
1

UNIVERSITY OF BLIDA 1

Faculty of Technology

Department of Electronics

DOCTORAL THESIS

In Electronics

VISUAL ODOMETRY OF DENSE RGB-D IMAGES USING DIFFERENT OPTIMIZATION

METHODS

Realized by:

DJEMA SLIMANE

Blida, April 06,2025

In front of the jury made up of :

Mr. YKHLEF Farid Professor, Blida1 University President

Mr. DJENDI Mohamed Professor, Blida1 University Examiner

Mr. HOCINE Abdelfettah MCA, University of Djilali Bounaama Khemis Miliana Examiner

Mr. Zoubir Abdeslem Benselama Professor, Blida1 University Thesis director

Mr. Ramdane Hedjar Professor, King Saud University Thesis co-director

2

Abstract

The goal of this thesis is to accurately estimate the motion of a camera embedded in a robot or

a moving object in a static scene using RGB-D images. These images can be provided by a stereo

camera or by using a color digital camera as well as one that provides the depth of the scene.

Therefore, RGB-D images are the only information acquired by the system from the environment.

Thus, the movement of the system is estimated using different consecutive images. The unknown

camera motion can be determined by minimizing the intensity error between every two

consecutive images. Hence, the challenge of motion estimation is transformed into a non-linear

least squares optimization problem, with robot motion being the unknown solution. The solution

of such problems typically involves iterative approaches. Exact methods use the linearization of

the least square equation to resolve this problem. Alternatively, we can use metaheuristic

optimization methods to solve this non-linear equation. Note that the optimal solution will be used

to estimate the position of a mobile robot. To evaluate the visual odometry methods, both exact

and metaheuristic methods, we apply the root mean square error to an extensive set of images.

Key words: RGB-D images, static scene, stereo camera, metaheuristic method, visual

odometry.

3

 ملخص

بدقة في مشهد المتحرك جسم أو روبوتالهدف من هذه الأطروحة هو تقدير حركة الكاميرا المدمجة في

بواسطة كاميرا استريو أو باستخدام كاميرا رقمية هاصور يمكن توفيرهذه ال. RGB-D باستعمال صور ثابت

مات الوحيدة التي يحصل هي المعلو RGB-Dتوفر عمق المشهد. حيث صور كاميرا إلىملونة بالإضافة

مختلفة. يمكن تحديد حركة متتابعة باستخدام صور الكاميرا . وبالتالي، يتم تقدير حركة المحيط عليها النظام من

تحدي تحويل يتم. ومن ثم، متتابعتين صورتينكل طريق تقليل خطأ الكثافة بين الكاميرا، غير المعروفة، عن

. المجهولحيث تكون حركة الروبوت هي الحل ل المربع غير الخطي،تقدير الحركة إلى مشكلة تحسين تقلي

يتضمن حل مثل هذه المشكلات أساليب تكرارية. تستخدم الطرق الدقيقة الخطية لمعادلة تقليل المربع عادةً ما

لة لحل هذه المعاد الميتايورستيةوبدلاً من ذلك، يمكننا استخدام طرق التحسين المشكلة. غير الخطي لحل هذه

. يلُاحظ أن الحل الأمثل سيسُتخدم لتقدير موضع روبوت متحرك. لتقييم طرق قياس المسافة غير الخطية

الميتايورستية، نطبق متوسط جذر مربع الخطأ على مجموعة واسعة من و الدقيقة الطرق من كلالبصرية،

 الصور.

الميتايورستية، القياس البصري ، مشهد ثابت، كاميرا ستيريو، طريقة RGB-Dصور: المفتاحيةالكلمات

 .للمسافة

4

5

Acknowledgments

First and foremost, I would like to thank Allah ‘Âzza wa Jal’ for giving me the courage, patience,

health, and will to finish this work.

This thesis is a result of years of hard work, and it is with the help of people who did not give

up. During these years, I learned a lot in my field and that is what led me to make contributions and

continue research n order to improve my knowledge.

I am very grateful for the support of my thesis directors, who have helped me through the

PhD. I would like to express my deep gratitude to Mr. Zoubir Abdeslem Benselama, professor at

the University of BLIDA 1 and director of this thesis, and without your continuous support and

encouragement, I would probably not have finished this modest work. I would also like to thank Mr.

Ramdane Hedjar, Professor at King Saud University and co-director of this thesis. I have benefited

from our many interesting discussions regarding this work, and I have really appreciated your help

in wrapping my head around some of the more technical aspects and for the support you were kind

enough to give me throughout my work and, above all, your confidence in me as well as your

incessant encouragement.

My sincere thanks also go to the members of the jury: Pr. YKHLEF Farid, president of the

jury, Pr. DJENDI Mohamed, and Pr. HOCINE Abdelfettah, examiners of this thesis, for

agreeing to evaluate this work.

I would like my friends, my siblings, and members of LATSI Laboratory to find here the expression

of my most sincere and deep thanks in recognition of their support, sacrifices and encouragement.

6

Dedication

I dedicate this modest work as a testimony of my great respect to my dearest. I would like to

thank all of them, particularly and above all, MY PARENTS, for all their sacrifices, their support,

and their prayers all along my studies, and I am happy to have been able to read joy and pride in

their eyes. May Allah preserve your health and grant you a long life.

To my brothers, sisters, wife, sons, all my grand family DJEMA, friends, and classmates who

shared their words of advice and encouragement to finish this doctorate study.

7

Table of contents

Abstract…………………………………………………………………………………. 2

Acknowledgments.…………………………………………………………………….5

Dedication……………………………………………………………………………….6

Table of contents……………………………………………………………………… 7

List of abbreviations ……………………………………………….………………… 7

List of figures………………………………….……………………….………………12

List of tables……………………………………….………………...……………...….13

General introduction……………………………….…………………………...…..15

I. Related work

I.1. Introduction…………………………………………………….……...…....………. 18

I.2. Sparse Visual Odometry ………………………………………...…………………. 18

I.3. Dense Visual Odometry …………………………………...….……………………. 19

I.4. Metaheuristic method…………………………………………….…………………. 21

I.5. RGB-D Benchmark……………………………...……………….…………………. 22

I.6. Conclusion……………………………………………….…….……………………. 23

II. Visual odometry method

II.1. Introduction ……………………………………………………..…………………. 25

II.2. System modeling……………………………………………………...……………. 25

II.3. Construct the Warp function …………………………………………….……….... 26

II.4. Pyramid Multi-resolution………………………………………………..……....…. 32

II.5. Conclusion ……………………………………………………………………...…. 34

8

III. Optimization Methods

III.1. Introduction ………………………………………………………………………. 36

III.2. Overview optimization methods...……………………………………………..…. 36

III.2.1. Exact method ……………………...…………………………………………..... 37

III.2.2. Approximate methods…………………………………………………..………. 38

III.3. Energy-Based using Gauss-Newton method …………………………......………. 40

III.3.1. linearization of the least squares method ………………………………………. 41

III.3.2. Calculation of the Jacobian matrix …………………………………………..…. 44

III.4. Genetic Algorithm for motion estimation …………………………………...…… 46

III.4.1. Representation ………..……………………………………………...…………. 46

III.4.2. Population initialization………………………………………………….…..…. 46

III.4.3. Objective function ………………………...………………………………...…. 46

III.4.4. Selection strategy ……………………………………….…………………...…. 47

III.4.5. Reproduction strategy …………………..…………………………………...…. 48

III.4.6. Replacement strategy ……………………………...………………………...…. 49

III.4.7. Stopping criteria …………………………………...………………………...…. 49

III.4.8. Overall algorithm ……………………………….…………………………..….. 50

III.5. Geometric particle swarm optimization for visual ego-motion Estimation ...…….. 52

III.5.1. PSO on a vector space ………………………………………………..……..….. 53

III.5.2. The special Euclidean group SE(3) …………………………...……………..…. 54

III.5.3. PSO on SE(3) ………………………………………….……………………..…. 55

III.5.4. PSO coefficients used for convergence ….…..…………………………………. 60

III.6. Firefly algorithm for motion estimation ………………….…………..………..…. 61

III.6.1. Material and methods ………………………………….……………...….....….. 61

III.6.2. The proposed motion estimation algorithm .…………….…………………...…. 62

III.6.3. Firefly algorithm on SE(3) ………………………..……….………………...….. 63

III.6.4. Overall algorithm…………………………………………..……….………...…. 65

III.7. Conclusion……………………………………………………….……………..…. 67

9

IV. Performance evaluation metrics

IV.1. Introduction ………………………………………………….…………….…..…. 69

IV.2. Real-time graphical user interfaces ……………………..…….………..………… 69

IV.3. Relative pose error ………………………………………………………….....…. 70

IV.4. Root mean square error ………………………….…………………………….…. 71

IV.5. Conclusion ……….…………………………………….……………………....…. 72

V. Experimental setup

V.1. Introduction ………………………………………….……………………….…. 74

V.2. Dataset and camera …………………..….………………………………………. 74

V.2.1. Kinect camera ……………………………..…………….…………………..…... 75

V.2.2. RGB-D image …………………………………………...……………………..... 78

V.2.3. Data acquisition ………………………………………….…………………..….. 80

V.3. Experimental and discussion ……….…………………….…………………..…. 82

V.4. Conclusion …………………………………………..………………………..…. 91

Conclusion and future work …………………………….…………………....…. 93

Annexes …………………………………………………..………………………..…. 95

References …...……………………………………………..………………..…..…. 100

10

List of abbreviations

2D Two Dimension

3D Three Dimension

3-DOF Tree Degree of Freedom

ABC Artificial Bee Colony

AR Augmented Reality

Cumsum The cumulative sum.

det(R) determinant of matrix R

DMS Down Mean Sampling

DSR Down-Sampled Resolution

DTAM Dense Tracking and Mapping

EB Energy-Based method

FA Firefly Algorithm

FAST Features from Accelerated Segment Test

fr1_xyz dataset freiburg 1 in xyz direction

fr2_desk dataset freiburg 2 desk

GA Genetic Algorithm

Gbest Global best solution

GPU Graphics Processing Unit

GUI graphical user interfaces

ICP Iterative Closest Points

IFA Iterative Firefly Algorithm

IMU Inertial Measurement Unit

IR Infrared

LIDAR LIght Detection And Ranging sensor

LIMO LIdar-Monocular visual Odometry

MER Mars Exploration Rovers

NASA National Aeronautics and Space Administration

Pbest Personal best solution

PNG Portable Network Graphics

POSIX Portable Operating System Interface for uniX

probci The cumulative probability sum of the particle index i

11

probi The select probability of the particle index i

PSO Particle Swarm Optimization

PTAM the Parallel Tracking and Mapping

quat2dcm quaternion to direction cosine matrix

RGB-D Red Green Blue - Depth

RMSE Root Mean Square Error

ROS Robot Operating System

RPE Relative pose error

RPEI Relative pose error between current and precedent image

SE(3) Special Euclidean group in three dimensions

se(3) Lie algebra of Special Euclidean group in three dimensions

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SO(3) special orthogonal group

so(3) Lie algebra of Special Orthogonal group

SURF Speeded-Up Robust Features

TGZ Tape Archive compressed using Gzip

UNIX Uniplexed Networked Interface eXecution

UTC Coordinated Universal Time

VectError Vector of error

VGA Visual graphics array

VR Virtual Reality

12

List of figures

II.1: The warp process consists of transforming each pixel in the frame It+1 into

another pixel in the warped frame It+1(ω(ξ,pi)). ……………………………….......…. 27

II.2: Pinhole camera model ………………………………………………..………….....…. 27

II.3: Parameters camera calibration ………………………….…………………….…..….... 29

II.4: Representation of an image pyramid with 5 levels …………….……………………... 33

II.5: Iterative image alignment process using a multi-resolution image pyramid ……....….. 33

III.1: General classification of the optimization techniques …………………………....….. 37

III.2: Flowchart of the motion estimation using the energy-based method……………...…. 43

III.3: strategy Tournament selection consists of selecting a group of

the best particles or individuals randomly from the population, and then

the best solution from the picked individuals is selected. …………………………..... 47

III.4: Strategies of roulette wheel selection include choosing a single individual

for each spin. …………………………………………….………....……………...…. 48

III.5: Flowchart of the motion estimation using the genetic algorithm............................…. 51

III.6: SE and the corresponding Lie algebra as tangent space at the identity…...………….. 54

III.7: Graphical representation of geometric PSO on a general Riemannian manifold.….... 56

III.8: Flowchart of the motion estimation using the PSO method...……………………...... 59

III.9: Flowchart of the motion estimation using the Firefly algorithm……………….....…. 66

IV.1: The real-time graphical user interfaces view code execution in MATLAB……....…. 69

V.1: Hardware Kinect sensor, and two captured frames using RGB camera

and depth camera…………………………………………….……….......….....….…. 76

V.2: Measurement of Kinect camera depth……….……………….………........…....….…. 76

V.3: Depth image from “fr2_desk” sequence………...…………….……….......…........…. 79

V.4: RGB image from “fr2_desk” sequence……….……………….………........…..….…. 80

13

V.5: RGB image from the “fr1/ xyz” sequence……………………….……....……...….…. 81

V.6: Camera trajectory error of GA, PSO, and classic method using

a part of fr1_xyz dataset……………………………....………….……...….......….…. 83

V.7: True camera trajectory and classic method using a part of fr1_xyz dataset….…….…. 83

V.8: True camera trajectory with GA method using a part of fr1_xyz dataset…...……..…. 84

V.9: True camera trajectory with PSO method using a part of fr1_xyz dataset…..……..…. 84

V.10: Camera trajectory error of GA, PSO, and Classic method using

a part of fr2_desk dataset……………………….……………….……...…...……..…. 85

V.11: True camera trajectory with GA, PSO, and Classic method using

a part of fr2_desk dataset……………………….……………………....……....….…. 86

V.12: Camera trajectory error of FA, PSO, and the Classic method (BE) using

a part of fr2_desk dataset.……………………………………….……...……...….…. 87

V.13: True camera trajectory with FA, PSO, the classic method trajectory using

a part of the fr2_desk dataset………………………………….……...……....….…. 88

V.14: The true trajectory and estimated trajectory using FA on 3D scene…..............….…. 89

V.15: The true trajectory and estimated trajectory using the classic method

on a 3D scene…………….……………………………...……….……...……...….…. 89

V.16: The true trajectory and estimated trajectory using PSO on a 3D scene……...….…... 90

V.17: Camera trajectory error of FA, PSO, and the Classic method using

a part of the fr1_xyz dataset…………………………………….………...…...….…. 91

List of tables

V.1: Root mean square error (RMSE) of drift in meters per second for different

methods for ground truth…………………..…………………….……...……....….…. 86

V.2: Root mean square error (RMSE) of drift in meters per second of different

methods compared with ground truth…………..……………….……...……....….…. 88

14

General introduction

15

General introduction

In literature, odometry involves exploiting data provided by different sensors, such as speed

and orientation sensors, to estimate the motion of a robot, drone, or car. However, this approach

has its limitations, as the wheels may experience slippage on slick surfaces or remain stationary

while spinning in sandy terrain, and flying drones in bad weather conditions, such as rain and

strong winds makes it difficult for them to gauge their speed and direction of movement, leading

to inaccuracies in movement calculations. Over time, these errors can accumulate, resulting in a

growing disparity between the ground truth and the estimated motion as the path length increases.

The process of calculating motion using consecutive frames from a moving camera is known

as visual odometry, and various algorithms perform this process. It improves navigation accuracy

for mobile entities employing various forms of locomotion, including robots with legs or wheels

operating on surfaces with different difficulties, such as sticky or sandy terrain. This process

enhances the overall performance of the robots and drones in executing their designated tasks.

Over the past decade, substantial advancements in data processing technology and computer

science, driven by the growing demand in the fields of autonomous driving, robotics, drones, and

the Internet of Things, have significantly enhanced visual odometry. The Internet of Things has

become one of the most important technologies, and locating objects is one of its six main

objectives.

Various techniques, such as sparse and dense methods, exist for visual odometry. The sparse

technique [1] extracts features from an image and uses them to estimate motion. Conversely, dense

techniques make use of every pixel in the image for navigation.

Furthermore, various optimization strategies can be identified, including both exact and

metaheuristic techniques. Exact methods employ traditional mathematical rules to calculate the

optimal motion. On the other hand, metaheuristic methods are employed to compute an

approximate motion, which has proven acceptable for practical applications.

Metaheuristics can be used in a wide range of artificial intelligence domains, including visual

odometry, due to their effectiveness in addressing both routine and complex challenges. It is an

efficient technique for enhancing the solution to make it optimal by modifying the initial

parameters, and it is considered one of the optimization methods.

In these experiments, we made use of the dense visual odometry method, which utilizes the

complete RGB-D image that a Microsoft Kinect sensor [2] provides. RGB-D cameras are digital

devices that furnish color information about the scene for each pixel in two images: red, green,

16

and blue, as an RGB image, as well as a depth (D) frame. The website [3] provides RGB-D images

along with associated information, such as the ground truth path and the calibration of the camera

used.

The first chapter focuses on the related work of this thesis because this field is rich in research

and ideas, as much as it is important in the fields of navigation [4], transportation, and robotics,

which have become the backbone of the economy and a tool for achieving prosperity. A brief

reference to previous works is important to gain a comprehensive overview of this field. We

categorized the various methods of visual odometry into sparse and dense methods, and some

works in this field use the metaheuristics method; moreover, we recalled some common work that

is widespread for evaluating these optimization methods.

To solve a real problem in our daily lives by exact or metaheuristic methods, we need to develop

an objective function in the form of a mathematical equation; this is called the modeling of the

system. This modeling is mentioned in Chapter II, where we explain the components of the

objective function as described in [5]. Here, we will describe how to use the images captured by a

moving camera to deduce the motion using a mathematical model that we can solve by various

techniques.

An overview of the different types of optimization methods is mentioned at the beginning of

Chapter III. Then, we describe four optimization methods that are most commonly used; one is a

classic method called energy-based as mentioned in [6], and the others are metaheuristic methods

that we have worked with and developed some of these methods in the field of visual odometry.

The evaluation of optimization methods in visual ego-motion lies mainly in experimenting with

them over the same sequence of images and under the same initial parameters, and then comparing

the results in terms of their closeness to the true trajectory. For this purpose, we used the root mean

square error [7], which represents the drift of the estimated trajectory from the real path in all parts

of the experiment by a numerical value, and we provided our experiments with a platform to

monitor the results in real-time, as described in Chapter IV. Additionally, we included 3D

drawings on the same graph of the true and estimated trajectories.

The dataset used in our experiments was downloaded from a website, and we will explain the

type of dataset and the camera used to capture the images in Chapter V. Then we will explain the

experiments conducted and discuss the results obtained, and we will end our thesis with a

conclusion and perspectives for future work.

17

Chapter I

Related work

18

I. Related work

I.1. Introduction

Visual odometry, or visual ego-motion, computes the motion of the camera using images

captured during movement. There are different techniques published for visual ego-motion. We

will mention in this chapter some work related to our ideas; such as sparse and dense visual

odometry, which uses the exact or metaheuristic methods, in addition to the previous methods

published to evaluate these techniques.

I.2. Sparse Visual Odometry

Sparse visual odometry is a method employed for calculating the motion of a robot or any

moving body that carries a camera. It relies solely on unique features identified from images by

focusing on particular points of interest. Sparse visual odometry allows for more efficient

computation, particularly in scenarios with limited computational resources, as mentioned in [1],

[8], [9], and [10].

By comparing characteristics between two photos, the sparse visual odometry approach has

been widely employed to manage a range of moving equipment, including autonomous ground

vehicles in [11], [12], and recently quadcopters [13], [14], and [15].

Engel [14] and Weiss [15] utilize the Parallel Tracking And Mapping (PTAM) system [16].

Huang [13] employs a comparable system but evaluates various alternatives for each component

of the processing pipeline and selects the optimal one based on the balance between accuracy and

runtime. All have in common that the visual odometry estimates are fused with measurements

from the IMU mounted on the quadcopter. In a sparse visual odometry system, the typical

trajectory is estimated like this: First, using detectors such as FAST [17] or Harris [18], feature

points are retrieved from the newly acquired image. Subsequently, associations are built between

the newly added features and those from the preceding frame. Comparing small regions

surrounding the feature points will help achieve this.

If there is little error between two patches, it is assumed that they match. Feature descriptors

such as SIFT [19] or SURF [20] can be utilized in place of patches. These descriptors are vector

representations that are computed from a feature point's surrounding pixels. While they provide

enhanced robustness against mismatches relative to image patches, they are significantly more

computationally expensive. Then, by reducing the reprojection error between each pair of matched

feature points, the transformation between the two images is calculated. It is possible to guarantee

precise feature association and raise the motion estimate's correctness by utilizing a variety of

advanced strategies. Scaramuzza and Fraundorfer examine these points in [16], [17], and also

19

discuss matching strategies and feature extractors and descriptors for sparse visual odometry in

addition to giving a thorough summary of visual odometry research over the previous few decades.

