s, in the context of research

on artificial intelligence in order to solve the problems of knowledge engineering, more

precisely, in knowledge representation. Thus, computer scientists have adopted the term

"Ontology" for their own needs.

In order to clarify this notion, many researchers have proposed definitions of what an

ontology is. In this section, we cite several definitions about ontology, and observe how these

definitions have evolved over the years, and the relationships between them.

 One of the first definitions was given by Neches et al. [19]: “An ontology defines the

basic terms and relations comprising the vocabulary of a domain, as well as the rules

for combining these terms and relations in order to define extensions of the

vocabulary”. According to this definition, an ontology includes the terms which are

defined in an explicit manner, and knowledge that can be conveyed by terms.

 The most prominent and cited definition is that given by Thomas R. Gruber where he

describes an ontology as an explicit specification of a conceptualization modelling

concepts and relationships between concepts. He defined ontology as: “An ontology

is a specification of a conceptualization. That is, an ontology is a description (like a

formal specification of a program) of the concepts and relationships that can exist

for an agent or a community of agents. This definition is consistent with the usage of

ontology as set-of-concept-definitions, but more general” [1].

 Based on the Gruber definition, Borst [20] has proposed in 1997 to define ontology

as: “an ontology is a formal specification of a shared conceptualization”. This

definition specifies the fact that the ontology must be formal and shared.

 In 1998, the last two definitions (those of Gruber and Borst) were combined by Studer

et al. [21] to have the following definition: “An ontology is a formal, explicit

specification of a shared conceptualization”. They explain it as follows:

o Conceptualization refers to an abstract model of some phenomenon in the

world by having identified the relevant and more appropriate concepts of

that phenomenon.

17

o Explicit means that the type of used concepts, and the constraints on their

use are explicitly defined.

o Formal refers to the fact that the ontology should be expressed into a

machine-readable language.

o Shared reflects the notion that an ontology captures consensual knowledge, i.e.,

it is not private to some individual. Shared does not necessarily mean shared by

all individuals, but accepted by a group.

 In [22], authors made semantic interpretations to introduce the notion of formal

ontology, and proposed the following definition: “An ontology is an agreement on a

shared and possibly partial conceptualization”.

 There is another type of definition based on the process of constructing ontologies,

such as the definition proposed by [23]: “an ontology provides the means to describe

in an explicit way the conceptualization of knowledge represented in knowledge

bases”. This definition proposes the extraction of ontology from a knowledge base.

 Another definition of the same type was given in [24] by Swartout et al.: “an ontology

is a set of hierarchically structured terms, designed to describe a domain that can be

used as a basic skeleton for knowledge bases”.

 Later, John F. Sowa specified this notion more precisely. He defined ontology as a

catalog of types, resulting from the study of categories of abstract and concrete

entities that exist or can exist in a domain: “The subject of ontology is the study of

the categories of things that exist or may exist in some domain. The product of such

a study, called an ontology, is a catalogue of the types of things that are assumed to

exist in a domain of interest D from the perspective of a person who uses a language

L for the purpose of talking about D. The types in the ontology represent the

predicates, word senses, or concept and relation types of the language L when used

to discuss topics in the domain D” [25].

 A formal definition of ontology is given in [26]. According to Udrea et al., ontologies

model data structure (i.e., sets of classes and properties), data semantics (in the form

of axioms such as inheritance relations or property constraints), and data instances

(individuals). Thus, the entities of an ontology are composed of a "structure" part,

and a "data" part.

18

 Also, according to Cheatham and Pesquita [27], the information of classes,

properties, and axioms that restrict their interpretation, are called the "structure",

"scheme", or "T-box" (as Terminology) of the ontology, and information of instances

and their axioms are called "data", "instances data" or "A-box" (like Assertions) and

contain assertions about instances using T-box data.

 Finally, Zhang et al. [28], have formally defined an ontology as a tree model, because

of the principle of hyponymy (is-a subsumption) which means that each entity is

inherited from a single direct super-entity, thus forming a rooted acyclic graph

structure. But in the case of multiple inheritance, the ontology becomes a network

model that can contain cycles and in which several paths can lead to an entity.

1.2.4.2. Ontology Components

As discussed in the section of ontology definitions, ontologies formally represent the

vocabulary of a given domain and provide a specification of its meaning. According to

Gruber [1], knowledge in ontologies is mainly formalized using the five types of

components: concepts, relations, functions, axioms and instances. In this section, we

introduce these main components that build up an ontology.

1. Concepts

Ontology is a specification of a conceptualization. Concepts, also known as Classes, are the

basic notion in an ontology. They are used in a wide sense. They can represent abstract

concepts (intentions, feelings, beliefs, …etc.) or concrete concepts (people, tables,

computers, …etc.). In short, a concept can be an abstract notion about anything; the

description of a task, action, strategy, reasoning process, …etc. More formally, a concept is

an abstraction that brings together a number of real-world objects that are its instances.

A concept is defined by a semantic triangle (see Figure 5.3), i.e., it is defined by 3

dimensions: Term, Intention and Extension. These basic elements preserve the semantics

carried by the concept. More details are provided in Chapter 5.

2. Relations

Relations represent interactions between concepts allowing the construction of complex

representations of domain knowledge [29]. These relations are links that reflect the relevant

associations existing between the domain concepts. Ontology relations are usually binary

semantic links which have two arguments. The first argument is known as the domain of the

relation, and the second argument is the range.

19

There are several types of relations:

- Relations used by the hierarchy is-a (also known as Subclass-Of). Ontology classes

are generally organized in taxonomies which are widely used to organize the

domain knowledge using this generalization/specialization relationship.

- Relations which are used to define the hierarchy according to part-of, composed-

of, …etc.

- Semantic relations which are defined by four elements:

 Term: represents the relation in language;

 Extension: is the set of the effective realizations of a relation between

concepts;

 Intension: is the set of properties and attributes of the relation;

 Signature: is the set of concepts participating to this relation.

3. Functions

Ontology functions are complex structures made from some relations that can be used as an

individual term in a statement. Functions are particular cases of ontology relations, in which

the n-th element of the relation is unique for the n-1 preceding elements [30].

4. Axioms

Axioms are logical assertions and constraints that comprise the theory described by the

ontology in its domain of application. They are ordinarily used to represent knowledge which

cannot be formally defined by the other components of the ontology [30]. They are employed

to better define and give more meaning to the other components (concepts, attributes,

relations, …etc.). Thus, ontology axioms can serve to verify the ontology consistency,

constrain the information represented by the ontology, deduce new information, …etc.

5. Instances

Instances, also known as individuals, are used to represent elements of the domain described

by the ontology at the ground level. The instances in an ontology may include concrete

objects (people, tables, molecules, animals, … etc.), as well as abstract individuals (numbers,

words, … etc.).

1.2.4.3. Ontology Example

In order to clarify the notion of ontologies and their components described previously, we

present, in this section, a very simple ontology example from the domain of organizing

20

conferences. This ontology example is graphically illustrated in Figure 1.2. It is visualized

using the Web-based Visualization of Ontologies (WebVOWL)1 tool. The example contains

article, document, person, conference, and the other objects depicted as circular forms as

concepts. conference, session, pc_meeting are sub-classes of the concept event. Another

subsumption relation is between chair and person; a chair is a person. The concept chair is

related to the concept reviewer by the relation assigns_reviewers. Each event has two

attributes: has_startdate and has_enddate of type dateTime. An example of axioms is that,

a person should have at least one connection with review by the relation writes_review to be

a reviewer. Instances are not depicted in the graph, but abundant in the real world.

Figure 1.2. Ontology example from the domain of organizing conferences.

1.2.4.4. Ontology Languages

Ontologies are normally expressed in an ontology language. An ontology language is a

formal language to describe the different elements that compose an ontology. There is a wide

variety of languages for representing ontologies [31]. Most of them share equivalent kinds of

entities with comparable interpretations. They vary in their levels of expressivity. We can

distinguish between two main families of ontology languages:

1 http://vowl.visualdataweb.org/webvowl.html

21

1.2.4.4.1. Traditional Ontology Languages

At the beginning of the 90s, a set of Artificial Intelligence based ontology languages was

created. Their global layout is shown in Figure 1.3.

Figure 1.3. Traditional ontology languages [32].

We briefly outline these traditional languages:

 Cycl

This is the first language that was created (developed in 1990 within the Cyc project

[33]). It is a formal language based on Frames and First-order logic.

 KIF (Knowledge Interchange Format)

KIF [34] was developed in 1992 to solve the problem of language heterogeneity in

knowledge representation, and to allow the interchange of knowledge between

diverse information systems. It is based on First-order logic with some extensions.

It also permits the representation of meta-knowledge, reifying functions and

relations, and non-monotonic reasoning rules.

 Ontolingua

Ontolingua [35] was released by the Knowledge Systems Laboratory of Stanford

University in 1992. It is based on KIF language and on the Frame Ontology.

Moreover, it is the ontology-building language used by the Ontolingua Server [36].

 LOOM

LOOM [37] is a high-level programming language, which is not designed for the

development of ontologies but for knowledge bases, it is based on description logic

and production rules, it provides an automatic classification of concepts. It was being

22

developed by the Information Science Institute (ISI) of Southern California

University from 1986 to 1995.

 OCML (Operational Conceptual Modeling Language)

OCML [38] was developed in 1998 at the Knowledge Media Institute (UK). It was

designed as an extension of the Ontolingua language in order to fill its gaps by

supporting production rules, which allows improve the reasoning mechanisms of

Ontolingua.

 F-Logic (Frame-Logic)

FLogic [39] combines both Frames and First-order logic. It was created in 1995 at

the Department of Computer Science of the State University of New York. It was

specially used for deductive and object-oriented databases, and was later adapted and

used for implementing ontologies. It has an inference engine, Ontobroker, which can

be used to derive new knowledge.

1.2.4.4.2. Ontology Markup Languages

The explosion of Internet technologies has led to the creation of languages for exploiting the

features of the Web. These languages are generally called Web-based languages or ontology

annotation languages. Their goal is to represent and exchange data over the web. They are

represented in Figure 1.4 and described as follows:

Figure 1.4. Ontology markup languages [32].

 SHOE (Simple Html Ontology Extensions)

SHOE [40] is the first ontology annotation language. It was developed, in 1996 in the

University of Maryland (USA), as an extension of HTML. It uses special tags that

allow inserting semantic data into web pages. These tags are of two categories: tags

for constructing ontologies and tags for annotating web documents. This language

combines Frames and Production rules, so as to represent concepts, taxonomies,

relationships, and also rules that allow to infer new knowledge.

23

 XML (EXtended Markup Language)

XML [41] is a language for describing and exchanging structural documents, derived

from the ISO standard SGML (Standard General Markup Language). In 1998, XML

had been very quickly adopted as a standard for the exchange of information on the

Web by the W3C2 (World Wide Web Consortium), for ease of implementation and

better interoperability between information systems with both SGML and HTML. It

is used to exchange a wide variety of data on the Web, allowing users to define their

own tags and attributes, define data structures, extract data from documents and

develop applications [30]. Some languages were subsequently created based on the

syntax of XML, whereas other existing languages were modified so that they could

support structured documents described in XML.

 XOL (Xml Ontology Language)

XOL [42] was developed in 1999 as an XML-based language that allows the

specification of concepts, taxonomies and binary relationships. Thus, it is not used

for developing ontologies, but as an intermediate language for exchanging ontologies

and transferring them among several database systems, application programs or

ontology-development tools.

 RDF(S): RDF (Resource Description Framework) and RDF Schema

RDF [43] was developed by W3C as a language based on semantic networks to

describe web resources. It is an infrastructure that enables the encoding, exchange

and reuse of structured metadata, so that intelligent agents, browsers, search engines

and human users can make use of semantic information.

In order to reinforce this language, RDF Schema was built by W3C as an extension

of RDF combining semantic networks with frames to provide primitives of

knowledge representation systems.

The combination of RDF and RDF Schema is known as RDF(S). RDF(S) is widely

used as a representation format in many tools and projects. Many resources for

handling RDF(S) exists, such as editing, browsing, querying, validating, storing,

…etc. However, RDF(S) languages are not very expressive. concepts, instances and

relations of an ontology can be easily defined with RDF(S), but it will lack from

functions and axioms.

 DAML (DARPA Agent Markup Language) + OIL (Ontology Inference Layer)

2 https://www.w3.org/

24

The DAML Language is designed to allow expressing ontologies in an extension of

RDF. It provides the usual primitives of frames-based representation using the RDF

syntax.

The OIL language is based on RDF(S). It can express ontologies on the Web, by

combining the modeling primitives used in frame languages and the formal reasoning

of description logics.

The DAML language has been merged with the OIL language to form the

DAML+OIL language [44], which inherits the advantages of both of them. As a

result, DAML+OIL is an expressive, machine-readable and human-readable

language with an RDF-based syntax.

 OWL (Web Ontology Language)

The OWL language [45] has been created by the W3C Web Ontology (WebOnt)

Working Group. It was built upon RDF(S) and derived from the DAML+OIL

language. OWL aims for publishing and sharing ontologies in the Web. More

specifically, aims to make web resources readily accessible to software applications

and automated processes, as opposed to situations where the content is only presented

to humans.

OWL allows to explicitly describe ontologies, i.e., define terminologies and

relationships between them to describe concrete domains. A terminology is basically

made up of concepts and properties, while, a domain is basically made up of instances

of concepts. For this, OWL is more powerful in expressing the meaning and

semantics than XML, RDF and RDF(S). In addition, it allows linking ontologies and

sharing information between different knowledge sources.

The OWL language consists of three sub-languages designed for specific developer

communities and users: OWL Lite, OWL DL and OWL Full. They provide increasing

expressiveness; each sub-language is an expansion over its simpler predecessor.

o OWL-Lite: supports users who mainly need a classification hierarchy and

simple constraints (of cardinality 0 or 1 for example). This cardinality

corresponds to functional relationships, for example a person has an address.

However, this person may have one or more given names. OWL Lite is

therefore not sufficient for this situation.

o OWL-DL: is based on Description Logic theoretical properties, and supports

users who require maximum computational completeness (all conclusions are

guaranteed to be computable), and decidability (computations will finish in

25

finite time). It includes all constructs of the OWL language, but places certain

constraints to use them.

o OWL-Full: is the complete OWL language. It provides the maximum of

expressivity and more flexibility to represent ontologies than the precedent

languages. It allows mixing OWL with RDF Schema and does not enforce a

strict separation of ontology entities. For example, a class can be treated

simultaneously as a collection of individuals and as an individual in its own

right. However, using OWL Full features can lead to lose some guarantees

provided by OWL-Lite and OWL-DL for reasoning systems [30].

The ontology languages presented previously differ in their abilities of expressivity.

The ontologies that we use in this study are expressed in OWL language which is supported

by numerous initiatives and tools, and provides the higher level of expressivity.

In the real world, ontologies describe particular domains of knowledge. As presented

above, they are expressed in different ontology languages with different degrees of

expressiveness. That can lead to various problems of heterogeneity. In the following section,

we introduce the different forms of heterogeneity that may occur, and the most adapted

solution to this problem which is ontology matching.

1.3. Ontology Matching

1.3.1. Why Ontology Matching

In the semantic web and its distributed applications where ontologies are used, heterogeneity

poses a real problem. Different users have different habits and interests, use different tools

and knowledge, and usually at different levels of detail. This leads to diverse forms of

heterogeneity, which should be taken into consideration.

Ontology matching aims to reduce heterogeneity between ontologies. Heterogeneity

lies in the differences between goals of the applications using ontologies, in the expressing

languages in which ontologies have been encoded, how to use them, …etc. Therefore, we

distinguish several types of heterogeneity that usually occur together [16]:

 Terminological heterogeneity happens due to variations in names when referring

to the same entities in different ontologies. This is due to using different natural

languages, for example, “Paper” vs. “Articulo”, using synonyms, e.g., “Paper” vs.

“Article” or using different technical sublanguages, e.g., “Paper” vs. “Memo”.

26

 Syntactic heterogeneity occurs when two ontologies are not expressed in the same

knowledge representation language. This happens when comparing two ontologies

of different expressive formalisms, for example, F-logic and OWL. This kind of

mismatch is generally tackled at the theoretical level, establishing equivalences

between constructs of different languages [16].

 Conceptual heterogeneity (also called semantic heterogeneity) stands for the

differences in modelling the same domain of interest. This may happen due to using

different axioms for defining concepts, or using totally different concepts. Three

important reasons of conceptual differences are identified by [46] basing on the

represented domain, the level of detail and the intended perspective. We discuss them

below with examples about geographic map:

o Difference in coverage occurs when two ontologies represent different

domains at the same level of detail and from a unique perspective. For

instance, two partially overlapping geographic maps.

o Difference in granularity occurs when two ontologies describe the same

domain from the same perspective but at different levels of detail. For

instance, geographic maps with different scales: one displays buildings, while

another depicts whole cities as points.

o Difference in perspective, occurs when two ontologies describe the same

domain, at the same level of detail, but from a different perspective. For

instance, maps with different purposes, a geological map and a political map

do not display the same objects.

 Semiotic heterogeneity (also called pragmatic heterogeneity), is concerned with

how entities are interpreted by people. Entities that have exactly the same semantic

interpretation are often interpreted by humans with regard to the context and how

they are ultimately used. This type of heterogeneity is difficult for the computer to

detect and solve.

1.3.2. Terminology

It is observed that, in the area of ontology matching, the usage of some terms related to

“Ontology Matching” differs frequently. Some authors use different terms to refer to the

same concept, whereas, others use the same term to refer to different concepts. This is

undoubtedly confusing. In this sub-section, we provide a glossary with the definitions of

such terms as they are used in this project. They are adapted from [16].

27

Ontology Matching is the process of finding correspondences or relationships between

entities of different ontologies.

Ontology Alignment is the output of the matching process. It is a set of correspondences

between two ontologies.

Ontology Correspondence is the relation holding between entities (classes) of different

ontologies according to a particular alignment.

Ontology Mapping is the oriented version of an alignment, i.e., it maps an entity from the

first ontology to at most one entity from the second one.

Ontology Merging is the creation of a new ontology from two source ontologies. The initial

ontologies are unaltered, and the merged ontology contains the knowledge of both of them.

1.3.3. The Matching Process

The process of matching ontologies determines an alignment A’ for a pair of input ontologies

o and o’. Other parameters extend the definition of the matching process:

(i) A: an initial alignment which is intended to be completed by the matching

process;

(ii) P: matching parameters, e.g., weights, thresholds;

(iii) R: external resources used by this process, e.g., common knowledge and domain-

specific thesauri.

Following this definition, the matching process can be schematically represented as

illustrated in Figure 1.5.

Figure 1.5. The matching process.

The matching process can be technically defined as follows [16]:

28

Definition 1.1 (Matching process). The matching process is a function f which, from a pair

of input ontologies o and o’, an input alignment A, a set of parameters p and a set of resources

r, returns an alignment A’ between these ontologies:

A’ = f (o, o’, A, p, r) (1.1)

1.3.4. Ontology Matching Techniques

Ontology matching consists of defining the semantically related entities between different

ontologies, in order to solve semantic heterogeneity problems. For that object, several

matching approaches have been developed in the scientific literature. Numerous

classifications of the various ontology matching approaches are given as in [47]; [48]; [49];

[50]; [51].

Ontology matching process is generally based on measuring similarity between

concepts of the concerned ontologies. The proposed matching algorithms and systems differ

in their strategy for generating correspondences between ontologies. On this basis that we

classify, in this section, the different ontology matching techniques and discuss the recent

systems proposed by the state-of-the-art.

1.3.4.1. Terminological Techniques

Terminological techniques are based on comparing the strings or texts of the entities of input

ontologies, i.e., names, labels, and comments of concepts, in order to compute similarities

between them and match the similar ones. Thus, these methods are based on text similarity

measures, and can be further classified into two sub-categories:

 String-based Techniques: consider strings as sequences of letters in an alphabet.

They are based on the intuition that, the more similar the strings, the more likely they

denote the same concepts [16]. There are several string-based methods used in

matching systems as: Hamming Distance, N-gram Similarity, Edit Distance,

Levenshtein Distance, Jaro-Winkler Measure, TF-IDF, …etc.

 Language-based Techniques: rely on Natural Language Processing techniques to

extract the meaningful terms from the texts of concepts. This helps to assess the

similarity between the to-be-matched entities of ontologies. Examples of these

methods are, for example, the use of linguistic knowledge as lexicons and thesauri,

basing on linguistic relations like synonyms and hyponyms, Resnik Similarity, Jiang-

Contrath Method, Cross-Translation, …etc.

29

Terminological techniques are used by several ontology matching systems, such as,

POMAP++ [52] [53], Lily [54], LogMap [55], RiMOM [56], XMap [57], Falcon-AO [58],

AML [59], Eff2Match [60], FCAMapX [61], OLA [62] and AROMA [63].

1.3.4.2. Structural Techniques

Structural methods exploit the structural information (e.g., properties, subsumption relations,

sibling concepts, …etc.) between ontology entities to derive correspondences. The typical

intuition behind these methods is that, if the structural context or characteristics of the two

compared concepts are similar, then they may be also similar. For example, if two classes

are similar, their subclasses should also be similar. These techniques can be divided into two

sub-categories:

 Internal structure techniques: exploits the internal structure of the entities, such as,

their properties, types, keys, cardinalities of their attributes, …etc, to compute the

similarity between them.

 External structure techniques, also called relational techniques: consider the

relationships between concepts within the ontology structure, i.e., the other entities

to witch the compared entities are related.

Structural ontology matching techniques are adopted by various systems, such as,

COMA++ [64], AML [59], Falcon-AO [58], XMap [57], Anchor-flood [65], Lily [54],

CroMatcher [66], LogMap [55], TaxoMap [67] and POMAP++ [52] [53].

1.3.4.3. Extensional Techniques

These techniques compute the similarity between concepts of input ontologies by comparing

their extensional information, that is their instances (individuals). They are typically based

on the intuition that, the more significant the overlap of common instances is, the more

related the concepts they belong to are. In other words, if the instances are similar, then the

concepts that they belong to should also be similar.

The effectiveness of these techniques depends on the availability of instances in

ontologies, they are more efficient if more individuals are available. Some of the frequently

used similarity measures for extensional techniques are: Jaccard Similarity, Hamming

Distance, K-statistic, Hausdorff Distance, and many others.

Extensional techniques are used by several ontology matching approaches and

systems, such as, ASMOV [68], AROMA [63], InsMT+ [69], SAMBO [70] and RiMOM

[56].

30

1.3.4.4. Semantic Techniques

Semantic techniques are the most challenging type of ontology matching. They explore the

semantic information encoded in the entities of the input ontologies. Their key feature is the

use of model theoretic semantics to express the meaning of the compared entities without

ambiguity. They are based on the intuition that, if two entities share the same interpretations,

then they are semantically similar. They are based on logical models and deductive methods,

using different strategies, such as, Propositional Satisfiability, Description Logics

Reasoning, Detecting Inconsistency and Repairing Alignment. Although the meaning of

“semantic” is not simple to define, and its exploitation in ontology matching has different

forms, we present, in the following, some of these scenarios which intend to express the

meaning encoded in the entities of input ontologies to achieve the matching task.

 Description logics can be used to take advantage of the semantic information of

ontologies in order to discover inconsistent mappings so as to be removed from the

final alignment set.

 Reasoning may be applied to expand relations between entities, and generate new

relationships between them in order to discover new correspondences.

 Description logics can be further employed to transform the resulted alignment to the

optimization problem on constraint programming [71].

 Entities of ontologies can be annotated by new semantic information extracted from

background knowledge sources in order to discover new correspondences and reduce

the heterogeneity between ontologies. For instance, names of concepts can be

extended by new definitions.

 Several machine learning methods can be used to define correspondences between

ontologies, such as, neural networks, naïve bayesian learning, support vector

machines, decision trees, …etc.

 It is frequently applied to use the previous matching results and extend them in order

to provide more efficient ontology matching results.

Examples of ontology matching systems which take advantage of semantic techniques

are: CODI [72], RiMOM [56], ASMOV [68], AML [59], LogMap [55], XMap [57],

FCAMapX [61], Yam-bio [73], CroMatcher [66] and Gomma [74].

1.3.4.5. Discussion

Very much work has been developed in the area of ontology matching. We have classified

the ontology matching techniques above, and cited only examples for each type. Thus,

31

analysing more techniques should certainly lead to many conclusions and directions that

ontology matching has opened. These challenges have been highlighted by numerous

surveys as cited above. However, we focus on the most important conclusion that we can

point out and discuss from the presented sample of the ontology matching algorithms and

systems. That is, the majority of the ontology matching approaches do not rely just on one

type of ontology matching techniques, but combine multiple matching strategies. Therefore,

we conclude that there is a need for developing performant aggregation strategies.

Furthermore, it is highly recommended to take advantage of each of the ontology matching

methods with focus on semantic techniques.

Once an ontology matching approach has been developed basing on the techniques

presented in this section, it must be evaluated in order to be improved by its designers, and

then, to be put to application by interested users. In the following section, we discuss the

procedure of evaluating ontology matching approaches and systems.

1.3.5. Ontology Matching Evaluation

Ontology matching methods and systems must be tested to evaluate their performance. This

helps system designers to assess the strengths and weaknesses of their systems. In addition,

it helps developers to choose the most appropriate techniques and algorithms for ontology

matching. For this reason, different benchmarks, data sets and measures have been proposed

for evaluating matching systems. We present below the evaluation principles, the different

types of evaluation as well as the most commonly used evaluation measures.

1.3.5.1. Evaluation Principles

Euzenat & Shvaiko [16] have defined a set of principles that must guide the evaluation

process, so as to be clear in the context of an evaluation framework. They are briefly outlined

as follows:

 Systematic procedure. The procedure of evaluation should be reproducible. The

evaluation results must be non-ambiguous. And, applying the evaluation procedure

to different systems or to the same system at different times should be comparable.

 Continuity. Evaluation must be a continuous effort and not a one-shot exercise, in

order to assess the evolution of evaluated systems, and to identify the progress made

by the field.

32

 Quality and equity. The evaluation rules should be precise and well defined

beforehand. In addition, the evaluation material should be of the best possible quality

and not be biased towards a particular kind of algorithms.

 Dissemination. Evaluation should be available without excessive barriers. For this,

the data sets and results of evaluation must be published and made as freely available

as possible.

 Intelligibility. The evaluation results must be explained and able to be analysed and

understood by everyone.

According to [75], evaluations are often based on three main steps:

1. Planning. It defines the task to be performed and its constraints.

2. Processing. It consists of executing the defined plan.

3. Analysing. It involves evaluation the results achieved in accordance with the planned

measurements.

1.3.5.2. Types of Evaluations

Figure 1.6 illustrates the basic evaluation design. The evaluating process receives an

alignment A and computes a (set of) quality measure (s) m by comparing it to the reference

alignment R.

Figure 1.6. Basic evaluation design.

Several classifications of ontology matching evaluation may exist depending on the

used criteria. Euzenat & Shvaiko [16] proposed following classification of evaluations

basing on what they are supposed to evaluate.

33

1) Competence benchmarks

One particular type of evaluation is benchmarking. A benchmark is a well-defined set of

tests on which the results of a system can be measured [75]. It is used for testing the

improvement or degradation of a system, as well as for situating a system among other

systems.

Competence benchmarks allow the characterisation of the level of performance

(competence) of a particular system according to a set of evaluation tasks. They aim at

finding the weak points and strong points of a system, i.e., characterising the kind of task

this system is good for, or the type of input it can handle well, …etc.

2) Comparative evaluation

Comparative evaluation consists on comparing the results of several systems (or various

versions of the same system) on a common task. Thus, such an evaluation requires a well-

defined processing mode, and a clearly specified rules and evaluation criteria. It is also

preferable to run blind (or nearly blind) tests. This kind of evaluation aims at improving the

field as a whole in addition to individual systems.

3) Application-specific evaluation

Application-specific evaluation does not consider the matching in isolation, but compares

the results of various systems evaluation on the output of a particular application. Such kind

of evaluation is useful for a competitive evaluation, or for a company which wants to find

the more adequate system to use in a real and particular application.

These three types of evaluation differ in their goals. In this study, we evaluate our

approaches basing on both the first and the second type. This allows us to measure, our work,

improve it and situate it with regard to a common stable matching framework.

1.3.5.3. Evaluation Measures

In order to evaluate the results of ontology matching algorithms, it is required to confront

their produced alignments with a reference alignment based on some criteria (see Figure

1.7). For this reason, the evaluation measures represent another very important key to

confidently evaluate the different matching systems. The reference alignment is designed

either in a standard alignment format for the automatic evaluation, or entered manually by a

domain expert. In the following, we review different possible measures for the evaluation of

matching systems and algorithms. They are divided into compliance measures and

performance measures [16].

34

1) Compliance Measures

Compliance measures intend to evaluate the degree of performance of returned alignments

with regard to what is expected. We define below the most commonly used evaluation

measures: precision, recall and F-measure. They are based on the comparison of the

resulted alignment A against a reference alignment R (see Figure 1.7). A and R are considered

to be sets of correspondences, being pairs of entities.

Figure 1.7. The resulted alignment (A) as compared-with the reference alignment (R).

 Precision: evaluates the degree of correctness of the algorithm. It measures the ratio

of relevantly selected correspondences over the total number of selected

correspondences (the true positives over the true positives and false positives; see

Figure 1.7) as in formula (1).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐴 ∩ 𝑅|

|𝐴|
 (1.2)

 Recall: evaluates the degree of completeness of the alignment. It measures the ratio

of relevantly selected correspondences over the total number of relevant

correspondences (the true positives over the true positives and false negatives; see

Figure 1.7) as in formula (2).

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝐴 ∩ 𝑅|

|𝑅|
 (1.3)

 Precision and recall are inversely proportional. A system which has higher precision

may have a lower recall and vice versa. Thus, it is often preferable to use a unique

measure for evaluation. For this purpose, another measure is introduced and also

strongly used: Fb-measure, which aggregates precision and recall.

35

Fb-measure: is a balanced score of precision and recall as given by formula (3).

𝐹𝑏 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (1 + 𝑏2) ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑏2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (1.4)

If b < 1, then the Fb -measure biased to precision. If b > 1, then the Fb -measure is

biased to recall. In between, if b = 1, then the Fb -measure combines precision and

recall evenly, and does not compensate one for the other. In this case it is their

harmonic mean as in formula (4).

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (1.5)

2) Performance Measures

Performance measures intend to check other features of matching which are related to the

processing environment and the consumed resources. In this case, it is really important to

run the compared algorithms under the same conditions (same memory consumption, same

processor, …etc). We review some of these measures in what follows.

 Speed. It consists on measuring the amount of time required by the algorithms for

achieve their matching tasks.

 Network. Some algorithms need to use network connectivity to perform the

matching task. In this case, the network consumption can be measured in terms of

bandwidth.

 Memory. It is also interesting to measure the amount of memory required and used

by systems to achieve their matching processes.

 Scalability. It can be measured by a theoretical study, or by evaluation campaigns

basing on quantified tests of increasing complexity [16].

1.3.5.4. Ontology Alignment Evaluation Initiative

The most well-known and used reference for evaluating ontology matching systems over

several years is the Ontology Alignment Evaluation Initiative3 (OAEI). It is an international

initiative that aims at improving the quality of ontology matching systems by continuous

comparison, using various tracks with different experimental designs. Its purpose is to

compare different systems on the same basis, to identify their advantages and limits. OAEI

has been evolving over the years. Since 2004, OAEI started and has been run yearly offering

3 http://oaei.ontologymatching.org/

36

various tracks and introducing new challenges for ontology matching evaluation. In this

study, we evaluate our work according to the OAEI Campaigns.

Once an ontology matching approach or system has been evaluated and validated, it

has to be put to work. This is described in the following section, presenting the wide need

for ontology matching in several domains, and how their applications can take advantage of

ontology alignments.

1.3.6. Applications of Ontology Matching

Ontology matching is a necessary operation in traditional applications, which are

characterized by their heterogeneous models such as, ontology evolution, data integration

and data warehouses. Ontology matching is also important in emerging applications, which

are characterized by their dynamics, such as, linked data, peer-to-peer information sharing

and query answering [16]. Therefore, ontology matching is a requisite operation tracing all

domains of interest which run in heterogeneous environments. In this section, we overview

different application domains that pose requirements for ontology matching.

1) Ontology Engineering

Ontology engineering is a context where users are confronted with heterogeneous

ontologies. It is defined by the task of designing, implementing and maintaining ontology-

based applications [16]. These activities require ontology matching support for the fact that

ontology engineering deals with multiple, distributed and evolving ontologies. For example,

in the process of designing ontologies, instead of creating or constructing a new ontology

for a given application, it is much better to reuse ontologies (or parts of ontologies) that

already exist. This allows to save the time required for ontology construction, which is a

complex and time-consuming process, especially in the case of large-scale ontologies. In

order to carry out this task of constructing ontologies basing on other already built

ontologies, ontology matching is applied to identify the corresponding entities.

2) Semantic Web

The Semantic Web was created to ensure semantic interoperability between different sources

of information expressed by ontologies [76]. However, these ontologies are heterogeneous

and distributed. The matching of ontologies is the key to achieve this semantic

interoperability, it allows to establish a set of semantic correspondences between

heterogeneous ontologies. These mappings can be used for various tasks, such as navigating

on the web, merging ontologies, translating data, browsing the web of data, ...etc. The

37

semantic web is considered a complex area where numerous matching applications can be

encountered.

3) Information Integration

Information integration is a classic matching scenario that is already covered previously in

databases. It is one of the oldest applications where matching is viewed as a solution. More

specific problems, which require ontology matching, are found under this field, such as,

schema integration, data integration, data warehousing and catalogue integration [16]. For

instance (in schema integration), two enterprises want to perform a merger among them and

integrate their databases into a single one. The first technical step is to identify semantic

relationships between their related entities. This step is performed by applying ontology

matching in order to merge the schemas databases.

