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Abstract 

Ontology matching is an efficient method to establish interoperability among heterogeneous 

ontologies. Large-scale ontology matching still remains a big challenge for its long time and 

large memory space consumption. The actual solution to this problem is ontology 

partitioning which is also challenging. 

Artificial neural networks are powerful computational models biologically inspired 

from the human brain, and the way how they learn and process information. Deep learning 

is a promising avenue of research and an important step toward artificial intelligence, 

emulating the human brain’s mechanisms especially for extremely complex problems. Deep 

learning techniques have been particularly successful when dealing with high-dimensional 

and massive amounts of data. However, they have limited use in ontology matching, 

particularly in large-scale ontology matching. 

In this research, we propose three different semantic solutions to deal with the large-

scale ontology matching challenges without partitioning. (1) The first solution is NeuralOM, 

a supervised reuse approach based on artificial neural networks. It consists of combining 

the mappings of the top ranked matching systems by means of a single layer perceptron, to 

define a matching function that leads to generate a better alignment between ontologies. (2) 

The second solution is DeepOM, an ontology matching system that we propose to deal with 

the large-scale heterogeneity problem using deep learning techniques. It consists on 

creating semantic embeddings for concepts of input ontologies using a reference ontology, 

and use them to train an auto-encoder in order to learn more accurate and less dimensional 

representations for concepts on which similarities are computed. (3) The third solution is 

SemBigOM, the global methodology of this research that combines NeuralOM and DeepOM 

in order to perfectly and independently achieve the large-scale ontology matching process. 

It consists on exploiting DeepOM to generate initial mappings that NeuralOM requires as 

input to be reused so as to output the final matching results. 

The experimental results of evaluating the proposed solutions on different test cases 

from the Ontology Alignment Evaluation Initiative, and comparing them with all participant 

systems of these tracks are very encouraging. They demonstrate the high efficiency of the 



proposed work to increase the performance of the ontology matching task, and to tackle the 

large-scale ontology matching issue. 

Keywords 

Large-Scale Ontology Matching, Ontology Alignment, Semantic Web, Artificial Neural 

Networks, Deep Learning, Auto-Encoder, Semantics, Embeddings, OAEI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Résumé 

L’appariement d'ontologies est une méthode efficace pour établir l'interopérabilité entre les 

ontologies hétérogènes. L'alignement d'ontologies à grande échelle reste toujours un grand 

défi pour sa longue durée et sa grande consommation d'espace mémoire. La solution 

actuelle à ce problème est le partitionnement d'ontologies, qui est également un défi et 

présente aussi des difficultés. 

Les réseaux de neurones artificiels sont de puissants modèles de calcul biologiquement 

inspirés du cerveau humain et de la manière dont il apprend et traite les informations. 

L'apprentissage profond est une voie de recherche prometteuse et une étape importante vers 

l'intelligence artificielle, imitant les mécanismes du cerveau humain, en particulier pour les 

problèmes extrêmement complexes. Les techniques d'apprentissage profond sont 

particulièrement efficaces lorsqu'il s'agit de traiter des quantités de données massives. 

Cependant, ils ont une utilisation limitée dans l'appariement d'ontologies, en particulier 

dans l'appariement d'ontologies à grande échelle. 

Dans cette recherche, nous proposons trois solutions sémantiques différentes pour 

faire face aux défis d'appariement d'ontologies à grande échelle sans partitionnement. (1) 

La première solution est NeuralOM, une approche de réutilisation supervisée basée sur des 

réseaux de neurones artificiels. Elle consiste à combiner les résultats des systèmes 

d'appariement les mieux classés au moyen d'un perceptron à une seule couche, pour définir 

une fonction d'appariement qui conduit à générer un meilleur alignement entre les 

ontologies. (2) La deuxième solution est DeepOM, un système d'alignement d'ontologies que 

nous proposons pour traiter le problème d'hétérogénéité à grande échelle en utilisant des 

techniques d'apprentissage profond. Il consiste à créer des représentations sémantiques 

pour les concepts d'ontologies d'entrée à l'aide d'une ontologie de référence, et à les utiliser 

pour entraîner un auto-encodeur afin d'apprendre des représentations plus précises et moins 

dimensionnelles pour les concepts sur lesquels les similarités sont calculées. (3) La troisième 

solution est SemBigOM, la méthodologie globale de cette recherche qui combine NeuralOM 

et DeepOM afin de réaliser parfaitement et indépendamment le processus d'appariement 

d'ontologies à grande échelle. Il consiste à exploiter DeepOM pour générer des alignements 

initiaux dont NeuralOM a besoin en entrée pour être réutilisés afin de produire les résultats 

finaux d’appariement. 



Les résultats expérimentaux de l'évaluation des solutions proposées sur différents cas 

de test de l'initiative d'évaluation de l'appariement d'ontologies (OAEI), et de leur 

comparaison avec tous les systèmes participants de ces défis d’appariement sont très 

encourageants. Ils démontrent la grande efficacité du travail proposé pour augmenter les 

performances de la tâche d'appariement d'ontologies et pour résoudre le problème 

d'appariement d'ontologies à grande échelle. 

Mots-clés 

Alignement d'ontologies à grande échelle, web sémantique, réseaux de neurones artificiels, 

apprentissage profond, Auto-Encoder, OAEI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ملخص

لا تزال مطابقة  .البيني بين الأنطولوجيا غير المتجانسة هي طريقة فعالة لتأسيس قابلية التشغيلمطابقة الأنطولوجيا 

الحل الفعلي لهذه  .الأنطولوجيا على نطاق واسع تمثل تحدياً كبيرًا نظرا لطول الوقت واستهلاك مساحة كبيرة من الذاكرة

 .المشكلة هو تقسيم الأنطولوجيا الذي يمثل تحدياً أيضًا

ابية قوية مستوحاة بيولوجياً من الدماغ البشري، والطريقة التي يتعلم الشبكات العصبية الاصطناعية هي نماذج حس

التعلم العميق هو وسيلة واعدة للبحث وخطوة مهمة نحو الذكاء الاصطناعي خاصة بالنسبة  .بها المعلومات ويعالجها

ومع ذلك، فإن  .البيانات إنه ناجح بشكل خاص عند التعامل مع كميات هائلة وعالية الأبعاد من .للمشاكل المعقدة للغاية

 .استخدامه محدود في مطابقة الأنطولوجيا، لا سيما في مطابقة الأنطولوجيا على نطاق واسع

مختلفة للتعامل مع تحديات مطابقة الأنطولوجيا واسعة النطاق دون  دلالية في هذا البحث، نقترح ثلاثة حلول

إعادة استخدام خاضع للإشراف يعتمد على الشبكات العصبية ، وهو نهج  NeuralOM الحل الأول هو (1) تقسيمها. 

وهو ينص على الجمع بين نتائج أنظمة المطابقة الأعلى مرتبة عن طريق شبكة اصطناعية، لتحديد معادلة  .الاصطناعية

، وهو نظام مطابقة  DeepOMالحل الثاني هو (2) مطابقة تؤدي إلى إنشاء محاذاة أفضل بين الأنطولوجيات. 

وهو ينص على  .نطولوجيا الذي نقترحه للتعامل مع مشكلة عدم التجانس واسعة النطاق باستخدام تقنيات التعلم العميقالأ

إنشاء تمثيلات دلالية لمفاهيم الأنطولوجيا باستخدام أنطولوجيا مرجعية من أجل الحصول على تمثيلات أكثر دقة وأقل 

، وهي المنهجية العامة لهذا البحث  SemBigOM الحل الثالث هو (3)  .شابهأبعاداً للمفاهيم التي تحُسب عليها أوجه الت

من أجل تحقيق عملية مطابقة الأنطولوجيا على نطاق واسع بشكل مثالي  DeepOM و NeuralOM التي تجمع بين

امها كمدخل لإعادة استخد NeuralOM للحصول على نتائج أولية يتطلبها DeepOM وهو ينص على استعمال .ومستقل

 .لإخراج نتائج المطابقة النهائية

ومقارنتها مع جميع الأنظمة  OAEIالنتائج التجريبية لتقييم الحلول المقترحة في حالات الاختبار المختلفة من 

إنها تثبت الكفاءة العالية للعمل المقترح لتحسين أداء مطابقة الأنطولوجيا،  .المشارك في هذه المسارات مشجعة للغاية

 .مسألة مطابقة الأنطولوجيا على نطاق واسع ومعالجة

 الكلمات المفتاحية

مطابقة علم الوجود على نطاق واسع، محاذاة علم الوجود، الويب الدلالي، الشبكات العصبية الاصطناعية، التعلم العميق، 

 .OAEIالدلالات، 
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Introduction 

 

 

Research Context 

In computer science, knowledge engineering is a field dedicated to collect information about 

the world, model this information and represent it in a way that a computer system can use 

to solve complex problems. Knowledge representation is one of the three main aspects of 

knowledge engineering. It is a field dedicated to represent and organize human knowledge 

in order to be used and shared, between humans, between computer systems, as well as 

between humans and computer systems.  

Ontologies are representation methods. They allow representing a given domain so that its 

knowledge can be used and unified for all applications developed in different ways. 

Ontologies, first appeared in the 90s in many research axes, are the cornerstone of the 

semantic web. They helped to solve several problems, and improve the knowledge 

engineering process. An ontology [1] is a specification of a conceptualization, that is, a 

description of the concepts and relationships that may exist for a particular domain. An 

ontology is an explicit description of the concepts, properties, relationships and individuals 

that may exist for a particular domain. It reflects knowledge from a certain domain of 

discourse [2]. 

However, most applications require access to multiple ontologies and need to use 

information from different data sources. They often use multiple ontologies from different 

fields, and sometimes for the same field. Also, ontology construction is a very complex and 

critical task, because the main goal is to represent the real world. So, it is reasonable to think 

that two persons can have different points of view about the world, and how to represent it. 

Thus, due to the rapid development of the semantic web, the construction of ontologies by 

various experts leads to heterogeneity at different levels: terminological level, syntactic 

level, semantic level and semiotic level. Moreover, the necessary information for web users 

is often located in independent heterogeneous and distributed data sources [3]. 

Therefore, it is very interesting to identify correspondences between semantically related 

entities of heterogeneous ontologies. That allows agents using different ontologies to inter-
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operate. These correspondences, called alignment or mapping, are the backbone of the 

ontology matching task which is the promising solution to this ontology semantic 

heterogeneity problem. It is generally based on computing similarity between the 

heterogeneous ontologies to be matched, in order to find semantic equivalences between 

them. Ontology matching can be applied to numerous fields, such as information integration, 

web service composition, ontology engineering, autonomous communication systems, peer-

to-peer information sharing, navigation and query answering on the web [4]. 

Problem Statement and Challenges 

Nowadays, ontologies of most applications are of big size, like in medicine and astronomy. 

And, large ontologies include a high conceptual heterogeneity. That could decrease the 

efficiency of ontology matching systems facing other challenges as shortage of memory and 

long-time processing. Such issue makes scaling up the ontology matching process a very 

interesting problem. 

Although a wide number of systems have been developed in order to address ontology 

matching issue at the small-scale [3]; [4]; [5], large-scale ontology matching still presents 

several challenges. Much more work is required at this scale. Current ontology matching 

systems have to deal with big ontologies containing thousands to millions of entities each. 

Thus, they suffer from some difficulties related to memory consumption and processing time 

at the large-scale scene. 

Partitioning large ontologies is the wide commonly used solution to deal with identifying 

semantic correspondences between different ontologies at the large scene [5] [6] [7] [8] [9]. 

It consists on dividing the input ontologies into several sub-ontologies. The overall result of 

matching is obtained after combining the individual results of matching sub-ontologies. 

However, partitioning ontologies also suffers from interesting challenges. It may decrease 

the matching quality, owing to the fact that, several semantic links inside ontologies are 

expected to be lost in the matching process, while they actually exist. Also, the partitioning 

parameters (number of partitions, size of each partition, number of elements per partition, 

how to divide ontologies, how to align these divisions, …etc) are also interesting and affect 

the matching performance. Moreover, ontology partitioning also suffers from the high time 

and space complexity while creating partitions. This has a direct impact on the efficiency of 

the ontology matching process. 



3  

Parallel large-scale ontology matching emerges as a complementary solution to the gaps of 

partitioning-based techniques. It is an effective solution at the large scale, but still has 

demands for ontology partitioning methods.  

Reusing the previous matching results for large-scale ontology matching is another solution 

which is not very used in ontology matching. This is due to the fact that, they undergo some 

difficulties, even if they provide both high quality and low complexity of matching. 

Artificial neural networks, often called neural networks, are one of the main tools used in 

machine learning. They are biologically inspired from human brain in a way to replicate the 

sort how human brains learn. In the last decades, they have become a major part of artificial 

intelligence, and have been used for various tasks such as image processing, speech 

recognition, natural language processing, and many others. This is due to their excellent 

ability to solve non-linear problems by learning, which is such a complicated and difficult 

task. 

Deep learning techniques have been recently used to address important problems in many 

research axes, such as image processing, natural language processing, information retrieval, 

signal processing and many others. These techniques are very appropriate for dealing with 

large datasets. They have the ability to analyse and interpret massive amounts of data, that 

require efficient and effective computational tools. However, they have limited use in 

ontology matching. Moreover, the few approaches that employ these computational models 

aim at enhancing the performance of the ontology matching task, and not at handling the 

large-scale heterogeneity problem [10] [11] [12] [13] [14]. Besides, they tested their methods 

on ontologies of small sizes. 

Objectives and Contributions 

This research aims at addressing the large-scale ontology matching challenges, and 

developing a solution that exploits semantics inside ontologies and which is adapted to the 

requirements of big ontologies. 

 The main objective of this study is to achieve both high quality and low complexity 

in large-scale ontology matching, and keeping these factors at the small scale as well. 

In other words, we aim at achieving high quality in small-scale matching where the 

complexity is obviously low, then passing these two factors to the large scale. 
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 The particular objective of this work is to overcome the limits of the existing 

solutions for large-scale ontology matching, and find a solution for this issue without 

partitioning. 

We attempted to achieve these research objectives by proposing three different solutions for 

the large-scale ontology matching issue. 

Solution 1- Reuse-based semantic approach for large-scale ontology matching 

We propose NeuralOM, a new automatic ontology matching approach based on artificial 

neural networks, with focus on large-scale matching. It consists of reusing the alignments of 

the most effective ontology matching systems basing on artificial neural networks in order 

to define a matching function which leads to generate the ideal alignment between input 

ontologies. The aim behind training the involved network is to adjust a weight for each 

matcher according to its efficiency. This refining strategy using artificial neural networks 

serves to have optimal matching results and to increase the performance of the ontology 

matching task. 

The main contribution of the approach proposed in this work is that, it combines, according 

to a very detailed state-of-the-art on the existing ontology matching techniques, the produced 

mappings of the most efficient matching systems aiming to refine their results that have been 

validated through various test cases. We aim by refining these results to achieve a perfect 

ontology matching. NeuralOM considers the input mappings generated by the selected 

candidate matchers as initial alignment that takes the matching process as parameter. 

Reusing and refining ontology matching results denotes working on a higher and more 

precise level. Moreover, unlike the actual ontology matching techniques that combine 

several similarity measures, NeuralOM combines several mappings which that have been 

generated through complicated processes and validated by various tests. This matching reuse 

is performed using artificial neural networks which are very appropriate for such 

combination tasks. Furthermore, as the selected matching tools work differently, NeuralOM 

acquires a great chance to provide a maximal number of correct correspondences for the 

reason that it benefits from different matching strategies. 

We evaluate this matching approach through a very detailed experimental study according 

to twelve different test cases from different campaigns of the Ontology Alignment 

Evaluation Initiative (OAEI). The results of the performed experiments show that NeuralOM 

has proven its efficiency in front of all OAEI matching systems in terms of the different 
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measures adopted for evaluation. It has achieved very excellent scores for all matching tasks 

and with negligible matching time even for dealing with large ontologies. That shows a very 

high accuracy of ontology matching especially at the large-scale. 

Solution 2- Deep embedding learning with auto-encoder for large-scale ontology 

matching 

We propose a new ontology matching system, called DeepOM, which employs deep learning 

techniques in order to efficiently match huge ontologies without partitioning them, and at 

the lowest time process and memory space cost. 

The idea behind DeepOM is to automatically treat the large-scale ontology matching issue 

in two main stages. At each stage, it aims to provide more representative and less 

dimensional real-valued vectors for concepts of input ontologies. DeepOM first transform 

the ontological concepts of input ontologies into numerical vectors that deep learning models 

can use as input. This embedding process is based on the semantic similarity between them 

and the concepts of a smaller and well selected reference ontology. Second, DeepOM trains 

an auto-encoder on the generated vectors, so as to learn high-level and more compact 

representations for concepts of input ontologies. Similarities of the generated 

correspondences is then computed using the cosine similarity between the compressed 

representations of concepts. At each stage, DeepOM improves the performance and reduces 

the complexity of large-scale ontology matching. 

The proposed system provides several contributions. The core contribution is that it employs 

deep learning techniques which are very appropriate for dealing with huge amounts of data 

to represent the concepts of input ontologies in a multi-dimensional embedding space. The 

aim behind this procedure is to transform the concepts into richer and more precise 

representations which serves to reduce the matching complexity, and that deep learning 

models can use. Moreover, the embedding process is based on using a smaller and well 

selected reference ontology which has a great impact on the matching results. Furthermore, 

an auto-encoder is trained on the produced embeddings, in order to learn more accurate and 

more compact representations for input concepts. Exploiting such models which are great at 

representation learning leads to better performance and less complexity as well. This is due 

to the fact that this dimensionality reduction serves for keeping the most important attributes 

of the input vectors in the lower dimensional compressed representations. 
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The results of evaluating DeepOM on large OAEI ontologies, and its comparison with 

ontology matching systems which have participated to the same test case, demonstrate its 

high ability to tackle the large-scale ontology matching problems. All the matching factors 

of DeepOM are positive towards perfecting the matching performance and reducing its 

complexity. 

Solution 3- Matching large-scale ontologies semantically by combining NeuralOM and 

DeepOM 

The two solutions previously described, NeuralOM and DeepOM address the challenges and 

respond to the main as well as the particular objectives of this study. NeuralOM is 

characterized by its excellent matching results, but it is related to initial mappings of other 

matching systems. DeepOM is totally independent, but its results are poorer than the results 

of NeuralOM. 

As we aim for an ideal ontology matching, we propose SemBigOM, the global methodology 

of this research that combines the two proposed solutions in order to achieve excellent 

matching results independently. SemBigOM seeks for tackling the challenges of large-scale 

ontology matching and overcoming the limits of NeuralOM and DeepOM. The basic idea of 

SemBigOM is that, it makes use of DeepOM to output initial mappings that NeuralOM 

requires as input to be reused so as to generate the final matching results. In other words, 

SemBigOM exploits NeuralOM to refine the matching results of DeepOM so as to perfectly 

and independently achieve the large-scale ontology matching process. Figure 1 illustrates an 

overview of the research methodology. 
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Figure 1. Research Methodology Overview. 

As we aim for exploiting semantics inside ontologies, SemBigOM first generates three 

different mappings between input ontologies basing on the different aspects of the 

ontological concept, and using three different versions of DeepOM: Terminological-based 

DeepOM, Structural-based DeepOM and Extensional-based DeepOM. Each matcher 

represents concepts of ontologies in a numerical multi-dimensional vector space using a 

reference ontology. An auto-encoder is then trained in order to transform the produced 

numerical vectors into finer and smaller representations for concepts. Similarities of the 

initial mappings are computed using the cosine similarity. After that, the three generated 

mappings are reused by NeuralOM which defines the matching function that leads to 

generate, after a filtering procedure, an ideal mapping between input ontologies. 

The proposed methodology provides several contributions. The basic contribution is that, it 

is advantages of providing a correct alignment, since it exploits semantics of input ontologies 

and benefits from covering all aspects of their concepts. Also, it exploits background 

knowledge resources for measuring the required similarities. In addition, SemBigOM treats 

the large-scale ontology matching problem at two main stages aiming for perfecting and 

simplifying the matching process at each stage. First, SemBigOM involves deep learning 

methods, in order to create semantic embeddings for concepts of input ontologies, and 

compress them to a lower-dimensional vector space using an auto-encoder. That provides 

better matching performance and decreases the matching complexity. Second, SemBigOM 
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performs a refining procedure on its initial mappings in order to generate an ideal mapping. 

Likewise, that allows perfecting the matching process with negligible matching complexity. 

Moreover, SemBigOM adapts for parallelization any multiple tasks that can run in parallel, 

aiming for reducing the complexity of large-scale ontology matching.  

The results of evaluating SemBigOM on large OAEI ontologies against the different 

ontology matching systems participants to the same case as well as NeuralOM and DeepOM, 

demonstrate a high accuracy of matching. It has proven its efficiency to match large-scale 

ontologies, to address the large-scale ontology matching problems, and to achieve all 

objectives which have motivated this work. 

Manuscript Outline 

This manuscript is structured in six chapters divided into two main parts. The first part is 

composed of three chapters of the state of the art. The second part comprises three chapters 

which presents our contributions. Figure 2 shows the organization of the remaining chapters 

of this manuscript. 

 

Figure 2. Organization of the manuscript. 
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Part I. State-of-the-Art 

 Chapter 1 marks the beginning of the theoretical background of this thesis. It is 

divided in two main parts. In the first part we introduce the central component of this 

work which is “ontology”, where we present the knowledge engineering field, 

knowledge representation models, the background of ontologies, their components 

and their expressing languages. The second part is dedicated to ontology matching, 

where we present the need behind ontology matching, ontology matching evaluation 

and its different applications. We also review and classify the different ontology 

matching techniques with a part of prominent ontology matching systems. 

 Chapter 2 reviews a state-of-the-art on large-scale ontology matching. It includes 

three main sections: the first one focuses on studying the motivations behind this 

issue and the need for matching large ontologies; the second section describes the 

different possible strategies to deal with large-scale matching, and proposes a 

classification of these techniques; the third section reviews the existing ontology 

matching systems which have been developed to handle the large-scale matching 

problems, and provides an analytical summary of these tools. 

 Chapter 3 reviews the existing work related to employing deep learning techniques 

for ontology matching. It is organized into two major parts. In the first part, we 

describe the basic concepts of deep learning, artificial neural networks, their 

architectures, auto-encoders, embedding models, activation functions and learning 

methods. The second part is dedicated to the related literature on the existing 

ontology matching tools based on artificial neural networks, and particularly on deep 

neural networks. We also provide an analytical summary and discuss the presented 

techniques. 

Part II. Contributions 

 Chapter 4 presents NeuralOM, the first solution that we propose to address the large-

scale ontology matching challenges basing on artificial neural networks. After 

describing the proposed matching method, we present the evaluation framework 

where we conduct our experiments on twelve different test cases from the open 

Ontology Alignment Evaluation Initiative (OAEI) in both small and large scales. We 

discuss the results of these experiments and study the performance of our approach. 
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 Chapter 5 presents DeepOM, another different solution that we propose to deal with 

the large-scale heterogeneity problem using deep learning techniques. After 

introducing the proposed ontology matching system and its detailed workflow, we 

describe the evaluation of our system, conducted on the Anatomy track from the 2020 

campaign of the OAEI Initiative. We also analysis the results of these experiments 

and discuss the performance of DeepOM. 

 Chapter 6 presents SemBigOM, a solution that we propose for addressing the current 

challenges of large-scale ontology matching, as well as the challenges of NeuralOM 

and DeepOM. It combines the previous two proposed solutions and represents the 

global methodology of this research. After reviewing the methodology and 

presenting its contributions, we describe its workflow. We also present the strategy 

followed and the adaptations made for evaluating this research. And, we present and 

analysis the results of evaluating SemBigOM according to the Anatomy track from 

the most recent campaign of the OAEI Initiative, and we discuss its efficiency. 

This manuscript ends with a conclusion which summarizes the thesis with a discussion about 

the different results, and concludes with some perspectives for future research directions. 

Published Work 

The following published papers are partial outputs of this thesis. 

 

Ali Khoudja, M., M. Fareh, and H. Bouarfa, Deep Embedding Learning With Auto-

Encoder for Large-Scale Ontology Matching. International Journal on Semantic Web 

and Information Systems (IJSWIS), 2022. 18(1): p. 1-18. 

 

Ali Khoudja, M., M. Fareh, and H. Bouarfa. A new supervised learning based 

ontology matching approach using neural networks. in International Conference 

Europe Middle East & North Africa Information Systems and Technologies to 

Support Learning. 2018. Springer. 

 

Ali Khoudja, M., M. Fareh, and H. Bouarfa. Ontology matching using neural 
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Implementation of Complex Systems. 2020. Springer. 
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1.1. Introduction 

Ontologies are the cornerstone of the semantic web. They are highly heterogeneous. 

Ontology matching is the most adapted solution to ontology heterogeneity problems. 

Therefore, it has become a crucial task in semantic web applications. Several ontology 

matching systems have been developed in the scientific literature in order to define semantic 

correspondences between entities of heterogeneous ontologies.  

Since our work lay in the context of ontology matching, this chapter marks the 

beginning of the theoretical background of this thesis. It is divided in two main parts; in the 

first part we introduce the central component of this work which is “ontology”, and the 

second one is dedicated to ontology matching. We first present the background of ontologies; 

the knowledge engineering field, and we outline the different models of knowledge 

representation. Then, we review ontology engineering, starting with what ontologies are and 

their origins rooted in philosophy, defining their components and describing the various 

languages in which ontologies can be expressed. After that, we present the need behind 

ontology matching and heterogeneity problems. The matching process and some used 

terminologies are also defined. Then, we describe and classify the different ontology 

matching techniques, and give a brief overview of some prominent ontology matching 

systems. We also discuss ontology matching evaluation; evaluation principles, types of 

evaluation and evaluation measures. Finally, we present several applications which can take 

advantage of ontology matching. 

1.2. Ontology Background 

1.2.1. Knowledge Engineering 

Knowledge engineering has evolved from the late 1970s onward, and consists of 

constructing different aspect models of human knowledge [15]. In computer science, 

knowledge engineering focuses on the identification, creation, storage, provision and 

representation of knowledge in order to be used and shared. Like any engineering, 

knowledge engineering goes through several stages: 

 Collection of information about the world;  

 Modelling this information; 

 Representation of knowledge in a way that a computer system can use to solve 

complex problems.  
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This study fits into the third stage which we explain by the following. Before 

presenting the main concepts related to knowledge representation, it is necessary to define 

the meaning of the word “knowledge”. However, this meaning is difficult to define because 

knowledge very much depends on context. We thus clarify this notion in confront to the 

terms “data” and “information”. 

1.2.2. Data, Information and Knowledge 

In computer science, data, information and knowledge belong closely together and have 

slightly different meanings. They are distinguished by the level of interpretation associated 

with them. We briefly define them as follows:  

Data (the lowest point of the pyramid). Data are unstructured and uninterpreted facts, figures 

and signals that reach our senses by the zillions every minute, but have the least impact on 

our decisions.  

Information (the next level). Information is data equipped with meaning. It is considered as 

structured data in a given context;  

Knowledge (the highest level). Knowledge is closely linked to practice. It is the collection 

of data and information that we bring to practical use in order to carry out actions and create 

new information. 

Data, information, and knowledge can be represented by a pyramid. Figure 1.1 

presents the DIK pyramid with an illustrating example. As shown by this example:  

- “Red” is a data;  

- “The color of the traffic light is red” is an information;  

- For a human car driver, a red traffic light is not just a signal of some 

colored object, but it is interpreted as an indication to stop, this is a 

knowledge. 
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Figure 1.1. Data, Information and Knowledge Hierarchy. 

1.2.3. Knowledge Representation Models 

The vast data irreversible movement that is leading us towards a world of knowledge 

highlights the importance of representing this knowledge in a structured, visual and 

transmissible way. Knowledge representation is defined by the set of tools of which the 

objective is to identify, structure, and organize human knowledge in a schematic 

representation in order to make it usable and shareable between machines and between 

humans and machines. In the following, we present the main models of knowledge 

representation. Their definitions are adapted from [16]. 

1. Tags and Folksonomies 

Tags and folksonomies are used in popular web sites. They are used as very simple ways to 

describe the content by tagging it, i.e., describe a corpus of knowledge by just giving names, 

called tags, to them. 

2. Directories 

A taxonomy is a partially ordered set of taxons (classes) where one taxon is greater than 

another one only if what is denoted by the former includes what the latter denotes. A 

directory or a classification is a taxonomy which is used by companies to present goods on 

sale, by libraries to store books, or by individuals to sort files on a personal computer.  
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3. Relational Database Schemas 

Relational databases organize data in a predefined way in terms of tables and relations. A 

relational schema specifies the names and the types of columns of each table. The relational 

model includes the notion of a key for each table. i.e., the subset of columns which uniquely 

identifies each row. And, a column in a table may point to a column in another table via a 

foreign key. This is intended to support referential constraints among various entities. 

4. XML Schemas 

XML schemas have been introduced for the purpose of specifying the structure of XML 

documents. Their main components are elements, attributes, and types. XML schemas are 

complementary to directories. 

5. Conceptual Models 

Conceptual models allow specifying entities in a domain with a high level of expressivity. 

They provide constructors for both organising classes in a hierarchy and describing the 

internal structure of objects. Thus, they offer the best of both directories and databases. 

6. Ontologies 

Ontologies, first appeared in 90s, are the most used models for representing knowledge. The 

representation models presented previously can be considered as variations of ontologies 

with various differences and degrees of formality and expressivity. The primary objective of 

an ontology is to represent a given domain, so that its knowledge can be used and unified for 

all its applications developed in different and independent ways. For this purpose, ontologies 

are used in artificial intelligence, semantic web, software engineering, biomedical 

informatics, information retrieval and many other domains. In the next section, we provide 

a more detailed explanation of ontologies. 

1.2.4. Ontology Engineering 

1.2.4.1. What is an Ontology? 

In philosophy, ontology denotes the theory of "the nature of being or the kinds of existents" 

[17]. It is a term that appeared in Metaphysics with the Greek philosophers Socrates and 

Aristotle, who were the first creators of ontology foundations. Socrates introduced the notion 

of a hierarchy of abstract ideas and class-instance relations. Later, Aristotle formed the 

logical basis of ontologies by adding logical associations. The resulted model is well-

structured and capable to describe and represent knowledge about the real world. In this 

context, an ontology is the philosophical study of the nature of being and existence, i.e., the 
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study of the general properties of what exists, by defining all the knowledge about the world. 

The first papers introducing the philosophical ontology area were published around 1960 

[18]. 