In order to estimate the camera motion, knowledge of the depth of points is necessary. Otherwise,

only a homography aligning the images can be estimated. When using a monocular camera, such

as in PTAM, stereo initialization is required initially to provide depth for the first feature points.

Subsequently, the depth of new points can be calculated through triangulation once the camera

motion is estimated from points with known depth. However, the depth of the points can only be

determined up to a scale factor, not in metric values. Engel et al. [14] and Weiss et al. concurrently

estimated the unknown scale using the IMU readings and an extended Kalman filter. The difficulty

is simplified when RGB-D cameras are used, as in [13], as the absolute depth is known.

As a next step, the identified features and camera motion can be combined into a comprehensive

map. By employing optimization methods, both the map and the camera's path can be refined to

achieve more accurate position estimates and counteract drift over time. These methodologies are

referred to as simultaneous localization and mapping (SLAM) [21].

Alternatively, instead of minimizing the error between images, we can minimize the geometric

error between 3D surfaces using iterative closest point (ICP) algorithms. These algorithms have

various variants [22]. However, they come with drawbacks such as the requirement for structured

3D surfaces and the involvement of computationally expensive nearest neighbor searches to

establish point correspondences. For small displacements, the projective lookup algorithm [23]

can overcome this by finding correspondences in 2D depth maps. By representing 3D surfaces as

2D depth maps, the correspondence for a point in one depth map can be found by applying rigid

body motion and projecting it to 2D coordinates, simplifying the correspondence lookup by

computing the memory address.

To accelerate the process, Henry et al. [24] extracted features from the color images and then

applied ICP to match these features with their corresponding 3D points computed from the depth

map.

Every RGB-D image was transformed into a surfel octree by Stuckler et al. [25], where each

node represented a Gaussian distribution that modeled the color and point distribution. Next,

feature descriptors for each octree node were calculated. Establishing point correspondences

between features in two octrees and then applying ICP is how alignment is accomplished.

I.3. Dense Visual Odometry

Dense visual odometry methods, unlike sparse ones, utilize all the image data. They estimate

camera motion by aligning consecutive images, and minimizing an error equation.

20

Comport et al. proposed one of the earliest dense visual odometry methods using stereo image

pairs [8]. Steinbrucker et al. [26] and Tykkala et al. [27] have recently introduced similar dense

methods employing data from RGB-D images. These approaches all aim to minimize the

photometric difference between two consecutive frames, which can be viewed as an extension of

the image alignment algorithm described by Lucas-Kanade [28]. Baker and Matthews [29] discuss

some optimizations to the Lucas-Kanade algorithm in detail in their article.

Most odometry techniques that accumulate motion estimates between successive images are

susceptible to long-term drift [30]. Consequently, [31] and Dense Tracking and Mapping (DTAM)

[32] construct a global environment model in parallel with camera tracking. The camera's motion

is tracked by aligning the current image with synthesized views generated from the model, and

each new frame is integrated into the model. DTAM employs a monocular camera and requires

the model to determine the scene's three-dimensional structure [32]. Kinect Fusion [31] uses a

variant of the ICP algorithm to align surfaces from an RGB-D camera to the model, while DTAM

[32] employs a photometric error similar to that of Steinbrucker et al. These model-based methods

reach real-time speed thanks to GPU general-purpose computing. A dense approach utilizes all

pixels in the image for trajectory estimation, as demonstrated in [33]. The initial dense method, as

mentioned in [34], [28], and [35], involves frame alignment and the reduction of geometric error.

Following the discovery of the RGB-D image, this format has recently become widely used in

visual odometry, as shown in [5], [36], [26], or [37], and [38]. In this thesis, we use dense visual

odometry with RGB-D frames.

Visual odometry is used in Virtual Reality (VR) and Augmented Reality (AR) applications to

enhance spatial awareness [28]. It enables the accurate overlay of virtual objects onto the real-

world environment, creating a seamless and immersive experience.

In addition, visual odometry aids in stabilizing and controlling the flight of drones by providing

real-time information about their position and orientation [39]. This is crucial for tasks such as

aerial photography, surveillance, and package delivery.

 In manufacturing [4] and logistics [40], visual odometry is employed to track the movement of

objects on conveyor belts or within warehouses. This facilitates automation processes and ensures

efficient material handling.

In modern warfare, unmanned systems rely on visual odometry to navigate complex terrains

without GPS, which is essential in hostile environments or GPS-denied areas. Visual odometry

can assist in real-time tracking and positioning, improving the accuracy of surveillance and

reconnaissance missions and minimizing human risks. The popularity of small unmanned aircraft

21

systems (SUAS), developed using visual odometry as mentioned in [41] and [42], has exploded in

recent years and has seen increasing use in both commercial and military sectors.

Space rovers use visual odometry to navigate and explore extraterrestrial terrains, where GPS

is unavailable, making it an indispensable technology for future space missions. The two Mars

Exploration Rovers (MER) operated by NASA have successfully shown off their robotic visual

odometry capabilities on a different planet, as stated in [43] and [44]. This gives every rover

precise positional information, enabling it to recognize and adjust for unanticipated slippage

during a drive independently. Since it has decreased the number of days needed to drive to

intriguing locations, it has enhanced mission science return and allowed the rovers to drive more

safely and effectively in highly sloped and sandy terrains.

 Visual odometry is a fundamental component of SLAM systems, enabling devices to create

maps [13] of unknown environments while simultaneously tracking their own position within

those environments. This is valuable in applications ranging from robotics [45] to augmented

reality (AR).

It is used in medical robotics [46] to provide real-time feedback during surgical procedures. It

helps in precisely tracking the movement of surgical instruments and maintaining accurate

alignment with preoperative imaging.

I.4. Metaheuristic method

Numerous optimization techniques utilizing metaheuristic methods have been developed in the

literature for motion estimation by vision issue employing sparse methods. A block matching

approach for movement estimation based on the artificial bee colony (ABC) algorithm was

proposed by Cuevas et al. [47]; this algorithm significantly minimizes the computation of search

locations. Marco [48] introduced an optical flow estimation method that utilizes a genetic

algorithm (GA). The technique segments the image into generic shape regions based solely on

luminance and color information. Subsequently, for each region, a motion model is estimated using

a GA. Additionally, Shahbazi et al. [49] used genetic algorithms and RANSAC to improve robust

sparse matching method in movement estimation.

The odometry estimation technique LIdar-Monocular visual Odometry (LIMO) combines a

camera and Light Detection and Ranging sensor (LIDAR) dataset for visual localization. It tracks

features from both the camera and LIDAR measurements to estimate motion using bundle

adjustment based on robust key frames. Adarsh et al. argued in [50] that the utilization of the

genetic algorithm to optimize parameters for LIMO aims to enhance its localization and motion

22

estimation performance. In addition, the genetic algorithm can find the rotation and translation of

a device accurately when the 3D structure of the device is given. Yu and Wong described in their

paper [51] a method to estimate the pose using the genetic algorithm of a real object. They showed

that the proposed approach applies to visual odometry and augmented reality applications.

The diagnosis of diseases often makes use of the ultrasound image sequence of the soft tissue.

A novel algorithm for evaluating soft tissue motion has been created. The proposed iterative firefly

algorithm (IFA) outlined in [52] selects a few candidate points to determine the optimal motion

vector.

However, dense methods use all pixels in the frame to estimate the motion. Although this

method has a high computational cost, it produces very valuable results. If the amount of input

information increases, the movement will be estimated with high accuracy. In [53] , Baik et al.

presented a new particle filtering-based system for visual odometry that shows remarkable

resilience to sudden camera movements. Additionally, by reorganizing the traditional vector space

PSO method while taking the geometry of the special Euclidean group SE(3) into account, they

were able to perform the suggested visual ego-motion estimation approach in real-time.

Kostusiak and Piotr described a particle swarm optimization (PSO) method and an evolutionary

algorithm variant in various robots as a means of finding the best parameters of a simple RGB-D

visual odometry system as mentioned in [54].

 PSO has already been used for several vision tasks, including visual SLAM [55], [56] and

visual tracking [57], [58]. References [55] and [56] also exclusively address 3-DOF ego-motion

estimation issues, meaning that the state space is limited to a 2-D plane. We address generic 6-

DOF ego-motion estimation issues, unlike references [55] and [56]. Our goal in this study is to

solve visual odometry in the 6-DOF search space by using various optimization methods.

I.5. RGB-D Benchmark

The RGB-D benchmark created by Sturm et al. [7] offers a framework for evaluating algorithms

that use RGB-D images, such as SLAM or visual odometry. It includes multiple consecutive RGB-

D images along with a dataset of ground truth camera motion information and camera calibration.

This information is used to evaluate the different optimization methods.

Furthermore, the RGB-D benchmark includes some tools that may be used to determine quality

measures for an estimated motion in relation to the ground truth. The absolute trajectory error and

the relative pose error are two examples of these measurements. The absolute trajectory error

23

evaluates the difference between the estimated and real endpoints and provides insight into the

performance of the visual odometry method. On the other hand, the relative pose error measures

the translational or rotational drift of the estimation relative to the ground truth over a specific

temporal distance, such as drift per frame or per second, making it suitable for evaluating visual

odometry approaches. For each metric, we can compute the Root Mean Square Error (RMSE),

mean, median, standard deviation, minimum, and maximum values.

However, a drawback of these diverse options is the absence of a standardized metric, leading

to varying measurements among authors; some may measure the median drift per frame while

others measure the RMSE drift per second.

Utilizing the RGB-D benchmark for evaluation offers the benefit of enabling an objective

comparison among various methods. The extensive array of datasets featuring diverse scene

content guarantees robustness in the generalization of the evaluated approach. Additionally, it frees

researchers from the laborious process of capturing real-world datasets with ground truth data.

I.6. Conclusion

In this section, we mentioned some related work associated with our project. Our work

represents a continuation of previous research. Subsequently, we focus on optimization methods

for dense visual odometry.

Our research builds upon the findings of earlier studies in this field. Specifically, we delve into

optimization techniques tailored for dense visual odometry. The significance of our work lies in

its contribution to advancing the understanding and implementation of methods that enhance the

accuracy and efficiency of visual odometry processes. This detailed examination serves as the

foundation for our subsequent discussions and findings.

24

Chapter II

Visual odometry method

25

II. Visual odometry method

II.1. Introduction

In this part, we will briefly explain the development of the visual odometry system in a static

scene, from reality to an abstract model expressed as a mathematical equation, which we call system

modeling, as described in [28] and [59]. Only a sequence of images is received from the scene by

a camera mounted on a moving device whose path of movement needs to be accurately tracked.

The warping of an image is an important component in this equation, and this is related to the

parameters of the camera that captures the images. If the camera moves quickly, it becomes difficult

to determine its exact location, and this problem can be solved by using a multi-resolution pyramid,

which we will discuss next.

II.2. System modeling

Visual odometry estimates the motion between two consecutive frames (It, It+1) that are taken by

a camera fixed to the top of a moving robot. We will demonstrate how a mathematical equation has

been created to represent this problem.

An image r, named residual, is produced by subtracting the intensities of each pair of pixels at

the same position from two consecutive gray images; the pixels’ intensity values of these pixels in

these RGB images is calculated as:

It=(IR+IG+IB)/3 II.1

where IR, IG, and IB are the pixels’ color components, respectively, red, green, and blue.

The pixels’ intensity in r is lower, resulting in a small error value. The intensity error E between

two successive RGB frames of N pixels, as mentioned in [5], is represented by the following

function:

E(ξ)=
1

𝑁
 ∑ 𝑁
𝑖= 1 |It+1(ω(ξ,pi))-It|²=

1

𝑁
∑ 𝑁
𝑖=1 |ri(ξ)|² II.2

Where:

 N is the pixel number of the full image, when image resolution is (640,480); N=640×480.

 pi is the pixel at index i.

 ξ ϵ ℝ 6 is the estimated motion represented in six degrees of freedom.

 ω(ξ, pi) is the warping function of the next image captured at t+1.

 It is the image captured at time t.

 It+1(ω(ξ,pi)) is the warping of the image It+1 and it consists of the migration of the pixels

towards new positions in the image by the inverse of the assumed motion value. Thus,

an image is created that is identical to the image taken at time t.

26

 ri(ξ) is the residual image, which is produced from the difference between the current

image It and the warped image It+1(ω(ξ,pi)).

The estimation of the camera motion is based on minimizing the average value of image residual

intensity r, or the error value produced by equation II.2. In the ideal case, when this error is equal

to zero, it implies that the assumed motion is equal to the motion in reality. However, in practice,

this error is never null due to capture noise, variations in the visibility angles of objects during the

motion, and other factors.

This is why our goal is limited to minimizing the error in estimating the optimal motion vector

by optimizing the following function:

ξ=minξE(ξ)=minξ
1

𝑁
∑ 𝑁
𝑖=1 |ri (ξ)|². II.3

This function is solved by various optimization methods in this thesis. The warping function is

considered the principal component for calculating the error Ei (ξ).

II.3. Construct the Warp function

Most of the pixels in the frame It+1 change their position using the warping equation ω(ξ, p) in

order to create the warped frame It+1 (ω(ξ, p)) noted in equation II.2 . This frame would have been

captured by a camera if the robot returned to the position where it originally captured the frame It,

after moving in a direction inverse to the real motion ξ. Subsequently, we subtract this newly warped

image from the original It, and the effectiveness of the proposed motion ξ is assessed by calculating

the error using equation II.2. If the error is smaller and tends towards 0, then the corresponding

movement ξ is closer to the real movement because the two images, It+1 (ω(ξ, p)) and It ,are almost

identical. This operation of warping serves as a critical step in determining the optimal motion.

The warp function is made up of the collection of transformations depicted in Figure II.1 as

described in [5], [6] and [60]. A pixel p of the frame It+1, which has the coordinates (u;v;d), is

projected onto a 3D point M (X; Y; Z) by the transformation P-1, as mentioned in equations II.7 .

After that, M is transformed from the landmark associated with It+1 to a 3D point M′ in coordinates

(X'; Y'; Z') in the landmark attached to It+1(ω(ξ, pi)) by the transformation g (ξ) as shown in the

following equation:

PM ' = g (ξ)×PM . II.4

Finally, M′ is projected onto a pixel p′ in the frame It+1(ω(ξ,pi)) by the transformation P as

mentioned in equations II.6. Thus, in the following, the function of the warp is formed as:

 ω(ξ,p)=P(g (ξ)P-1(p)). II.5

27

Figure II.1: The warp process consists of transforming each pixel in the frame It+1 into another

pixel in the warped frame It+1(ω(ξ, pi)).

The transformations P and P -1, along with the rigid body motion g, are important components

for constructing the warp function. In the following, we will demonstrate the formula for this

transformation based on the camera model. After that, we will explain how to express the motion

in the form of rigid body motion g.

The camera model provides the transformation of points in the 3D scene to the 2D plane as pixels

in the image; this process is accomplished with a camera [61]. This transformation P from 3D to

2D plane is called projection and is represented by

P: ℝ 3→ ℝ 2

A simple pinhole camera model, represented in Figure II.2, summarizes the working principle

of the camera as a 3D point L(X; Y; Z) being projected to a pixel S(u; v; d) in the image plane of an

ideal pinhole camera. This figure aids in deducing the mathematical relationship between the 3D

scene and the 2D plane as a transformation P and P -1.

Figure II.2: Pinhole camera model.

L(X;Y;Z)
S(u;v;d)

S

L

28

The projection of a spatial point L to plane point S as presented in Figure II.2 is called a

perspective projection. Only light rays that pass through the pinhole and are projected onto the

image plane are translated into a two-dimensional image. The position of the pinhole is the camera

optical center C. The distance between the image plane and the optical center is the focal length f.

In practice, the image plane is situated behind the optical center rather than in front of it. However,

for the sake of the model's generality, this rearward displacement can be disregarded without

sacrificing accuracy. Every 3D point, at where the line connecting it to the optical center intersects

the image plane, is effectively represented in the image according to this simplified model.

Camera calibration is a critical process that involves the determination of both intrinsic and

extrinsic parameters of a camera. These parameters play a pivotal role in numerous computer vision

applications, including image analysis and augmented reality.

Intrinsic parameters, which encompass key internal characteristics such as the principal point

and focal length, are acquired through a standardized camera calibration procedure as outlined in

references [62], [63], and [64]. This calibration process typically entails capturing images of a

known calibration object from various viewpoints, enabling the accurate determination of intrinsic

camera characteristics, where:

- Focal length (f) indicates the distance between the image plane and the optical center of the

camera. While the physical focal length (f), measured in millimeters, cannot be directly determined,

the focal lengths in the x and y directions, represented by fx and fy, can be obtained through camera

calibration. fx and fy are fundamentally the focal lengths represented in pixels. These focal lengths

in pixels account for the rectangular nature of each pixel on a typical imager, where the lengths in

the x and y directions are distinct. Since each pixel on a common imager is rectangular, we use two

extra parameters with varying pixel lengths in x and y.

- Principal Point (C) indicates the optical center's coordinates in the image and is conventionally

denoted as (cx, cy), where cx represents the horizontal coordinate and cy represents the vertical

coordinate. These two parameters, cx and cy, deal with any potential misalignment between the

image's center and the principal point. It is important to remember that cx and cy are given in pixel

units, providing a precise indication of the offset from the image center and facilitating accurate

camera calibration procedures.

29

The following formula links each 3D point of coordinates (X; Y; Z) in space to its matching 2D

pixel (u;v;d) as mentioned in [59] and [61]:

𝑃:ℝ3 → ℝ2; (𝑋; 𝑌; 𝑍) → (𝑢, 𝑣)

{

 𝑢 =
𝑋 × 𝑓𝑥

𝑍
+ 𝑐𝑥.

𝑣 =
𝑌 × 𝑓𝑦

𝑍
+ 𝑐𝑦.

 d = 𝑍 .

 II. 6

 Where f (fx, fy) is the focal length and c (cx, cy) is the principal point of the camera. d is the

depth of the pixel returned by the camera. The intrinsic parameters (f, c) can be obtained by a

standard camera calibration procedure [62].

The RGB-D image allows the reconstruction of the 3D point of the scene from the pixel.

It is possible to transition from a 3D scene to a 2D image using the projection P. The

transformation 𝑃−1 links every 2D pixel (u, v, d) to its corresponding 3D point with coordinates

(X, Y, Z) in space, as seen in the following equation:

𝑃−1: ℝ2 → ℝ3; (𝑢, 𝑣, 𝑑) → (𝑋; 𝑌; 𝑍)

{

 𝑋 =

𝑢 − 𝑐𝑥
𝑓𝑥

× 𝑑

 𝑌 =
𝑣 − 𝑐𝑦

𝑓𝑦
× 𝑑

 Z = d

 II. 7

Figure II.3: Parameters camera calibration

On the other hand, the camera's motion in the outside world is described by extrinsic parameters,

as represented in Figure II.3, where:

- The translation vector (t) typically refers to the displacement of the robot's position in the

Cartesian coordinate system. This can be along the X, Y, and Z directions in three-dimensional

space.

30

- The rotation matrix (R) is an action of turning a robot around a particular axis. Rotation can

occur around the X, Y, or Z axis in three-dimensional space.

In the context of camera extrinsic parameters or robotics, the combination of translation and

rotation captures the overall transformation or pose of an object or camera in three-dimensional

space. The combination of these movements is often represented by matrices [R,t], such as the

extrinsic matrix in the case of a camera's pose.

Extrinsic parameters define the camera's location and orientation in the external environment.

As the camera moves or is relocated, it may also change.

A rigid object's location in relation to a fixed reference point at all times precisely describes its

motion in three-dimensional space. R and t can be combined into one rigid transformation matrix,

g, as shown below:

g =[
 𝑅 𝑡
 0 1

] ϵℝ4×4. II.8

Where R = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] is the rotation of movement, and t = [

 𝑡𝑥
𝑡𝑦
𝑡𝑧

]is the translation of

movement.

The concise and effective representation of the vector ξ with six degrees of freedom simplifies

the complexity associated with describing the motion of a rigid body. This streamlined approach is

particularly beneficial when employing optimization methods for motion determination. This

vector is represented as follows:

ξ = [𝑣1 𝑣3 𝑣 2 𝑤1 𝑤2 𝑤3]. II.9

With v = (v1; v2; v3)
T as the linear velocity and w= (w1;w2;w3)

T as the angular velocity.

Multiple rigid body motions can be chained by multiplying consecutive matrices g, which

represent small transformations, to build all the trajectories. This shows that there is significant

importance in writing the movement in the form of g. The identity transformation, meaning no

translation and no rotation, is given by R = I and t = 0.

The translation vector t stands out as canonical due to its equivalence to the first three degrees

of freedom of the motion vector ξ. The simplicity of having three components in the vector mirrors

the translational degrees of freedom, facilitating a clear and concise representation that aids both

understanding and computation.

In contrast, the representation of rotation as a matrix R is non-canonical. Despite comprising

nine parameters, it inherently possesses only three degrees of freedom associated with the rotational

motion of the motion vector ξ. Despite its non-canonical nature, the matrix representation remains

31

a powerful tool for capturing the nuances of rotational motion within the broader context of rigid

body transformations.