4) Linked Data

Linked data is a part of the semantic web where data is described by instances and expressed

in RDF [77]. These data are heterogeneous, and must be linked together to ensure semantic

interoperability. Data interlinking can take advantage of instance-based ontology matching,

which consists on performing the matching task basing on the instances (individuals or real

objects) of the input ontologies.

5) Peer-to-Peer Information Sharing

Peer-to-Peer (P2P) systems are distributed communication models in which parties (peers)

equivalently provide each other with data and services. They aim to the direct exchange of

resources (text, pictures, videos, books, …etc.) between machines connected in a network.

Examples of P2P file sharing systems are: messaging, telephone, Skype, ... etc. Peers are

totally autonomous. Thus, their data are described using different terminologies and

metadata models, even if they refer to the same domain of interest [16]. Ontology matching

is used in order to allow a reasonable exchange of information between them.

6) Query Answering on the Web

Another application of ontology matching is the task of answering queries. Semantic search

engines that use ontologies as support have better performance in query answering

operations than traditional search engines. Furthermore, users employ their own terminology

to query the web. Then, a system for semantic query answering on the web have to rewrite

the query according to available ontologies so as to use reasoning for providing answers

38

[16]. Thus, ontology matching is used in order to match these entities to the concepts of the

underlying ontology.

1.4. Conclusion

In this chapter, we have presented a detailed overview of ontologies and ontology matching.

We have first reviewed the context of ontologies, and have defined them. Then, we have

studied their components and the different languages used to express them. Afterwards, we

have presented the motivations behind ontology matching and heterogeneity problems. We

have also defined the matching process, and classify its different techniques and some of

well-known systems. A detailed study of ontology matching evaluation has been also

presented. And finally, we have overviewed the different fields where ontology matching

can be applied.

If ontologies are of large size, then ontology matching systems should be more

efficient due to the high heterogeneity of these ontologies. Besides matching quality,

memory space and processing time are other challenges in this case. Thus, scaling up

ontology matching systems to handle big ontologies remains a serious issue. This will be

detailly studied in the next chapter.

39

Chapter 2

Large-Scale Ontology Matching

Contents
2.1. Introduction ... 40

2.2. Need for Scaling Ontology Matching ... 40

2.3. Large-Scale Ontology Matching Techniques ... 44

2.3.1. Partitioning-based Large-Scale Ontology Matching ... 44

2.3.1.1. Ontology Partitioning for Ontology Matching ... 44

2.3.1.2. Partitioning Methodology .. 44

2.3.1.3. Ontology Partitioning Algorithms.. 47

2.3.2. Parallel Large-Scale Ontology Matching .. 49

2.3.2.1. Inter-Matcher Parallelization ... 49

2.3.2.2. Intra-Matcher Parallelization ... 50

2.3.3. Reuse of Previous Matching Results ... 50

2.4. Related Literature ... 50

2.4.1. Review of Large-Scale Matching Tools .. 50

2.4.2. Analytical Summary .. 54

2.5. Conclusion .. 57

40

2.1. Introduction

As the heart of the semantic web, ontologies are used by a wide range of applications. For a

same domain, various ontologies have been created by various people in different ways. This

leads to heterogeneities at several levels. Ontology matching have frequently emerged in

order to eradicate such heterogeneities, and numerous ontology matching systems have been

developed for this purpose. Yet, most applications nowadays require using large ontologies

like in the medical field. Therefore, when dealing with this large size, current ontology

matching systems encounter many challenges like shortage of memory consumption and

long processing time.

In this chapter, we present a state-of-the-art on large-scale ontology matching. First,

we study the motivations behind this issue and the need for matching large ontologies. Then,

we describe the different possible strategies to deal with large-scale matching. A

classification of these techniques is also proposed. It includes partitioning-based techniques,

parallel techniques and reuse of previous matching results. After that, we review the existing

ontology matching approaches and systems which have been developed to handle the large-

scale matching problems. And finally, we provide an analytical summary of these tools in

order to identify their advantages and limits, and then, to outline the contributions of this

work.

2.2. Need for Scaling Ontology Matching

Ontologies are the most commonly used model for knowledge sharing and reuse. Due to

their importance, different ontologies describing different domains from different views

have been developed. Therefore, multiple ontologies involve to represent the same or

different domains with some overlapping information among them.

Ontology matching is the promising solution to this heterogeneity problem. It aims at

generating correspondences between semantically related entities of the mismatched

ontologies. Consequently, several approaches and systems have been developed in order to

perform ontology matching.

However, with the increased evolution and pervasiveness of ontologies, ontology

matching tools have to address additional matching challenges to establish high-quality

mappings among ontologies within restricted computing resources.

41

Nowadays, ontologies can involve millions of concepts in many fields, like in

medicine, astronomy, biology, …etc. In such areas, applications require several ontologies

of huge sizes. Some examples of real-life voluminous ontologies with their descriptions and

sizes are provided in Table 2.1.

Ontology Description
Size (#

concepts)

AGRonomy

Ontology

(AGRO)4

AGRO describes practices, techniques, and variables used

in agronomic experiments. It is being built using traits

identified by agronomists and other existing ontologies.

3,738

Drug

Ontology

(DRON)5

DRON supports comparative effectiveness researchers

studying claims data. They need to be able to query U.S.

National Drug Codes by ingredient, mechanism of action,

physiological effect, and therapeutic intent.

617,960

Environmental

conditions,

treatments and

exposure

ontology

(ECTO)6

ECTO describes exposures of humans, plants or any other

organism to stressors, experimental treatments (e.g.,

temperature, lighting levels), stimuli and any kind of

environmental condition or change in condition that can be

experienced by an organism on earth. This is for purposes of

public health and environmental monitoring.

13,289

Coronavirus

Infectious

Disease

Ontology

(CIDO)7

CIDO is an open-source community-driven biomedical

ontology of coronavirus infectious disease. It is constructed

for providing standardized and interpretable human-

computer annotations and representations of various

infectious diseases of coronavirus, including their

transmission, aetiology, pathogenesis, prevention, diagnosis

and treatment.

8,796

Cell Line

Ontology

(CLO)8

CLO is a community-based ontology in the field of

biological cell lines with focus on permanent cell lines from

culture collections. These cell lines are associated with terms

43,325

4 https://raw.githubusercontent.com/AgriculturalSemantics/agro/master/agro.owl
5 purl.obolibrary.org/obo/dron.owl
6 https://raw.githubusercontent.com/EnvironmentOntology/environmental-exposure-

ontology/master/ecto.owl
7 https://raw.githubusercontent.com/CIDO-ontology/cido/master/src/ontology/cido.owl
8 purl.obolibrary.org/obo/clo.owl

42

from other ontologies, such as NCBI Taxonomy, Cell Type

Ontology and Ontology for Biomedical Investigation.

Ontology for

Nutritional

Studies

(ONS)9

ONS is the first systematic effort aiming to provide a formal

ontology framework for expressing nutritional studies.
6,056

Ontology for

MicroRNA

Target

(OMIT)10

OMIT aims to provide common data elements and data

exchange standards in the microRNA (miR) domain.

Biologists and bioinformaticians can use OMIT to emerging

semantic technologies in knowledge discovery and

acquisition for more effective identification of essential

roles performed by miRs in various diseases and biological

processes of humans.

90,916

Table 2.1. Examples of large real-life ontologies.

In the previous chapter (Sect.1.3.5), we have presented two types of quality measures

of ontology matching systems: compliance measures which intend to evaluate the degree of

performance of returned alignments, and performance measures which intend to check other

matching features related to the processing environment and the consumed resources. The

key quality factor for small-scale ontology matching is the matching performance or quality.

However, when ontologies are of a big size, additional features involve, and more techniques

are required to handle the task of matching such large-scale ontologies by ontology matching

tools. Thus, the main quality factors of ontology matching systems which deal with

voluminous ontologies can be summarized in two major points:

 Matching Quality. Ontology matching quality seeks for evaluating the relevance of

the matching results, by means of precision, recall and fb-measures. Ontology

matching systems should generate alignments that maximize these evaluation

measures regardless of the size of input ontologies. However, increasing the sizes of

ontologies penalizes the quality of the alignment generated by a matching tool [78].

The big sizes of input ontologies increase the need for more reasoning power. For

instance, an ontology matching system has to be able to reason a high number of

9 https://raw.githubusercontent.com/enpadasi/Ontology-for-Nutritional-Studies/master/ons.owl
10 https://raw.githubusercontent.com/OmniSearch/omit/master/src/ontology/omit.owl

43

axioms in order to generate complete and accurate mappings. Otherwise, this large

scale may decrease the matching quality with respect to the compliance measures.

 Matching Complexity. The large-scale matching problem is an extreme case in

terms of complexity. This is due to the large sizes of ontologies which generate a

high number of concepts pairs to be matched. Consequently, the matching algorithms

for large ontologies could be inefficient. At this stage, large ontologies pose two key

challenges face to ontology matching tools:

o Demand for More Memory Space. Matching entities of two input ontologies

intends to compare each entity of the first ontology against all entities of the

second ontology. Assuming that each input ontology has n entities, this

Cartesian product of matching these entities results in a memory space

complexity of O(n2). In addition, most ontology matching systems integrate

multiple matchers in order to improve the quality of their produced

alignments. Therefore, this complexity would be further multiplied by the

number of executed matchers. An ontology matching process with a space

complexity of O(n2) can easily lead to an out-of-memory error in case of a

large n [79].

o Demand for More Processing Time. For ontology matching algorithms, how

long they take to be run to completion is a very important issue. Efficient

matching algorithms must complete the matching process and keep the

processing time to a minimum. Similar to memory space, matching two input

ontologies has a time complexity of O(n2) (with n entities for each ontology),

obviously multiplied by the number of matchers that compose an ontology

matching tool. Unfortunately, a process of such a complexity would require

users to significantly wait for obtaining the matching results.

Therefore, in order to accurately match large ontologies within the limited computing

resources, ontology matching systems must use strategies to reduce the high space and time

complexities associated with the ontology matching process [79]. Thus, achieving both high

quality and low complexity is the key challenge in large-scale ontology matching. We

address this challenge in this work. Firstly, we review and study the techniques that the

existing ontology matching tools employ to establish high quality alignments when matching

large-scale ontologies. This is presented in the next section.

44

2.3. Large-Scale Ontology Matching Techniques

Although a wide number of systems have been proposed and developed in order to address

the small ontology matching issue [47]; [50]; [51], large-scale ontology matching still

presents several challenges. Current ontology matching systems have to deal with big

ontologies containing thousands to millions of entities each. Thus, they suffer from some

difficulties related to memory consumption and processing time at the large-scale scene.

In order to handle this issue and develop a performant ontology matching system

adapted to the requirements of big ontologies, we must study the different techniques and

approaches that deal with large-scale ontology matching. In the following, we provide a

classification of these techniques. Recent works on large-scale ontology matching can be

categorized into three main directions: partitioning-based matching, parallel matching and

reuse of previous matching results.

2.3.1. Partitioning-based Large-Scale Ontology Matching

2.3.1.1. Ontology Partitioning for Ontology Matching

When dealing with large ontologies, it is beneficial to split the matching problem into a set

of smaller sub-problems in order to reduce the matching space. Partition-based ontology

matching approaches aim at partitioning the input ontologies into smaller sub-ontologies in

such a way that, the matching process is independently performed by partitions, and the

independent partial results are then combined to obtain the overall matching result.

This process is called blocking in other contexts [16]. The idea is to avoid the Cartesian

product of comparisons among the large ontologies, and match entities only from

corresponding partitions or blocks. Matching small ontological partitions requires less

memory and time resources compared to matching full ontologies. Thus, it results in a

significant reduction of the matching complexity to O(n2/k) if the large ontologies are

partitioned into k blocks. Ontology partitioning improves the performance of applications

for the reason that it reduces the irrelevant data to be accessed and shared among different

nodes in a distributed system [80]. To further improve the matching efficiency, it is possible

to perform the sub-matching tasks in parallel.

2.3.1.2. Partitioning Methodology

The partitioning framework for matching large ontologies is depicted in Figure 2.1. In

general, three major stages involve in this procedure. They are described as follows:

45

Figure 2.1. Partitioning framework for matching large ontologies.

Partitioning ontologies into sub-

ontologies
Phase 1

Partitioned

ontologies

Matched

partitions

Matched

ontologies

Input

ontologie

s

Ontology2 Ontology1

Ontology2 Ontology1

Matching similar sub-ontologies

Producing overall matching result

Phase 2

Phase 3

46

Phase 1. Partitioning ontologies

Two voluminous ontologies are entered as input. This step consists on dividing each

ontology into a set of smaller and disjoint sub-ontologies. Ontology concepts which are

similar according to specific aspects (linguistic, structural, … etc.) are grouped together in a

partition.

Phase 2. Matching partitions

This phase consists on doing the matching operation on similar partitions. It is performed in

two main steps:

Step1. Identifying similar sub-ontologies

In this step, the most similar partitions which worth to be fully matched later are identified.

After having divided the large ontologies into smaller sub-ontologies, it is simply possible

to compare each sub-ontology of Ontology1 with all sub-ontologies of Ontology2. But such

calculations are of high complexity. The possible solution to avoid comparing all partitions

and reduce this complexity is to match only the similar sub-ontologies. This step is also

known as the filtering step [81], since it involves removing the pairs of dissimilar partitions.

Step2. Matching sub-ontologies

In this step, the matching techniques are applied in order to establish semantic

correspondences between partitions. It performs comparisons among concepts of sub-

ontology pairs that have been identified as similar in the previous step. For each pair of two

similar sub-ontologies, each concept of the first one is compared with all concepts of the

second one.

Phase 3. Discovering alignment

This step consists on combining and aggregating the partial results obtained from matching

sub-ontologies in order to produce the overall matching result (e.g., by the union on partial

correspondences). At this stage, it is also possible to refine the partial alignments and remove

all inconsistencies and replications of correspondences.

47

2.3.1.3. Ontology Partitioning Algorithms

There are considerable possible ways to perform partitioning of large ontologies into several

sub-ontologies. In the following, we describe the methods: Modularisation, Summarization,

Clustering and “Divide and conquer”.

1. Modularisation Techniques

Modularising an ontology consists on identifying a set of components (modules) of that

ontology which are considered as discrete parts but can be linked to each other. A module is

composed of a minimum set of axioms (sub-class, equivalence, instantiation, etc.), which

maintain its own entities and relations with encapsulating characteristics. For instance, the

relations of a given concept are within that module, not belonging to another module [82].

There are diverse methods that deal with extracting modules from ontologies.

- Grau et al. [83] used E-connections [84] as a basis for the modularisation of large

ontologies. E-connection is a set of partitioned knowledge bases which has been

made up of ontology using the description logic [82].

- Garcia et al. [85] conducted the modularisation of large ontologies basing on the

partitioning techniques of the graphs from the iGraph library11.

- Similarly, authors in [86] [87] used logic-based approaches to extract the modules of

ontologies.

2. Summarization Techniques

Summarization of an ontology provides a summary of that ontology as a smaller and more

compacted ontology. In other words, the summarized ontology is a new version of the large

ontology in such a way that, it covers all its main concepts and provides all its important

information. Summarizing an ontology helps for rapid understanding and facilitating the

engineering works on ontologies [88].

Several methods for ontology summarization exist.

- Peroni et al. [89] employed criteria such as the name, coverage surface and density,

in order to extract key concepts of ontologies such as ontologies summarization.

- Li et al. [90] explored the most important characteristics of ontologies that are

required to be included and covered in the summarized ontology.

11 http://igraph.sourceforge.net/

48

- Zhang et al. [91] proposed a summarization method based on RDF sentences. It

consists on building a graph where RDF sentences are the nodes and the links

between them are the edges. Then, the centrality measure is computed as a

proportional importance for each node.

3. Clustering Techniques

Clustering is the simplest and the most commonly used method for matching large ontologies

[92]. It consists on dividing the huge ontology into several clusters using different

techniques. This leads to significantly reduce the search space, to minimal memory

requirements and thus to improve the matching efficiency [92].

Numerous approaches deal with ontology clustering.

- Algerygawy et al. [93] proposed a graph clustering method based on the structural

similarity of graph nodes and their connections. The nodes in a cluster are similar to

each other, whereas, nodes in different clusters are dissimilar. This idea of structural

similarity has been derived from the AHSCAN algorithm [94], assuring that nodes

with similar connections in a network would have very high structural similarity.

- Ahmed et.al. [95] introduced a new semantic similarity measure and proposed an

enhancement and a revision of K-means clustering algorithm.

- Also, Tran et al. [5] semantically partitioned the large ontologies into clusters. The

information content [96] of each entity is used for assessing the semantic similarity

between the concepts.

4. “Divide and Conquer” Techniques

The “Divide and Conquer” technique consists on solving the large ontology task by breaking

in into smaller sub-tasks, solving the sub-tasks and combining them to get the desired output.

The idea of this technique has been applied by several processes in the large scene.

- The PBM method [97] used a “divide and conquer” strategy to divide the large

ontologies. It first partitions each ontology into small and independent blocks basing

on linguistic and structural similarity and using the ROCK algorithm [98]. After that,

the weighty links are defined by a structural proximity. Then, ontologies are divided

into blocks according to these weighty links, and using two criteria which are the

cohesiveness within blocks and the pairing between blocks.

49

2.3.2. Parallel Large-Scale Ontology Matching

When dealing with large ontologies, ontology matching requirements for different resources

are even more increased. Ontology partitioning does not guarantee the solution of problems

related to memory consumption and execution time [99]. As a result, parallel ontology

matching techniques emerge as a complementary solution. A straight-forward solution to

reduce the processing time of large-scale ontology matching is to run the matching process

in parallel on several processors.

Parallel matching techniques aim at minimizing the execution time of large-scale

ontology matching by distributing the concept comparisons among available resources of a

distributed system [100]. According to [100], parallel matching techniques can be

categorized into two major classes: inter-matcher parallelization and intra-matcher

parallelization. Figure 2.2 illustrates these techniques. In order to achieve an effective

ontology matching, it is highly required to determine several similarities between ontologies

and combine multiple matchers.

Figure 2.2. Inter-Matcher Parallelization (a) and Intra-Matcher Parallelization (b) [101].

2.3.2.1. Inter-Matcher Parallelization

The workflow of this matching type allows the parallel execution of independent matchers

on a parallel platform. In inter-matcher parallelization (Figure 2.2 (a)), each matcher is

executed on a different node (computer, virtual machine, …etc.) of a distributed computing

infrastructure (e.g., cloud machines). The comparisons of concepts to be compared are

performed by each matcher in parallel.

This kind of parallelization techniques is easy to support, and able to reduce the

execution time by a factor of n if matchers are of similar complexity. However, it is limited

50

by the number of independent matchers. Also, the matching requirements for memory space

are not reduced since the different matchers consider the complete ontologies [92].

2.3.2.2. Intra-Matcher Parallelization

Intra-matcher parallelization deals with the internal parallelization of individual matchers. It

is typically based on decomposing the input ontologies in order to provide a set of smaller

matching tasks which can be executed in parallel. Moreover, intra-matcher parallelization

can be combined with inter-matcher parallelization, i.e., it can be applied for both sequential

and independently executable matchers [100].

In this kind of parallel matching (Figure 2.2 (b)), each pair of concepts is compared at

an available node by multiple matchers sequentially, whereas, comparisons between pairs of

concepts are performed on different nodes in parallel. Therefore, the communication

between matchers is possible as they are located at the same resource [101].

2.3.3. Reuse of Previous Matching Results

A lot of effort has been put in the development of ontology matching approaches and

systems. A promising approach to enhance both the effectiveness and efficiency of ontology

matching is the reuse of previous matching results for accomplishing a new matching task.

This idea has been firstly introduced by [102] in order to improve schema matching systems,

and then used for ontology matching.

The reuse of previously identified correspondences and matching results leads to a

significant reduce of the matching effort. It is necessary to determine the fragments of

identified correspondences on which the matching reuse is applicable. Also, exploiting this

reuse requires a comprehensive infrastructure or a repository to maintain the already

established matching results.

2.4. Related Literature

In the previous section, we have studied the possible solutions and techniques to handle the

task of matching voluminous ontologies. In this section, we review and analyse the existing

tools and methods currently available for dealing with large-scale ontology matching.

2.4.1. Review of Large-Scale Matching Tools

Some approaches and systems aim for addressing the problems of matching big ontologies.

We review the related work in the following.

51

 Tran et al. [5] proposed a partitioning approach to break up the large ontology

matching problem into smaller matching sub-problems. They first semantically split

anatomy ontology into groups called clusters. Basing on the information content of

their concepts, and a scalable agglomerative hierarchical clustering algorithm. They

use then a filtering method to select the possible similar partitions in order to reduce

the computation time.

 The study of Laadhar et al. [6] presented a local matching learning strategy to align

large and complex biomedical ontologies, combining ontology partitioning with

machine learning techniques. It defines a new partitioning approach, based on the

hierarchical agglomerative clustering [103], which breakups the large ontology

alignment task into a set of local sub-matching tasks. Instead of defining a global

machine learning model for the entire ontology matching task, it performs a machine

learning model for each local sub-matching task and provides its corresponding

training set, which is automatically generated by exploring the external biomedical

knowledge bases without any gold standard or user involvement. Therefore, each

proposed local matching learning model automatically provides adequate matching

parameters for every local sub-matching task.

 The study of Balachandran et al. [9] is based on graph partitioning to improve the

execution time of ontology mapping process. The proposed ontology mapping

process works in three consecutive phases. First, the cluster-walktrap methodology

is used to partition the ontologies into sub-ontologies and identify the correspondence

between the concepts in parallel. Then, the factored ontologies are represented in

vector space model and similarities are computed between concepts. Finally, a

collaborative decision on the mappings is generated, taking into account the

similarities of the previous phase.

 The MOM (Modularisation-based Ontology Matching) method [104] is an approach

which decomposes a large matching problem into several small problems using E-

connections. Then, finding the similar module pairs is treated as a problem of finding

the maximum bipartite match. Finally, MOM makes use of the OPM (Ontology

Parsing graph-based Mapping) method in order to obtain correspondences between

two similar modules.

52

 The approach proposed by Jiménez-Ruiz et al. [8] consists on splitting the ontology

matching task into smaller and more tractable matching subtasks, basing on a lexical

index and locality modules. Two clustering strategies are presented for the lexical

index. Naive strategy relies on a simple splitting method, to randomly divide entries

into a given number of clusters of the same size. And, neural embedding strategy

relies on a log-linear neural embedding model. It aims to reduce the global size of

the computed division of the matching task.

 In [105] [106], Lambrix et al. proposed to reuse a partial reference alignment in

different ontology matching steps. First, it is used in the pre-processing step. Then,

in the computation step, they compute similarity values basing on similar pattern of

entity pairs in the reference alignment. And finally, the reference alignment is also

used in the filtering step to filter mapping suggestions.

 The study in [107] proposed an innovative method of matching large ontologies

based on filter and verification. It includes two phases: filter phase and verification

phase. In the filter phase, it reduces the degree of heterogeneity and scale of ontology

and then, in the verification phase, it matches the reduced ontologies. Specifically,

the input ontologies are partitioned into several sub-ontologies to get a proper scale

before matching. Similarities of irrelevant entities pairs are recognized beforehand

and not calculated in subsequent steps. Then, the extracted sub-ontologies are

matched. And finally, the alignments resulted from matching sub-ontologies are

integrated to provide the final output.

 Laadhar et al. [7] proposed an approach that applies the hierarchical agglomerative

clustering technique to divide an ontology into a set of partitions. Then, it uses an

automated tuning process, which generates the adequate thresholds of the available

similarity measure for any biomedical matching task.

 Kachroudi et al. [108] introduced an ontology partitioning method towards the final

goal of large ontology matching. It consists on splitting both ontologies to be aligned

in two reduced size coherent block sets, to deal only with blocks of manageable size,

containing the elements capable to be matched. The proposed method is mainly based

on the RDF transformation techniques, creation and processing of ontologies graphs,

and on semantic-structural similarities.

53

 COMA [109] and its successor COMA++ [110] support the reuse of complete

matching results. COMA++ is a system for combining matching algorithms in a

flexible way [110] [111]. It deals with different kinds of metadata models, such as

relational, RDF, XML and OWL ontologies. COMA++ proposed fragment

matching. A fragment is a rooted subgraph which can be determined either by the

user in an interactive way of matching, or by using a schema, sub-schema, or a shared

strategy in an automatic way. Using these simple rules is efficient for matching XML

schemas more than ontologies, for the reason that, they produce a great number of

fragments when dealing with ontologies. COMA++ uses a lightweight similarity

metric in order to identify similar fragments [111].

 Authors in [112] proposed V-Doc+, a parallel approach based on the MapReduce

framework and the virtual document technique [113], for large-scale ontology

matching. In the first stage, it performs two MapReduce processes in order to extract

the textual descriptions of ontology entities (classes, instances and properties) and

blank nodes. The extracted descriptions are exchanged in the second stage with

neighbors in RDF graphs so as to construct virtual documents. In the third stage, a

word-weight-based partitioning technique is proposed for parallel similarity

computation using the TF-IDF model.

 The work in [114] proposed a modularisation technique for ontology matching. It

extracts fragments from the input ontologies that contain only the essential classes

and relations in order to resolve the detectable incoherence. The approach introduces

also a global alignment repair algorithm which minimizes the degree of incoherence

as well as the number of mappings removed from the alignment. Thus, it aims for

overcoming the matching scalability problem by applying the proposed

modularisation technique [114].

 Hu et al. proposed Falcon-AO [115], a “divide and conquer” system for solving the

scalability problem of ontologies so as to match large ontologies. It first computes

the structural similarity between classes and properties based on three types of

hierarchies: subClassOf, rdfs:subPropertyOf and rdfs:subDomains. Based on the

computed structural similarities, Falcon-AO develops an agglomerative algorithm

for partitioning the input ontologies into two sets of partitions. Finally, it captures

the whole sub-ontologies descriptions in order to identify similar partitions and

compute the similarity between them.

54

 The corpus-based matching approach of Madhavan et al. [116] reuse the previous

matching results. It consists on augmenting ontology elements with matching

elements from a domain specific corpus of schemas. The idea is that, two ontology

elements match if they match with the same corpus elements. A machine learning

model based on several matchers is employed to find matches between ontology and

corpus elements. Thus, a substantial effort is required for learning the models and

defining the matches, especially for large ontologies.

 The work in [101] investigate the parallelization for the complex problem of

matching large ontologies, and proposed a MapReduce-based ontology matching

approach which distributes the computation of similarities between concepts on

different nodes of a cloud computing infrastructure. This approach is based on intra-

matcher parallelization. Assuming that input ontologies are partitioned and the pairs

of subontologies to be compared are identified, this approach is used to parallel the

correspondences computation aiming to reduce the execution time of the matching

process. The workflow of this approach is composed of four phases: reading, map,

shuffle, and reduce. For each pair of sub-ontologies, the concepts of the smaller sub-

ontology are replicated in the map phase. In the reduce phase, the concepts of the

larger sub-ontology are sent to be compared with these replicated concepts to be

compared. Similarities between each pair of concepts is computed by matchers. And,

the pairs of concepts which have a similarity value higher than a defined threshold

are selected.

 SeeCOnt is a seeding-based clustering technique which aims at reducing the

comparison complexity basing on cluster seeds. The seeds of clusters are first

identified basing on the highest ranked concepts using a distribution condition. Then,

the remaining concepts are assigned to their proper clusters using a membership

function [117].

2.4.2. Analytical Summary

Large ontologies introduce several challenges to ontology matching. Previously, we

presented a state-of-the-art on large-scale ontology matching approaches and systems. In the

following, we discuss and study these tools in order to identify their advantages and limits,

and outline contributions of this study.

55

A summary of the presented systems for large-scale ontology matching is offered in

Table 2.2 and translated in Figure 2.3. They are classified basing on their strategies for

dealing with the problems of large-scale matching. We did not include the results of their

evaluation because they had not been evaluated under the same conditions.

Ontology Matching

Tool

Partitioning-

based Matching

Parallel

Matching

Reuse of Matching

Results

Tran et al. [5]

Laadhar et al. [6]

Balachandran et al. [9]

The MOM method [104]

Jiménez-Ruiz et al. [8]

Lambrix et al. [105]

[106]

Li et al. [107]

Laadhar et al. [7]

Kachroudi et al. [108]

COMA [109]; COMA++

[110]

V-Doc+ [112]

Santos et al. [114]

Falcon-AO [115]

Madhavan et al. [116]

Ara et al. [101]

56

SeeCOnt [117]

Table 2.2. Summary of large-scale ontology matching tools.

Figure 2.3. Classification of large-scale ontology matching tools.

From the above classification and summary, we conclude the following:

 Large-scale ontology matching still presents a real challenge because it is a time

consuming and memory intensive process. Even though several systems aim at

enhancing the performance of the ontology matching task, there are only few systems

that can handle the heterogeneity between large ontologies. Due to this fact, much

more work is required in this field.

 Partitioning large ontologies is the wide commonly used solution to deal with

identifying semantic correspondences between different ontologies at the large

scene. Ontology matching techniques that deal with this problem search to divide the

large ontologies into small sub-ontologies in order to reduce the matching space.

However, partitioning ontologies also suffers from interesting challenges:

o Whatever the effectiveness of ontology partitioning, it may decrease the

matching quality, owing to the fact that, several semantic links inside

ontologies are expected to be lost in the matching process, while they actually

exist.

57

o Moreover, the partitioning parameters (number of partitions, size of each

partition, number of elements per partition, how to divide ontologies, how to

align these divisions, …etc) are also challenging and affect the matching

performance. For instance, ontology partitioning should produce partitions of

optimum size, i.e., they should not be too small hence increasing the

complexity of matching the produced partitions, nor too large hence not

taking maximum benefits of ontology partitioning.

o Furthermore, ontology partitioning also suffers from the high complexity

while creating partitions. Ontology partitioning algorithms should produce

partitions that maintain the knowledge expressed by the original ontologies.

Thus, a correct partitioning process require a high time and space complexity

to be completely achieved. This has a direct impact on the efficiency of the

ontology matching process.

 Parallel large-scale ontology matching is also used by ontology matching systems.

However, it is not usually employed on pairs of concepts among ontologies but on

ontology partitions. Thus, it is efficient, but still has strict demands for ontology

partitioning techniques. It emerges as a complementary solution to the gaps of

partitioning-based ontology matching.

 Unlike partitioning-based and parallelism-based ontology matching approaches,

reusing the previous matching results for large-scale ontology matching is an

independent category, i.e., algorithms of this matching type do not require

partitioning or parallelism techniques. This is due to the fact that, this type of large-

scale ontology matching provides both very high matching quality and very low

matching complexity. However, the algorithms of this large-scale matching category

are not autonomous and depend on other ontology matching tools. Also, they

undergo some other difficulties, for instance, the candidate ontology matching results

must be obtainable, expressed in the same format and have been evaluated on the

same basis. For this, reusing the previous matching results is not very used in

ontology matching.

2.5. Conclusion

In this chapter, we have presented a state-of-the-art on matching large ontologies. First, we

describe the need for scaling the ontology matching process. Then, we present a detailed

classification of the possible methods to deal with large-scale ontology matching. After that,

58

we present an overview of the existing ontology matching tools which have been developed

to address the challenges of large-scale ontology matching. Finally, we have studied and

discussed these tools with regard to their advantages and limits, and identified the current

challenges which serve to outline our contributions.

This work seeks for addressing these challenges. For this, powerful computational

mechanisms are required to fix the identified gaps of the existing large-scale ontology

matching techniques. Deep learning techniques are very appropriate for dealing with large

datasets. They have the ability to analyse and interpret massive amounts of data, that require

effective and efficient computational tools. Thus, they have been widely used to solve

complex tasks in many research axes. In the next chapter, we study deep learning techniques

and present a state-of-the-art on their use for ontology matching.

59

Chapter 3

Deep Learning for Ontology Matching

Contents
3.1. Introduction ... 60

3.2. Deep Learning Basics ... 60

3.2.1. Challenges Motivating Deep Learning .. 61

3.2.2. Artificial Neural Networks ... 62

3.2.2.1. Biological Inspiration .. 62

3.2.2.2. Artificial Neuron ... 62

3.2.2.3. Fundamental Neural Network Architectures ... 64

3.2.2.4. Activation Functions ... 65

3.2.2.5. Learning Methods .. 66

3.2.3. Deep Learning Architectures ... 69

3.2.3.1. Auto-Encoders ... 69

3.2.3.2. Embedding Models .. 70

3.3. Review of the Literature ... 71

3.3.1. Ontology Matching with Artificial Neural Networks .. 71

3.3.2. Deep Learning Solutions for Ontology Matching Tasks 75

3.3.3. Analytical Summary ... 76

3.4. Conclusion .. 83

60

3.1. Introduction

Large-scale ontology matching is still challenging. Such powerful computational

mechanisms are required to address the posed challenges. Deep learning is a promising

avenue of research and an important step toward artificial intelligence, making machines

independent of humans, and emulating the human brain’s mechanisms and ability to observe,

learn, make decisions and analyze, especially for extremely complex problems. Deep

learning algorithms have been particularly successful when dealing with high-dimensional

and massive amounts of data. They have attracted much attention from researchers in recent

years due to their performance and efficiency to solve complicated problems in many

research domains such as computer vision, natural language processing, speech recognition

and many others.

In this chapter, we present a state-of-the-art on employing deep learning techniques

for ontology matching. It is organized into two major parts. In the first part, we describe the

basic concepts of deep learning, and the second part is dedicated to the related literature.