Afterward, the term "Ontology" has become widely used in the field of Computer 

Science. It appeared for the first time, at the beginning of the 90s, in the context of research 

on artificial intelligence in order to solve the problems of knowledge engineering, more 

precisely, in knowledge representation. Thus, computer scientists have adopted the term 

"Ontology" for their own needs. 

In order to clarify this notion, many researchers have proposed definitions of what an 

ontology is. In this section, we cite several definitions about ontology, and observe how these 

definitions have evolved over the years, and the relationships between them. 

 One of the first definitions was given by Neches et al. [19]: “An ontology defines the 

basic terms and relations comprising the vocabulary of a domain, as well as the rules 

for combining these terms and relations in order to define extensions of the 

vocabulary”. According to this definition, an ontology includes the terms which are 

defined in an explicit manner, and knowledge that can be conveyed by terms. 

 The most prominent and cited definition is that given by Thomas R. Gruber where he 

describes an ontology as an explicit specification of a conceptualization modelling 

concepts and relationships between concepts. He defined ontology as: “An ontology 

is a specification of a conceptualization. That is, an ontology is a description (like a 

formal specification of a program) of the concepts and relationships that can exist 

for an agent or a community of agents. This definition is consistent with the usage of 

ontology as set-of-concept-definitions, but more general” [1]. 

 Based on the Gruber definition, Borst [20] has proposed in 1997 to define ontology 

as: “an ontology is a formal specification of a shared conceptualization”. This 

definition specifies the fact that the ontology must be formal and shared.  

 In 1998, the last two definitions (those of Gruber and Borst) were combined by Studer 

et al. [21] to have the following definition: “An ontology is a formal, explicit 

specification of a shared conceptualization”. They explain it as follows: 

o Conceptualization refers to an abstract model of some phenomenon in the 

world by having identified the relevant and more appropriate concepts of 

that phenomenon.  
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o Explicit means that the type of used concepts, and the constraints on their 

use are explicitly defined.  

o Formal refers to the fact that the ontology should be expressed into a 

machine-readable language.  

o Shared reflects the notion that an ontology captures consensual knowledge, i.e., 

it is not private to some individual. Shared does not necessarily mean shared by 

all individuals, but accepted by a group. 

 In [22], authors made semantic interpretations to introduce the notion of formal 

ontology, and proposed the following definition: “An ontology is an agreement on a 

shared and possibly partial conceptualization”. 

 There is another type of definition based on the process of constructing ontologies, 

such as the definition proposed by [23]: “an ontology provides the means to describe 

in an explicit way the conceptualization of knowledge represented in knowledge 

bases”. This definition proposes the extraction of ontology from a knowledge base. 

 Another definition of the same type was given in [24] by Swartout et al.: “an ontology 

is a set of hierarchically structured terms, designed to describe a domain that can be 

used as a basic skeleton for knowledge bases”.  

 Later, John F. Sowa specified this notion more precisely. He defined ontology as a 

catalog of types, resulting from the study of categories of abstract and concrete 

entities that exist or can exist in a domain: “The subject of ontology is the study of 

the categories of things that exist or may exist in some domain. The product of such 

a study, called an ontology, is a catalogue of the types of things that are assumed to 

exist in a domain of interest D from the perspective of a person who uses a language 

L for the purpose of talking about D. The types in the ontology represent the 

predicates, word senses, or concept and relation types of the language L when used 

to discuss topics in the domain D” [25]. 

 A formal definition of ontology is given in [26]. According to Udrea et al., ontologies 

model data structure (i.e., sets of classes and properties), data semantics (in the form 

of axioms such as inheritance relations or property constraints), and data instances 

(individuals). Thus, the entities of an ontology are composed of a "structure" part, 

and a "data" part. 
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 Also, according to Cheatham and Pesquita [27], the information of classes, 

properties, and axioms that restrict their interpretation, are called the "structure", 

"scheme", or "T-box" (as Terminology) of the ontology, and information of instances 

and their axioms are called "data", "instances data" or "A-box" (like Assertions) and 

contain assertions about instances using T-box data. 

 Finally, Zhang et al. [28], have formally defined an ontology as a tree model, because 

of the principle of hyponymy (is-a subsumption) which means that each entity is 

inherited from a single direct super-entity, thus forming a rooted acyclic graph 

structure. But in the case of multiple inheritance, the ontology becomes a network 

model that can contain cycles and in which several paths can lead to an entity. 

1.2.4.2. Ontology Components 

As discussed in the section of ontology definitions, ontologies formally represent the 

vocabulary of a given domain and provide a specification of its meaning. According to 

Gruber [1], knowledge in ontologies is mainly formalized using the five types of 

components: concepts, relations, functions, axioms and instances. In this section, we 

introduce these main components that build up an ontology. 

1. Concepts 

Ontology is a specification of a conceptualization. Concepts, also known as Classes, are the 

basic notion in an ontology. They are used in a wide sense. They can represent abstract 

concepts (intentions, feelings, beliefs, …etc.) or concrete concepts (people, tables, 

computers, …etc.). In short, a concept can be an abstract notion about anything; the 

description of a task, action, strategy, reasoning process, …etc. More formally, a concept is 

an abstraction that brings together a number of real-world objects that are its instances. 

A concept is defined by a semantic triangle (see Figure 5.3), i.e., it is defined by 3 

dimensions: Term, Intention and Extension. These basic elements preserve the semantics 

carried by the concept. More details are provided in Chapter 5. 

2. Relations 

Relations represent interactions between concepts allowing the construction of complex 

representations of domain knowledge [29]. These relations are links that reflect the relevant 

associations existing between the domain concepts. Ontology relations are usually binary 

semantic links which have two arguments. The first argument is known as the domain of the 

relation, and the second argument is the range. 



19  

There are several types of relations:  

- Relations used by the hierarchy is-a (also known as Subclass-Of). Ontology classes 

are generally organized in taxonomies which are widely used to organize the 

domain knowledge using this generalization/specialization relationship. 

- Relations which are used to define the hierarchy according to part-of, composed-

of, …etc.  

- Semantic relations which are defined by four elements: 

 Term: represents the relation in language; 

 Extension: is the set of the effective realizations of a relation between 

concepts; 

 Intension: is the set of properties and attributes of the relation; 

 Signature: is the set of concepts participating to this relation. 

3. Functions 

Ontology functions are complex structures made from some relations that can be used as an 

individual term in a statement. Functions are particular cases of ontology relations, in which 

the n-th element of the relation is unique for the n-1 preceding elements [30]. 

4. Axioms 

Axioms are logical assertions and constraints that comprise the theory described by the 

ontology in its domain of application. They are ordinarily used to represent knowledge which 

cannot be formally defined by the other components of the ontology [30]. They are employed 

to better define and give more meaning to the other components (concepts, attributes, 

relations, …etc.). Thus, ontology axioms can serve to verify the ontology consistency, 

constrain the information represented by the ontology, deduce new information, …etc. 

5. Instances 

Instances, also known as individuals, are used to represent elements of the domain described 

by the ontology at the ground level. The instances in an ontology may include concrete 

objects (people, tables, molecules, animals, … etc.), as well as abstract individuals (numbers, 

words, … etc.). 

1.2.4.3. Ontology Example 

In order to clarify the notion of ontologies and their components described previously, we 

present, in this section, a very simple ontology example from the domain of organizing 
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conferences. This ontology example is graphically illustrated in Figure 1.2. It is visualized 

using the Web-based Visualization of Ontologies (WebVOWL)1 tool. The example contains 

article, document, person, conference, and the other objects depicted as circular forms as 

concepts. conference, session, pc_meeting are sub-classes of the concept event. Another 

subsumption relation is between chair and person; a chair is a person. The concept chair is 

related to the concept reviewer by the relation assigns_reviewers. Each event has two 

attributes: has_startdate and has_enddate of type dateTime. An example of axioms is that, 

a person should have at least one connection with review by the relation writes_review to be 

a reviewer. Instances are not depicted in the graph, but abundant in the real world.  

 
Figure 1.2. Ontology example from the domain of organizing conferences. 

1.2.4.4. Ontology Languages 

Ontologies are normally expressed in an ontology language. An ontology language is a 

formal language to describe the different elements that compose an ontology. There is a wide 

variety of languages for representing ontologies [31]. Most of them share equivalent kinds of 

entities with comparable interpretations. They vary in their levels of expressivity. We can 

distinguish between two main families of ontology languages: 

                                                 
1 http://vowl.visualdataweb.org/webvowl.html 
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1.2.4.4.1. Traditional Ontology Languages 

At the beginning of the 90s, a set of Artificial Intelligence based ontology languages was 

created. Their global layout is shown in Figure 1.3.  

 

Figure 1.3. Traditional ontology languages [32]. 

We briefly outline these traditional languages: 

 Cycl 

This is the first language that was created (developed in 1990 within the Cyc project 

[33]). It is a formal language based on Frames and First-order logic. 

 KIF (Knowledge Interchange Format) 

KIF [34]  was developed in 1992 to solve the problem of language heterogeneity in 

knowledge representation, and to allow the interchange of knowledge between 

diverse information systems. It is based on First-order logic with some extensions. 

It also permits the representation of meta-knowledge, reifying functions and 

relations, and non-monotonic reasoning rules. 

 Ontolingua 

Ontolingua [35] was released by the Knowledge Systems Laboratory of Stanford 

University in 1992. It is based on KIF language and on the Frame Ontology. 

Moreover, it is the ontology-building language used by the Ontolingua Server [36]. 

 LOOM 

LOOM [37] is a high-level programming language, which is not designed for the 

development of ontologies but for knowledge bases, it is based on description logic 

and production rules, it provides an automatic classification of concepts. It was being 
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developed by the Information Science Institute (ISI) of Southern California 

University from 1986 to 1995. 

 OCML (Operational Conceptual Modeling Language) 

OCML [38] was developed in 1998 at the Knowledge Media Institute (UK). It was 

designed as an extension of the Ontolingua language in order to fill its gaps by 

supporting production rules, which allows improve the reasoning mechanisms of 

Ontolingua. 

 F-Logic (Frame-Logic) 

FLogic [39] combines both Frames and First-order logic. It was created in 1995 at 

the Department of Computer Science of the State University of New York. It was 

specially used for deductive and object-oriented databases, and was later adapted and 

used for implementing ontologies. It has an inference engine, Ontobroker, which can 

be used to derive new knowledge. 

1.2.4.4.2. Ontology Markup Languages 

The explosion of Internet technologies has led to the creation of languages for exploiting the 

features of the Web. These languages are generally called Web-based languages or ontology 

annotation languages. Their goal is to represent and exchange data over the web. They are 

represented in Figure 1.4 and described as follows: 

 

Figure 1.4. Ontology markup languages [32]. 

 SHOE (Simple Html Ontology Extensions) 

SHOE [40] is the first ontology annotation language. It was developed, in 1996 in the 

University of Maryland (USA), as an extension of HTML. It uses special tags that 

allow inserting semantic data into web pages. These tags are of two categories: tags 

for constructing ontologies and tags for annotating web documents. This language 

combines Frames and Production rules, so as to represent concepts, taxonomies, 

relationships, and also rules that allow to infer new knowledge.  
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 XML (EXtended Markup Language)  

XML [41] is a language for describing and exchanging structural documents, derived 

from the ISO standard SGML (Standard General Markup Language). In 1998, XML 

had been very quickly adopted as a standard for the exchange of information on the 

Web by the W3C2 (World Wide Web Consortium), for ease of implementation and 

better interoperability between information systems with both SGML and HTML. It 

is used to exchange a wide variety of data on the Web, allowing users to define their 

own tags and attributes, define data structures, extract data from documents and 

develop applications [30]. Some languages were subsequently created based on the 

syntax of XML, whereas other existing languages were modified so that they could 

support structured documents described in XML. 

 XOL (Xml Ontology Language) 

XOL [42] was developed in 1999 as an XML-based language that allows the 

specification of concepts, taxonomies and binary relationships. Thus, it is not used 

for developing ontologies, but as an intermediate language for exchanging ontologies 

and transferring them among several database systems, application programs or 

ontology-development tools. 

 RDF(S): RDF (Resource Description Framework) and RDF Schema 

RDF [43] was developed by W3C as a language based on semantic networks to 

describe web resources. It is an infrastructure that enables the encoding, exchange 

and reuse of structured metadata, so that intelligent agents, browsers, search engines 

and human users can make use of semantic information. 

In order to reinforce this language, RDF Schema was built by W3C as an extension 

of RDF combining semantic networks with frames to provide primitives of 

knowledge representation systems.  

The combination of RDF and RDF Schema is known as RDF(S). RDF(S) is widely 

used as a representation format in many tools and projects. Many resources for 

handling RDF(S) exists, such as editing, browsing, querying, validating, storing, 

…etc. However, RDF(S) languages are not very expressive. concepts, instances and 

relations of an ontology can be easily defined with RDF(S), but it will lack from 

functions and axioms. 

 DAML (DARPA Agent Markup Language) + OIL (Ontology Inference Layer) 

                                                 
2 https://www.w3.org/ 
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The DAML Language is designed to allow expressing ontologies in an extension of 

RDF. It provides the usual primitives of frames-based representation using the RDF 

syntax.  

The OIL language is based on RDF(S). It can express ontologies on the Web, by 

combining the modeling primitives used in frame languages and the formal reasoning 

of description logics. 

The DAML language has been merged with the OIL language to form the 

DAML+OIL language [44], which inherits the advantages of both of them. As a 

result, DAML+OIL is an expressive, machine-readable and human-readable 

language with an RDF-based syntax. 

 OWL (Web Ontology Language) 

The OWL language [45] has been created by the W3C Web Ontology (WebOnt) 

Working Group. It was built upon RDF(S) and derived from the DAML+OIL 

language. OWL aims for publishing and sharing ontologies in the Web. More 

specifically, aims to make web resources readily accessible to software applications 

and automated processes, as opposed to situations where the content is only presented 

to humans.  

OWL allows to explicitly describe ontologies, i.e., define terminologies and 

relationships between them to describe concrete domains. A terminology is basically 

made up of concepts and properties, while, a domain is basically made up of instances 

of concepts. For this, OWL is more powerful in expressing the meaning and 

semantics than XML, RDF and RDF(S). In addition, it allows linking ontologies and 

sharing information between different knowledge sources. 

The OWL language consists of three sub-languages designed for specific developer 

communities and users: OWL Lite, OWL DL and OWL Full. They provide increasing 

expressiveness; each sub-language is an expansion over its simpler predecessor.  

o OWL-Lite: supports users who mainly need a classification hierarchy and 

simple constraints (of cardinality 0 or 1 for example). This cardinality 

corresponds to functional relationships, for example a person has an address. 

However, this person may have one or more given names. OWL Lite is 

therefore not sufficient for this situation. 

o OWL-DL: is based on Description Logic theoretical properties, and supports 

users who require maximum computational completeness (all conclusions are 

guaranteed to be computable), and decidability (computations will finish in 
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finite time). It includes all constructs of the OWL language, but places certain 

constraints to use them. 

o OWL-Full: is the complete OWL language. It provides the maximum of 

expressivity and more flexibility to represent ontologies than the precedent 

languages. It allows mixing OWL with RDF Schema and does not enforce a 

strict separation of ontology entities.  For example, a class can be treated 

simultaneously as a collection of individuals and as an individual in its own 

right. However, using OWL Full features can lead to lose some guarantees 

provided by OWL-Lite and OWL-DL for reasoning systems [30]. 

The ontology languages presented previously differ in their abilities of expressivity. 

The ontologies that we use in this study are expressed in OWL language which is supported 

by numerous initiatives and tools, and provides the higher level of expressivity. 

In the real world, ontologies describe particular domains of knowledge. As presented 

above, they are expressed in different ontology languages with different degrees of 

expressiveness. That can lead to various problems of heterogeneity. In the following section, 

we introduce the different forms of heterogeneity that may occur, and the most adapted 

solution to this problem which is ontology matching. 

1.3. Ontology Matching 

1.3.1. Why Ontology Matching 

In the semantic web and its distributed applications where ontologies are used, heterogeneity 

poses a real problem. Different users have different habits and interests, use different tools 

and knowledge, and usually at different levels of detail. This leads to diverse forms of 

heterogeneity, which should be taken into consideration. 

Ontology matching aims to reduce heterogeneity between ontologies. Heterogeneity 

lies in the differences between goals of the applications using ontologies, in the expressing 

languages in which ontologies have been encoded, how to use them, …etc. Therefore, we 

distinguish several types of heterogeneity that usually occur together [16]: 

 Terminological heterogeneity happens due to variations in names when referring 

to the same entities in different ontologies. This is due to using different natural 

languages, for example, “Paper” vs. “Articulo”, using synonyms, e.g., “Paper” vs. 

“Article” or using different technical sublanguages, e.g., “Paper” vs. “Memo”. 
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 Syntactic heterogeneity occurs when two ontologies are not expressed in the same 

knowledge representation language. This happens when comparing two ontologies 

of different expressive formalisms, for example, F-logic and OWL. This kind of 

mismatch is generally tackled at the theoretical level, establishing equivalences 

between constructs of different languages [16]. 

 Conceptual heterogeneity (also called semantic heterogeneity) stands for the 

differences in modelling the same domain of interest. This may happen due to using 

different axioms for defining concepts, or using totally different concepts. Three 

important reasons of conceptual differences are identified by [46] basing on the 

represented domain, the level of detail and the intended perspective. We discuss them 

below with examples about geographic map: 

o Difference in coverage occurs when two ontologies represent different 

domains at the same level of detail and from a unique perspective. For 

instance, two partially overlapping geographic maps. 

o Difference in granularity occurs when two ontologies describe the same 

domain from the same perspective but at different levels of detail. For 

instance, geographic maps with different scales: one displays buildings, while 

another depicts whole cities as points. 

o Difference in perspective, occurs when two ontologies describe the same 

domain, at the same level of detail, but from a different perspective. For 

instance, maps with different purposes, a geological map and a political map 

do not display the same objects. 

 Semiotic heterogeneity (also called pragmatic heterogeneity), is concerned with 

how entities are interpreted by people. Entities that have exactly the same semantic 

interpretation are often interpreted by humans with regard to the context and how 

they are ultimately used. This type of heterogeneity is difficult for the computer to 

detect and solve. 

1.3.2. Terminology 

It is observed that, in the area of ontology matching, the usage of some terms related to 

“Ontology Matching” differs frequently. Some authors use different terms to refer to the 

same concept, whereas, others use the same term to refer to different concepts. This is 

undoubtedly confusing. In this sub-section, we provide a glossary with the definitions of 

such terms as they are used in this project. They are adapted from [16]. 
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Ontology Matching is the process of finding correspondences or relationships between 

entities of different ontologies. 

Ontology Alignment is the output of the matching process. It is a set of correspondences 

between two ontologies. 

Ontology Correspondence is the relation holding between entities (classes) of different 

ontologies according to a particular alignment. 

Ontology Mapping is the oriented version of an alignment, i.e., it maps an entity from the 

first ontology to at most one entity from the second one. 

Ontology Merging is the creation of a new ontology from two source ontologies. The initial 

ontologies are unaltered, and the merged ontology contains the knowledge of both of them. 

1.3.3. The Matching Process 

The process of matching ontologies determines an alignment A’ for a pair of input ontologies 

o and o’. Other parameters extend the definition of the matching process: 

(i) A: an initial alignment which is intended to be completed by the matching 

process; 

(ii) P: matching parameters, e.g., weights, thresholds; 

(iii) R: external resources used by this process, e.g., common knowledge and domain-

specific thesauri. 

Following this definition, the matching process can be schematically represented as 

illustrated in Figure 1.5. 

 

Figure 1.5. The matching process. 

The matching process can be technically defined as follows [16]: 
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Definition 1.1 (Matching process). The matching process is a function f which, from a pair 

of input ontologies o and o’, an input alignment A, a set of parameters p and a set of resources 

r, returns an alignment A’ between these ontologies: 

A’ = f (o, o’, A, p, r)                                                (1.1) 

1.3.4. Ontology Matching Techniques 

Ontology matching consists of defining the semantically related entities between different 

ontologies, in order to solve semantic heterogeneity problems. For that object, several 

matching approaches have been developed in the scientific literature. Numerous 

classifications of the various ontology matching approaches are given as in [47]; [48]; [49]; 

[50]; [51]. 

Ontology matching process is generally based on measuring similarity between 

concepts of the concerned ontologies. The proposed matching algorithms and systems differ 

in their strategy for generating correspondences between ontologies. On this basis that we 

classify, in this section, the different ontology matching techniques and discuss the recent 

systems proposed by the state-of-the-art.   

1.3.4.1. Terminological Techniques 

Terminological techniques are based on comparing the strings or texts of the entities of input 

ontologies, i.e., names, labels, and comments of concepts, in order to compute similarities 

between them and match the similar ones. Thus, these methods are based on text similarity 

measures, and can be further classified into two sub-categories:  

 String-based Techniques: consider strings as sequences of letters in an alphabet. 

They are based on the intuition that, the more similar the strings, the more likely they 

denote the same concepts [16]. There are several string-based methods used in 

matching systems as: Hamming Distance, N-gram Similarity, Edit Distance, 

Levenshtein Distance, Jaro-Winkler Measure, TF-IDF, …etc. 

 Language-based Techniques: rely on Natural Language Processing techniques to 

extract the meaningful terms from the texts of concepts. This helps to assess the 

similarity between the to-be-matched entities of ontologies. Examples of these 

methods are, for example, the use of linguistic knowledge as lexicons and thesauri, 

basing on linguistic relations like synonyms and hyponyms, Resnik Similarity, Jiang-

Contrath Method, Cross-Translation, …etc. 
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Terminological techniques are used by several ontology matching systems, such as, 

POMAP++ [52] [53], Lily [54], LogMap [55], RiMOM [56], XMap [57], Falcon-AO [58], 

AML [59], Eff2Match [60], FCAMapX [61], OLA [62] and AROMA [63]. 

1.3.4.2. Structural Techniques 

Structural methods exploit the structural information (e.g., properties, subsumption relations, 

sibling concepts, …etc.) between ontology entities to derive correspondences. The typical 

intuition behind these methods is that, if the structural context or characteristics of the two 

compared concepts are similar, then they may be also similar. For example, if two classes 

are similar, their subclasses should also be similar. These techniques can be divided into two 

sub-categories:  

 Internal structure techniques: exploits the internal structure of the entities, such as, 

their properties, types, keys, cardinalities of their attributes, …etc, to compute the 

similarity between them. 

 External structure techniques, also called relational techniques: consider the 

relationships between concepts within the ontology structure, i.e., the other entities 

to witch the compared entities are related. 

Structural ontology matching techniques are adopted by various systems, such as, 

COMA++ [64], AML [59], Falcon-AO [58], XMap [57], Anchor-flood [65], Lily [54], 

CroMatcher [66], LogMap [55], TaxoMap [67] and POMAP++ [52] [53]. 

1.3.4.3. Extensional Techniques 

These techniques compute the similarity between concepts of input ontologies by comparing 

their extensional information, that is their instances (individuals). They are typically based 

on the intuition that, the more significant the overlap of common instances is, the more 

related the concepts they belong to are. In other words, if the instances are similar, then the 

concepts that they belong to should also be similar.  

The effectiveness of these techniques depends on the availability of instances in 

ontologies, they are more efficient if more individuals are available. Some of the frequently 

used similarity measures for extensional techniques are: Jaccard Similarity, Hamming 

Distance, K-statistic, Hausdorff Distance, and many others.  

Extensional techniques are used by several ontology matching approaches and 

systems, such as, ASMOV [68], AROMA [63], InsMT+ [69], SAMBO [70] and RiMOM 

[56]. 
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1.3.4.4. Semantic Techniques 

Semantic techniques are the most challenging type of ontology matching. They explore the 

semantic information encoded in the entities of the input ontologies. Their key feature is the 

use of model theoretic semantics to express the meaning of the compared entities without 

ambiguity. They are based on the intuition that, if two entities share the same interpretations, 

then they are semantically similar. They are based on logical models and deductive methods, 

using different strategies, such as, Propositional Satisfiability, Description Logics 

Reasoning, Detecting Inconsistency and Repairing Alignment. Although the meaning of 

“semantic” is not simple to define, and its exploitation in ontology matching has different 

forms, we present, in the following, some of these scenarios which intend to express the 

meaning encoded in the entities of input ontologies to achieve the matching task. 

 Description logics can be used to take advantage of the semantic information of 

ontologies in order to discover inconsistent mappings so as to be removed from the 

final alignment set.  

 Reasoning may be applied to expand relations between entities, and generate new 

relationships between them in order to discover new correspondences. 

 Description logics can be further employed to transform the resulted alignment to the 

optimization problem on constraint programming [71].  

 Entities of ontologies can be annotated by new semantic information extracted from 

background knowledge sources in order to discover new correspondences and reduce 

the heterogeneity between ontologies. For instance, names of concepts can be 

extended by new definitions. 

 Several machine learning methods can be used to define correspondences between 

ontologies, such as, neural networks, naïve bayesian learning, support vector 

machines, decision trees, …etc. 

 It is frequently applied to use the previous matching results and extend them in order 

to provide more efficient ontology matching results. 

Examples of ontology matching systems which take advantage of semantic techniques 

are: CODI [72], RiMOM [56], ASMOV [68], AML [59], LogMap [55], XMap [57], 

FCAMapX [61], Yam-bio [73], CroMatcher [66] and Gomma [74]. 

1.3.4.5. Discussion 

Very much work has been developed in the area of ontology matching. We have classified 

the ontology matching techniques above, and cited only examples for each type. Thus, 



31  

analysing more techniques should certainly lead to many conclusions and directions that 

ontology matching has opened. These challenges have been highlighted by numerous 

surveys as cited above. However, we focus on the most important conclusion that we can 

point out and discuss from the presented sample of the ontology matching algorithms and 

systems. That is, the majority of the ontology matching approaches do not rely just on one 

type of ontology matching techniques, but combine multiple matching strategies. Therefore, 

we conclude that there is a need for developing performant aggregation strategies. 

Furthermore, it is highly recommended to take advantage of each of the ontology matching 

methods with focus on semantic techniques. 

Once an ontology matching approach has been developed basing on the techniques 

presented in this section, it must be evaluated in order to be improved by its designers, and 

then, to be put to application by interested users. In the following section, we discuss the 

procedure of evaluating ontology matching approaches and systems. 

1.3.5. Ontology Matching Evaluation 

Ontology matching methods and systems must be tested to evaluate their performance. This 

helps system designers to assess the strengths and weaknesses of their systems. In addition, 

it helps developers to choose the most appropriate techniques and algorithms for ontology 

matching. For this reason, different benchmarks, data sets and measures have been proposed 

for evaluating matching systems. We present below the evaluation principles, the different 

types of evaluation as well as the most commonly used evaluation measures. 

1.3.5.1. Evaluation Principles  

Euzenat & Shvaiko [16] have defined a set of principles that must guide the evaluation 

process, so as to be clear in the context of an evaluation framework. They are briefly outlined 

as follows: 

 Systematic procedure. The procedure of evaluation should be reproducible. The 

evaluation results must be non-ambiguous. And, applying the evaluation procedure 

to different systems or to the same system at different times should be comparable.  

 Continuity. Evaluation must be a continuous effort and not a one-shot exercise, in 

order to assess the evolution of evaluated systems, and to identify the progress made 

by the field. 
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 Quality and equity. The evaluation rules should be precise and well defined 

beforehand. In addition, the evaluation material should be of the best possible quality 

and not be biased towards a particular kind of algorithms. 

 Dissemination. Evaluation should be available without excessive barriers. For this, 

the data sets and results of evaluation must be published and made as freely available 

as possible. 

 Intelligibility. The evaluation results must be explained and able to be analysed and 

understood by everyone. 

According to [75], evaluations are often based on three main steps: 

1. Planning. It defines the task to be performed and its constraints. 

2. Processing. It consists of executing the defined plan. 

3. Analysing. It involves evaluation the results achieved in accordance with the planned 

measurements. 

1.3.5.2. Types of Evaluations 

Figure 1.6 illustrates the basic evaluation design. The evaluating process receives an 

alignment A and computes a (set of) quality measure (s) m by comparing it to the reference 

alignment R. 

 

Figure 1.6. Basic evaluation design. 

Several classifications of ontology matching evaluation may exist depending on the 

used criteria. Euzenat & Shvaiko [16] proposed following classification of evaluations 

basing on what they are supposed to evaluate.  
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1) Competence benchmarks 

One particular type of evaluation is benchmarking. A benchmark is a well-defined set of 

tests on which the results of a system can be measured [75]. It is used for testing the 

improvement or degradation of a system, as well as for situating a system among other 

systems.  

Competence benchmarks allow the characterisation of the level of performance 

(competence) of a particular system according to a set of evaluation tasks. They aim at 

finding the weak points and strong points of a system, i.e., characterising the kind of task 

this system is good for, or the type of input it can handle well, …etc. 

2) Comparative evaluation 

Comparative evaluation consists on comparing the results of several systems (or various 

versions of the same system) on a common task. Thus, such an evaluation requires a well-

defined processing mode, and a clearly specified rules and evaluation criteria. It is also 

preferable to run blind (or nearly blind) tests. This kind of evaluation aims at improving the 

field as a whole in addition to individual systems.  

3) Application-specific evaluation 

Application-specific evaluation does not consider the matching in isolation, but compares 

the results of various systems evaluation on the output of a particular application. Such kind 

of evaluation is useful for a competitive evaluation, or for a company which wants to find 

the more adequate system to use in a real and particular application. 

These three types of evaluation differ in their goals. In this study, we evaluate our 

approaches basing on both the first and the second type. This allows us to measure, our work, 

improve it and situate it with regard to a common stable matching framework. 

1.3.5.3. Evaluation Measures  

In order to evaluate the results of ontology matching algorithms, it is required to confront 

their produced alignments with a reference alignment based on some criteria (see Figure 

1.7). For this reason, the evaluation measures represent another very important key to 

confidently evaluate the different matching systems. The reference alignment is designed 

either in a standard alignment format for the automatic evaluation, or entered manually by a 

domain expert. In the following, we review different possible measures for the evaluation of 

matching systems and algorithms. They are divided into compliance measures and 

performance measures [16].  
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1) Compliance Measures 

Compliance measures intend to evaluate the degree of performance of returned alignments 

with regard to what is expected. We define below the most commonly used evaluation 

measures: precision, recall and F-measure. They are based on the comparison of the 

resulted alignment A against a reference alignment R (see Figure 1.7). A and R are considered 

to be sets of correspondences, being pairs of entities.  

 

Figure 1.7. The resulted alignment (A) as compared-with the reference alignment (R). 