A minimal representation ξ for a robot motion g can be deduced by using the parameters of its

associated Lie algebra se(3) given in [65]. Each transformation matrix in the Lie group SE(3)

describing a rigid body movement has a representation with a 6 × 1 parameter vector ξ = [v ,w] in

its corresponding Lie algebra.

The robot motion g can be computed from its Lie algebra vector ξ using the exponential map, as

described in [5] and [66]:

 exp: se(3) → SE(3); ξ → g

g (ξ)= eξ̂ II.10

With 𝜉is the skew symmetric matrix and it is written as:

ξ̂=[
 [𝑤]× 𝑣
 0 0

]=[

 0 − 𝑤3 𝑤2 𝑣1
𝑤3 0 − 𝑤1 𝑣2
−𝑤2 𝑤1 0 𝑣3
0 0 0 0

] II.11

The operator [k]ₓ creates a 3×3 skew symmetric matrix from a 3×1 vector k = (x; y; z),

[𝑘]× =[

0 −𝑧 𝑦
𝑧 0 − 𝑥
−𝑦 𝑥 0

] II.12

The exponential matrix eξ̂ is written in the following form as mentioned in [67] and [68]

eξ̂= [𝑒
[𝑤]× 𝑉𝑣

𝑇

 0 0
]=[

 𝑅 𝑡
 0 1

] II.13

𝑒[𝑤]× =I +
sin (||𝑤||)

||𝑤||
[𝑤]× +

1−cos (||𝑤||)

||𝑤||²
[𝑤]×² II.14

and V is :

V =I +
1−cos (||𝑤||)

||𝑤||²
[𝑤]× +

||𝑤||−sin (||𝑤||)

||𝑤||3
[𝑤]×² II.15

The inverse of the exponential map is called the logarithm map.

 log: SE(3) → se(3); g → ξ

ξ = log (g) II.16

The code MATLAB of the exponential and logarithm map is mentioned in annex C.

Where the identity transformation is obtained for ξ = 0.

32

The corresponding w is given by

w =
||𝑤||

2sin (||𝑤||)
[

 𝑟32− 𝑟23
 𝑟13− 𝑟31
 𝑟21− 𝑟12

] II.17

Where:

||w|| = cos−1(
trace(R) −1

2
) II.18

And

v=V \ t II.19

The vectors v and w will be used to construct the motion ξ as mentioned in equation II.9. We

have demonstrated how to move from expressing motion in the form ξ to the form g and vice versa.

In addition, we mentioned the importance of the need for the two forms to implement the algorithms

in optimization methods.

Thus, we explained all the parts of the warp function II.5 as ξ, g (ξ), P, and P-1, which construct

the warping of each pixel in the frame It+1 to It+1(ω(ξ, pi)), and this frame is used to deduce the

residual image r and the error using the Function II.2. Regarding ξ, the metaheuristic approach

suggests a range of values as motions for the particles; we then compute the associated error value

for every particle, as we shall detail in our suggested method. However, the exact algorithm is an

iterative method. At each iteration, an increment is calculated and added to the solution obtained at

the previous iteration. This process continues for several times until the stopping condition is

reached.

II.4. Pyramid Multi-resolution

In the context of visual odometry, a pyramid multi-resolution approach is a technique used to

enhance the efficiency of motion estimation algorithms. Visual odometry is the process of

estimating the motion of a camera by analyzing sequential images. The pyramid multi-resolution

technique involves creating a multi-level image pyramid, with each level representing a different

scale or resolution of the original image. This pyramid is then utilized to perform motion

estimation at different scales, as mentioned in [6], [69], and [70]. Here's how the pyramid multi-

resolution is used in our visual odometry experiments. The original image is down-sampled to

create a series of images at different resolutions, forming a pyramid structure, where the down-

sampled resolution (DSR) of the captured frame is performed by a factor of 2, as represented in

Figure II.4.

33

Figure II.4: Representation of an image pyramid with 5 levels.

 Each level of the pyramid represents a different scale of the image, with the bottom level having

the original resolution and subsequent levels having reduced resolutions.

The visual odometry algorithm starts motion estimation at the highest resolution level and

calculates an initial motion estimate. This initial estimate is then used as an initialization for the

next lower resolution level, as represented in Figure II.5.

Figure II.5: Iterative image alignment process using a multi-resolution image pyramid.

34

In the first phase, we compute the motion ξ4 using the image corresponding to high-level DSR

(level 4). This motion will be utilized as the initialization for the next lower level in the pyramid

down to the original resolution of the image, where we deduce the optimal motion ξ. Starting with

a rough motion estimate at high levels helps in quickly converging to a solution. This initial

estimate provides a good starting point for the lower levels, where the algorithm can focus on

refining the motion with greater precision.

The motion estimation process is iteratively refined at each level of the pyramid. Starting from

a coarser level allows for capturing large-scale motion, and as the algorithm progresses to finer

levels, it refines the Function II.3 and it is solved by minimizing the photometric intensities of the

residual image r. The solution will be closer to the ground truth motion in the case of tiny motion

ξ or a small image resolution. To improve the accuracy of motion estimation in the case of a large

displacement between two consecutive frames and the variations in scale due to changes in scene

depth, visual odometry should be able to handle variations in scale using pyramid multi-resolution.

The multi-resolution approach helps handle variations in scale and perspective across different

frames. By initially processing lower-resolution images, the algorithm reduces computational

demands, making it more efficient. This pyramid multi-resolution strategy is widely used in visual

odometry algorithms to improve their performance in various environments and conditions and

ensure convergence to the optimal solution.

II.4. Conclusion

Modeling a real-life problem into a mathematical equation while simplifying all its parts is the

first step toward solving this problem. We have devoted an important part of this chapter to

explaining the modeling of the visual odometry problem through a mathematical function as an

error equation that uses two consecutive images as input. The error equation of visual odometry

was explained in detail, in addition to the benefits of using the multi-resolution pyramid to solve

the problem of large motion and the breadth of the scene in which the camera moves. This equation

will be solved using several optimization methods in the next chapter, which is the core of our work

in this thesis.

35

Chapter III

Optimization Methods

36

III. Optimization Methods

III.1. Introduction

At the outset of this section, an overview of optimization methods is presented, with the focus

being on what was used in the experiments of exact or approximate methods. The subsequent

narrative delves into a meticulous exploration of the Gauss-Newton method. Additionally,

attention is directed towards an evolutionary method, specifically the genetic algorithm, and its

implementation.

Then there are two noteworthy swarm-intelligence methods, called particle swarm optimization

and the firefly algorithm. The intricate workings of these two algorithms are explained in this

section. This comprehensive exploration of the diverse optimization methods landscape not only

enriches the reader's understanding, but also sets the stage for a nuanced comparison and

evaluation within the context of the experiments, and opens new horizons for discovering other

methods.

III.2. Overview optimization methods

There exists a large number of real-life problems that are complex and difficult to solve, taking

a significant amount of time to solve or being unsolvable at all mathematically. In these cases,

exact algorithms are not appropriate or require a large amount of resources (e.g., computational

cost) for using them. Therefore, approximate algorithms are needed. Among approximate

algorithms, we can find two types: heuristics and metaheuristics. We focus in this work on

metaheuristics. Figure III.1 shows a simple classification of optimization methods used throughout

the history of computer science as described in [71].

37

Figure III.1: General classification of the optimization techniques.

III.2.1. Exact method

Exact optimization methods aim to find the global optimum of a given objective function with

a high degree of precision. They guarantee convergence to the global optimum, provided certain

conditions are met. These methods often rely on mathematical proofs and theorems to ensure the

correctness of their results. Exact methods are essentially composed of two types: direct and

iterative.

A. Iterative method

In the realm of exact methods, the iterative approach plays a pivotal role. Iterative optimization

techniques dynamically enhance solutions through incremental adjustments, iterating until

convergence is achieved. One exemplary instance of an iterative method is the Gauss-Newton

method. This method iteratively refines solutions, ultimately converging toward an optimal

Optimization methods

Approximate methods Exact methods

Heuristic Metaheuristic Iterative Direct

Trajectory Population based

Swarm

Intelligent

Evolutionary

Algorithm

 Genetic Algorithm Firefly Algorithm

 Particle Swarm Optimization

 Gauss-Newton method

 Simulated

Annealing

38

solution. These methods improve the solution iteratively, making small adjustments at each step

until convergence. Gradient descent [72] is another example of an iterative method.

B. Direct method

Direct methods involve solving problems in a finite number of steps (in theory), providing an

exact solution if no rounding or computational errors occur. They are often contrasted with

iterative methods, which converge to the solution through repeated iterations. Direct methods are

commonly used in linear algebra, especially for solving systems of equations. Direct methods

often involve mathematical transformations or explicit formulas to identify optimal points in the

solution space.

Direct methods solve specific mathematical problems (like linear equations) exactly and are

more focused on solving broader classes of optimization problems (like linear programming (LP)

[73], integer programming, and Gaussian elimination [74], etc.).

III.2.2. Approximate methods

The exact methods are limited when it comes to solving complex and highly nonlinear

problems. These methods may struggle with complex models, fail to find feasible solutions, or

fail to converge to local optima, particularly in cases of non-linearity.

To address these challenges, the passage towards approximate methods is considered a

successful trend. These approaches are required due to their potential to combine efficiency with

the ability to find global optima. Unlike traditional techniques, approximate methods are

positioned as a solution to overcome the lack of global optimum attainment in nonlinear

optimization as well as the computational intensity associated with complex systems. Two

methods can be distinguished in the approximate approach: heuristic and metaheuristic methods.

A. Heuristic methods

Heuristics and metaheuristics are used to solve optimization problems in different fields, such

as artificial intelligence and computer vision, but their applications differ.

Heuristic methods, as outlined in references [75] and [76], are problem-solving strategies that

rely on rules of thumb or practical approaches. While not guaranteeing an optimal solution,

heuristics are instrumental in swiftly finding feasible solutions, particularly in computationally

expensive scenarios involving complex problems.

39

These methods are used to solve a specific problem and are tailored to the characteristics of a

given problem. Notably, heuristics do not guarantee an optimal solution but prioritize efficiency,

providing solutions deemed "good enough" based on available information and constraints.

Greedy algorithms are a common example of heuristics, as noted in [77]. They make locally

optimal choices at each stage with the hope of finding a global optimum.

On the other hand, metaheuristics represent a higher-level approach, functioning as techniques

or heuristics. The primary goal of a metaheuristic is to yield a heuristic that is capable of delivering

a sufficiently good solution to an optimization problem. Unlike heuristics, metaheuristics operate

on a broader scale, providing a framework for guiding the search for an optimal solution rather

than being addressed to a specific problem.

B. Metaheuristic methods

Metaheuristic methods are an optimization approach designed to solve difficult and non-linear

problems. Two Greek words are combined to form the word “metaheuristic”:

- The word "heuristic" is derived from the verb "heuriskein" (ευρισκειv), meaning better

approximations that do not ensure the attainment of an exact solution.

- The prefix "meta," which means "beyond" or "on an elevated level," and the inclusion of the

term "meta" indicate that the area of using metaheuristics must be able to extend to many varied

problems that they can adapt to with more or less difficulty rather than being restricted to a specific

problem.

A metaheuristic is officially characterized as an iterative generation method that implements

learning strategies to organize information systematically, enhancing the efficiency of identifying

near-optimal solutions. It cleverly directs a subordinate heuristic through the clever integration of

diverse concepts, facilitating the exploration and exploitation of the search area.

Metaheuristics represent approximate algorithms that have proven to be effective stochastic

optimization tools, capable of delivering satisfactory results for complex optimization problems

[78], [79], and [80]. Metaheuristics, being generic tools, generally do not assume anything about

the problem to be solved; instead, they merely use suitable representations of the solution, quality

or fitness functions, and specific operators to direct the solution towards a good result. Nature is

considered the inspiration for many metaheuristics, including swarm intelligence, evolutionary

algorithms (EAs), and simulated annealing (SA).

40

Simulated annealing (SA) is one of the earliest bio-inspired optimization methods and it relies

on the metal and crystal annealing process described in [81]. It is regarded as the oldest technique

that explicitly outlines a plan for getting out of local optima.

These algorithms, which draw inspiration from nature, can be categorized as either population-

based or trajectory-based. The first group works with a group of components called a population

or swarm, whereas the second group deals with one element in the search space at a time, such as

SA. In this chapter, we will explain these algorithms and their applications in visual odometry, the

basic principles of swarm intelligence (SI) and evolutionary algorithms (EA), and then some of

the major types of these methods.

a. Swarm Intelligent

The term swarm intelligence was first used to describe cellular robotic multi-agent systems,

where a group of basic agents interacted with one another according to local rules in a given area

[82]. These days, this term refers to the process of creating algorithms or tools for addressing

problems inspired by the group behavior of social creatures. Several swarm intelligence methods

are employed to tackle challenging optimization problems, such as particle swarm optimization

(PSO) [83].

b. Evolutionary Algorithm

The Darwinian theory of evolution, as presented in [84], serves as the foundation for

evolutionary algorithms. According to Darwin's theory, as stated in [85], a population of

individuals with the ability to reproduce through genetic diversity after selection would produce

new populations of individuals that are progressively better adapted to their surroundings. When

these straightforward natural methods are used in computation, a variety of algorithms are

produced, including genetic algorithms (GA) in [86].

III.3. Energy-Based using Gauss-Newton method

Visual odometry (VO) refers to the process of estimating the position and orientation of a robot

or vehicle using visual data from a camera. There are several methods for visual odometry,

including feature-based, exact, and approximate methods. Among these, the energy-based method,

which falls under exact methods, is particularly interesting.

41

In the context of visual odometry, as detailed in [26] and [6], an energy-based method typically

involves the formulation of an energy function that estimates the motion based on a visual dataset,

as in our experiments, using RGB-D images captured from a Microsoft Kinect camera. Visual

odometry is a computer vision technique used in robotics and autonomous systems to estimate the

motion of a camera or vehicle by analyzing sequential images.

This method does not rely on extracting and matching features (such as points or edges)

between images. Instead, it uses the entire image dataset, which can be more effective for

estimation. The main step of the energy-based method is the photometric error minimization

between successive images. An optimization algorithm, such as the Gauss-Newton method, is used

to minimize the photometric error.

The basic steps of an energy-based visual odometry method can be outlined as follows: we

suggest an energy Function II.2 that seeks to determine the optimal rigid body motion that

transforms one RGB-D image into another, assuming that these images were captured by a

moving camera in a static scene. Next, we propose linearizing the energy function, which leads

to a normal equation for the twist coordinates that represent the movement of the rigid body ξ.

The resolution of the least squares equation II.2, as outlined in [87], aims to determine the

unknown variables ξ.

In the quest to find this unknown, the method minimizes the quadratic sum of the difference

between two successive RGB-D frames. Once the derivative with regard to ξ equals zero, the

minimum of this function is attained, and vice-versa:

𝜕𝐸(ξ)

𝜕ξ
 =

2

𝑁
∑

𝜕𝑟i(ξ)

𝜕ξ
 𝑁

𝑖=1 ri(ξ) =0 III.1

III.3.1. linearization of the least squares method

In cases where the equation E(ξ) is nonlinear, achieving a direct solution becomes challenging.

Multiple approaches exist for addressing this nonlinear case, and here we use the Gauss-Newton

method. This method provides an iterative solution by making the function ri(ξ) linear to establish

a linear dependence with k. Therefore, using the first order Taylor series, as described in [88],

ri(ξ k) is linearized at each iteration k in the vicinity of the solution of the preceding iteration

ξ = ξk-1 so that:

ri(ξ k)|ξ = ξk-1 ≈ ri(ξ k-1) +
𝜕𝑟i(ξ)

𝜕ξ
 |ξ = ξk-1 . (ξ k - ξk-1) III.2

42

The Jacobian Ji(ξk-1) is equal to the derivative of residual ri(ξ k) with respect to the camera pose

parameters ξ.

𝜕𝑟i(ξ)

𝜕ξ
 |ξ = ξk-1 = Ji(ξk-1) III.3

This is the Jacobian matrix and ξ k - ξk-1 is considered the increment, represented as ∆ξ. Thus,

the Function III.2 can be constructed as follows:

ri(ξ k)|ξ = ξk-1 = ri(ξ k-1) + Ji(ξk-1). ∆ξ III.4

By replacing the equivalence of the equations ri(ξ k) and
𝜕𝑟i(ξ)

𝜕ξ
 into equation III.2, it produces:

∑ 𝑁
𝑖=1 (Ji(ξk-1)

T .(ri(ξ k-1) + Ji(ξk-1). ∆ξ))=0 III.5

After developing and rearranging the terms, we obtain:

∑ 𝑁
𝑖=1 Ji(ξk-1)

T .Ji(ξk-1). ∆ξ= - ∑ 𝑁
𝑖=1 Ji(ξk-1)

T . ri(ξ k-1) III.6

The Equation III.6 is written in matrix form as follows:

J(ξk-1)
T .J(ξk-1). ∆ξ= - J(ξk-1)

T . r(ξ k-1) III.7

The solution to this equation is obtained by multiplying by the term (J(ξk-1)
T .J(ξk-1))

-1 on both

sides:

∆ξ= -(J(ξk-1)
T .J(ξk-1))

-1. J(ξk-1)
T . r(ξ k-1) III.8

With J(ξk) being the Jacobian matrix of size n×m. Therefore, at each iteration k, the increment

∆ξ is first calculated using Equation III.8, and the solution at iteration k is obtained by adding to

the value of obtained at iteration k -1:

ξk = ξk-1 +∆ξ III.9

The iteration value corresponds to the number of pyramid multiresolution levels. At each level,

the increment is calculated and added to the motion of the previous iteration until the first level is

reached, where the image is complete, and thus the optimal solution is found using this method.

43

Start

Parameters
initialization

Initializing the
motion vector

as zeros

Determine the
increment ∆ ξ

Calculate the
warping

Jacobian Jw

Calculate the
Jacobian

components Ji

DSR=1DSR /2

Output optimal
motion ξ

End

RGB image It

NO

Yes

RGB to
gray

Pyramid Down
Mean

Depth image

Dt+1

RGB image

It+1

RGB to
gray

Pyramid Down
Mean

Pyramid Down
Mean

DSR=16 DSR

Residual image
r (ξ)

Warping image
It+1(ω(ξ,pi))

NO

Update the
Motion ξ

Calculate the

gradient ∇ I

Figure III.2: Flowchart of the motion estimation using the energy-based method

Exact or direct methods for visual odometry estimate the motion directly from image intensities

by minimizing the photometric error. The main steps in the energy-based method involve

minimizing the photometric error between two consecutive images, thereby calculating the pixel

displacement in the second image with the first image as a reference. The photometric error ri(ξ)

is defined as the difference in intensity values of corresponding pixels in two consecutive images;

the first image It is considered the reference and the second is the warped image It+1(ω(ξ, pi)).

As previously explained, the energy-based method converges to the nearest global minimum

and may exhibit divergence in certain situations, such as large motions. To handle this and improve

44

convergence, a multi-scale pyramid approach is often used. Images are processed at different

resolutions, starting from a coarse level and refining the estimates at finer levels. The initial motion

ξ 1, as mentioned in Figure II.5, is crucial in this iterative process and should be close to the global

minimum for successful convergence. Utilizing a multi-resolution pyramid helps guide the

algorithm towards a favorable selection of ξ 1 during its execution. At level 4 of the multi-

resolution pyramid, where DSR = 16, the process begins.

Figure III.2 presents a flowchart describing the execution process of the energy-based method.

The initial parameters include the focal lengths in both the x and y directions (fx, fy), and the pixel

coordinates of the principal point (cx, cy), which are input into the algorithm. The motion vector is

initialized as zero. These initial parameters, along with the motion and the RGB-D image It+1, are

used to calculate the warping image using Equation II.5, subsequently deducing the composition

of the residual image ri(ξ) by Function II.2.

This prior motion is used to calculate the warping Jacobian Jw, as shown in Figure III.2 and

described in Equation A.12. The next step is to deduce the Jacobian components using the warping

Jacobian Jw and the gradient ∇ I of the residual image ri(ξ). This process paves the way for

calculating the increment using Equation III.8 and updating the motion by relation III.9.

Thus, as iteration k increases, the image resolution moves to the lower level of the pyramid until

the DSR equals one, corresponding to the use of the original image at full resolution. An optimal

solution is produced at the end of the energy-based method's execution.