First, we introduce the challenges that have motivated deep learning. Next, we present the

basic model family in deep learning which are artificial neural networks. We describe the

biological inspiration of artificial neuron, the fundamental neural network architectures,

activation functions and learning methods. Then, we present deep learning architectures with

focus on auto-encoders and embedding models. After that, we review the existing ontology

matching tools based on artificial neural networks, and particularly on deep neural networks.

Finally, we discuss the presented techniques and provide an analytical summary which

allows to outline contributions of this work.

3.2. Deep Learning Basics

Artificial intelligence field is actively growing and involving several applications and

different challenges. Artificial intelligence aims at conceiving intelligent machines able to

understand and solve problems that are difficult for human beings but not for machines.

61

Deep learning has made major advances in solving such complicated problems that have

been exceedingly hard to fix by the artificial intelligence community for many years. It has

produced very promising results for several tasks in many fields. In this section, we review

the basic deep learning concepts that are necessary to describe these powerful computational

models and their functionalities.

3.2.1. Challenges Motivating Deep Learning

Deep Learning has gained a lot of popularity and attention in the last years. This is due to

the factors that we outline as follows.

 Data availability. With the significant evolution of the Internet, the number of its

users and the content which they generate is exploding. This has resulted an increase

of huge resources and large datasets that significantly help the learning procedure of

deep learning paradigms.

 Computational power. Deep Learning algorithms require a considerable

computational power (processor and memory) to efficiently run to solve complex

tasks. Unlike bygone, users have the possibility to access more powerful

computational resources. Particularly, the exploitation of GPU computing arises

providing high computing power more than CPU. GPUs work more efficiently and

make use of massively parallel processors in order to accelerate computations.

 Improved learning algorithms. In the last few years, novel training improvements

have been proposed for increasing the performance of solving problems with deep

learning techniques. These enhancements include more efficient activation functions,

more robust optimizers and regularization techniques able to competently prevent

overfitting [118].

 Real-world impact. Deep learning techniques have an impressive advancement in

several tasks, such as object recognition, robotics, speech recognition, machine

translation, …etc. Moreover, deep learning models have gained popularity to be used

by many large technology companies in the world, like Google, Facebook, Microsoft,

Apple, IBM and NVIDIA Corporation.

Deep learning provides technical, innovative and efficient solutions for a large variety of

problems and domains. This would not have been possible without the advancement in the

most dominant model family of neural networks that we introduce in the next section.

62

3.2.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are the fundamental model family in Deep Learning.

Nowadays, neural networks have been applied to very different issues and in various fields

due to their efficiency and ease of use.

3.2.2.1. Biological Inspiration

Artificial neural networks are based on intrinsic models of biological neural systems of

information processing, which have led to the development of more intelligent computer

systems, applicable in statistical problems and data analysis. Neural networks appeared

during research on artificial intelligence, to replicate the “ability to learn” found in neural

biological systems, by modeling the intrinsic structure of the brain.

The brain physiology shows that it is made up of a very large number of neurons

(around one hundred billion), connected to each other by several thousand interconnections

for each neuron. Each neuron is a specialized cell, capable of creating, sending and receiving

electrochemical signals. Like all biological cells, neurons have a cell body (also called

soma), extensions providing information to the neuron (dendrites), and an extension which

communicates the information collected by the neuron (axons). The axon of one cell is

connected to the dendrites of another through a synapse. When a neuron is activated, it sends

an electrochemical signal through the axon. This impulse, which is of the order of 1

millisecond and its amplitude of about 100 millivolts, crosses the synapses to thousands of

other neurons, which can in turn send and therefore propagate the signal to the whole of the

biological brain. A neuron will only emit an impulse if the signal transmitted to the cell body

by the dendrites exceeds a certain threshold called the trigger threshold [119]. Thus, neurons

can create or accomplish various and extremely complex cognitive tasks such as learning.

3.2.2.2. Artificial Neuron

The artificial neuron is an information-processing model of the brain neuron. Figure 3.1

illustrates the biological inspiration of the artificial neuron. The main features of real neurons

are retained in the definition of an artificial neuron: the inputs model the dendrites; the input

impulses are weighted by synaptic coefficients and the emitted impulse (the output) obeys a

threshold effect. Typically, the artificial neuron is the basic unit to process information, and

it is composed of the following elements:

 The neuron receives signals from different sources. The input nodes are expressed as

an n-dimensional vector 𝑋 ∈ ℝ𝑛.

63

 The information flows over the connection links which are associated with

importance values represented by weights. The greater the value of a weight w, the

stronger the intensity of the incoming signal, and therefore, the more influential the

corresponding input. Likewise, these weights (that can include both positive and

negative values) are expressed as a real-valued vector 𝑊 ∈ ℝ𝑛.

 A supplementary signal, called bias, can be added to the input. This parameter 𝑏 ∈

ℝ, which is generally set to 1, has an important effect during the learning phase since

it enables increasing or decreasing the neuron value.

 The summing function generates a weighted sum of all the received signals weighted

by their connection strengths each. It can further select the maximum, minimum,

product, majority or other normalizing algorithms.

 Finally, the activation function 𝑎:ℝ → ℝ, is applied on the weighted sum in order to

define the final output signal Y. This mathematical function, which is usually non-

linear, can also scale and control the output value via thresholds [118].

Thus, it is possible to define an artificial neuron as:

𝑌 = 𝑎(𝑊𝑋 + 𝑏) = 𝑎(∑ (𝑤𝑖𝑥𝑖) + 𝑏)
𝑛

𝑖=1
 (3.1)

Figure 3.1. Biological neuron (adapted from12) Versus Artificial neuron.

12 https://en.wikipedia.org/wiki/Biological_neuron_model

𝒙𝟏

𝒙𝒏

𝒙𝟐

𝒙𝟑
 ∑

𝒘𝟏

𝒘𝒏

𝒘𝟐

𝒘𝟑
. . .

𝒃

𝒇 𝒚

Weighted
sum

Activation
function

Input

Output

+𝟏

Biological neuron Artificial neuron

64

An artificial neuron is the basic processing unit of a neural network. It is connected to

input information sources (other neurons for example) and returns output information. The

neuron is the building block of more complex models.

Therefore, an artificial neural network is composed by a connection of artificial

neurons denoting a weighted and directed graph. The nodes represent the neurons, and the

connection links pass on the weights between neurons. The weights are first randomly

initialized and then adjusted during the learning phase [118].

In the next sections, we describe the fundamental neural network architectures, the

activation functions and the learning methods used to train the artificial neural network.

3.2.2.3. Fundamental Neural Network Architectures

An artificial neural network architecture is the overall structure of the network. Most neural

networks are usually organized into groups of units called layers. Neurons of the same layer

mainly share the same pattern of connections with other neurons. The network can be either

fully-connected if every node in each layer has a connection with every node in the adjacent

forward layer, or partially-connected, when the network is missing some connections [118].

And, according to the number of composed layers, neural network architectures can be

classified into two major classes as follows.

1. Single-Layer Feedforward Neural Network

The single-layer feedforward network (Figure 3.2 (a)) is the simplest form of a layered

network. It has one layer of connection weights. “Single-layer” is related to the presence of

only one layer of computational nodes, which are the output neurons [118]. The nodes of the

input layer receive the signals, and the nodes of the output layer compute and transform the

input information. The term “feedforward” refers to the direction of the information flow

from the input layer to the output layer (and not the opposite direction).

2. Multi-Layer Feedforward Neural Network

The multi-layer feedforward network (Figure 3.2 (b)) is composed of several layers which

are introduced in the network in order to express more complicated transformations. It

contains one or more hidden layers between the input layer and the output layer. This

introduction of hidden layers enables the network to extract latent factors of variations from

its input [118]. In addition, the network acquires the ability to capture an overall perspective

in spite of its local connectivity, owing to the fact of the increased neural connections and

the additional set of synaptic connections [120].

65

In this architecture, the input signal is fed to the first layer (input layer). Consequently,

the computational nodes of the second layer (next layer which is the first hidden layer) put

in the activation pattern on the input layer nodes. Then, the signals outputted from the second

layer (first hidden layer) are used as inputs to the third one (second hidden layer), and so on

for the rest layers of the network. The nodes of a layer receive information only from the

nodes of the preceding layer. The output signals of the last (output) layer constitute the final

output of the network in response to the first (input) layer.

Figure 3.2 illustrates two typical examples of the neural network architecture types

and the difference between them. The left side presents an example of a single-layer

feedforward neural network where the input and output layers are composed of five and two

nodes respectively. The right side presents an example of a multi-layer feedforward neural

network where the input, hidden and output layers are composed of five, three and two nodes

respectively. Both examples depict fully-connected networks.

Figure 3.2. Single-layer feedforward neural network (a) Versus Multi-layer feedforward

neural network (b).

3.2.2.4. Activation Functions

The fundamental operation of an artificial neuron implies summing up its weighted input

signals and then applying an activation function. Typically, the same activation function is

applied for all neurons of the same layer in the network. Activation functions must be

differential and continuous so as to allow the error correction during the training phase [118].

There are many possible activation functions.

Input layer Output layer

Single-layer neural network

(a)

Multi-layer neural network

(b)

Hidden layer Output layer Input layer

66

The activation function is a function that must return a real close to 1 when the "good"

input information is given and a real close to 0 when it is "bad". Functions with values in the

real interval [0,1] are generally used.

If the activation function is linear, the neural network would reduce to a simple linear

function. However, nonlinear activation functions are often employed for more realistic

results. These nonlinear transformations may significantly help when the input data are not

linearly separable in the input space. They provide a new representation space in which the

transformed data may be linearly separated. Therefore, the use of the neural network is

however much more interesting when using nonlinear activation functions.

3.2.2.5. Learning Methods

As presented above, most problems require neural networks with an architecture of several

fully-connected nonlinear layers. The neural networks will then be hard to interpret. For this

reason, that deep learning is generally related to the term “black box”, as it is not possible to

track the internal computations inside the network. Moreover, the increase in the number of

hidden layers makes the learning process more complex and computationally expensive. In

this section, we describe the different algorithms used for training neural networks. Then,

we outline the most popular optimization algorithms and objective functions commonly

adopted for training neural network models and solving the afore-mentioned issues.

3.2.2.5.1. Training Algorithms

The high commonly used method for training artificial neural networks is the back-

propagation method. It consists of two phases of different directions:

 A forward phase, where the signal x is propagated through the neural network layers

from the input layer to the output layer. In this phase, weights of connections between

neurons are fixed. The output value computed by the output layer is compared with

the desired value using a loss function. The difference score is then used as error

signal in the backward phase.

 A backward phase, where the computed error signal is propagated through the

network in the opposite direction layer-by-layer from the output layer to the input

layer. The weights of connections between neurons are then adjusted so as to

minimize the error value, i.e., so that the computed output and the desired output

would be more similar. These computations of adjustments are much more

challenging in the hidden layers.

67

3.2.2.5.2. Optimization algorithms

Training neural networks is such a complex task. Training a single instance may take time

from days to months on hundreds of machines. As a result, several optimization methods

have been proposed so as to solve these issues of increased complexity and high

computational costs. In what follows, we outline the most efficient modern optimization

algorithms used while training deep neural networks. They are adapted from [118].

 Gradient descent is the basic optimization algorithm for training artificial neural

networks. It updates the model parameters at each step of the iterative process in the

gradient direction of the objective function.

 Stochastic gradient descent (SGD) [121] is a stochastic approximation of the

gradient descent optimization. It also follows an iterative process to minimize the

objective function.

 Stochastic gradient descent with Momentum. The momentum method [122] can

provide considerable improvements over SGD, speeding up the training process and

avoiding the unstable oscillatory problems caused by selecting high values of

learning rates.

 Stochastic gradient descent with Nesterov Momentum is proposed in 2013 [123]

to improve the momentum method, and inspired from the Nesterov’s accelerated

gradient method [124]. The Nesterov Momentum method evaluates and continuously

corrects the gradient computation, and prevents the model from increasing the

responsiveness.

 AdaGrad [125] updates learning rates by scaling them inversely proportional to the

square root of summing all the historical squared values of the past gradients.

Differently from the previous optimization methods, this algorithm considers a

different learning rate value for each step.

 RMSProp. The main weakness of Adagrad is that, it may lead to an algorithm unable

to acquire additional knowledge [126] due to the fact that the squared gradients

accumulate and keep growing up during the training phase. RMSProp method is

proposed [127] in order to solve this issue. It consists on discarding the extreme

historical gradient values and accumulating only near past gradients.

 Adam [128] computes adaptive learning rates for each parameter. It prevents the

model from high biases and results as a robust response to the selection of

hyperparameters.

68

 Adadelta is proposed in 2012 [129] as an extension of Adagrad in order to overcome

many issues such as the problem of continual decay of learning rates during the

training phase. It is robust to a large variety of configuration choices, demonstrating

a high disposition to be applied as optimization method for training neural networks.

3.2.2.5.3. Objective functions

Most deep learning models involve an optimization phase, that usually consists on

minimizing the objective function named as the loss function [118]. The objective function

typically returns the distance between the output computed by the neural network and the

expected output of the training data. The optimization process aims for identifying the best

set of parameters which minimizes this distance.

Regularization refers for taking as input the parameters of a neural network and returns

as output a score representing their complexity. Thus, the training algorithm aims for

minimizing both the loss function and the parameters complexity.

Various loss functions and regularization techniques have been proposed and the

possibilities of their combination lead to diverse learning algorithms. In what follows, we

introduce the most commonly used loss functions and regularization methods used for

training artificial neural networks (adapted from [118]).

1) Loss functions

 Mean Squared Error (MSE) squares the prediction error and averages over all

instances of the training set.

 Hinge loss is the loss function ordinarily adopted for binary classification purposes,

and can be extended for dealing with multi-classification problems [130].

 Log loss is a continuous loss function which displays a related convergence rate as

the hinge function.

 Binary cross-entropy loss [131] is the appropriate loss function for binary

classification purposes with conditional probability outputs.

2) Regularization

 L2 regularization [132] is one of the simplest regularization techniques. It computes

the sum of squares of the network weights.

 L1 regularization [133] is the sum of absolute values of the network weights. It is

recommended in particular for sparse solutions.

 Elastic net [134] is the combination of L2 and L1 regularizers.

69

 Dropout [135] randomly drops units from the neural network during the training

phase. It is less complex compared to the previously presented regularization

techniques, and generally leads to significant results.

3.2.3. Deep Learning Architectures

A good number and varied architectures are used in deep learning, such as convolutional

neural networks, recurrent neural networks, long-short term memory and others. This

thesis focuses on the deep learning research lines that we present in the following.

3.2.3.1. Auto-Encoders

Auto-encoders are the most adopted deep learning models for unsupervised

representation learning [118]. They act as a dimensional reduction method, where the

input layer is copied to the output layer and the hidden layer between them represents

then the latent factor of the data. This representation has proved its efficiency in

facilitating the visualization, communication, classification and storage of data [136].

Thus, auto-encoders have achieved successful results in a variety of applications, and

attracted a lot of attention in recent years as very effective unsupervised models.

The core component of an auto-encoder is a neural network which tries to reconstruct

its input layer at its output layer. Figure 3.3 illustrates the general architecture of auto-

encoder, with three hidden layers of three, two and three nodes respectively.

Figure 3.3. General architecture of auto-encoder.

An Auto-encoder consists initially of two crucial components.

70

1. The encoder function, denoted as f, allows an efficient and straightforward

feature extraction from an input set of data 𝑋 = {𝑥1, 𝑥2 , … , 𝑥𝑛}, and represent it

as a feature vector 𝐻 = {ℎ1, ℎ2 , … , ℎ𝑚}. The encoder function can then be

defined as:

𝐻 = 𝑓(𝑋) (3.2)

2. The decoder function, denoted as g, maps the feature space back into the input

space, producing a reconstruction set 𝑌 = {𝑦1, 𝑦2 , … , 𝑦𝑛}. The decoder function

can be defined as:

𝑌 = 𝑔(𝐻) (3.3)

Formally, an auto-encoder can be expressed as a multi-layer artificial neural network as:

{

 𝐻 = 𝑓(𝑋) = 𝑎𝑓(𝑊𝑋 + 𝑏𝑓) = 𝑎𝑓(∑ (𝑤𝑖𝑥𝑖) + 𝑏𝑓)
𝑛

𝑖=1

𝑌 = 𝑔(𝐻) = 𝑎𝑔(𝑊′𝐻 + 𝑏𝑔) = 𝑎𝑔(∑ (𝑤′𝑗ℎ𝑗) + 𝑏𝑔)
𝑚

𝑗=1

 (3.4)

where: af and ag are the encoder and decoder activation functions; bf and bg are the

encoder and decoder bias vectors; W and W’ are the encoder and decoder weight matrices.

The auto-encoder training process consists on finding the set of parameters which

minimizes the reconstruction error. Stochastic gradient descent methods are usually

employed for error minimization while training auto-encoders [118]. The choice of the

activation and optimization functions largely depends on the domain nature of the input

data.

3.2.3.2. Embedding Models

The unsupervised generation of embeddings are one of the recent successes of the artificial

neural network models. The term ‘embedding’ is usually used in machine learning to refer

for representing objects in a real number vector space.

Embeddings allows performing complex analysis tasks on new types of data since

machine learning models work essentially on numerical data. Moreover, they retain

characteristics of object and then reduce complex models to fewer dimensions.

Embedding algorithms rely on the notion of “neighbourhood” [137]. They work in a

way that the geometric relationship between two vectors represents the semantic relation

71

between the corresponding entities. In what follows, we outline some basic models for

embedding data into low-dimensional vector spaces:

 Word Embeddings

The word can be seen as the atomic unit of natural language processing. Treating

words as vocabularies suffers from sparsity and high-dimensionality. Word

embedding works on finding new representations of words, which are dense, lower-

dimensional and easily manageable by machine learning models. These algorithms

are neural network based models trained on a large text corpus, and produce as

output a vector space, aiming for representing each word in the corpus by a real

valued vector.

 Node Embeddings

Node embedding consists on mapping nodes to a high dimensional vector space so

as to maximize the likelihood of preserving node neighbourhoods [137].

 Sentence Embeddings

Words can be combined in exceedingly many ways. Unlike word embeddings where

words represent semantic units, the idea of semantic embeddings is to consider words

as a continuous representation in a sentence.

 Knowledge Graph Embeddings

Embedding models have also spilled into the field of knowledge graphs. They are

mainly used in statistical representation learning, where graphs are compressed into

low-dimensional representations which may be used by reasoning systems, and in

knowledge base completion, where embeddings are used to predict new relations

between graph’s entities [138].

3.3. Review of the Literature

In this section, we review the use of deep learning models in the ontology matching field.

First, we present the ontology matching tools based on artificial neural networks proposed

in the literature. Then, we present the existing approaches that have made use of deep neural

networks for ontology matching.

3.3.1. Ontology Matching with Artificial Neural Networks

In the last decades, using machine learning techniques, particularly neural networks, to

match heterogeneous ontologies has attracted much attention from research teams.

72

Following, we present the different approaches which make use of artificial neural networks

for ontology matching with a chronological order.

 The first application of neural networks in general mapping were in 1989 [139],

where the authors proved that any continuous mapping can be approximately realized

by multilayer neural networks with at least one hidden layer with sigmoid output

functions.

 Authors in [140], proposed an efficient learning method to approximate non-linear

mappings and their derivatives, whose input-output relations are represented by

neural networks.

 SEMINT (SEMantic INTegrator) [141] [142] is a system prototype for semantic

integration in heterogeneous databases using neural networks. In 1993 [143], authors

presented three techniques for automating the process of matching to integrate

heterogeneous database systems. The study in [144] presents a procedure using a

classifier to categorize attributes according to their field specifications and data

values, and then trains a neural network to recognize similar attributes. In 2000 [145],

authors represented attributes in different databases with their metadata as

discriminators.

 The work in [146] presents an integrated ontology mapping approach. It determines

similarity through rules which have been manually formulated by ontology experts.

 APFEL (Alignment Process Feature Estimation and Learning) [147] is a machine

learning approach that explores the user validation of initial alignments for

optimizing alignment methods, which are based on extensional and intentional

ontology definitions.

 The study in [148] presents an automatic ontology alignment method based on the

recursive neural network model that uses ontology instances to learn similarities

between ontology concepts.

 In work [149], a new supervised learning based method for compound metric

creation is proposed. A training set is used to create a neural network model,

performs sensitivity analysis on it to select appropriate metrics among a set of

existing ones, and finally constructs a neural network model to combine the result

metrics into a compound one.

73

 The work in [150] presents a Knowledge Source Discovery (KSD) agent, which

guides knowledge requirements towards distributed ontology domains in the

Semantic Web through a neural network model.

 OAANN (Ontology Alignment by Artificial Neural Networks) [151], [152] uses

artificial neural network to align biological ontologies. It consists of learning and

adjusting contributing weights for the different semantic aspects of ontologies.

 MALFOM-SVM [153] uses multiple concept similarity measures for the ontology

mapping problem. It organized this problem into a standard machine learning

framework.

 X-SOM is a flexible and extensible ontology mapping and integration tool first

presented in 2007 [154]. It combines various matching algorithms by means of a

feed-forward neural network. It exploits logical reasoning and local heuristics to

improve the quality of mappings while guaranteeing their consistency. The

architecture of the X-SOM Ontology Mapper is composed by three subsystems:

Matching subsystem, Mapping subsystem and Inconsistency Resolution subsystem.

The work in [155] summarizes its results in the OAEI 2007 campaign. A nested and

double classification approach for missing value imputation are presented in [156]

and [157].

 OMNN (Ontology Mapping Neural Network) [158] [159] is proposed in order to

learn and infer correspondences among ontologies. It extends the Identical Elements

Neural Network’s ability to represent and map complex relationships among

ontologies. The learning dynamics of simultaneous training of similar tasks interact

at the shared connections of the networks. The output of one network in response to

a stimulus to another network can be interpreted as an analogical mapping. OMNN

has proved its performance on ontology mapping by participating to several OAEI

benchmark test cases.

 PRIOR+ (Profile pRopagation and InfOrmation Retrieval techniques) [160] [161] is

a generic and adaptive ontology mapping approach, based on propagation theory,

information retrieval techniques and artificial intelligence. The approach consists of

three major modules, the IR-based similarity generator, the adaptive similarity filter

and weighted similarity aggregator, and the neural network based constraint

satisfaction solver. PRIOR+ first measures both linguistic and structural similarity of

74

ontologies in a vector space model using classic information retrieval techniques, and

aggregates them using an adaptive method based on their harmonies. Then, the

interactive activation and competition neural network is selectively activated to solve

the constraint satisfaction problem in the context of ontology mapping. The work in

[162] and [163] summarizes the results of PRIOR and PRIOR+ for OAEI 2006 and

2007 campaigns. Authors used the interactive activation network [164], then

integrated the interactive activation and competition neural network in ontology

mapping [165]. In 2008 [166], they treated the neural network based constraint

satisfaction in ontology mapping. The work in [167] presents a harmony based

adaptive ontology mapping approach.

 MoTo (Mapping ontology To ontology) [168] [169] is an automated ontology

matching system for recovering uncertain mappings through structural validation and

aggregation, supported by various machine learning techniques.

 The work in [170] presents an Artificial Neural Network based ontology matching

model for improving web knowledge resource discovery on the Semantic Web based

on recently developed intelligent techniques. This method takes into account both

schema-level and instance-level information from ontologies, and semantic

annotations, and combines agent-based technologies with an artificial neural network

based classifier to propose a solution to the ontology-matching problem.

 CIDER (Context and Inference baseD alignER) is a schema-based ontology

alignment algorithm with usage of neural networks. It compares each pair of

ontology terms by extracting their ontological contexts and combining different

elementary ontology matching techniques. Its participations at the OAEI campaigns

are presented in [171], [172] and [173]. CIDER first extracts the ontological contexts

for each ontology terms pair up to a certain depth and enriches it by applying

lightweight inference rules, and then combines the different elementary ontology

matching techniques using artificial neural networks in order to generate alignments

between ontologies. CIDER-CL is the evolution of CIDER for Cross-Lingual

matching.

 In 2012 [174], authors presented an ontology mapping system which computes

various types of similarities based on metadata and instances and combines them

using neural network learning.

75

 X-Map (eXtended Mapping) is a structural approach for aligning OWL ontologies

first defined in 2010 [175], presenting an automatic method to learn how to combine

the linguistic and structural affinity. XMap++ [176] [177] exploits WordNet as a

background knowledge sources. In 2012 [178] [179], authors introduced artificial

neural network in the ontology alignment process to combine multiple similarity

measures into a single aggregated metric. In 2013 [180], they aimed for improving

the large-scale ontology alignment quality. XMapGen and XMapSig [181] are two

variants of XMap++. Authors in [182] proposed a novel approach using context-

based measure for matching large-scale ontologies. XMap++ and XMap took part in

several editions of OAEI where their results and performance are described [183]

[184] [185] [186] [57].

 The approach proposed in [187] tackles the ontology alignment task by proposing a

matching process based on the usage of Weightless Neural Network (WNN) model.

A WiSARD classifier is built and used to estimate a distribution-based similarity

measure among the concepts of the several ontologies being matched. New patterns

can be learned without the need to retrain the complete neural network, and names

of classes are taken into account in order to obtain a more significant alignment.

3.3.2. Deep Learning Solutions for Ontology Matching Tasks

In this section, we study the use of deep learning techniques in the ontology matching field.

The related work include:

 ERSOM (Entity Representation and Structure based Ontology Matching) is proposed

in 2015 [188]. It is an ontology matching system which mainly uses the deep neural

network model to learn the high-level abstract representations of classes and

properties from their descriptions. And it uses an iterative similarity propagation

method based on more abundant structure information of the ontology for ontology

matching in an unsupervised way. In 2017 [189], authors added a supervised learning

step when training data is available to refine the learned representation, and then

allowed to learn the representation of ontology entity in the cases the training data

exists or not.

 The study of Nkisi-Orji et al. [190] introduced a random forest classifier for ontology

alignment which integrates semantic similarity features, string-based similarity

features and semantic context features, using word embedding. It completes

76

alignment in two stages. It first selects a set of candidate alignments using basic

matching techniques. After that, a machine classifier determines the true alignments

from entity pairs of the candidate alignments, using feature vectors that are generated

from a variety of direct and indirect similarity indicators.

 The approach proposed by Chandrashekar et al. [191] aims to discover the

relationships between concepts from the analysis of semantic features across multiple

ontologies, and identify the abstractions of the ontological relationships through

mapping between features to the ontologies. The ontology mapping is performed

through ontology search, feature extraction and word embeddings.

 The work in [192] presented a novel ontology mapping system called HISDOM,

which uses comprehensive factors like concept names, attributes, instances, and

structural similarities to determine the similarity of ontology. And then dynamically

derives the weight of those different factors in the overall ontology similarity

proportional to the amount of information of each factor in the ontology, to determine

whether the two ontologies have mapping relationships. HISDOM also uses a

convolutional neural network to extract and calculate the comment and annotation

semantics and find their similarity according to the extent of annotation.

 Dhouib et al. [193] proposed a new ontology alignment approach inspired by an

existing proposal [194]. It combines the radius measure and word embedding. They

consider word embedding to get a vector representation of the concepts to be

matched, and use it to compute hierarchical relations between concepts.

3.3.3. Analytical Summary

Deep learning algorithms have motivated numerous researchers in many fields to employ

them in order to solve different and complex problems. Previously, we reviewed a state-of-

the-art on ontology matching approaches and systems that make use of artificial neural

networks in general, then of deep neural networks in particular. In this section, we study and

discuss these matching tools in order to identify their advantages and limits, and outline

contributions of this study.

A comparative review of existing ontology matching tools based on neural networks

is given in Table 3.1. They are classified chronologically according to their last evolution

year where neural networks are employed. Matching Strategy column specifies the

technique adopted for finding equivalences between ontologies. Neural Network Usage

77

columns describe the use of these networks in the matching process by the reviewed

approach, including the purpose of this application, the structure of the network, as well as

the learning method. Large-Scale column considers whether the matching tool can tackle

the issue of large-scale ontology matching or not.

This chapter is partly related to our published paper [195], that aims to figure out the

best way to use neural networks in ontology matching. It provides a survey on the different

ontology matching approaches based on neural networks, seeking for clearing the way for

researchers in this domain. Readers are referred to [195] for further studies and for more

details about the input required by each tool, its output type, matching interactivity, the

results of its evaluation in terms of precision, recall and F-measure, participation at OAEI

campaigns, …etc.

Matcher Matching Strategy

Neural Network Usage
Large-

Scale
Purpose Structure Learning Method

_

1989

[139]

Neural networks Approximation

Multilayer feed-forward

neural network

Sigmoid as output

activation function

Backpropagation

learning

1993

[140]

Non linear

differentiable mapping;

Neural networks

Approximation

Multi-layer feedforward

neural network + its

adjoints

Non linear activation

function

Supervised learning

Backpropagation

method with the

steepest descent

algorithm

Semint

2000

[145]

DBMS parsers;

Clustering, Self-

organizing map
algorithm (unsupervised

learning);

Neural networks

Category learning and

recognition
3 layer neural network

Supervised learning,

forward propagation,
error calculation,

backward

propagation

_

2004

[146]

Terminological

similarity;

Intentional similarity;

Heuristics;

Machine learning

techniques

Learn weights of n
different similarity

methods

classify mappings
into: equal or not

equal

3 layer neural network

consisting of 1 linear input
layer, 1 hidden layer with a

tanh function, and a

sigmoid output function

-

78

APFEL

2005

[147]

Terminological;

Extensional;

Intentional;

Heuristics;

Machine learning

techniques

Optimize the
representation of the

alignment scheme

Aggregate different
similarity measures

using weighting

schemes

classification

Input: set of
feature/similarity

combinations generated

before training

Output: classification of

being aligned or not

Training data: validated
alignment pairs processed

with the automatically

generated collection of

features and similarities

Supervised learning

_

2005

[148]

Terminological

similarity;

Structural similarity,

graph-based;

Extensional similarity;

Neural networks

Estimate distribution-

based similarity

measure

Recursive 2 layer neural

network classifier

Sigmoid as output

activation function

Supervised learning,

backpropagation

algorithm

_

2006

[149]

Different similarity

metrics;

Machine learning

techniques

Approximation

Select appropriate

metrics for

combination, and
select their appropriate

weights

Multilayer neural network Supervised learning

_

2007

[150]

Terminological

similarity, string-based;

Extensional similarity,

instance-based;

Neural networks

exploit the information

contained in ontology

instances

classify the instances

of each concept:

positive or negative

matching

3 layer multilayer

perceptron model (1 hidden

layer)

Linear activation functions

for hidden layer neurons

Supervised learning:

standard

backpropagation

algorithm

OAANN

2008

[152]

Rule-based + learning-

based;

Terminological

similarity;

Intentional similarity;

Extensional similarity;

Neural networks

Learn weights for

concept's semantic

aspects

2 layer neural network

(with 3 input neurons and 1

output neuron)

Supervised learning,

Gradient-descent

MALFOM-

SVM

2008

[153]

Word similarity, string-

based (prefix, suffix,

Edit distance, n-gram),
knowledge-based

(Wordnet, synset, Wu &

palmer, description,

Lin);

Word list similarity,

maximum word
similarity, word edit

distance;

Concept hierarchy

similarity;

Structure similarity

Classification -
Supervised machine

learning

79

X-SOM

2010

[157]

Logical reasoning;

Local heuristics;

Consistency checking;

Language-based

similarity, Jaro,
Levenshtein, Wordnet,

Leacock Chodorow;

Structural similarity,

graph-based;

Semantic similarity;

Neural networks

Aggregate several

similarity maps

Feed-forward neural

network

Supervised learning,

standard

backpropagation

learning algorithm

OMNN

2010

[159]

Identical Elements

Neural Network

learn relationship
mapping and infer

correspondences

among ontologies

4 Sub multilayer neural

networks
Cross training

PRIOR

2010

[161]

Linguistic similarity,
Edit distance, IR

techniques, TF-IDF,

Cosine;

Structural similarity;

Neural networks;

Solve Constraint

Satisfaction Problem

(CSP) in context of

OM

Interactive Activation and

Competition (IAC) neural

network

Propagation theory √

MoTo

2011

[169]

Linguistic similarity,

Wordnet, relational
affinity, linguistic

quantifiers;

Structural similarity, IC,
Jaccard, Dice, Ochiai,

Gower Legendre

Extensional using Pellet

reasoner;

Machine learning
techniques (4 base

learners+1 meta learner

to produce 1 K-Nearest
Neighbor Classifier+1

ANN+2 Bayesian

Classifiers)

Classify instances and
estimate their

probability

distributions

-
Unsupervised

learning

_

2012

[170]

Schema-level +

instance-level;

Semantic annotations;

Agent-based

technologies;

Machine learning

classifier

Classification

Multilayer artificial neural

network

Sigmoid as activation

function

Supervised learning,

Levenberg-
Marquardt training

algorithm

80

_

2013

[174]

Terminological

similarity, Levenshteins

distance, TF-IDF;

Structural similarity;

Extensional, instance-

based, attributes, Dice;

Neural networks

Learn the different

weights for instance -

based and metadata

measures

3 layers feed forward
neural network (8 units in

the input layer, 12 units in

the hidden layer and one

output unit)

Weights initialized

randomly

Training set prepared

manually

CIDER

2013

[173]

Context extraction,

inference rules,

semantic reasoner;

Terminological

similarity, Levenshtein;

Structural similarity,

VSM;

Neural networks

Combine features of
extracted ontological

contexts

2 3-layer perceptrons (each
of 5 input neurons, 3

neurons in hidden layer, 1

output neuron and 2 bias)
Sigmoid as activation

function

Supervised learning

ERSOM

2017

[189]

Terminological, Cosine

Similarity;

Structural, Similarity
Propagation,

Intentional, Induced

propagation graph;

Extensional, Scaled

Levenstein;

Kullback-Leibler

divergence;

Neural networks

Learn the high level

abstract representation

for ontology entities

Deep neural network:

Multi layer learning model;

Auto-encoder (1 hidden

layer with large number of

units);

Stacked Auto-Encoder

(Multiple hidden layers

with large number of units)

Softmax regression

classifier

Training data by domain

experts

Supervised +
Unsupervised

representation

learning

-

2017

[187]

Weightless neural

networks;

A WiSARD classifier is

built to

estimate a distribution-
based similarity

measure among the

concepts of ontologies

Classification WiSARD neural networks Supervised learning

XMap

2018

[57]

Terminological
similarity, string-based,

language-based

Structural similarity;

Schema-based;

Semantic similarity,

Wordnet

Context-based;

Neural networks

Extract the optimal
model of compound

metrics

Feedforward neural
network: Multi layer

perceptron (3 layers: input,

hidden, and output layer
(with 3, 4, and 1 neurons

respectively)+2 bias for

input and hidden layers)

Sigmoid as activation

function

Supervised machine
learning: Resilient

Propagation Training
√

-

2018

[190]

Random forest

classifier;

Word embedding;

String-based similarity;

Semantic similarity

Classification Deep neural networks
Supervised machine

learning

81

-

2018

[191]

Semantic mapping;

Ontology search;

Feature extraction;

Word embeddings;

Natural Language

Processing, TF-IDF

Learning word
embeddings &

producing vector

space for a large
corpus of ontological

properties

Skip-gram model of
Word2Vec (two-layer

neural network)

Unsupervised

learning

HISDOM

2019

[192]

Multi-dimensional
similarity, name-based,

attribute-based,

instance-based,
structure-based,

comments-based;

Hybrid similarity based

on dynamic weights

Extracting comment
and annotation

semantics and

calculating their

similarity

Convolutional neural

networks
-

-

2019

[193]

Word embedding;

Radius measure

Representing concepts

of ontologies and

computing
equivalence and

hierarchical relations

between concepts

Pre-trained word vectors
Unsupervised

learning

Table 3.1. Summary of ontology matching tools based on neural networks.