 

 Precision: evaluates the degree of correctness of the algorithm. It measures the ratio 

of relevantly selected correspondences over the total number of selected 

correspondences (the true positives over the true positives and false positives; see 

Figure 1.7) as in formula (1). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐴 ∩ 𝑅|

|𝐴|
                                                                 (1.2) 

 Recall: evaluates the degree of completeness of the alignment. It measures the ratio 

of relevantly selected correspondences over the total number of relevant 

correspondences (the true positives over the true positives and false negatives; see 

Figure 1.7) as in formula (2). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝐴 ∩ 𝑅|

|𝑅|
                                                                     (1.3) 

 Precision and recall are inversely proportional. A system which has higher precision 

may have a lower recall and vice versa. Thus, it is often preferable to use a unique 

measure for evaluation. For this purpose, another measure is introduced and also 

strongly used: Fb-measure, which aggregates precision and recall. 
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Fb-measure: is a balanced score of precision and recall as given by formula (3). 

𝐹𝑏 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (1 + 𝑏2) ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑏2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                         (1.4) 

If b < 1, then the Fb -measure biased to precision. If b > 1, then the Fb -measure is 

biased to recall. In between, if b = 1, then the Fb -measure combines precision and 

recall evenly, and does not compensate one for the other. In this case it is their 

harmonic mean as in formula (4). 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                      (1.5) 

2) Performance Measures 

Performance measures intend to check other features of matching which are related to the 

processing environment and the consumed resources. In this case, it is really important to 

run the compared algorithms under the same conditions (same memory consumption, same 

processor, …etc). We review some of these measures in what follows. 

 Speed. It consists on measuring the amount of time required by the algorithms for 

achieve their matching tasks.  

 Network. Some algorithms need to use network connectivity to perform the 

matching task. In this case, the network consumption can be measured in terms of 

bandwidth. 

 Memory. It is also interesting to measure the amount of memory required and used 

by systems to achieve their matching processes. 

 Scalability. It can be measured by a theoretical study, or by evaluation campaigns 

basing on quantified tests of increasing complexity [16]. 

1.3.5.4. Ontology Alignment Evaluation Initiative 

The most well-known and used reference for evaluating ontology matching systems over 

several years is the Ontology Alignment Evaluation Initiative3 (OAEI). It is an international 

initiative that aims at improving the quality of ontology matching systems by continuous 

comparison, using various tracks with different experimental designs. Its purpose is to 

compare different systems on the same basis, to identify their advantages and limits. OAEI 

has been evolving over the years. Since 2004, OAEI started and has been run yearly offering 

                                                 
3 http://oaei.ontologymatching.org/ 
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various tracks and introducing new challenges for ontology matching evaluation. In this 

study, we evaluate our work according to the OAEI Campaigns. 

Once an ontology matching approach or system has been evaluated and validated, it 

has to be put to work. This is described in the following section, presenting the wide need 

for ontology matching in several domains, and how their applications can take advantage of 

ontology alignments. 

1.3.6. Applications of Ontology Matching 

Ontology matching is a necessary operation in traditional applications, which are 

characterized by their heterogeneous models such as, ontology evolution, data integration 

and data warehouses. Ontology matching is also important in emerging applications, which 

are characterized by their dynamics, such as, linked data, peer-to-peer information sharing 

and query answering [16]. Therefore, ontology matching is a requisite operation tracing all 

domains of interest which run in heterogeneous environments. In this section, we overview 

different application domains that pose requirements for ontology matching. 

1) Ontology Engineering  

Ontology engineering is a context where users are confronted with heterogeneous 

ontologies. It is defined by the task of designing, implementing and maintaining ontology-

based applications [16]. These activities require ontology matching support for the fact that 

ontology engineering deals with multiple, distributed and evolving ontologies. For example, 

in the process of designing ontologies, instead of creating or constructing a new ontology 

for a given application, it is much better to reuse ontologies (or parts of ontologies) that 

already exist. This allows to save the time required for ontology construction, which is a 

complex and time-consuming process, especially in the case of large-scale ontologies. In 

order to carry out this task of constructing ontologies basing on other already built 

ontologies, ontology matching is applied to identify the corresponding entities. 

2) Semantic Web 

The Semantic Web was created to ensure semantic interoperability between different sources 

of information expressed by ontologies [76]. However, these ontologies are heterogeneous 

and distributed. The matching of ontologies is the key to achieve this semantic 

interoperability, it allows to establish a set of semantic correspondences between 

heterogeneous ontologies. These mappings can be used for various tasks, such as navigating 

on the web, merging ontologies, translating data, browsing the web of data, ...etc. The 
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semantic web is considered a complex area where numerous matching applications can be 

encountered. 

3) Information Integration  

Information integration is a classic matching scenario that is already covered previously in 

databases. It is one of the oldest applications where matching is viewed as a solution. More 

specific problems, which require ontology matching, are found under this field, such as, 

schema integration, data integration, data warehousing and catalogue integration [16]. For 

instance (in schema integration), two enterprises want to perform a merger among them and 

integrate their databases into a single one. The first technical step is to identify semantic 

relationships between their related entities. This step is performed by applying ontology 

matching in order to merge the schemas databases. 

4) Linked Data 

Linked data is a part of the semantic web where data is described by instances and expressed 

in RDF [77]. These data are heterogeneous, and must be linked together to ensure semantic 

interoperability. Data interlinking can take advantage of instance-based ontology matching, 

which consists on performing the matching task basing on the instances (individuals or real 

objects) of the input ontologies. 

5) Peer-to-Peer Information Sharing  

Peer-to-Peer (P2P) systems are distributed communication models in which parties (peers) 

equivalently provide each other with data and services. They aim to the direct exchange of 

resources (text, pictures, videos, books, …etc.) between machines connected in a network. 

Examples of P2P file sharing systems are: messaging, telephone, Skype, ... etc. Peers are 

totally autonomous. Thus, their data are described using different terminologies and 

metadata models, even if they refer to the same domain of interest [16]. Ontology matching 

is used in order to allow a reasonable exchange of information between them.  

6) Query Answering on the Web  

Another application of ontology matching is the task of answering queries. Semantic search 

engines that use ontologies as support have better performance in query answering 

operations than traditional search engines. Furthermore, users employ their own terminology 

to query the web. Then, a system for semantic query answering on the web have to rewrite 

the query according to available ontologies so as to use reasoning for providing answers 
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[16]. Thus, ontology matching is used in order to match these entities to the concepts of the 

underlying ontology. 

1.4. Conclusion  

In this chapter, we have presented a detailed overview of ontologies and ontology matching. 

We have first reviewed the context of ontologies, and have defined them. Then, we have 

studied their components and the different languages used to express them. Afterwards, we 

have presented the motivations behind ontology matching and heterogeneity problems. We 

have also defined the matching process, and classify its different techniques and some of 

well-known systems. A detailed study of ontology matching evaluation has been also 

presented. And finally, we have overviewed the different fields where ontology matching 

can be applied. 

If ontologies are of large size, then ontology matching systems should be more 

efficient due to the high heterogeneity of these ontologies. Besides matching quality, 

memory space and processing time are other challenges in this case. Thus, scaling up 

ontology matching systems to handle big ontologies remains a serious issue. This will be 

detailly studied in the next chapter. 
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Chapter 2 

Large-Scale Ontology Matching 
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2.1. Introduction 

As the heart of the semantic web, ontologies are used by a wide range of applications. For a 

same domain, various ontologies have been created by various people in different ways. This 

leads to heterogeneities at several levels. Ontology matching have frequently emerged in 

order to eradicate such heterogeneities, and numerous ontology matching systems have been 

developed for this purpose. Yet, most applications nowadays require using large ontologies 

like in the medical field. Therefore, when dealing with this large size, current ontology 

matching systems encounter many challenges like shortage of memory consumption and 

long processing time. 

In this chapter, we present a state-of-the-art on large-scale ontology matching. First, 

we study the motivations behind this issue and the need for matching large ontologies. Then, 

we describe the different possible strategies to deal with large-scale matching. A 

classification of these techniques is also proposed. It includes partitioning-based techniques, 

parallel techniques and reuse of previous matching results. After that, we review the existing 

ontology matching approaches and systems which have been developed to handle the large-

scale matching problems. And finally, we provide an analytical summary of these tools in 

order to identify their advantages and limits, and then, to outline the contributions of this 

work.  

2.2. Need for Scaling Ontology Matching  

Ontologies are the most commonly used model for knowledge sharing and reuse.  Due to 

their importance, different ontologies describing different domains from different views 

have been developed. Therefore, multiple ontologies involve to represent the same or 

different domains with some overlapping information among them. 

Ontology matching is the promising solution to this heterogeneity problem. It aims at 

generating correspondences between semantically related entities of the mismatched 

ontologies. Consequently, several approaches and systems have been developed in order to 

perform ontology matching. 

However, with the increased evolution and pervasiveness of ontologies, ontology 

matching tools have to address additional matching challenges to establish high-quality 

mappings among ontologies within restricted computing resources. 
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Nowadays, ontologies can involve millions of concepts in many fields, like in 

medicine, astronomy, biology, …etc. In such areas, applications require several ontologies 

of huge sizes. Some examples of real-life voluminous ontologies with their descriptions and 

sizes are provided in Table 2.1. 

Ontology Description 
Size (# 

concepts) 

AGRonomy 

Ontology 

(AGRO)4 

AGRO describes practices, techniques, and variables used 

in agronomic experiments. It is being built using traits 

identified by agronomists and other existing ontologies. 

3,738 

Drug 

Ontology 

(DRON)5 

DRON supports comparative effectiveness researchers 

studying claims data. They need to be able to query U.S. 

National Drug Codes by ingredient, mechanism of action, 

physiological effect, and therapeutic intent. 

617,960 

Environmental 

conditions, 

treatments and 

exposure 

ontology 

(ECTO)6 

ECTO describes exposures of humans, plants or any other 

organism to stressors, experimental treatments (e.g., 

temperature, lighting levels), stimuli and any kind of 

environmental condition or change in condition that can be 

experienced by an organism on earth. This is for purposes of 

public health and environmental monitoring. 

13,289 

Coronavirus 

Infectious 

Disease 

Ontology 

(CIDO)7 

CIDO is an open-source community-driven biomedical 

ontology of coronavirus infectious disease. It is constructed 

for providing standardized and interpretable human-

computer annotations and representations of various 

infectious diseases of coronavirus, including their 

transmission, aetiology, pathogenesis, prevention, diagnosis 

and treatment. 

8,796 

Cell Line 

Ontology 

(CLO)8 

CLO is a community-based ontology in the field of 

biological cell lines with focus on permanent cell lines from 

culture collections. These cell lines are associated with terms 

43,325 

                                                 
4 https://raw.githubusercontent.com/AgriculturalSemantics/agro/master/agro.owl  
5 purl.obolibrary.org/obo/dron.owl 
6 https://raw.githubusercontent.com/EnvironmentOntology/environmental-exposure-

ontology/master/ecto.owl 
7 https://raw.githubusercontent.com/CIDO-ontology/cido/master/src/ontology/cido.owl 
8 purl.obolibrary.org/obo/clo.owl 
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from other ontologies, such as NCBI Taxonomy, Cell Type 

Ontology and Ontology for Biomedical Investigation. 

Ontology for 

Nutritional 

Studies 

(ONS)9 

ONS is the first systematic effort aiming to provide a formal 

ontology framework for expressing nutritional studies. 
6,056 

Ontology for 

MicroRNA 

Target 

(OMIT)10 

OMIT aims to provide common data elements and data 

exchange standards in the microRNA (miR) domain. 

Biologists and bioinformaticians can use OMIT to emerging 

semantic technologies in knowledge discovery and 

acquisition for more effective identification of essential 

roles performed by miRs in various diseases and biological 

processes of humans. 

90,916 

Table 2.1. Examples of large real-life ontologies. 

In the previous chapter (Sect.1.3.5), we have presented two types of quality measures 

of ontology matching systems: compliance measures which intend to evaluate the degree of 

performance of returned alignments, and performance measures which intend to check other 

matching features related to the processing environment and the consumed resources. The 

key quality factor for small-scale ontology matching is the matching performance or quality. 

However, when ontologies are of a big size, additional features involve, and more techniques 

are required to handle the task of matching such large-scale ontologies by ontology matching 

tools. Thus, the main quality factors of ontology matching systems which deal with 

voluminous ontologies can be summarized in two major points: 

 Matching Quality. Ontology matching quality seeks for evaluating the relevance of 

the matching results, by means of precision, recall and fb-measures. Ontology 

matching systems should generate alignments that maximize these evaluation 

measures regardless of the size of input ontologies. However, increasing the sizes of 

ontologies penalizes the quality of the alignment generated by a matching tool [78]. 

The big sizes of input ontologies increase the need for more reasoning power. For 

instance, an ontology matching system has to be able to reason a high number of 

                                                 
9 https://raw.githubusercontent.com/enpadasi/Ontology-for-Nutritional-Studies/master/ons.owl 
10 https://raw.githubusercontent.com/OmniSearch/omit/master/src/ontology/omit.owl 
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axioms in order to generate complete and accurate mappings. Otherwise, this large 

scale may decrease the matching quality with respect to the compliance measures.  

 Matching Complexity. The large-scale matching problem is an extreme case in 

terms of complexity. This is due to the large sizes of ontologies which generate a 

high number of concepts pairs to be matched. Consequently, the matching algorithms 

for large ontologies could be inefficient. At this stage, large ontologies pose two key 

challenges face to ontology matching tools: 

o Demand for More Memory Space. Matching entities of two input ontologies 

intends to compare each entity of the first ontology against all entities of the 

second ontology. Assuming that each input ontology has n entities, this 

Cartesian product of matching these entities results in a memory space 

complexity of O(n2). In addition, most ontology matching systems integrate 

multiple matchers in order to improve the quality of their produced 

alignments. Therefore, this complexity would be further multiplied by the 

number of executed matchers. An ontology matching process with a space 

complexity of O(n2) can easily lead to an out-of-memory error in case of a 

large n [79]. 

o Demand for More Processing Time. For ontology matching algorithms, how 

long they take to be run to completion is a very important issue. Efficient 

matching algorithms must complete the matching process and keep the 

processing time to a minimum. Similar to memory space, matching two input 

ontologies has a time complexity of O(n2) (with n entities for each ontology), 

obviously multiplied by the number of matchers that compose an ontology 

matching tool. Unfortunately, a process of such a complexity would require 

users to significantly wait for obtaining the matching results. 

Therefore, in order to accurately match large ontologies within the limited computing 

resources, ontology matching systems must use strategies to reduce the high space and time 

complexities associated with the ontology matching process [79]. Thus, achieving both high 

quality and low complexity is the key challenge in large-scale ontology matching. We 

address this challenge in this work. Firstly, we review and study the techniques that the 

existing ontology matching tools employ to establish high quality alignments when matching 

large-scale ontologies. This is presented in the next section. 
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2.3. Large-Scale Ontology Matching Techniques 

Although a wide number of systems have been proposed and developed in order to address 

the small ontology matching issue [47]; [50]; [51], large-scale ontology matching still 

presents several challenges. Current ontology matching systems have to deal with big 

ontologies containing thousands to millions of entities each. Thus, they suffer from some 

difficulties related to memory consumption and processing time at the large-scale scene. 

In order to handle this issue and develop a performant ontology matching system 

adapted to the requirements of big ontologies, we must study the different techniques and 

approaches that deal with large-scale ontology matching. In the following, we provide a 

classification of these techniques. Recent works on large-scale ontology matching can be 

categorized into three main directions: partitioning-based matching, parallel matching and 

reuse of previous matching results. 

2.3.1. Partitioning-based Large-Scale Ontology Matching 

2.3.1.1. Ontology Partitioning for Ontology Matching 

When dealing with large ontologies, it is beneficial to split the matching problem into a set 

of smaller sub-problems in order to reduce the matching space. Partition-based ontology 

matching approaches aim at partitioning the input ontologies into smaller sub-ontologies in 

such a way that, the matching process is independently performed by partitions, and the 

independent partial results are then combined to obtain the overall matching result. 

This process is called blocking in other contexts [16]. The idea is to avoid the Cartesian 

product of comparisons among the large ontologies, and match entities only from 

corresponding partitions or blocks. Matching small ontological partitions requires less 

memory and time resources compared to matching full ontologies. Thus, it results in a 

significant reduction of the matching complexity to O(n2/k) if the large ontologies are 

partitioned into k blocks. Ontology partitioning improves the performance of applications 

for the reason that it reduces the irrelevant data to be accessed and shared among different 

nodes in a distributed system [80]. To further improve the matching efficiency, it is possible 

to perform the sub-matching tasks in parallel.  

2.3.1.2. Partitioning Methodology 

The partitioning framework for matching large ontologies is depicted in Figure 2.1. In 

general, three major stages involve in this procedure. They are described as follows: 
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Figure 2.1. Partitioning framework for matching large ontologies. 
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Phase 1. Partitioning ontologies 

Two voluminous ontologies are entered as input. This step consists on dividing each 

ontology into a set of smaller and disjoint sub-ontologies. Ontology concepts which are 

similar according to specific aspects (linguistic, structural, … etc.) are grouped together in a 

partition. 

Phase 2. Matching partitions 

This phase consists on doing the matching operation on similar partitions. It is performed in 

two main steps: 

Step1. Identifying similar sub-ontologies  

In this step, the most similar partitions which worth to be fully matched later are identified. 

After having divided the large ontologies into smaller sub-ontologies, it is simply possible 

to compare each sub-ontology of Ontology1 with all sub-ontologies of Ontology2. But such 

calculations are of high complexity. The possible solution to avoid comparing all partitions 

and reduce this complexity is to match only the similar sub-ontologies. This step is also 

known as the filtering step [81], since it involves removing the pairs of dissimilar partitions.  

Step2. Matching sub-ontologies  

In this step, the matching techniques are applied in order to establish semantic 

correspondences between partitions. It performs comparisons among concepts of sub-

ontology pairs that have been identified as similar in the previous step. For each pair of two 

similar sub-ontologies, each concept of the first one is compared with all concepts of the 

second one. 

Phase 3. Discovering alignment 

This step consists on combining and aggregating the partial results obtained from matching 

sub-ontologies in order to produce the overall matching result (e.g., by the union on partial 

correspondences). At this stage, it is also possible to refine the partial alignments and remove 

all inconsistencies and replications of correspondences. 
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2.3.1.3. Ontology Partitioning Algorithms 

There are considerable possible ways to perform partitioning of large ontologies into several 

sub-ontologies. In the following, we describe the methods: Modularisation, Summarization, 

Clustering and “Divide and conquer”. 

1. Modularisation Techniques 

Modularising an ontology consists on identifying a set of components (modules) of that 

ontology which are considered as discrete parts but can be linked to each other. A module is 

composed of a minimum set of axioms (sub-class, equivalence, instantiation, etc.), which 

maintain its own entities and relations with encapsulating characteristics. For instance, the 

relations of a given concept are within that module, not belonging to another module [82]. 

There are diverse methods that deal with extracting modules from ontologies.  

- Grau et al. [83] used E-connections [84] as a basis for the modularisation of large 

ontologies. E-connection is a set of partitioned knowledge bases which has been 

made up of ontology using the description logic [82].  

- Garcia et al. [85] conducted the modularisation of large ontologies basing on the 

partitioning techniques of the graphs from the iGraph library11.  

- Similarly, authors in [86] [87] used logic-based approaches to extract the modules of 

ontologies.  

2. Summarization Techniques 

Summarization of an ontology provides a summary of that ontology as a smaller and more 

compacted ontology. In other words, the summarized ontology is a new version of the large 

ontology in such a way that, it covers all its main concepts and provides all its important 

information. Summarizing an ontology helps for rapid understanding and facilitating the 

engineering works on ontologies [88].  

Several methods for ontology summarization exist.  

- Peroni et al. [89] employed criteria such as the name, coverage surface and density, 

in order to extract key concepts of ontologies such as ontologies summarization.  

- Li et al. [90] explored the most important characteristics of ontologies that are 

required to be included and covered in the summarized ontology.  

                                                 
11 http://igraph.sourceforge.net/ 
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- Zhang et al. [91] proposed a summarization method based on RDF sentences. It 

consists on building a graph where RDF sentences are the nodes and the links 

between them are the edges. Then, the centrality measure is computed as a 

proportional importance for each node. 

3. Clustering Techniques 

Clustering is the simplest and the most commonly used method for matching large ontologies 

[92]. It consists on dividing the huge ontology into several clusters using different 

techniques. This leads to significantly reduce the search space, to minimal memory 

requirements and thus to improve the matching efficiency [92]. 

Numerous approaches deal with ontology clustering.  

- Algerygawy et al. [93] proposed a graph clustering method based on the structural 

similarity of graph nodes and their connections. The nodes in a cluster are similar to 

each other, whereas, nodes in different clusters are dissimilar. This idea of structural 

similarity has been derived from the AHSCAN algorithm [94], assuring that nodes 

with similar connections in a network would have very high structural similarity.  

- Ahmed et.al. [95] introduced a new semantic similarity measure and proposed an 

enhancement and a revision of K-means clustering algorithm. 

- Also, Tran et al. [5] semantically partitioned the large ontologies into clusters. The 

information content [96] of each entity is used for assessing the semantic similarity 

between the concepts.  

4. “Divide and Conquer” Techniques 

The “Divide and Conquer” technique consists on solving the large ontology task by breaking 

in into smaller sub-tasks, solving the sub-tasks and combining them to get the desired output. 

The idea of this technique has been applied by several processes in the large scene.  

- The PBM method [97] used a “divide and conquer” strategy to divide the large 

ontologies. It first partitions each ontology into small and independent blocks basing 

on linguistic and structural similarity and using the ROCK algorithm [98]. After that, 

the weighty links are defined by a structural proximity. Then, ontologies are divided 

into blocks according to these weighty links, and using two criteria which are the 

cohesiveness within blocks and the pairing between blocks. 
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2.3.2. Parallel Large-Scale Ontology Matching 

When dealing with large ontologies, ontology matching requirements for different resources 

are even more increased. Ontology partitioning does not guarantee the solution of problems 

related to memory consumption and execution time [99]. As a result, parallel ontology 

matching techniques emerge as a complementary solution. A straight-forward solution to 

reduce the processing time of large-scale ontology matching is to run the matching process 

in parallel on several processors.  

Parallel matching techniques aim at minimizing the execution time of large-scale 

ontology matching by distributing the concept comparisons among available resources of a 

distributed system [100]. According to [100], parallel matching techniques can be 

categorized into two major classes: inter-matcher parallelization and intra-matcher 

parallelization. Figure 2.2 illustrates these techniques. In order to achieve an effective 

ontology matching, it is highly required to determine several similarities between ontologies 

and combine multiple matchers. 

 

Figure 2.2. Inter-Matcher Parallelization (a) and Intra-Matcher Parallelization (b) [101]. 

2.3.2.1. Inter-Matcher Parallelization 

The workflow of this matching type allows the parallel execution of independent matchers 

on a parallel platform. In inter-matcher parallelization (Figure 2.2 (a)), each matcher is 

executed on a different node (computer, virtual machine, …etc.) of a distributed computing 

infrastructure (e.g., cloud machines). The comparisons of concepts to be compared are 

performed by each matcher in parallel. 

This kind of parallelization techniques is easy to support, and able to reduce the 

execution time by a factor of n if matchers are of similar complexity. However, it is limited 
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by the number of independent matchers. Also, the matching requirements for memory space 

are not reduced since the different matchers consider the complete ontologies [92]. 

2.3.2.2. Intra-Matcher Parallelization 

Intra-matcher parallelization deals with the internal parallelization of individual matchers. It 

is typically based on decomposing the input ontologies in order to provide a set of smaller 

matching tasks which can be executed in parallel. Moreover, intra-matcher parallelization 

can be combined with inter-matcher parallelization, i.e., it can be applied for both sequential 

and independently executable matchers [100].  

In this kind of parallel matching (Figure 2.2 (b)), each pair of concepts is compared at 

an available node by multiple matchers sequentially, whereas, comparisons between pairs of 

concepts are performed on different nodes in parallel. Therefore, the communication 

between matchers is possible as they are located at the same resource [101]. 

2.3.3. Reuse of Previous Matching Results 

A lot of effort has been put in the development of ontology matching approaches and 

systems. A promising approach to enhance both the effectiveness and efficiency of ontology 

matching is the reuse of previous matching results for accomplishing a new matching task. 

This idea has been firstly introduced by [102] in order to improve schema matching systems, 

and then used for ontology matching.  

The reuse of previously identified correspondences and matching results leads to a 

significant reduce of the matching effort. It is necessary to determine the fragments of 

identified correspondences on which the matching reuse is applicable. Also, exploiting this 

reuse requires a comprehensive infrastructure or a repository to maintain the already 

established matching results.  

2.4. Related Literature 

In the previous section, we have studied the possible solutions and techniques to handle the 

task of matching voluminous ontologies. In this section, we review and analyse the existing 

tools and methods currently available for dealing with large-scale ontology matching. 

2.4.1. Review of Large-Scale Matching Tools  

Some approaches and systems aim for addressing the problems of matching big ontologies. 

We review the related work in the following.  
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 Tran et al. [5] proposed a partitioning approach to break up the large ontology 

matching problem into smaller matching sub-problems. They first semantically split 

anatomy ontology into groups called clusters. Basing on the information content of 

their concepts, and a scalable agglomerative hierarchical clustering algorithm. They 

use then a filtering method to select the possible similar partitions in order to reduce 

the computation time. 

 The study of Laadhar et al. [6] presented a local matching learning strategy to align 

large and complex biomedical ontologies, combining ontology partitioning with 

machine learning techniques. It defines a new partitioning approach, based on the 

hierarchical agglomerative clustering [103], which breakups the large ontology 

alignment task into a set of local sub-matching tasks. Instead of defining a global 

machine learning model for the entire ontology matching task, it performs a machine 

learning model for each local sub-matching task and provides its corresponding 

training set, which is automatically generated by exploring the external biomedical 

knowledge bases without any gold standard or user involvement. Therefore, each 

proposed local matching learning model automatically provides adequate matching 

parameters for every local sub-matching task. 

 The study of Balachandran et al. [9] is based on graph partitioning to improve the 

execution time of ontology mapping process. The proposed ontology mapping 

process works in three consecutive phases. First, the cluster-walktrap methodology 

is used to partition the ontologies into sub-ontologies and identify the correspondence 

between the concepts in parallel. Then, the factored ontologies are represented in 

vector space model and similarities are computed between concepts. Finally, a 

collaborative decision on the mappings is generated, taking into account the 

similarities of the previous phase. 

 The MOM (Modularisation-based Ontology Matching) method [104] is an approach 

which decomposes a large matching problem into several small problems using E-

connections. Then, finding the similar module pairs is treated as a problem of finding 

the maximum bipartite match. Finally, MOM makes use of the OPM (Ontology 

Parsing graph-based Mapping) method in order to obtain correspondences between 

two similar modules. 
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 The approach proposed by Jiménez-Ruiz et al. [8] consists on splitting the ontology 

matching task into smaller and more tractable matching subtasks, basing on a lexical 

index and locality modules. Two clustering strategies are presented for the lexical 

index. Naive strategy relies on a simple splitting method, to randomly divide entries 

into a given number of clusters of the same size. And, neural embedding strategy 

relies on a log-linear neural embedding model. It aims to reduce the global size of 

the computed division of the matching task. 

 In [105] [106], Lambrix et al. proposed to reuse a partial reference alignment in 

different ontology matching steps. First, it is used in the pre-processing step. Then, 

in the computation step, they compute similarity values basing on similar pattern of 

entity pairs in the reference alignment. And finally, the reference alignment is also 

used in the filtering step to filter mapping suggestions. 

 The study in [107] proposed an innovative method of matching large ontologies 

based on filter and verification. It includes two phases: filter phase and verification 

phase. In the filter phase, it reduces the degree of heterogeneity and scale of ontology 

and then, in the verification phase, it matches the reduced ontologies. Specifically, 

the input ontologies are partitioned into several sub-ontologies to get a proper scale 

before matching. Similarities of irrelevant entities pairs are recognized beforehand 

and not calculated in subsequent steps. Then, the extracted sub-ontologies are 

matched. And finally, the alignments resulted from matching sub-ontologies are 

integrated to provide the final output. 

 Laadhar et al. [7] proposed an approach that applies the hierarchical agglomerative 

clustering technique to divide an ontology into a set of partitions. Then, it uses an 

automated tuning process, which generates the adequate thresholds of the available 

similarity measure for any biomedical matching task. 

 Kachroudi et al. [108] introduced an ontology partitioning method towards the final 

goal of large ontology matching. It consists on splitting both ontologies to be aligned 

in two reduced size coherent block sets, to deal only with blocks of manageable size, 

containing the elements capable to be matched. The proposed method is mainly based 

on the RDF transformation techniques, creation and processing of ontologies graphs, 

and on semantic-structural similarities. 
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 COMA [109] and its successor COMA++ [110] support the reuse of complete 

matching results. COMA++ is a system for combining matching algorithms in a 

flexible way [110] [111]. It deals with different kinds of metadata models, such as 

relational, RDF, XML and OWL ontologies. COMA++ proposed fragment 

matching. A fragment is a rooted subgraph which can be determined either by the 

user in an interactive way of matching, or by using a schema, sub-schema, or a shared 

strategy in an automatic way. Using these simple rules is efficient for matching XML 

schemas more than ontologies, for the reason that, they produce a great number of 

fragments when dealing with ontologies. COMA++ uses a lightweight similarity 

metric in order to identify similar fragments [111].  

 Authors in [112] proposed V-Doc+, a parallel approach based on the MapReduce 

framework and the virtual document technique [113], for large-scale ontology 

matching. In the first stage, it performs two MapReduce processes in order to extract 

the textual descriptions of ontology entities (classes, instances and properties) and 

blank nodes. The extracted descriptions are exchanged in the second stage with 

neighbors in RDF graphs so as to construct virtual documents. In the third stage, a 

word-weight-based partitioning technique is proposed for parallel similarity 

computation using the TF-IDF model.  

 The work in [114] proposed a modularisation technique for ontology matching. It 

extracts fragments from the input ontologies that contain only the essential classes 

and relations in order to resolve the detectable incoherence. The approach introduces 

also a global alignment repair algorithm which minimizes the degree of incoherence 

as well as the number of mappings removed from the alignment. Thus, it aims for 

overcoming the matching scalability problem by applying the proposed 

modularisation technique [114]. 