III.3.2. Calculation of the Jacobian matrix

The Jacobian matrix J(ξk) takes the form of an n×6 matrix with the following structure:

J(ξ k)=

[

𝜕𝑟1

𝜕𝑣1

𝜕𝑟1

𝜕𝑣2

𝜕𝑟1

𝜕𝑣3
𝜕𝑟2

𝜕𝑣1

𝜕𝑟2

𝜕𝑣2

𝜕𝑟2

𝜕𝑣3

⋮ ⋮ ⋮

𝜕𝑟1

𝜕𝑤1

𝜕𝑟1

𝜕𝑤2

𝜕𝑟1

𝜕𝑤3
𝜕𝑟2

𝜕𝑤1

𝜕𝑟2

𝜕𝑤2

𝜕𝑟2

𝜕𝑤3

⋮ ⋮ ⋮
𝜕𝑟𝑖

𝜕𝑣1

𝜕𝑟𝑖

𝜕𝑣2

𝜕𝑟𝑖

𝜕𝑣3

⋮ ⋮ ⋮
𝜕𝑟𝑁

𝜕𝑣1

𝜕𝑟𝑁

𝜕𝑣2

𝜕𝑟𝑁

𝜕𝑣3

𝜕𝑟𝑖

𝜕𝑤1

𝜕𝑟𝑖

𝜕𝑤2

𝜕𝑟𝑖

𝜕𝑤3

⋮ ⋮ ⋮
𝜕𝑟𝑁

𝜕𝑤1

𝜕𝑟𝑁

𝜕𝑤2

𝜕𝑟𝑁

𝜕𝑤3]

=

[

𝐽1(𝜉 𝑘)
𝐽2(𝜉 𝑘)

⋮
𝐽𝑖(𝜉 𝑘)

⋮
𝐽𝑁(𝜉 𝑘)]

 III.10

Where N denotes the number of pixels in the image, and 6 represents the number of degrees of

freedom, encompassing linear speed (v1; v2; v3), and angular motion (w1; w2; w3). Each row Ji(ξk)

within this matrix signifies the derivative of the residue ri associated with pixel pi with respect to

45

the iteration k. It's essential to note that ri corresponds to the intensity error of pixels in the two

frames.

ri(ξ)= It+1(ω(ξ,pi))-It(pi) III.11

Moreover, we have the following equation:

Ji (ξk) =
𝜕𝑟i

𝜕ξ
 | ξ= ξk III.12

Applying the theorem of compound function differentiation, as described in Annex A, we can

express Ji(ξk) in the following manner:

Ji (ξk) = ∇I. Jw (ξk) III.13

The gradient of each pixel in the image in the direction of x and y is represented by a 1×2 matrix

called ∇I as follows:

∇I=[∇Ix , ∇Iy] III.14

The detailed computation of the warping Jacobian Jw is available in Annex A. Ultimately; the

final Jacobian matrix as described in [89], takes the following form:

Ji (ξk) =[∇I x , ∇Iy] . [

𝑓𝑥

𝑍′
0 −

𝑓𝑥.𝑋′

𝑍′²

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌′

𝑍′²

−
𝑓𝑥.𝑋′.𝑌′

𝑍′²
𝑓𝑥 +

𝑓𝑥.𝑋′²

𝑍′²
−
𝑓𝑥.𝑌′

𝑍′

−𝑓𝑦 −
𝑓𝑦.𝑌′²

𝑍′²

𝑓𝑦.𝑋′.𝑌′

𝑍′²

𝑓𝑦.𝑋′

𝑍′

] III.15

The calculation of Ji(k) depends on the coordinates of the transformed pixel M'(X'; Y'; Z') and

so must be calculated at each DSR. Backer and Matthews introduced a technique in [29] known as

the compositional inverse, enabling the pre-computing of the Jacobian on the reference image It.

This pre-calculated Jacobian remains constant throughout the minimization process, significantly

enhancing the algorithm's execution speed by eliminating the need to recalculate the extensive

Jacobian matrix ℝn×6 at each iteration. Consequently, employing the inverse compositional method

transforms the new Jacobian, denoted as Ji in the subsequent discussion, as follows:

Ji =[∇Ix , ∇Iy] . [

𝑓𝑥

𝑍
0 −

𝑓𝑥.𝑋

𝑍²

0
𝑓𝑦

𝑍
−
𝑓𝑦.𝑌

𝑍²

−
𝑓𝑥.𝑋 .𝑌

𝑍²
𝑓𝑥 +

𝑓𝑥.𝑋²

𝑍²
−
𝑓𝑥.𝑌

𝑍

−𝑓𝑦 −
𝑓𝑦.𝑌²

𝑍²

𝑓𝑦.𝑋 .𝑌

𝑍²

𝑓𝑦.𝑋

𝑍

] III.16

Nevertheless, in our experiments, we recalculated the Ji (ξk) at each DSR as a choice.

46

III.4. Genetic Algorithm for motion estimation

In the 1970s, researchers created genetic algorithms [90], an important type of optimization

algorithm, to understand how genes behave and how living things reproduce. Over time, these

algorithms have found applications in the fields of artificial intelligence and computer science. The

primary function of a genetic algorithm is to generate multiple motions by employing

predetermined equations based on the existing motions of parents. Subsequently, the algorithm

selects motions that yield minimal error, and this error is determined by Function II.2. This process

is iteratively repeated until the specified stopping conditions are met. Ultimately, the optimal

motion, denoted as ξ, is determined using Equation II.3.

The following explains the genetic algorithm (GA) design as it is mentioned in [91]:

III.4.1. Representation

The position ξ is recognized as a chromosome, where the decision variables within ξ represent

genes, each comprising six alleles. Furthermore, the position of an element (gene) within a

chromosome is denoted as a locus. The initial three alleles are specifically designated for linear

velocity, while the last three are allocated for angular velocity.

III.4.2. Population initialization

Every particle within the population is required to possess an initial position ξ, established

through an array of continuous, uniform random numbers. Each variable is constrained by defined

lower and upper bounds. These boundaries are related to the speed of the robot in the considered

direction. If we have a predefined speed, we choose the smallest possible values; otherwise, we

select the boundaries to be as wide as possible.

III.4.3. Objective function

The objective function defines the desired goal, associating a numerical value with each

solution within the search space to quantify its quality and thus determines the efficacy of the

method. This assigned result is given as an absolute value, enabling a comprehensive ranking of

all solutions within the scene. The objective function plays a crucial role in the development of a

metaheuristic, steering the search towards optimal motion within the solution space. This function

is expressed as a mathematical equation, with its minimum value indicating the most favorable

motion within the search domain. The objective function in our case is the error Function II.2.

However, the term "fitness" is denoted by the Function III.17. It is written in the form of a fraction,

and each individual has a percentage, which represents the probability of choosing parents for

mating, and the Function III.17 was used only in the genetic method.

47

III.4.4. Selection strategy

At this point in the process, the selection of particles for reproduction is carried out, and various

approaches can be employed for this purpose.

Tournament Selection:

Tournament selection involves the random selection of k particles, where k represents the

tournament group size. Subsequently, a tournament is conducted among the particles to determine

the best one. To choose µ individuals, the tournament process is repeated µ times.

Figure III.3: strategy tournament selection consists of selecting a group of the best

particles or individuals randomly from the population, and then the best solution from

the selected individuals is chosen.

Roulette wheel selection method:

In the experiments carried out in this thesis, we implemented the genetic algorithm using the

roulette wheel selection method. This method assigns a probability value, denoted as probi, to each

particle pi within the population, and this value is proportional to the particle's fitness as outlined in

Equation III.18. It is important to highlight that Ei represents the error of individual pi, and Emin

signifies the minimum error of the particles. In the subsequent discussion, the fitness fi of particle

pi is expressed as:

fi=exp(-8×Ei/Emin). III.17

Its probability of being chosen is

probi=fi /(∑ 𝑛
 𝑖 = 1 fi). III.18

Then we apply, to each selection probability, the cumulative sum of elements

probci=cumsum(probi). III.19

The selection of µ particles for mating involves a random process, akin to the independent spin

of a roulette wheel, influenced by an indiscriminate variable. Individuals demonstrating superior

qualities, characterized by minimal error and thus maximum fitness, are more likely to be chosen

for the subsequent stage, as determined by Equation III.19.

48

To simplify the roulette wheel selection process, assume a pie chart where each particle in the

population has a section on the pie that corresponds to their level of fitness:

Figure III.4: The strategies of roulette wheel selection include choosing a single individual for

each spin.

 An outer roulette wheel surrounds the pie. The process of selecting µ particles involves µ

independent spins of the roulette wheel, with each spin targeting a single particle. Superior

individuals are allocated more space, increasing their likelihood of being chosen.

In our experiment, we used the cumsum given in Equation III.19 to compute the cumulative

sum along the first non-singleton dimension of probi, which performs the same function as the

pie. The cumulative sum of the probability values given in Equation III.18 is calculated to select

the particles. The goal is to find the first index i where µ is less than or equal to an element of

probci. Since µ is a random number between 0 and 1, it will be compared against the values in

probci.

For example, let's assume µ = 0.25 and probc = [0.1, 0.3, 0.6, 1.0]. The condition µ ≤ probc

gives: [false, true, true, true]. The first true occurs at index 2, so i = 2.

This process effectively randomly selects an index based on the probability distribution

defined in probc. The elements of probc act as weights (probabilities summing to 1).

This is commonly used in roulette wheel selection for probabilistic sampling in genetic

algorithms.

However, in roulette wheel selection, outstanding particles can introduce a bias in the initial

stages of the search, potentially leading to premature convergence and a reduction in divergence

because the error Ei will be close to the Emin.

III.4.5. Reproduction strategy

The process of reproduction consists of two stages required to generate a new individual.

49

• Mutation: every particle undergoes this process independently. A random selection of thirty

percent of the population is chosen to experiment with the mutation. The likelihood that a change

in particle genes will be chosen for mutation is known as the mutation rate (pm = 0.1). The genes in

the chromosome in this work represent the elements composed of the motion vector ξ.

The mutation formula is:

ξ′=ξ+M. III.20

In addition, M is a mutation random vector calculated as follows:

M=δi×randn(size_ξ) III.21

Where the equation δi is:

δi= pm ×(ξi
U-ξi

L) III.22

And ξi
U(respectively, ξi

L) represents the upper bound (respectively, lower bound) for ξi.

• Crossover: either the parents selected through the roulette wheel selection method or the

tournament selection strategy will undergo recombination, specifically the crossover process. The

objective of recombination is to generate offspring that inherit genetic material from both parents.

One of the commonly employed crossover techniques is the intermediate crossover [92], which

attempts to average the positions corresponding to the two parents. Through the equations of

crossover, two individuals, O1 and O2, are produced using a weighted average:

{

O1
i=αξ1

i+(1–α)ξ2
i

O2
i=αξ2

i+(1–α)ξ1
i

 III.23

 The additional crossover factor, denoted as α, signifies the proportion to which parents are

chosen as random arrays from the continuous uniform distribution.

Subsequently, the combination of the old and new individuals generated after mutation and

crossover will be merged and will give rise to the future population for the next stage.

III.4.6. Replacement strategy

The future population is determined through a competition between the newly generated

offspring and the old particles, including the parents. This is achieved by forming a combined

population that includes both the previous elements and the offspring produced through crossover

and mutation strategies. Then, all the particles are sorted based on the errors resulting from equation

II.2 for each individual, and particles with the minimum error value, based on the required number

of individuals, are selected. The process concludes with an update to the minimum error ever

recorded and the best individual corresponding to it.

III.4.7. Stopping criteria

Numerous stopping criteria are applied during the execution of the metaheuristic code. We

employed two stopping procedures, as outlined below:

50

• Static procedure: The end of execution is based on a maximum iteration value that is

predetermined and specified for each DSR level of image resolution.

• Diversity procedure: The code execution stops when the error of the best individual remains

stagnant after a predefined number of iterations, rendering further algorithm execution with more

iterations futile.

III.4.8. Overall algorithm

We present the key steps that GA takes to determine the optimal motion in the following:

1. Initialization

 a. Set the number of particles as N.

 b. Set the number of GA iterations as M.

 c. Set the variables bound

 d. Set crossover and mutation percentage

 e. For i=1,…,N, set ξ0
i=rand(1).

 f. Set initial parameters camera intrinsic

2. Main Loop

for j=1:M iterations.

 -Select parents using the roulette wheel selection

 for i=1:ns particles selected (also called Parents)

 -Update the particles via Crossover and Mutation

 end

 -Evaluate f(Pj
i) and update Pi and get ξ of Pbest

 end

Return ξ

The Genetic Algorithm (GA) is a metaheuristic method used to solve various optimization

problems. This method is widely used in the artificial intelligence field, particularly for visual

odometry. It is based on how genes behave and how a population reproduces to find an optimal

solution by the end of the algorithm's execution. The chromosome of a particle in the population

represents its motion, ξ, with six genes or six degrees of freedom. The motion of these particles

occurs within a limited search space.

Figure III.5 presents a flowchart describing the execution process of the genetic algorithm. The

initial parameters include the camera intrinsic, the focal lengths in both the x and y directions

(fx, fy), and the pixel coordinates of the principal point (cx, cy), which are defined as the input to the

algorithm.

51

Start

Parameters
initialization

Generating
motions of

nPop particles

Select parents

Mutation Crossover

Calculate error
function E(ξ)

Select parents

Create merged
population

Sort order the
best nPop

Stopping

criteria

DSR=1DSR /2

Output optimal
motion ξ

End

RGB image It

NO

Yes

NO

Yes

RGB to
gray

Pyramid Down
Mean

Depth image

Dt+1

RGB image

It+1

RGB to
gray

Pyramid Down
Mean

Pyramid Down
Mean

DSR=16 DSR

Residual iMage
r (ξ)

Warping image
It+1(ω(ξ,pi))

NO

Calculate error
function E(ξ)

Ite
ratio

n
+

1
Ite

ratio
n

=
0

The particles
motion and
their error

Figure III.5: Flowchart of the motion estimation using the genetic algorithm

52

Initially, the algorithm assigns a random initial motion ξ to each item in the particle group. The

initial parameters, along with the motion of each particle and the RGB-D image It+1, are used to

calculate the warping image using Equation II.5. This subsequently deduces the composition of

the residual image ri(ξ) by Function II.2. The residual image of each particle is then used to

calculate the error E(ξ) associated with each particle's motion. This step is crucial for evaluating

the motions of the particles and ranking them in order of increasing error E(ξ).

A predetermined number of particles are then chosen to create new particles with different

motions using crossover and mutation. The new and old particles will form a merged population.

After that, the best of these new particles replaces the worst older ones in the previous population,

which have a greater error E(ξ). Thus, one iteration using the same DSR value is completed. The

algorithm then selects a new set of particles for the subsequent iteration, repeating the main loop.

The process continues until the stopping criteria are reached.

Afterward, the original image is down sampled to create images at higher resolutions by down

sampling the two RGB-D images' resolution by dividing the previous DSR by 2. The GA then uses

the population resulting from the previous down sampled resolution (DSR) and repeats the main

loop. The process continues until the stopping criteria are reached and DSR = 1, where the image

used is the original with a resolution of 640×480 pixels. At this point, the motion ξ of the best

individual is calculated. The algorithm's performance will be evaluated through various

experiments.

III.5. Geometric particle swarm optimization for visual ego-motion Estimation

Visual ego-motion estimation, also known as visual odometry, involves the continuous

determination of 3D camera movement using sequences of 2D images taken by a camera. This

process is crucial in numerous computer vision and robotics applications, including visual

simultaneous localization and mapping (SLAM) and augmented reality.

This estimation method is derived from reworking the traditional vector space geometric

particle swarm optimization (PSO) algorithm to account for the geometry of the special Euclidean

group SE(3). SE(3) is a Lie group that characterizes the space of 3D camera poses, as outlined in

[53].

In this section, we introduce the geometric PSO metaheuristic method, designed with

consideration for the geometry of SE(3). First, we provide a concise overview of traditional PSO

within a vector space. For a more detailed examination of PSO refer to the reference [93].

53

III.5.1. PSO on a vector space

The core concept of Particle Swarm Optimization (PSO) is to leverage the interactions and

information-sharing among particles to efficiently identify the global optimum. Consider a

collection of particles, denoted as ξ≙{ξ1,⋯, ξ M} scattered randomly across the search space. Each

particle ξi∈ ℝ6 navigates this space to locate the global optimum, guided by two relative position

vectors: pgb − ξ i and pib
i − ξ i, where pgb represents the globally best particle, while pib

i is the best

position recorded by each individual i.

The velocity vi ∈ℝ6, which indicates where to go, of each individual is calculated by summing

three vectors as

v t+1
i= w v t

i +c1r1 (pib
i − ξ t i) + c2r2 (p

gb − ξ t i) III.24

Where w represents inertia, c1 and c2 are the weighting coefficients for the two relative position

vectors. r1 and r2∈ℝ6 are random vectors drawn from a uniform distribution ranging from 0 and 1,

introducing stochasticity into the optimization process. The value of the constants used to execute

the algorithms for the equation III.24 are mentioned in Annex B. Subsequently, each particle ξ t+1

i updates its position using v t+1
i as follows:

ξ t+1
i= ξ t i + v t+1

i III.25

Then, pgb and pib
i are updated as

pib
i = ξ t+1

i if E(ξ t+1
i)< E(pib

i) III.26

pgb
 = ξ t+1

i if E(ξ t+1
i)< E(pgb) III.27

Where E is the error Function II.2, i.e., an objective function that aims to minimize.

By repeating Equations III.24, III.25, III.26, and III.27 several times, particles can explore the

solution space efficiently, and convergence can be guaranteed.

The mathematical operations of addition and subtraction contained in Equations III.24 and

III.25 cannot be performed directly in the traditional formula but must formulate the geometric

PSO algorithm on the special Euclidean group SE(3) and perform these operations using a general

Riemannian manifold.

54

III.5.2. The special Euclidean group SE(3)

A camera's position can be described using a rigid body transformation matrix structured as

[
 𝑅 𝑡
 0 1

] in homogeneous coordinates, where R denotes a 3×3 rotation matrix in ℝ3 × 3, and t is a

3×1 vector in ℝ3 space. These rigid body transformation matrices, along with the rotation matrices,

correspond to matrix Lie groups: specifically, the special Euclidean group SE(3) and the special

orthogonal group SO(3). Formally, SO(3) and SE(3) are defined as follows:

SO(3)={ R ∈ℝ 3 × 3 | RTR=RRT=I, det(R)=+1} III.28

And SE(3)= { g = [
 𝑅 𝑡
 0 1

] ∈ℝ 4 × 4 } III.29

Where R ∈ SO(3) and t ∈ ℝ 3.

A Lie group is a differentiable manifold that possesses a group structure with smooth product

and inverse operations. The Lie algebra associated with a Lie group is defined as the tangent vector

space at the identity of the Lie group. The exponential map is a fundamental tool that relates Lie

algebras to Lie groups. It allows you to "exponentiate" elements of the Lie algebra to obtain

elements of the Lie group, and vice versa. This map provides a bridge between the abstract group

structure of the Lie group and the linear structure of the Lie algebra. The Lie algebras associated

with the Lie group SE(3) and SO(3) are denoted by se(3) and so(3), respectively. A Lie group and

its Lie algebra can be related via the exponential map, i.e., exp: so(3) → SO(3) and

exp: se(3) → SE(3), as presented in Figure III.6. The logarithmic (log) map is defined as the inverse

of the exponential (exp) map.

Figure III.6: SE and the corresponding Lie algebra as tangent space at the identity

55

For matrix Lie groups, the matrix exponential and log give the exponential and log maps. so(3)

is a set of ℝ3×3 skew symmetric matrices of the form :

𝑤=[

 0 − 𝑤3 𝑤2
 𝑤3 0 − 𝑤1
 −𝑤2 𝑤1 0

] III.30

 And se(3) is given by [
 𝑤 𝑣
 0 0

] , with 𝑤 ∈ so(3) and v ∈ ℝ 3.

In this part, we represent the camera pose as an SE(3) group, instead of employing the vector

parameterization of rotation matrices such as Euler angles [94]. Using the SE(3) representation

allows us to avoid the singularity issues associated with any ℝ³ vector parameterization of rotation

matrices. However, since SE(3) constitutes a curved space rather than a flat vector space, it is

necessary to reformulate particle swarm optimization (PSO) to account for the geometric

properties of SE(3) for improved optimization performance.

III.5.3. PSO on SE(3)

To formulate a geometric PSO algorithm on SE(3), we first consider a general Riemannian

manifold case. What we have to consider when formulating PSO on a Riemannian manifold is that

the difference between particles’ motion should be calculated as the minimal geodesic distance on

a manifold. Since the Riemannian logarithmic and exponential maps are derived from the minimal

geodesics on the Riemannian manifold, we can represent the difference between the elements on

the Riemannian manifold as the one on its tangent vector space obtained via the Riemannian log

map. In this manner, a particle can be considered to be a point ξi on a manifold, and its velocity vi

can be defined as the one on the tangent vector space of ξi.

Points on a manifold are projected onto the tangent vector space via the Riemannian log map

at ξi
old, then the velocity calculation is performed on the tangent vector space according to the

original PSO in a vector space. A new particle position ξi
new is obtained by the Riemannian

exponential map at ξi
old of the resulting velocity vector in the tangent vector space.

56

Figure III.7: Graphical representation of geometric PSO on a general Riemannian manifold.