Figure 3.4 illustrates the publication activity and the evolution of the previously described

researches on ontology matching using artificial neural networks.

Figure 3.4. Publication activity on using artificial neural networks for ontology matching.

An analytical look at the above comparative review reveals the unfolded conclusions:

 The use of artificial neural networks for ontology matching started from 1989,

reached its maximum value which is equal to 7 published works in 2007, and

continues to 2018. Using deep learning models for matching heterogeneous

ontologies has not attracted much attention from researchers. It started in 2015 and

continues to this day with a low publication rate.

0

1

2

3

4

5

6

7

8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

Publication Activity Non-Deep Neural Networks

Deep Neural Networks

82

 The study of the researches presented previously highlights the fact that the main

difference between them resides in the strategy used in matching the heterogeneous

ontologies, like general ontology matching approaches, and particularly in the

purpose of applying neural networks in ontology matching.

 The most commonly used learning technique is the back-propagation learning

method, and a very high percentage of them favour supervised learning.

 The structure is generally a multilayer feed-forward neural network.

 Only Prior and XMap tackle the issue of large-scale ontology matching.

 Artificial neural networks have been widely used in different areas of research,

particularly in the field of ontology matching. However, the use of deep neural

networks has not attracted much attention from research teams to match

heterogeneous ontologies, despite the fact that ontology matching is an active field

of current research.

 Although deep learning models are very appropriate for dealing with large datasets,

they are not commonly used to address the problem of large-scale ontology matching.

Moreover, the few works employing these models that can be found in the literature

aim at enhancing the performance of the ontology matching task, and not at handling

the heterogeneity between large ontologies. Besides, they tested their methods on

ontologies of small sizes.

Further conclusions can be additionally derived from [195]:

 Regarding matching strategies, the most similarity type used is terminological

measures, due to their ease of implementing. Structural measures are also used

compared to extensional ones. Usually, semantic measures are not too much used

because of their need of complex processes. However, they intervene in a large

number of approaches in this literature review because of the fact that, those

involving semantic aspects only by using artificial neural networks are included.

 Mainly, there are two major purposes of employing neural networks in ontology

matching. The most used one is approximation, where the approaches use artificial

neural networks mostly to find optimal weights and define functions that provide

ontology similarity between entities of ontologies being matched, while others aim

for learning representation of ontology components. Classification is the second one,

where these machine learning models are employed to classify concepts of ontologies

83

in some researches, and to classify ontologies patterns in others. Some other ontology

matching techniques applied these machine learning models for particular purposes.

 The big majority of the approaches take as input OWL ontologies and produce 1:1

output mapping result.

 About 85 percent of the approaches are fully automatics. Excepting SEMINT which

intervene the user to check and confirm output results, and APFEL to validate initial

alignments.

 The analysis of their matching results of the different approaches presented in their

papers in terms of precision, recall and f-measure, shows a high accuracy of

matching. This proves the efficiency of artificial neural networks in the field of

ontology matching.

3.4. Conclusion

In this chapter, we have presented a state-of-the-art on matching ontologies with deep

learning. First, we introduce the challenges motivating deep learning. Next, we present

artificial neural networks, their biological inspiration, their fundamental architectures and

activation functions. The learning methods are also detailly described. Then, we present deep

learning architectures along with the most important deep learning models related to this

study which are auto-encoders and embedding models. After that, we review the existing

ontology matching techniques that have made use of artificial neural networks, and then

particularly of deep neural networks. And finally, we discuss the presented tools so as to

figure out the current challenges that allow to outline contributions of this work.

In chapter 1, chapter 2 and chapter 3, we have presented a wide overview of the state-

of-the-art on the existing ontology matching tools in general, in the large-scale in particular

and on those employing artificial and deep neural networks respectively. Apart from

studying all these techniques and identifying their advantages and limits that we figure out

the current challenges and address them by proposing our methodology for large-scale

ontology matching using deep learning techniques which will be detailly described in the

chapters of the next part.

84

Chapter 4

Reuse-based Semantic Approach for

Large-Scale Ontology Matching

Contents
4.1. Introduction ... 85

4.2. Brief Overview ... 85

4.3. Neural Ontology Matching ... 87

4.3.1. Constructing the Dataset .. 89

4.3.2. Network Training ... 89

4.3.3. Matching Ontologies .. 91

4.4. Evaluation Framework .. 92

4.4.1. Small-Scale Evaluation .. 93

4.4.1.1. Evaluation for Conference Track .. 93

4.4.1.2. Evaluation for Biodiversity and Ecology Track .. 94

4.4.1.3. Evaluation for Process Model Matching Track ... 95

4.4.1.4. Evaluation for Ontology Alignment for Query Answering Track 96

4.4.1.5. Discussion of Results .. 97

4.4.2. Large-Scale Evaluation .. 99

4.4.2.1. Evaluation for Anatomy Track .. 99

4.4.2.2. Evaluation for Disease and Phenotype Track .. 101

4.4.2.3. Evaluation for Large Biomedical Ontologies Track 103

4.4.2.4. Discussion of Results .. 106

4.4.3. Experimental Summary .. 108

4.5. Conclusion .. 109

85

4.1. Introduction

Large-scale ontology matching is still challenging for its long-time processing and large-

memory consumption. In the previous chapters, we have presented a large overview of the

state-of the-art on the existing ontology matching tools, particularly on the large-scale

ontology matching systems and those employing artificial and deep neural networks.

In this chapter, we present NeuralOM, an artificial neural networks-based solution that

we propose to address the large-scale ontology matching challenges. We first overview the

proposed solution and outline its contributions. Then, we detailly describe its technical steps.

After that, we present the evaluation framework where we conduct our experiments on

twelve different test cases from the OAEI initiative at both small and large scales. We present

and analysis the results of these experiments and discuss the performance of NeuralOM.

4.2. Brief Overview

This chapter is related to our published work [196] [197] where we propose NeuralOM for

large-scale ontology matching. Figure 4.1 presents an overview of the proposed matching

approach. NeuralOM consists of combining the mappings of the most effective ontology

matching systems through a linear perceptron in order to define a matching function that

leads to generate the ideal set of correspondences between ontologies. We aim by training

their neural network to adjust a weight for each matching tool according to its importance.

The final mapping is obtained after a threshold filtering. This combination strategy using

neural networks serves to increase the quality of the matching task, and then leads to have

optimal matching results.

86

Figure 4.1. NeuralOM Overview.

The main contributions of NeuralOM are:

 It reuses and combines, according to a very detailed state of the art on the existing

ontology matching techniques, the results of the best matching systems that have

been validated through various test cases. As we aim, not just to generate alignments

between ontologies, but to ideally match them, we refine these results to achieve a

perfect ontology matching.

A large number of works that address the ontology matching issue can be found in

the literature. That allows thinking of benefiting from the existing matching

techniques. Thus, refining and reusing different effective matching results give the

impression of being interesting. Moreover, the process of matching ontologies

(Sect.1.3.3) takes as parameter an initial alignment which is intended to be completed

by the matching process. NeuralOM considers as initial alignment the different

mappings generated by the selected candidate matching systems. Working on

refining ontology matching results denotes working on a higher and more precise

level than working on matching ontologies.

Ontology2 Ontology1

Learning Weights Values

Training Data

Learning

phase

Generating

Alignments

Matching

phase

Final

Matching

Results

Filtering Alignments

Machine learning using neural network

Forming Dataset from N Mappings

87

 Ontology matching is initially based on computing similarities between ontologies.

Basing on one similarity type is not enough actually. The majority of ontology

matching techniques combine several similarity measures. For preference,

NeuralOM combines several alignments that have been generated through

complicated processes and validated by various tests. That obviously can give finer

and more precise matching results.

 The refining strategy is based on artificial neural networks which are very

appropriate for combination, because of their structures of numerous inputs and

outputs.

 Regarding the classification of ontology matching techniques (Sect.1.3.4),

NeuralOM benefices from different matching strategies since the candidate matchers

work differently. Therefore, it acquires a great chance to provide a maximal number

of possible and especially of correct correspondences.

4.3. Neural Ontology Matching

In this section, we present NeuralOM, the neural networks-based ontology matching

approach that we propose for matching large-scale ontologies. The processing flow of

NeuralOM is illustrated in Figure 4.2.

88

Figure 4.2. Processing flow of NeuralOM.

C1

C9

C2
C3

C5

C6

C4

C8

C7

C10 C11

C13

C14

C15

C16

C17

C12

C19

C20

C21

C22

C24

C25

C26
C27

C28

C18

C23
C29

C’

1

C’12

C’2
C’3

C’4

C’5 C’6

C’7

C’8
C’9

C’1

0

C’14

C’15

C’18

C’17 C’1

1

C’20

C’19

C’21

C’2

5
C’24 C’16

C’13

C’23

C’2

2

C’26

C’27

Ontology2 Ontology1

Input ontologies

Learning Weights

Values

Training

Data

Tool n⁰1 → w1
Tool n⁰2 → w2
Tool n⁰3 → w3

…

Tool n⁰N → wN

Learning phase

…

…

Generate Mapping

n°2 by Tool n°2

(C21 - C’1) : V21

(C8 - C’6) : V22

(C19 - C’22) : V23

(C1 – C’14) : V24
…
…
…

Generate Mapping

n°3 by Tool n°3

(C1 - C’14) : V31

(C18 - C’2) : V32

(C3 - C’27) : V33

(C8 – C’6) : V34
…
…
…

Generate Mapping

n°N by Tool n°N

(C10 - C’14) : VN1

(C8 - C’6) : VN2

(C9 - C’12) : VN3

(C13 – C’2) : VN4
…
…
…

Generate Mapping

n°1 by Tool n°1

(C3 - C’27) : V11

(C4 - C’2) : V12

(C8 - C’6) : V13

(C13 – C’2) : V14

…
…
…

Generating Alignments

between ontologies

(C1 - C’14) : V1

(C8 - C’6) : V2

(C3 - C’27) : V3

(C4 – C’2) : V4

(C13 – C’2) : V5

(C18 – C’2) : V6

(C19 – C’22) : V7

…

…

…

Matching phase

≥

T (C8 - C’6) : V1
 (C4 – C’2) : V2

 (C13 – C’2) : V3

(C18 – C’2) : V4
…
…
…

89

As we are dealing with an ontology matching issue, the input is two ontologies to be

matched: Ontology1 and Ontology2, and the output is an alignment (a set of

correspondences) between them. We define such a correspondence by a triplet as:

𝐴 = {𝐶, 𝐶′, 𝑉} (4.1)

Where: C is a concept from Ontology1; C’ a concept from Ontology2; and V the similarity

value between C and C’ given by our technique.

4.3.1. Constructing the Dataset

The first step of NeuralOM consists on constructing the matching dataset by generating N

alignments between the two input ontologies to be matched: Ontology1 and Ontology2, by

means of the most effective matching tools aiming to refine their results. Each set of

correspondences is generated by an ontology matching tool applying its own specific

matching technique. Combining such results is not that simple. Chosen systems, which are

not all available, are of different inputs and especially of different outputs. Choice criteria

and number of chosen systems are additional challenges. Therefore, these tools are chosen

according to a very detailed state of the art on the different ontology matching systems

developed in the scientific literature. N depends on choice criteria.

Next, the N alignments are combined and refined according to the environmental

conditions of our approach for the aim of perfectioning the matching process. For example,

an alignment value which exceeds the upper bound of the interval defined for

correspondences should be set equal to 1.0.

After that, the N different mappings are combined to get the whole dataset for

matching. The method of combination has a big impact on the resulted alignments. It

determines the size of the dataset and then of the resulted mapping set. However, combining

such results is quite challenging; Chosen tools, which are not all available, are of different

inputs and especially of different outputs. Choice criteria and number of chosen systems are

additional challenges.

4.3.2. Network Training

This step is the core process of the proposed matching approach. It consists of applying a

supervised learning procedure based on neural networks, in order to learn the matching

function that allows generating correspondences between Ontology1 and Ontology2.

90

We aim by this step at adjusting a weight for each matching tool. For that, we train a

neural network for each pair of concepts from the training dataset in order to fix, for each

system, a value which reflects its importance.

The trained neural network consists of a simple linear perceptron of N inputs and one

output. Figure 4.3 illustrates this network. Inputs correspond to the different matching

systems whereas the output represents the pretended similarity value between the concerned

concepts.

Figure 4.3. Neural Network Structure.

In neural networks, the output is built on the type of target variable. In our network,

the output is in fact a similarity value, i.e., it should be a in the range [0,1]. Thus, we use

Sigmoïd as activation function accordingly. Sigmoid is a mathematical function which is

used excessively in neural networks. It is defined by:

𝑆𝑖𝑔(𝑥) =
𝑒𝑥

𝑒𝑥 + 1
=

1

1 + 𝑒−𝑥
 ; 𝑥 ∈ [0,1] (4.2)

For network learning, we use the back-propagation method following the learning

algorithm described below. It uses a gradient decent procedure to modify weights so as to

minimize the error between the desired output and the output computed by the perceptron.

As we aim by this network to fix an importance value for each tool, the N weights are

first initialized according to the choice procedure of the matching tools. They are fixed

according to a detailed analysis of our state of the art on the different matching systems of

the scientific literature. Then, they are updated for each sample of the training dataset S,

applying the gradient decent method aiming at minimizing the error between the desired

output and the output computed by the perceptron.

𝒗𝟏

𝒗𝟐

𝒗𝑵

𝒗𝟑

𝒇(∑ (𝒗𝒊𝒘𝒊))
𝑵

𝒊=𝟏

𝒘𝟏

𝒘𝑵

𝒘𝟐

𝒘𝟑
. .
.

91

Each sample of the training set comprises two parts: {input, output}; the first one is

composed by N similarity values obtained from the precedent mappings for the two concepts

in question, and the second one affords the reference alignment value between the two

concepts. This value is obtained from OAEI plus an expertise touch. The learning rate ɛ is

fixed by trial and test. As results of this step, the final N weights values are adjusted after

that the execution of the learning algorithm is completed.

--

Algorithm 4.1. Training the neural network to learn tools’ weights

--

Input: perceptron P of N inputs and 1 output defined by the weights vector

w®=(w1,...,wn);

training set S=(v®, out)∈ Rn×{0,1};

learning rate ɛ;

Begin

initialization of weights wi for i from 1 to n

initialization of ɛ

Repeat

take an example (v®j, outj) from S

compute the output oj = f(v®j, w®) of P for j

𝑒𝑟𝑟𝑜𝑟 ← ε ∗ (outj − oj)

// update weights

for i from 1 to n

 wi ← wi + error ∗ vi

End Repeat

End

Output: P defined by w®=(w1,...,wn).

--

4.3.3. Matching Ontologies

The supervised learning process performed in the precedent step basing on neural networks

allows to learn the matching tool’s weights, and then to define the matching function that

leads to generate semantic correspondences between Ontology1 and Ontology2, using the

different mapping results of the first step. The output similarity value between each pair of

concepts from the input ontologies is computed as:

V =∑ (viwi)/∑ wi
N

i=1

N

i=1
. (4.3)

Where: 𝑣𝑖 ∈ [0,1] is the similarity value given by tooli between the two concepts; 𝑤𝑖 is the

weight which reflects its performance.

92

Finally, we filter the generated alignments so as to get the final mapping. For that, we

define a threshold T (fixed by trial and test) which permits to extract the final alignment

from the results obtained previously. Our aim behind this step at perfecting the matching

process and ameliorating its precision, by eliminating irrelevant alignments, and keeping

only the most appropriate ones.

4.4. Evaluation Framework

Aiming to study the effectiveness of NeuralOM, we evaluate it according to various

campaigns of the Ontology Alignment Evaluation Initiative (OAEI). More details about this

initiative and the evaluation challenges that it provides are given in Sect.6.4.1. We compare

the results of NeuralOM, by its three different variants and for each test case, with the results

of all OAEI participant systems for the same test challenge, and adopting the same cross-

validation procedure.

This comparison is done for the global dataset in terms of the five standard evaluation

metrics defined previously (Sect 1.3.5.3): precision, recall as well as three variants of Fb-

measure (F0.5-measure, F1-measure and F2-measure).

In the following, we refer by NeuralOM-I, NeuralOM-M and NeuralOM-U to our

neural networks-based matching approach by intersection, majority and union dataset

construction method respectively (more details about these versions are provided in

Sect.6.3.4).

In order to choose the most efficient systems to be used in the first step of NeuralOM,

we based on F1-measure, because it is the harmonic mean of precision and recall where both

of them receive equal weight. We pick up the systems that maximize this score according to

the results of OAEI for each test case. Their initial weights are those F1-measure values, and

their number is fixed by trial and test. These tools have marked their efficiency over years

by participating in several editions of the OAEI since their realizations.

We adopt a cross-validation to effectively control the network while training and

testing. More details about the cross-validation procedure are given in Sect.6.4.1. The

number of cross-validation partitions, is fixed by trial and test. This latter is fixed to 2

partitions for both of Anatomy, Phenotype-HP-MP and LargeBioMed-FMA-NCI test cases,

to 3 for LargeBioMed-SNOMED-NCI, to 5 for LargeBioMed-FMA-SNOMED and to 6

partitions for Phenotype-DOID-ORDO challenges.

93

We aim for performing tests on both small and large ontologies. Thus, we conducted

our experiments in two main sketches: small-scale evaluation and large-scale evaluation.

Moreover, as we really interest in matching complexity, particularly in time processing, we

analyse the matching Runtime required by NeuralOM compared to all participant matching

systems for each test case in the large-scale.

4.4.1. Small-Scale Evaluation

In this section, we present the results of our experimental procedure at the small scale.

4.4.1.1. Evaluation for Conference Track

Figure 4.4 illustrates the results of evaluating NeuralOM according to OAEI'2018-

CONFERENCE Track (Conference’18), and summarises their comparison with OAEI

matching systems.

Figure 4.4. Evaluation results of NeuralOM against OAEI systems for Conference'18

track.

The results of the global dataset hail from those of the several partitions. As shown in Figure

4.4: 1. NeuralOM gives very good results (the minimum value is 0.681 given for recall by

NeuralOM-U, which gives better good values for the four other metrics), especially

Intersection and Majority versions that present complete values of recall (1.0) and excellent

values of precision and the three F-measures. Thus, they present by far the best matching

results. 2. Also for us, NeuralOM-I gets better performance than NeuralOM-M and better

than NeuralOM-U. Contrary to the latter, the two other versions get high values of precision

than of recall. 3. OAEI matching systems present almost a descending order of their recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

SANOM

AML

LogMap

XMap

FCAMapX

DOME

ALIN

LogMapLt

Holontology

KEPLER

ALOD2Vec

Lily

94

values and no order of their precision values, thus, their F-measures values are also ordered

decreasingly but less sharply. 4. As expressed by F1-measure, which better shows the real

quality of the matching results, NeuralOM-I results are slightly better than those of

NeuralOM-M, but they are roughly better than the others (the difference exceeds 0.2),

including NeuralOM-U of which the results are close to those of AML and competitive to

those of all the other matching systems.

4.4.1.2. Evaluation for Biodiversity and Ecology Track

Plots in Figure 4.5 and Figure 4.6 illustrate the results of evaluating NeuralOM according to

OAEI'2018- BIODIV Track (BioDiv’18) for FLOPO-PTO and ENVO-SWEET Sub-

Tracks respectively, and summarises their comparison with OAEI matching systems.

Figure 4.5. Evaluation results of NeuralOM against OAEI systems for BioDiv-FLOPO-

PTO'18 track.

From Figure 4.5, it can be seen that: 1. The best precision values are given by NeuralOM-I,

then by XMap and LogMapLite, then by AML and POMap, and then come the other systems

with the best value obtained by NeuralOM-M. 2. Constantly, NeuralOM-I and NeuralOM-

M achieved complete global recall values. A very good value is obtained by NeuralOM-U

as well. Then, the OAEI systems are ordered decreasingly, except POMap which is out of

order. 3. For F0.5-measure, NeuralOM-I has by far the higher score. The other matching

systems have close values around 0.8. For F1-measure and F2-measure, NeuralOM-I has the

highest values followed by NeuralOM-M. The other systems are of a descending order

starting from AML and NeuralOM-U, and more sharply for F2-measure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0,5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

AML

LogMap

LogMapBio

XMap

LogMapLite

POMap

Lily

95

Figure 4.6. Evaluation results of NeuralOM against OAEI systems for BioDiv-ENVO-

SWEET'18 track.

It is clear from Figure 4.6 that: 1. Globally, NeuralOM-I has complete scores for all the five

evaluation measures. The next best results are given by NeuralOM-M (complete value of

recall). Then, AML and NeuralOM-U obtain good results, and then come the other matching

systems with acceptable results, presenting a slight descending order, excepting Lily and

LogMapLite which are out of this order with higher scores for precision and recall

respectively. 2. For F-measures, the OAEI values are closer in F0.5-measure than in F1-

measure than in F2-measure.

4.4.1.3. Evaluation for Process Model Matching Track

Plots in Figure 4.7 and Figure 4.8 illustrate the results of evaluating NeuralOM according to

OAEI'2017-PM Track (PM’18) for UA and BR respectively, and summarises their

comparison with OAEI matching systems.

Figure 4.7. Evaluation results of NeuralOM against OAEI systems for PM-UA'17 track.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

AML

LogMap

POMap

XMap

LogMapBio

LogMapLite

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

AML

LogMap

I-Match

96

We can notice from Figure 4.7 that: Globally, systems have the same systems disparities for

all evaluation measures. NeuralOM-I gets the highest results (with a complete recall value).

NeuralOM-M gives excellent scores, followed by NeuralOM-U and AML with good and so

close values. Log-Map and I-Match have the smallest performance with scores around 0.5.

Figure 4.8. Evaluation results of NeuralOM against OAEI systems for PM-BR'17 track.

From Figure 4.8, it is clear that: 1. The best precision score, given by NeuralOM-I, exceeds

0.8. The next one is obtained by NeuralOM-M, then by I-Match. The other matching systems

give values around 0.5. 2. Once again, NeuralOM-I and NeuralOM-M get the complete

performance for recall with values equal to 1.0. Whereas the other matching systems give

very small values, the score of AML is higher, but there is still a huge difference between

their results and those of NeuralOM-I and NeuralOM-M. Those systems (contrary to

NeuralOM-I and NeuralOM-M) have worse results for F2-measure than for F1-measure and

than for F0.5-measure. 3. For F-measures, the results obtained by NeuralOM-I and

NeuralOM-M are excellent and by far better than the other matching systems, of which the

F0.5-values variances depend on those of precision and F2-measure variances depend on those

of recall whereas F1-measure results are balanced and didn’t achieve the average. 4. The

distance between the two groups (NeuralOM-I and NeuralOM-M, and the other systems) is

smaller for precision than the other evaluation measures.

4.4.1.4. Evaluation for Ontology Alignment for Query Answering Track

Figure 4.9 illustrates the results of evaluating NeuralOM according to OAEI'2015- OA4QA

Track (OA4QA’18), and summarises their comparison with OAEI matching systems.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision Recall F0,5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

AML

LogMap

I-Match

97

Figure 4.9. Evaluation results of NeuralOM against OAEI systems for OA4QA'15 track.

From Figure 4.9, we can observe that: 1. Precision results of all matching systems are better

than recall values (around 0.8), excepting NeuralOM-I and NeuralOM-M which have

complete values of recall. Thus, their F0.5-measure results are also better than those of F1-

measure and better than F2-measure results, but with sharp-less differences. 2. Recall values,

excluding NeuralOM-I and NeuralOM-M with values equal to 1.0, and YAM++ and

MaasMatch with a value equal to 0.7 and 0.63 respectively, did not exceed 0.6. 3. Since

precision scores are more balanced and closer to each other than recall results, the variances

of the three F-measures depend on those of recall, but with different intensities, sharply for

F2-measure than F1-measure than F0.5-measure. 4. In total, the best performances belong to

NeuralOM-I and NeuralOM-M with high and far scores. After-ward, NeuralOM-U is among

the best 9 systems (from 23 systems) which obtain good results.

4.4.1.5. Discussion of Results

According to the previous results, we can conclude the following:

 The challenge with the maximum average precision values is BioDiv-FLOPO-PTO

(around 0.85). The next one is OA4QA with values around 0.8. Then, Conference

has precision values around 0.75 and BioDiv-ENVO-SWEET's precision scores

exceed 0.7. Finally, comes PM where the minimum average precision results belong

to its PM-BR sub-track.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

AML

LogMap

XMapSiG1_4

XMapGen

XMapGen1_4

XMapSiG1_3

98

Precision values are separated in PM track and close to each other in the other test

cases, less closely in BioDiv-FlOPO-PTO and OA4QA. In BioDiv-ENVO-SWEET,

systems values are close and lower and far from our precision results.

All maximum precision values of all the six test cases of this experimental study are

given by the intersection version of NeuralOM. The highest one is equal to 1.0 for

BioDiv-ENVO-SWEET and the lowest one is equal to 0.84 for PM-BR. The highest

minimum precision value is equal to 0.75 and given by Lily for BioDiv-FLOPO-

PTO. The lowest minimum precision value in this experimental procedure is equal

to 0.44 and given by AML for PM-BR tests.

 The track with the maximum average recall values is BioDiv with its two sub-tracks

(around 0.75). The next task is PM-UA with values around 0.73 and then Conference

with values around 0.6. PM-BR average results are slightly higher than 0.5. Finally,

OA4QA has the poorest average recall values (around 0.5).

Recall values are separated in all tracks excepting PM-BR and OA4QA, where recall

values are somewhat close to each other but the gap between the results of

NeuralOM-I and NeuralOM-M and those of the other systems is big.

The maximum recall value in all this experimental procedure is equal to 1.0 and given

by both NeuralOM-I and NeuralOM-M for all test cases, excluding PM-UA, where

this complete value is obtained only by NeuralOM-I, and NeuralOM-M has a slightly

lower but still excellent score. The highest minimum recall score is equal to 0.53 and

given by Lily for BioDiv-ENVO-SWEET, and the lowest minimum recall value is

equal to 0.25 and given by I-Match for PM-BR sub-track.

 The track with the highest average F0.5-measure values is BioDiv-FLOPO-PTO

(around 0.82), and next, Conference with average values equal to 0.75. Then,

BioDiv-ENVO-SWEET and OA4QA have average F0.5-measure results superior to

0.7. Finally, PM-BR has the lowest average scores (around 0.54).

F0.5-measure values are separated only in PM-UA and close to each other in the other

test cases. In BioDiv-ENVO-SWEET, PM-BR and OA4QA, the F0.5-measure results

of our intersection and majority versions (even union in the 1st test case) are

positively far from the other systems results.

All the maximum F0.5-measure values in these experiments are given by NeuralOM-

I. The highest one is equal to 1.0 for BioDiv-ENVO-SWEET and the lowest one is

equal to 0.87 for PM-BR. The highest minimum F0.5-measure value is equal to 0.68

99

and given by LogMap for BioDiv-ENVO-SWEET, and the lowest minimum F0.5-

measure value is equal to 0.42 and given by NeuralOM-U for PM-BR sub-track.

 F1-measure shows the real quality of matching. The task which has the maximum

average F1-measure results is BioDiv-FLOPO-PTO (around 0.8). BioDiv-ENVO-

SWEET has a good one as well (around 0.74). The next track is Conference with

values around 0.7. Then, PM-UA and OA4QA have average results so close to 0.7.

Finally, PM-BR has the lowest results (around 0.56).

F1-measure values are separated in BioDiv-FLOPO-PTO and PM-UA and close to

each other in the other tasks. Also, in BioDiv-ENVO-SWEET, PM-BR and OA4QA,

F1-measure results of our NeuralOM-I and NeuralOM-M versions (even NeuralOM-

U in the 1st test case) are positively far from the other systems results.

All the six maximum F1-measure values of this experimental study are given by

NeuralOM-I. The highest one is equal to 1.0 for BioDiv-ENVO-SWEET and the

lowest one is equal to 0.91 for PM-BR. The highest minimum F1-measure value is

equal to 0.65 and given by Lily for BioDiv-ENVO-SWEET. The lowest minimum

F1-measure value is equal to 0.34 and given by LogMap for PM-BR sub-track.

 The challenge that has the maximum average F2-measure results is BioDiv-FLOPO-

PTO (around 0.77). The other sub-track average results are not far as well. The next

one is PM-UA with values around 0.71. Then, OA4QA and Conference have average

values superior to 0.6. And finally, PM-BR has the poorest scores (around 0.58).

F2-measure values are close to each other in all test cases, excepting PM-BR and

OA4QA where the F2-measure results of our intersection and majority versions are

positively far from the other matching systems results.

Also for this evaluation measure, all the maximum F2-measure values are given by

NeuralOM-I. The highest one is equal to 1.0 for BioDiv-ENVO-SWEET and the

lowest one is equal to 0.96 for PM-BR. The highest minimum F2-measure value is

equal to 0.57 and given by Lily for BioDiv-ENVO-SWEET task. And, the lowest

minimum F2-measure value is equal to 0.28 and given by I-Match for PM-BR task.

4.4.2. Large-Scale Evaluation

In this section, we present the results of experimental procedure performed at the large scale.

4.4.2.1. Evaluation for Anatomy Track

Figure 4.10 illustrates the results of evaluating NeuralOM according to OAEI’2018-

ANATOMY-Track (Anatomy’18), and summarises their comparison with OAEI systems.

100

Figure 4.10. Evaluation results of NeuralOM against OAEI systems for Anatomy’18 track.

As can be seen from Figure 4.10: 1. Precision results present globally a decreasing order

from NeuralOM-I down to LogMapBio (with a good value equal to 0.87), then an increasing

one up to Holontology. 2. Recall values are decreasing, starting by NeuralOM-I and

NeuralOM-M with a complete value equal to 1.0. NeuralOM-U value is slightly lower but

still an excellent one. Recall values of the other matching systems present a descending order

from 0.93 (of AML) to 0.29 (of Holontology). 3. The best F-measures values belong to

NeuralOM-I and NeuralOM-M with values so close to 1.0. AML and NeuralOM-U also give

excellent values. The other matching systems results are good as well, balanced for F0.5-

measure (excluding Holontology), and decreasing for F1-measure and F2-measure.

Figure 4.11 illustrates the Runtime evaluation results for OAEI’2018-ANATOMY-Track.

Figure 4.11. Runtime analysis of NeuralOM and OAEI systems for Anatomy’18 track.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I
NeuralOM-M
NeuralOM-U
AML
LogMapBio
POMAP++
XMap
LogMap
SANOM
FCAMapX
KEPLER
LogMapLite
ALOD2Vec
DOME
ALIN
Holontology

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1024

RunTime (s)

101

It is clearly seen from Figure 4.11 that: 1. Required Runtime by OAEI matching systems is

approximately confined between 16s (this minimum value belongs to LogMap) and 810s

(this maximum value is given by LogMapBio). A disparity of values is inside, but the

Runtime of the majority exceeds 60s. 2. The Runtime values of NeuralOM are roughly

smaller; they did not even exceed 0.27s. There is a huge difference between these two classes

(810/0.3=2700).

4.4.2.2. Evaluation for Disease and Phenotype Track

Figure 4.12 and Figure 4.13 illustrate the results of evaluating NeuralOM according to

OAEI’2018-PHENOTYPE-Track (Phenotype’18) for HP-MP and DOID-ORDO Sub-

Tracks respectively, and summarises their comparison with OAEI matching systems.

Figure 4.12. Evaluation results of NeuralOM against OAEI systems for Phenotype-HP-

MP’18 sub-track.