 Hu et al. proposed Falcon-AO [115], a  “divide and conquer” system for solving the 

scalability problem of ontologies so as to match large ontologies. It first computes 

the structural similarity between classes and properties based on three types of 

hierarchies: subClassOf, rdfs:subPropertyOf and rdfs:subDomains. Based on the 

computed structural similarities, Falcon-AO develops an agglomerative algorithm 

for partitioning the input ontologies into two sets of partitions. Finally, it captures 

the whole sub-ontologies descriptions in order to identify similar partitions and 

compute the similarity between them. 
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 The corpus-based matching approach of Madhavan et al. [116] reuse the previous 

matching results. It consists on augmenting ontology elements with matching 

elements from a domain specific corpus of schemas. The idea is that, two ontology 

elements match if they match with the same corpus elements. A machine learning 

model based on several matchers is employed to find matches between ontology and 

corpus elements. Thus, a substantial effort is required for learning the models and 

defining the matches, especially for large ontologies. 

 The work in [101] investigate the parallelization for the complex problem of 

matching large ontologies, and proposed a MapReduce-based ontology matching 

approach which distributes the computation of similarities between concepts on 

different nodes of a cloud computing infrastructure. This approach is based on intra-

matcher parallelization. Assuming that input ontologies are partitioned and the pairs 

of subontologies to be compared are identified, this approach is used to parallel the 

correspondences computation aiming to reduce the execution time of the matching 

process. The workflow of this approach is composed of four phases: reading, map, 

shuffle, and reduce. For each pair of sub-ontologies, the concepts of the smaller sub-

ontology are replicated in the map phase. In the reduce phase, the concepts of the 

larger sub-ontology are sent to be compared with these replicated concepts to be 

compared. Similarities between each pair of concepts is computed by matchers. And, 

the pairs of concepts which have a similarity value higher than a defined threshold 

are selected. 

 SeeCOnt is a seeding-based clustering technique which aims at reducing the 

comparison complexity basing on cluster seeds. The seeds of clusters are first 

identified basing on the highest ranked concepts using a distribution condition. Then, 

the remaining concepts are assigned to their proper clusters using a membership 

function [117]. 

2.4.2. Analytical Summary 

Large ontologies introduce several challenges to ontology matching. Previously, we 

presented a state-of-the-art on large-scale ontology matching approaches and systems. In the 

following, we discuss and study these tools in order to identify their advantages and limits, 

and outline contributions of this study. 
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A summary of the presented systems for large-scale ontology matching is offered in 

Table 2.2 and translated in Figure 2.3. They are classified basing on their strategies for 

dealing with the problems of large-scale matching. We did not include the results of their 

evaluation because they had not been evaluated under the same conditions. 

Ontology Matching 

Tool 

Partitioning-

based Matching 

Parallel 

Matching 

Reuse of Matching 

Results 

Tran et al. [5]    

Laadhar et al. [6]    

Balachandran et al. [9]    

The MOM method [104]    

Jiménez-Ruiz et al. [8]    

Lambrix et al. [105] 

[106] 

   

Li et al. [107]    

Laadhar et al. [7]    

Kachroudi et al. [108]    

COMA [109]; COMA++ 

[110] 

   

V-Doc+ [112]    

Santos et al. [114]    

Falcon-AO [115]    

Madhavan et al. [116]    

Ara et al. [101]    
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SeeCOnt [117]    

Table 2.2. Summary of large-scale ontology matching tools. 

 

Figure 2.3. Classification of large-scale ontology matching tools. 

From the above classification and summary, we conclude the following: 

 Large-scale ontology matching still presents a real challenge because it is a time 

consuming and memory intensive process. Even though several systems aim at 

enhancing the performance of the ontology matching task, there are only few systems 

that can handle the heterogeneity between large ontologies. Due to this fact, much 

more work is required in this field. 

 Partitioning large ontologies is the wide commonly used solution to deal with 

identifying semantic correspondences between different ontologies at the large 

scene. Ontology matching techniques that deal with this problem search to divide the 

large ontologies into small sub-ontologies in order to reduce the matching space. 

However, partitioning ontologies also suffers from interesting challenges: 

o Whatever the effectiveness of ontology partitioning, it may decrease the 

matching quality, owing to the fact that, several semantic links inside 

ontologies are expected to be lost in the matching process, while they actually 

exist.  
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o Moreover, the partitioning parameters (number of partitions, size of each 

partition, number of elements per partition, how to divide ontologies, how to 

align these divisions, …etc) are also challenging and affect the matching 

performance. For instance, ontology partitioning should produce partitions of 

optimum size, i.e., they should not be too small hence increasing the 

complexity of matching the produced partitions, nor too large hence not 

taking maximum benefits of ontology partitioning. 

o Furthermore, ontology partitioning also suffers from the high complexity 

while creating partitions. Ontology partitioning algorithms should produce 

partitions that maintain the knowledge expressed by the original ontologies. 

Thus, a correct partitioning process require a high time and space complexity 

to be completely achieved. This has a direct impact on the efficiency of the 

ontology matching process. 

 Parallel large-scale ontology matching is also used by ontology matching systems. 

However, it is not usually employed on pairs of concepts among ontologies but on 

ontology partitions. Thus, it is efficient, but still has strict demands for ontology 

partitioning techniques. It emerges as a complementary solution to the gaps of 

partitioning-based ontology matching. 

 Unlike partitioning-based and parallelism-based ontology matching approaches, 

reusing the previous matching results for large-scale ontology matching is an 

independent category, i.e., algorithms of this matching type do not require 

partitioning or parallelism techniques. This is due to the fact that, this type of large-

scale ontology matching provides both very high matching quality and very low 

matching complexity. However, the algorithms of this large-scale matching category 

are not autonomous and depend on other ontology matching tools. Also, they 

undergo some other difficulties, for instance, the candidate ontology matching results 

must be obtainable, expressed in the same format and have been evaluated on the 

same basis. For this, reusing the previous matching results is not very used in 

ontology matching. 

2.5. Conclusion  

In this chapter, we have presented a state-of-the-art on matching large ontologies. First, we 

describe the need for scaling the ontology matching process. Then, we present a detailed 

classification of the possible methods to deal with large-scale ontology matching. After that, 
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we present an overview of the existing ontology matching tools which have been developed 

to address the challenges of large-scale ontology matching. Finally, we have studied and 

discussed these tools with regard to their advantages and limits, and identified the current 

challenges which serve to outline our contributions. 

This work seeks for addressing these challenges. For this, powerful computational 

mechanisms are required to fix the identified gaps of the existing large-scale ontology 

matching techniques. Deep learning techniques are very appropriate for dealing with large 

datasets. They have the ability to analyse and interpret massive amounts of data, that require 

effective and efficient computational tools. Thus, they have been widely used to solve 

complex tasks in many research axes. In the next chapter, we study deep learning techniques 

and present a state-of-the-art on their use for ontology matching. 
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3.1. Introduction 

Large-scale ontology matching is still challenging. Such powerful computational 

mechanisms are required to address the posed challenges. Deep learning is a promising 

avenue of research and an important step toward artificial intelligence, making machines 

independent of humans, and emulating the human brain’s mechanisms and ability to observe, 

learn, make decisions and analyze, especially for extremely complex problems. Deep 

learning algorithms have been particularly successful when dealing with high-dimensional 

and massive amounts of data. They have attracted much attention from researchers in recent 

years due to their performance and efficiency to solve complicated problems in many 

research domains such as computer vision, natural language processing, speech recognition 

and many others. 

In this chapter, we present a state-of-the-art on employing deep learning techniques 

for ontology matching. It is organized into two major parts. In the first part, we describe the 

basic concepts of deep learning, and the second part is dedicated to the related literature. 

First, we introduce the challenges that have motivated deep learning. Next, we present the 

basic model family in deep learning which are artificial neural networks. We describe the 

biological inspiration of artificial neuron, the fundamental neural network architectures, 

activation functions and learning methods. Then, we present deep learning architectures with 

focus on auto-encoders and embedding models. After that, we review the existing ontology 

matching tools based on artificial neural networks, and particularly on deep neural networks. 

Finally, we discuss the presented techniques and provide an analytical summary which 

allows to outline contributions of this work. 

3.2. Deep Learning Basics 

Artificial intelligence field is actively growing and involving several applications and 

different challenges. Artificial intelligence aims at conceiving intelligent machines able to 

understand and solve problems that are difficult for human beings but not for machines. 
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Deep learning has made major advances in solving such complicated problems that have 

been exceedingly hard to fix by the artificial intelligence community for many years. It has 

produced very promising results for several tasks in many fields. In this section, we review 

the basic deep learning concepts that are necessary to describe these powerful computational 

models and their functionalities. 

3.2.1. Challenges Motivating Deep Learning 

Deep Learning has gained a lot of popularity and attention in the last years. This is due to 

the factors that we outline as follows. 

 Data availability. With the significant evolution of the Internet, the number of its 

users and the content which they generate is exploding. This has resulted an increase 

of huge resources and large datasets that significantly help the learning procedure of 

deep learning paradigms. 

 Computational power. Deep Learning algorithms require a considerable 

computational power (processor and memory) to efficiently run to solve complex 

tasks. Unlike bygone, users have the possibility to access more powerful 

computational resources. Particularly, the exploitation of GPU computing arises 

providing high computing power more than CPU. GPUs work more efficiently and 

make use of massively parallel processors in order to accelerate computations. 

 Improved learning algorithms. In the last few years, novel training improvements 

have been proposed for increasing the performance of solving problems with deep 

learning techniques. These enhancements include more efficient activation functions, 

more robust optimizers and regularization techniques able to competently prevent 

overfitting [118]. 

 Real-world impact. Deep learning techniques have an impressive advancement in 

several tasks, such as object recognition, robotics, speech recognition, machine 

translation, …etc. Moreover, deep learning models have gained popularity to be used 

by many large technology companies in the world, like Google, Facebook, Microsoft, 

Apple, IBM and NVIDIA Corporation.  

Deep learning provides technical, innovative and efficient solutions for a large variety of 

problems and domains. This would not have been possible without the advancement in the 

most dominant model family of neural networks that we introduce in the next section. 
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3.2.2. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are the fundamental model family in Deep Learning. 

Nowadays, neural networks have been applied to very different issues and in various fields 

due to their efficiency and ease of use. 

3.2.2.1. Biological Inspiration 

Artificial neural networks are based on intrinsic models of biological neural systems of 

information processing, which have led to the development of more intelligent computer 

systems, applicable in statistical problems and data analysis. Neural networks appeared 

during research on artificial intelligence, to replicate the “ability to learn” found in neural 

biological systems, by modeling the intrinsic structure of the brain. 

The brain physiology shows that it is made up of a very large number of neurons 

(around one hundred billion), connected to each other by several thousand interconnections 

for each neuron. Each neuron is a specialized cell, capable of creating, sending and receiving 

electrochemical signals. Like all biological cells, neurons have a cell body (also called 

soma), extensions providing information to the neuron (dendrites), and an extension which 

communicates the information collected by the neuron (axons). The axon of one cell is 

connected to the dendrites of another through a synapse. When a neuron is activated, it sends 

an electrochemical signal through the axon. This impulse, which is of the order of 1 

millisecond and its amplitude of about 100 millivolts, crosses the synapses to thousands of 

other neurons, which can in turn send and therefore propagate the signal to the whole of the 

biological brain. A neuron will only emit an impulse if the signal transmitted to the cell body 

by the dendrites exceeds a certain threshold called the trigger threshold [119]. Thus, neurons 

can create or accomplish various and extremely complex cognitive tasks such as learning. 

3.2.2.2. Artificial Neuron 

The artificial neuron is an information-processing model of the brain neuron. Figure 3.1 

illustrates the biological inspiration of the artificial neuron. The main features of real neurons 

are retained in the definition of an artificial neuron: the inputs model the dendrites; the input 

impulses are weighted by synaptic coefficients and the emitted impulse (the output) obeys a 

threshold effect. Typically, the artificial neuron is the basic unit to process information, and 

it is composed of the following elements: 

 The neuron receives signals from different sources. The input nodes are expressed as 

an n-dimensional vector 𝑋 ∈ ℝ𝑛. 
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 The information flows over the connection links which are associated with 

importance values represented by weights. The greater the value of a weight w, the 

stronger the intensity of the incoming signal, and therefore, the more influential the 

corresponding input. Likewise, these weights (that can include both positive and 

negative values) are expressed as a real-valued vector 𝑊 ∈ ℝ𝑛. 

 A supplementary signal, called bias, can be added to the input. This parameter 𝑏 ∈

ℝ, which is generally set to 1, has an important effect during the learning phase since 

it enables increasing or decreasing the neuron value. 

 The summing function generates a weighted sum of all the received signals weighted 

by their connection strengths each. It can further select the maximum, minimum, 

product, majority or other normalizing algorithms. 

 Finally, the activation function 𝑎:ℝ → ℝ, is applied on the weighted sum in order to 

define the final output signal Y. This mathematical function, which is usually non-

linear, can also scale and control the output value via thresholds [118].  

Thus, it is possible to define an artificial neuron as: 

𝑌 = 𝑎(𝑊𝑋 + 𝑏) = 𝑎(∑ (𝑤𝑖𝑥𝑖) + 𝑏)
𝑛

𝑖=1
                                               (3.1) 

 

 

 

 

 

 

 

 

 

Figure 3.1. Biological neuron (adapted from12) Versus Artificial neuron. 

                                                 
12 https://en.wikipedia.org/wiki/Biological_neuron_model 
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An artificial neuron is the basic processing unit of a neural network. It is connected to 

input information sources (other neurons for example) and returns output information. The 

neuron is the building block of more complex models. 

Therefore, an artificial neural network is composed by a connection of artificial 

neurons denoting a weighted and directed graph. The nodes represent the neurons, and the 

connection links pass on the weights between neurons. The weights are first randomly 

initialized and then adjusted during the learning phase [118].  

In the next sections, we describe the fundamental neural network architectures, the 

activation functions and the learning methods used to train the artificial neural network. 

3.2.2.3. Fundamental Neural Network Architectures 

An artificial neural network architecture is the overall structure of the network. Most neural 

networks are usually organized into groups of units called layers. Neurons of the same layer 

mainly share the same pattern of connections with other neurons. The network can be either 

fully-connected if every node in each layer has a connection with every node in the adjacent 

forward layer, or partially-connected, when the network is missing some connections [118]. 

And, according to the number of composed layers, neural network architectures can be 

classified into two major classes as follows.  

1. Single-Layer Feedforward Neural Network 

The single-layer feedforward network (Figure 3.2 (a)) is the simplest form of a layered 

network. It has one layer of connection weights. “Single-layer” is related to the presence of 

only one layer of computational nodes, which are the output neurons [118]. The nodes of the 

input layer receive the signals, and the nodes of the output layer compute and transform the 

input information. The term “feedforward” refers to the direction of the information flow 

from the input layer to the output layer (and not the opposite direction).  

2. Multi-Layer Feedforward Neural Network 

The multi-layer feedforward network (Figure 3.2 (b)) is composed of several layers which 

are introduced in the network in order to express more complicated transformations. It 

contains one or more hidden layers between the input layer and the output layer. This 

introduction of hidden layers enables the network to extract latent factors of variations from 

its input [118]. In addition, the network acquires the ability to capture an overall perspective 

in spite of its local connectivity, owing to the fact of the increased neural connections and 

the additional set of synaptic connections [120].  
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In this architecture, the input signal is fed to the first layer (input layer). Consequently, 

the computational nodes of the second layer (next layer which is the first hidden layer) put 

in the activation pattern on the input layer nodes. Then, the signals outputted from the second 

layer (first hidden layer) are used as inputs to the third one (second hidden layer), and so on 

for the rest layers of the network. The nodes of a layer receive information only from the 

nodes of the preceding layer. The output signals of the last (output) layer constitute the final 

output of the network in response to the first (input) layer. 

Figure 3.2 illustrates two typical examples of the neural network architecture types 

and the difference between them. The left side presents an example of a single-layer 

feedforward neural network where the input and output layers are composed of five and two 

nodes respectively. The right side presents an example of a multi-layer feedforward neural 

network where the input, hidden and output layers are composed of five, three and two nodes 

respectively. Both examples depict fully-connected networks. 

 

 

 

 

 

 

 

 

 

Figure 3.2. Single-layer feedforward neural network (a) Versus Multi-layer feedforward 

neural network (b). 

3.2.2.4. Activation Functions 

The fundamental operation of an artificial neuron implies summing up its weighted input 

signals and then applying an activation function. Typically, the same activation function is 

applied for all neurons of the same layer in the network. Activation functions must be 

differential and continuous so as to allow the error correction during the training phase [118]. 

There are many possible activation functions. 
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The activation function is a function that must return a real close to 1 when the "good" 

input information is given and a real close to 0 when it is "bad". Functions with values in the 

real interval [0,1] are generally used.  

If the activation function is linear, the neural network would reduce to a simple linear 

function. However, nonlinear activation functions are often employed for more realistic 

results. These nonlinear transformations may significantly help when the input data are not 

linearly separable in the input space. They provide a new representation space in which the 

transformed data may be linearly separated. Therefore, the use of the neural network is 

however much more interesting when using nonlinear activation functions. 

3.2.2.5. Learning Methods 

As presented above, most problems require neural networks with an architecture of several 

fully-connected nonlinear layers. The neural networks will then be hard to interpret. For this 

reason, that deep learning is generally related to the term “black box”, as it is not possible to 

track the internal computations inside the network. Moreover, the increase in the number of 

hidden layers makes the learning process more complex and computationally expensive. In 

this section, we describe the different algorithms used for training neural networks. Then, 

we outline the most popular optimization algorithms and objective functions commonly 

adopted for training neural network models and solving the afore-mentioned issues.  

3.2.2.5.1. Training Algorithms 

The high commonly used method for training artificial neural networks is the back-

propagation method. It consists of two phases of different directions: 

 A forward phase, where the signal x is propagated through the neural network layers 

from the input layer to the output layer. In this phase, weights of connections between 

neurons are fixed. The output value computed by the output layer is compared with 

the desired value using a loss function. The difference score is then used as error 

signal in the backward phase. 

 A backward phase, where the computed error signal is propagated through the 

network in the opposite direction layer-by-layer from the output layer to the input 

layer. The weights of connections between neurons are then adjusted so as to 

minimize the error value, i.e., so that the computed output and the desired output 

would be more similar. These computations of adjustments are much more 

challenging in the hidden layers.  
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3.2.2.5.2. Optimization algorithms 

Training neural networks is such a complex task. Training a single instance may take time 

from days to months on hundreds of machines. As a result, several optimization methods 

have been proposed so as to solve these issues of increased complexity and high 

computational costs. In what follows, we outline the most efficient modern optimization 

algorithms used while training deep neural networks. They are adapted from [118]. 

 Gradient descent is the basic optimization algorithm for training artificial neural 

networks. It updates the model parameters at each step of the iterative process in the 

gradient direction of the objective function. 

 Stochastic gradient descent (SGD) [121] is a stochastic approximation of the 

gradient descent optimization. It also follows an iterative process to minimize the 

objective function. 

 Stochastic gradient descent with Momentum. The momentum method [122] can 

provide considerable improvements over SGD, speeding up the training process and 

avoiding the unstable oscillatory problems caused by selecting high values of 

learning rates. 

 Stochastic gradient descent with Nesterov Momentum is proposed in 2013 [123] 

to improve the momentum method, and inspired from the Nesterov’s accelerated 

gradient method [124]. The Nesterov Momentum method evaluates and continuously 

corrects the gradient computation, and prevents the model from increasing the 

responsiveness. 

 AdaGrad [125] updates learning rates by scaling them inversely proportional to the 

square root of summing all the historical squared values of the past gradients. 

Differently from the previous optimization methods, this algorithm considers a 

different learning rate value for each step. 

 RMSProp. The main weakness of Adagrad is that, it may lead to an algorithm unable 

to acquire additional knowledge [126] due to the fact that the squared gradients 

accumulate and keep growing up during the training phase. RMSProp method is 

proposed [127] in order to solve this issue. It consists on discarding the extreme 

historical gradient values and accumulating only near past gradients. 

 Adam [128] computes adaptive learning rates for each parameter. It prevents the 

model from high biases and results as a robust response to the selection of 

hyperparameters. 
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 Adadelta is proposed in 2012 [129] as an extension of Adagrad in order to overcome 

many issues such as the problem of continual decay of learning rates during the 

training phase. It is robust to a large variety of configuration choices, demonstrating 

a high disposition to be applied as optimization method for training neural networks. 

3.2.2.5.3. Objective functions 

Most deep learning models involve an optimization phase, that usually consists on 

minimizing the objective function named as the loss function [118]. The objective function 

typically returns the distance between the output computed by the neural network and the 

expected output of the training data. The optimization process aims for identifying the best 

set of parameters which minimizes this distance.  

Regularization refers for taking as input the parameters of a neural network and returns 

as output a score representing their complexity. Thus, the training algorithm aims for 

minimizing both the loss function and the parameters complexity.  

Various loss functions and regularization techniques have been proposed and the 

possibilities of their combination lead to diverse learning algorithms. In what follows, we 

introduce the most commonly used loss functions and regularization methods used for 

training artificial neural networks (adapted from [118]). 

1) Loss functions 

 Mean Squared Error (MSE) squares the prediction error and averages over all 

instances of the training set. 

 Hinge loss is the loss function ordinarily adopted for binary classification purposes, 

and can be extended for dealing with multi-classification problems [130]. 

 Log loss is a continuous loss function which displays a related convergence rate as 

the hinge function. 

 Binary cross-entropy loss [131] is the appropriate loss function for binary 

classification purposes with conditional probability outputs. 

2) Regularization 

 L2 regularization [132] is one of the simplest regularization techniques. It computes 

the sum of squares of the network weights. 

 L1 regularization [133] is the sum of absolute values of the network weights. It is 

recommended in particular for sparse solutions. 

 Elastic net [134] is the combination of L2 and L1 regularizers. 
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 Dropout [135] randomly drops units from the neural network during the training 

phase. It is less complex compared to the previously presented regularization 

techniques, and generally leads to significant results. 

3.2.3. Deep Learning Architectures 

A good number and varied architectures are used in deep learning, such as convolutional 

neural networks, recurrent neural networks, long-short term memory and others. This 

thesis focuses on the deep learning research lines that we present in the following. 

3.2.3.1. Auto-Encoders 

Auto-encoders are the most adopted deep learning models for unsupervised 

representation learning [118]. They act as a dimensional reduction method, where the 

input layer is copied to the output layer and the hidden layer between them represents 

then the latent factor of the data. This representation has proved its efficiency in 

facilitating the visualization, communication, classification and storage of data [136]. 

Thus, auto-encoders have achieved successful results in a variety of applications, and 

attracted a lot of attention in recent years as very effective unsupervised models. 

The core component of an auto-encoder is a neural network which tries to reconstruct 

its input layer at its output layer. Figure 3.3 illustrates the general architecture of auto-

encoder, with three hidden layers of three, two and three nodes respectively. 

 

Figure 3.3. General architecture of auto-encoder. 

An Auto-encoder consists initially of two crucial components.  
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1. The encoder function, denoted as f, allows an efficient and straightforward 

feature extraction from an input set of data 𝑋 = {𝑥1, 𝑥2 , … , 𝑥𝑛}, and represent it 

as a feature vector 𝐻 = {ℎ1, ℎ2 , … , ℎ𝑚}. The encoder function can then be 

defined as: 

𝐻 = 𝑓(𝑋)                                                                  (3.2) 

2. The decoder function, denoted as g, maps the feature space back into the input 

space, producing a reconstruction set 𝑌 = {𝑦1, 𝑦2 , … , 𝑦𝑛}. The decoder function 

can be defined as: 

𝑌 = 𝑔(𝐻)                                                                  (3.3) 

Formally, an auto-encoder can be expressed as a multi-layer artificial neural network as: 

{
 

 𝐻 = 𝑓(𝑋) = 𝑎𝑓(𝑊𝑋 + 𝑏𝑓) = 𝑎𝑓(∑ (𝑤𝑖𝑥𝑖) + 𝑏𝑓)
𝑛

𝑖=1

𝑌 = 𝑔(𝐻) = 𝑎𝑔(𝑊′𝐻 + 𝑏𝑔) = 𝑎𝑔(∑ (𝑤′𝑗ℎ𝑗) + 𝑏𝑔)
𝑚

𝑗=1

                             (3.4) 

where: af and ag are the encoder and decoder activation functions; bf and bg are the 

encoder and decoder bias vectors; W and W’ are the encoder and decoder weight matrices. 

The auto-encoder training process consists on finding the set of parameters which 

minimizes the reconstruction error. Stochastic gradient descent methods are usually 

employed for error minimization while training auto-encoders [118]. The choice of the 

activation and optimization functions largely depends on the domain nature of the input 

data. 

3.2.3.2. Embedding Models 

The unsupervised generation of embeddings are one of the recent successes of the artificial 

neural network models. The term ‘embedding’ is usually used in machine learning to refer 

for representing objects in a real number vector space. 

Embeddings allows performing complex analysis tasks on new types of data since 

machine learning models work essentially on numerical data. Moreover, they retain 

characteristics of object and then reduce complex models to fewer dimensions. 

Embedding algorithms rely on the notion of “neighbourhood” [137]. They work in a 

way that the geometric relationship between two vectors represents the semantic relation 
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between the corresponding entities. In what follows, we outline some basic models for 

embedding data into low-dimensional vector spaces: 

 Word Embeddings 

The word can be seen as the atomic unit of natural language processing. Treating 

words as vocabularies suffers from sparsity and high-dimensionality. Word 

embedding works on finding new representations of words, which are dense, lower-

dimensional and easily manageable by machine learning models. These algorithms 

are neural network based models trained on a large text corpus, and produce as 

output a vector space, aiming for representing each word in the corpus by a real 

valued vector. 

 Node Embeddings 

Node embedding consists on mapping nodes to a high dimensional vector space so 

as to maximize the likelihood of preserving node neighbourhoods [137].  

 Sentence Embeddings 

Words can be combined in exceedingly many ways. Unlike word embeddings where 

words represent semantic units, the idea of semantic embeddings is to consider words 

as a continuous representation in a sentence. 

 Knowledge Graph Embeddings 

Embedding models have also spilled into the field of knowledge graphs. They are 

mainly used in statistical representation learning, where graphs are compressed into 

low-dimensional representations which may be used by reasoning systems, and in 

knowledge base completion, where embeddings are used to predict new relations 

between graph’s entities [138]. 

3.3. Review of the Literature 

In this section, we review the use of deep learning models in the ontology matching field. 

First, we present the ontology matching tools based on artificial neural networks proposed 

in the literature. Then, we present the existing approaches that have made use of deep neural 

networks for ontology matching. 

3.3.1. Ontology Matching with Artificial Neural Networks 

In the last decades, using machine learning techniques, particularly neural networks, to 

match heterogeneous ontologies has attracted much attention from research teams. 
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Following, we present the different approaches which make use of artificial neural networks 

for ontology matching with a chronological order. 

 The first application of neural networks in general mapping were in 1989 [139], 

where the authors proved that any continuous mapping can be approximately realized 

by multilayer neural networks with at least one hidden layer with sigmoid output 

functions. 

 Authors in [140], proposed an efficient learning method to approximate non-linear 

mappings and their derivatives, whose input-output relations are represented by 

neural networks. 

 SEMINT (SEMantic INTegrator) [141] [142] is a system prototype for semantic 

integration in heterogeneous databases using neural networks. In 1993 [143], authors 

presented three techniques for automating the process of matching to integrate 

heterogeneous database systems. The study in [144] presents a procedure using a 

classifier to categorize attributes according to their field specifications and data 

values, and then trains a neural network to recognize similar attributes. In 2000 [145], 

authors represented attributes in different databases with their metadata as 

discriminators. 

 The work in [146] presents an integrated ontology mapping approach. It determines 

similarity through rules which have been manually formulated by ontology experts. 

 APFEL (Alignment Process Feature Estimation and Learning) [147] is a machine 

learning approach that explores the user validation of initial alignments for 

optimizing alignment methods, which are based on extensional and intentional 

ontology definitions. 

 The study in [148] presents an automatic ontology alignment method based on the 

recursive neural network model that uses ontology instances to learn similarities 

between ontology concepts. 

 In work [149], a new supervised learning based method for compound metric 

creation is proposed. A training set is used to create a neural network model, 

performs sensitivity analysis on it to select appropriate metrics among a set of 

existing ones, and finally constructs a neural network model to combine the result 

metrics into a compound one. 
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 The work in [150] presents a Knowledge Source Discovery (KSD) agent, which 

guides knowledge requirements towards distributed ontology domains in the 

Semantic Web through a neural network model. 

 OAANN (Ontology Alignment by Artificial Neural Networks) [151], [152] uses 

artificial neural network to align biological ontologies. It consists of learning and 

adjusting contributing weights for the different semantic aspects of ontologies. 

 MALFOM-SVM [153] uses multiple concept similarity measures for the ontology 

mapping problem. It organized this problem into a standard machine learning 

framework. 

 X-SOM is a flexible and extensible ontology mapping and integration tool first 

presented in 2007 [154]. It combines various matching algorithms by means of a 

feed-forward neural network. It exploits logical reasoning and local heuristics to 

improve the quality of mappings while guaranteeing their consistency. The 

architecture of the X-SOM Ontology Mapper is composed by three subsystems: 

Matching subsystem, Mapping subsystem and Inconsistency Resolution subsystem. 

The work in [155] summarizes its results in the OAEI 2007 campaign. A nested and 

double classification approach for missing value imputation are presented in [156] 

and [157]. 

 OMNN (Ontology Mapping Neural Network) [158] [159] is proposed in order to 

learn and infer correspondences among ontologies. It extends the Identical Elements 

Neural Network’s ability to represent and map complex relationships among 

ontologies. The learning dynamics of simultaneous training of similar tasks interact 

at the shared connections of the networks. The output of one network in response to 

a stimulus to another network can be interpreted as an analogical mapping. OMNN 

has proved its performance on ontology mapping by participating to several OAEI 

benchmark test cases. 

 PRIOR+ (Profile pRopagation and InfOrmation Retrieval techniques) [160] [161] is 

a generic and adaptive ontology mapping approach, based on propagation theory, 

information retrieval techniques and artificial intelligence. The approach consists of 

three major modules, the IR-based similarity generator, the adaptive similarity filter 

and weighted similarity aggregator, and the neural network based constraint 

satisfaction solver. PRIOR+ first measures both linguistic and structural similarity of 
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ontologies in a vector space model using classic information retrieval techniques, and 

aggregates them using an adaptive method based on their harmonies. Then, the 

interactive activation and competition neural network is selectively activated to solve 

the constraint satisfaction problem in the context of ontology mapping. The work in 

[162] and [163] summarizes the results of PRIOR and PRIOR+ for OAEI 2006 and 

2007 campaigns. Authors used the interactive activation network [164], then 

integrated the interactive activation and competition neural network in ontology 

mapping [165]. In 2008 [166], they treated the neural network based constraint 

satisfaction in ontology mapping. The work in [167] presents a harmony based 

adaptive ontology mapping approach. 