The difference between ξi and the individual best Pib
i can be identified as a vector on the tangent

space at ξi obtained via log ξi , the Riemannian log map at ξi, and can be represented as log ξi (Pi
ib).

The difference between ξi and the global best Pgb also can be represented as log ξi (P
gb). Then the

velocity vi is obtained by log ξi (Pi
ib) and log ξi (P

gb) similarly to Equation III.31 and the particle

update with vi is realized via exp ξi , the Riemannian exponential map at ξi , as expξi(vi). Figure III.7

depicts this geometric PSO procedure on a general Riemannian manifold.

The procedure of PSO on manifolds has some similarity to the nonlinear mean shift on

manifolds, as described in [95], since the required operations are done on the tangent vector space

of a manifold. However, it is not straightforward to directly apply this geometric PSO on a general

Riemannian manifold to SE(3). The first requirement of geometric PSO is to obtain the

Riemannian exponential and log maps on a specific manifold. Since the minimal geodesics on

SE(3) is given by the union of the respective geodesics on SO(3) and ℝ 3 [96], it is hard to obtain

a single expression of the Riemannian exponential and log maps for SE(3). Fortunately, the

Riemannian exponential and log maps for SO (3) are simply given by the left and right translations

57

of exp and log, which are the matrix exponential and logarithmic. Thus, we can perform geometric

PSO on SE(3) appropriately by splitting gi ∈ SE(3) into Ri ∈ SO(3) and ti∈ ℝ 3.

The calculations of particle velocity vR i ∈ so(3) and particle update for Ri are given by:

vR
 i

 (t+1)= w vR
i
 (t) +c1r R1 log (R T

i R
ib

i) + c2r R2 log (R T
i R

gb)) III.31

R t+1
i= Ri exp(vR

i) III.32

where Rib
i and Rgb are the rotation parts of the individual best particles and global best particles,

respectively. Note that the differences are calculated by log after multiplying Ri
⊤ to Rib i and Rgb.

Then the exponential of the resulting vector on the tangent vector space is multiplied by Ri. This

is to apply the exact Riemannian exponential and logarithmic maps of SO(3). In Equation III.31,

rR
1 and r R2 represent ℝ 3 uniform random vectors, with SO(3) elements represented in ℝ 3 column

vectors with respect to basis elements of SO(3) using the function log. The velocity calculation

and particle update equations for ti can be represented by the ordinary PSO algorithm as follows:

vt i
 (t+1)= w vt i (t) +c1r t1 (t

ib
i − t

i) + c2r t2 (t
gb − t

i)) III.32

tt+1
i= t t i+ v t

i (t+1) III.34

Where tib
i and tgb are the translation parts of the individual and global best particles,

respectively. r1
t and r2

t represent uniform random vectors on ℝ3. After particle update, the fitness

function evaluation is performed at the new position determined by merging the newly updated Ri

and ti into gi. Where body transformation g is:

g = [
 𝑅 𝑡
 0 1

] ∈ℝ 4 × 4 III.35

We can calculate ξ using:

ξ = log g III.36

And we conclude the error Function II.2.

58

We present the key steps that PSO takes to determine the optimal motion in the following

Overall algorithm:

1. Initialization

 a. Set the number of particles as N and k = 0.

 b. Set the number of PSO iterations as M.

 c. For i = 1,…,N, set ξ 0 i = rand(1) , and v0 i = 0.

 d. Set c1 , c2, r1, r2

2. Main

for j=1:M iterations.

 k = 0

 for i=1:N

 - Update the particles via Eqs. III.24 and III.25

 - Calculate E(ξ t+1
i) and update Pgb and Pib i.

 k = k + 1.

 end

end

Return Pgb

The particle swarm optimization (PSO) method is a metaheuristic optimization technique that

uses particles to search for an optimal solution within a defined 3D search space. These particles

are attracted to their own or personal best solution (Pbest) and to the best global solution (Gbest)

of all particles by the Function III.24.

59

Start

Parameters
initialization

Generating
motions and
velocities of

nPop particles

Update velocity
and motion

Calculate error
function E(ξ)

Determine
Pbest and

Gbest

Stopping
criteria

DSR=1DSR /2

Output optimal
motion ξ

End

RGB image It

No

Yes

NO

Yes

RGB to
gray

Pyramid Down
Mean

Depth image

Dt+1

RGB image

It+1
RGB to

gray
Pyramid Down

Mean

Pyramid Down
Mean

DSR=16 DSR

Residual image
r (ξ)

Warping image
It+1(ω(ξ,pi))

NO

Calculate error
function E(ξ)

Determine
Pbest and

Gbest

Iteration+1

Iteration=0

Figure III.8: Flowchart of the motion estimation using the PSO method

Initially, we need to define the motion and initial velocity of the particles, as indicated at the

beginning of the PSO algorithm flowchart in Figure III.8. Additionally, the initial parameters,

including the focal length in both the x and y directions (fx, fy) and the pixel coordinates of the

60

principal point (cx, cy) are defined as the algorithm's input. These parameters, along with the motion

of each particle and the RGB-D image It+1, are used to calculate the warping image using Equation

II.5. Subsequently, the residual image ri(ξ) is deduced by Function II.2.

The residual image of each particle is used to calculate the error E(ξ) linked to each motion.

This process is crucial for evaluating the motions of the particles and ranking them from least to

greatest error. In the subsequent process of the PSO flowchart, the algorithm determines the best

motion achieved by each particle (Pbest or the personal best motion) and the best motion achieved

by all particles (Gbest or the global best motion) during the execution of the algorithm, both with

the same DSR value.

These two motion values (Pbest and Gbest) are used in the next step to update the motions and

velocities of the particles using Equations III.24 and III.25. This last process, along with

calculating the errors of the particles’ motion using Equation II.2 and the process of determining

Pbest and Gbest is repeated over several iterations, as the main loop of the algorithm, until the

stopping criteria are met.

Afterward, the DSR value is divided by 2, the iteration value is reset, and the main loop is

repeated until the DSR equals 1, corresponding to the use of the original image at full resolution.

An optimal solution is produced at the end of the execution of the PSO algorithm.

III.5.4. PSO coefficients used for convergence

The particle swarm optimization is an algorithm for finding optimal regions of complex search

spaces through the interaction of individuals in a population of particles. The present section

analyzes a particle’s trajectory as it moves. These analyses lead to a generalized model of the

algorithm, containing a set of coefficients to control the system’s convergence tendencies.

Clerc and Kennedy define in [97] the construction coefficients by

χ =
2𝑘

| 2−𝜑− √𝜑(𝜑−4)|
 III.37

Where φ = φ1+φ2 ≥ 4

61

After conducting several experiments and analyzing the results, they arrived at the following

conclusions:

{
𝑘 = 1
𝜑1 = 2.05
𝜑2 = 2.05

 III.38

 Therefore, the values of the PSO coefficients for achieving the best convergence are as follows

{

𝑤 = 𝜒
𝑐1 = 𝜒𝜑1
𝑐2 = 𝜒𝜑2

 III.39

This part explores how the particle swarm algorithm works from the inside, i.e., from the

individual particle’s point of view. The coefficients can be chosen to guarantee convergence and

encourage the particles to explore the entire search space. We remind that the real strength of the

particle swarm derives from the interactions among particles as they search the space

collaboratively. Effectively, the particles keep moving as they find better and better points in the

search space with each iteration. As a particle swarm population searches over time, individuals

are drawn toward one another’s successes, with the usual result being the clustering of individuals

in optimal regions of the space, thus achieving the optimal solution.

III.6. Firefly algorithm for motion estimation

In mathematical optimization, the firefly algorithm is a metaheuristic method proposed by

Xin-She Yang and inspired by the flashing behavior of fireflies as described in [98], [99] and [91].

III.6.1. Material and Methods

In essence, the firefly algorithm (FA) uses the following idealized rules.

The brightness of a firefly is inversely proportional to the calculated error value using Equation

II.2. Brightness that relies on light intensity determines attractiveness. The attractiveness of a

firefly is inversely proportional to the distance between that firefly and the best firefly (i.e., the

one with the highest brightness). The variation of attractiveness β, with respect to the distance r,

is defined by:

β = β0e
-γr² III.40

62

Where β0 is the base value of the attraction coefficient, and γ is the light absorption coefficient.

The motion of a firefly i is attracted to the best firefly j and is determined by:

ξ t+1
i= ξ t i+β0e

-γrij²(ξ t j - ξ
 t i) + αt ϵ i III.41

With

rij=|| ξ t j - ξ
 t i || III.42

The second part of Equation III.41 refers to the attraction between the particles i and the best

particle j. The last part refers to the randomness factor, with αt being the randomization parameter,

and ϵi being a vector of randomness from uniform distribution. The value of the constants used to

execute the algorithms for the equation III.41 are mentioned in Annex B.

III.6.2. The proposed motion estimation algorithm

The algorithm FA uses interactions between particles sharing information among themselves

to achieve the optimal solution. Let it be a population as ξ ≙{ ξ 1,⋯, ξ M} randomly chosen in 3D

space. Each particle ξ i ∈ℝ6 moves in 3D space to achieve an optimal solution using the equation

of this algorithm.

 Each particle of the population calculates its velocity v t+1
i ∈ℝ6, by the following equation:

v t+1
i =β (ξ t j - ξ

 t i) + αt ϵ i III.43

With

β= β0e
-γrij² III.44

Then, this velocity will be used to update the motion ξ i as

ξ t+1
i
 = ξ t i + v t+1

i III.45

Finally, ξ t j is newly updated as:

ξ t j ξ
 t i if f (ξ

 t i) > f (ξ
 t j) III.46

Where f is an objective function. With:

f(pi)=min (E(ξ)) III.47

By repeating Equations III.43, III.45, and III.46 the optimal solution can be achieved.

63

III.6.3. Firefly algorithm on SE(3)

The coordinates of movement ξ defined by six degrees of freedom do not allow us to perform

addition and subtraction operations contained in Equations III.43 and III.45 using the traditional

way, in this part we will explain the method of calculating the previous equations, following the

method of Baik in [53].

First, we note that:

Pt+1= g × Pt III.48

And

Pt+1=R× Pt +T III.49

 The rigid body transformation matrices are formulated with matrix Lie groups in III.35.

 The difference between two motions, as required in Equation III.41, was made using the

Riemannian manifold (exponential and logarithmic maps in Riemannian manifolds) as described

in [95].

 First, we formulate a geometric attractiveness β on SE(3), we suggest the difference:

d = ξ t j - ξ
 t i

 III.50

The log map is used to compute the difference as follows:

h=log Ri
TRj III.51

We find:

Rd =exp(h) III.52

And

td=tj-ti III.53

We compute the distance by:

rij = || d ||, III.54

The attractiveness is:

β= β0e
-γrij² III.55

 The main Equation III.41 of FA can be decomposed into III.43 and III.45. The difference

in Equation III.43 with mentioned in III.50 cannot be done element by element, but through

splitting ξi ∈ SE(3) into Ri
 ∈ SO(3) (special orthogonal group) and ti∈ ℝ3.

64

 The rotation part of velocity (VR
i∈so(3)) and motion (Ri) are given by:

{

Vi
R =β (log R i

T R j) + αt ϵ Ri

R i
 = R i . exp (Vi

R)

 III.56

 III.57

Where ϵ Ri represents ℝ3 uniform random vectors, R i and R j are the rotation parts of the current

and the brighter particle respectively, and:

Ri
⊤ R = RRi

⊤ III.58

Note that the differences are calculated by taking the log after multiplying R i
T with R j, and we

have the condition

RT R = I III.59

Which implies that

R−1 = RT III.60

This clearly exists for every R. Since

det RT = det R = 1 III.61

RT is also a rotation matrix.

The translation part of velocity and motion can be updated as:

{

Vi
t =β (t j - t i) + αt ϵ i

 t

t i
 = t i + Vi

t

 III.62

III.63

 Where ti and tj are the translation components of the current particle and the brighter particle

respectively. ϵt
i represents uniform random vectors on ℝ3.

After updating Ri and ti and merging them into body transformation g using Equation III.35, ξ

is defined by III.36, and after that, the cost function is calculated with II.2, which corresponds to

the new motion of the current particle i.

After that, we calculate the error Function III.28, and then we conclude the fitness function:

f(pi)=min (E(ξ)) III.64

This function is used to update the motion ξ of the best particle Pj as mentioned in the overall

algorithm.

65

III.6.4. Overall algorithm

In the following, we present the most important steps that the algorithm FA goes through

to reach the best solution:

1. Initialization

 a. Choose N for the count of the number of particles.

 b. Choose M for the number of FA iterations.

 c. For i = 1,…,N, set ξ 0i = rand(1).

 d. Set β0,γ,αt, ϵ j,

2. FA Loop

 for j=1:M iterations.

 for i=1:N

 - Update the particles via Eqs. III.43 and III.45

 - Evaluate E(ξ j i) and update ξ j.

 end

 end

 Return ξ j

The Firefly Algorithm (FA) is a metaheuristic method used to solve various optimization

problems, including visual odometry equations. This method relies on a population-based

approach to find the optimal solution. The behavior of firefly motion is influenced by two key

factors: attraction to brighter fireflies, which exhibit better motion, and a randomness factor. The

movement of these fireflies, or particles, occurs within a limited search space.

Figure III.9 presents a flowchart describing the execution process of the Firefly Algorithm. The

initial parameters include the focal lengths in both the x and y directions (fx, fy) and the pixel

coordinates of the principal point (cx, cy), which are defined as the input to the algorithm. Random

initial motions are assigned to the fireflies.

66

Start

Parameters
initialization

Generating
motions of

nPop fireflies

Update The
motions of

nPop

Calculate error
function E(ξ)

Determine The
Best motion

Stopping
criteria

DSR=1DSR /2

Output optimal
motion ξ

End

RGB image It

NO

Yes

NO

Yes

RGB to
gray

Pyramid Down
Mean

Depth image

Dt+1

RGB image

It+1
RGB to

gray
Pyramid Down

Mean

Pyramid Down
Mean

DSR=16 DSR

Residual iMage
r (ξ)

Warping image
It+1(ω(ξ,pi))

NO

Calculate error
function E(ξ)

Determine The
Best motion ξ

Calculate Firefly
attractiveness β

Iteration+1

Iteration=0

Figure III.9: Flowchart of the motion estimation using the Firefly algorithm

67

These initial parameters, along with the motion of each firefly and the RGB-D image It+1, are

used to calculate the warping image using Equation II.5. This subsequently deduces the

composition of the residual image ri(ξ) by Function II.2. The residual image of each particle is

then used to calculate the error E(ξ) associated with each firefly's motion. This step is crucial for

evaluating the motions of the fireflies and ranking them in order of increasing error E(ξ). The

subsequent process in the FA flowchart identifies the best motion achieved by all the fireflies

during the algorithm's execution, using the same DSR value.

The main loop of FA begins by using the previous best motion to calculate attractiveness β. The

next step is to update the motions of the nPop fireflies using Equation III.41, where these fireflies

are attracted to the brighter firefly j. This process helps calculate the error E(ξ) corresponding to

each firefly's motion using Function II.2. The best motion ξ for the current iteration is then

determined.

This main loop repeats over several iterations until the stopping criteria are met. Subsequently,

the DSR value is halved, the iteration value is reset, and the main loop is repeated until the DSR

equals 1, which corresponds to using the original image at full resolution. An optimal solution is

produced at the end of the Firefly Algorithm's execution.

Our algorithms are made intelligent to find the optimal motion as fast as possible and to avoid

the divergence of our algorithms towards a local minimum, which corresponds to non-optimal and

false solutions. In practice, the future motion for robots or cars is often close to or equal to the

previous one, and the variation of motion between two consecutive small instants of time is very

small or zero. Therefore, when we generate random initial motions for an algorithm, it is necessary

to equip a particle with the optimal motion found in the previous transition. Even better, it is better

to give the motions of the ten best previous particles as initial motions to the current particles,

while the other motions are generated randomly. With this operation, the optimal solution will be

ensured.

III.7. Conclusion

In this section, four of the most important optimization methods in computer vision were

explained. At the beginning of the section, the energy-based method is presented, which is

considered an exact method. After that, three metaheuristic methods were explained, where GA is

an evolutionary algorithm while PSO and FA are swarm intelligence methods.

We point out that GA and FA are innovative methods. With these four methods, most branches

of optimization techniques have been addressed, as presented in Figure III.1. To show the role and

effectiveness of these methods, we need to evaluate them after conducting several experiments,

and this is what we will see below.

68

Chapter IV

Performance evaluation metrics

69

IV. Performance evaluation metrics

IV.1. Introduction

In this section, we evaluate our methods for motion estimation on a static scene using RGB-D

frames that are available in [3]. For this, we use the relative pose error (RPE), root mean square

error (RMSE), and 3D trajectory to compare our innovative methods (GA and FA) to particle

swarm optimization (PSO) and energy-based method as a classic method, which are mentioned

respectively in [53] and [26].

IV.2. Real-time graphical user interfaces

Multicriteria optimization involves choosing the most favorable option from a range of possible

alternatives. Key factors in a metaheuristic approach, such as the number of particles, probability

values, and other parameters, serve as criteria that need to be adjusted to obtain the best outcomes.

This necessity led us to develop a graphical user interface (GUI) in MATLAB, as depicted in

Figure IV.1. This interface allows for real-time monitoring and assessment of code execution

results, enabling the selection of the most effective criteria values for achieving an optimal

solution.

Figure IV.1: The real-time graphical user interfaces view code execution in MATLAB

70

The graphical user interfaces illustrated in Figure IV.1 consists of four windows. On the right,

there is a three-dimensional space depicted as a parallelogram, with its dimensions representing

the field of motion of the particles. This space shows how the particles search for the optimal

motion value by seeking the lowest error value in Equation II.2. At the center of this finite space,

a green disk indicates the three-dimensional position where the previous image was taken. The red

star marks the true location where the subsequent image was captured, representing the target area

where the colored particles are searching. The color of the particles indicates the error value, with

blue signifying the lowest error value or the best cost. This visualization helps us observe particle

behavior and assess the proposed method during the execution of the MATLAB code.

The red arrow indicates the direction of accumulated error (RPE) during the image sequence

processing, extending as a three-dimensional ray with its length specified. We have displayed the

actual value of this error at the top of the 3D scene as RPE = 1/5 * ||VectError||, where ||VectError||

is the length of the red vector represented in the 3D scene, but its real length is RPE. The best

value of relative pose error achieved between the current and previous images is also shown as

RPEI. Displaying the value and direction of the RPE as a ray in the same 3D scene with the

behavior of particles and RPEI helps to identify whether the behavior of the particles is in favor of

reducing the RPEI, the accumulated error (RPE), or both, which helps in choosing the best initial

parameters such as the number of particles and others.

Additionally, the number of particles, Down Sampled Resolution (DSR), and RPE for the best

particle are shown. This image clearly demonstrates the particles' behavior in detecting motion

between two consecutive photos. The final RPE between these images for the best particle is

represented as impulses in the upper graphical example. On the right, there is a graph showing the

camera trajectory RPE, while the bottom graph compares the true and estimated trajectory within

the same 3D scene.

IV.3. Relative pose error

Relative pose error (RPE) in the evaluation of visual odometry methods refers to a metric used

to quantify the accuracy of estimating the relative pose or motion between consecutive frames in

a sequence of images captured by a camera. Visual odometry is a crucial aspect of computer vision

and robotics that aims to determine the camera's movement and position by analyzing image

sequences.

The relative pose error measures the disparity between the estimated relative pose, typically

represented by translation and rotation parameters, and the ground truth or reference pose. It

71

provides a numerical assessment of how well the visual odometry algorithm performs in terms of

capturing the actual movement between frames.

The relative pose error (RPE) between two consecutive images corresponds to the best particle

and is represented in the form of impulses, as shown in Figure III.1.

RPE calculates the drift of the trajectory estimated relative to the true trajectory as described in

[7], [100], and [101] for the time interval ∆ at step i as

Ei=(Qi
− 1Qi+∆)−1(Pi

−1Pi+∆). IV.1

Where Pi +∆ is the position of the camera deduced from motion estimation g and the previous

position Pi using the following equation:

Pi+∆ = g × Pi IV.2

Thus, the second part of Equation VI.1 is the estimated motion, written in the following form:

g = Pi
− 1

 Pi+∆ IV.3

Qi represents the pose of ground truth at time i, and ∆ denotes a temporal displacement or the

time interval between the two frames. Qi
− 1 and Qi+∆ denote the 3D positions (translations and

rotations with respect to a principal point in 3D space) of the camera at time steps i and i+∆

respectively. As in the previous demonstration, Qi
− 1 Qi+∆ represents the difference between the two

consecutive poses of ground truth, thus the real motion carried out by the camera.

Equation VI.1 represents the difference between the estimated and the true motion of the camera;

this difference is represented in the calculation by the multiplication of motion using the

Riemannian manifold (exponential and logarithmic maps in Riemannian manifolds), as described

in [95].