From Figure 4.12, it is clear that: 1. DOME and XMap achieved the best precision results.

Then, NeuralOM-I and four other systems are competitive with each other. Then,

NeuralOM-M, NeuralOM-U and two other systems give medium results. 2. Recall results

are balanced between the matching systems. The best scores belong to NeuralOM-I and

NeuralOM-M which get a value equal to 0.5. Next, the other matching systems have

competitive and medium results as well. 3. F-measures variances follow mostly precision

results variation, especially F0.5-measure, systems values are closer to each other for F2-

measure. Globally for these three measures, the best results are achieved by DOME and

XMap, then by four systems including NeuralOM-I, then come the other matching systems.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

LogMap

LogMapBio

AML

LogMapLt

POMAP++

Lily

XMap

DOME

102

4. The low scores of this test case is due to the fact that all matching systems give null values

of the five evaluation measures for the 2nd partition.

Figure 4.13. Evaluation results of NeuralOM against OAEI systems for Phenotype-DOID-

ORDO’18 sub-track.

We can see form Figure 4.13 that: 1. Global evaluation measures values are decreased. This

is due to the null values of the last three partitions. Partition1 and Partition2 present excellent

results (those of the 2nd one are slightly better), Partition3 has average results, and zeros of

the last three partitions modified the values average as if we are working on a superior limit

of 0.5 instead of 1. 2. All matching systems, including the three variants NeuralOM give

better results of recall (complete values by NeuralOM-I and NeuralOM-M and excellent

ones by NeuralOM-U and the others) than of precision, excepting DOME which gets similar

values of the two metrics, thus of the three others. 3. The best precision value belongs to

DOME. XMap and KEPLER give good results. LogMapLt and Lily values are somewhat

higher than the average whereas the last other matching systems ones are lower. 4.

NeuralOM-I and NeuralOM-M get medium values of recall. KEPLER, XMap, NeuralOM-

U, DOME, LogMap and LogMapLt give lightly lower recall results, then, close ones are

given by the other matching systems. 5. F-measures results have the same variances as

precision results but with slightly higher values. Globally, there is not a big difference

between systems results, except for, XMap, KEPLER and DOME that are lightly better.

Figure 4.14 illustrates the Runtime evaluation results for OAEI’2018-PHENOTYPE-Track.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

LogMap

LogMapBio

POMAP++

LogMapLt

XMap

KEPLER

Lily

AML

DOME

103

Figure 4.14. Runtime analysis of NeuralOM and OAEI systems for Phenotype’18 track.

From Figure 4.14, it is clearly seen that: 1. Required Runtime by OAEI matching systems is

approximately confined between 7s (this minimum value is belonging to LogMapLite) and

4750s (this maximum value is Lily). Inside, LogMapBio, POMAP++ and KEPLER took

significantly more time than the others. 2. There is not a huge disparity between HP-MP and

DOID-ORDO in terms of Runtime, except by KEPLER which did not even participate at

the second test case. 3. The Runtime values of NeuralOM are hardly smaller, not even

exceeding 0.3s (a great difference comparing 4750 with 0.3). NeuralOM-M and NeuralOM-

U have almost the same Runtime values for the two test cases. But, NeuralOM-I’s Runtime

for HP-MP is higher than that of DOID-ORDO by 0.1s.

4.4.2.3. Evaluation for Large Biomedical Ontologies Track

Plots in Figure 4.15, Figure 4.16 and Figure 4.17 illustrate the results of evaluating

NeuralOM according to OAEI’2017-LARGEBIOMED-Track (LargeBioMed’18) for

FMA-NCI, FMA-SNOMED and SNOMED-NCI Sub-Tracks respectively, and

summarises their comparison with OAEI matching systems.

0.125

0.5

2

8

32

128

512

2048

8192

RunTime (s) DOID-ORDO

RunTime (s) HP-MP

104

Figure 4.15. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

FMA-NCI’18 sub-track.

From Figure 4.15, it is observed that: 1. NeuralOM-I, followed by NeuralOM-M, has

achieved the best performance for all evaluation metrics (same performance for recall where

both of them obtain 1.0), NeuralOM-U obtains a very good value of recall (0.87) and lower

but still good value of precision. 2. OAEI matching systems are slightly increasing for

precision, clearly decreasing for recall, also decreasing for F2-measure and F1-measure (less

sharply especially for the 2nd measure) and balanced for F0.5-measure. FCAMapX and

LogMapLt are somewhat out of this order.

Figure 4.16. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

FMA-SNOMED’18 sub-track.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

AML

LogMap

LogMapBio

XMap

FCAMapX

LogMapLt

DOME

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

FCAMapX

AML

LogMapBio

LogMap

XMAP

LogMapLt

DOME

105

From Figure 4.16, it is clearly seen that: 1. All participating systems, including the three

proposed variants, have global precision values higher than 0.8. 2. For the other four

measures, matching systems can be classified into three groups according to their results

from the best to the worst performance; Excellent values by NeuralOM-I and NeuralOM-M

(complete values of recall); NeuralOM-U and five OAEI systems from FCAMapX down to

XMap, with different variances between measures (the most sharply is for recall); LogMapLt

and DOME have the smallest values. 3. The best performance belong to NeuralOM-I and

NeuralOM-M for all evaluation measures.

Figure 4.17. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

SNOMED-NCI’18 sub-track.

Figure 4.17 shows that: 1. Complete recall values are offered by NeuralOM-I and

NeuralOM-M, then, good values are given by NeuralOM-U, then come the other systems in

a descending order. 2. Global precision values are somewhat close. The best ones are related

to NeuralOM-I and NeuralOM-M, then to the other systems, which present also equilibrium

for F0.5-measure and a decline for F1-measure and F2-measure, stronger for the 2nd one. 3.

For the five evaluation measures, NeuralOM-I and NeuralOM-M get by far the higher scores.

Figure 4.18 depicts the Runtime evaluation results for OAEI’2018-LARGEBIOMED-Track.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F0.5-Measure F1-Measure F2-Measure

Standard Evaluation Measures

NeuralOM-I

NeuralOM-M

NeuralOM-U

AML

FCAMapX

LogMapBio

LogMap

LogMapLt

DOME

XMap

106

Figure 4.18. Runtime analysis of NeuralOM and OAEI systems for LargeBioMed’18 track

From Figure 4.18, it is clear that: 1. All OAEI matching systems took time in generating

alignments for FMA-NCI less than FMA-SNOMED and less than SNOMED-NCI, with a

same difference rate approximately, except XMap whose Runtime values of the first two test

cases are far from that of the third one, and LogMap, which took more time for FMA-NCI.

2. Comparing systems shows that LogMapBio (with more than 2900s for SNOMED-NCI)

and FCAMapX are the slowest systems. LogMap gives the next higher value. Then, XMap

and AML have the following values. The smallest Runtime belongs to DOME and

LogMapLt (6s for FMA-NCI). 3. As for NeuralOM, test cases are ordered samely. But,

differences in NeuralOM-U values are bigger than those of NeuralOM-M, and Runtime’s

value of NeuralOM-I for FMA-NCI is far from the two other matching tasks of which values

are so closed. 4. The nine Runtime values of NeuralOM are roughly smaller than those of

OAEI matching systems (comparing parts of one with thousands of seconds!). All values of

the proposed work did not even exceed 0.7s for the three LargeBioMed sub-tracks.

4.4.2.4. Discussion of Results

According to the previous results, we can conclude the following:

 The highest maximum precision value in all this experimental study is equal to 0.99

and given by ALIN for Anatomy. The lowest maximum precision value is equal to

0.5 and given by DOME for Phenotype-HP-MP. The highest minimum precision

value is equal to 0.87 and given by LogMapBio for Anatomy. The lowest minimum

precision value in this experimental procedure is equal to 0.26 and given by LogMap

for Phenotype-HP-MP tests.

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1024
2048
4096

RunTime (s) FMA-NCI

RunTime (s) FMA-SNOMED

RunTime (s) SNOMED-NCI

107

Among these six test cases, NeuralOM-I has tackled the maximum precision value

three times. DOME has gotten it twice and the last one is achieved by ALIN. For the

minimum precision value, it was given by NeuralOM-U in three test cases, by

LogMap in two, and by LogMapBio in one test case.

 The highest maximum recall value in all this experimental procedure is equal to 1.0

and given by both NeuralOM-I and NeuralOM-M for all test cases. The lowest

maximum recall value is equal to 0.5 and also given by NeuralOM-I and NeuralOM-

M for Phenotype-HP-MP. The highest minimum recall score is equal to 0.63 and

given by DOME for LargeBioMed-FMA-NCI, and the lowest minimum recall value

is equal to 0.16 and given by DOME for LargeBioMed-FMA-SNOMED sub-track.

NeuralOM-I and NeuralOM-M have achieved the maximum recall score for all

tracks. For the minimum recall score, it was obtained by DOME 3 times, by

POMAP++ twice, and by both of Holontology and LogMapLt once.

 The highest maximum F0.5-measure value is equal to 0.98 and given by NeuralOM-

I for Anatomy, and the lowest maximum F0.5-measure value is equal to 0.49 and given

by DOME for Phenotype. The highest minimum F0.5-measure value is equal to 0.75

and given by DOME for LargeBioMed-SNOMED-NCI, and the lowest minimum

F0.5-measure value is equal to 0.15 and given by RSDLWB for LargeBioMed-FMA-

NCI sub-track.

Four of the six F0.5-measure maximum scores have been achieved by NeuralOM-I.

The two others have been obtained by DOME. The F0.5-measure minimum score has

been given by both of LogMap and DOME in two test cases and by both of

Holontology and NeuralOM-U in one challenge.

 F1-measure shows the real quality of matching. The highest maximum F1-measure

value is equal to 0.99 also given by NeuralOM-I for Anatomy. The lowest maximum

F1-measure value is equal to 0.49 and given by DOME for Phenotype. The highest

minimum F1-measure value is equal to 0.74 and given by DOME for LargeBioMed-

FMA-NCI test case. The lowest minimum F1-measure value is equal to 0.27 and

given by DOME for LargeBioMed-FMA-SNOMED sub-track.

NeuralOM-I has achieved the maximum F1-measure score for four test cases. DOME

has gotten it for the two others. The minimum F1-measure value has been given by

DOME 3 times and by both of Holontology, POMAP++ and LogMap once.

108

 The highest maximum F2-measure value is equal to 0.99 and given by NeuralOM-I

for Anatomy. The lowest maximum F2-measure value is equal to 0.49 and given by

DOME for Phenotype. The highest minimum F2-measure value is equal to 0.67 and

given by DOME for LargeBioMed-FMA-NCI sub-track. And, the lowest minimum

F2-measure value is equal to 0.19 and given by DOME for LargeBioMed-FMA-

SNOMED sub-track.

Among the six test cases of this experimental study, NeuralOM-I has obtained the

maximum F2-measure results for four ones, and DOME has gotten it for the two

others. The minimum F2-measure value is given by DOME in three test cases, by

both of Holontology, POMAP++and LogMap in one matching task.

 The matching Runtime values of NeuralOM are so small compared to those of the

OAEI systems that we were obliged to use a logarithmic scale base 2 to see the

difference in the Runtime graphs presented above; otherwise, their bars are negligible

and won’t figure in the graphs. There is such a great difference comparing parts of

one second with thousands of seconds. Therefore, the proposed approach is not time-

consuming, and it will not complicate the process of matching such huge ontologies.

4.4.3. Experimental Summary

The matching systems present better results for precision than for recall in seven test cases:

Conference (excepting NeuralOM-I, NeuralOM-M and ALIN), BioDiv-FLOPO-PTO, PM-

BR, OA4QA, Anatomy (excepting NeuralOM-I and NeuralOM-M), LargeBioMed-FMA-

SNOMED (with a slight difference) and LargeBioMed-SNOMED-NCI. Recall results are

higher than precision results in the four matching tasks: ENVO-SWEET (with a slight

difference), PM-UA, Phenotype-HP-MP (excepting XMap and DOME) and Phenotype-

DOID-ORDO. In the challenge LargeBioMed-FMA-NCI, precision and recall results are

similar. These variances are reflected on F-measures, where F0.5-measure is mostly affected

by precision and F2-measure by recall, whereas F1-measure combines them evenly.

For the proposed approach, the results of NeuralOM-I are better than those of

NeuralOM-M and better than those of NeuralOM-U for all matching challenges, excepting

Phenotype-HP-MP where NeuralOM-U presents better results than NeuralOM-M. In

Conference, PM-BR, OA4QA, LargeBioMed-FMA-SNOMED and LargeBioMed-

SNOMED-NCI, NeuralOM-U results are far from those of NeuralOM-I and NeuralOM-M.

In Phenotype-HP-MP, NeuralOM-I results are far from those of the two others.

109

All in all, the detailed experimental procedure that we performed on twelve test cases

shows that, the three variants of NeuralOM present better results than the OAEI matching

systems, especially the Intersection and Majority variants which present the best matching

performance. That is clear from the results of all the five evaluation measures adopted,

especially from F1-measure results. We can exclude only Phenotype (with null values in the

last partitions by all systems), where the results of NeuralOM are similar with those of the

OAEI systems in DOID-ORDO, and lower than the results of five systems and higher than

three systems in HP-MP. This is because of the low initial weights of the three chosen

systems for this track. We should also notice that this track is the track with the lowest

matching performance.

All the maximum scores of all the evaluation measures adopted for all test cases of

this study have been achieved by NeuralOM-I. NeuralOM-M has also presented excellent

results positively far from the OAEI systems results. And NeuralOM-U has given very good

results which are competitive with the two best OAEI matching systems. This high

performance achieved by NeuralOM is due to two main reasons. First, the initial candidate

matchers of which the generated mappings are required as input have been meticulously

selected. Second, each step of NeuralOM is developed with a very high level of accuracy.

The best value is fixed for each parameter by performing very detailed sets of tests.

4.5. Conclusion

In this chapter, we have presented NeuralOM, an automatic solution for large-scale ontology

matching basing on artificial neural networks. We present an overview of the proposed

solution and describe its contributions as well as its technical steps. Then, we present the

very detailed experimental procedure that we performed on twelve test cases of different

domains as well as of different dataset sizes from the OAEI initiative. The results of these

experiments show that the proposed approach has proven its efficiency in front of all OAEI

matching systems. NeuralOM has perfectly tackle the large-scale ontology matching

challenges which have motivated this research.

In the next chapter, we present another different solution to the large-scale ontology

matching issue which is an unsupervised method based on deep neural networks.

110

Chapter 5

Deep Embedding Learning with Auto-

Encoder for Large-Scale Ontology

Matching

Contents
5.1. Introduction ... 111

5.2. DeepOM Overview ... 111

5.3. Deep Ontology Matching .. 113

5.3.1. Pre-Matching .. 116

5.3.1.1. Extracting Ontological Information .. 116

5.3.1.2. Pre-Processing of Ontological Components .. 118

5.3.2. Creating Semantic Embeddings for Concepts.. 119

5.3.2.1. Defining Reference Ontology .. 120

5.3.2.2. Similarity Measurement .. 120

5.3.3. Deep Ontology Matching with Auto-Encoder ... 122

5.3.4. Generating Ontology1-Ontology2 Alignment ... 123

5.3.4.1. Measuring Embeddings Similarity .. 124

5.3.4.2. Pruning Generated Alignment ... 124

5.4. Evaluation Framework .. 124

5.4.1. Experimental Design .. 124

5.4.2. Experimental Results ... 125

5.4.2.1. Evaluate the Matching Quality .. 126

5.4.2.2. Evaluate the Matching Complexity ... 127

5.4.3. Experimental Summary .. 128

5.5. Conclusion .. 128

111

5.1. Introduction

Ontology matching is an efficient method to support interoperability and remove

heterogeneity among ontologies. As previously stated, large-scale ontology matching is still

challenging for its long-time processing and large memory space consumption. Deep

learning techniques are powerful computational models very appropriate for dealing with

large datasets.

In the previous chapter, we have presented a reuse-based solution to the large-scale

ontology matching issue. In this chapter, we present DeepOM, another different solution that

we propose to deal with the large-scale heterogeneity problem using deep learning

techniques. First, we provide an overview of the proposed ontology matching system as well

as its main contributions. Then, we present the detailed workflow of DeepOM. After that,

we describe the evaluation of DeepOM, conducted on the Anatomy track from the 2020

campaign of the OAEI Initiative. We present the results of these experiments and discuss the

performance of our system.

5.2. DeepOM Overview

This chapter is related to our published work [198], where we propose the system DeepOM

for automatically matching large ontologies without partitioning and basing on deep learning

techniques. Figure 5.1 presents an overview of the proposed matching system. DeepOM first

extracts the requisite ontological information from input ontologies and pre-process it. A

reference ontology is then used to transform ontological concepts into numerical vectors that

deep learning models can use as input. Auto encoders are common deep learning models.

They are great at representation learning. Once the semantic embeddings for concepts are

created, they can be used to train an auto-encoder, in order to output finer and smaller

representations for ontological concepts. After that, the cosine similarity is used to compute

similarities between the compact vectorial representations of concepts. Finally, a filtering

process is applied using a defined alignment threshold, in order to keep only the most

appropriate correspondences that compose the final mapping.

112

Figure 5.1. DeepOM Overview.

The main contributions of this system are:

 Employing deep learning techniques in order to effectively match large-scale

ontologies without partitioning them, and at the lowest time process and memory

space cost. Deep learning techniques are very appropriate for dealing with huge

amounts of data. A massive dataset is adequate for learning for the reason that the

model encounters and learns from a good enough number of examples.

 Representing the concepts of input ontologies in a multi-dimensional embedding

space, using a smaller and well selected reference ontology. That aims for perfecting

the matching performance and reducing its complexity.

The aim of these representations is for transforming our data into vectors that deep

learning models can use. Moreover, the obtained vectors represent the concepts in a

richer and more precise way, since a concept is represented by a high number of

dimensions according to the size of the reference ontology. For instance, if the

reference ontology is of size 100, then, each concept will be represented by 100

Filtering Mapping

Embedding Concepts with Reference Ontology

Embedding Matching

Vec’1, Vec’2, Vec’3, …, …, Vec’N2

… …

Deep Learning

Ontology1 Ontology2

Final

Matching

Results

Vec1, Vec2, Vec3, …, …, VecN1

113

values. i.e., concepts will be represented in a 100-dimensional vector space.

Furthermore, passing the ontological concepts to vector representations reduce the

complexity of matching them. This is due to the fact of manipulating float value

vectors instead of manipulating a concept with several components of different types.

Even if this transformation is a supplementary process, its complexity is still not

considerable in regard with directly matching the huge input ontologies.

 The use of a reference ontology has a great impact on turning the ontological form

of each concept from the input ontologies into a multi-dimensional numerical vector.

Beside the fact that, this ontology is well selected, of the same domain as input

ontologies and close to each of them equinely, the use of an ontology rather than

other data structures is very expressive. i.e., all a semantic of the same domain is

exploited for the purpose of embedding concepts.

 Training an auto-encoder on the concepts’ embeddings, in order to learn more

accurate and more compact representations for input concepts. That leads to better

performance and less complexity as well.

In one hand, this dimensionality reduction serves for improving the matching quality.

Training the auto-encoder on the previous vectorial representations of concepts keeps

the most important attributes of the input vectors in the compressed representations.

That provides finer and more accurate representations for ontological concepts. In

the other hand, as the auto-encoder compresses the input data into lower dimensional

representations. This dimensionality reduction helps to reduce the complexity of

ontology matching. In addition, the auto-encoder works in an unsupervised way that

does not require a learning base, which necessitates a delicate process to prepare.

5.3. Deep Ontology Matching

In this section, we present DeepOM, a system that we propose to address the ontology

matching challenges at the large scale. The idea behind DeepOM is to automatically treat

the large-scale ontology matching issue in two stages. At each stage, it seeks for providing

more representative and less dimensional real-valued vectors for concepts of input

ontologies.

 First, it creates semantic embeddings for ontological concepts, basing on the

semantic similarity between them and the concepts of a smaller and well selected

114

reference ontology. That perfects the matching process and reduces the matching

complexity.

 Second, DeepOM trains an auto-encoder on the generated concepts’ vectors, in order

to learn high-level and more compact embeddings for input concepts. This learning

process also leads to better matching performance and decreases the complexity of

large-scale ontology matching.

The processing workflow of DeepOM is illustrated in Figure 5.2. It could be

summarized in four major phases: Pre-Matching Phase, Embedding Phase, Deep Learning

Phase and Matching Phase.

115

Figure 5.2. Processing Workflow of DeepOM.

Matching two given ontologies Ontology1 and Ontology2 is the process of finding a

set of m correspondences (alignment) A = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑚}. Each correspondence ai, (i=1-m)

Final Mapping

a1 = <1, C1, C’14, val1>

a2 = <2, C18, C’6, val2>

a3 = <3, C3, C’27, val3>

a4 = <4, C4, C’20, val4>

a5 = <5, C9, C’54, val5>

a6 = <6, C78, C’2, val6>

…

a N1N2 = <N1N2, CN1, C’N2,

valN1N2>

≥ T

a1 = <1, C18, C’6, val1>

a2 = <2, C4, C’20, val2>

a3 = <3, C9, C’54, val3>

a4 = <4, C78, C’2, val4>
…

am = <m, C18, C’6,

valm>

Pre-Matching

Filtering Alignments

Preliminary Mapping

Ontology3

Represent Concepts of Ontology1 in

a Multi-Dimensional Vector Space

Represent Concepts of Ontology2 in

a Multi-Dimensional Vector Space

Ontology1-Ontology2

Matching

Vec’1= [v’1-1, v’1-2, v’1-3, …, v’1-N3]

Vec’2= [v’2-1, v’2-2, v’2-3, …, v’2-N3]

Vec’3= [v’3-1, v’3-2, v’3-3, …, v’3-N3]

…

…

Vec’N2= [v’N2-1, v’N2-2, v’N2-3, …, v’N2-N3]

Vec1= [v1-1, v1-2, v1-3, …, v1-N3]

Vec2= [v2-1, v2-2, v2-3, …, v2-N3]

Vec3= [v3-1, v3-2, v3-3, …, v3-N3]

…

…

VecN1= [vN1-1, vN1-2, vN1-3, …, vN1-N3]

Vec’1= [v’1-1, v’1-2, …, v’1-N4]

Vec’2= [v’2-1, v’2-2, …, v’2-N4]

Vec’3= [v’3-1, v’3-2, …, v’3-N4]
…

…

Vec’N2= [v’N2-1, v’N2-2, …, v’N2-N4]

Vec1= [v1-1, v1-2, …, v1-N4]

Vec2= [v2-1, v2-2, …, v2-N4]

Vec3= [v3-1, v3-2, …, v3-N4]
…

…

VecN1= [vN1-1, vN1-2, …, vN1-N4]

Ontology1

Components
Ontology3

Components

Ontology2

Components

… …

Deep Learning of

Concepts’ Embeddings

with Auto-Encoder

Ontology1 Ontology2

116

is defined by a quadruple as: ai = < idi, C, C’, vali >. Where: idi is the correspondence

identifier; C is a concept from Ontology1; C’ is a concept from Ontology2; and vali the

correspondence value between C and C’ provided by DeepOM. This latter is in range [0,1],

and reflects the similarity measure between the linked concepts.

5.3.1. Pre-Matching

The first step aims for preparing ontologies for matching. It is such an important process,

since the input ontologies are heterogeneous and different in their components’ availability

and entities’ lexicon for our interests. We pre-match input ontologies in two main sub-steps:

5.3.1.1. Extracting Ontological Information

This step consists on loading the ontologies needed for matching, and extracting their

components which are necessary for generating alignment. An ontological concept is defined

by its semantic triangle (see Figure 5.3). The vertices of this 3-dimensional shape represent

the three main aspects of the concept:

1. Term: expresses the concept in language. It is the linguistic representation of a given

concept.

For example, as shown in Figure 5.3, to express the concept that brings together the

different vehicle objects, terms such as “Vehicle”, “Automobile”, “Car”, “Auto”,

“Motor vehicle” or even “Wheels” can be used.

2. Intention: is the set of its qualitative or functional properties which constitutes its

meaning. A property of a concept can be of one of this two types:

o Attributes: represent the internal structure of the concept. i.e., the

features or characteristics that objects of this concept can have.

As shown in the example of the figure below, “Model”, “Body mass”,

“Registration number”, “Suspension stiffness”, “Axle hop frequency”, “Tire

stiffness” and “Color” are attributes of the class Vehicle.

o Relations: represent the external structure of the concept. i.e., the

relations of this concept with other concepts of the ontology.

For the presented example, the vehicle concept is in relationship with the

concept “Person” by the relation “own”, with “Support” by “supply”, with

“Steering Device” by “control”, with “Transport” by “is-a”, with “Driver”

by “conduct”, with “Vehicle Component” by “has-part”, with “Time” by

“damage-at”, with “Vehicle Function” by “has-function” and many others.

117

3. Extension: is the set of the objects denoted by the concept. For example,

“Mercedes”, “Audi”, “BMW”, “Ferrari”, “Lamborghini”, “Volkswagen” are entities

falling into the category of vehicle.

Figure 5.3. Ontology concept by three dimensions. The left side presents the semantic

triangle of the concept; The right side presents an example.

 Therefore, to keep the semantics carried by a concept in an ontology, it should be

defined by the three elements cited above. In this study, as we aim for performing the

matching process in a complete way, we care about the semantics of input ontologies and

we cover this 3-dimensional view of their concepts. Thus, we extract for each concept C

from Ontology1 and Ontology2 its:

 Lexical label, which is the representative term used to describe this concept;

 Related concepts, which are the concepts from the same ontology that are related to

the concerned concept. Concepts of ontologies are related to each other with distinct

types of relationships. The most basic type of relations in an ontology is the

subsumption relation, also known as is-a relation. It provides the tree-like taxonomy

of the ontology. By this relation, an ontological concept has principally a parent-

concept, a child-concept and a sibling-concept. According to this structure, three

main types of related concepts are extracted:

118

o Ancestors, which are the elements of the set of concepts composed by, the

parents of C, and the parents of their parents, along the path to root. i.e., we

extract all parent-concept levels of the concept in question;

o Descendants, which are the direct child-concepts of C. As a concept has a

significant number of child-concepts compared with parent-concepts, we find

that the first child-concept level is sufficient to have related descendants’

concepts;

o Siblings, which are the direct child-concepts of the direct parent-concepts of

C. i.e., concepts of the first child-concept level of the first parent-concept

level of the concerned concept are extracted;

 Individuals, which represent the instance-level of the concept, described by its

concrete objects.

5.3.1.2. Pre-Processing of Ontological Components

In this sub-step, we mainly interest in pre-processing the lexical information extracted from

input ontologies. Thus, once the ontological components are extracted, we analyze and

process, for each concept, its label, individuals’ names, as well as the labels of its related

concepts (ancestors, descendants and siblings). Considering an extracted textual information

T to be pre-treated. The pre-processing task outputs a set of processed terms. It is performed

as present the following points:

- Tokenization: consists on segmenting T to a set of tokens according to space (‘ ’) and

two types of dashes (‘-’ and ‘_’);

- Removing stop words: consists on removing the commonly used words which do not

carry useful information for matching. For that, we use the English nltk13 stop-words

list;

- Denoising: aims to get rid of unhelpful elements of the textual information. In the

case of this study, it consists on lowercasing all characters, removing tokens of length

1 (excepting numbers) and removing punctuations marks as well as all special and

non-ASCII characters.

13 http://www.nltk.org/

119

5.3.2. Creating Semantic Embeddings for Concepts

This step consists on transforming the concepts of input ontologies into vectorial

representations that deep learning models can use as input. We use another ontology, called

reference ontology, in order to represent each concept from Ontology1 and Ontology2 in a

numerical multi-dimensional vector space.

For the following, the set of Ontology1’s concepts is defined by 𝑪 = {𝒄𝐢, 𝐢 = 𝟏−𝐍𝟏}, the

set of Ontology2’s concepts by 𝑪′ = {𝒄′𝐢, 𝐢 = 𝟏−𝐍𝟐}, and the set of concepts of the reference

ontology by 𝑪′′ = {𝒄′′𝐢, 𝐢 = 𝟏−𝐍𝟑}, where N1, N2 and N3 denote the number of concepts of

Ontology1, Ontology2 and the reference ontology respectively.

Algorithm 5.1 demonstrates the task of this step. It is performed based on computing

similarities between concepts of the reference ontology and elements of C and C’. We

represent each concept from Ontology1 and Ontology2 by a vector of N3 numerical values.

Each value is the similarity score between the concerned concept and a concept from the

reference ontology. Since the size of the reference ontology is N3, all vectorial

representations of concepts of Ontology1 and Ontology2 are of length N3 for each vector.

i.e., concepts of input ontologies are represented in a N3-dimensional vector space. As

results of this step, the embedding representations of ontologies’ concepts are created after

that the execution of the algorithm is completed.

Algorithm 5.1. Creating concepts’ embeddings for input ontologies

Input: Ontology1’s concepts: 𝑪 = {𝒄𝐢, 𝐢 = 𝟏−𝐍𝟏};

Ontology2’s concepts: 𝑪′ = {𝒄′𝐢, 𝐢 = 𝟏−𝐍𝟐};

Reference ontology’s concepts: 𝑪′′ = {𝒄𝐢, 𝐢 = 𝟏−𝐍𝟑}.

Begin

// Vectorial representations for elements of C

Initialization of V = { }

for i from 1 to N1

 Initialization of veci = []

 for j from 1 to N3

 veci[j] = Semantic similarity value between ci and c”j

 append veci to V

// Vectorial representations for elements of C’

Initialization of V’ = { }

for i from 1 to N2

 Initialization of vec’i = []

120

 for j from 1 to N3

 vec’i[j] = Semantic similarity value between c’i and c”j

 append vec’i to V’

End

Output: Embeddings of C: V = (veci, i = 1-N1), veci = [vj, j = 1-N3];

Embeddings of C’: V’ = (vec’i, i = 1-N2), vec’I = [v’j, j = 1-N3].

The accuracy of the generated embeddings is highly dependent upon two major

factors: defining the reference ontology and similarity measurement.

5.3.2.1. Defining Reference Ontology

The reference ontology has a great impact on the performance of the matching process. Thus,

its determination is such a delicate and careful task. It depends on input ontologies and

should be:

 Of the same domain as Ontology1 and Ontology2, and semantically close to them.

Otherwise, the embedding vectors would be overpowered by zeros. Thus, they would

not provide the real representations for concepts.

 In the-middle-of-the-road between Ontology1 and Ontology2. i.e., it should be

neutral and balanced between them, so as to afford fair concepts’ representations.

 Of an appropriate size. i.e., it must not be very small, not useful, nor larger than input

ontologies, so matching gets more complicated.

5.3.2.2. Similarity Measurement

The adequacy of the numerical values of the concepts’ embeddings relies on how similarities

are computed between input ontologies and the reference ontology. As this is a very exact

task, we perform it on a high level of accuracy, exploiting the three main aspects of

ontological concepts. Therefore, we proceed and combine several matchers:

5.3.2.2.1. Terminological Matcher

The terminological matcher exploits semantics inside concepts’ lexicon. It measures both

context-based similarity and syntactical similarity. And, it combines them in a way that, the

weight assigned to each element reflects its accurate need proportion in that current case.

We propose the following formula to compute the terminological similarity between two

concepts C1 and C2:

𝑇𝑒𝑟𝑆𝑖𝑚(𝐶1, 𝐶2) =
2 × |𝐿𝑎𝑏𝑒𝑙1 ∩ 𝐿𝑎𝑏𝑒𝑙2| + 𝐷1 + 𝐷2

|𝐿𝑎𝑏𝑒𝑙1| + |𝐿𝑎𝑏𝑒𝑙2|
 (5.1)

121

Where:

Label1 is the pre-processed label of C1; Label2 is the pre-processed label of C2; D1 is

the similarity report of (𝐿𝑎𝑏𝑒𝑙1 − 𝐿𝑎𝑏𝑒𝑙2) compared to (𝐿𝑎𝑏𝑒𝑙2 − 𝐿𝑎𝑏𝑒𝑙1); D2 is the

similarity report of (𝐿𝑎𝑏𝑒𝑙2 − 𝐿𝑎𝑏𝑒𝑙1) compared to (𝐿𝑎𝑏𝑒𝑙1 − 𝐿𝑎𝑏𝑒𝑙2). For each pair of

individual terms, we take the maximum similarity between the two values provided by an

external knowledge resource and Jaro measure.

5.3.2.2.2. Structural Matcher

The structural matcher measures the similarity between concepts basing on their structure,

which refers to their related concepts. We use the following formula to compute structural

similarities between ancestors, descendants and siblings of C1 and C2:

𝑺𝒕𝒓𝑺𝒊𝒎(𝑪𝟏, 𝑪𝟐) =
𝟐 × |𝑹𝑪𝟏 ∩ 𝑹𝑪𝟐| + 𝑫𝟏 +𝑫𝟐

|𝑹𝑪𝟏| + |𝑹𝑪𝟐|
 (𝟓. 𝟐)

Where:

 RC1 is the set of concepts related to C1; RC2 is the set of concepts related to C2; D1 is

the similarity report of (𝑹𝑪𝟏 − 𝑹𝑪𝟐) compared to (𝑹𝑪𝟐 − 𝑹𝑪𝟏); D2 is the similarity report

of (𝑹𝑪𝟐 − 𝑹𝑪𝟏) compared to (𝑹𝑪𝟏 − 𝑹𝑪𝟐). This similarity report is computed using the

terminological similarity equation (Equation.1) for each pair of individual related concepts.

 Related concepts (RC1 for C1 and RC2 for C2) refers to sets of ancestors, descendants

and siblings of C1 and C2 for each case.