 MoTo (Mapping ontology To ontology) [168] [169] is an automated ontology 

matching system for recovering uncertain mappings through structural validation and 

aggregation, supported by various machine learning techniques. 

 The work in [170] presents an Artificial Neural Network based ontology matching 

model for improving web knowledge resource discovery on the Semantic Web based 

on recently developed intelligent techniques. This method takes into account both 

schema-level and instance-level information from ontologies, and semantic 

annotations, and combines agent-based technologies with an artificial neural network 

based classifier to propose a solution to the ontology-matching problem. 

 CIDER (Context and Inference baseD alignER) is a schema-based ontology 

alignment algorithm with usage of neural networks. It compares each pair of 

ontology terms by extracting their ontological contexts and combining different 

elementary ontology matching techniques. Its participations at the OAEI campaigns 

are presented in [171], [172] and [173]. CIDER first extracts the ontological contexts 

for each ontology terms pair up to a certain depth and enriches it by applying 

lightweight inference rules, and then combines the different elementary ontology 

matching techniques using artificial neural networks in order to generate alignments 

between ontologies. CIDER-CL is the evolution of CIDER for Cross-Lingual 

matching. 

 In 2012 [174], authors presented an ontology mapping system which computes 

various types of similarities based on metadata and instances and combines them 

using neural network learning. 
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 X-Map (eXtended Mapping) is a structural approach for aligning OWL ontologies 

first defined in 2010 [175], presenting an automatic method to learn how to combine 

the linguistic and structural affinity. XMap++ [176] [177] exploits WordNet as a 

background knowledge sources. In 2012 [178] [179], authors introduced artificial 

neural network in the ontology alignment process to combine multiple similarity 

measures into a single aggregated metric. In 2013 [180], they aimed for improving 

the large-scale ontology alignment quality. XMapGen and XMapSig [181] are two 

variants of XMap++. Authors in [182] proposed a novel approach using context-

based measure for matching large-scale ontologies. XMap++ and XMap took part in 

several editions of OAEI where their results and performance are described [183] 

[184] [185] [186] [57]. 

 The approach proposed in [187] tackles the ontology alignment task by proposing a 

matching process based on the usage of Weightless Neural Network (WNN) model. 

A WiSARD classifier is built and used to estimate a distribution-based similarity 

measure among the concepts of the several ontologies being matched. New patterns 

can be learned without the need to retrain the complete neural network, and names 

of classes are taken into account in order to obtain a more significant alignment. 

3.3.2. Deep Learning Solutions for Ontology Matching Tasks 

In this section, we study the use of deep learning techniques in the ontology matching field. 

The related work include: 

 ERSOM (Entity Representation and Structure based Ontology Matching) is proposed 

in 2015 [188]. It is an ontology matching system which mainly uses the deep neural 

network model to learn the high-level abstract representations of classes and 

properties from their descriptions. And it uses an iterative similarity propagation 

method based on more abundant structure information of the ontology for ontology 

matching in an unsupervised way. In 2017 [189], authors added a supervised learning 

step when training data is available to refine the learned representation, and then 

allowed to learn the representation of ontology entity in the cases the training data 

exists or not. 

 The study of Nkisi-Orji et al. [190] introduced a random forest classifier for ontology 

alignment which integrates semantic similarity features, string-based similarity 

features and semantic context features, using word embedding. It completes 
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alignment in two stages. It first selects a set of candidate alignments using basic 

matching techniques. After that, a machine classifier determines the true alignments 

from entity pairs of the candidate alignments, using feature vectors that are generated 

from a variety of direct and indirect similarity indicators.  

 The approach proposed by Chandrashekar et al. [191] aims to discover the 

relationships between concepts from the analysis of semantic features across multiple 

ontologies, and identify the abstractions of the ontological relationships through 

mapping between features to the ontologies. The ontology mapping is performed 

through ontology search, feature extraction and word embeddings. 

 The work in [192] presented a novel ontology mapping system called HISDOM, 

which uses comprehensive factors like concept names, attributes, instances, and 

structural similarities to determine the similarity of ontology. And then dynamically 

derives the weight of those different factors in the overall ontology similarity 

proportional to the amount of information of each factor in the ontology, to determine 

whether the two ontologies have mapping relationships. HISDOM also uses a 

convolutional neural network to extract and calculate the comment and annotation 

semantics and find their similarity according to the extent of annotation. 

 Dhouib et al. [193] proposed a new ontology alignment approach inspired by an 

existing proposal [194]. It combines the radius measure and word embedding. They 

consider word embedding to get a vector representation of the concepts to be 

matched, and use it to compute hierarchical relations between concepts. 

3.3.3. Analytical Summary 

Deep learning algorithms have motivated numerous researchers in many fields to employ 

them in order to solve different and complex problems. Previously, we reviewed a state-of-

the-art on ontology matching approaches and systems that make use of artificial neural 

networks in general, then of deep neural networks in particular. In this section, we study and 

discuss these matching tools in order to identify their advantages and limits, and outline 

contributions of this study. 

A comparative review of existing ontology matching tools based on neural networks 

is given in Table 3.1. They are classified chronologically according to their last evolution 

year where neural networks are employed. Matching Strategy column specifies the 

technique adopted for finding equivalences between ontologies. Neural Network Usage 
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columns describe the use of these networks in the matching process by the reviewed 

approach, including the purpose of this application, the structure of the network, as well as 

the learning method. Large-Scale column considers whether the matching tool can tackle 

the issue of large-scale ontology matching or not. 

This chapter is partly related to our published paper [195], that aims to figure out the 

best way to use neural networks in ontology matching. It provides a survey on the different 

ontology matching approaches based on neural networks, seeking for clearing the way for 

researchers in this domain. Readers are referred to [195] for further studies and for more 

details about the input required by each tool, its output type, matching interactivity, the 

results of its evaluation in terms of precision, recall and F-measure, participation at OAEI 

campaigns, …etc. 

Matcher Matching Strategy 

Neural Network Usage 
Large-

Scale 
Purpose Structure Learning Method 

_ 

1989 

[139] 

Neural networks Approximation 

Multilayer feed-forward 

neural network 

Sigmoid as output 

activation function 

Backpropagation 

learning 
 

1993 

[140] 

Non linear 

differentiable mapping; 

Neural networks 

Approximation 

Multi-layer feedforward 

neural network + its 

adjoints 

Non linear activation 

function 

Supervised learning 

Backpropagation 

method with the 

steepest descent 

algorithm 

 

Semint 

2000 

[145] 

DBMS parsers; 

Clustering, Self-

organizing map 
algorithm (unsupervised 

learning); 

Neural networks 

 

Category learning and 

recognition 
3 layer neural network 

Supervised learning, 

forward propagation, 
error calculation, 

backward 

propagation 

 

_ 

2004 

[146] 

Terminological 

similarity; 

Intentional similarity; 

Heuristics; 

Machine learning 

techniques 

Learn weights of n 
different similarity 

methods 

classify mappings 
into: equal or not 

equal 

3 layer neural network 

consisting of 1 linear input 
layer, 1 hidden layer with a 

tanh function, and a 

sigmoid output function 

-  
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APFEL 

2005 

[147] 

Terminological; 

Extensional; 

Intentional; 

Heuristics; 

Machine learning 

techniques 

Optimize the 
representation of the 

alignment scheme 

Aggregate different 
similarity measures 

using weighting 

schemes 

classification 

Input: set of 
feature/similarity 

combinations generated 

before training 

Output: classification of 

being aligned or not 

Training data: validated 
alignment pairs processed 

with the automatically 

generated collection of 

features and similarities 

Supervised learning  

_ 

2005 

[148] 

Terminological 

similarity; 

Structural similarity, 

graph-based; 

Extensional similarity; 

Neural networks 

Estimate distribution-

based similarity 

measure 

Recursive 2 layer neural 

network classifier 

Sigmoid as output 

activation function 

Supervised learning, 

backpropagation 

algorithm 
 

_ 

2006 

[149] 

Different similarity 

metrics; 

Machine learning 

techniques 

Approximation 

Select appropriate 

metrics for 

combination, and 
select their appropriate 

weights 

Multilayer neural network Supervised learning  

_ 

2007 

[150] 

Terminological 

similarity, string-based; 

Extensional similarity, 

instance-based; 

Neural networks 

exploit the information 

contained in ontology 

instances 

classify the instances 

of each concept: 

positive or negative 

matching 

3 layer multilayer 

perceptron model (1 hidden 

layer) 

Linear activation functions 

for hidden layer neurons 

Supervised learning: 

standard 

backpropagation 

algorithm 

 

OAANN 

2008 

[152] 

Rule-based + learning-

based; 

Terminological 

similarity; 

Intentional similarity; 

Extensional similarity; 

Neural networks 

Learn weights for 

concept's semantic 

aspects 

2 layer neural network 

(with 3 input neurons and 1 

output neuron) 

Supervised learning, 

Gradient-descent 
 

MALFOM-

SVM 

2008 

[153] 

Word similarity, string-

based (prefix, suffix, 

Edit distance, n-gram), 
knowledge-based 

(Wordnet, synset, Wu & 

palmer, description, 

Lin); 

Word list similarity, 

maximum word 
similarity, word edit 

distance; 

Concept hierarchy 

similarity; 

Structure similarity 

Classification - 
Supervised machine 

learning 
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X-SOM 

2010 

[157] 

Logical reasoning; 

Local heuristics; 

Consistency checking; 

Language-based 

similarity, Jaro, 
Levenshtein, Wordnet, 

Leacock Chodorow; 

Structural similarity, 

graph-based; 

Semantic similarity; 

Neural networks 

Aggregate several 

similarity maps 

Feed-forward neural 

network 

Supervised learning, 

standard 

backpropagation 

learning algorithm 

 

OMNN 

2010 

[159] 

Identical Elements 

Neural Network 

learn  relationship 
mapping and infer 

correspondences 

among ontologies 

4 Sub multilayer neural 

networks 
Cross training  

PRIOR 

2010 

[161] 

Linguistic similarity, 
Edit distance, IR 

techniques, TF-IDF, 

Cosine; 

Structural similarity; 

Neural networks; 

 

Solve Constraint 

Satisfaction Problem 

(CSP) in context of 

OM 

 

Interactive Activation and 

Competition (IAC) neural 

network 

Propagation theory √ 

MoTo 

2011 

[169] 

Linguistic similarity, 

Wordnet, relational 
affinity, linguistic 

quantifiers; 

Structural similarity, IC, 
Jaccard, Dice, Ochiai, 

Gower Legendre 

Extensional using Pellet 

reasoner; 

Machine learning 
techniques (4 base 

learners+1 meta learner 

to produce 1 K-Nearest 
Neighbor Classifier+1 

ANN+2 Bayesian 

Classifiers) 

Classify instances  and 
estimate their 

probability 

distributions 

- 
Unsupervised 

learning 
 

_ 

2012 

[170] 

Schema-level + 

instance-level; 

Semantic annotations; 

Agent-based 

technologies; 

Machine learning 

classifier 

Classification 

Multilayer artificial neural 

network 

Sigmoid as activation 

function 

Supervised learning, 

Levenberg-
Marquardt training 

algorithm 
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_ 

2013 

[174] 

Terminological 

similarity, Levenshteins 

distance, TF-IDF; 

Structural similarity; 

Extensional, instance-

based, attributes, Dice; 

Neural networks 

Learn the different 

weights for instance -

based and metadata 

measures 

3 layers feed forward 
neural network (8 units in 

the input layer, 12 units in 

the hidden layer and one 

output unit) 

Weights initialized 

randomly 

Training set prepared 

manually 

  

CIDER 

2013 

[173] 

Context extraction, 

inference rules, 

semantic reasoner; 

Terminological 

similarity, Levenshtein; 

Structural similarity, 

VSM; 

Neural networks 

Combine features of 
extracted ontological 

contexts 

2 3-layer perceptrons (each 
of 5 input neurons, 3 

neurons in hidden layer, 1 

output neuron and 2 bias) 
Sigmoid as activation 

function 

Supervised learning  

ERSOM 

2017 

[189] 

Terminological, Cosine 

Similarity; 

Structural, Similarity 
Propagation, 

Intentional, Induced 

propagation graph; 

Extensional, Scaled 

Levenstein; 

Kullback-Leibler 

divergence; 

Neural networks 

Learn the high level 

abstract representation 

for ontology entities 

Deep neural network: 

Multi layer learning model; 

Auto-encoder (1 hidden 

layer with large number of 

units); 

Stacked Auto-Encoder 

(Multiple hidden layers 

with large number of units) 

Softmax regression 

classifier 

Training data by domain 

experts 

Supervised +  
Unsupervised 

representation 

learning 

 

- 

2017 

[187] 

Weightless neural 

networks; 

A WiSARD classifier is 

built to 

estimate a distribution-
based similarity 

measure among the 

concepts of ontologies 

Classification WiSARD neural networks Supervised learning  

XMap 

2018 

[57] 

Terminological 
similarity, string-based, 

language-based 

Structural similarity; 

Schema-based; 

Semantic similarity, 

Wordnet 

Context-based; 

Neural networks 

Extract the optimal 
model of compound 

metrics 

Feedforward neural 
network: Multi layer 

perceptron (3 layers: input, 

hidden, and output layer 
(with 3, 4, and 1 neurons 

respectively)+2 bias for 

input and hidden layers) 

Sigmoid as activation 

function 

Supervised machine 
learning: Resilient 

Propagation Training 
√ 

- 

2018 

[190] 

Random forest 

classifier; 

Word embedding; 

String-based similarity; 

Semantic similarity 

Classification Deep neural networks 
Supervised machine 

learning 
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- 

2018 

[191] 

Semantic mapping; 

Ontology search; 

Feature extraction; 

Word embeddings; 

Natural Language 

Processing, TF-IDF 

Learning word 
embeddings & 

producing vector 

space for a large 
corpus of ontological 

properties 

Skip-gram model of 
Word2Vec (two-layer 

neural network) 

Unsupervised 

learning 
 

HISDOM 

2019 

[192] 

Multi-dimensional 
similarity, name-based, 

attribute-based, 

instance-based, 
structure-based, 

comments-based; 

Hybrid similarity based 

on dynamic weights 

Extracting comment 
and annotation 

semantics and 

calculating their 

similarity 

Convolutional neural 

networks 
-  

- 

2019 

[193] 

Word embedding; 

Radius measure 

Representing concepts 

of ontologies and 

computing 
equivalence and 

hierarchical relations 

between concepts 

Pre-trained word vectors 
Unsupervised 

learning 
 

Table 3.1. Summary of ontology matching tools based on neural networks. 

Figure 3.4 illustrates the publication activity and the evolution of the previously described 

researches on ontology matching using artificial neural networks. 

 

Figure 3.4. Publication activity on using artificial neural networks for ontology matching. 

An analytical look at the above comparative review reveals the unfolded conclusions: 

 The use of artificial neural networks for ontology matching started from 1989, 

reached its maximum value which is equal to 7 published works in 2007, and 

continues to 2018. Using deep learning models for matching heterogeneous 

ontologies has not attracted much attention from researchers. It started in 2015 and 

continues to this day with a low publication rate. 
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 The study of the researches presented previously highlights the fact that the main 

difference between them resides in the strategy used in matching the heterogeneous 

ontologies, like general ontology matching approaches, and particularly in the 

purpose of applying neural networks in ontology matching. 

 The most commonly used learning technique is the back-propagation learning 

method, and a very high percentage of them favour supervised learning. 

 The structure is generally a multilayer feed-forward neural network. 

 Only Prior and XMap tackle the issue of large-scale ontology matching.  

 Artificial neural networks have been widely used in different areas of research, 

particularly in the field of ontology matching. However, the use of deep neural 

networks has not attracted much attention from research teams to match 

heterogeneous ontologies, despite the fact that ontology matching is an active field 

of current research. 

 Although deep learning models are very appropriate for dealing with large datasets, 

they are not commonly used to address the problem of large-scale ontology matching. 

Moreover, the few works employing these models that can be found in the literature 

aim at enhancing the performance of the ontology matching task, and not at handling 

the heterogeneity between large ontologies. Besides, they tested their methods on 

ontologies of small sizes. 

Further conclusions can be additionally derived from [195]: 

 Regarding matching strategies, the most similarity type used is terminological 

measures, due to their ease of implementing. Structural measures are also used 

compared to extensional ones. Usually, semantic measures are not too much used 

because of their need of complex processes. However, they intervene in a large 

number of approaches in this literature review because of the fact that, those 

involving semantic aspects only by using artificial neural networks are included. 

 Mainly, there are two major purposes of employing neural networks in ontology 

matching. The most used one is approximation, where the approaches use artificial 

neural networks mostly to find optimal weights and define functions that provide 

ontology similarity between entities of ontologies being matched, while others aim 

for learning representation of ontology components. Classification is the second one, 

where these machine learning models are employed to classify concepts of ontologies 
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in some researches, and to classify ontologies patterns in others. Some other ontology 

matching techniques applied these machine learning models for particular purposes. 

 The big majority of the approaches take as input OWL ontologies and produce 1:1 

output mapping result. 

 About 85 percent of the approaches are fully automatics. Excepting SEMINT which 

intervene the user to check and confirm output results, and APFEL to validate initial 

alignments. 

 The analysis of their matching results of the different approaches presented in their 

papers in terms of precision, recall and f-measure, shows a high accuracy of 

matching. This proves the efficiency of artificial neural networks in the field of 

ontology matching. 

3.4. Conclusion 

In this chapter, we have presented a state-of-the-art on matching ontologies with deep 

learning. First, we introduce the challenges motivating deep learning. Next, we present 

artificial neural networks, their biological inspiration, their fundamental architectures and 

activation functions. The learning methods are also detailly described. Then, we present deep 

learning architectures along with the most important deep learning models related to this 

study which are auto-encoders and embedding models. After that, we review the existing 

ontology matching techniques that have made use of artificial neural networks, and then 

particularly of deep neural networks. And finally, we discuss the presented tools so as to 

figure out the current challenges that allow to outline contributions of this work. 

In chapter 1, chapter 2 and chapter 3, we have presented a wide overview of the state-

of-the-art on the existing ontology matching tools in general, in the large-scale in particular 

and on those employing artificial and deep neural networks respectively. Apart from 

studying all these techniques and identifying their advantages and limits that we figure out 

the current challenges and address them by proposing our methodology for large-scale 

ontology matching using deep learning techniques which will be detailly described in the 

chapters of the next part. 
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Chapter 4 

Reuse-based Semantic Approach for 

Large-Scale Ontology Matching 
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4.1. Introduction 

Large-scale ontology matching is still challenging for its long-time processing and large-

memory consumption. In the previous chapters, we have presented a large overview of the 

state-of the-art on the existing ontology matching tools, particularly on the large-scale 

ontology matching systems and those employing artificial and deep neural networks. 

In this chapter, we present NeuralOM, an artificial neural networks-based solution that 

we propose to address the large-scale ontology matching challenges. We first overview the 

proposed solution and outline its contributions. Then, we detailly describe its technical steps. 

After that, we present the evaluation framework where we conduct our experiments on 

twelve different test cases from the OAEI initiative at both small and large scales. We present 

and analysis the results of these experiments and discuss the performance of NeuralOM. 

4.2. Brief Overview 

This chapter is related to our published work [196] [197] where we propose NeuralOM for 

large-scale ontology matching. Figure 4.1 presents an overview of the proposed matching 

approach. NeuralOM consists of combining the mappings of the most effective ontology 

matching systems through a linear perceptron in order to define a matching function that 

leads to generate the ideal set of correspondences between ontologies. We aim by training 

their neural network to adjust a weight for each matching tool according to its importance. 

The final mapping is obtained after a threshold filtering. This combination strategy using 

neural networks serves to increase the quality of the matching task, and then leads to have 

optimal matching results. 
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Figure 4.1. NeuralOM Overview. 

The main contributions of NeuralOM are: 

 It reuses and combines, according to a very detailed state of the art on the existing 

ontology matching techniques, the results of the best matching systems that have 

been validated through various test cases. As we aim, not just to generate alignments 

between ontologies, but to ideally match them, we refine these results to achieve a 

perfect ontology matching. 

A large number of works that address the ontology matching issue can be found in 

the literature. That allows thinking of benefiting from the existing matching 

techniques. Thus, refining and reusing different effective matching results give the 

impression of being interesting. Moreover, the process of matching ontologies 

(Sect.1.3.3) takes as parameter an initial alignment which is intended to be completed 

by the matching process. NeuralOM considers as initial alignment the different 

mappings generated by the selected candidate matching systems. Working on 

refining ontology matching results denotes working on a higher and more precise 

level than working on matching ontologies. 
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 Ontology matching is initially based on computing similarities between ontologies. 

Basing on one similarity type is not enough actually. The majority of ontology 

matching techniques combine several similarity measures. For preference, 

NeuralOM combines several alignments that have been generated through 

complicated processes and validated by various tests. That obviously can give finer 

and more precise matching results. 

 The refining strategy is based on artificial neural networks which are very 

appropriate for combination, because of their structures of numerous inputs and 

outputs. 

 Regarding the classification of ontology matching techniques (Sect.1.3.4), 

NeuralOM benefices from different matching strategies since the candidate matchers 

work differently. Therefore, it acquires a great chance to provide a maximal number 

of possible and especially of correct correspondences. 

4.3. Neural Ontology Matching 

In this section, we present NeuralOM, the neural networks-based ontology matching 

approach that we propose for matching large-scale ontologies. The processing flow of 

NeuralOM is illustrated in Figure 4.2. 
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Figure 4.2. Processing flow of NeuralOM. 
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As we are dealing with an ontology matching issue, the input is two ontologies to be 

matched: Ontology1 and Ontology2, and the output is an alignment (a set of 

correspondences) between them. We define such a correspondence by a triplet as: 

𝐴 = {𝐶, 𝐶′, 𝑉}                                                        (4.1) 

Where: C is a concept from Ontology1; C’ a concept from Ontology2; and V the similarity 

value between C and C’ given by our technique. 

4.3.1. Constructing the Dataset 

The first step of NeuralOM consists on constructing the matching dataset by generating N 

alignments between the two input ontologies to be matched: Ontology1 and Ontology2, by 

means of the most effective matching tools aiming to refine their results. Each set of 

correspondences is generated by an ontology matching tool applying its own specific 

matching technique. Combining such results is not that simple. Chosen systems, which are 

not all available, are of different inputs and especially of different outputs. Choice criteria 

and number of chosen systems are additional challenges. Therefore, these tools are chosen 

according to a very detailed state of the art on the different ontology matching systems 

developed in the scientific literature. N depends on choice criteria. 

Next, the N alignments are combined and refined according to the environmental 

conditions of our approach for the aim of perfectioning the matching process. For example, 

an alignment value which exceeds the upper bound of the interval defined for 

correspondences should be set equal to 1.0. 

After that, the N different mappings are combined to get the whole dataset for 

matching. The method of combination has a big impact on the resulted alignments. It 

determines the size of the dataset and then of the resulted mapping set. However, combining 

such results is quite challenging; Chosen tools, which are not all available, are of different 

inputs and especially of different outputs. Choice criteria and number of chosen systems are 

additional challenges.  

4.3.2. Network Training 

This step is the core process of the proposed matching approach. It consists of applying a 

supervised learning procedure based on neural networks, in order to learn the matching 

function that allows generating correspondences between Ontology1 and Ontology2. 
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We aim by this step at adjusting a weight for each matching tool. For that, we train a 

neural network for each pair of concepts from the training dataset in order to fix, for each 

system, a value which reflects its importance. 

The trained neural network consists of a simple linear perceptron of N inputs and one 

output. Figure 4.3 illustrates this network. Inputs correspond to the different matching 

systems whereas the output represents the pretended similarity value between the concerned 

concepts. 

 

 

 

 

 

 

Figure 4.3. Neural Network Structure. 

In neural networks, the output is built on the type of target variable. In our network, 

the output is in fact a similarity value, i.e., it should be a in the range [0,1]. Thus, we use 
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For network learning, we use the back-propagation method following the learning 

algorithm described below. It uses a gradient decent procedure to modify weights so as to 

minimize the error between the desired output and the output computed by the perceptron.  

As we aim by this network to fix an importance value for each tool, the N weights are 

first initialized according to the choice procedure of the matching tools. They are fixed 

according to a detailed analysis of our state of the art on the different matching systems of 

the scientific literature. Then, they are updated for each sample of the training dataset S, 

applying the gradient decent method aiming at minimizing the error between the desired 

output and the output computed by the perceptron.  
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Each sample of the training set comprises two parts: {input, output}; the first one is 

composed by N similarity values obtained from the precedent mappings for the two concepts 

in question, and the second one affords the reference alignment value between the two 

concepts. This value is obtained from OAEI plus an expertise touch. The learning rate ɛ is 

fixed by trial and test. As results of this step, the final N weights values are adjusted after 

that the execution of the learning algorithm is completed. 

---------------------------------------------------------------------------------------------- 

Algorithm 4.1. Training the neural network to learn tools’ weights 

---------------------------------------------------------------------------------------------- 

Input:  perceptron P of N inputs and 1 output defined by the weights vector 

w®=(w1,...,wn); 

training set S=(v®, out)∈ Rn×{0,1};  

learning rate ɛ; 

Begin 

initialization of weights wi for i from 1 to n 

initialization of ɛ 

Repeat 

take an example (v®j, outj) from S 

compute the output oj = f(v®j, w®) of P for j 

𝑒𝑟𝑟𝑜𝑟 ← ε ∗ (outj − oj) 

// update weights 

for i from 1 to n 

  wi ← wi + error ∗ vi 

End Repeat 

End 

Output:  P defined by w®=(w1,...,wn).  

---------------------------------------------------------------------------------------------- 

4.3.3. Matching Ontologies 

The supervised learning process performed in the precedent step basing on neural networks 

allows to learn the matching tool’s weights, and then to define the matching function that 

leads to generate semantic correspondences between Ontology1 and Ontology2, using the 

different mapping results of the first step. The output similarity value between each pair of 

concepts from the input ontologies is computed as: 

V =∑ (viwi)/∑ wi
N

i=1

N

i=1
.                                               (4.3) 

Where: 𝑣𝑖 ∈ [0,1] is the similarity value given by tooli between the two concepts; 𝑤𝑖 is the 

weight which reflects its performance. 
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Finally, we filter the generated alignments so as to get the final mapping. For that, we 

define a threshold T (fixed by trial and test) which permits to extract the final alignment 

from the results obtained previously. Our aim behind this step at perfecting the matching 

process and ameliorating its precision, by eliminating irrelevant alignments, and keeping 

only the most appropriate ones. 

4.4. Evaluation Framework 

Aiming to study the effectiveness of NeuralOM, we evaluate it according to various 

campaigns of the Ontology Alignment Evaluation Initiative (OAEI). More details about this 

initiative and the evaluation challenges that it provides are given in Sect.6.4.1. We compare 

the results of NeuralOM, by its three different variants and for each test case, with the results 

of all OAEI participant systems for the same test challenge, and adopting the same cross-

validation procedure.  

This comparison is done for the global dataset in terms of the five standard evaluation 

metrics defined previously (Sect 1.3.5.3): precision, recall as well as three variants of Fb-

measure (F0.5-measure, F1-measure and F2-measure). 

In the following, we refer by NeuralOM-I, NeuralOM-M and NeuralOM-U to our 

neural networks-based matching approach by intersection, majority and union dataset 

construction method respectively (more details about these versions are provided in 

Sect.6.3.4). 

In order to choose the most efficient systems to be used in the first step of NeuralOM, 

we based on F1-measure, because it is the harmonic mean of precision and recall where both 

of them receive equal weight. We pick up the systems that maximize this score according to 

the results of OAEI for each test case. Their initial weights are those F1-measure values, and 

their number is fixed by trial and test. These tools have marked their efficiency over years 

by participating in several editions of the OAEI since their realizations. 

We adopt a cross-validation to effectively control the network while training and 

testing. More details about the cross-validation procedure are given in Sect.6.4.1. The 

number of cross-validation partitions, is fixed by trial and test. This latter is fixed to 2 

partitions for both of Anatomy, Phenotype-HP-MP and LargeBioMed-FMA-NCI test cases, 

to 3 for LargeBioMed-SNOMED-NCI, to 5 for LargeBioMed-FMA-SNOMED and to 6 

partitions for Phenotype-DOID-ORDO challenges. 
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We aim for performing tests on both small and large ontologies. Thus, we conducted 

our experiments in two main sketches: small-scale evaluation and large-scale evaluation. 

Moreover, as we really interest in matching complexity, particularly in time processing, we 

analyse the matching Runtime required by NeuralOM compared to all participant matching 

systems for each test case in the large-scale. 

4.4.1. Small-Scale Evaluation 

In this section, we present the results of our experimental procedure at the small scale. 

4.4.1.1. Evaluation for Conference Track 

Figure 4.4 illustrates the results of evaluating NeuralOM according to OAEI'2018-

CONFERENCE Track (Conference’18), and summarises their comparison with OAEI 

matching systems. 

 

Figure 4.4. Evaluation results of NeuralOM against OAEI systems for Conference'18 

track. 

The results of the global dataset hail from those of the several partitions. As shown in Figure 

4.4: 1. NeuralOM gives very good results (the minimum value is 0.681 given for recall by 
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Intersection and Majority versions that present complete values of recall (1.0) and excellent 

values of precision and the three F-measures. Thus, they present by far the best matching 

results. 2. Also for us, NeuralOM-I gets better performance than NeuralOM-M and better 

than NeuralOM-U. Contrary to the latter, the two other versions get high values of precision 
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values and no order of their precision values, thus, their F-measures values are also ordered 

decreasingly but less sharply. 4. As expressed by F1-measure, which better shows the real 

quality of the matching results, NeuralOM-I results are slightly better than those of 

NeuralOM-M, but they are roughly better than the others (the difference exceeds 0.2), 

including NeuralOM-U of which the results are close to those of AML and competitive to 

those of all the other matching systems. 

4.4.1.2. Evaluation for Biodiversity and Ecology Track 

Plots in Figure 4.5 and Figure 4.6 illustrate the results of evaluating NeuralOM according to 

OAEI'2018- BIODIV Track (BioDiv’18) for FLOPO-PTO and ENVO-SWEET Sub-

Tracks respectively, and summarises their comparison with OAEI matching systems. 

 

Figure 4.5. Evaluation results of NeuralOM against OAEI systems for BioDiv-FLOPO-

PTO'18 track. 