Lower RPE values signify better performance, indicating that the visual odometry method

provides more accurate relative pose estimates.

IV.4. Root mean square error

Root Mean Square Error (RMSE) is a common metric used in the evaluation of visual odometry

methods. In the context of visual odometry, RMSE provides a measure of the average deviation

between the estimated trajectory and the ground truth trajectory.

72

The RMSE is calculated by taking the square root of the mean of the relative pose error. In the

case of visual odometry, these values represent the positional differences between the estimated

camera trajectory and the true camera trajectory over time.

From a sequence of n images, m=n−∆ is the individual relative pose errors. We define the root

mean square error (RMSE) as

RMSE(E1:n ,∆)=(
1

𝑚
∑ ||𝑡𝑟𝑎𝑛𝑠(𝐸𝑖)||²𝑚
𝑖=1)1/2 IV.4

Where Ei is the relative pose error and trans(Ei) is the translational component of the RPE. E1:n

indicates the relative pose error of n images, in the experiments carried out, we used a frequency

of 30 images. Thus, to determine RMSE, first, calculate the accumulated RPE of 30 images, and

then compute the absolute value of the translational component (without the rotational

component). After that, calculate the mean of the RMSEi for each 30 consecutive images.

A lower RMSE value indicates better performance, as it signifies a smaller average deviation

between the estimated and ground truth trajectories, reflecting greater accuracy in the visual

odometry method.

IV.5. Conclusion

In this chapter, three evaluation methods are explained. RMSE is the most well-known method

to test and compare the effectiveness of visual odometry methods because each method will have

a numerical value, making it easy to use for evaluation and comparison. The equation of this

method is based on the relative pose error, which is the distance between the ground truth and the

estimated trajectory. This distance is tracked in real time during the execution of our code thanks

to a platform that also contains the 3D real and estimated paths. In addition, a 3D distribution of

particles helps to properly supervise their behavior during code execution and determine if they

are converging towards the true solution, which thereby helps in the development of algorithms.

All of these methods help to evaluate the algorithm's execution during and after the experiment.

These evaluation methods will be used in the experiments below.

73

Chapter V

Experimental setup

74

V. Experimental setup

V.1. Introduction

Visual odometry is an estimation of camera motion based on vision or captured images. The

experiments performed in this chapter used data provided by a website that publishes research and

datasets in this field. The following section is dedicated to explaining the composition of the

dataset and methods for utilizing it. In addition, several experiments were conducted to better

demonstrate the effectiveness of the visual odometry methods mentioned previously. An

evaluation will be carried out to compare these methods using different techniques. In subsequent

experiments, the focus will be on proving the effectiveness of two of our innovative visual

odometry methods, the GA and FA algorithms, and comparing them with two existing techniques,

the BE and PSO methods.

V.2. Dataset and camera

In recent decades, extensive research in computer vision has focused on RGB images [102],

[103]. Despite their widespread use, RGB images primarily convey only the visual appearance of

objects within a scene. This limited scope makes it exceedingly challenging, if not impossible, to

address certain issues, such as differentiating between foreground and background when they share

similar colors and textures, or recognizing objects. Moreover, the visual data captured by RGB

images are not robust against common variations such as changes in lighting, which significantly

hinders the effectiveness of RGB-based vision algorithms in practical applications. RGB-D

images, which incorporate both visual (RGB) and depth information, have emerged as a powerful

data representation. This combination of depth and visual data addresses fundamental problems

more effectively. Additionally, integrating RGB and depth information has been shown to

significantly enhance the accuracy of high-level tasks such as image and video classification [104],

[105].

The essence of an RGB-D image or video lies in the depth image, typically produced by a range

sensor. Unlike a 2D intensity image, a range image is more resilient to changes in color, lighting,

rotation, and scale [2]. With the introduction of the affordable 3D Microsoft Kinect sensor on

November 4, 2010, capturing RGB-D data has become more accessible and cost-effective.

Consequently, research into computer vision algorithms utilizing RGB-D data has gained

significant traction in recent years. RGB-D images support a broad array of applications, including

computer vision, robotics, construction, and medical imaging [106]. As numerous algorithms have

been developed to address technological challenges in these fields, a growing number of RGB-D

datasets have been established to validate and evaluate these algorithms. The availability of public

75

RGB-D datasets not only conserve time and resources for researchers but also allows for the fair

comparison of various algorithms.

RGB-D data has proven to be an invaluable representation of indoor scenes for addressing key

computer vision challenges. This data combines the benefits of color images, which provide

appearance information, with depth images, which are resistant to variations in color, lighting,

rotation angle, and scale. The introduction of the low-cost Microsoft Kinect sensor, initially

intended for gaming [2] but later widely adopted in computer vision, has made it easy to obtain

high-quality RGB-D data. Recently, an increasing number of RGB-D image and video datasets

have been created for various applications, playing a crucial role in benchmarking state-of-the-art

methods. This thesis systematically employs popular RGB-D datasets for motion estimation using

different approaches. The primary objective of this section is to thoroughly describe the available

RGB-D datasets and the Kinect camera used to capture this data, thereby facilitating the selection

of appropriate datasets for evaluating our algorithms.

V.2.1. Kinect camera

Over the past few years, RGB-D data obtained from the consumer-grade Kinect sensor has

emerged as a new type of scene representation, demonstrating its potential for addressing complex

computer vision challenges. Microsoft launched both the hardware sensor and the accompanying

software package in November 2010, and they have achieved significant sales since then [107].

This device, coupled with advanced algorithms, has been utilized in a range of applications,

including 3D simultaneous localization and mapping (SLAM) [108], [109], people tracking [110],

object recognition [111], visual ego-motion, and human activity analysis [112], among others.

The Kinect sensor includes a near-infrared laser that projects a refracted pattern on the

environment, an infrared camera that captures this pattern, and a color camera situated between

them. Since the projected pattern is predetermined, the Kinect can collect a large dataset of

sequences that include RGB-D data as well as ground truth positions from an external system.

A. Kinect hardware configuration

Generally, the basic version of Microsoft Kinect consists of an RGB camera, an infrared

camera, an IR projector, a multi-array microphone, and a motorized tilt mechanism. Figure V.1

illustrates the components of the Kinect and two example images captured by the RGB and depth

sensors, respectively.

The technology used for generating the depth map is based on analyzing the speckle patterns

of infrared (IR) laser light [113].

76

Figure V.1: Hardware Kinect sensor, and two captured frames using RGB camera and

depth camera.

This illustrates the setup of a Kinect sensor, which includes a depth sensor and an RGB camera.

The depth sensor consists of the IR projector and the IR camera. The IR projector emits an IR

speckle dot pattern onto the scene, which is then captured by the IR camera. Thus, the Kinect

camera functions as a structured light-depth sensor. The geometric relationship between the IR

projector and the IR camera is determined through an offline calibration process. The IR projector

projects a specific light speckle pattern into the environment, which is not visible to the RGB

camera but detectable by the IR camera. It is possible to match the calibrated projector dot patterns

with the observed local dot patterns in the image because every local pattern of projected dots is

distinct. The dot pattern's relative left-to-right translation can be used to determine a point's depth.

The object's distance from the camera-projector plane affects this translation. A process like this

is depicted in Figure V.2. Further information on the 3-D imaging method using structured light

is available in [113].

Figure V.2: Measurement of Kinect camera depth

77

The following explains each Kinect hardware part:

1) RGB Camera: Provides the video's three primary color components: red, green, and blue.

This VGA camera can capture images at a resolution of 640×480 pixels with 8 bits per channel. It

runs at 30 Hz.

2) 3-D Depth Sensor: It is made up of an infrared camera and an infrared laser projector. A

depth map that shows the distance between an object and the camera is produced by the projector

and camera working together. The sensor can detect objects at distances ranging from 0.8m to

3.5m and can output video with a resolution of 640×480 pixels of video at a frame rate of 30 frames

per second. 43◦ vertically and 57◦ horizontally is the angular field of vision.

3) The Motorized Tilt: This pivot allows you to adjust the sensor. The sensor has a 27◦ tilt range

in both the upward and downward directions. The two interconnected and crucial internal systems

of Kinect are an accelerometer and a mechanism for tilting the Kinect head up and down. A motor

that has gears to move the head up and down is used to tilt the head. The accelerometer is the

method by which Kinect ascertains the head's location.

A tool for measuring acceleration is an accelerometer. By detecting the acceleration brought on

by gravity, the accelerometer informs the system which way is down. This enables the device to

calibrate to a value and position its head precisely so that it may be moved at particular angles.

4) The microphone array has four microphone capsules and processes 16-bit audio at a sampling

frequency of 16 kHz for each channel.

B. Intrinsic Camera Calibration of the Kinect

The process of determining internal camera parameters, such as the image center c, focal length

f, and lens distortion parameters, that have an impact on imaging is known as camera calibration.

Because of poor lens quality and manufacturing flaws in cameras, accurate camera calibration is

necessary. This is crucial for 3D image interpretation, reconstructing world models, and enabling

robot interaction with their environments. A flat checkerboard pattern with a defined 3D geometry

is used in the most commonly used technique. The user must capture many shots of the

checkerboard in various positions, making sure to fill the camera's field of vision as much as

possible. By resolving a least squares minimization problem where the input data consist of the

3D positions of the square corners on the checkerboard pattern and the associated 2D image

78

coordinates, the parameters are calculated. A variety of open-source tools are available for

estimating camera parameters, including the C/C++ OpenCV calibration toolbox [114], as detailed

in [115], [116], and [117], as well as the MATLAB camera calibration toolbox [118] and [119].

V.2.2. RGB-D image

The dataset utilized in these experiments contains RGB-D frames and ground-truth information,

which serve to evaluate visual ego-motion algorithms. This dataset comprises RGB and depth

frames captured by a Microsoft Xbox Kinect camera connected to a laptop, as detailed in [7], along

with the true trajectory of the camera. The recordings of these images were taken at a rate of 30

Hz with a camera resolution of 640×480.

We used RGB-D datasets available on the website [3] for our experiments. A Kinect camera

was used to capture the images in an office environment. An infrared (IR) camera captured the

pattern that creates the depth image, as shown in Figure V.3, while a near-infrared laser projects a

refraction pattern onto the surroundings as part of the Kinect sensor. The depth of the scene in this

region is represented by the pixels’ value.

RGB images, as represented in Figure V.4, reconstruct color by additive synthesis from three

primary colors: red, green, and blue; abbreviated as RGB, this is the computer color coding system

closest to hardware. For each of the primary colors, the value is expressed in an interval ranging

from 0 to 255, which represents the maximum value. This applies to each pixel of the RGB image.

Additionally, for simplicity, we only use the grayscale values of the color, i.e., we define

I = (IR + IG + IB)/3 V.1

And, for this, the residual image of the difference between two consecutive images appears in

gray (or what we call a black and white image).

Using these two images, we have a dataset of a 3D scene. A large set of data sequences was

acquired, containing both RGB-D data from the Kinect and ground truth poses delivered from the

motion capture system.

79

Figure V.3: Depth image from the “fr2_desk” sequence.

Each sequence is provided as a single compressed TGZ archive, which consists of the following

files and folders:

 “ rgb/ ”: a folder containing all color images that are stored in PNG format at 640×480

resolution with 3 channels, 8 bits per channel (capable of representing 256 colors in each

one).

 “ depth/ ”: the same for the depth images, which are stored in PNG format at 640×480

resolution with 1 channel, 16 bits per channel (but transfers the data as integers with 11 bits

to save space. Kinect quantizes the depth measurements in a range from 1 to 10.000 values),

distance in meters scaled by a factor of 5000.

 “ rgb.txt ” : a text file containing a sequential list of all color image names (format: timestamp

filename).

 “ depth.txt ” : a text file containing a sequential list of all depth image names (format:

timestamp filename).

 “ imu.txt ” : a text file containing the timestamped accelerometer data (format: timestamp

ax ay az).

 “ kinect_params.txt ” : a text file that includes focal length in both the x and y directions

(fx, fy) and the pixel coordinate of the principal point (cx, cy), containing the camera parameter

data (fx cx fy cy).

 “ groundtruth.txt ” : a text file containing the ground truth trajectory, which is stored as a

timestamped translation vector and unit quaternion.

80

Figure V.4: RGB image from the “fr2_desk” sequence.

 The format of each line of “groundtruth.txt” is 'timestamp tx ty tz qx qy qz qw', We explain the

significance of each part below:

 timestamp (float) gives the number of seconds since the Unix epoch. Unix time (also

known as POSIX time or UNIX Epoch time) is a system for describing a point in time.

It is the number of seconds that have elapsed since 00:00:00 Coordinated Universal

Time (UTC), Thursday, 1 January 1970, excluding leap seconds.

 tx ty tz (3 floats) give the position of the optical center of the color camera relative to the

world origin as defined by the motion capture system. The difference between two

consecutive positions represents t in Equation II.8.

 qx qy qz qw (4 floats) give the orientation of the optical center of the color camera in the

form of a unit quaternion relative to the world origin as defined by the motion capture

system. The difference between two consecutive orientations can be converted into

matrix R using the MATLAB function quat2dcm as represented in Equation II.8.

V.2.3. Data acquisition

Visual odometry is usually based on RGB-D images provided by a stereo camera. In our case,

we do not have this type of camera, so we retrieved these images from the website [3]. This website

provides the information needed to perform the experiments, such as the camera parameters used

and the actual path traveled by this camera to capture these images.

The RGB-D data consists of two different folders: the first contains the RGB images, and the

second contains the depth images. These images are named by Unix time. This data also contains

three text documents .txt files: one contains the names of the RGB images, another contains the

81

names of the depth images, and the third contains the information about the actual journey traveled

to capture these images in the form: 'timestamp tx ty tz qx qy qz qw', where the first piece of

information 'timestamp' represents Unix time. To link each RGB image to its depth image and the

pose where it was captured, we exploit the information they have in common, which is Unix time.

If we do not have an image depth timestamp equivalent to that of the RGB image, we take the

closest depth image time, and apply the same approach with the real pose of the ground truth. Each

pixel of the RGB image provided by the website contains three pieces of information representing

the three colors. The first step after reading these images is to transform these three pieces of

information into one for each pixel, which we call the grayscale image, according to Equation V.1,

because the input image must be a single channel one. Then this frame will be subject to down

mean sampling one or more times, depending on the DSR required as represented in Figure II.5.

 The pose delivered with respect to the real trajectory is in the form of a 1×4 quaternion as

'qx qy qz qw', and therefore we are required to transform it into a direction cosine matrix 3×3 using

the MATLAB function quat2dcm to make the evaluation using Equation IV.I. The direction cosine

matrix R, which is mentioned in Equation II.8, performs the coordinate transformation of a vector

in inertial axes to a vector in body axes.

Thus, we have explained, in this part, how we use the data delivered by the website to conduct

our experiments.

Figure V.5: RGB image from the “fr1/ xyz” sequence.

82

V.3. Experimental and discussion

We evaluated our algorithms through various experiments in a static environment using

RGB-D images of dimensions 640×480 with a frame rate of 30Hz. These images and their

corresponding ground truths are available on the website [3].

The experiments were conducted on a personal computer of the marque Pavilion dv6, with a

processor specification of Intel(R) Core(TM) i5 CPU M430 @ 2.27GHz (2.27GHz). The memory

(RAM) is 3.80 Go usable, and the operating system is 64-bit. This PC uses Windows 7 Ultimate

Edition.

In the first part, we compare our innovative genetic algorithm with PSO and the classic method

(Energy-Based (EB)) as mentioned in [120].

In our first experiment, we used 90 consecutive frames of rgbd_dataset_freiburg1_xyz. These

sequences are intended to facilitate the development of novel algorithms with separate motions

along and around the principal axes of the Kinect in a typical office environment (6×6 m2) as

represented in Figure V.5. In the “xyz” sequences, the camera was moved approximately along the

X-, Y- and Z-axis (left/right, up/down, forward/backward) with little rotational components.

The Function IV.1 gives the distance error between estimated motion and ground truth.

Therefore, using this function, we compute the camera trajectory error of different methods

through 90 consecutive images, and we represent these results in the same graph in Figure V.6.

The evolution of distance error indicates that the accumulated error of 90 frames related to the

classic method is the least, but the quasi-stabilization of the error of the PSO method in the last 60

frames allowed it to outperform in RMSE, as we can see in Table V.1, which is considered the

most important evaluation criterion in visual odometry.

Although the final accumulation error of GA is greater, the error almost maintained its value

between the beginning and the end of the last thirty frames, which helped it improve the value of

translational components of RPE and thus outperform the RMSE of the classic method (BE).

83

Figure V.6: Camera trajectory error of GA, PSO, and classic method (BE) using a part of the

fr1_xyz dataset.

The representation in the 3D scene of the truth and estimated camera trajectory clearly shows

the effectiveness of the motion estimation methods. Figures V.7, V.8, and V.9 show the camera

trajectory using the fr1_xyz dataset of ground truth and different motion estimation methods:

based-energy and metaheuristic methods.

Figure V.7: trajectory of the true camera and the energy-based method using a part of the

fr1_xyz dataset.

Through ninety RGB-D frames and following a back-and-forth path, the three methods

produced very acceptable results, which confirm that the representation error in Figure V.6 is very

small compared to the distance traveled, and there wasn't any deviation away from the true

trajectory.

84

Figure V.8: True camera trajectory with the GA method using a part of the fr1_xyz dataset.

Figure V.9: The true trajectory of the camera and the PSO method trajectory using a part of

the fr1_xyz dataset.

In the second experiment, we used a sequence of 60 consecutive frames from

rgbd_dataset_freiburg2_desk, or fr2_desk. For this sequence, the scene is a large industrial hall

(10×12 m2), which contains an office environment in the middle of the motion capture area,

consisting of two tables with various accessories like a monitor, a keyboard, and books. The

distance error between the ground truth and the trajectory of GA, PSO, and the energy-based

method is represented in Figure V.10. We notice that in the first thirty frames, the GA method

85

achieved the least distance error compared to the other methods. This is clearly shown in Table

V.I, which demonstrates the superiority of the GA, although the final result of the GA was close

to those of the classic method.

Figure V.10: The camera trajectory error of GA, PSO, and the classic method using a part of

the fr2_desk dataset.

The representation in the same 3D scene of the true and estimated camera trajectory clearly

shows the effectiveness of the motion estimation method. Figure V.11 shows the camera trajectory

using the fr2_desk dataset of ground truth and different motion estimation methods: classic and

meta-heuristic methods. The three methods gave acceptable results, and we observed that the

corresponding trajectories are very close to the true trajectory. However, for the trajectory

corresponding to the GA method, we notice that it is the closest to the true trajectory, which

confirms through this experiment that this innovative method competes with the previous methods:

classic and PSO, and may even be better. This confirms the results previously obtained from Figure

V.11 and Table V.1.

86

Figure V.11: The true trajectory of the camera and GA, PSO, and Classic method (BE)

trajectories using a part of the fr2_desk dataset.

Table V.1 shows the root mean square error (RMSE) computed using the Function IV.4, for the

two previous methods: GA, and PSO, as well as the results of the method classic presented in [5].

Table V.1: Root mean square error (RMSE) of drift in meters per second for different

methods relative to ground truth.

Dataset GA PSO Classic (BE)

fr1_xyz 0.04062 m 0.03598 m 0.04827 m

fr2_desk 0.01856 m 0.02836 m 0.02524 m

As a summary and synthesis of the results of the first phase of the experiments, we conclude that

for the dataset (freiburg1_xyz), our method using GA has proven its efficacy in comparison to the

classic method. Regarding the dataset (freiburg2_desk), our innovative method using GA has

successfully proven its efficiency compared to both methods used in the experiments PSO and the

classic method.

87

In the second phase, we evaluated our innovative FA method by conducting two experiments

in a static environment and using RGB-D images as mentioned in [121]. These images and their

corresponding ground truth are available on the website [3]. First, we used 60 images of

rgbd_dataset_freiburg2_desk. Figure V.12 represents the distance between the trajectory of

ground truth and the trajectory of the three methods used in our experiment to estimate the motion

as given by Equation III.33.

Our method using FA has proven its efficacy compared to the classic method and PSO in the

first 25 consecutive frames. After that, FA maintains a more valuable RPE but is close to other

methods.

Figure V.12: the camera trajectory error of FA, PSO, and the Classic method (BE) using a part

of the fr2_desk dataset.

The FA method produced acceptable results in this experiment, which are shown in Figure

V.12. The trajectory in the 3D scene of the FA is parallel and close to the true trajectory, and the

result is similar to the classic method (EB) and PSO.

88

Figure V.13: The true camera trajectory with FA, PSO, and the classic method (BE)

trajectories using a part of the fr2_desk dataset.

 Table V.2 gives the RMSE of FA, PSO, and the classic method based on Function IV.4 as

described by Dib [9]. We noticed the RMSE of FA in the previous experiment, which was slightly

greater than the RMSE of the other methods, but it did not affect its trajectory in the 3D scene.