5.3.2.2.3. Extensional Matcher

We measure the similarity between instances of C1 and C2 using the Jaccard similarity, given

by formula:

𝑬𝒙𝒕𝑺𝒊𝒎(𝑪𝟏, 𝑪𝟐) =
|𝑰𝒏𝒔𝒕𝟏 ∩ 𝑰𝒏𝒔𝒕𝟐|

|𝑰𝒏𝒔𝒕𝟏 ∪ 𝑰𝒏𝒔𝒕𝟐|
 (𝟓. 𝟑)

Where:

 Inst1 is the set of instances of C1 and Inst 2 is the instances set of C2.

Combining the individual similarity measures is necessary in order to get the final semantic

similarity between C1 (from C+C’) and C2 form (C”). Unlike other ontology matching

techniques, which give equal weights for similarity values, DeepOM combines them in an

additive way that, the lack individuals and related elements for some concepts would not

affect the matching performance. Algorithm 5.2 demonstrates this process.

122

Algorithm 5.2. Measuring semantic similarity between two given concepts

Input: C1: Concept from Ontology1+Ontology2: Set of N1 concepts: C + Set of

N2 concepts: C’, 𝑪 = {𝒄𝐢, 𝐢 = 𝟏−𝐍𝟏}, 𝑪′ = {𝒄′𝐢, 𝐢 = 𝟏−𝐍𝟐};

C2: Concept from Reference ontology: Set of N3 concepts: C”, 𝑪′′ =

{𝒄′′𝐢, 𝐢 = 𝟏−𝐍𝟑};

Sim_Threshold.

Begin

// Computing similarities between C1 and C2

 Ins1 = list of c1 Instances

 Anc1 = list of c1 Ancestors

 Des1 = list of c1 Descendants

 Bro1 = list of c1 Siblings

 Ins2 = list of c”2 Instances

 Anc2 = list of c”2 Ancestors

 Des2 = list of c”2 Descendants

 Bro2 = list of c”2 Siblings

 TerVal = TerSim(c1,c”2)

 AncVal = StrSim(c1,c”2) \\ RC1==Anc1; RC2==Anc2

 DesVal = StrSim(c1,c”2) \\ RC1==Des1; RC2==Des2

 BroVal = StrSim(c1,c”2) \\ RC1==Bro1; RC2==Bro2

ExtVal = ExtSim(c1,c”2) \\ Inst1==Ins1; Inst2==Ins2

// Combining similarities between C1 and C2

StrVal = Average(AncVal,DesVal,BroVal)

If (StrVal>Sim_Threshold) and (ExtVal>Sim_Threshold):

SemVal = Average(TerVal,StrVal,ExtVal)

Else: If (StrVal>Sim_Threshold):

 SemVal = Average(TerVal,StrVal)

 Else: If (ExtVal>Sim_Threshold):

SemVal = Average(TerVal,ExtVal)

 Else:

 SemVal = TerVal

End

Output: SemVal: Semantic Similarity value between two given concepts;

5.3.3. Deep Ontology Matching with Auto-Encoder

This step consists on using deep learning techniques to learn high-level embeddings for

concepts of the two ontologies. This task aims to provide more accurate and less

dimensional representations for concepts. That perfectly represents the input ontologies in

an unsupervised way.

123

Auto-encoders seem to be very appropriate for such purposes. They are capable of

creating sparse representations of the input data. Therefore, they can be used to compress

the concepts’ vectors resulted from the previous step, and represent them in a latent space.

Figure.5.4 illustrates the architecture of the auto-encoder model of DeepOM. It is a

deep neural network with multiple layers. The output layer has the same dimension as the

input layer. And, the architecture between them is mirrored. The model has two components:

Encoder and Decoder. The encoder compresses the input data into a lower dimension. Then,

the decoder uses the compact representations to recreate the original input.

Figure 5.4. Architecture of the Auto-Encoder Model.

The number of layers of the deep network, the number of nodes per layer, the number

of training epochs, as well as the other auto-encoder parameters are fixed by trial-and-error.

For training the auto-encoder model, we use the back-propagation learning method. We take

the current concepts’ vectorial representations as input. Then, we train the model to learn

weights so as to compress down these vectors into a lower dimensional space. The final

learned representations (of size N4 as shown in Figure 5.2) keep the most important features

of ontological concepts.

5.3.4. Generating Ontology1-Ontology2 Alignment

This final step is performed in two sub-steps:

… … … …

Encoder

Decoder

Compressed

Representation

Input layer Output layer

V1

V2

V3

.
.
.

VN3

V1

V2

V3

.
.
.

VN3

[[
[[

Hidden layers

124

5.3.4.1. Measuring Embeddings Similarity

Generating alignment between Ontology1 and Ontology2 requires computing similarities

between their concepts. Since those concepts are represented by numbers in a vector space,

the matching process consists on computing similarities between the corresponding vectors.

For that, we use the cosine similarity measure defined by:

𝐶𝑜𝑠(�⃗�, �⃗�) =
�⃗�. �⃗�

‖�⃗�‖. ‖�⃗�‖
 (5.4)

5.3.4.2. Pruning Generated Alignment

Once similarities between concepts of the input ontologies have been measured, they

undergo a filtering procedure, so as to keep only significant correspondences. For example,

we do not consider a concepts’ pair of which the value is equal to 0.0 as a valid

correspondence. For that, we define an alignment threshold T, fixed by trial-and-error, to

extract the final mapping, for which the similarity values exceed T. We aim by this task at

improving the matching accuracy by removing irrelevant correspondences of low similarity

scores, and keeping only the most appropriate correspondences.

5.4. Evaluation Framework

In this section, we describe the experimental procedure that we proceed for evaluating our

ontology matching system.

5.4.1. Experimental Design

Aiming for studying the efficiency of DeepOM, we evaluate it according to the Anatomy

track of the Ontology Alignment Evaluation Initiative (OAEI). More details about this

international initiative and its evaluation challenges are given in Sect.6.4.1. As we look for

passing the ontology matching task to the large scale, Anatomy track proposes test

ontologies of appropriate sizes. The OAEI’2020 Anatomy track14 comprises a single real-

world test case about matching two fragments of biomedical ontologies describing the

human anatomy and the anatomy of the mouse. The ontologies to be matched are the human

and mouse OWL ontologies with 3304 and 2744 classes respectively. The task is situated in

a domain where we find large and carefully designed ontologies which are described in

technical terms. The evaluation is based on a manually curated reference alignment.

14 http://oaei.ontologymatching.org/2020/anatomy/index.html

125

For evaluating the proposed system, we use the standard evaluation measures:

precision, recall as well as their harmonic mean F-measure, against the reference alignments

of the Anatomy test case. They are previously defined and described in (Sect 1.3.5.3). They

are the most widely used criteria for such evaluation.

For the external resource, which is required for measuring the terminological

similarity, we use BioWordVec [199]. It is an open set of biomedical word embeddings of

2,324,849 distinct words. It combines sub-word information from unlabeled biomedical text

with MeSH15, a widely-used biomedical controlled vocabulary.

As reference ontology, we use the Anatomical Entity Ontology: AEO16, an OWL

ontology of anatomical structures with 250 classes. It expands the Common Anatomy

Reference Ontology (CARO)17, which is an upper-level ontology to facilitate

interoperability between existing anatomy ontologies for different species. AEO is intended

for being useful in increasing the knowledge amount of anatomy ontologies, facilitating

annotation and in enabling interoperability across anatomy ontologies.

The structure of the trained auto-encoder model is [250-200-150-100-150-200-250].

The size of the reference ontology is 250. That generates a vectorial representation of 250

numbers for each concept. It is token as input and output to the network.

5.4.2. Experimental Results

In order to study the efficiency of DeepOM, we compare its results with the results18, 19, 20 of

the new systems participant to the same matching challenge for the three most recent OAEI

campaigns. The results of the performed evaluation are summarized in Table 5.1. The best

scores for each evaluation measure are marked in bold. The OAEI systems with which

DeepOM is compared are: ATBox [200], OntoConnect [201], ALOD2Vec [202], FCAMap-

KG [11], DOME [12], DESKMatcher [13], Holontology [14] and AGM [203]. StringEquiv

is a baseline of OAEI that generates alignment basing on exact string matching of concepts’

labels. They are classified in Table 5.1 decreasingly according to their F-measure results.

15 https://www.ncbi.nlm.nih.gov/mesh/
16 http://www.obofoundry.org/ontology/aeo.html
17 http://www.obofoundry.org/ontology/caro.html
18 http://oaei.ontologymatching.org/2018/results/anatomy/index.html
19 http://oaei.ontologymatching.org/2019/results/anatomy/index.html
20 http://oaei.ontologymatching.org/2020/results/anatomy/index.html

126

System

Standard Evaluation Measures

Runtime(s) Precision Recall F-Measure

ATBox 0.987 0.671 0.799 192

DeepOM 0.994 0.665 0.797 149

OntoConnect 0.996 0.665 0.797 248

ALOD2Vec 0.996 0.648 0.785 75

FCAMap-KG 0.996 0.631 0.772 25

DOME 0.997 0.615 0.761 22

DESKMatcher 0.472 0.623 0.537 391

Holontology 0.976 0.294 0.451 265

AGM 0.152 0.195 0.171 628

StringEquiv 0.997 0.622 0.766 6

Table 5.1. Evaluation results of DeepOM for OAEI-Anatomy’20 track.

As the aim, by DeepOM, is to both maximize the matching quality and minimize the large-

scale matching complexity, we evaluate the proposed ontology matching system at two

stages:

5.4.2.1. Evaluate the Matching Quality

Graphs in Figure 5.5 outline the evaluation results in terms of the three standard evaluation

metrics defined in Sect.1.3.5.3.

Figure 5.5. Matching Quality evaluation results of DeepOM for OAEI-Anatomy’20 track.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F-Measure

Standard Evaluation Measures

ATBox

DeepOM

OntoConnect

ALOD2Vec

FCAMap-KG

DOME

DESKMatcher

Holontology

AGM

StringEquiv

127

We can see from Figure 5.5 that, 1. DeepOM presents an excellent precision score (0.994).

It is among the five top ranked systems of which the values exceed 0.99, and outperforms

the other matching systems in terms of precision. 2. Regarding recall, DeepOM achieved a

good value (0.665). It presents (with OntoConnect) the second-best score after ATBox with

a slight difference of 0.006, and outperforms the other systems. 3. For F-measure, which

combines precision and recall evenly, the system proposed in this work presents a high score

(0.797), greater than the baseline (StringEquiv) which is based on normalized string

equivalence. DeepOM is among the top three ranked systems that exceed 0.79. The other

matching systems present competitive results excepting DESKMatcher, Holontology and

AGM.

5.4.2.2. Evaluate the Matching Complexity

As we really interest in reducing the matching complexity, we compare the matching runtime

required by our system with the other participant matching systems. Figure 5.6 illustrates

this comparison.

Figure 5.6. Matching Complexity evaluation results of DeepOM for OAEI-Anatomy’20

track.

We can observe from Figure 5.6 that, DeepOM performs the ontology matching process at

short notice comparing with the other matching systems. It is among the 4 systems out of 9

that are able to achieve the matching task in less than 150 seconds. These are DeepOM,

ALOD2Vec, FCAMap-KG and DOME which has the shortest runtime.

0

100

200

300

400

500

600

700

RunTime(s)

Runtime Analysis

ATBox DeepOM OntoConnect ALOD2Vec FCAMap-KG

DOME DESKMatcher Holontology AGM StringEquiv

128

5.4.3. Experimental Summary

According to the previous results, we can conclude the following. As we aim by DeepOM

to both increase the matching quality and decrease the matching complexity, we analyse

results of F-measure, which reflects the real quality of matching, with respect to the matching

runtime.

 The preliminary results of DeepOM are very promising. It has achieved a score of

0.8 for F-measure, which is a very good value for the ontology matching task at least

as a start.

 Comparing DeepOM with different matching systems which have participated to the

OAEI-Anatomy track, it outperforms them in terms of F-measure, excluding ATBox

and OntoConnect.

 As for these two systems, DeepOM has matching results similar to OntoConnect.

The results of ATBox are a bit higher but with a very slight difference (0.002).

Regarding complexity, DeepOM has the shortest runtime.

The conducted evaluation of DeepOM demonstrates that, concepts’ embeddings using

the reference ontology and learning them with auto-encoder have improved the performance

of the ontology matching task. Moreover, representing ontological concepts by numerical

values in a vector space has efficiently solved the large-scale ontology matching problem.

The experimental results of DeepOM show a very good matching performance at

lowest cost. This means that we have achieved the two objectives of large-scale ontology

matching, which are improving the matching performance and reducing its complexity.

Therefore, we have effectively, by DeepOM, tackled the challenges that have motivated this

study.

5.5. Conclusion

In this chapter, we have presented DeepOM, a large-scale ontology matching system that we

propose basing on deep learning techniques to deal with the large-scale heterogeneity

problem. We describe the proposed matching system and its contributions. And, we present

the experimental procedure that we have performed on the Anatomy track from the 2020

campaign of the OAEI Initiative.

129

The key novelty of DeepOM is to use a reference ontology to create semantic

embeddings for ontological concepts, which are used to train an auto-encoder in order to

learn more accurate and less dimensional representations for concepts. The results of its

evaluation on large OAEI ontologies show that, DeepOM has proven its efficiency against

the participant matching systems to effectively match large-scale ontologies and tackle the

challenges which have motivated this work.

In the next chapter, we present another solution to the large-scale ontology matching

issue, which represents the global methodology of this research.

130

Chapter 6

Matching Big Ontologies Semantically by

Combining NeuralOM and DeepOM

Contents
6.1. Introduction ... 131

6.2. SemBigOM Overview .. 131

6.3. Semantic Big Ontology Matching .. 134

6.3.1. Pre-Matching .. 137

6.3.2. Deep Embedding of Concepts .. 137

6.3.3. Ontology1-Ontology2 Matching .. 139

6.3.4. Neural Mapping Reuse ... 140

6.3.5. Post-Matching .. 142

6.4. Evaluation Strategy ... 142

6.4.1. Experimental Settings .. 142

6.4.2. Experimental Results ... 147

6.4.2.1. First Sketch - Evaluation against OAEI’2022 Systems 147

6.4.2.2. Second Sketch - Evaluation against NeuralOM and DeepOM 151

6.4.3. Synopsis ... 153

6.5. Conclusion .. 155

131

6.1. Introduction

Large-scale ontology matching is still challenging for its large-memory consumption and

long-time processing. In the previous chapters of the contribution part, we have proposed

two different solutions for the issue of matching heterogeneous and large ontologies.

In this chapter, we propose the global methodology of this research, aiming for

addressing the challenges of the existing large-scale ontology matching systems as well as

our proposed solutions. We first provide an overview of this matching methodology and

discuss its main contributions. Next, we describe its detailed workflow. Then, we present its

evaluation that we have conducted on the Anatomy track from the most recent campaign of

the OAEI Initiative. We present the results of these experiments and discuss the performance

of our matching methodology against OAEI matching systems as well as our previously

proposed solutions.

6.2. SemBigOM Overview

In this chapter, we present SemBigOM, the solution that we propose for tackling the

challenges of large-scale ontology matching and overcoming the limits of the solutions that

we have previously proposed; NeuralOM and DeepOM.

Comparing NeuralOM with DeepOM reveals the following conclusions:

 They are both original methods which respond to the objectives of this study. They

address the challenges of ontology matching, particularly large-scale ontology

matching and without partitioning. Their evaluation results show high quality and

low complexity of matching.

 NeuralOM is marked by its excellent matching results. However, it requires initial

mappings as input, so it is related to mappings of other matching systems.

 DeepOM is totally independent. Its evaluation results are very satisfying but poorer

than the results of NeuralOM.

As we seek for ideal matching results, we look forward to benefit from the advantages of

NeuralOM and DeepOM, and to handle the drawbacks of both of them. In other words, we

attempt to achieve excellent matching results independently. Therefore, we combine the two

proposed solutions in order to get the global methodology of this research, SemBigOM,

132

aiming at a better solution which addresses the challenges of large-scale ontology matching

and achieves all objectives of this study.

The core idea of this conjunction is that, it makes use of DeepOM to generate initial

mappings that NeuralOM requires as input to be reused so as to provide the final matching

results. More expressively, we use different versions of DeepOM instead of different

ontology matching systems in order to provide the initial alignments that NeuralOM needs

as input. In other words, we refine the matching results of DeepOM by NeuralOM so as to

perfectly and independently achieve the large-scale ontology matching process. Figure 6.1

presents an overview of the proposed matching methodology.

Figure 6.1. SemBigOM Overview.

SemBigOM consists of extracting three different matchers from DeepOM, to output

three different mappings that are reused by NeuralOM in order to generate the final mapping.

These initial mappings should be:

- All requisite, otherwise, some of them could be neglected;

Ontology2 Ontology1

Initial

Mappings

NeuralOM

Terminological
DeepOM

(C3 - C’27) : V11
(C4 - C’2) : V12
(C8 - C’6) : V13

(C13 – C’2) : V14
…
…

(C1 - C’14) : V31
(C18 - C’2) : V32
(C3 - C’27) : V33
(C8 – C’6) : V34

…
…

(C21 - C’1) : V21
(C8 - C’6) : V22

(C19 - C’22) : V23
(C1 – C’14) : V24

…
…

Structural
DeepOM

Extensional
DeepOM

 (C8 - C’6) : V1

 (C4 – C’2) : V2

 (C13 – C’2) : V3

(C18 – C’2) : V4
…
…

Final

Mapping

133

- Independent, otherwise, they could cover each other and they could not work in

parallel;

- Have the same importance, otherwise, their initial weights would not be equivalent.

The ontological concept is the basic unit of an ontology. It is defined by a semantic

triangle with three dimensions: terminological dimension; structural dimension and

extensional dimension (more details can be found in Sect.5.3.1.1). Working on these aspects

exploits semantics inside ontologies in one hand. In the other hand, it leads to a high quality

of matching since the three dimensions are precise and complementary. With regard to the

matching evaluation measures, a high precision and a high recall produce a high f-measure.

Thus, they lead to a correct and complete alignment.

Ontology matching is based on computing similarity between ontologies. On this

basis, SemBigOM first generates three different mappings between input ontologies by three

matchers using three different versions of DeepOM: Terminological-based DeepOM,

Structural-based DeepOM and Extensional-based DeepOM.

The different matchers differ in measuring similarity for representing concepts of

ontologies in a numerical multi-dimensional vector space. A reference ontology is used for

that purpose. Next, an auto-encoder is trained in order to transform the produced

representations into finer and smaller numerical vectors for concepts. Then, final similarities

between the compact vectorial representations of concepts are computed using the cosine

similarity and revised by a pruning process.

After that, the three generated mappings are refined by NeuralOM in order to provide

an ideal mapping between input ontologies. They are combined to construct the matching

dataset which is used, first through a linear perceptron to adjust an importance weight for

each matcher, then to define the matching function which leads to generate the final

alignment after a threshold filtering procedure.

SemBigOM benefits from the advantages of both NeuralOM and DeepOM and

addresses their limits. It provides the following contributions:

 Exploiting semantics inside the concerned ontologies. SemBigOM benefits from

covering all aspects of the concepts of input ontologies. In addition, it exploits

background knowledge resources in ontology matching, and uses an already trained

134

deep learning model for measuring the required similarities. Thus, SemBigOM is

advantaged of providing a correct mapping.

 It deals with the large-scale ontology matching issue at two stages. At each stage, it

aims for perfecting and simplifying the ontology matching process.

o First, SemBigOM involves deep learning methods, which are very

appropriate for treating huge amounts of data, in order to create semantic

embeddings for concepts of input ontologies. This is basing on computing

similarities with concepts of a smaller and well selected reference ontology.

That perfects the matching process, because of the fact that, each concept is

represented in a vector space of a wide number of dimensions, where each

value adds more precision to the concerned concept. And, it reduces the

matching complexity, since, manipulating vectors of real values instead of

ontological concepts is much less complicated.

Then, an auto-encoder is trained on the generated vectors in order to provide

better matching performance, since the auto-encoder keeps the most

representative values for each concept. Also, training the model and

compressing concepts embeddings to a lower-dimensional vector space

decreases the large-scale matching complexity.

o Second, as we seek for an ideal ontology matching, we perform a refining

procedure that combines the different mappings generated by SemBigOM in

order to provide an ideal alignment, using artificial neural networks which

are, with their structures of numerous inputs and outputs, very appropriate for

combination. This procedure serves to perfect the quality of the matching

process with negligible matching complexity.

 Supporting parallelization, which emerges as a complementary solution for matching

large-scale ontologies. The different matchers of SemBigOM works in parallel.

Moreover, SemBigOM parallelizes any multiple tasks that can run in parallel, aiming

for reducing the processing time of large-scale ontology matching.

6.3. Semantic Big Ontology Matching

In this section, we study SemBigOM, the research framework that we propose for addressing

the ontology matching challenges at the large scale. The processing workflow of SemBigOM

is illustrated in Figure 6.2. It could be summarized in the following phases: Pre-Matching

135

Phase, Deep Embedding Phase, Matching Phase, Mapping Reuse phase and Post-Matching

Phase.

136

Figure 6.2. Processing Workflow of SemBigOM.

Ontology2 Ontology1

Deep Embedding with Auto-Encoder

Pre-Matching

Ontology1-Ontology2 Matching

Neural Mapping Reuse

Post-Matching

Ontology1

Components

Ontology2

Components

(C3 - C’27) : V11
(C4 - C’2) : V12
(C8 - C’6) : V13

(C13 – C’2) : V14
…
…

(C1 - C’14) : V31
(C18 - C’2) : V32
(C3 - C’27) : V33
(C8 – C’6) : V34

…
…

(C21 - C’1) : V21
(C8 - C’6) : V22

(C19 - C’22) : V23
(C1 – C’14) : V24

…
…

(C1 - C’14) : V1
(C8 - C’6) : V2

(C3 - C’27) : V3
(C4 – C’2) : V4
(C13 – C’2) : V5

(C18 – C’2) : V6
(C19 – C’22) : V7

…
…

 (C8 - C’6) : V1

 (C4 – C’2) : V2

 (C13 – C’2) : V3

(C18 – C’2) : V4
…
…

Vec’1-Ter= […]
Vec’2-Ter = […]
Vec’3-Ter = […]

…
Vec’N1-Ter = […]

Vec’1-Ext = […]
Vec’2-Ext = […]
Vec’3-Ext = […]

…
Vec’N1-Ext = […]

Vec1-Str = […]
Vec2-Str = […]
Vec3-Str = […]

…
VecN1-Str = […]

Vec1-Ter = […]
Vec2-Ter = […]
Vec3-Ter = […]

…
VecN1-Ter = […]

Vec’1-Str = […]
Vec’2-Str = […]
Vec’3-Str = […]

…
Vec’N1-Str = […]

Vec1-Ext = […]
Vec2-Ext = […]
Vec3-Ext = […]

…
VecN1-Ext = […]

Initial

Mappings

Final

Mapping

≥ T

Preliminary

Mapping

137

SemBigOM takes as input two given ontologies, Ontology1 and Ontology2, and

outputs an alignment A between them. A is a set of correspondences defined each by an

identifier, a concept source (from Ontology1), a concept target (from Ontology2) and a

similarity value. In what follows, we describe the matching process of SemBigOM and

discuss its detailed steps.

6.3.1. Pre-Matching

At first, SemBigOM pre-matches input ontologies aiming for preparing them for matching.

This preliminary phase consists of extracting the required information from Ontology1 and

Ontology2. i.e., we extract their components which are necessary for generating alignment.

As previously defined (Sect.5.3.1.1), an ontological concept is defined by three main

aspects: Term, Intention and Extension. Respecting this 3-dimensional shape, we extract

for each concept from Ontology1 and Ontology2 its:

 Lexical label

 Related concepts basing on the subsumption relationship, that are:

o Its Ancestors (parent-concepts along the path to root)

o Its Descendants (child-concepts of the first level)

o Its Siblings (direct child-concepts of the direct parent-concepts)

 Individuals

After that, we pre-process the lexical information of the extracted components. i.e., we

process the label, related concepts’ labels and individuals’ labels of each concept. The pre-

processing procedure outputs a set of processed terms. It consists mainly on tokenizing,

denoising and removing stop words from the extracted textual information.

6.3.2. Deep Embedding of Concepts

This phase aims for preparing the concepts of input ontologies for deep learning. It

transforms their concepts into vector representations that deep learning models can use. It is

illustrated with the next phase in Figure 6.3. This transformation is performed using a

reference ontology, which should be of the same domain as input ontologies, semantically

and neutrally close to them, and of an appropriate size.

138

Figure 6.3. Creating Semantic Embeddings and Deep Matching of Concepts.

Embedding Concepts of Ontology1 Embedding Concepts of Ontology2

Vec’1-Ter = [v’1-1, v’1-2, …, v’1-N3]

Vec’2-Ter = [v’2-1, v’2-2, …, v’2-N3]

Vec’3-Ter = [v’3-1, v’3-2, …, v’3-N3]

…

Vec’N2-Ter = [v’N2-1, v’N2-2, …, v’N2-N3]

Vec1-Ter = [v1-1, v1-2, …, v1-N3]

Vec2-Ter = [v2-1, v2-2, …, v2-N3]

Vec3-Ter = [v3-1, v3-2, …, v3-N3]

…

VecN1-Ter = [vN1-1, vN1-2, …, vN1-N3]

Ontology1 Ontology2

… …

Deep Learning with Auto-

Encoder

Vec’1-Str = [v’1-1, v’1-2, …, v’1-N3]

Vec’2-Str = [v’2-1, v’2-2, …, v’2-N3]

Vec’3-Str = [v’3-1, v’3-2, …, v’3-N3]

…

Vec’N2-Str = [v’N2-1, v’N2-2, …, v’N2-N3]

Vec1-Str = [v1-1, v1-2, …, v1-N3]

Vec2-Str = [v2-1, v2-2, …, v2-N3]

Vec3-Str = [v3-1, v3-2, …, v3-N3]

…

VecN1-Str = [vN1-1, vN1-2, …, vN1-N3]

Vec’1- Ext = [v’1-1, v’1-2, …, v’1-N3]

Vec’2- Ext = [v’2-1, v’2-2, …, v’2-N3]

Vec’3- Ext = [v’3-1, v’3-2, …, v’3-N3]

…

Vec’N2- Ext = [v’N2-1, v’N2-2, …, v’N2-

N3]

Vec1-Ext = [v1-1, v1-2, …, v1-N3]

Vec2- Ext = [v2-1, v2-2, …, v2-N3]

Vec3- Ext = [v3-1, v3-2, …, v3-N3]

…

VecN1- Ext = [vN1-1, vN1-2, …, vN1-N3]

Terminological

Matcher

Vec’1-Ter = [v’1-1, …, v’1-N4]

Vec’2-Ter = [v’2-1, …, v’2-N4]
Vec’3-Ter = [v’3-1, …, v’3-N4]

…

Vec’N2-Ter = [v’N2-1, …, v’N2-N4]

Vec1-Ter = [v1-1, …, v1-N4]
Vec2-Ter = [v2-1, …, v2-N4]

Vec3-Ter = [v3-1, …, v3-N4]

…

VecN1-Ter = [vN1-1, …, vN1-N4]

Vec’1-Str = [v’1-1, …, v’1-N4]
Vec’2-Str = [v’2-1, …, v’2-N4]

Vec’3-Str = [v’3-1, …, v’3-N4]

…

Vec’N2-Str = [v’N2-1, …, v’N2-N4]

Vec1-Str = [v1-1, …, v1-N4]
Vec2-Str = [v2-1, …, v2-N4]

Vec3-Str = [v3-1, …, v3-N4]

…

VecN1-Str = [vN1-1, …, vN1-N4]

Vec1-Ext = [v1-1, …, v1-N4]

Vec2- Ext = [v2-1, …, v2-N4]

Vec3- Ext = [v3-1, …, v3-N4]
…

VecN1- Ext = [vN1-1, …, vN1-N4]

Vec’1- Ext = [v’1-1, …, v’1-N4]

Vec’2- Ext = [v’2-1, …, v’2-N4]

Vec’3- Ext = [v’3-1, …, v’3-N4]
…

Vec’N2- Ext = [v’N2-1, …, v’N2-N4]

Structural

Matcher
Extensional

Matcher

Terminological

Mapping
Structural

Mapping
Extensional

Mapping

139

In order to represent a given concept from Ontology1 and Ontology2 in such a vector

space, we compute similarities between that concept and all concepts of the reference

ontology. N1, N2 and N3 denote supposedly the size of Ontology1, Ontology2 and the

reference ontology respectively. Each input concept is then represented by an N3-

dimensionnal vector, where each dimension relies on a concept from the reference ontology.

As we interest in covering the three aspects of the ontological concept, we represent

each concept from Ontology1 and Ontology2 by three different vectors. That produces three

embedding sets for each input ontology:

 Terminological embedding: is based on computing the terminological similarity

using the formula (5.1) proposed in chapter 5, combining a context-based similarity

using an external knowledge resource, and a syntactical similarity using Jaro

measure.

 Structural embedding: is based on measuring the similarity between concepts basing

on their related concepts. For that, we use the formula (5.2) presented in chapter 5.

 Extensional embedding: is based on computing the similarity between instances of

concepts using the Jaccard similarity.

Once the six embedding sets are created, they undergo an unsupervised deep learning

procedure in order to provide less dimensional and more accurate representations of

concepts. Auto-encoders, with their mirrored Encoder-Decoder architecture, seem to be very

appropriate for such tasks. We train an auto-encoder model to compress down the resulted

vectors, and represent them into a lower dimension. The learned representations keep the

most important features of concepts. The auto-encoder parameters are fixed by trial-and-

error.

6.3.3. Ontology1-Ontology2 Matching

This phase (Figure 6.3) consists on generating alignment between Ontology1 and Ontology2.

That requires computing similarities between their concepts. Since these concepts are

represented by three various vector representations, the matching process consists on

measuring the embedding similarity between these vectors. For that, the cosine similarity

measure is used by three different matchers: a terminological matcher, a structural matcher

and an extensional matcher, in order to compute the similarity between the two

terminological embeddings, structural embeddings and extensional embeddings

respectively.

140

As results of this step, the three different matchers generate three different mappings,

which undergo subsequently a filtering procedure using a defined threshold. That aims for

extracting the final mappings by keeping only the most significant correspondences of high

similarity scores.

6.3.4. Neural Mapping Reuse

This phase is illustrated by Figure 6.4. It is performed in three main steps.

Figure 6.4. Neural Mapping Reuse.

(C3 - C’27) : V11
(C4 - C’2) : V12
(C8 - C’6) : V13

(C13 – C’2) : V14
…
…

(C1 - C’14) : V31
(C18 - C’2) : V32
(C3 - C’27) : V33
(C8 – C’6) : V34

…
…

(C21 - C’1) : V21
(C8 - C’6) : V22

(C19 - C’22) : V23
(C1 – C’14) : V24

…
…

Learning Weights

Training

Data

Terminological Matcher → W-Ter

Structural Matcher → W-Str

Extensional Matcher → W-Ext

Defining Matching Function

& Generating Alignment

Constructing Matching Dataset

Matching

Dataset

Terminological

Mapping
Structural

Mapping
Extensional

Mapping

(C1 - C’14) : V1

(C8 - C’6) : V2

(C3 - C’27) : V3
(C4 – C’2) : V4

(C13 – C’2) : V5

(C18 – C’2) : V6
(C19 – C’22) : V7

…

…

141

Step 1 - Constructing Matching Dataset

The first step consists on constructing the matching dataset from the three mappings

previously generated between Ontology1 and Ontology2. Each mapping has been created by

a different matcher using its own specific matching technique.

The method of their combination has a big impact on the final alignment results. It

determines the size and components of the matching dataset. As we aim at both maximizing

the number of relevant alignments and minimizing the number of un-related ones, we

worked on three completeness levels so as to conclude the best strategy for producing the

dataset:

- Intersection: consists of keeping only common alignments pairs between chosen

mappings.

- Majority: consists of taking alignments pairs generated by the majority of the

matching tools.

- Union: consists of taking alignments pairs for which at least a chosen matching

system has given a value.

Step 2 – Training Neural Network

The second step consists of training a neural network in an unsupervised way, so as to learn

the matching function that leads to generate correspondences between input ontologies.

We aim by this procedure at fixing, for each matcher, a weight which reflects its

importance. Thus, we train a simple neural network of 3 inputs and one output for each pair

of concepts from the training dataset. Inputs correspond to the different matchers, and the

output, which is obtained from OAEI, represents the pretended similarity score between the

two concepts. The initial weights are first initialised to 1. Then, they are updated for each

sample of the training dataset, applying the back-propagation learning method, and using

Sigmoïd as activation function. The other neural network parameters (like the learning rate)

are fixed by trial-and-test.

Step 3 – Matching Ontologies

After that the final weights are adjusted for the three different matchers, this third step

concerns matching input ontologies. It defines the matching function that allows generating

semantic correspondences between Ontology1 and Ontology2, using the matchers weights

142

as well as their initial mappings. The output similarity between each pair of concepts from

input ontologies is computed using formula (4.3) proposed in chapter 4.

6.3.5. Post-Matching

Finally, we prune and filter the generated correspondences so as to get the final mapping of

SemBigOM. For that purpose, we define an alignment threshold T in order to keep only

significant correspondences of which the value exceeds T. For instance, a pair of input

concepts with a zero-similarity value is not considered as a valid correspondence. T is fixed

by trial-and-error.

Our aim behind this phase is to improve the precision of the matching process. We

seek for eliminating irrelevant correspondences of low similarities, and keeping only the

most appropriate ones.