From Figure 4.5, it can be seen that: 1. The best precision values are given by NeuralOM-I, 
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with the best value obtained by NeuralOM-M. 2. Constantly, NeuralOM-I and NeuralOM-

M achieved complete global recall values. A very good value is obtained by NeuralOM-U 

as well. Then, the OAEI systems are ordered decreasingly, except POMap which is out of 

order. 3. For F0.5-measure, NeuralOM-I has by far the higher score. The other matching 

systems have close values around 0.8. For F1-measure and F2-measure, NeuralOM-I has the 

highest values followed by NeuralOM-M. The other systems are of a descending order 

starting from AML and NeuralOM-U, and more sharply for F2-measure. 
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Figure 4.6. Evaluation results of NeuralOM against OAEI systems for BioDiv-ENVO-

SWEET'18 track. 

It is clear from Figure 4.6 that: 1. Globally, NeuralOM-I has complete scores for all the five 

evaluation measures. The next best results are given by NeuralOM-M (complete value of 

recall). Then, AML and NeuralOM-U obtain good results, and then come the other matching 

systems with acceptable results, presenting a slight descending order, excepting Lily and 

LogMapLite which are out of this order with higher scores for precision and recall 

respectively. 2. For F-measures, the OAEI values are closer in F0.5-measure than in F1-

measure than in F2-measure. 

4.4.1.3. Evaluation for Process Model Matching Track 

Plots in Figure 4.7 and Figure 4.8 illustrate the results of evaluating NeuralOM according to 

OAEI'2017-PM Track (PM’18) for UA and BR respectively, and summarises their 

comparison with OAEI matching systems. 

 

Figure 4.7. Evaluation results of NeuralOM against OAEI systems for PM-UA'17 track. 
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We can notice from Figure 4.7 that: Globally, systems have the same systems disparities for 

all evaluation measures. NeuralOM-I gets the highest results (with a complete recall value). 

NeuralOM-M gives excellent scores, followed by NeuralOM-U and AML with good and so 

close values. Log-Map and I-Match have the smallest performance with scores around 0.5. 

 

Figure 4.8. Evaluation results of NeuralOM against OAEI systems for PM-BR'17 track. 
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Figure 4.9. Evaluation results of NeuralOM against OAEI systems for OA4QA'15 track. 

From Figure 4.9, we can observe that: 1. Precision results of all matching systems are better 

than recall values (around 0.8), excepting NeuralOM-I and NeuralOM-M which have 

complete values of recall. Thus, their F0.5-measure results are also better than those of F1-

measure and better than F2-measure results, but with sharp-less differences. 2. Recall values, 

excluding NeuralOM-I and NeuralOM-M with values equal to 1.0, and YAM++ and 

MaasMatch with a value equal to 0.7 and 0.63 respectively, did not exceed 0.6. 3. Since 

precision scores are more balanced and closer to each other than recall results, the variances 

of the three F-measures depend on those of recall, but with different intensities, sharply for 

F2-measure than F1-measure than F0.5-measure. 4. In total, the best performances belong to 

NeuralOM-I and NeuralOM-M with high and far scores. After-ward, NeuralOM-U is among 

the best 9 systems (from 23 systems) which obtain good results. 

4.4.1.5. Discussion of Results 

According to the previous results, we can conclude the following: 

 The challenge with the maximum average precision values is BioDiv-FLOPO-PTO 

(around 0.85). The next one is OA4QA with values around 0.8. Then, Conference 

has precision values around 0.75 and BioDiv-ENVO-SWEET's precision scores 

exceed 0.7. Finally, comes PM where the minimum average precision results belong 

to its PM-BR sub-track.  
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Precision values are separated in PM track and close to each other in the other test 

cases, less closely in BioDiv-FlOPO-PTO and OA4QA. In BioDiv-ENVO-SWEET, 

systems values are close and lower and far from our precision results. 

All maximum precision values of all the six test cases of this experimental study are 

given by the intersection version of NeuralOM. The highest one is equal to 1.0 for 

BioDiv-ENVO-SWEET and the lowest one is equal to 0.84 for PM-BR. The highest 

minimum precision value is equal to 0.75 and given by Lily for BioDiv-FLOPO-

PTO. The lowest minimum precision value in this experimental procedure is equal 

to 0.44 and given by AML for PM-BR tests. 

 The track with the maximum average recall values is BioDiv with its two sub-tracks 

(around 0.75). The next task is PM-UA with values around 0.73 and then Conference 

with values around 0.6. PM-BR average results are slightly higher than 0.5. Finally, 

OA4QA has the poorest average recall values (around 0.5).  

Recall values are separated in all tracks excepting PM-BR and OA4QA, where recall 

values are somewhat close to each other but the gap between the results of 

NeuralOM-I and NeuralOM-M and those of the other systems is big. 

The maximum recall value in all this experimental procedure is equal to 1.0 and given 

by both NeuralOM-I and NeuralOM-M for all test cases, excluding PM-UA, where 

this complete value is obtained only by NeuralOM-I, and NeuralOM-M has a slightly 

lower but still excellent score. The highest minimum recall score is equal to 0.53 and 

given by Lily for BioDiv-ENVO-SWEET, and the lowest minimum recall value is 

equal to 0.25 and given by I-Match for PM-BR sub-track. 

 The track with the highest average F0.5-measure values is BioDiv-FLOPO-PTO 

(around 0.82), and next, Conference with average values equal to 0.75. Then, 

BioDiv-ENVO-SWEET and OA4QA have average F0.5-measure results superior to 

0.7. Finally, PM-BR has the lowest average scores (around 0.54). 

F0.5-measure values are separated only in PM-UA and close to each other in the other 

test cases. In BioDiv-ENVO-SWEET, PM-BR and OA4QA, the F0.5-measure results 

of our intersection and majority versions (even union in the 1st test case) are 

positively far from the other systems results. 

All the maximum F0.5-measure values in these experiments are given by NeuralOM-

I. The highest one is equal to 1.0 for BioDiv-ENVO-SWEET and the lowest one is 

equal to 0.87 for PM-BR. The highest minimum F0.5-measure value is equal to 0.68 
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and given by LogMap for BioDiv-ENVO-SWEET, and the lowest minimum F0.5-

measure value is equal to 0.42 and given by NeuralOM-U for PM-BR sub-track. 

 F1-measure shows the real quality of matching. The task which has the maximum 

average F1-measure results is BioDiv-FLOPO-PTO (around 0.8). BioDiv-ENVO-

SWEET has a good one as well (around 0.74). The next track is Conference with 

values around 0.7. Then, PM-UA and OA4QA have average results so close to 0.7. 

Finally, PM-BR has the lowest results (around 0.56). 

F1-measure values are separated in BioDiv-FLOPO-PTO and PM-UA and close to 

each other in the other tasks. Also, in BioDiv-ENVO-SWEET, PM-BR and OA4QA, 

F1-measure results of our NeuralOM-I and NeuralOM-M versions (even NeuralOM-

U in the 1st test case) are positively far from the other systems results. 

All the six maximum F1-measure values of this experimental study are given by 

NeuralOM-I. The highest one is equal to 1.0 for BioDiv-ENVO-SWEET and the 

lowest one is equal to 0.91 for PM-BR. The highest minimum F1-measure value is 

equal to 0.65 and given by Lily for BioDiv-ENVO-SWEET. The lowest minimum 

F1-measure value is equal to 0.34 and given by LogMap for PM-BR sub-track. 

 The challenge that has the maximum average F2-measure results is BioDiv-FLOPO-

PTO (around 0.77). The other sub-track average results are not far as well. The next 

one is PM-UA with values around 0.71. Then, OA4QA and Conference have average 

values superior to 0.6. And finally, PM-BR has the poorest scores (around 0.58).  

F2-measure values are close to each other in all test cases, excepting PM-BR and 

OA4QA where the F2-measure results of our intersection and majority versions are 

positively far from the other matching systems results. 

Also for this evaluation measure, all the maximum F2-measure values are given by 

NeuralOM-I. The highest one is equal to 1.0 for BioDiv-ENVO-SWEET and the 

lowest one is equal to 0.96 for PM-BR. The highest minimum F2-measure value is 

equal to 0.57 and given by Lily for BioDiv-ENVO-SWEET task. And, the lowest 

minimum F2-measure value is equal to 0.28 and given by I-Match for PM-BR task. 

4.4.2. Large-Scale Evaluation 

In this section, we present the results of experimental procedure performed at the large scale. 

4.4.2.1. Evaluation for Anatomy Track  

Figure 4.10 illustrates the results of evaluating NeuralOM according to OAEI’2018-

ANATOMY-Track (Anatomy’18), and summarises their comparison with OAEI systems. 
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Figure 4.10. Evaluation results of NeuralOM against OAEI systems for Anatomy’18 track. 

As can be seen from Figure 4.10: 1. Precision results present globally a decreasing order 

from NeuralOM-I down to LogMapBio (with a good value equal to 0.87), then an increasing 

one up to Holontology. 2. Recall values are decreasing, starting by NeuralOM-I and 

NeuralOM-M with a complete value equal to 1.0. NeuralOM-U value is slightly lower but 

still an excellent one. Recall values of the other matching systems present a descending order 

from 0.93 (of AML) to 0.29 (of Holontology). 3. The best F-measures values belong to 

NeuralOM-I and NeuralOM-M with values so close to 1.0. AML and NeuralOM-U also give 

excellent values. The other matching systems results are good as well, balanced for F0.5-

measure (excluding Holontology), and decreasing for F1-measure and F2-measure. 

Figure 4.11 illustrates the Runtime evaluation results for OAEI’2018-ANATOMY-Track. 

 

Figure 4.11. Runtime analysis of NeuralOM and OAEI systems for Anatomy’18 track. 
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It is clearly seen from Figure 4.11 that: 1. Required Runtime by OAEI matching systems is 

approximately confined between 16s (this minimum value belongs to LogMap) and 810s 

(this maximum value is given by LogMapBio). A disparity of values is inside, but the 

Runtime of the majority exceeds 60s. 2. The Runtime values of NeuralOM are roughly 

smaller; they did not even exceed 0.27s. There is a huge difference between these two classes 

(810/0.3=2700). 

4.4.2.2. Evaluation for Disease and Phenotype Track  

Figure 4.12 and Figure 4.13 illustrate the results of evaluating NeuralOM according to 

OAEI’2018-PHENOTYPE-Track (Phenotype’18) for HP-MP and DOID-ORDO Sub-

Tracks respectively, and summarises their comparison with OAEI matching systems. 

 

Figure 4.12. Evaluation results of NeuralOM against OAEI systems for Phenotype-HP-

MP’18 sub-track. 

From Figure 4.12, it is clear that: 1. DOME and XMap achieved the best precision results. 

Then, NeuralOM-I and four other systems are competitive with each other. Then, 

NeuralOM-M, NeuralOM-U and two other systems give medium results. 2. Recall results 

are balanced between the matching systems. The best scores belong to NeuralOM-I and 

NeuralOM-M which get a value equal to 0.5. Next, the other matching systems have 

competitive and medium results as well. 3. F-measures variances follow mostly precision 

results variation, especially F0.5-measure, systems values are closer to each other for F2-

measure. Globally for these three measures, the best results are achieved by DOME and 

XMap, then by four systems including NeuralOM-I, then come the other matching systems. 
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4. The low scores of this test case is due to the fact that all matching systems give null values 

of the five evaluation measures for the 2nd partition. 

 

Figure 4.13. Evaluation results of NeuralOM against OAEI systems for Phenotype-DOID-

ORDO’18 sub-track. 

We can see form Figure 4.13 that: 1. Global evaluation measures values are decreased. This 

is due to the null values of the last three partitions. Partition1 and Partition2 present excellent 

results (those of the 2nd one are slightly better), Partition3 has average results, and zeros of 

the last three partitions modified the values average as if we are working on a superior limit 

of 0.5 instead of 1. 2. All matching systems, including the three variants NeuralOM give 

better results of recall (complete values by NeuralOM-I and NeuralOM-M and excellent 

ones by NeuralOM-U and the others) than of precision, excepting DOME which gets similar 

values of the two metrics, thus of the three others. 3. The best precision value belongs to 

DOME. XMap and KEPLER give good results. LogMapLt and Lily values are somewhat 

higher than the average whereas the last other matching systems ones are lower. 4. 

NeuralOM-I and NeuralOM-M get medium values of recall. KEPLER, XMap, NeuralOM-

U, DOME, LogMap and LogMapLt give lightly lower recall results, then, close ones are 

given by the other matching systems. 5. F-measures results have the same variances as 

precision results but with slightly higher values. Globally, there is not a big difference 

between systems results, except for, XMap, KEPLER and DOME that are lightly better. 

Figure 4.14 illustrates the Runtime evaluation results for OAEI’2018-PHENOTYPE-Track. 
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Figure 4.14. Runtime analysis of NeuralOM and OAEI systems for Phenotype’18 track. 

From Figure 4.14, it is clearly seen that: 1. Required Runtime by OAEI matching systems is 

approximately confined between 7s (this minimum value is belonging to LogMapLite) and 

4750s (this maximum value is Lily). Inside, LogMapBio, POMAP++ and KEPLER took 

significantly more time than the others. 2. There is not a huge disparity between HP-MP and 

DOID-ORDO in terms of Runtime, except by KEPLER which did not even participate at 

the second test case. 3. The Runtime values of NeuralOM are hardly smaller, not even 

exceeding 0.3s (a great difference comparing 4750 with 0.3). NeuralOM-M and NeuralOM-

U have almost the same Runtime values for the two test cases. But, NeuralOM-I’s Runtime 

for HP-MP is higher than that of DOID-ORDO by 0.1s. 

4.4.2.3. Evaluation for Large Biomedical Ontologies Track  

Plots in Figure 4.15, Figure 4.16 and Figure 4.17 illustrate the results of evaluating 

NeuralOM according to OAEI’2017-LARGEBIOMED-Track (LargeBioMed’18) for 

FMA-NCI, FMA-SNOMED and SNOMED-NCI Sub-Tracks respectively, and 

summarises their comparison with OAEI matching systems. 
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Figure 4.15. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

FMA-NCI’18 sub-track. 

From Figure 4.15, it is observed that: 1. NeuralOM-I, followed by NeuralOM-M, has 

achieved the best performance for all evaluation metrics (same performance for recall where 

both of them obtain 1.0), NeuralOM-U obtains a very good value of recall (0.87) and lower 

but still good value of precision. 2. OAEI matching systems are slightly increasing for 

precision, clearly decreasing for recall, also decreasing for F2-measure and F1-measure (less 

sharply especially for the 2nd measure) and balanced for F0.5-measure. FCAMapX and 

LogMapLt are somewhat out of this order. 

 

Figure 4.16. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

FMA-SNOMED’18 sub-track. 
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From Figure 4.16, it is clearly seen that: 1. All participating systems, including the three 

proposed variants, have global precision values higher than 0.8. 2. For the other four 

measures, matching systems can be classified into three groups according to their results 

from the best to the worst performance; Excellent values by NeuralOM-I and NeuralOM-M 

(complete values of recall); NeuralOM-U and five OAEI systems from FCAMapX down to 

XMap, with different variances between measures (the most sharply is for recall); LogMapLt 

and DOME have the smallest values. 3. The best performance belong to NeuralOM-I and 

NeuralOM-M for all evaluation measures. 

 

Figure 4.17. Evaluation results of NeuralOM against OAEI systems for LargeBioMed-

SNOMED-NCI’18 sub-track. 

Figure 4.17 shows that: 1. Complete recall values are offered by NeuralOM-I and 

NeuralOM-M, then, good values are given by NeuralOM-U, then come the other systems in 

a descending order. 2. Global precision values are somewhat close. The best ones are related 

to NeuralOM-I and NeuralOM-M, then to the other systems, which present also equilibrium 

for F0.5-measure and a decline for F1-measure and F2-measure, stronger for the 2nd one. 3. 

For the five evaluation measures, NeuralOM-I and NeuralOM-M get by far the higher scores. 

Figure 4.18 depicts the Runtime evaluation results for OAEI’2018-LARGEBIOMED-Track. 
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Figure 4.18. Runtime analysis of NeuralOM and OAEI systems for LargeBioMed’18 track 

From Figure 4.18, it is clear that: 1. All OAEI matching systems took time in generating 

alignments for FMA-NCI less than FMA-SNOMED and less than SNOMED-NCI, with a 

same difference rate approximately, except XMap whose Runtime values of the first two test 

cases are far from that of the third one, and LogMap, which took more time for FMA-NCI. 

2. Comparing systems shows that LogMapBio (with more than 2900s for SNOMED-NCI) 

and FCAMapX are the slowest systems. LogMap gives the next higher value. Then, XMap 

and AML have the following values. The smallest Runtime belongs to DOME and 

LogMapLt (6s for FMA-NCI). 3. As for NeuralOM, test cases are ordered samely. But, 

differences in NeuralOM-U values are bigger than those of NeuralOM-M, and Runtime’s 

value of NeuralOM-I for FMA-NCI is far from the two other matching tasks of which values 

are so closed. 4. The nine Runtime values of NeuralOM are roughly smaller than those of 

OAEI matching systems (comparing parts of one with thousands of seconds!). All values of 

the proposed work did not even exceed 0.7s for the three LargeBioMed sub-tracks. 

4.4.2.4. Discussion of Results 

According to the previous results, we can conclude the following: 

 The highest maximum precision value in all this experimental study is equal to 0.99 

and given by ALIN for Anatomy. The lowest maximum precision value is equal to 

0.5 and given by DOME for Phenotype-HP-MP. The highest minimum precision 

value is equal to 0.87 and given by LogMapBio for Anatomy. The lowest minimum 

precision value in this experimental procedure is equal to 0.26 and given by LogMap 

for Phenotype-HP-MP tests. 
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Among these six test cases, NeuralOM-I has tackled the maximum precision value 

three times. DOME has gotten it twice and the last one is achieved by ALIN. For the 

minimum precision value, it was given by NeuralOM-U in three test cases, by 

LogMap in two, and by LogMapBio in one test case. 

 The highest maximum recall value in all this experimental procedure is equal to 1.0 

and given by both NeuralOM-I and NeuralOM-M for all test cases. The lowest 

maximum recall value is equal to 0.5 and also given by NeuralOM-I and NeuralOM-

M for Phenotype-HP-MP. The highest minimum recall score is equal to 0.63 and 

given by DOME for LargeBioMed-FMA-NCI, and the lowest minimum recall value 

is equal to 0.16 and given by DOME for LargeBioMed-FMA-SNOMED sub-track. 

NeuralOM-I and NeuralOM-M have achieved the maximum recall score for all 

tracks. For the minimum recall score, it was obtained by DOME 3 times, by 

POMAP++ twice, and by both of Holontology and LogMapLt once.  

 The highest maximum F0.5-measure value is equal to 0.98 and given by NeuralOM-

I for Anatomy, and the lowest maximum F0.5-measure value is equal to 0.49 and given 

by DOME for Phenotype. The highest minimum F0.5-measure value is equal to 0.75 

and given by DOME for LargeBioMed-SNOMED-NCI, and the lowest minimum 

F0.5-measure value is equal to 0.15 and given by RSDLWB for LargeBioMed-FMA-

NCI sub-track. 

Four of the six F0.5-measure maximum scores have been achieved by NeuralOM-I. 

The two others have been obtained by DOME. The F0.5-measure minimum score has 

been given by both of LogMap and DOME in two test cases and by both of 

Holontology and NeuralOM-U in one challenge. 

 F1-measure shows the real quality of matching. The highest maximum F1-measure 

value is equal to 0.99 also given by NeuralOM-I for Anatomy. The lowest maximum 

F1-measure value is equal to 0.49 and given by DOME for Phenotype. The highest 

minimum F1-measure value is equal to 0.74 and given by DOME for LargeBioMed-

FMA-NCI test case. The lowest minimum F1-measure value is equal to 0.27 and 

given by DOME for LargeBioMed-FMA-SNOMED sub-track. 

NeuralOM-I has achieved the maximum F1-measure score for four test cases. DOME 

has gotten it for the two others. The minimum F1-measure value has been given by 

DOME 3 times and by both of Holontology, POMAP++ and LogMap once. 
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 The highest maximum F2-measure value is equal to 0.99 and given by NeuralOM-I 

for Anatomy. The lowest maximum F2-measure value is equal to 0.49 and given by 

DOME for Phenotype. The highest minimum F2-measure value is equal to 0.67 and 

given by DOME for LargeBioMed-FMA-NCI sub-track. And, the lowest minimum 

F2-measure value is equal to 0.19 and given by DOME for LargeBioMed-FMA-

SNOMED sub-track. 

Among the six test cases of this experimental study, NeuralOM-I has obtained the 

maximum F2-measure results for four ones, and DOME has gotten it for the two 

others. The minimum F2-measure value is given by DOME in three test cases, by 

both of Holontology, POMAP++and LogMap in one matching task. 

 The matching Runtime values of NeuralOM are so small compared to those of the 

OAEI systems that we were obliged to use a logarithmic scale base 2 to see the 

difference in the Runtime graphs presented above; otherwise, their bars are negligible 

and won’t figure in the graphs. There is such a great difference comparing parts of 

one second with thousands of seconds. Therefore, the proposed approach is not time-

consuming, and it will not complicate the process of matching such huge ontologies. 

4.4.3. Experimental Summary 

The matching systems present better results for precision than for recall in seven test cases: 

Conference (excepting NeuralOM-I, NeuralOM-M and ALIN), BioDiv-FLOPO-PTO, PM-

BR, OA4QA, Anatomy (excepting NeuralOM-I and NeuralOM-M), LargeBioMed-FMA-

SNOMED (with a slight difference) and LargeBioMed-SNOMED-NCI. Recall results are 

higher than precision results in the four matching tasks: ENVO-SWEET (with a slight 

difference), PM-UA, Phenotype-HP-MP (excepting XMap and DOME) and Phenotype-

DOID-ORDO. In the challenge LargeBioMed-FMA-NCI, precision and recall results are 

similar. These variances are reflected on F-measures, where F0.5-measure is mostly affected 

by precision and F2-measure by recall, whereas F1-measure combines them evenly. 

For the proposed approach, the results of NeuralOM-I are better than those of 

NeuralOM-M and better than those of NeuralOM-U for all matching challenges, excepting 

Phenotype-HP-MP where NeuralOM-U presents better results than NeuralOM-M. In 

Conference, PM-BR, OA4QA, LargeBioMed-FMA-SNOMED and LargeBioMed-

SNOMED-NCI, NeuralOM-U results are far from those of NeuralOM-I and NeuralOM-M. 

In Phenotype-HP-MP, NeuralOM-I results are far from those of the two others. 
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All in all, the detailed experimental procedure that we performed on twelve test cases 

shows that, the three variants of NeuralOM present better results than the OAEI matching 

systems, especially the Intersection and Majority variants which present the best matching 

performance. That is clear from the results of all the five evaluation measures adopted, 

especially from F1-measure results. We can exclude only Phenotype (with null values in the 

last partitions by all systems), where the results of NeuralOM are similar with those of the 

OAEI systems in DOID-ORDO, and lower than the results of five systems and higher than 

three systems in HP-MP. This is because of the low initial weights of the three chosen 

systems for this track. We should also notice that this track is the track with the lowest 

matching performance.  

All the maximum scores of all the evaluation measures adopted for all test cases of 

this study have been achieved by NeuralOM-I. NeuralOM-M has also presented excellent 

results positively far from the OAEI systems results. And NeuralOM-U has given very good 

results which are competitive with the two best OAEI matching systems. This high 

performance achieved by NeuralOM is due to two main reasons. First, the initial candidate 

matchers of which the generated mappings are required as input have been meticulously 

selected. Second, each step of NeuralOM is developed with a very high level of accuracy. 

The best value is fixed for each parameter by performing very detailed sets of tests. 

4.5. Conclusion 

In this chapter, we have presented NeuralOM, an automatic solution for large-scale ontology 

matching basing on artificial neural networks. We present an overview of the proposed 

solution and describe its contributions as well as its technical steps. Then, we present the 

very detailed experimental procedure that we performed on twelve test cases of different 

domains as well as of different dataset sizes from the OAEI initiative. The results of these 

experiments show that the proposed approach has proven its efficiency in front of all OAEI 

matching systems. NeuralOM has perfectly tackle the large-scale ontology matching 

challenges which have motivated this research. 

In the next chapter, we present another different solution to the large-scale ontology 

matching issue which is an unsupervised method based on deep neural networks. 
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Chapter 5 

Deep Embedding Learning with Auto-

Encoder for Large-Scale Ontology 

Matching 
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5.1. Introduction 

Ontology matching is an efficient method to support interoperability and remove 

heterogeneity among ontologies. As previously stated, large-scale ontology matching is still 

challenging for its long-time processing and large memory space consumption. Deep 

learning techniques are powerful computational models very appropriate for dealing with 

large datasets.  

In the previous chapter, we have presented a reuse-based solution to the large-scale 

ontology matching issue. In this chapter, we present DeepOM, another different solution that 

we propose to deal with the large-scale heterogeneity problem using deep learning 

techniques. First, we provide an overview of the proposed ontology matching system as well 

as its main contributions. Then, we present the detailed workflow of DeepOM. After that, 

we describe the evaluation of DeepOM, conducted on the Anatomy track from the 2020 

campaign of the OAEI Initiative. We present the results of these experiments and discuss the 

performance of our system.  

5.2. DeepOM Overview 

This chapter is related to our published work [198], where we propose the system DeepOM 

for automatically matching large ontologies without partitioning and basing on deep learning 

techniques. Figure 5.1 presents an overview of the proposed matching system. DeepOM first 

extracts the requisite ontological information from input ontologies and pre-process it. A 

reference ontology is then used to transform ontological concepts into numerical vectors that 

deep learning models can use as input. Auto encoders are common deep learning models. 

They are great at representation learning. Once the semantic embeddings for concepts are 

created, they can be used to train an auto-encoder, in order to output finer and smaller 

representations for ontological concepts. After that, the cosine similarity is used to compute 

similarities between the compact vectorial representations of concepts. Finally, a filtering 

process is applied using a defined alignment threshold, in order to keep only the most 

appropriate correspondences that compose the final mapping. 
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Figure 5.1. DeepOM Overview. 

The main contributions of this system are: 

 Employing deep learning techniques in order to effectively match large-scale 

ontologies without partitioning them, and at the lowest time process and memory 

space cost. Deep learning techniques are very appropriate for dealing with huge 

amounts of data. A massive dataset is adequate for learning for the reason that the 

model encounters and learns from a good enough number of examples. 

 Representing the concepts of input ontologies in a multi-dimensional embedding 

space, using a smaller and well selected reference ontology. That aims for perfecting 

the matching performance and reducing its complexity.  

The aim of these representations is for transforming our data into vectors that deep 

learning models can use. Moreover, the obtained vectors represent the concepts in a 

richer and more precise way, since a concept is represented by a high number of 

dimensions according to the size of the reference ontology. For instance, if the 

reference ontology is of size 100, then, each concept will be represented by 100 
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values. i.e., concepts will be represented in a 100-dimensional vector space. 

Furthermore, passing the ontological concepts to vector representations reduce the 

complexity of matching them. This is due to the fact of manipulating float value 

vectors instead of manipulating a concept with several components of different types. 

Even if this transformation is a supplementary process, its complexity is still not 

considerable in regard with directly matching the huge input ontologies. 

 The use of a reference ontology has a great impact on turning the ontological form 

of each concept from the input ontologies into a multi-dimensional numerical vector. 

Beside the fact that, this ontology is well selected, of the same domain as input 

ontologies and close to each of them equinely, the use of an ontology rather than 

other data structures is very expressive. i.e., all a semantic of the same domain is 

exploited for the purpose of embedding concepts.   

 Training an auto-encoder on the concepts’ embeddings, in order to learn more 

accurate and more compact representations for input concepts. That leads to better 

performance and less complexity as well.  

In one hand, this dimensionality reduction serves for improving the matching quality. 

Training the auto-encoder on the previous vectorial representations of concepts keeps 

the most important attributes of the input vectors in the compressed representations. 

That provides finer and more accurate representations for ontological concepts. In 

the other hand, as the auto-encoder compresses the input data into lower dimensional 

representations. This dimensionality reduction helps to reduce the complexity of 

ontology matching. In addition, the auto-encoder works in an unsupervised way that 

does not require a learning base, which necessitates a delicate process to prepare. 

5.3. Deep Ontology Matching 

In this section, we present DeepOM, a system that we propose to address the ontology 

matching challenges at the large scale. The idea behind DeepOM is to automatically treat 

the large-scale ontology matching issue in two stages. At each stage, it seeks for providing 

more representative and less dimensional real-valued vectors for concepts of input 

ontologies.  

 First, it creates semantic embeddings for ontological concepts, basing on the 

semantic similarity between them and the concepts of a smaller and well selected 
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reference ontology. That perfects the matching process and reduces the matching 

complexity.  

 Second, DeepOM trains an auto-encoder on the generated concepts’ vectors, in order 

to learn high-level and more compact embeddings for input concepts. This learning 

process also leads to better matching performance and decreases the complexity of 

large-scale ontology matching. 

The processing workflow of DeepOM is illustrated in Figure 5.2. It could be 

summarized in four major phases: Pre-Matching Phase, Embedding Phase, Deep Learning 

Phase and Matching Phase. 
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Figure 5.2. Processing Workflow of DeepOM. 
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is defined by a quadruple as: ai = < idi, C, C’, vali >. Where: idi is the correspondence 

identifier; C is a concept from Ontology1; C’ is a concept from Ontology2; and vali the 

correspondence value between C and C’ provided by DeepOM. This latter is in range [0,1], 

and reflects the similarity measure between the linked concepts.  

5.3.1. Pre-Matching 

The first step aims for preparing ontologies for matching. It is such an important process, 

since the input ontologies are heterogeneous and different in their components’ availability 

and entities’ lexicon for our interests. We pre-match input ontologies in two main sub-steps: 

5.3.1.1. Extracting Ontological Information 

This step consists on loading the ontologies needed for matching, and extracting their 

components which are necessary for generating alignment. An ontological concept is defined 

by its semantic triangle (see Figure 5.3). The vertices of this 3-dimensional shape represent 

the three main aspects of the concept: 

1. Term: expresses the concept in language. It is the linguistic representation of a given 

concept.  

For example, as shown in Figure 5.3, to express the concept that brings together the 

different vehicle objects, terms such as “Vehicle”, “Automobile”, “Car”, “Auto”, 

“Motor vehicle” or even “Wheels” can be used. 

2. Intention: is the set of its qualitative or functional properties which constitutes its 

meaning. A property of a concept can be of one of this two types: 

o Attributes: represent the internal structure of the concept. i.e., the 

features or characteristics that objects of this concept can have. 