Table V.2: Root mean square error (RMSE) of drift in meters per second of different methods

compared with ground truth.

dataset FA PSO Classic (BE)

fr2_desk 0.03376 m 0.02836 m 0.02524 m

fr1_xyz 0.03176m 0.03598 m 0.04827 m

In the second experiment, we utilized rgbd_dataset_freiburg1_xyz for 90 consecutive images.

We can evaluate our novel method more accurately as the camera's actual trajectory is one of back

and forth.

89

The representation of the 3D landmarks of the true trajectory and the trajectories of previous

methods in the same graph (Figures V.14, V.15, and V.16) shows the effectiveness of these

methods. The three methods gave acceptable results, where we noticed the corresponding

trajectories are very close to the true trajectory in black.

Figure V.14: The true trajectory and estimated trajectory using FA in a 3D scene.

Figure V.15: The true trajectory and estimated trajectory using the classic method (EB) in a

3D scene.

90

Figure V.16: The true trajectory and estimated trajectory using PSO on a 3D scene.

The evolution of the distance error RPE in Figure V.17 indicates that the FA method is more

efficient in motion estimation than the PSO and classic method because the evolution of the error

value is more stable for every sequence of 30 images. In contrast, the graphic curve of the classic

method in the second stage (the second thirty of the image sequence) increased greatly, and in the

third stage, there was a significant decrease, which made the RMSE value greater. The same note

applies to the first stage of the PSO method. Additionally, Table V.2 confirmed that FA, in this

experiment, gave excellent results and outperformed the other methods.

91

Figure V.17: Camera trajectory error of FA, PSO, and the Classic method using a part of the

fr1_xyz dataset.

We conducted two important experiments to prove the efficiency of our innovative algorithm

FA. Drawing the trajectory in a 3D scene shows that our method achieves the goal of estimating

the trajectory using images coming from a mobile camera.

The second experiment, which used a large number of images and a complex true trajectory,

clearly demonstrates the superiority of our method over other methods, as shown in Figure V.17

and Table V.2.

V.4. Conclusion

In this thesis, we have presented four optimization methods; among these methods, there are

two newly created ones. Two types of experiments were conducted with two different groups of

RGB-D images, fr2_desk, and fr1_xyz, to evaluate these methods. This evaluation was performed

by comparing each new method, GA or FA, with the two existing methods, PSO and the classical

EB method. All four methods produced acceptable results based on the RMSE values,

demonstrating their effectiveness for use in real-world applications in visual odometry.

92

Conclusion and future work

93

Conclusion and future work

Visual odometry is a technique for estimating motion using images captured by a camera

mounted on the head of a mobile robot or moving object. In this work, a comprehensive

exploration and analysis of various optimization methods for dense visual odometry are presented

in a static scene. The objective of this research is to enhance the accuracy and efficiency of visual

odometry for use in crucial fields such as robotics, augmented reality, and autonomous navigation.

The investigation involves the development and evaluation of four optimization methods, with a

focus on their applicability and performance in dense visual odometry tasks.

This thesis commences with a review of related work, providing a foundation for understanding

the existing landscape of visual odometry and optimization techniques. The review highlights the

challenges associated with dense visual odometry and underscores the significance of optimization

methods in addressing these challenges. It serves as the backdrop against which the novel

contributions of this research are framed.

After that, a literature review of visual odometry is presented, along with an explanation of how

this physical problem is modeled as a mathematical equation.

The third part of the thesis introduces the four optimization methods under consideration: the

three metaheuristic methods are the Genetic Algorithm (GA), the Firefly Algorithm (FA), and the

Particle Swarm Optimization (PSO) method, as well as the classical Energy-Based (EB) method,

which is considered an exact method. Each method is carefully explained, detailing its underlying

principles.

Following the methodological introduction of different optimization methods, the core of the

thesis delves into experimental design and implementation. Two distinct sets of experiments are

conducted using RGB-D image data from fr2_desk and fr1_xyz. These experiments aim to evaluate

and compare the performance of each optimization method in the context of dense visual

odometry.

The evaluation metrics employed in the experiments include the Root Mean Square Error

(RMSE), a widely accepted measure for assessing the accuracy of dense visual odometry. The

results were carefully analyzed, and comparisons were conducted between two novel methods (GA

and FA) and two existing methods (PSO and EB). These results provide valuable insights into the

strengths of each optimization approach.

94

One of the noteworthy findings is the superior performance of GA and FA in certain

experiments, displaying their effectiveness in optimizing dense visual odometry. The adaptability

of these novel methods to diverse datasets and their ability to handle complex optimization

problems is demonstrated. In the future, we plan to extend this work to estimate body motion in a

dynamic scene.

Visual odometry (VO) is a technology that plays a crucial role in various domains, leveraging

computer vision and sensor fusion techniques to estimate the motion of a camera or sensor system

in a given environment. Visual odometry is essential for autonomous robots to navigate and move

through their surroundings. By continuously analyzing visual input from cameras, robots can

determine their position and adjust their movements accordingly.

Visual odometry helps autonomous vehicles determine their precise location by tracking the

movement of the vehicle through visual input. This is critical for safe and reliable navigation in

real-world scenarios. It assists in recognizing obstacles and adjusting the robot's path accordingly.

It enhances the vehicle's ability to respond dynamically to changes in the environment.

 Visual odometry is used in AR and VR applications to enhance spatial awareness. It enables

the accurate overlay of virtual objects onto the real-world environment, creating a seamless and

immersive experience.

In summary, visual odometry plays a vital role across various technology domains by providing

accurate and real-time information about the motion and position of devices or systems. It

enhances navigation, control, and perception capabilities, contributing to the development of

advanced and intelligent technologies.

Finally, we hope that this comprehensive work in the field of visual odometry serves as a

support for future research by students and researchers, further enriching the domain and

advancing its application in the local development of robots, drones, autonomous vehicles, and

other innovations that will elevate our country to the forefront of technological advancement. We

will devote ourselves and all our efforts and resources to realizing this goal.

95

Annexes

Annex A

Calculation of the Jacobian components Ji

From Equation III.4, the i-th row of Jacobian Ji(ξk) is equal to the derivative of image residual

ri with respect to the camera pose parameters ξk. According to the chain rule, we can find this

equation:

Ji(ξk)=
 𝜕 𝑟𝑖

𝜕 𝜉
 |

𝜉=𝜉𝑘
 =

 𝜕 𝑟𝑖

𝜕𝑃(𝑥,𝑦)
 .
 𝜕𝑃(𝑥,𝑦)

𝜕 𝜉
|
𝜉=𝜉𝑘

 A.1

We can compute the derivative of image ri with respect to frame coordinates 𝑃(𝑥, 𝑦) through

the gradient of each pixel in the image in the direction of x and y as follows:

 𝜕 𝑟𝑖

𝜕𝑃(𝑥,𝑦)
 = gradient (𝑟𝑖) = ∇𝐼 = [∇𝐼𝑥 , ∇𝐼𝑦] A.2

Where ∇𝐼𝑥 (resp. ∇𝐼𝑦) denotes the gradient of image I in the direction x (resp. y).

Thus, we have the following equation

Ji(ξk)=
 𝜕 𝑟𝑖

𝜕 𝜉
 |

𝜉=𝜉𝑘
= gradient (𝑟𝑖).

 𝜕𝑃(𝑥,𝑦)

𝜕 𝜉
|
𝜉=𝜉𝑘

 = ∇𝐼 .
 𝜕𝑃(𝑥,𝑦)

𝜕 𝜉
|
𝜉=𝜉𝑘

= ∇𝐼 . Jw(ξk) A.3

Using the decomposition theorem, we can decompose the warping Jacobian Jw as follows:

Jw(ξk) =
 𝜕𝑃(𝑥,𝑦)

𝜕 𝜉
 | ξ= ξk =

𝜕𝑃(𝑥,𝑦)

𝜕𝑃′(𝑋′,𝑌′,𝑍′)
 .

 𝜕𝑃′(𝑋′,𝑌′,𝑍′)

𝜕𝜉
 | ξ= ξk = JP . Jξ (ξk) A.4

According to the perspective projection function described in the Equations II.6, we can

calculate JP the derivative of image coordinates 𝑃(𝑥, 𝑦) with respect to the world point

𝑃′(𝑋′, 𝑌′, 𝑍′) as below:

Jp=
𝜕𝑃(𝑥,𝑦)

𝜕𝑃′(𝑋′,𝑌′,𝑍′)
 A.5

The Jacobean Jp is a 2×3 matrix, and it is written as follows:

JP = [

𝜕𝑃𝑥

𝜕𝑋′
𝜕𝑃𝑥

𝜕𝑌′
𝜕𝑃𝑥

𝜕𝑍′

𝜕𝑃𝑦

𝜕𝑋′

𝜕𝑃𝑦

𝜕𝑌′

𝜕𝑃𝑦

𝜕𝑍′

] =

[

𝑓𝑥

𝑍′
 0 −

𝑓𝑥.𝑋
′

𝑍′2

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌

′

𝑍′2

]

 A.6

Jξ (ξk) is the Jacobian matrix 2×6 of the exponential map with respect to ξ, and it is calculated

as:

Jξ (ξk)=
 𝜕𝑃′(𝑋′,𝑌′,𝑍′)

𝜕𝜉
 | ξ= ξk = [𝐼 [𝑃′(𝑋′, 𝑌′, 𝑍′)]×

] A.7

96

Where 𝑃′(𝑋′, 𝑌′, 𝑍′) = [𝑋′, 𝑌′, 𝑍′] A.8

And the operator [𝑃′(𝑋′, 𝑌′, 𝑍′)]×

 creates a 3×3 skew symmetric matrix from a 3×1 vector:

[𝑃′(𝑋′, 𝑌′, 𝑍′)]×

= [

0 −𝑍′ 𝑌′

𝑍′ 0 −𝑋′

−𝑌′ 𝑋′ 0
] A.9

We point out that I denotes a 3×3 identity matrix.

So, we conclude from the above that the equation Jξ is

Jξ (ξk)= [
1 0 0 0 −𝑍′ 𝑌′

0 1 0 𝑍′ 0 −𝑋′

0 0 1 −𝑌′ 𝑋′ 0
] A.10

The warping Jacobian matrix Jw is calculated as:

Jw (ξk) = JP . Jξ (ξk) =

[

𝑓𝑥

𝑍′
 0 −

𝑓𝑥.𝑋
′

𝑍′2

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌

′

𝑍′2

]

. [
1 0 0 0 −𝑍′ 𝑌′

0 1 0 𝑍′ 0 −𝑋′

0 0 1 −𝑌′ 𝑋′ 0
] A.11

Thus, the form of the matrix Jw is as shown below

Jw (ξk) = JP . Jξ (ξk) = [

𝑓𝑥

𝑍′
0 −

𝑓𝑥.𝑋′

𝑍′²

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌′

𝑍′²

−
𝑓𝑥.𝑋′.𝑌′

𝑍′²
𝑓𝑥 +

𝑓𝑥.𝑋′²

𝑍′²
−
𝑓𝑥.𝑌′

𝑍′

−𝑓𝑦 −
𝑓𝑦.𝑌′²

𝑍′²

𝑓𝑦.𝑋′.𝑌′

𝑍′²

𝑓𝑦.𝑋′

𝑍′

] A.12

In the previous analysis, we had the following form:

Ji(ξk)=
 𝜕 𝑟𝑖

𝜕 𝜉
 | ξ= ξk =

 𝜕 𝑟𝑖

𝜕𝑃(𝑢,𝑣)
 .

 𝜕𝑃(𝑢,𝑣)

𝜕 𝜉
| ξ= ξk = gradient (𝑟𝑖). Jw(ξk) = ∇It+1 . Jw(ξk) A.13

The final Jacobian is written as follows:

Ji(ξk)= [∇𝐼𝑡 + 1, 𝑥 , ∇𝐼𝑡 + 1, 𝑦]. [

𝑓𝑥

𝑍′
0 −

𝑓𝑥.𝑋′

𝑍′²

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌′

𝑍′²

−
𝑓𝑥.𝑋′.𝑌′

𝑍′²
𝑓𝑥 +

𝑓𝑥.𝑋′²

𝑍′²
−
𝑓𝑥.𝑌′

𝑍′

−𝑓𝑦 −
𝑓𝑦.𝑌′²

𝑍′²

𝑓𝑦.𝑋′.𝑌′

𝑍′²

𝑓𝑦.𝑋′

𝑍′

] A.14

97

Annex B

In this part, we have provided the values of the constants for the important equations used to

execute the algorithms of the considered optimization methods.

Equation number Constants value

II.6 𝑓𝑥=525.0, 𝑓𝑦=525.0, 𝑐𝑥=319.5, 𝑐𝑦=239.5,

III.22 pm = 0.1

III.24 w=0.72984, c1=1.496172, c2=1.496172,

III.37 𝑘 =1, 𝜑 =4.1, χ =0.72984,

III.41 β0=2, γ=1, αt=0.2,

Annex C

MATLAB code of Lie Algebra and Lie Group Mapping.

Here is the code for se3 -> SE3 where ksi= ξ

 function g = RBMotion(ksi)

% Project: Dense Visual Odometry

% Function: RBMotion

%

% Description:

% Rigid Body Motion Calculation (Lie Algebra)

% g: (SE3) Rigid body motion matrix (4*4), which describe the camera

% motion

% between the two successive snapshot.

% ksi: (se3) A 6*1 matrix which includes camera motion parameters (ksi

% = (v1 v2 v3 w1 w2 w3)').

%

%

% [SE3] = se3_SE3(se3)

% se3_SE3 Exponential Mapping from Lie Algebra to Lie Group

% each of the six elements on multiplication with the generator matrices

% as follows give the complete matrix:

% se3 = v1* g1 + v2* g2 + v3* g3 + w1* g4 + w2* g5 + w3* g6

% To map se3 to SE3 we need to perform e^(se3)

https://math.stackexchange.com/questions/1312314/lie-algebra-to-lie-group-mapping

98

% This can be done by following the algorithm:

%

%%

g = eye(4);

v = ksi(1:3);

w = ksi(4:6);

len_w = sqrt(dot(w,w));

Wx = TwistMatrix(w);

if len_w < 1e-7

R = eye(3) + Wx + 0.5*Wx*Wx;

V = eye(3) + 0.5*Wx + Wx*Wx/3;

else

R = eye(3) + sin(len_w)/len_w*Wx + (1- cos(len_w))/len_w^2*(Wx*Wx);

V = eye(3) + (1-cos(len_w))/len_w^2*Wx + (len_w-...

sin(len_w))/len_w^3*(Wx*Wx);

end

t = V*v';

g(1,1:3) = R(1,:);

g(2,1:3) = R(2,:);

g(3,1:3) = R(3,:);

g(1:3,4) = t;

Here is the code for SE3 -> se3

function ksi = LieLogrithm(g)

% Project: Dense Visual Odometry

% Function: LieLogrithm

%

% Description:

% Get the camera motion parameter ksi from its corresponding rigid

% body

99

% motion matrix.

%

% Example:

% ksi = LieLogrithm(g)

%

% ksi: (se3) The camera motion parameters (a 6*1 matrix

% (v1,v2,v3,w1,w2,w3)')

% g : (SE3) The rigid body motion matrix (a 4*4 matrix)

% [se3] = SE3_se3_back(SE3)

% SE3_se3_back Logarithm Mapping from Lie Group to Lie Algebra

% To map SE3 to se3 we need to perform log^(SE3)

% This can be done by following the algorithm:

%%

R = g(1:3,1:3);

t = g(1:3,4);

theta = acos((trace(R)-1)/2);

if theta < 0.001

 w = (0.5*[R(3,2)-R(2,3),R(1,3)-R(3,1),R(2,1)-R(1,2)])';

else

 w =(0.5*theta/sin(theta)*[R(3,2)-R(2,3),R(1,3)-R(3,1),R(2,1)- ...

R(1,2)])';

end

len_w = sqrt(dot(w,w));

Wx = TwistMatrix(w);

if len_w < 0.001

 V = eye(3) + 0.5*Wx + (Wx*Wx)/3;

else

 V =eye(3) + (1-cos(len_w))/len_w^2*Wx + (len_w-...

sin(len_w))/len_w^3*(Wx*Wx);

end

v = V\t;

ksi = [v',w'];

100

References

[1] F. Cheng, C. Liu, H. Wu, and M. Ai, “DIRECT SPARSE VISUAL ODOMETRY WITH

STRUCTURAL REGULARITIES FOR LONG CORRIDOR ENVIRONMENTS,” Int.

Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLIII-B2-2020, pp. 757–763, Aug.

2020, doi: 10.5194/isprs-archives-XLIII-B2-2020-757-2020.

[2] L. Cruz, D. Lucio, and L. Velho, “Kinect and RGBD Images: Challenges and

Applications,” in 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images

Tutorials, Ouro Preto, Brazil, Aug. 2012, pp. 36–49. doi: 10.1109/SIBGRAPI-T.2012.13.

[3] “RGB-D SLAM Dataset and Benchmark,” TUM Department of Informatics, Technical

University of Munich, Germany, 2011. Accessed: Jan. 01, 2021. [Online]. Available:

http://vision.in.tum.de/data/datasets/rgbd-dataset.

[4] C. Patruno, V. Renò, M. Nitti, N. Mosca, M. Di Summa, and E. Stella, “Vision-based

omnidirectional indoor robots for autonomous navigation and localization in manufacturing

industry,” Heliyon, vol. 10, no. 4, p. e26042, Feb. 2024, doi:

10.1016/j.heliyon.2024.e26042.

[5] A. Dib and F. Charpillet, “Robust dense visual odometry for RGB-D cameras in a dynamic

environment,” Istanbul, Jul. 2015, pp. 1–7. doi: 10.1109/ICAR.2015.7298210.

[6] A. Dib, “Vers un système de capture du mouvement humain en 3D pour un robot mobile

évoluant dans un environnement encombré,” doctoral thesis, Universit e de Lorraine,

Nancy, France, 2016. [Online]. Available: https://hal.science/tel-01752233v2

[7] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the

evaluation of RGB-D SLAM systems,” Vilamoura-Algarve, Portugal, Oct. 2012, pp. 573–

580. doi: 10.1109/IROS.2012.6385773.

[8] S. T. Khawase, S. D. Kamble, N. V. Thakur, and A. S. Patharkar, “An Overview of Block

Matching Algorithms for Motion Vector Estimation,” Jun. 2017, vol. 10, pp. 217–222. doi:

10.15439/2017R85.

[9] M. Ghaffari, W. Clark, A. Bloch, R. M. Eustice, and J. W. Grizzle, “Continuous Direct

Sparse Visual Odometry from RGB-D Images,” no. arXiv:1904.02266. arXiv, Aug. 23,

2019. doi: 10.48550/ARXIV.1904.02266.

[10] N. Zhang and Y. Zhao, “Fast and Robust Monocular Visua-Inertial Odometry Using Points

and Lines,” Sensors, vol. 19, no. 20, p. 4545, Oct. 2019, doi: 10.3390/s19204545.

[11] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.

101

CVPR 2004., Washington, DC, USA, 2004, vol. 1, pp. 652–659. doi:

10.1109/CVPR.2004.1315094.

[12] K. Konolige, M. Agrawal, and J. Solà, “Large-Scale Visual Odometry for Rough Terrain,”

in Robotics Research, vol. 66, M. Kaneko and Y. Nakamura, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 201–212. doi: 10.1007/978-3-642-14743-2_18.

[13] A. S. Huang et al., “Visual Odometry and Mapping for Autonomous Flight Using an RGB-

D Camera,” Flagstaff, Arizona, USA, 2011. doi: 10.1007/978-3-319-29363-9_14.

[14] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-cost quadrocopter,”

in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-

Algarve, Portugal, Oct. 2012, pp. 2815–2821. doi: 10.1109/IROS.2012.6385458.

[15] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-time onboard visual-

inertial state estimation and self-calibration of MAVs in unknown environments,” in 2012

IEEE International Conference on Robotics and Automation, St Paul, MN, USA, May

2012, pp. 957–964. doi: 10.1109/ICRA.2012.6225147.

[16] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,” in

2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara,

Japan, Nov. 2007, pp. 1–10. doi: 10.1109/ISMAR.2007.4538852.

[17] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner Detection,” in

Computer Vision – ECCV 2006, vol. 3951, A. Leonardis, H. Bischof, and A. Pinz, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430–443. doi:

10.1007/11744023_34.

[18] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in Procedings of the

Alvey Vision Conference 1988, Manchester, 1988, p. 23.1-23.6. doi: 10.5244/C.2.23.

[19] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the

Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999, pp.

1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[20] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),”

Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359, Jun. 2008, doi:

10.1016/j.cviu.2007.09.014.

[21] H. Matsuki, R. Scona, J. Czarnowski, and A. J. Davison, “CodeMapping: Real-Time Dense

Mapping for Sparse SLAM using Compact Scene Representations,” IEEE Robot. Autom.

Lett., vol. 6, no. 4, pp. 7105–7112, Oct. 2021, doi: 10.1109/LRA.2021.3097258.