6.4. Evaluation Strategy

In this section, we present the experimental strategy that we proceed for evaluating the

ontology matching solutions that we propose in this study for dealing with the large-scale

ontology matching issue.

6.4.1. Experimental Settings

For evaluating the proposed methodology, we use the standard evaluation measures:

precision, recall and F-measure, against the reference alignments. They are previously

defined and described in (Sect.1.3.5.3). These metrics are the most widely used criteria for

such evaluation. They are based on the comparison of the resulted alignment A against a

reference alignment R. Precision and recall are inversely proportional. For that, their

harmonic mean, F-measure, is also commonly used.

For SemBigOM embedding tasks, we use BioWordVec [199] as an external resource

for measuring the required similarity. In addition, the Anatomical Entity Ontology: AEO21

is used as reference ontology. It is an OWL ontology of anatomical structures highly adopted

for facilitating interoperability across existing anatomy ontologies.

As for deep learning tasks, the structure of the trained auto-encoder model is fixed by

trial and test. Thus, the size of the embedded representations, input and output, to the auto-

21 http://www.obofoundry.org/ontology/aeo.html

143

encoder model is 250 for each ontological concept. It is basically impacted by the size of the

reference ontology. The size of the compressed representation of the concept is 50.

Concerning the construction of the matching dataset of the neural refining phase

(Sect.6.3.4), we worked on three completeness levels and compared their results so as to

conclude the best way for constructing the dataset: intersection, majority and union. In the

following, we refer by SemBigOM-I, SemBigOM-M and SemBigOM-U to our semantic

ontology matching methodology by intersection, majority and union strategy of dataset

construction respectively.

In order to efficiently control the neural network while training and testing, we adopt

a cross-validation procedure. It consists of partitioning the training data into P sets of equal

size. The algorithm is run P times. For each time, the corresponding partition is used for

testing, where the rest of the dataset is used for learning. The global validation result is the

average of the individual validation results of the independent partitions. In SemBigOM

cross-validation procedure, the number of cross-validation partitions, is fixed by trial and

test.

For the deep matching tasks, we use Google Colab22, a product from Google Research

allowing to write and executing arbitrary python codes through the browser. It supports

various popular machine learning libraries, mathematical equations, external datasets and

free Cloud services with free GPU and TPU resources. For the neural refining tasks, the

evaluation was carried out on a Windows8 (64-bit) desktop with an Intel-Core i5-3210M

CPU @ 2.50GHz allocating 4.00 GB of RAM.

Ontology Alignment Evaluation Initiative (OAEI)23 is an international initiative

which aims for evaluating ontology matching systems using diverse types of test ontologies.

It is the most authenticated initiative in this scope. It offers various test sets aiming to

compare the different participant systems on the same basis in order to identify their

advantages and limits. Since 2004, OAEI yearly organizes new campaigns and sections, and

introduces new challenges for evaluation.

In this study, we evaluate our proposed solutions according to various OAEI

Campaigns. Particularly, we evaluate SemBigOM according to the Anatomy track24 of the

22 http://research.google.com/colaboratory/
23 http://oaei.ontologymatching.org/
24 http://oaei.ontologymatching.org/2022/anatomy/index.html

144

most recent OAEI campaign (OAEI’2022). We look for using challenges of different

domains, types and especially of different and huge sizes. Therefore, seven OAEI tracks are

selected. Four of them comprise multiple test cases that we consider as sub-tracks, since they

are complete and independent in their datasets and results. All in all, we set up our

experiments of this work on twelve test cases from OAEI’2015, OAEI’2017, OAEI’2018,

OAEI’2019, OAEI’2020 and OAEI’2022 campaigns. We describe below the experimental

design of each test case.

1) OAEI'2018-CONFERENCE Track

The goal of this track25 (Conference) is to find alignments within a collection of 16

ontologies describing the domain of organising conferences. These ontologies, developed

within OntoFarm project, are suitable for ontology matching task because of their

heterogeneous character of origin. Tests are performed on a suite of 21 matching tasks of the

pairwise combination of seven moderately expressive ontologies describing the same

domain. Participant systems results had been evaluated based on crisp reference alignment,

its uncertain version and logical reasoning evaluation based on violations of conservative

principle. These ontologies which are shortly described in Table.6.1.

Ontology

name

of

classes

Ontology

name

of

classes

Ontology

name

of

classes

Ontology

name

of

classes

Ekaw 74 Micro 32 ConfTool 38 Paperdyne 47

Sofsem 60 Confious 57 Crs 14 Edas 104

Sigkdd 49 Pcs 23 Cmt 36 MyReview 39

Iasted 140 OpenConf 62 Cocus 55 Linklings 37

Table 6.1. Overview of OAEI Conference test ontologies.

2) OAEI'2018/2020/2022-ANATOMY Track

The anatomy track26/27/28 (Anatomy) comprises a single real-world test case about matching

two fragments of biomedical ontologies describing the human anatomy with 3304 classes

and the anatomy of the mouse with 2744 classes. Ontologies are large, carefully designed

25 http://oaei.ontologymatching.org/2018/conference/index.html
26 http://oaei.ontologymatching.org/2018/anatomy/index.html
27 http://oaei.ontologymatching.org/2020/anatomy/index.html
28 http://oaei.ontologymatching.org/2022/anatomy/index.html

145

and described in technical terms. The evaluation is based on a manually curated reference

alignment.

3) OAEI’2018-DISEASE AND PHENOTYPE Track

This track29 (Phenotype) is organized and sponsored by The Pistoia Alliance Ontologies

Mapping project team, basing on a real use case that requires finding alignments between

disease and phenotype ontologies. The track comprises two tasks:

3.1) HP-MP

It consists on matching the Human Phenotype (HP) Ontology (31034 classes) and the

Mammalian Phenotype (MP) Ontology (30273 entities) ontologies, against 696

reference alignments.

3.2) DOID-ORDO

It consists on matching the Human Disease Ontology (DOID) (38240 classes) and the

Orphanet and Rare Diseases Ontology (ORDO) (13504 entities) ontologies, against

1237 reference alignments.

4) OAEI’2018-LARGE BIOMEDICAL ONTOLOGIES Track

The large biomedical ontologies track30 (Large-BioMed) consists on finding alignments

between the Foundational Model of Anatomy (FMA), the Systematized Nomenclature Of

MEDicine-Clinical Terms (SNOMED-CT), and the National Cancer Institute Thesaurus

(NCI). These ontologies are semantically rich and contain 78989, 306591 and 66724 classes,

respectively. The track comprises three matching problems:

4.1) FMA-NCI

This challenge comprises 3024 equivalence correspondences

4.2) FMA-SNOMED

This challenge comprises 9008 equivalence correspondences

4.3) SNOMED-NCI

This challenge comprises 18844 equivalence correspondences

29 http://sws.ifi.uio.no/oaei/phenotype/
30 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/

146

5) OAEI'2018-BIODIVERSITY AND ECOLOGY Track

The goal of this track31 (BioDiv) is to find pairwise alignments between four ontologies

being used in various projects and particularly useful for biodiversity and ecology research.

They are semantically rich and very overlapping. The reference alignments are produced

using established matching systems to produce an automated consensus alignment, and then

manually validating the unique results produced by each system, and finally adding manually

generated correspondences. The track features two challenges:

5.1) FLOPO-PTO

This challenge consists on finding alignments between the Flora Phenotype Ontology

(FLOPO) (24199 classes) and the Plant Trait Ontology (PTO) (1504 classes).

5.2) ENVO-SWEET

This challenge consists on finding alignments between the Environment Ontology

(ENVO) (6909 classes) and the Semantic Web for Earth and Environment Technology

Ontology (SWEET) (4543 classes).

6) OAEI'2017-PROCESS MODEL MATCHING Track

This track32 (PM) is a spinoff from the Process Model Matching Contest. It is concerned

with the task of matching process models, originally represented in BPML. These models

have been converted to an ontological representation. The resulting matching task is a special

case of an interesting instance matching problem. The track comprises two test cases:

6.1) UNIVERSITY ADMISSION

The dataset of this task consists of nine process models that describe the process of

university admission for different German universities. The BPMN representation of

the process models was converted to a set of assertions (ABox) using the vocabulary

defined in the BPMN 2.0 ontology (TBox).

6.2) BIRTH REGISTRATION

The dataset of this task consists of process models that describe the process of

registering a new-born child in different countries and related administrative tasks.

These process models were originally available as Petrinets as *.pnml. These datasets

have also been converted into ontologies, more precisely into ABoxes.

31 http://oaei.ontologymatching.org/2018/biodiv/index.html
32 http://web.informatik.uni-mannheim.de/oaei/pm17/

147

7) OAEI'2015-ONTOLOGY ALIGNMENT FOR QUERY ANSWERING Track

The goal of the OA4QA track33 (OA4QA) is to measure the ability of generating alignments

to answer a set of queries in an ontology-based data access scenario where several ontologies

exist. The dataset is based on the Conference track, and extended with synthetic Aboxes

extracted from the DBLP dataset. The reference answer set used is the publicly available

reference alignment of the Conference track and a manually repaired version of it from

conservativity and consistency violations.

6.4.2. Experimental Results

In this sub-section, we present the experimental results of SemBigOM evaluation. For better

evaluating our research methodology, we perform our tests against the most recent OAEI

systems as well as against our previously proposed solutions. Therefore, we conducted our

experiments in two main sketches: evaluation against OAEI systems and evaluation against

NeuralOM and DeepOM. Furthermore, as we really interest in both matching quality and

matching complexity, we analyse, for each sketch, the standard evaluation measures:

Precision, Recall, F-measure as well as the matching runtime required by SemBigOM

compared to all competing matching systems.

6.4.2.1. First Sketch - Evaluation against OAEI’2022 Systems

In this section, we present the results of our experimental procedure of SemBigOM with the

results34 of the ontology matching systems participating at the anatomy track of the 2022

OAEI campaign (Anatomy’22 track).

The results of the performed evaluation are summarized in Table 6.2. The best scores

are marked in bold for each evaluation measure. SemBigOM is compared to the following

OAEI systems: Matcha [204], SEBMatcher [205], LogMapBio [206], LogMap [206], AMD

[207], ALIN [208], LogMapLite [206], ATMatcher [209], LSMatch [210], ALIOn [211].

StringEquiv is a baseline of OAEI which produces the alignment between input ontologies

basing on exact string matching of labels of concepts. These systems are classified

decreasingly in Table 6.2 according to their F-measure scores.

33 http://oaei.ontologymatching.org/2015/oa4qa/index.html
34 http://oaei.ontologymatching.org/2022/results/anatomy/index.html

148

Ontology Matching System
Standard Evaluation Measures

Runtime(s) Precision Recall F-Measure

SemBigOM

Intersection 0.980 0.996 0.987 66.276

Majority 0.954 0.995 0.974 66.323

Union 0.954 0.889 0.919 66.307

OAEI

Systems

Matcha 0.951 0.930 0.941 37

SEBMatcher 0.945 0.874 0.908 35602

LogMapBio 0.873 0.919 0.895 1183

LogMap 0.917 0.848 0.881 9

AMD 0.953 0.817 0.880 160

ALIN 0.984 0.752 0.852 374

LogMapLite 0.962 0.728 0.828 3

ATMatcher 0.978 0.669 0.794 156

LSMatch 0.952 0.634 0.761 20

ALIOn 0.364 0.460 0.407 26134

StringEquiv 0.997 0.622 0.766 -

Table 6.2. Evaluation results of SemBigOM against OAEI’2022 systems for Anatomy

track.

As stated above, we evaluate the proposed ontology matching solution at two stages,

aiming at both maximizing the matching quality and minimizing the large-scale matching

complexity.

6.4.2.1.1. Matching Quality Evaluation

Figure 6.5 outlines the evaluation results in terms of the three standard evaluation measures

defined in the precedent sub-section. It summarises the comparison of SemBigOM results

with those of all participant matching systems for OAEI’2022 Anatomy track.

149

Figure 6.5. Matching quality evaluation results of SemBigOM against OAEI’22 systems

for Anatomy track.

From Figure 6.5, we can observe that:

 SemBigOM achieves excellent scores of Precision by its three variants. It gives

values of 0.980, 0.954 and 0.954 by SemBigOM-I, SemBigOM-M and SemBigOM-

U respectively. They are so closed to the score of StringEquiv which is equal to

0.997, and competitive to ALIN, AMD, LogMapLite, ATMatcher and LSMatch with

scores equal to 0.984, 0.953, 0.962, 0.978 and 0.952 respectively.

 As for Recall, SemBigOM gives very significant values of 0.996, 0.995 and 0.889

by its version of intersection, majority and union respectively. They are more

elevated than StringEquiv value which is equal to 0.622. The results of SemBigOM-

I and SemBigOM-M exceed those of all matching systems. SemBigOM-U has been

exceeded only by Matcha and LogMap with scores of 0.930 and 0.919 respectively.

 As expressed by F-measure which presents a balance between the two previous

measures, SemBigOM-I and SemBigOM-M achieved by far the best results of 0.987

and 0.974 in comparison with the other systems. SemBigOM-U has an excellent

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F-Measure

Standard Evaluation Measures

SemBigOM Vs OAEI'22 Systems

SemBigOM-I SemBigOM-M SemBigOM-U Matcha

SEBMatcher LogMapBio LogMap AMD ALIN

LogMapLite ATMatcher LSMatch ALIOn StringEquiv

150

score as well. It is equal to 0.919 and slightly exceeded only by Matcha with a score

of 0.941. The results of the proposed methodology are strongly higher than

StringEquiv result which is equal to 0.766.

 The proposed solution achieves the best scores. SemBigOM-I gets the best

performance, slightly better than SemBigOM-M, followed by SemBigOM-U.

6.4.2.1.2. Matching Complexity Evaluation

Figure 6.6 outlines the evaluation results in terms of the matching runtime. It summarises

the comparison of SemBigOM results with those of all participant matching systems for

OAEI’2022 Anatomy track.

Figure 6.6. Matching complexity evaluation results of SemBigOM against OAEI’22

systems for Anatomy track.

It is clearly seen from Figure 6.6 that, SemBigOM performs the ontology matching process

at short notice comparing with the other matching systems. Only four systems; Matcha,

LogMap, LogMapLite and LSMatch. which has the shortest runtime, can achieve the

matching task before SemBigOM. On the other hand, it is faster than AMD, ALIN, and

ATMatcher. Moreover, SemBigOM runtime is roughly smaller than SEBMatcher,

LogMapBio and ALIOn which exceed 1000s.

66 66 66 37

35602

1183 9 160 374 3 156 20

26134

0

5000

10000

15000

20000

25000

30000

35000

40000

Runtime(s)

151

6.4.2.2. Second Sketch - Evaluation against NeuralOM and DeepOM

In this section, we present the results of the performed experimental procedure of

SemBigOM with the results of the ontology matching solutions that we propose in this study:

NeuralOM and DeepOM. The results of this evaluation, which is performed according to the

OAEI anatomy track, are summarized in Table 6.3. The best scores are marked in bold for

each evaluation measure.

Ontology Matching System
Standard Evaluation Measures

Runtime(s) Precision Recall F-Measure

NeuralOM

Intersection 0.981 1.000 0.990 808.219

Majority 0.951 1.000 0.974 808.250

Union 0.919 0.930 0.923 808.266

DeepOM 0.994 0.665 0.797 149

SemBigOM

Intersection 0.980 0.996 0.987 66.276

Majority 0.954 0.995 0.974 66.323

Union 0.954 0.889 0.919 66.307

Table 6.3. Evaluation results of SemBigOM against NeuralOM and DeepOM for Anatomy

track.

6.4.2.2.1. Matching Quality Evaluation

Figure 6.7 illustrates the evaluation results in terms of the three standard evaluation measures

previously defined. It summarises the comparison of SemBigOM results with the results of

NeuralOM and DeepOM for OAEI Anatomy track.

152

Figure 6.7. Matching quality evaluation results of SemBigOM against NeuralOM and

DeepOM for Anatomy track.

It is observed from Figure 6.7 that:

 The best Precision performance belongs to DeepOM with a very high score of 0.994.

NeuralOM-I and SemBigOM-I get the next best values equal to 0.98, followed by

SemBigOM-M, SemBigOM-U and NeuralOM-M with close results around 0.95.

The last score is related to NeuralOM-U which presents an excellent value as well

(0.919).

 NeuralOM-I and NeuralOM-M achieve complete scores of Recall (1.0).

SemBigOM-I and SemBigOM-U results are not considerably lower with results

exceeding 0.99. Then, NeuralOM-U and SemBigOM-U achieve excellent recall

values around 0.9. The next score is 0.665 and given by DeepOM.

 As expressed by F-measure which reflects the real quality of matching, NeuralOM-I

and SemBigOM-I get the best performance with results of 0.99. The following best

score is achieved by NeuralOM-M and SemBigOM-M of 0.974. NeuralOM-U and

SemBigOM-U present excellent results as well exceeding 0.91. Lastly, DeepOM

gives a very significant score of about 0.8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F-Measure

Standard Evaluation Measures

SemBigOM Vs NeuralOM & DeepOM

NeuralOM-I NeuralOM-M NeuralOM-U DeepOM

SemBigOM-I SemBigOM-M SemBigOM-U

153

 DeepOM results are disparate. It has the highest score of precision and the lowest

score of recall. Results of NeuralOM and SemBigOM are more balanced. Their

scores are so close and competitive with each other. Both of them present a

decreasing order from the intersection to the majority to the union version. However,

on average, NeuralOM results are slightly better.

6.4.2.2.2. Matching Complexity Evaluation

Figure 6.8 outlines the evaluation results in terms of the matching runtime required for

matching. It summarises the comparison of SemBigOM results with those of NeuralOM and

DeepOM for OAEI Anatomy track.

Figure 6.8. Matching complexity evaluation results of SemBigOM against NeuralOM and

DeepOM for Anatomy track.

As shown in Figure 6.8, the runtime required by the three versions of NeuralOM

(NeuralOM-I, NeuralOM-M and NeuralOM-U) to achieve the matching process is higher

than the runtime required by DeepOM. The matching runtime of SemBigOM (SemBigOM-

I, SemBigOM-M and SemBigOM-U) is much lower. We should notice that NeuralOM

runtime is basically impacted by the runtime required by the input systems (808 is the

runtime required by LogMapLite which has the maximal runtime value among input

systems).

6.4.3. Synopsis

As we seek for increasing the matching quality and decreasing the matching complexity, we

analyse F-measure results (the balanced harmonic average of Precision and Recall) with

808.219 808.25 808.266

149
66.276 66.323 66.307

0

100

200

300

400

500

600

700

800

900

Runtime(s)

154

respect to the matching runtime. An analytical look at the preceding sub-sections reveals the

unfold conclusions:

 The results of the proposed methodology are strongly higher than StringEquiv result.

The preliminary results of SemBigOM are very promising. It has achieved F-measure

values exceeding 0.9 by its three variants. This is an excellent score for the ontology

matching task especially at the large-scale.

 Comparing SemBigOM with the OAEI matching systems participant to the OAEI-

Anatomy track of the 2022 campaign shows that, it outperforms them in terms of F-

measure. besides the fact that, SemBigOM-U has an excellent score, SemBigOM-I

and SemBigOM-M achieved by far the best results and outperforms the other

matching systems. Moreover, SemBigOM performs the ontology matching process

at short notice comparing with the competing systems.

 It should be noted that, we have tested SemBigOM according to the most recent

campaign of OAEI. The Anatomy track is functional yearly since 2004. The

competing ontology matching systems have been developed and improved over years

through several participations at this initiative. SemBigOM outperforms these

systems. Therefore, it is effective to perform the matching process among

heterogeneous ontologies.

 The main conclusion revealed from comparing SemBigOM with NeuralOM is that

SemBigOM is totally independent of other ontology matching systems. Their

matching results are so close and competitive. They present a decreasing order from

their intersection to the majority to the union version. The matching runtime required

by SemBigOM is much lower than NeuralOM.

 Comparing SemBigOM with DeepOM shows that, the matching results of

SemBigOM are much higher than those of DeepOM. In addition, the runtime

required by DeepOM to achieve the matching process is higher than the runtime

required by SemBigOM. Thus, SemBigOM outperforms DeepOM in terms of both

matching quality and complexity.

The conducted evaluation of SemBigOM demonstrates an excellent matching

performance at lowest cost. It has perfectly achieved the two objectives of large-scale

ontology matching, which are improving the matching quality and reducing its complexity.

Moreover, SemBigOM has successfully outperformed the existing ontology matching

155

systems, and addressed their drawbacks as well as the limits of NeuralOM and DeepOM.

The high performance achieved by SemBigOM is due to the fact that it has excellently

tackled the challenges which have motivated this work, and has been developed with a very

high level of accuracy.

6.5. Conclusion

In this chapter, we have presented SemBigOM, an ontology matching solution that we

propose for dealing with the heterogeneity problem at the large-scale. We describe the

proposed methodology and outline its contributions. And, we present the experimental

procedure that we have performed on the Anatomy track from the 2022 campaign of the

OAEI Initiative.

The results of evaluating SemBigOM on large OAEI ontologies and its comparison

with the different participant ontology matching systems, show that, it has proven its

efficiency to effectively match large-scale ontologies against the OAEI matching systems as

well as our previously proposed solutions.

156

Conclusion and Open Issues

Main Contributions

Ontology matching is an effective process to establish interoperability between

heterogeneous ontologies. The ontology matching field is maturing with enormous number

of matching techniques. However, dealing with large ontologies still remains a key

challenge. Much more work is required at this scale due to the fact that, ontology matching

systems suffer from difficulties related to memory consumption and processing time at the

large scale. The existing matching techniques which deal with this problem are based on

ontology partitioning which is also challenging. However, partitioning ontologies also

suffers from interesting challenges. This has a direct impact on the efficiency of the ontology

matching process.

Deep learning algorithms have motivated numerous researchers in many fields solving

different and complex problems which require powerful computational tools. However, they

have limited use in ontology matching, particularly in large-scale ontology matching.

In this study, we propose three different solutions to the large-scale ontology matching

problem:

1. NeuralOM, a mapping reuse-based large-scale ontology matching approach that we

develop basing on artificial neural networks. As we aim not just to generate

alignments between heterogeneous ontologies but to ideally match them, we

developed it on a very high level of accuracy.

In order to properly evaluate the effectiveness of NeuralOM, we conducted much

precise experiments on twelve test cases of different domains as well as of different

dataset sizes from OAEI initiative. The results of these experiments show that the

proposed approach has proven its efficiency in front of all OAEI matching systems

in terms of the five evaluation measures adopted, with very excellent scores for all

matching tasks and with negligible matching time even for very large ontologies.

That permits to, significantly increase the performance of the ontology matching

157

task, and perfectly tackle the large-scale ontology matching challenges which have

motivated this work.

2. DeepOM, a large-scale ontology matching system based on deep learning techniques

to deal with the large-scale heterogeneity problem without partitioning. The key

novelty of DeepOM is to use a reference ontology to create semantic embeddings for

ontological concepts, which are used to train an auto-encoder in order to learn more

accurate and less dimensional representations for concepts.

The results of its evaluation on large OAEI ontologies, and its comparison with

ontology matching systems participant to the same test case, show that, DeepOM

outperforms the ontology matching baseline with high ability to tackle the large-scale

problem. Learning concepts’ embeddings using auto-encoder is effective for

matching large-scale ontologies. All the matching factors of DeepOM are positive

towards improving the ontology matching quality.

3. SemBigOM, the global methodology of this research that combines NeuralOM and

DeepOM in order to overcome their limits and achieve excellent matching results

independently. The core idea of SemBigOM is that, it exploits DeepOM to generate

initial mappings that NeuralOM requires as input to be refined and reused so as to

output the final matching results. It seeks for achieving the large-scale ontology

matching process at a perfect and independent fashion.

The results of evaluating SemBigOM on large OAEI ontologies against the different

participant ontology matching systems as well as NeuralOM and DeepOM,

demonstrate its high ability to tackle the large-scale ontology matching problems. It

has successfully outperformed and addressed the limits of the existing work.

SemBigOM has proven its high efficiency to perfectly achieve all objectives which

have motivated this research.

Opens issues

Despite the significant contributions of this research to the field of ontology matching,

several limitations were encountered during the development and evaluation of the proposed

solutions. NeuralOM presents some technical limits related to the input data. The selected

matching tools, which are not all available, are of different inputs and especially of different

outputs. Choice criteria and number of chosen systems are additional challenges. As for

158

DeepOM and SemBigOM, the choice of the reference ontology is such a delicate and careful

task which requires a domain expert. Additionally, the isolated concepts of the reference

ontology are also challenging and affect the matching performance leading to zero-filled

vectors of concepts. Furthermore, despite efforts to automate the matching process, there

may still be a need for human intervention to elect the external resources, which can

introduce delays and additional costs in real-world applications.

Future research efforts should focus on addressing these limitations by exploring more

efficient algorithms, improving data quality, refining evaluation methodologies, and

extending the scope of ontology matching systems to encompass a wider range of domains

and ontological structures. Although the experimental results of the proposed solutions are

very encouraging, we aim, as future work:

- At adopting the proposed solutions to accurately match large scale ontologies of

specific fields. We also aim for using our matching methodology for semantic

analysis and several objectives in real-application fields of ontology matching, such

as, sentiment analysis, recommendation systems, documents classification, text

processing in social media, …etc.

- As for DeepOM and SemBigOM, we aim at filtering concepts of the reference

ontology, and removing its isolated and useless concepts before generating the new

representations for input ontologies. We also plan to pass the representations of

concepts of the input ontologies from one-index to two-indices arrays in order to

have more precise representations.

- In addition, we plan to deal with particular matching tasks, such as cross ontology

matching, basing on other different and more complicated test cases with larger and

more huge ontologies with many instances, especially for DeepOM and SemBigOM.

- Besides, we intend to evaluate, not just the mapping of our ontology matching

approaches, but also the similarity values of each generated alignment between

ontologies using different and specific evaluation measures dedicated for such

purposes.

- Moreover, we plan for participating at the ontology alignment evaluation initiative

in several tracks, in order to assess strengths and weaknesses of our work, increase

communication among other developers and to help improving the research on

ontology matching, particularly on large-scale ontology matching.

159

Bibliography

1. Gruber, T.R., A translation approach to portable ontology specifications.

Knowledge acquisition, 1993. 5(2): p. 199-220.

2. Zamazal, O., A Survey of Ontology Benchmarks for Semantic Web Ontology Tools.

International Journal on Semantic Web and Information Systems (IJSWIS), 2020.

16(1): p. 47-68.

3. Ougouti, N.S., H. Belbachir, and Y. Amghar, Semantic Mediation in MedPeer: An

Ontology-Based Heterogeneous Data Sources Integration System. International

Journal of Information Technology and Web Engineering (IJITWE), 2017. 12(1): p.

1-18.

4. Rinaldi, A.M., C. Russo, and K. Madani, A semantic matching strategy for very large

knowledge bases integration. International Journal of Information Technology and

Web Engineering (IJITWE), 2020. 15(2): p. 1-29.

5. Tran, D.-T., D.-H. Ngo, and P.-T. Do. An information content based partitioning

method for the anatomical ontology matching task. in Proceedings of the Third

Symposium on Information and Communication Technology. 2012.

6. Laadhar, A., et al. Partitioning and local matching learning of large biomedical

ontologies. in Proceedings of the 34th ACM/SIGAPP Symposium on Applied

Computing. 2019.

7. Laadhar, A., et al. Partitioning and matching tuning of large biomedical ontologies.

in 13th International Workshop on Ontology Matching co-located with the 17th

International Semantic Web Conference (OM 2018). 2018.

8. Jiménez-Ruiz, E., et al. We divide, you conquer: from large-scale ontology alignment

to manageable subtasks with a lexical index and neural embeddings. in CEUR

Workshop Proceedings. 2018.

9. Balachandran, S., V. Ranganathan, and D. Vetriveeran, Aligning large biomedical

ontologies for semantic interoperability using graph partitioning. International

Journal of Biomedical Engineering and Technology, 2019. 31(2): p. 137-160.

10. Portisch, J. and H. Paulheim, ALOD2Vec matcher. OM@ ISWC, 2018. 2288: p. 132-

137.

11. Chang, F., G. Chen, and S. Zhang. FCAMap-KG results for OAEI 2019. in OM@

ISWC. 2019.

12. Hertling, S. and H. Paulheim, DOME results for OAEI 2018. OM@ ISWC, 2018.

2288: p. 144-151.

13. Monych, M., et al. DESKMatcher. in CEUR Workshop Proceedings. 2020. RWTH.

14. Roussille, P., et al. Holontology: results of the 2018 OAEI evaluation campaign.

2018. CEUR-WS: Workshop proceedings.

160

15. Schreiber, A.T., et al., Knowledge engineering and management: the CommonKADS

methodology2000: MIT press.

16. Euzenat, J. and P. Shvaiko, Ontology Matching2013: Springer Berlin Heidelberg.

17. Guizzardi, G., Ontological foundations for structural conceptual models. 2005.

18. Strawson, P.F. and R. Bubner, Semantik und Ontologie. Neue Hefte für Philosophie,

1975.

19. Neches, R., et al., Enabling technology for knowledge sharing. AI magazine, 1991.

12(3): p. 36-36.

20. Borst, W., Construction of engineer ontologies. Ph thesis, University of Twenty,

Enschede, 1997.

21. Studer, R., V.R. Benjamins, and D. Fensel, Knowledge engineering: principles and

methods. Data & Knowledge Engineering, 1998. 25(1-2): p. 161-197.

22. Guarino, N. and P. Giaretta, Ontologies and knowledge bases. Towards very large

knowledge bases, 1995: p. 1-2.

23. Schreiber, G., B. Wielinga, and W. Jansweijer. The KACTUS view on the ‘O’word.

in IJCAI workshop on basic ontological issues in knowledge sharing. 1995. Citeseer.

24. Swartout, B., et al. Toward distributed use of large-scale ontologies. in Proc. of the

Tenth Workshop on Knowledge Acquisition for Knowledge-Based Systems. 1996.

25. Sowa, J.F., Knowledge representation: logical, philosophical and computational

foundations1999: Brooks/Cole Publishing Co.

26. Udrea, O., L. Getoor, and R.J. Miller. Leveraging data and structure in ontology

integration. in Proceedings of the 2007 ACM SIGMOD international conference on

Management of data. 2007.

27. Cheatham, M. and C. Pesquita, Semantic data integration, in Handbook of big data

technologies2017, Springer. p. 263-305.

28. Zhang, L.-Y., J.-D. Ren, and X.-W. Li, OIM-SM: A method for ontology integration

based on semantic mapping. Journal of Intelligent & Fuzzy Systems, 2017. 32(3): p.

1983-1995.

29. Charlet, J., B. Bachimont, and R. Troncy, Ontologies pour le web sémantique. Revue

I3, numéro Hors Série «Web sémantique, 2004: p. 43-63.

30. Ghawi, R., Ontology-based cooperation of information systems: contributions to

database-to-ontology mapping and XML-to-ontology mapping, 2010, Dijon.

31. Staab, S. and R. Studer, Handbook on ontologies2004: Springer Science & Business

Media.

32. Corcho, O., A. Gómez-Pérez, and M. Fernández-López, Ontological engineering.

With examples from the areas of Knowledge Management, e-Commerce and the

Semantic Web (Advanced Information and Knowledge Processing), 2004.

161

33. Lenat, D. and R. Guha, Building large knowledge-based systems: Representation and

inference in the CYC project. Artificial Intelligence, 1993. 61(1): p. 4152.

34. Genesereth, M.R. and R.E. Fikes, Knowledge interchange format-version 3.0:

reference manual. 1992.

35. Gruber, T., A mechanism to support portable ontologies. Technical Report KSL 91-

66, Stanford University, Knowledge Systems Laboratory, 1992.

36. Farquhar, A., R. Fikes, and J. Rice, The ontolingua server: A tool for collaborative

ontology construction. International journal of human-computer studies, 1997. 46(6):

p. 707-727.

37. MacGregor, R.M., Inside the LOOM description classifier. ACM Sigart Bulletin,

1991. 2(3): p. 88-92.

38. Motta, E., Reusable components for knowledge modelling1998: Open University

(United Kingdom).

39. Kifer, M., G. Lausen, and J. Wu, Logical foundations of object-oriented and frame-

based languages. Journal of the ACM (JACM), 1995. 42(4): p. 741-843.

40. Heflin, J., J.A. Hendler, and S. Luke, SHOE: A blueprint for the semantic web.

Spinning the Semantic Web, 2003: p. 29-63.

41. Bray, T., et al., Extensible Markup Language (XML) 1.0 . W3C Recommendation 26

November 2008. Available at h ttp://www. w3. org/TR/REC-xml, 2008.

42. Karp, P.D., V.K. Chaudhri, and J. Thomere, XOL: An XML-based ontology exchange

language, 1999, July.

43. Klyne, G., Resource description framework (RDF): Concepts and abstract syntax.

http://www. w3. org/TR/2004/REC-rdf-concepts-20040210/, 2004.

44. McGuinness, D.L., et al., DAML+ OIL: an ontology language for the Semantic Web.

IEEE Intelligent Systems, 2002. 17(5): p. 72-80.

45. McGuinness, D.L. and F. Van Harmelen, OWL web ontology language overview.

W3C recommendation, 2004. 10(10): p. 2004.

46. Benerecetti, M., P. Bouquet, and C. Ghidini. On the dimensions of context

dependence: partiality, approximation, and perspective. in International and

Interdisciplinary Conference on Modeling and Using Context. 2001. Springer.

47. Shvaiko, P. and J. Euzenat, Ontology matching: state of the art and future challenges.

IEEE Transactions on knowledge and data engineering, 2013. 25(1): p. 158-176.

48. Rahm, E., A survey of approaches to automatic schema matching. VLDB Journal,

2001. 10(4).