As shown in the example of the figure below, “Model”, “Body mass”, 

“Registration number”, “Suspension stiffness”, “Axle hop frequency”, “Tire 

stiffness” and “Color” are attributes of the class Vehicle.  

o Relations: represent the external structure of the concept. i.e., the 

relations of this concept with other concepts of the ontology. 

For the presented example, the vehicle concept is in relationship with the 

concept “Person” by the relation “own”, with “Support” by “supply”, with 

“Steering Device” by “control”, with “Transport” by “is-a”, with “Driver” 

by “conduct”, with “Vehicle Component” by “has-part”, with “Time” by 

“damage-at”, with “Vehicle Function” by “has-function” and many others. 
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3. Extension: is the set of the objects denoted by the concept. For example, 

“Mercedes”, “Audi”, “BMW”, “Ferrari”, “Lamborghini”, “Volkswagen” are entities 

falling into the category of vehicle. 

 

Figure 5.3. Ontology concept by three dimensions. The left side presents the semantic 

triangle of the concept; The right side presents an example. 

 Therefore, to keep the semantics carried by a concept in an ontology, it should be 

defined by the three elements cited above. In this study, as we aim for performing the 

matching process in a complete way, we care about the semantics of input ontologies and 

we cover this 3-dimensional view of their concepts. Thus, we extract for each concept C 

from Ontology1 and Ontology2 its: 

 Lexical label, which is the representative term used to describe this concept; 

 Related concepts, which are the concepts from the same ontology that are related to 

the concerned concept. Concepts of ontologies are related to each other with distinct 

types of relationships. The most basic type of relations in an ontology is the 

subsumption relation, also known as is-a relation. It provides the tree-like taxonomy 

of the ontology. By this relation, an ontological concept has principally a parent-

concept, a child-concept and a sibling-concept. According to this structure, three 

main types of related concepts are extracted: 
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o Ancestors, which are the elements of the set of concepts composed by, the 

parents of C, and the parents of their parents, along the path to root. i.e., we 

extract all parent-concept levels of the concept in question; 

o Descendants, which are the direct child-concepts of C. As a concept has a 

significant number of child-concepts compared with parent-concepts, we find 

that the first child-concept level is sufficient to have related descendants’ 

concepts; 

o Siblings, which are the direct child-concepts of the direct parent-concepts of 

C. i.e., concepts of the first child-concept level of the first parent-concept 

level of the concerned concept are extracted; 

 Individuals, which represent the instance-level of the concept, described by its 

concrete objects. 

5.3.1.2. Pre-Processing of Ontological Components 

In this sub-step, we mainly interest in pre-processing the lexical information extracted from 

input ontologies. Thus, once the ontological components are extracted, we analyze and 

process, for each concept, its label, individuals’ names, as well as the labels of its related 

concepts (ancestors, descendants and siblings). Considering an extracted textual information 

T to be pre-treated. The pre-processing task outputs a set of processed terms. It is performed 

as present the following points:  

- Tokenization: consists on segmenting T to a set of tokens according to space (‘ ’) and 

two types of dashes (‘-’ and ‘_’); 

- Removing stop words: consists on removing the commonly used words which do not 

carry useful information for matching. For that, we use the English nltk13 stop-words 

list; 

- Denoising: aims to get rid of unhelpful elements of the textual information. In the 

case of this study, it consists on lowercasing all characters, removing tokens of length 

1 (excepting numbers) and removing punctuations marks as well as all special and 

non-ASCII characters. 

                                                 
13 http://www.nltk.org/ 
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5.3.2. Creating Semantic Embeddings for Concepts 

This step consists on transforming the concepts of input ontologies into vectorial 

representations that deep learning models can use as input. We use another ontology, called 

reference ontology, in order to represent each concept from Ontology1 and Ontology2 in a 

numerical multi-dimensional vector space. 

For the following, the set of Ontology1’s concepts is defined by 𝑪 = {𝒄𝐢,   𝐢 = 𝟏−𝐍𝟏}, the 

set of Ontology2’s concepts by 𝑪′ = {𝒄′𝐢,   𝐢 = 𝟏−𝐍𝟐}, and the set of concepts of the reference 

ontology by 𝑪′′ = {𝒄′′𝐢,   𝐢 = 𝟏−𝐍𝟑}, where N1, N2 and N3 denote the number of concepts of 

Ontology1, Ontology2 and the reference ontology respectively. 

Algorithm 5.1 demonstrates the task of this step. It is performed based on computing 

similarities between concepts of the reference ontology and elements of C and C’. We 

represent each concept from Ontology1 and Ontology2 by a vector of N3 numerical values. 

Each value is the similarity score between the concerned concept and a concept from the 

reference ontology. Since the size of the reference ontology is N3, all vectorial 

representations of concepts of Ontology1 and Ontology2 are of length N3 for each vector. 

i.e., concepts of input ontologies are represented in a N3-dimensional vector space. As 

results of this step, the embedding representations of ontologies’ concepts are created after 

that the execution of the algorithm is completed.  

----------------------------------------------------------------------------------------------- 

Algorithm 5.1. Creating concepts’ embeddings for input ontologies 

----------------------------------------------------------------------------------------------- 

Input:  Ontology1’s concepts: 𝑪 = {𝒄𝐢,   𝐢 = 𝟏−𝐍𝟏}; 

Ontology2’s concepts: 𝑪′ = {𝒄′𝐢,   𝐢 = 𝟏−𝐍𝟐}; 

Reference ontology’s concepts: 𝑪′′ = {𝒄𝐢,   𝐢 = 𝟏−𝐍𝟑}. 

Begin 

// Vectorial representations for elements of C 

Initialization of V = { } 

for i from 1 to N1 

 Initialization of veci = [] 

 for j from 1 to N3 

  veci[j] = Semantic similarity value between ci and c”j 

 append veci to V 

// Vectorial representations for elements of C’ 

Initialization of V’ = { } 

for i from 1 to N2 

 Initialization of vec’i = [] 
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 for j from 1 to N3 

  vec’i[j] = Semantic similarity value between c’i and c”j 

 append vec’i to V’ 

End 

Output:  Embeddings of C: V = (veci, i = 1-N1), veci = [vj, j = 1-N3]; 

Embeddings of C’: V’ = (vec’i, i = 1-N2), vec’I = [v’j, j = 1-N3]. 

----------------------------------------------------------------------------------------------- 

The accuracy of the generated embeddings is highly dependent upon two major 

factors: defining the reference ontology and similarity measurement. 

5.3.2.1. Defining Reference Ontology 

The reference ontology has a great impact on the performance of the matching process. Thus, 

its determination is such a delicate and careful task. It depends on input ontologies and 

should be: 

 Of the same domain as Ontology1 and Ontology2, and semantically close to them. 

Otherwise, the embedding vectors would be overpowered by zeros. Thus, they would 

not provide the real representations for concepts. 

 In the-middle-of-the-road between Ontology1 and Ontology2. i.e., it should be 

neutral and balanced between them, so as to afford fair concepts’ representations. 

 Of an appropriate size. i.e., it must not be very small, not useful, nor larger than input 

ontologies, so matching gets more complicated. 

5.3.2.2. Similarity Measurement 

The adequacy of the numerical values of the concepts’ embeddings relies on how similarities 

are computed between input ontologies and the reference ontology. As this is a very exact 

task, we perform it on a high level of accuracy, exploiting the three main aspects of 

ontological concepts. Therefore, we proceed and combine several matchers: 

5.3.2.2.1. Terminological Matcher 

The terminological matcher exploits semantics inside concepts’ lexicon. It measures both 

context-based similarity and syntactical similarity. And, it combines them in a way that, the 

weight assigned to each element reflects its accurate need proportion in that current case. 

We propose the following formula to compute the terminological similarity between two 

concepts C1 and C2: 

𝑇𝑒𝑟𝑆𝑖𝑚(𝐶1, 𝐶2) =
2 × |𝐿𝑎𝑏𝑒𝑙1 ∩ 𝐿𝑎𝑏𝑒𝑙2| + 𝐷1 + 𝐷2

|𝐿𝑎𝑏𝑒𝑙1| + |𝐿𝑎𝑏𝑒𝑙2|
                                (5.1) 
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Where:  

Label1 is the pre-processed label of C1; Label2 is the pre-processed label of C2; D1 is 

the similarity report of (𝐿𝑎𝑏𝑒𝑙1 − 𝐿𝑎𝑏𝑒𝑙2) compared to (𝐿𝑎𝑏𝑒𝑙2 − 𝐿𝑎𝑏𝑒𝑙1); D2 is the 

similarity report of (𝐿𝑎𝑏𝑒𝑙2 − 𝐿𝑎𝑏𝑒𝑙1) compared to (𝐿𝑎𝑏𝑒𝑙1 − 𝐿𝑎𝑏𝑒𝑙2). For each pair of 

individual terms, we take the maximum similarity between the two values provided by an 

external knowledge resource and Jaro measure. 

5.3.2.2.2. Structural Matcher 

The structural matcher measures the similarity between concepts basing on their structure, 

which refers to their related concepts. We use the following formula to compute structural 

similarities between ancestors, descendants and siblings of C1 and C2: 

𝑺𝒕𝒓𝑺𝒊𝒎(𝑪𝟏, 𝑪𝟐) =
𝟐 × |𝑹𝑪𝟏 ∩ 𝑹𝑪𝟐| + 𝑫𝟏 +𝑫𝟐

|𝑹𝑪𝟏| + |𝑹𝑪𝟐|
                                        (𝟓. 𝟐) 

Where:  

 RC1 is the set of concepts related to C1; RC2 is the set of concepts related to C2; D1 is 

the similarity report of (𝑹𝑪𝟏 − 𝑹𝑪𝟐) compared to (𝑹𝑪𝟐 − 𝑹𝑪𝟏); D2 is the similarity report 

of (𝑹𝑪𝟐 − 𝑹𝑪𝟏) compared to (𝑹𝑪𝟏 − 𝑹𝑪𝟐). This similarity report is computed using the 

terminological similarity equation (Equation.1) for each pair of individual related concepts.  

 Related concepts (RC1 for C1 and RC2 for C2) refers to sets of ancestors, descendants 

and siblings of C1 and C2 for each case. 

5.3.2.2.3. Extensional Matcher 

We measure the similarity between instances of C1 and C2 using the Jaccard similarity, given 

by formula: 

𝑬𝒙𝒕𝑺𝒊𝒎(𝑪𝟏, 𝑪𝟐) =
|𝑰𝒏𝒔𝒕𝟏 ∩ 𝑰𝒏𝒔𝒕𝟐|

|𝑰𝒏𝒔𝒕𝟏 ∪ 𝑰𝒏𝒔𝒕𝟐|
                                                          (𝟓. 𝟑) 

Where:  

 Inst1 is the set of instances of C1 and Inst 2 is the instances set of C2. 

Combining the individual similarity measures is necessary in order to get the final semantic 

similarity between C1 (from C+C’) and C2 form (C”). Unlike other ontology matching 

techniques, which give equal weights for similarity values, DeepOM combines them in an 

additive way that, the lack individuals and related elements for some concepts would not 

affect the matching performance. Algorithm 5.2 demonstrates this process. 
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----------------------------------------------------------------------------------------------------------- 

Algorithm 5.2. Measuring semantic similarity between two given concepts 

----------------------------------------------------------------------------------------------------------- 

Input:  C1: Concept from Ontology1+Ontology2: Set of N1 concepts: C + Set of 

N2 concepts: C’, 𝑪 = {𝒄𝐢,   𝐢 = 𝟏−𝐍𝟏}, 𝑪′ = {𝒄′𝐢,   𝐢 = 𝟏−𝐍𝟐}; 

C2: Concept from Reference ontology: Set of N3 concepts: C”, 𝑪′′ =

{𝒄′′𝐢,   𝐢 = 𝟏−𝐍𝟑}; 

Sim_Threshold. 

Begin 

// Computing similarities between C1 and C2 

 Ins1 = list of c1 Instances 

 Anc1 = list of c1 Ancestors 

 Des1 = list of c1 Descendants 

 Bro1 = list of c1 Siblings 

  Ins2 = list of c”2 Instances 

  Anc2 = list of c”2 Ancestors 

  Des2 = list of c”2 Descendants 

  Bro2 = list of c”2 Siblings   

  TerVal = TerSim(c1,c”2) 

  AncVal = StrSim(c1,c”2) \\ RC1==Anc1; RC2==Anc2 

  DesVal = StrSim(c1,c”2)  \\ RC1==Des1; RC2==Des2 

  BroVal = StrSim(c1,c”2)  \\ RC1==Bro1; RC2==Bro2 

ExtVal = ExtSim(c1,c”2)  \\ Inst1==Ins1; Inst2==Ins2 

// Combining similarities between C1 and C2 

StrVal = Average(AncVal,DesVal,BroVal) 

If (StrVal>Sim_Threshold) and (ExtVal>Sim_Threshold): 

SemVal = Average(TerVal,StrVal,ExtVal) 

Else: If (StrVal>Sim_Threshold):  

 SemVal = Average(TerVal,StrVal) 

 Else: If (ExtVal>Sim_Threshold): 

SemVal = Average(TerVal,ExtVal) 

    Else: 

   SemVal = TerVal 

End 

Output:  SemVal: Semantic Similarity value between two given concepts; 

----------------------------------------------------------------------------------------------------------- 

5.3.3. Deep Ontology Matching with Auto-Encoder 

This step consists on using deep learning techniques to learn high-level embeddings for 

concepts of the two ontologies. This task aims to provide more accurate and less 

dimensional representations for concepts. That perfectly represents the input ontologies in 

an unsupervised way. 
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Auto-encoders seem to be very appropriate for such purposes. They are capable of 

creating sparse representations of the input data. Therefore, they can be used to compress 

the concepts’ vectors resulted from the previous step, and represent them in a latent space. 

Figure.5.4 illustrates the architecture of the auto-encoder model of DeepOM. It is a 

deep neural network with multiple layers. The output layer has the same dimension as the 

input layer. And, the architecture between them is mirrored. The model has two components: 

Encoder and Decoder. The encoder compresses the input data into a lower dimension. Then, 

the decoder uses the compact representations to recreate the original input.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Architecture of the Auto-Encoder Model. 

The number of layers of the deep network, the number of nodes per layer, the number 

of training epochs, as well as the other auto-encoder parameters are fixed by trial-and-error. 

For training the auto-encoder model, we use the back-propagation learning method. We take 

the current concepts’ vectorial representations as input. Then, we train the model to learn 

weights so as to compress down these vectors into a lower dimensional space. The final 

learned representations (of size N4 as shown in Figure 5.2) keep the most important features 

of ontological concepts. 
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5.3.4.1. Measuring Embeddings Similarity  

Generating alignment between Ontology1 and Ontology2 requires computing similarities 

between their concepts. Since those concepts are represented by numbers in a vector space, 

the matching process consists on computing similarities between the corresponding vectors. 

For that, we use the cosine similarity measure defined by: 

𝐶𝑜𝑠(�⃗�, �⃗�) =
�⃗�. �⃗�

‖�⃗�‖. ‖�⃗�‖
                                                         (5.4) 

5.3.4.2. Pruning Generated Alignment 

Once similarities between concepts of the input ontologies have been measured, they 

undergo a filtering procedure, so as to keep only significant correspondences. For example, 

we do not consider a concepts’ pair of which the value is equal to 0.0 as a valid 

correspondence. For that, we define an alignment threshold T, fixed by trial-and-error, to 

extract the final mapping, for which the similarity values exceed T. We aim by this task at 

improving the matching accuracy by removing irrelevant correspondences of low similarity 

scores, and keeping only the most appropriate correspondences. 

5.4. Evaluation Framework 

In this section, we describe the experimental procedure that we proceed for evaluating our 

ontology matching system. 

5.4.1. Experimental Design 

Aiming for studying the efficiency of DeepOM, we evaluate it according to the Anatomy 

track of the Ontology Alignment Evaluation Initiative (OAEI). More details about this 

international initiative and its evaluation challenges are given in Sect.6.4.1. As we look for 

passing the ontology matching task to the large scale, Anatomy track proposes test 

ontologies of appropriate sizes. The OAEI’2020 Anatomy track14 comprises a single real-

world test case about matching two fragments of biomedical ontologies describing the 

human anatomy and the anatomy of the mouse. The ontologies to be matched are the human 

and mouse OWL ontologies with 3304 and 2744 classes respectively. The task is situated in 

a domain where we find large and carefully designed ontologies which are described in 

technical terms. The evaluation is based on a manually curated reference alignment. 

                                                 
14 http://oaei.ontologymatching.org/2020/anatomy/index.html 
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For evaluating the proposed system, we use the standard evaluation measures: 

precision, recall as well as their harmonic mean F-measure, against the reference alignments 

of the Anatomy test case. They are previously defined and described in (Sect 1.3.5.3). They 

are the most widely used criteria for such evaluation. 

For the external resource, which is required for measuring the terminological 

similarity, we use BioWordVec [199]. It is an open set of biomedical word embeddings of 

2,324,849 distinct words. It combines sub-word information from unlabeled biomedical text 

with MeSH15, a widely-used biomedical controlled vocabulary. 

As reference ontology, we use the Anatomical Entity Ontology: AEO16, an OWL 

ontology of anatomical structures with 250 classes. It expands the Common Anatomy 

Reference Ontology (CARO)17, which is an upper-level ontology to facilitate 

interoperability between existing anatomy ontologies for different species. AEO is intended 

for being useful in increasing the knowledge amount of anatomy ontologies, facilitating 

annotation and in enabling interoperability across anatomy ontologies. 

The structure of the trained auto-encoder model is [250-200-150-100-150-200-250]. 

The size of the reference ontology is 250. That generates a vectorial representation of 250 

numbers for each concept. It is token as input and output to the network. 

5.4.2. Experimental Results 

In order to study the efficiency of DeepOM, we compare its results with the results18, 19, 20 of 

the new systems participant to the same matching challenge for the three most recent OAEI 

campaigns. The results of the performed evaluation are summarized in Table 5.1. The best 

scores for each evaluation measure are marked in bold. The OAEI systems with which 

DeepOM is compared are: ATBox [200], OntoConnect [201], ALOD2Vec [202], FCAMap-

KG [11], DOME [12], DESKMatcher [13], Holontology [14] and AGM [203]. StringEquiv 

is a baseline of OAEI that generates alignment basing on exact string matching of concepts’ 

labels. They are classified in Table 5.1 decreasingly according to their F-measure results. 

 

                                                 
15 https://www.ncbi.nlm.nih.gov/mesh/ 
16 http://www.obofoundry.org/ontology/aeo.html 
17 http://www.obofoundry.org/ontology/caro.html 
18 http://oaei.ontologymatching.org/2018/results/anatomy/index.html 
19 http://oaei.ontologymatching.org/2019/results/anatomy/index.html 
20 http://oaei.ontologymatching.org/2020/results/anatomy/index.html 
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System 

Standard Evaluation Measures   

Runtime(s) Precision Recall F-Measure 

ATBox 0.987 0.671 0.799 192 

DeepOM  0.994 0.665 0.797 149  

OntoConnect 0.996 0.665 0.797 248 

ALOD2Vec 0.996 0.648 0.785 75 

FCAMap-KG 0.996 0.631 0.772 25 

DOME 0.997 0.615 0.761 22 

DESKMatcher 0.472 0.623 0.537 391 

Holontology 0.976 0.294 0.451 265 

AGM 0.152 0.195 0.171 628 

StringEquiv 0.997 0.622 0.766 6 

Table 5.1. Evaluation results of DeepOM for OAEI-Anatomy’20 track. 

As the aim, by DeepOM, is to both maximize the matching quality and minimize the large-

scale matching complexity, we evaluate the proposed ontology matching system at two 

stages: 

5.4.2.1. Evaluate the Matching Quality 

Graphs in Figure 5.5 outline the evaluation results in terms of the three standard evaluation 

metrics defined in Sect.1.3.5.3. 

 

Figure 5.5. Matching Quality evaluation results of DeepOM for OAEI-Anatomy’20 track. 
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We can see from Figure 5.5 that, 1. DeepOM presents an excellent precision score (0.994). 

It is among the five top ranked systems of which the values exceed 0.99, and outperforms 

the other matching systems in terms of precision. 2. Regarding recall, DeepOM achieved a 

good value (0.665). It presents (with OntoConnect) the second-best score after ATBox with 

a slight difference of 0.006, and outperforms the other systems. 3. For F-measure, which 

combines precision and recall evenly, the system proposed in this work presents a high score 

(0.797), greater than the baseline (StringEquiv) which is based on normalized string 

equivalence. DeepOM is among the top three ranked systems that exceed 0.79. The other 

matching systems present competitive results excepting DESKMatcher, Holontology and 

AGM. 

5.4.2.2. Evaluate the Matching Complexity 

As we really interest in reducing the matching complexity, we compare the matching runtime 

required by our system with the other participant matching systems. Figure 5.6 illustrates 

this comparison.  

 

Figure 5.6. Matching Complexity evaluation results of DeepOM for OAEI-Anatomy’20 

track. 
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5.4.3. Experimental Summary 

According to the previous results, we can conclude the following. As we aim by DeepOM 

to both increase the matching quality and decrease the matching complexity, we analyse 

results of F-measure, which reflects the real quality of matching, with respect to the matching 

runtime.  

 The preliminary results of DeepOM are very promising. It has achieved a score of 

0.8 for F-measure, which is a very good value for the ontology matching task at least 

as a start. 

 Comparing DeepOM with different matching systems which have participated to the 

OAEI-Anatomy track, it outperforms them in terms of F-measure, excluding ATBox 

and OntoConnect.  

 As for these two systems, DeepOM has matching results similar to OntoConnect. 

The results of ATBox are a bit higher but with a very slight difference (0.002). 

Regarding complexity, DeepOM has the shortest runtime. 

The conducted evaluation of DeepOM demonstrates that, concepts’ embeddings using 

the reference ontology and learning them with auto-encoder have improved the performance 

of the ontology matching task. Moreover, representing ontological concepts by numerical 

values in a vector space has efficiently solved the large-scale ontology matching problem.  

The experimental results of DeepOM show a very good matching performance at 

lowest cost. This means that we have achieved the two objectives of large-scale ontology 

matching, which are improving the matching performance and reducing its complexity. 

Therefore, we have effectively, by DeepOM, tackled the challenges that have motivated this 

study. 

5.5. Conclusion 

In this chapter, we have presented DeepOM, a large-scale ontology matching system that we 

propose basing on deep learning techniques to deal with the large-scale heterogeneity 

problem. We describe the proposed matching system and its contributions. And, we present 

the experimental procedure that we have performed on the Anatomy track from the 2020 

campaign of the OAEI Initiative. 
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The key novelty of DeepOM is to use a reference ontology to create semantic 

embeddings for ontological concepts, which are used to train an auto-encoder in order to 

learn more accurate and less dimensional representations for concepts. The results of its 

evaluation on large OAEI ontologies show that, DeepOM has proven its efficiency against 

the participant matching systems to effectively match large-scale ontologies and tackle the 

challenges which have motivated this work. 

In the next chapter, we present another solution to the large-scale ontology matching 

issue, which represents the global methodology of this research. 
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Chapter 6 

Matching Big Ontologies Semantically by 

Combining NeuralOM and DeepOM 
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6.1. Introduction  

Large-scale ontology matching is still challenging for its large-memory consumption and 

long-time processing. In the previous chapters of the contribution part, we have proposed 

two different solutions for the issue of matching heterogeneous and large ontologies. 

In this chapter, we propose the global methodology of this research, aiming for 

addressing the challenges of the existing large-scale ontology matching systems as well as 

our proposed solutions. We first provide an overview of this matching methodology and 

discuss its main contributions. Next, we describe its detailed workflow. Then, we present its 

evaluation that we have conducted on the Anatomy track from the most recent campaign of 

the OAEI Initiative. We present the results of these experiments and discuss the performance 

of our matching methodology against OAEI matching systems as well as our previously 

proposed solutions. 

6.2. SemBigOM Overview 

In this chapter, we present SemBigOM, the solution that we propose for tackling the 

challenges of large-scale ontology matching and overcoming the limits of the solutions that 

we have previously proposed; NeuralOM and DeepOM. 

Comparing NeuralOM with DeepOM reveals the following conclusions: 

 They are both original methods which respond to the objectives of this study. They 

address the challenges of ontology matching, particularly large-scale ontology 

matching and without partitioning. Their evaluation results show high quality and 

low complexity of matching. 

 NeuralOM is marked by its excellent matching results. However, it requires initial 

mappings as input, so it is related to mappings of other matching systems. 

 DeepOM is totally independent. Its evaluation results are very satisfying but poorer 

than the results of NeuralOM. 

As we seek for ideal matching results, we look forward to benefit from the advantages of 

NeuralOM and DeepOM, and to handle the drawbacks of both of them. In other words, we 

attempt to achieve excellent matching results independently. Therefore, we combine the two 

proposed solutions in order to get the global methodology of this research, SemBigOM, 
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aiming at a better solution which addresses the challenges of large-scale ontology matching 

and achieves all objectives of this study. 

The core idea of this conjunction is that, it makes use of DeepOM to generate initial 

mappings that NeuralOM requires as input to be reused so as to provide the final matching 

results. More expressively, we use different versions of DeepOM instead of different 

ontology matching systems in order to provide the initial alignments that NeuralOM needs 

as input. In other words, we refine the matching results of DeepOM by NeuralOM so as to 

perfectly and independently achieve the large-scale ontology matching process. Figure 6.1 

presents an overview of the proposed matching methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. SemBigOM Overview. 
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- Independent, otherwise, they could cover each other and they could not work in 

parallel; 

- Have the same importance, otherwise, their initial weights would not be equivalent. 

The ontological concept is the basic unit of an ontology. It is defined by a semantic 

triangle with three dimensions: terminological dimension; structural dimension and 

extensional dimension (more details can be found in Sect.5.3.1.1). Working on these aspects 

exploits semantics inside ontologies in one hand. In the other hand, it leads to a high quality 

of matching since the three dimensions are precise and complementary. With regard to the 

matching evaluation measures, a high precision and a high recall produce a high f-measure. 

Thus, they lead to a correct and complete alignment. 

Ontology matching is based on computing similarity between ontologies. On this 

basis, SemBigOM first generates three different mappings between input ontologies by three 

matchers using three different versions of DeepOM: Terminological-based DeepOM, 

Structural-based DeepOM and Extensional-based DeepOM. 

The different matchers differ in measuring similarity for representing concepts of 

ontologies in a numerical multi-dimensional vector space. A reference ontology is used for 

that purpose. Next, an auto-encoder is trained in order to transform the produced 

representations into finer and smaller numerical vectors for concepts. Then, final similarities 

between the compact vectorial representations of concepts are computed using the cosine 

similarity and revised by a pruning process. 

After that, the three generated mappings are refined by NeuralOM in order to provide 

an ideal mapping between input ontologies. They are combined to construct the matching 

dataset which is used, first through a linear perceptron to adjust an importance weight for 

each matcher, then to define the matching function which leads to generate the final 

alignment after a threshold filtering procedure. 

SemBigOM benefits from the advantages of both NeuralOM and DeepOM and 

addresses their limits. It provides the following contributions: 

 Exploiting semantics inside the concerned ontologies. SemBigOM benefits from 

covering all aspects of the concepts of input ontologies. In addition, it exploits 

background knowledge resources in ontology matching, and uses an already trained 
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deep learning model for measuring the required similarities. Thus, SemBigOM is 

advantaged of providing a correct mapping. 

 It deals with the large-scale ontology matching issue at two stages. At each stage, it 

aims for perfecting and simplifying the ontology matching process. 

o First, SemBigOM involves deep learning methods, which are very 

appropriate for treating huge amounts of data, in order to create semantic 

embeddings for concepts of input ontologies. This is basing on computing 

similarities with concepts of a smaller and well selected reference ontology. 

That perfects the matching process, because of the fact that, each concept is 

represented in a vector space of a wide number of dimensions, where each 

value adds more precision to the concerned concept. And, it reduces the 

matching complexity, since, manipulating vectors of real values instead of 

ontological concepts is much less complicated. 

Then, an auto-encoder is trained on the generated vectors in order to provide 

better matching performance, since the auto-encoder keeps the most 

representative values for each concept. Also, training the model and 

compressing concepts embeddings to a lower-dimensional vector space 

decreases the large-scale matching complexity. 

o Second, as we seek for an ideal ontology matching, we perform a refining 

procedure that combines the different mappings generated by SemBigOM in 

order to provide an ideal alignment, using artificial neural networks which 

are, with their structures of numerous inputs and outputs, very appropriate for 

combination. This procedure serves to perfect the quality of the matching 

process with negligible matching complexity. 

 Supporting parallelization, which emerges as a complementary solution for matching 

large-scale ontologies. The different matchers of SemBigOM works in parallel. 

Moreover, SemBigOM parallelizes any multiple tasks that can run in parallel, aiming 

for reducing the processing time of large-scale ontology matching. 

6.3. Semantic Big Ontology Matching 

In this section, we study SemBigOM, the research framework that we propose for addressing 

the ontology matching challenges at the large scale. The processing workflow of SemBigOM 

is illustrated in Figure 6.2. It could be summarized in the following phases: Pre-Matching 
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Phase, Deep Embedding Phase, Matching Phase, Mapping Reuse phase and Post-Matching 

Phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Processing Workflow of SemBigOM. 
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SemBigOM takes as input two given ontologies, Ontology1 and Ontology2, and 

outputs an alignment A between them. A is a set of correspondences defined each by an 

identifier, a concept source (from Ontology1), a concept target (from Ontology2) and a 

similarity value. In what follows, we describe the matching process of SemBigOM and 

discuss its detailed steps. 

6.3.1. Pre-Matching 

At first, SemBigOM pre-matches input ontologies aiming for preparing them for matching. 

This preliminary phase consists of extracting the required information from Ontology1 and 

Ontology2. i.e., we extract their components which are necessary for generating alignment. 

As previously defined (Sect.5.3.1.1), an ontological concept is defined by three main 

aspects: Term, Intention and Extension. Respecting this 3-dimensional shape, we extract 

for each concept from Ontology1 and Ontology2 its:  

 Lexical label 

 Related concepts basing on the subsumption relationship, that are: 

o Its Ancestors (parent-concepts along the path to root) 

o Its Descendants (child-concepts of the first level) 

o Its Siblings (direct child-concepts of the direct parent-concepts) 

 Individuals 

After that, we pre-process the lexical information of the extracted components. i.e., we 

process the label, related concepts’ labels and individuals’ labels of each concept. The pre-

processing procedure outputs a set of processed terms. It consists mainly on tokenizing, 

denoising and removing stop words from the extracted textual information. 

