

107-3+6-1

Pearls of Algorithm Engineering

PAOLO FERRAGINA

University of Pisa

Contents

	Prefac	Two Other Simple Transforms The brip Compressor		page xi
9	Industr	On Compression Beesling		267
1	Introdu	ICTION		268
0	A 10/			4.0
2	A Warn			10
	2.1	A Cubic-Time Algorithm		11
	2.2	A Quadratic-Time Algorithm		12
	2.3	A Linear-Time Algorithm		14
	2.4	Another Linear-Time Algorithm		16
	2.5	A Few Interesting Variants [∞]		17
3	Randor	m Sampling		23
	3.1	Disk Model and Known Sequen-	ce Length	24
	3.2	Streaming Model and Known Se		26
	3.3	Streaming Model and Unknown		28
4	List Ra	nking		32
	4.1	The Pointer-Jumping Technique		33
	4.2	Parallel Algorithm Simulation in		34
	4.3	A Divide-and-Conquer Approac		37
5	Sorting	Atomic Items		44
	5.1	The Merge-Based Sorting Parad	Some Interesting Projection	45
	5.2	Lower Bounds	igiii	52
	5.3	The Distribution-Based Sorting	Daradiam	57
	5.4	Sorting With Multi-Disks [∞]	r aradigin	67
	3.4	Softing with Muth-Disks		07
6	Set Intersection			72
	6.1	Merge-Based Approach		74
	6.2	Mutual Partitioning		75
	0.2	Triatual I altitudining		10

-	_		-	- 1	-
C	nı	T F	\mathbf{o}	nı	
2.0	.,,				

VIII	Conten	its	
	6.3	Doubling Search	77
	6.4	Two-Level Storage Approach	79
7	Sortin	g Strings	82
	7.1	A Lower Bound	83
	7.2	RADIXSORT	84
	7.3	Multi-key QUICKSORT	90
	7.4	Some Observations on the Two-Level Memory Model [∞]	94
8	The Di	ctionary Problem	96
	8.1	Direct-Address Tables	97
	8.2	Hash Tables	98
	8.3	Universal Hashing	101
	8.4	A Simple (Static) Perfect Hash Table	106
	8.5	Cuckoo Hashing	111
	8.6	More on Static and Perfect Hashing: Minimal and Ordered	116
	8.7	Bloom Filters	121
		2.4 Another Linear-Time Algorithm 2.5 A Few Interesting Variants®	
9	Searc	hing Strings by Prefix	128
	9.1	Array of String Pointers	129
	9.2	Locality-Preserving Front Coding $^{\infty}$	134
	9.3	Interpolation Search	136
	9.4	Compacted Trie	138
	9.5	Patricia Trie	142
	9.6	Managing Huge Dictionaries [∞]	145
10	Searc	hing Strings by Substring	153
	10.1	Notation and Terminology	153
	10.2	The Suffix Array	154
	10.3	The Suffix Tree	172
	10.4	Some Interesting Problems	181
		5.2 Lower Bounds	
11	Intege	er Coding	194
	11.1	Elias Codes: γ and δ	197
	11.2	Rice Code	198
	11.3	PForDelta Code	199
	11.4	Variable-Byte Code and (s, c) -Dense Codes	200
	11.5	Interpolative Code	203
	11.6	Elias-Fano Code	203
12	Statis	tical Coding	210
	12.1	Huffman Coding	210
	12.2	Arithmetic Coding	22
	12.3	Prediction by Partial Matching [∞]	234

			Contents	IX	
13	Dictionary-Based Compressors			240	
	13.1	LZ77		241	
	13.2	LZ78		244	
	13.3	LZW		246	
	13.4	On the Optimality of Compressors $^{\infty}$		248	
14	Block-	Sorting Compression		252	
	14.1	The Burrows-Wheeler Transform		253	
	14.2	Two Other Simple Transforms		258	
	14.3	The bzip Compressor		264	
	14.4	On Compression Boosting [∞]		267	
	14.5	On Compressed Indexing [∞]		268	
15	Compr	ressed Data Structures		274	
	15.1	Compressed Representation of (Binary) Arrays		274	
	15.2	Succinct Representation of Trees		284	
	15.3	Succinct Representation of Graphs		291	
16	Conclu			299	
	Index	ceting their topics I was driven by a twofold goals on the with an algorithm engineering tools or that will help		202	