49. Choi, N., I.-Y. Song, and H. Han, A survey on ontology mapping. ACM SIGMOD

Record, 2006. 35(3): p. 34-41.

162

50. Otero-Cerdeira, L., F.J. Rodríguez-Martínez, and A. Gómez-Rodríguez, Ontology

matching: A literature review. Expert systems with applications, 2015. 42(2): p. 949-

971.

51. Thiéblin, E., et al., Survey on complex ontology matching. Semantic Web, 2020.

11(4): p. 689-727.

52. Laadhar, A., et al. OAEI 2018 results of POMap++. in 13th International Workshop

on Ontology Matching co-located with the 17th International Semantic Web

Conference (OM@ ISWC 2018). 2018.

53. Laadhar, A., et al. POMap++ results for OAEI 2019: fully automated machine

learning approach for ontology matching. in 14th International Workshop on

Ontology Matching co-located with the International Semantic Web Conference

(OM@ ISWC 2019). 2019.

54. Zou, S., et al., Lily Results for OAEI 2021. 2021.

55. Jiménez-Ruiz, E., LogMap family participation in the OAEI 2021, 2021. p. 175-177.

56. Zhang, Y., et al. RiMOM results for OAEI 2016. in OM@ ISWC. 2016.

57. Djeddi, W.E., S.B. Yahia, and M.T. Khadir, XMap: results for OAEI 2018, 2018. p.

210-215.

58. Hu, W., et al., Objectcoref & falcon-ao: results for oaei 2010. Ontology Matching,

2010. 2010.

59. Faria, D., et al., AML and AMLC results for OAEI 2021. OM@ ISWC, 2021. 2019.

60. Chua, W.W.K. and J.-J. Kim, Eff2Match results for OAEI 2010, 2010.

61. Chen, G. and S. Zhang. FCAMapX results for OAEI 2018. in OM@ ISWC. 2018.

62. Kengue, J.F.D., J. Euzenat, and P. Valtchev. OLA in the OAEI 2007 evaluation

contest. in Proceedings of ISWC+ ASWC Workshop on Ontology Matching. 2007.

Citeseer.

63. David, J., AROMA results for OAEI 2011. Ontology Matching, 2011. 122.

64. Massmann, S., D. Engmann, and E. Rahm, COMA++: Results for the Ontology

Alignment Contest OAEI 2006. Ontology Matching, 2006. 225.

65. Seddiqui, M.H. and M. Aono. Anchor-flood: results for OAEI 2009. in Proceedings

of the ISWC 2009 Workshop on ontology matching. 2009. Citeseer.

66. Gulić, M., B. Vrdoljak, and M. Banek, CroMatcher-Results for OAEI 2016.

Ontology Matching, 2016: p. 153.

67. Hamdi, F., et al., TaxoMap alignment and refinement modules: Results for OAEI

2010. Ontology Matching, 2010: p. 212.

68. Jean-Mary, Y.R., E.P. Shironoshita, and M.R. Kabuka, Asmov: Results for oaei 2010.

Ontology Matching, 2010. 126: p. 2010.

163

69. Khiat, A. and M. Benaissa. InsMT+ results for OAEI 2015 instance matching. in

OM. 2015.

70. Lambrix, P., H. Tan, and Q. Liu. SAMBO and SAMBOdtf results for the ontology

alignment evaluation initiative 2008. in Proceedings of the Third International

Workshop on Ontology Matching. 2008.

71. Laadhar, A., Local matching learning of large scale biomedical ontologies, 2019,

Université de Toulouse, Université Toulouse III-Paul Sabatier.

72. Huber, J., et al., Codi: Combinatorial optimization for data integration–results for

oaei 2011. Ontology Matching, 2011. 134.

73. Annane, A., et al., Yam-bio–results for oaei 2017. 2017.

74. Groß, A., et al. GOMMA results for OAEI 2012. in OM. 2012.

75. Garcia-Castro, R., et al., Specification of a methodology, general criteria, and

benchmark suites for benchmarking ontology tools. Deliverable D2, 2004. 1.

76. Berners-Lee, T., J., Hendler, and O. Lassila,“The semantic web”. Scientific

american, 2001. 284(5): p. 35-43.

77. Berners-Lee, T., Linked Data http://www. w3. org/DesignIssues. LinkedData. html,

2006.

78. Hamdi, F., et al., Alignment-based partitioning of large-scale ontologies, in

Advances in knowledge discovery and management2010, Springer. p. 251-269.

79. Ochieng, P. and S. Kyanda, Large-scale ontology matching: State-of-the-art

analysis. ACM Computing Surveys (CSUR), 2018. 51(4): p. 1-35.

80. Karlapalem, K. and Q. Li, A framework for class partitioning in object-oriented

databases. Distributed and Parallel Databases, 2000. 8(3): p. 333-366.

81. Babalou, S., M.J. Kargar, and S.H. Davarpana. A Comprehensive Review Of The

Ontology Matching Systems By A Focus On Large Ontologies. in International

Congress of Chemical and Process Engineering. Prague, Czech Republic. 2014.

82. Babalou, S., M.J. Kargar, and S.H. Davarpanah. Large-scale ontology matching: a

review of the literature. in 2016 Second International Conference on Web Research

(ICWR). 2016. IEEE.

83. Grau, B.C., et al., Automatic partitioning of OWL ontologies using e-connections.

Description Logics, 2005. 147.

84. Kutz, O., et al., E-connections of abstract description systems. Artificial Intelligence,

2004. 156(1): p. 1-73.

85. Garcia, A.C., et al. Applying Graph Partitioning Techniques to Modularize Large

Ontologies. in ONTOBRAS-MOST. 2012. Citeseer.

86. Grau, B.C., et al. Just the right amount: extracting modules from ontologies. in

Proceedings of the 16th international conference on World Wide Web. 2007.

164

87. Jiménez-Ruiz, E., et al. Safe and economic re-use of ontologies: A logic-based

methodology and tool support. in European Semantic Web Conference. 2008.

Springer.

88. Li, N. and E. Motta. Evaluations of user-driven ontology summarization. in

International Conference on Knowledge Engineering and Knowledge Management.

2010. Springer.

89. Peroni, S., E. Motta, and M. d’Aquin. Identifying key concepts in an ontology,

through the integration of cognitive principles with statistical and topological

measures. in Asian Semantic Web Conference. 2008. Springer.

90. Li, N., E. Motta, and M. d'Aquin, Ontology summarization: an analysis and an

evaluation. 2010.

91. Zhang, X., G. Cheng, and Y. Qu. Ontology summarization based on rdf sentence

graph. in Proceedings of the 16th international conference on World Wide Web.

2007.

92. Rahm, E., Towards large-scale schema and ontology matching, in Schema matching

and mapping2011, Springer. p. 3-27.

93. Algergawy, A., S. Massmann, and E. Rahm. A clustering-based approach for large-

scale ontology matching. in East European Conference on Advances in Databases

and Information Systems. 2011. Springer.

94. Yuruk, N., et al. AHSCAN: Agglomerative hierarchical structural clustering

algorithm for networks. in 2009 International Conference on Advances in Social

Network Analysis and Mining. 2009. IEEE.

95. Ahmed, S.S., M. Malki, and S.M. Benslimane, Ontology partitioning: Clustering

based approach. International Journal of Information Technology and Computer

Science, 2015. 7(6): p. 1-11.

96. Resnik, P., Using information content to evaluate semantic similarity in a taxonomy.

arXiv preprint cmp-lg/9511007, 1995.

97. Hu, W., Y. Zhao, and Y. Qu. Partition-based block matching of large class

hierarchies. in Asian Semantic Web Conference. 2006. Springer.

98. Guha, S., R. Rastogi, and K. Shim, ROCK: A robust clustering algorithm for

categorical attributes. Information Systems, 2000. 25(5): p. 345-366.

99. Dragisic, Z., et al. Results of the ontology alignment evaluation initiative 2014. in

9th ISWC workshop on ontology matching (OM). 2014. No commercial editor.

100. Gross, A., et al. On matching large life science ontologies in parallel. in

International Conference on Data Integration in the Life Sciences. 2010. Springer.

101. Ara, T.B., et al., A parallel approach for matching large-scale ontologies. Journal of

Information and Data Management, 2015. 6(1): p. 18-18.

165

102. Rahm, E. and P.A. Bernstein, A survey of approaches to automatic schema matching.

the VLDB Journal, 2001. 10(4): p. 334-350.

103. Müllner, D., Modern hierarchical, agglomerative clustering algorithms. arXiv

preprint arXiv:1109.2378, 2011.

104. Wang, Z., et al. Matching large scale ontology effectively. in Asian Semantic Web

Conference. 2006. Springer.

105. Lambrix, P. and Q. Liu. Using partial reference alignments to align ontologies. in

European Semantic Web Conference. 2009. Springer.

106. Lambrix, P. and R. Kaliyaperumal, A session-based ontology alignment approach

enabling user involvement 1. Semantic Web, 2017. 8(2): p. 225-251.

107. Li, Y., et al., Matching large scale ontologies based on filter and verification.

Mathematical Problems in Engineering, 2020. 2020.

108. Kachroudi, M., S. Zghal, and S. Ben Yahia, Ontopart: at the cross-roads of ontology

partitioning and scalable ontology alignment systems. International Journal of

Metadata, Semantics and Ontologies, 2013. 8(3): p. 215-225.

109. Do, H.-H. and E. Rahm. COMA—a system for flexible combination of schema

matching approaches. in VLDB'02: Proceedings of the 28th International

Conference on Very Large Databases. 2002. Elsevier.

110. Aumueller, D., et al. Schema and ontology matching with COMA++. in Proceedings

of the 2005 ACM SIGMOD international conference on Management of data. 2005.

111. Do, H.-H. and E. Rahm, Matching large schemas: Approaches and evaluation.

Information Systems, 2007. 32(6): p. 857-885.

112. Zhang, H., W. Hu, and Y.-z. Qu, VDoc+: a virtual document based approach for

matching large ontologies using MapReduce. Journal of Zhejiang University

SCIENCE C, 2012. 13(4): p. 257-267.

113. Qu, Y., W. Hu, and G. Cheng. Constructing virtual documents for ontology

matching. in Proceedings of the 15th international conference on World Wide Web.

2006.

114. Santos, E., et al., Ontology alignment repair through modularization and confidence-

based heuristics. PloS one, 2015. 10(12): p. e0144807.

115. Hu, W., Y. Qu, and G. Cheng, Matching large ontologies: A divide-and-conquer

approach. Data & Knowledge Engineering, 2008. 67(1): p. 140-160.

116. Madhavan, J., et al. Corpus-based schema matching. in 21st International

Conference on Data Engineering (ICDE'05). 2005. IEEE.

117. Algergawy, A., et al. Seecont: A new seeding-based clustering approach for ontology

matching. in East European Conference on Advances in Databases and Information

Systems. 2015. Springer.

166

118. Debora, N., Deep Learning for Feature Representation in Natural Language

Processing, 2017, University of Milan-Bicocca.

119. Stiles, J. and T.L. Jernigan, The basics of brain development. Neuropsychology

review, 2010. 20(4): p. 327-348.

120. Churchland, P. and T. Sejnowski, The computational brain MIT Press. Cambridge,

Massachusetts, 1992.

121. Bottou, L., Stochastic gradient descent tricks, in Neural networks: Tricks of the

trade2012, Springer. p. 421-436.

122. Polyak, B.T., Some methods of speeding up the convergence of iteration methods.

Ussr computational mathematics and mathematical physics, 1964. 4(5): p. 1-17.

123. Sutskever, I., et al. On the importance of initialization and momentum in deep

learning. in International conference on machine learning. 2013. PMLR.

124. Nesterov, Y.E. A method for solving the convex programming problem with

convergence rate O (1/k^ 2). in Dokl. akad. nauk Sssr. 1983.

125. Duchi, J., E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning

and stochastic optimization. Journal of machine learning research, 2011. 12(7).

126. Ruder, S., An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.

127. Tieleman, T. and G. Hinton, Lecture 6.5-rmsprop, coursera: Neural networks for

machine learning. University of Toronto, Technical Report, 2012. 6.

128. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

129. Zeiler, M.D., Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

130. Crammer, K. and Y. Singer, On the algorithmic implementation of multiclass kernel-

based vector machines. Journal of machine learning research, 2001. 2(Dec): p. 265-

292.

131. Bishop, C.M., Neural networks for pattern recognition1995: Oxford university press.

132. Tihonov, A.N., Solution of incorrectly formulated problems and the regularization

method. Soviet Math., 1963. 4: p. 1035-1038.

133. Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 1996. 58(1): p. 267-288.

134. Zou, H. and T. Hastie, Regularization and variable selection via the elastic net.

Journal of the royal statistical society: series B (statistical methodology), 2005. 67(2):

p. 301-320.

135. Srivastava, N., et al., Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research, 2014. 15(1): p. 1929-1958.

167

136. Hinton, G.E. and R.R. Salakhutdinov, Reducing the dimensionality of data with

neural networks. science, 2006. 313(5786): p. 504-507.

137. Cappuzzo, R., P. Papotti, and S. Thirumuruganathan. Creating embeddings of

heterogeneous relational datasets for data integration tasks. in Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data. 2020.

138. Kalinowski, A. and Y. An, A Survey of Embedding Space Alignment Methods for

Language and Knowledge Graphs. arXiv preprint arXiv:2010.13688, 2020.

139. Funahashi, K.-I., On the approximate realization of continuous mappings by neural

networks. Neural networks, 1989. 2(3): p. 183-192.

140. Kuroe, Y., Y. Nakai, and T. Mori. A learning method of nonlinear mappings by

neural networks with considering their derivatives. in Proceedings of 1993

International Conference on Neural Networks (IJCNN-93-Nagoya, Japan). 1993.

IEEE.

141. Li, W.-S. and C. Clifton. Semint: A system prototype for semantic integration in

heterogeneous databases. in Proceedings of the 1995 ACM SIGMOD international

conference on Management of data. 1995.

142. Li, W.-S. and C. Clifton, SEMINT: A tool for identifying attribute correspondences

in heterogeneous databases using neural networks. Data & Knowledge Engineering,

2000. 33(1): p. 49-84.

143. Li, W.-S. and C. Clifton. Using field specifications to determine attribute

equivalence in heterogeneous databases. in Proceedings RIDE-IMS93: Third

International Workshop on Research Issues in Data Engineering: Interoperability in

Multidatabase Systems. 1993. IEEE.

144. Li, W.-S. and C. Clifton. Semantic integration in heterogeneous databases using

neural networks. in Proceedings of the 20th international conference on very large

data bases. 1994.

145. Li, W.-S., C. Clifton, and S.-Y. Liu, Database integration using neural networks:

implementation and experiences. Knowledge and Information Systems, 2000. 2(1):

p. 73-96.

146. Ehrig, M. and Y. Sure. Ontology mapping–an integrated approach. in European

Semantic Web Symposium. 2004. Springer.

147. Ehrig, M., S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with

APFEL. in International semantic Web conference. 2005. Springer.

148. Chortaras, A., G. Stamou, and A. Stafylopatis. Learning ontology alignments using

recursive neural networks. in International conference on artificial neural networks.

2005. Springer.

149. Hariri, B.B., H. Abolhassani, and H. Sayyadi. A neural-networks-based approach for

ontology alignment. in SCIS & ISIS SCIS & ISIS 2006. 2006. Japan Society for Fuzzy

Theory and Intelligent Informatics.

168

150. Stegmayer, G., et al. ANN-agent for distributed knowledge source discovery. in OTM

Confederated International Conferences" On the Move to Meaningful Internet

Systems". 2007. Springer.

151. Huang, J., et al. Ontology matching using an artificial neural network to learn

weights. in IJCAI workshop on semantic Web for collaborative knowledge

acquisition. 2007.

152. Huang, J., et al., Use artificial neural network to align biological ontologies. BMC

genomics, 2008. 9(2): p. 1-12.

153. Ichise, R. Machine learning approach for ontology mapping using multiple concept

similarity measures. in Seventh IEEE/ACIS International Conference on Computer

and Information Science (icis 2008). 2008. IEEE.

154. Curino, C., G. Orsi, and L. Tanca. X-som: A flexible ontology mapper. in 18th

International Workshop on Database and Expert Systems Applications (DEXA

2007). 2007. IEEE.

155. Curino, C., G. Orsi, and L. Tanca, X− SOM Results for OAEI 2007. 2007.

156. Merlin, P., et al. X-SOM and L-SOM: a nested approach for missing value

imputation. in ESANN. 2009. Citeseer.

157. Merlin, P., et al., X-SOM and L-SOM: a double classification approach for missing

value imputation. Neurocomputing, 2010. 73(7-9): p. 1103-1108.

158. Peng, Y., P. Munro, and M. Mao. Learning to map ontologies with neural network.

in Proceedings of the 4th International Conference on Ontology Matching-Volume

551. 2009.

159. Peng, Y., P. Munro, and M. Mao, Ontology Mapping Neural Network: An Approach

to Learning and Inferring Correspondences among Ontologies. 2010.

160. Mao, M., Y. Peng, and M. Spring. A profile propagation and information retrieval

based ontology mapping approach. in Third International Conference on Semantics,

Knowledge and Grid (SKG 2007). 2007. IEEE.

161. Mao, M., Y. Peng, and M. Spring, An adaptive ontology mapping approach with

neural network based constraint satisfaction. Web Semantics: Science, Services and

Agents on the World Wide Web, 2010. 8(1): p. 14-25.

162. Mao, M. and Y. Peng. PRIOR System: Results for OAEI 2006. in Ontology matching.

2006.

163. Mao, M. and Y. Peng. The PRIOR+: Results for OAEI Campaign 2007. in OM. 2007.

164. Mao, M., Ontology mapping: An information retrieval and interactive activation

network based approach. The Semantic Web, 2007: p. 931-935.

165. Mao, M., Y. Peng, and M. Spring. Integrating the IAC neural network in ontology

mapping. in Proceedings of the 17th international conference on World Wide Web.

2008.

169

166. Mao, M., Y. Peng, and M. Spring. Neural Network based Constraint Satisfaction in

Ontology Mapping. in AAAI. 2008.

167. Mao, M., Y. Peng, and M. Spring. A Harmony based Adaptive Ontology Mapping

Approach. in SWWS. 2008.

168. Esposito, F., N. Fanizzi, and C. d'Amato. Recovering uncertain mappings through

structural validation and aggregation with the MoTo system. in Proceedings of the

2010 ACM Symposium on Applied Computing. 2010.

169. Fanizzi, N., C. d'Amato, and F. Esposito, Composite ontology matching with

uncertain mappings recovery. ACM SIGAPP Applied Computing Review, 2011.

11(2): p. 17-29.

170. Rubiolo, M., et al., Knowledge discovery through ontology matching: An approach

based on an Artificial Neural Network model. Information Sciences, 2012. 194: p.

107-119.

171. Gracia, J. and E. Mena. Ontology matching with CIDER: Evaluation report for the

OAEI 2008. in Proceedings of the 3rd International Conference on Ontology

Matching-Volume 431. 2008. CEUR-WS. org.

172. del Río, J.G., J. Bernad, and E. Mena, Ontology Matching with CIDER: evaluation

report for OAEI 2011. 2011.

173. Gracia, J. and K. Asooja, Monolingual and cross-lingual ontology matching with

CIDER-CL: evaluation report for OAEI 2013. OM, 2013. 1111: p. 109-116.

174. Shenoy, K.M., K. Shet, and U.D. Acharya. NN based ontology mapping. in

International Conference on Advances in Information Technology and Mobile

Communication. 2012. Springer.

175. Djeddi, W.E. and M.T. Khadir. XMAP: a novel structural approach for alignment of

OWL-full ontologies. in 2010 International Conference on Machine and Web

Intelligence. 2010. IEEE.

176. Djeddi, W.E. and T. Khadir. A Dynamic Multistrategy Ontology Alignment

Framework Based on Semantic Relationship using WordNet. in CIIA. 2011. Citeseer.

177. Khadir, M., A. Djeddai, and W. Djeddi. XMap++: A novel semantic approach for

alignment of OWL-Full ontologies based on semantic relationship using WordNet.

in International Symposium on Innovations in Information and Communications

Technology. 2011. IEEE.

178. Djeddi, W.E. and M.T. Khadir, Introducing artificial neural network in ontologies

alignment process. Control and Cybernetics, 2012. 41(4).

179. Djeddi, W.E. and M.T. Khadir, Introducing artificial neural network in ontologies

alignement process, in New Trends in Databases and Information Systems2013,

Springer. p. 175-186.

170

180. Djeddi, W.E. and M.T. Khadir, Ontology alignment using artificial neural network

for large-scale ontologies. International Journal of Metadata, Semantics and

Ontologies 16, 2013. 8(1): p. 75-92.

181. Djeddi, W.E. and M.T. Khadir. XMapGen and XMapSiG results for OAEI 2013. in

OM. 2013.

182. Djeddi, W.E. and M.T. Khadir. A novel approach using context-based measure for

matching large scale ontologies. in International Conference on Data Warehousing

and Knowledge Discovery. 2014. Springer.

183. Djeddi, W.E. and M.T. Khadir. Xmap++: results for Oaei 2014. in Proceedings of

the 9th International Conference on Ontology Matching-Volume 1317. 2014. CEUR-

WS. org.

184. Djeddi, W.E., M.T. Khadir, and S.B. Yahia. XMap: results for OAEI 2015. in OM.

2015.

185. Djeddi, W.E., M.T. Khadir, and S.B. Yahia, XMap results for OAEI 2016, 2016. p.

222-226.

186. Djeddi, W.E., M.T. Khadir, and S.B. Yahia, XMap results for OAEI 2017, 2017. p.

196-200.

187. Viana, T., et al. Ontology Alignment with Weightless Neural Networks. in

International Conference on Artificial Neural Networks. 2017. Springer.

188. Xiang, C., et al. Ersom: A structural ontology matching approach using

automatically learned entity representation. in Proceedings of the 2015 conference

on empirical methods in natural language processing. 2015.

189. Qiu, L., et al., Knowledge entity learning and representation for ontology matching

based on deep neural networks. Cluster Computing, 2017. 20(2): p. 969-977.

190. Nkisi-Orji, I., et al. Ontology alignment based on word embedding and random forest

classification. in Joint European Conference on Machine Learning and Knowledge

Discovery in Databases. 2018. Springer.

191. Chandrashekar, M., R. Nagulapati, and Y. Lee. Ontology mapping framework with

feature extraction and semantic embeddings. in 2018 IEEE International Conference

on Healthcare Informatics Workshop (ICHI-W). 2018. IEEE.

192. Liu, J., Y. Tang, and X. Xu. HISDOM: A Hybrid Ontology Mapping System based

on Convolutional Neural Network and Dynamic Weight. in Proceedings of the 6th

IEEE/ACM International Conference on Big Data Computing, Applications and

Technologies. 2019.

193. Dhouib, M.T., C.F. Zucker, and A.G. Tettamanzi. An ontology alignment approach

combining word embedding and the radius measure. in International Conference on

Semantic Systems. 2019. Springer, Cham.

171

194. Zhang, Y., et al., Ontology matching with word embeddings, in Chinese

computational linguistics and natural language processing based on naturally

annotated big data2014, Springer. p. 34-45.

195. Ali Khoudja, M., M. Fareh, and H. Bouarfa. Ontology matching using neural

networks: survey and analysis. in 2018 International Conference on Applied Smart

Systems (ICASS). 2018. IEEE.

196. Ali Khoudja, M., M. Fareh, and H. Bouarfa. A new supervised learning based

ontology matching approach using neural networks. in International Conference

Europe Middle East & North Africa Information Systems and Technologies to

Support Learning. 2018. Springer.

197. Ali Khoudja, M., M. Fareh, and H. Bouarfa. Ontology matching using neural

networks: Evaluation for OAEI tracks. in International Symposium on Modelling and

Implementation of Complex Systems. 2020. Springer.

198. Ali Khoudja, M., M. Fareh, and H. Bouarfa, Deep Embedding Learning With Auto-

Encoder for Large-Scale Ontology Matching. International Journal on Semantic Web

and Information Systems (IJSWIS), 2022. 18(1): p. 1-18.

199. Zhang, Y., et al., BioWordVec, improving biomedical word embeddings with

subword information and MeSH. Scientific data, 2019. 6(1): p. 1-9.

200. Hertling, S. and H. Paulheim. ATBox results for OAEI 2020. in CEUR Workshop

Proceedings. 2020. RWTH.

201. Chakraborty, J., et al. OntoConnect: results for OAEI 2020. in OM@ ISWC. 2020.

202. Portisch, J., M. Hladik, and H. Paulheim. ALOD2Vec Matcher results for OAEI 2020.

in CEUR Workshop Proceedings. 2020. RWTH.

203. Lütke, A., AnyGraphMatcher Submission to the OAEI Knowledge Graph Challenge

2019. OM@ ISWC, 2019. 2536: p. 86-93.

204. Faria, D., et al., Matcha and Matcha-DL results for OAEI 2022. 2022.

205. Gosselin, F. and A. Zouaq, SEBMatcher Results for OAEI 2022. 2022.

206. Jiménez-Ruiz, E. LogMap Family Participation in the OAEI 2022. in CEUR

Workshop Proceedings. 2022.

207. Wang, Z., AMD Results for OAEI 2022. 2022.

208. Silva, J.d., et al., ALIN Results for OAEI 2022. 2022: p. 129-136.

209. Hertling, S. and H. Paulheim, ATBox Results for OAEI 2022. 2022: p. 153-157.

210. Sharma, A., A. Patel, and S. Jain, LSMatch and LSMatch-Multilingual Results for

OAEI. 2022.

211. Alghamdi, S.M., F. Zhapa-Camacho, and R. Hoehndorf, A-LIOn-Alignment

Learning through Inconsistency negatives of the aligned Ontologies. 2022.

172

	Keywords
	Mots-clés
	الكلمات المفتاحية
	Introduction
	Research Context
	Problem Statement and Challenges
	Objectives and Contributions
	Manuscript Outline
	Published Work
	Ontology Matching
	1.1. Introduction
	1.2. Ontology Background
	1.2.1. Knowledge Engineering
	1.2.2. Data, Information and Knowledge
	1.2.3. Knowledge Representation Models
	1. Tags and Folksonomies
	2. Directories
	3. Relational Database Schemas
	4. XML Schemas
	5. Conceptual Models
	6. Ontologies

	1.2.4. Ontology Engineering
	1.2.4.1. What is an Ontology?
	1.2.4.2. Ontology Components
	1. Concepts
	2. Relations
	3. Functions
	4. Axioms
	5. Instances

	1.2.4.3. Ontology Example
	1.2.4.4. Ontology Languages
	1.2.4.4.1. Traditional Ontology Languages
	1.2.4.4.2. Ontology Markup Languages

	1.3. Ontology Matching
	1.3.1. Why Ontology Matching
	1.3.2. Terminology
	1.3.3. The Matching Process
	1.3.4. Ontology Matching Techniques
	1.3.4.1. Terminological Techniques
	1.3.4.2. Structural Techniques
	1.3.4.3. Extensional Techniques
	1.3.4.4. Semantic Techniques
	1.3.4.5. Discussion

	1.3.5. Ontology Matching Evaluation
	1.3.5.1. Evaluation Principles
	1.3.5.2. Types of Evaluations
	1) Competence benchmarks
	2) Comparative evaluation
	3) Application-specific evaluation

	1.3.5.3. Evaluation Measures
	1) Compliance Measures
	2) Performance Measures

	1.3.5.4. Ontology Alignment Evaluation Initiative

	1.3.6. Applications of Ontology Matching
	1) Ontology Engineering
	2) Semantic Web
	3) Information Integration
	4) Linked Data
	5) Peer-to-Peer Information Sharing
	6) Query Answering on the Web

	1.4. Conclusion
	Large-Scale Ontology Matching
	2.1. Introduction
	2.2. Need for Scaling Ontology Matching
	2.3. Large-Scale Ontology Matching Techniques
	2.3.1. Partitioning-based Large-Scale Ontology Matching
	2.3.1.1. Ontology Partitioning for Ontology Matching
	2.3.1.2. Partitioning Methodology
	2.3.1.3. Ontology Partitioning Algorithms
	1. Modularisation Techniques
	2. Summarization Techniques
	3. Clustering Techniques
	4. “Divide and Conquer” Techniques

	2.3.2. Parallel Large-Scale Ontology Matching
	2.3.2.1. Inter-Matcher Parallelization
	2.3.2.2. Intra-Matcher Parallelization

	2.3.3. Reuse of Previous Matching Results

	2.4. Related Literature
	2.4.1. Review of Large-Scale Matching Tools
	2.4.2. Analytical Summary

	2.5. Conclusion
	Deep Learning for Ontology Matching
	3.1. Introduction
	3.2. Deep Learning Basics
	3.2.1. Challenges Motivating Deep Learning
	3.2.2. Artificial Neural Networks
	3.2.2.1. Biological Inspiration
	3.2.2.2. Artificial Neuron
	3.2.2.3. Fundamental Neural Network Architectures
	1. Single-Layer Feedforward Neural Network
	2. Multi-Layer Feedforward Neural Network

	3.2.2.4. Activation Functions
	3.2.2.5. Learning Methods
	3.2.2.5.1. Training Algorithms
	3.2.2.5.2. Optimization algorithms
	3.2.2.5.3. Objective functions
	1) Loss functions
	2) Regularization

	3.2.3. Deep Learning Architectures
	3.2.3.1. Auto-Encoders
	3.2.3.2. Embedding Models

	3.3. Review of the Literature
	3.3.1. Ontology Matching with Artificial Neural Networks
	3.3.2. Deep Learning Solutions for Ontology Matching Tasks
	3.3.3. Analytical Summary

	3.4. Conclusion
	Reuse-based Semantic Approach for Large-Scale Ontology Matching
	4.1. Introduction
	4.2. Brief Overview
	4.3. Neural Ontology Matching
	4.3.1. Constructing the Dataset
	4.3.2. Network Training
	4.3.3. Matching Ontologies

	4.4. Evaluation Framework
	4.4.1. Small-Scale Evaluation
	4.4.1.1. Evaluation for Conference Track
	4.4.1.2. Evaluation for Biodiversity and Ecology Track
	4.4.1.3. Evaluation for Process Model Matching Track
	4.4.1.4. Evaluation for Ontology Alignment for Query Answering Track
	4.4.1.5. Discussion of Results

	4.4.2. Large-Scale Evaluation
	4.4.2.1. Evaluation for Anatomy Track
	4.4.2.2. Evaluation for Disease and Phenotype Track
	4.4.2.3. Evaluation for Large Biomedical Ontologies Track
	4.4.2.4. Discussion of Results

	4.4.3. Experimental Summary

	4.5. Conclusion
	Deep Embedding Learning with Auto-Encoder for Large-Scale Ontology Matching
	5.1. Introduction
	5.2. DeepOM Overview
	5.3. Deep Ontology Matching
	5.3.1. Pre-Matching
	5.3.1.1. Extracting Ontological Information
	5.3.1.2. Pre-Processing of Ontological Components

	5.3.2. Creating Semantic Embeddings for Concepts
	5.3.2.1. Defining Reference Ontology
	5.3.2.2. Similarity Measurement
	5.3.2.2.1. Terminological Matcher
	5.3.2.2.2. Structural Matcher
	5.3.2.2.3. Extensional Matcher

	5.3.3. Deep Ontology Matching with Auto-Encoder
	5.3.4. Generating Ontology1-Ontology2 Alignment
	5.3.4.1. Measuring Embeddings Similarity
	5.3.4.2. Pruning Generated Alignment

	5.4. Evaluation Framework
	5.4.1. Experimental Design
	5.4.2. Experimental Results
	5.4.2.1. Evaluate the Matching Quality
	5.4.2.2. Evaluate the Matching Complexity

	5.4.3. Experimental Summary

	5.5. Conclusion
	Matching Big Ontologies Semantically by Combining NeuralOM and DeepOM
	6.1. Introduction
	6.2. SemBigOM Overview
	6.3. Semantic Big Ontology Matching
	6.3.1. Pre-Matching
	6.3.2. Deep Embedding of Concepts
	6.3.3. Ontology1-Ontology2 Matching
	6.3.4. Neural Mapping Reuse
	6.3.5. Post-Matching

	6.4. Evaluation Strategy
	6.4.1. Experimental Settings
	1) OAEI'2018-CONFERENCE Track
	2) OAEI'2018/2020/2022-ANATOMY Track
	3) OAEI’2018-DISEASE AND PHENOTYPE Track
	3.1) HP-MP
	3.2) DOID-ORDO

	4) OAEI’2018-LARGE BIOMEDICAL ONTOLOGIES Track
	4.1) FMA-NCI
	4.2) FMA-SNOMED
	4.3) SNOMED-NCI

	5) OAEI'2018-BIODIVERSITY AND ECOLOGY Track
	5.1) FLOPO-PTO
	5.2) ENVO-SWEET

	6) OAEI'2017-PROCESS MODEL MATCHING Track
	6.1) UNIVERSITY ADMISSION
	6.2) BIRTH REGISTRATION

	7) OAEI'2015-ONTOLOGY ALIGNMENT FOR QUERY ANSWERING Track

	6.4.2. Experimental Results
	6.4.2.1. First Sketch - Evaluation against OAEI’2022 Systems
	6.4.2.1.1. Matching Quality Evaluation
	6.4.2.1.2. Matching Complexity Evaluation

	6.4.2.2. Second Sketch - Evaluation against NeuralOM and DeepOM
	6.4.2.2.1. Matching Quality Evaluation
	6.4.2.2.2. Matching Complexity Evaluation

	6.4.3. Synopsis

	6.5. Conclusion
	Conclusion and Open Issues
	Main Contributions
	Opens issues
	Bibliography