6.3.2. Deep Embedding of Concepts 

This phase aims for preparing the concepts of input ontologies for deep learning. It 

transforms their concepts into vector representations that deep learning models can use. It is 

illustrated with the next phase in Figure 6.3. This transformation is performed using a 

reference ontology, which should be of the same domain as input ontologies, semantically 

and neutrally close to them, and of an appropriate size. 
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Figure 6.3. Creating Semantic Embeddings and Deep Matching of Concepts. 
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In order to represent a given concept from Ontology1 and Ontology2 in such a vector 

space, we compute similarities between that concept and all concepts of the reference 

ontology. N1, N2 and N3 denote supposedly the size of Ontology1, Ontology2 and the 

reference ontology respectively. Each input concept is then represented by an N3-

dimensionnal vector, where each dimension relies on a concept from the reference ontology.  

As we interest in covering the three aspects of the ontological concept, we represent 

each concept from Ontology1 and Ontology2 by three different vectors. That produces three 

embedding sets for each input ontology: 

 Terminological embedding: is based on computing the terminological similarity 

using the formula (5.1) proposed in chapter 5, combining a context-based similarity 

using an external knowledge resource, and a syntactical similarity using Jaro 

measure. 

 Structural embedding: is based on measuring the similarity between concepts basing 

on their related concepts. For that, we use the formula (5.2) presented in chapter 5. 

 Extensional embedding: is based on computing the similarity between instances of 

concepts using the Jaccard similarity. 

Once the six embedding sets are created, they undergo an unsupervised deep learning 

procedure in order to provide less dimensional and more accurate representations of 

concepts. Auto-encoders, with their mirrored Encoder-Decoder architecture, seem to be very 

appropriate for such tasks. We train an auto-encoder model to compress down the resulted 

vectors, and represent them into a lower dimension. The learned representations keep the 

most important features of concepts. The auto-encoder parameters are fixed by trial-and-

error. 

6.3.3. Ontology1-Ontology2 Matching 

This phase (Figure 6.3) consists on generating alignment between Ontology1 and Ontology2. 

That requires computing similarities between their concepts. Since these concepts are 

represented by three various vector representations, the matching process consists on 

measuring the embedding similarity between these vectors. For that, the cosine similarity 

measure is used by three different matchers: a terminological matcher, a structural matcher 

and an extensional matcher, in order to compute the similarity between the two 

terminological embeddings, structural embeddings and extensional embeddings 

respectively. 
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As results of this step, the three different matchers generate three different mappings, 

which undergo subsequently a filtering procedure using a defined threshold. That aims for 

extracting the final mappings by keeping only the most significant correspondences of high 

similarity scores. 

6.3.4. Neural Mapping Reuse 

This phase is illustrated by Figure 6.4. It is performed in three main steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Neural Mapping Reuse. 
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Step 1 - Constructing Matching Dataset 

The first step consists on constructing the matching dataset from the three mappings 

previously generated between Ontology1 and Ontology2. Each mapping has been created by 

a different matcher using its own specific matching technique. 

The method of their combination has a big impact on the final alignment results. It 

determines the size and components of the matching dataset. As we aim at both maximizing 

the number of relevant alignments and minimizing the number of un-related ones, we 

worked on three completeness levels so as to conclude the best strategy for producing the 

dataset: 

- Intersection: consists of keeping only common alignments pairs between chosen 

mappings. 

- Majority: consists of taking alignments pairs generated by the majority of the 

matching tools. 

- Union: consists of taking alignments pairs for which at least a chosen matching 

system has given a value. 

Step 2 – Training Neural Network 

The second step consists of training a neural network in an unsupervised way, so as to learn 

the matching function that leads to generate correspondences between input ontologies. 

We aim by this procedure at fixing, for each matcher, a weight which reflects its 

importance. Thus, we train a simple neural network of 3 inputs and one output for each pair 

of concepts from the training dataset. Inputs correspond to the different matchers, and the 

output, which is obtained from OAEI, represents the pretended similarity score between the 

two concepts. The initial weights are first initialised to 1. Then, they are updated for each 

sample of the training dataset, applying the back-propagation learning method, and using 

Sigmoïd as activation function. The other neural network parameters (like the learning rate) 

are fixed by trial-and-test. 

Step 3 – Matching Ontologies 

After that the final weights are adjusted for the three different matchers, this third step 

concerns matching input ontologies. It defines the matching function that allows generating 

semantic correspondences between Ontology1 and Ontology2, using the matchers weights 
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as well as their initial mappings. The output similarity between each pair of concepts from 

input ontologies is computed using formula (4.3) proposed in chapter 4. 

6.3.5. Post-Matching 

Finally, we prune and filter the generated correspondences so as to get the final mapping of 

SemBigOM. For that purpose, we define an alignment threshold T in order to keep only 

significant correspondences of which the value exceeds T. For instance, a pair of input 

concepts with a zero-similarity value is not considered as a valid correspondence. T is fixed 

by trial-and-error.  

Our aim behind this phase is to improve the precision of the matching process. We 

seek for eliminating irrelevant correspondences of low similarities, and keeping only the 

most appropriate ones. 

6.4. Evaluation Strategy 

In this section, we present the experimental strategy that we proceed for evaluating the 

ontology matching solutions that we propose in this study for dealing with the large-scale 

ontology matching issue. 

6.4.1. Experimental Settings 

For evaluating the proposed methodology, we use the standard evaluation measures: 

precision, recall and F-measure, against the reference alignments. They are previously 

defined and described in (Sect.1.3.5.3). These metrics are the most widely used criteria for 

such evaluation. They are based on the comparison of the resulted alignment A against a 

reference alignment R. Precision and recall are inversely proportional. For that, their 

harmonic mean, F-measure, is also commonly used. 

For SemBigOM embedding tasks, we use BioWordVec [199] as an external resource 

for measuring the required similarity. In addition, the Anatomical Entity Ontology: AEO21 

is used as reference ontology. It is an OWL ontology of anatomical structures highly adopted 

for facilitating interoperability across existing anatomy ontologies. 

As for deep learning tasks, the structure of the trained auto-encoder model is fixed by 

trial and test. Thus, the size of the embedded representations, input and output, to the auto-

                                                 
21 http://www.obofoundry.org/ontology/aeo.html 
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encoder model is 250 for each ontological concept. It is basically impacted by the size of the 

reference ontology. The size of the compressed representation of the concept is 50. 

Concerning the construction of the matching dataset of the neural refining phase 

(Sect.6.3.4), we worked on three completeness levels and compared their results so as to 

conclude the best way for constructing the dataset: intersection, majority and union. In the 

following, we refer by SemBigOM-I, SemBigOM-M and SemBigOM-U to our semantic 

ontology matching methodology by intersection, majority and union strategy of dataset 

construction respectively. 

In order to efficiently control the neural network while training and testing, we adopt 

a cross-validation procedure. It consists of partitioning the training data into P sets of equal 

size. The algorithm is run P times. For each time, the corresponding partition is used for 

testing, where the rest of the dataset is used for learning. The global validation result is the 

average of the individual validation results of the independent partitions. In SemBigOM 

cross-validation procedure, the number of cross-validation partitions, is fixed by trial and 

test. 

For the deep matching tasks, we use Google Colab22, a product from Google Research 

allowing to write and executing arbitrary python codes through the browser. It supports 

various popular machine learning libraries, mathematical equations, external datasets and 

free Cloud services with free GPU and TPU resources. For the neural refining tasks, the 

evaluation was carried out on a Windows8 (64-bit) desktop with an Intel-Core i5-3210M 

CPU @ 2.50GHz allocating 4.00 GB of RAM.  

Ontology Alignment Evaluation Initiative (OAEI)23 is an international initiative 

which aims for evaluating ontology matching systems using diverse types of test ontologies. 

It is the most authenticated initiative in this scope. It offers various test sets aiming to 

compare the different participant systems on the same basis in order to identify their 

advantages and limits. Since 2004, OAEI yearly organizes new campaigns and sections, and 

introduces new challenges for evaluation.  

In this study, we evaluate our proposed solutions according to various OAEI 

Campaigns. Particularly, we evaluate SemBigOM according to the Anatomy track24 of the 

                                                 
22 http://research.google.com/colaboratory/ 
23 http://oaei.ontologymatching.org/ 
24 http://oaei.ontologymatching.org/2022/anatomy/index.html 
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most recent OAEI campaign (OAEI’2022). We look for using challenges of different 

domains, types and especially of different and huge sizes. Therefore, seven OAEI tracks are 

selected. Four of them comprise multiple test cases that we consider as sub-tracks, since they 

are complete and independent in their datasets and results. All in all, we set up our 

experiments of this work on twelve test cases from OAEI’2015, OAEI’2017, OAEI’2018, 

OAEI’2019, OAEI’2020 and OAEI’2022 campaigns. We describe below the experimental 

design of each test case. 

1) OAEI'2018-CONFERENCE Track 

The goal of this track25 (Conference) is to find alignments within a collection of 16 

ontologies describing the domain of organising conferences. These ontologies, developed 

within OntoFarm project, are suitable for ontology matching task because of their 

heterogeneous character of origin. Tests are performed on a suite of 21 matching tasks of the 

pairwise combination of seven moderately expressive ontologies describing the same 

domain. Participant systems results had been evaluated based on crisp reference alignment, 

its uncertain version and logical reasoning evaluation based on violations of conservative 

principle. These ontologies which are shortly described in Table.6.1.  

Ontology 

name 

# of 

classes 

Ontology 

name 

# of 

classes 

Ontology 

name 

# of 

classes 

Ontology 

name 

# of 

classes 

Ekaw 74 Micro 32 ConfTool 38 Paperdyne 47 

Sofsem 60 Confious 57 Crs 14 Edas 104 

Sigkdd 49 Pcs 23 Cmt 36 MyReview 39 

Iasted 140 OpenConf 62 Cocus 55 Linklings 37 

Table 6.1. Overview of OAEI Conference test ontologies. 

2) OAEI'2018/2020/2022-ANATOMY Track 

The anatomy track26/27/28 (Anatomy) comprises a single real-world test case about matching 

two fragments of biomedical ontologies describing the human anatomy with 3304 classes 

and the anatomy of the mouse with 2744 classes. Ontologies are large, carefully designed 

                                                 
25 http://oaei.ontologymatching.org/2018/conference/index.html 
26 http://oaei.ontologymatching.org/2018/anatomy/index.html 
27 http://oaei.ontologymatching.org/2020/anatomy/index.html 
28 http://oaei.ontologymatching.org/2022/anatomy/index.html 
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and described in technical terms. The evaluation is based on a manually curated reference 

alignment. 

3) OAEI’2018-DISEASE AND PHENOTYPE Track 

This track29 (Phenotype) is organized and sponsored by The Pistoia Alliance Ontologies 

Mapping project team, basing on a real use case that requires finding alignments between 

disease and phenotype ontologies. The track comprises two tasks: 

3.1) HP-MP 

It consists on matching the Human Phenotype (HP) Ontology (31034 classes) and the 

Mammalian Phenotype (MP) Ontology (30273 entities) ontologies, against 696 

reference alignments. 

3.2) DOID-ORDO 

It consists on matching the Human Disease Ontology (DOID) (38240 classes) and the 

Orphanet and Rare Diseases Ontology (ORDO) (13504 entities) ontologies, against 

1237 reference alignments. 

4) OAEI’2018-LARGE BIOMEDICAL ONTOLOGIES Track 

The large biomedical ontologies track30 (Large-BioMed) consists on finding alignments 

between the Foundational Model of Anatomy (FMA), the Systematized Nomenclature Of 

MEDicine-Clinical Terms (SNOMED-CT), and the National Cancer Institute Thesaurus 

(NCI). These ontologies are semantically rich and contain 78989, 306591 and 66724 classes, 

respectively. The track comprises three matching problems: 

4.1) FMA-NCI 

This challenge comprises 3024 equivalence correspondences 

4.2) FMA-SNOMED 

This challenge comprises 9008 equivalence correspondences 

4.3) SNOMED-NCI 

This challenge comprises 18844 equivalence correspondences 

                                                 
29 http://sws.ifi.uio.no/oaei/phenotype/ 
30 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/ 
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5) OAEI'2018-BIODIVERSITY AND ECOLOGY Track 

The goal of this track31 (BioDiv) is to find pairwise alignments between four ontologies 

being used in various projects and particularly useful for biodiversity and ecology research. 

They are semantically rich and very overlapping. The reference alignments are produced 

using established matching systems to produce an automated consensus alignment, and then 

manually validating the unique results produced by each system, and finally adding manually 

generated correspondences. The track features two challenges: 

5.1) FLOPO-PTO 

This challenge consists on finding alignments between the Flora Phenotype Ontology 

(FLOPO) (24199 classes) and the Plant Trait Ontology (PTO) (1504 classes). 

5.2) ENVO-SWEET 

This challenge consists on finding alignments between the Environment Ontology 

(ENVO) (6909 classes) and the Semantic Web for Earth and Environment Technology 

Ontology (SWEET) (4543 classes). 

6) OAEI'2017-PROCESS MODEL MATCHING Track 

This track32 (PM) is a spinoff from the Process Model Matching Contest. It is concerned 

with the task of matching process models, originally represented in BPML. These models 

have been converted to an ontological representation. The resulting matching task is a special 

case of an interesting instance matching problem. The track comprises two test cases: 

6.1) UNIVERSITY ADMISSION 

The dataset of this task consists of nine process models that describe the process of 

university admission for different German universities. The BPMN representation of 

the process models was converted to a set of assertions (ABox) using the vocabulary 

defined in the BPMN 2.0 ontology (TBox). 

6.2) BIRTH REGISTRATION 

The dataset of this task consists of process models that describe the process of 

registering a new-born child in different countries and related administrative tasks. 

These process models were originally available as Petrinets as *.pnml. These datasets 

have also been converted into ontologies, more precisely into ABoxes. 

                                                 
31 http://oaei.ontologymatching.org/2018/biodiv/index.html 
32 http://web.informatik.uni-mannheim.de/oaei/pm17/ 
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7) OAEI'2015-ONTOLOGY ALIGNMENT FOR QUERY ANSWERING Track 

The goal of the OA4QA track33 (OA4QA) is to measure the ability of generating alignments 

to answer a set of queries in an ontology-based data access scenario where several ontologies 

exist. The dataset is based on the Conference track, and extended with synthetic Aboxes 

extracted from the DBLP dataset. The reference answer set used is the publicly available 

reference alignment of the Conference track and a manually repaired version of it from 

conservativity and consistency violations. 

6.4.2. Experimental Results 

In this sub-section, we present the experimental results of SemBigOM evaluation. For better 

evaluating our research methodology, we perform our tests against the most recent OAEI 

systems as well as against our previously proposed solutions. Therefore, we conducted our 

experiments in two main sketches: evaluation against OAEI systems and evaluation against 

NeuralOM and DeepOM. Furthermore, as we really interest in both matching quality and 

matching complexity, we analyse, for each sketch, the standard evaluation measures: 

Precision, Recall, F-measure as well as the matching runtime required by SemBigOM 

compared to all competing matching systems. 

6.4.2.1. First Sketch - Evaluation against OAEI’2022 Systems 

In this section, we present the results of our experimental procedure of SemBigOM with the 

results34 of the ontology matching systems participating at the anatomy track of the 2022 

OAEI campaign (Anatomy’22 track).  

The results of the performed evaluation are summarized in Table 6.2. The best scores 

are marked in bold for each evaluation measure. SemBigOM is compared to the following 

OAEI systems: Matcha [204], SEBMatcher [205], LogMapBio [206], LogMap [206], AMD 

[207], ALIN [208], LogMapLite [206], ATMatcher [209], LSMatch [210], ALIOn [211]. 

StringEquiv is a baseline of OAEI which produces the alignment between input ontologies 

basing on exact string matching of labels of concepts. These systems are classified 

decreasingly in Table 6.2 according to their F-measure scores. 

 

 

                                                 
33 http://oaei.ontologymatching.org/2015/oa4qa/index.html 
34 http://oaei.ontologymatching.org/2022/results/anatomy/index.html 
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Ontology Matching System 
Standard Evaluation Measures   

Runtime(s) Precision Recall F-Measure 

SemBigOM 

Intersection 0.980 0.996 0.987 66.276 

Majority 0.954 0.995 0.974 66.323 

Union 0.954 0.889 0.919 66.307 

OAEI 

Systems 

Matcha 0.951 0.930 0.941 37 

SEBMatcher 0.945 0.874 0.908 35602 

LogMapBio 0.873 0.919 0.895 1183 

LogMap 0.917 0.848 0.881 9 

AMD 0.953 0.817 0.880 160 

ALIN 0.984 0.752 0.852 374 

LogMapLite 0.962 0.728 0.828 3 

ATMatcher 0.978 0.669 0.794 156 

LSMatch 0.952 0.634 0.761 20 

ALIOn 0.364 0.460 0.407 26134 

StringEquiv 0.997 0.622 0.766 - 

Table 6.2. Evaluation results of SemBigOM against OAEI’2022 systems for Anatomy 

track. 

As stated above, we evaluate the proposed ontology matching solution at two stages, 

aiming at both maximizing the matching quality and minimizing the large-scale matching 

complexity. 

6.4.2.1.1. Matching Quality Evaluation 

Figure 6.5 outlines the evaluation results in terms of the three standard evaluation measures 

defined in the precedent sub-section. It summarises the comparison of SemBigOM results 

with those of all participant matching systems for OAEI’2022 Anatomy track. 
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Figure 6.5. Matching quality evaluation results of SemBigOM against OAEI’22 systems 

for Anatomy track. 

From Figure 6.5, we can observe that:  

 SemBigOM achieves excellent scores of Precision by its three variants. It gives 

values of 0.980, 0.954 and 0.954 by SemBigOM-I, SemBigOM-M and SemBigOM-

U respectively. They are so closed to the score of StringEquiv which is equal to 

0.997, and competitive to ALIN, AMD, LogMapLite, ATMatcher and LSMatch with 

scores equal to 0.984, 0.953, 0.962, 0.978 and 0.952 respectively. 

 As for Recall, SemBigOM gives very significant values of 0.996, 0.995 and 0.889 

by its version of intersection, majority and union respectively. They are more 

elevated than StringEquiv value which is equal to 0.622. The results of SemBigOM-

I and SemBigOM-M exceed those of all matching systems. SemBigOM-U has been 

exceeded only by Matcha and LogMap with scores of 0.930 and 0.919 respectively. 

 As expressed by F-measure which presents a balance between the two previous 

measures, SemBigOM-I and SemBigOM-M achieved by far the best results of 0.987 

and 0.974 in comparison with the other systems. SemBigOM-U has an excellent 
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score as well. It is equal to 0.919 and slightly exceeded only by Matcha with a score 

of 0.941. The results of the proposed methodology are strongly higher than 

StringEquiv result which is equal to 0.766. 

 The proposed solution achieves the best scores. SemBigOM-I gets the best 

performance, slightly better than SemBigOM-M, followed by SemBigOM-U. 

6.4.2.1.2. Matching Complexity Evaluation 

Figure 6.6 outlines the evaluation results in terms of the matching runtime. It summarises 

the comparison of SemBigOM results with those of all participant matching systems for 

OAEI’2022 Anatomy track. 

 

Figure 6.6. Matching complexity evaluation results of SemBigOM against OAEI’22 

systems for Anatomy track. 
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6.4.2.2. Second Sketch - Evaluation against NeuralOM and DeepOM 

In this section, we present the results of the performed experimental procedure of 

SemBigOM with the results of the ontology matching solutions that we propose in this study: 

NeuralOM and DeepOM. The results of this evaluation, which is performed according to the 

OAEI anatomy track, are summarized in Table 6.3. The best scores are marked in bold for 

each evaluation measure. 

Ontology Matching System 
Standard Evaluation Measures   

Runtime(s) Precision Recall F-Measure 

NeuralOM 

Intersection 0.981 1.000 0.990 808.219 

Majority 0.951 1.000 0.974 808.250 

Union 0.919 0.930 0.923 808.266 

DeepOM  0.994 0.665 0.797 149 

SemBigOM 

Intersection 0.980 0.996 0.987 66.276 

Majority 0.954 0.995 0.974 66.323 

Union 0.954 0.889 0.919 66.307 

Table 6.3. Evaluation results of SemBigOM against NeuralOM and DeepOM for Anatomy 

track. 

6.4.2.2.1. Matching Quality Evaluation 

Figure 6.7 illustrates the evaluation results in terms of the three standard evaluation measures 

previously defined. It summarises the comparison of SemBigOM results with the results of 

NeuralOM and DeepOM for OAEI Anatomy track. 
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Figure 6.7. Matching quality evaluation results of SemBigOM against NeuralOM and 

DeepOM for Anatomy track. 

It is observed from Figure 6.7 that: 

 The best Precision performance belongs to DeepOM with a very high score of 0.994. 

NeuralOM-I and SemBigOM-I get the next best values equal to 0.98, followed by 

SemBigOM-M, SemBigOM-U and NeuralOM-M with close results around 0.95. 

The last score is related to NeuralOM-U which presents an excellent value as well 

(0.919). 

 NeuralOM-I and NeuralOM-M achieve complete scores of Recall (1.0). 

SemBigOM-I and SemBigOM-U results are not considerably lower with results 

exceeding 0.99. Then, NeuralOM-U and SemBigOM-U achieve excellent recall 

values around 0.9. The next score is 0.665 and given by DeepOM. 

 As expressed by F-measure which reflects the real quality of matching, NeuralOM-I 

and SemBigOM-I get the best performance with results of 0.99. The following best 

score is achieved by NeuralOM-M and SemBigOM-M of 0.974. NeuralOM-U and 

SemBigOM-U present excellent results as well exceeding 0.91. Lastly, DeepOM 

gives a very significant score of about 0.8. 
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 DeepOM results are disparate. It has the highest score of precision and the lowest 

score of recall. Results of NeuralOM and SemBigOM are more balanced. Their 

scores are so close and competitive with each other. Both of them present a 

decreasing order from the intersection to the majority to the union version. However, 

on average, NeuralOM results are slightly better. 

6.4.2.2.2. Matching Complexity Evaluation 

Figure 6.8 outlines the evaluation results in terms of the matching runtime required for 

matching. It summarises the comparison of SemBigOM results with those of NeuralOM and 

DeepOM for OAEI Anatomy track. 

 

Figure 6.8. Matching complexity evaluation results of SemBigOM against NeuralOM and 

DeepOM for Anatomy track. 

As shown in Figure 6.8, the runtime required by the three versions of NeuralOM 
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than the runtime required by DeepOM. The matching runtime of SemBigOM (SemBigOM-
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respect to the matching runtime. An analytical look at the preceding sub-sections reveals the 

unfold conclusions: 

 The results of the proposed methodology are strongly higher than StringEquiv result. 

The preliminary results of SemBigOM are very promising. It has achieved F-measure 

values exceeding 0.9 by its three variants. This is an excellent score for the ontology 

matching task especially at the large-scale. 

 Comparing SemBigOM with the OAEI matching systems participant to the OAEI-

Anatomy track of the 2022 campaign shows that, it outperforms them in terms of F-

measure. besides the fact that, SemBigOM-U has an excellent score, SemBigOM-I 

and SemBigOM-M achieved by far the best results and outperforms the other 

matching systems. Moreover, SemBigOM performs the ontology matching process 

at short notice comparing with the competing systems. 

 It should be noted that, we have tested SemBigOM according to the most recent 

campaign of OAEI. The Anatomy track is functional yearly since 2004. The 

competing ontology matching systems have been developed and improved over years 

through several participations at this initiative. SemBigOM outperforms these 

systems. Therefore, it is effective to perform the matching process among 

heterogeneous ontologies. 

 The main conclusion revealed from comparing SemBigOM with NeuralOM is that 

SemBigOM is totally independent of other ontology matching systems. Their 

matching results are so close and competitive. They present a decreasing order from 

their intersection to the majority to the union version. The matching runtime required 

by SemBigOM is much lower than NeuralOM. 

 Comparing SemBigOM with DeepOM shows that, the matching results of 

SemBigOM are much higher than those of DeepOM. In addition, the runtime 

required by DeepOM to achieve the matching process is higher than the runtime 

required by SemBigOM. Thus, SemBigOM outperforms DeepOM in terms of both 

matching quality and complexity. 

The conducted evaluation of SemBigOM demonstrates an excellent matching 

performance at lowest cost. It has perfectly achieved the two objectives of large-scale 

ontology matching, which are improving the matching quality and reducing its complexity. 

Moreover, SemBigOM has successfully outperformed the existing ontology matching 
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systems, and addressed their drawbacks as well as the limits of NeuralOM and DeepOM. 

The high performance achieved by SemBigOM is due to the fact that it has excellently 

tackled the challenges which have motivated this work, and has been developed with a very 

high level of accuracy. 

6.5. Conclusion 

In this chapter, we have presented SemBigOM, an ontology matching solution that we 

propose for dealing with the heterogeneity problem at the large-scale. We describe the 

proposed methodology and outline its contributions. And, we present the experimental 

procedure that we have performed on the Anatomy track from the 2022 campaign of the 

OAEI Initiative. 

The results of evaluating SemBigOM on large OAEI ontologies and its comparison 

with the different participant ontology matching systems, show that, it has proven its 

efficiency to effectively match large-scale ontologies against the OAEI matching systems as 

well as our previously proposed solutions.  
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Conclusion and Open Issues 

 

 

Main Contributions 

Ontology matching is an effective process to establish interoperability between 

heterogeneous ontologies. The ontology matching field is maturing with enormous number 

of matching techniques. However, dealing with large ontologies still remains a key 

challenge. Much more work is required at this scale due to the fact that, ontology matching 

systems suffer from difficulties related to memory consumption and processing time at the 

large scale. The existing matching techniques which deal with this problem are based on 

ontology partitioning which is also challenging. However, partitioning ontologies also 

suffers from interesting challenges. This has a direct impact on the efficiency of the ontology 

matching process. 

Deep learning algorithms have motivated numerous researchers in many fields solving 

different and complex problems which require powerful computational tools. However, they 

have limited use in ontology matching, particularly in large-scale ontology matching. 

In this study, we propose three different solutions to the large-scale ontology matching 

problem: 

1. NeuralOM, a mapping reuse-based large-scale ontology matching approach that we 

develop basing on artificial neural networks. As we aim not just to generate 

alignments between heterogeneous ontologies but to ideally match them, we 

developed it on a very high level of accuracy. 

In order to properly evaluate the effectiveness of NeuralOM, we conducted much 

precise experiments on twelve test cases of different domains as well as of different 

dataset sizes from OAEI initiative. The results of these experiments show that the 

proposed approach has proven its efficiency in front of all OAEI matching systems 

in terms of the five evaluation measures adopted, with very excellent scores for all 

matching tasks and with negligible matching time even for very large ontologies. 

That permits to, significantly increase the performance of the ontology matching 
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task, and perfectly tackle the large-scale ontology matching challenges which have 

motivated this work. 

2. DeepOM, a large-scale ontology matching system based on deep learning techniques 

to deal with the large-scale heterogeneity problem without partitioning. The key 

novelty of DeepOM is to use a reference ontology to create semantic embeddings for 

ontological concepts, which are used to train an auto-encoder in order to learn more 

accurate and less dimensional representations for concepts. 

The results of its evaluation on large OAEI ontologies, and its comparison with 

ontology matching systems participant to the same test case, show that, DeepOM 

outperforms the ontology matching baseline with high ability to tackle the large-scale 

problem. Learning concepts’ embeddings using auto-encoder is effective for 

matching large-scale ontologies. All the matching factors of DeepOM are positive 

towards improving the ontology matching quality. 

3. SemBigOM, the global methodology of this research that combines NeuralOM and 

DeepOM in order to overcome their limits and achieve excellent matching results 

independently. The core idea of SemBigOM is that, it exploits DeepOM to generate 

initial mappings that NeuralOM requires as input to be refined and reused so as to 

output the final matching results. It seeks for achieving the large-scale ontology 

matching process at a perfect and independent fashion. 

The results of evaluating SemBigOM on large OAEI ontologies against the different 

participant ontology matching systems as well as NeuralOM and DeepOM, 

demonstrate its high ability to tackle the large-scale ontology matching problems. It 

has successfully outperformed and addressed the limits of the existing work. 

SemBigOM has proven its high efficiency to perfectly achieve all objectives which 

have motivated this research. 

Opens issues 

Despite the significant contributions of this research to the field of ontology matching, 

several limitations were encountered during the development and evaluation of the proposed 

solutions. NeuralOM presents some technical limits related to the input data.  The selected 

matching tools, which are not all available, are of different inputs and especially of different 

outputs. Choice criteria and number of chosen systems are additional challenges. As for 
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DeepOM and SemBigOM, the choice of the reference ontology is such a delicate and careful 

task which requires a domain expert. Additionally, the isolated concepts of the reference 

ontology are also challenging and affect the matching performance leading to zero-filled 

vectors of concepts. Furthermore, despite efforts to automate the matching process, there 

may still be a need for human intervention to elect the external resources, which can 

introduce delays and additional costs in real-world applications. 

Future research efforts should focus on addressing these limitations by exploring more 

efficient algorithms, improving data quality, refining evaluation methodologies, and 

extending the scope of ontology matching systems to encompass a wider range of domains 

and ontological structures. Although the experimental results of the proposed solutions are 

very encouraging, we aim, as future work: 

- At adopting the proposed solutions to accurately match large scale ontologies of 

specific fields. We also aim for using our matching methodology for semantic 

analysis and several objectives in real-application fields of ontology matching, such 

as, sentiment analysis, recommendation systems, documents classification, text 

processing in social media, …etc.  

- As for DeepOM and SemBigOM, we aim at filtering concepts of the reference 

ontology, and removing its isolated and useless concepts before generating the new 

representations for input ontologies. We also plan to pass the representations of 

concepts of the input ontologies from one-index to two-indices arrays in order to 

have more precise representations.  

- In addition, we plan to deal with particular matching tasks, such as cross ontology 

matching, basing on other different and more complicated test cases with larger and 

more huge ontologies with many instances, especially for DeepOM and SemBigOM.  

- Besides, we intend to evaluate, not just the mapping of our ontology matching 

approaches, but also the similarity values of each generated alignment between 

ontologies using different and specific evaluation measures dedicated for such 

purposes.  

- Moreover, we plan for participating at the ontology alignment evaluation initiative 

in several tracks, in order to assess strengths and weaknesses of our work, increase 

communication among other developers and to help improving the research on 

ontology matching, particularly on large-scale ontology matching. 
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