102

[22] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” in Proceedings

Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, Que.,

Canada, 2001, pp. 145–152. doi: 10.1109/IM.2001.924423.

[23] G. Blais and M. D. Levine, “Registering multiview range data to create 3D computer

objects,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 8, pp. 820–824, Aug. 1995,

doi: 10.1109/34.400574.

[24] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping: Using Depth

Cameras for Dense 3D Modeling of Indoor Environments,” in Experimental Robotics, vol.

79, O. Khatib, V. Kumar, and G. Sukhatme, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2014, pp. 477–491. doi: 10.1007/978-3-642-28572-1_33.

[25] J. Stückler and S. Behnke, “Model Learning and Real-Time Tracking Using Multi-

Resolution Surfel Maps,” Proc. AAAI Conf. Artif. Intell., vol. 26, no. 1, pp. 2081–2087,

Sep. 2021, doi: 10.1609/aaai.v26i1.8388.

[26] F. Steinbrucker, J. Sturm, and D. Cremers, “Real-time visual odometry from dense RGB-D

images,” in 2011 IEEE International Conference on Computer Vision Workshops (ICCV

Workshops), Barcelona, Spain, Nov. 2011, pp. 719–722. doi:

10.1109/ICCVW.2011.6130321.

[27] T. Tykkala, C. Audras, and A. I. Comport, “Direct Iterative Closest Point for real-time

visual odometry,” in 2011 IEEE International Conference on Computer Vision Workshops

(ICCV Workshops), Barcelona, Spain, Nov. 2011, pp. 2050–2056. doi:

10.1109/ICCVW.2011.6130500.

[28] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an

Application to Stereo Vision,” Vancouver, BC, Canada, Aug. 1981, pp. 674–679.

[29] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,” Int. J.

Comput. Vis., vol. 56, no. 3, pp. 221–255, Feb. 2004, doi:

10.1023/B:VISI.0000011205.11775.fd.

[30] R. Jiang, R. Klette, and S. Wang, “Modeling of Unbounded Long-Range Drift in Visual

Odometry,” in 2010 Fourth Pacific-Rim Symposium on Image and Video Technology,

Singapore, Singapore, Nov. 2010, pp. 121–126. doi: 10.1109/PSIVT.2010.27.

[31] R. A. Newcombe et al., “KinectFusion: Real-time dense surface mapping and tracking,” in

2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Oct.

2011, pp. 127–136. doi: 10.1109/ISMAR.2011.6092378.

103

[32] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and

mapping in real-time,” in 2011 International Conference on Computer Vision, Barcelona,

Spain, Nov. 2011, pp. 2320–2327. doi: 10.1109/ICCV.2011.6126513.

[33] B. Canovas, M. Rombaut, A. Negre, D. Pellerin, and S. Olympieff, “Speed and Memory

Efficient Dense RGB-D SLAM in Dynamic Scenes,” Las Vegas, NV, USA, Oct. 2020, pp.

4996–5001. doi: 10.1109/IROS45743.2020.9341542.

[34] A. I. Comport, E. Malis, and P. Rives, “Real-time Quadrifocal Visual Odometry,” Int. J.

Robot. Res., vol. 29, no. 2–3, Art. no. 2–3, Feb. 2010, doi: 10.1177/0278364909356601.

[35] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 14, no. 2, Art. no. 2, Feb. 1992, doi: 10.1109/34.121791.

[36] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald, “Robust real-time

visual odometry for dense RGB-D mapping,” Karlsruhe, Germany, May 2013, pp. 5724–

5731. doi: 10.1109/ICRA.2013.6631400.

[37] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for RGB-D cameras,”

Karlsruhe, Germany, May 2013, pp. 3748–3754. doi: 10.1109/ICRA.2013.6631104.

[38] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D cameras,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Nov. 2013,

pp. 2100–2106. doi: 10.1109/IROS.2013.6696650.

[39] J. Wei and A. Yilmaz, “A Visual Odometry Pipeline for Real-Time UAS Geopositioning,”

Drones, vol. 7, no. 9, p. 569, Sep. 2023, doi: 10.3390/drones7090569.

[40] Z. Han, “Multimodal intelligent logistics robot combining 3D CNN, LSTM, and visual

SLAM for path planning and control,” Front. Neurorobotics, vol. 17, p. 1285673, Oct.

2023, doi: 10.3389/fnbot.2023.1285673.

[41] Kyung M. Kim, “Monocular Visual Odometry for Fixed-Wing Small Unmanned Aircraft

Systems,” Degree of Master of Science in Computer Science, Air Force Institute of

Technology, Wright-Patterson Air Force Base, Ohio, USA, 2019.

[42] JENNY NILSSON BOIJ, “Localization of Combat Aircraft at High Altitude using Visual

Odometry,” Master’s Thesis in Engineering Physics, Department of Physics, Umea

University, Ume, Sweden, 2022.

[43] M. Maimone, Y. Cheng, and L. Matthies, “Two years of Visual Odometry on the Mars

Exploration Rovers,” J. Field Robot., vol. 24, no. 3, pp. 169–186, Mar. 2007, doi:

10.1002/rob.20184.

104

[44] Yang Cheng, M. Maimone, and L. Matthies, “Visual Odometry on the Mars Exploration

Rovers,” in 2005 IEEE International Conference on Systems, Man and Cybernetics,

Waikoloa, HI, USA, 2005, vol. 1, pp. 903–910. doi: 10.1109/ICSMC.2005.1571261.

[45] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An Overview to Visual Odometry

and Visual SLAM: Applications to Mobile Robotics,” Intell. Ind. Syst., vol. 1, no. 4, pp.

289–311, Dec. 2015, doi: 10.1007/s40903-015-0032-7.

[46] K. Wang, S. Ma, J. Chen, F. Ren, and J. Lu, “Approaches, Challenges, and Applications for

Deep Visual Odometry: Toward Complicated and Emerging Areas,” IEEE Trans. Cogn.

Dev. Syst., vol. 14, no. 1, pp. 35–49, Mar. 2022, doi: 10.1109/TCDS.2020.3038898.

[47] E. Cuevas, D. Zaldívar, M. Pérez-Cisneros, H. Sossa, and V. Osuna, “Block matching

algorithm for motion estimation based on Artificial Bee Colony (ABC),” Appl. Soft

Comput., vol. 13, no. 6, pp. 3047–3059, Jun. 2013, doi: 10.1016/j.asoc.2012.09.020.

[48] Marco Tagliasacchi, “A genetic algorithm for optical flow estimation,” Image Vis.

Comput., vol. 25, no. 2, pp. 141–147, Feb. 2007, doi: 10.1016/j.imavis.2006.01.021.

[49] M. Shahbazi, G. Sohn, J. Théau, and P. Ménard, “ROBUST SPARSE MATCHING AND

MOTION ESTIMATION USING GENETIC ALGORITHMS,” Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci., vol. XL-3/W2, pp. 197–204, Mar. 2015, doi:

10.5194/isprsarchives-XL-3-W2-197-2015.

[50] Adarsh Sehgal, Ashutosh Singandhupe, Hung Manh La, Alireza Tavakkoli, Sushil J. Louis,

“Lidar-Monocular Visual Odometry with Genetic Algorithm for Parameter Optimization,”

Adv. Vis. Comput. Springer Int. Publ., vol. 11845, pp. 358–370, 2019, doi:

10.48550/arXiv.1903.02046.

[51] Y. K. Yu, K. H. Wong, and M. M. Y. Chang, “Pose Estimation for Augmented Reality

Applications Using Genetic Algorithm,” IEEE Trans. Syst. Man Cybern. Part B Cybern.,

vol. 35, no. 6, pp. 1295–1301, Dec. 2005, doi: 10.1109/TSMCB.2005.850164.

[52] C.-F. Chao, M.-H. Horng, and Y.-C. Chen, “Motion Estimation Using the Firefly

Algorithm in Ultrasonic Image Sequence of Soft Tissue,” Comput. Math. Methods Med.,

vol. 2015, pp. 1–8, 2015, doi: 10.1155/2015/343217.

[53] Y. K. Baik, J. Kwon, H. S. Lee, and K. M. Lee, “Geometric particle swarm optimization for

robust visual ego-motion estimation via particle filtering,” Image Vis. Comput., vol. 31, no.

8, Art. no. 8, Aug. 2013, doi: 10.1016/j.imavis.2013.04.004.

[54] Aleksander Kostusiak and Piotr Skrzypczyński, “On the Efficiency of Population-Based

Optimization in Finding Best Parameters for RGB-D Visual Odometry,” J. Autom. Mob.

Robot. Intell. Syst., vol. 11, no. 2, Art. no. 2, Jul. 2019, doi: 10.14313/JAMRIS/2-2019/13.

105

[55] H.-C. Lee, S.-K. Park, J.-S. Choi, and B.-H. Lee, “PSO-FastSLAM: An improved

FastSLAM framework using particle swarm optimization,” in 2009 IEEE International

Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, Oct. 2009, pp.

2763–2768. doi: 10.1109/ICSMC.2009.5346572.

[56] H. S. Lee and K. M. Lee, “Multiswarm Particle Filter for vision based SLAM,” in 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO,

USA, Oct. 2009, pp. 924–929. doi: 10.1109/IROS.2009.5354144.

[57] I. A. Sulistijono, N. Kubota, Dept. of Mechanical Engineering, Graduate School of

Engineering, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065,

Japan, Electronics Eng. Polytechnic Institute of Surabaya - ITS (EEPIS-ITS), Kampus ITS

Sukolilo, Surabaya 60111, Indonesia, Dept. of System Design, Tokyo Metropolitan

University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan, and SORST, Japan Science and

Technology Agency (JST), “Human Head Tracking Based on Particle Swarm Optimization

and Genetic Algorithm,” J. Adv. Comput. Intell. Intell. Inform., vol. 11, no. 6, pp. 681–687,

Jul. 2007, doi: 10.20965/jaciii.2007.p0681.

[58] Xiaoqin Zhang, Weiming Hu, S. Maybank, Xi Li, and Mingliang Zhu, “Sequential particle

swarm optimization for visual tracking,” in 2008 IEEE Conference on Computer Vision and

Pattern Recognition, Anchorage, AK, USA, Jun. 2008, pp. 1–8. doi:

10.1109/CVPR.2008.4587512.

[59] Christian Kerl, “Odometry from RGB-D Cameras for Autonomous Quadrocopters,”

Master’s Thesis in Robotics, Cognition, Intelligence, FACULTY OF INFORMATICS OF

THE TECHNICAL, UNIVERSITY OF MUNICH, Munich, Germany, 2012.

[60] Y. Ahmine, G. Caron, F. Chouireb, and E. M. Mouaddib, “Continuous Scale-Space Direct

Image Alignment for Visual Odometry From RGB-D Images,” IEEE Robot. Autom. Lett.,

vol. 6, no. 2, Art. no. 2, Apr. 2021, doi: 10.1109/LRA.2021.3061309.

[61] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Illustrée,

Réimprimée. Cambridge University Press, 2004. [Online]. Available:

https://books.google.dz/books?id=MHrYnQEACAAJ

[62] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 22, no. 11, pp. 1330–1334, Nov. 2000, doi: 10.1109/34.888718.

[63] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” in Consumer Depth Cameras for

Computer Vision, A. Fossati, J. Gall, H. Grabner, X. Ren, and K. Konolige, Eds. London:

Springer London, 2013, pp. 3–25. doi: 10.1007/978-1-4471-4640-7_1.

106

[64] “Focal Length and Intrinsic Camera Parameters,” Tarnum Java SRL, Bucharest, Romania,

Computer vision. Accessed: Jan. 01, 2022. [Online]. Available:

https://www.baeldung.com/cs/focal-length-intrinsic-camera-parameters

[65] J. L. B. Claraco, “A tutorial on SE(3) transformation parameterizations and on-manifold

optimization,” ETS Computer Engineering - University of Malaga, Systems and

Automation Engineer 012010, Jul. 2022. [Online]. Available:

https://w3.ual.es/personal/jlblanco/

[66] A. Sarthak, “Lie Algebra to Lie Group Mappin.html,” math.stackexchange, Jun. 27, 2015.

https://math.stackexchange.com/questions/1312314/lie-algebra-to-lie-group-mapping

[67] Y. Ma, S. Soatto, J. Košecká, and S. S. Sastry, An Invitation to 3-D Vision, vol. 26. New

York, NY: Springer New York, 2004. doi: 10.1007/978-0-387-21779-6.

[68] H. Strasdat, J. M. M. Montiel, and A. Davison, “Scale Drift-Aware Large Scale Monocular

SLAM,” presented at the Robotics: Science and Systems 2010, Jun. 2010. doi:

10.15607/RSS.2010.VI.010.

[69] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid

methods in image processing,” Perceptual Science Group, Department of Brain and

Cognitive Sciences, 77 Massachusetts Ave MIT, 46-4115 Cambridge, MA 02139, 1984.

[Online]. Available: http://persci.mit.edu/publications

[70] E. N. Eriksen, “Monocular Visual Odometry for Underwater Navigation,” Master thesis,

Cybernetics and Robotics, Norwegian University of Science and Technology, Trondheim,

Norvège, 2020. Accessed: Jan. 05, 2022. [Online]. Available:

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2656718

[71] Jamal TOUTOUH, “Natural Computing for Vehicular Networks,” UNIVERSIDAD DE

MÁLAGA, Avda. Cervantes, n.o 2 Málaga, España, 2015. [Online]. Available:

http://hdl.handle.net/10630/13432

[72] S. Ruder, “An overview of gradient descent optimization algorithms.” arXiv, 2016. doi:

10.48550/ARXIV.1609.04747.

[73] I. STANIMIROVIC, ADVANCES IN OPTIMIZATION AND LINEAR PROGRAMMING.

S.l.: APPLE ACADEMIC PRESS, 2024.

[74] Rabia Khan, Suriya Gharib, Syeda Roshana Ali, and Memoona khanam, “System Of Linear

Equations , Guassian Elimination,” Glob. J. Comput. Sci. Technol., vol. 15, no. C5, pp. 23–

26, Mar. 2015.

107

[75] V. Kumar and S. M. Yadav, “A state-of-the-Art review of heuristic and metaheuristic

optimization techniques for the management of water resources,” Water Supply, vol. 22, no.

4, pp. 3702–3728, Apr. 2022, doi: 10.2166/ws.2022.010.

[76] É. D. Taillard, Design of Heuristic Algorithms for Hard Optimization: With Python Codes

for the Travelling Salesman Problem. Cham: Springer International Publishing, 2023. doi:

10.1007/978-3-031-13714-3.

[77] R. Jovanovic, A. Bousselham, and S. Voß, “A heuristic method for solving the problem of

partitioning graphs with supply and demand,” Ann. Oper. Res., vol. 235, no. 1, pp. 371–

393, Dec. 2015, doi: 10.1007/s10479-015-1930-5.

[78] Fred Glover and Gary A. Kochenberger, HANDBOOK OF METAHEURISTICS. NEW

YORK, BOSTON, DORDRECHT, LONDON, MOSCOW: Kluwer Academic Publishers,

2003.

[79] M. Gendreau and J.-Y. Potvin, Eds., Handbook of Metaheuristics, vol. 272. Cham: Springer

International Publishing, 2019. doi: 10.1007/978-3-319-91086-4.

[80] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and

conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, Sep. 2003, doi:

10.1145/937503.937505.

[81] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”

Am. Assoc. Adv. Sci., vol. 220, no. 4598, pp. 671–680, May 1983.

[82] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial

Systems. Oxford University Press, 1999. doi: 10.1093/oso/9780195131581.001.0001.

[83] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95.

Proceedings of the Sixth International Symposium on Micro Machine and Human Science,

Nagoya, Japan, 1995, pp. 39–43. doi: 10.1109/MHS.1995.494215.

[84] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. The MIT Press, 1992. doi:

10.7551/mitpress/1090.001.0001.

[85] L. N. De Castro, Fundamentals of Natural Computing: Basic Concepts, Algorithms, and

Applications, 0 ed. Chapman and Hall/CRC, 2006. doi: 10.1201/9781420011449.

[86] D. E. Goldberg and D. E. Goldberg, Genetic algorithms in search, optimization, and

machine learning, 30. print. Boston: Addison-Wesley, 2012.

[87] Å. Björck, Numerical Methods for Least Squares Problems. Society for Industrial and

Applied Mathematics, 1996. doi: 10.1137/1.9781611971484.

108

[88] J. O. Ogundare, Understanding Least Squares Estimation and Geomatics Data Analysis, 1st

ed. Wiley, 2018. doi: 10.1002/9781119501459.

[89] J. Zhu, “Image Gradient-based Joint Direct Visual Odometry for Stereo Camera,” in

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

Melbourne, Australia, Aug. 2017, pp. 4558–4564. doi: 10.24963/ijcai.2017/636.

[90] A. Fraser and D. G. Burnell, Computer models in genetics. New York: McGraw-Hill, 1970.

[91] E. Talbi, Metaheuristics: From Design to Implementation, 1st ed. Wiley, 2009. doi:

10.1002/9780470496916.

[92] Walchand College of Engineering, U. A.J., S. P.D., and Government College of

Engineering, Karad, “CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A

REVIEW,” ICTACT J. Soft Comput., vol. 06, no. 01, pp. 1083–1092, Oct. 2015, doi:

10.21917/ijsc.2015.0150.

[93] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An overview,” Swarm

Intell., vol. 1, no. 1, pp. 33–57, Oct. 2007, doi: 10.1007/s11721-007-0002-0.

[94] Gregory G. Slabaugh, “Computing Euler angles from a rotation matrix,” Queen Mary

University, London, UK, 1999. [Online]. Available:

https://eecs.qmul.ac.uk/~gslabaugh/publications/euler.pdf

[95] R. Subbarao and P. Meer, “Nonlinear Mean Shift over Riemannian Manifolds,” Int. J.

Comput. Vis., vol. 84, no. 1, pp. 1–20, Aug. 2009, doi: 10.1007/s11263-008-0195-8.

[96] S. Gwak, Junggon Kim, and F. C. Park, “Numerical optimization on the euclidean group

with applications to camera calibration,” IEEE Trans. Robot. Autom., vol. 19, no. 1, pp. 65–

74, Feb. 2003, doi: 10.1109/TRA.2002.807530.

[97] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a

multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73,

Feb. 2002, doi: 10.1109/4235.985692.

[98] X.-S. Yang, “Firefly Algorithms for Multimodal Optimization,” no. arXiv:1003.1466.

arXiv, Mar. 07, 2010. doi: 10.48550/arXiv.1003.1466.

[99] X.-S. Yang, Nature-inspired optimization algorithms, First edition. Amsterdam ; Boston:

Elsevier, 2014. [Online]. Available:

https://www.sciencedirect.com/book/9780124167438/nature-inspired-optimization-

algorithms

[100] W. Chen et al., “An Overview on Visual SLAM: From Tradition to Semantic,” Remote

Sens., vol. 14, no. 13, Art. no. 13, Jun. 2022, doi: 10.3390/rs14133010.

109

[101] D. Prokhorov, D. Zhukov, O. Barinova, K. Anton, and A. Vorontsova, “Measuring

robustness of Visual SLAM,” Tokyo, Japan, May 2019, pp. 1–6. doi:

10.23919/MVA.2019.8758020.

[102] J. K. Aggarwal and Q. Cai, “Human Motion Analysis: A Review,” Comput. Vis. Image

Underst., vol. 73, no. 3, pp. 428–440, Mar. 1999, doi: 10.1006/cviu.1998.0744.

[103] C.-S. Chua, H. Guan, and Y.-K. Ho, “Model-based 3D hand posture estimation from a

single 2D image,” Image Vis. Comput., vol. 20, no. 3, pp. 191–202, Mar. 2002, doi:

10.1016/S0262-8856(01)00094-4.

[104] D. Tao, L. Jin, Z. Yang, and X. Li, “Rank Preserving Sparse Learning for Kinect Based

Scene Classification,” IEEE Trans. Cybern., vol. 43, no. 5, pp. 1406–1417, Oct. 2013, doi:

10.1109/TCYB.2013.2264285.

[105] D. Tao, J. Cheng, X. Lin, and J. Yu, “Local structure preserving discriminative

projections for RGB-D sensor-based scene classification,” Inf. Sci., vol. 320, pp. 383–394,

Nov. 2015, doi: 10.1016/j.ins.2015.03.031.

[106] Jungong Han, Ling Shao, Dong Xu, and J. Shotton, “Enhanced Computer Vision With

Microsoft Kinect Sensor: A Review,” IEEE Trans. Cybern., vol. 43, no. 5, pp. 1318–1334,

Oct. 2013, doi: 10.1109/TCYB.2013.2265378.

[107] Z. Cai, J. Han, L. Liu, and L. Shao, “RGB-D datasets using microsoft kinect or similar

sensors: a survey,” Multimed. Tools Appl., vol. 76, no. 3, pp. 4313–4355, Feb. 2017, doi:

10.1007/s11042-016-3374-6.

[108] G. Hu, S. Huang, L. Zhao, A. Alempijevic, and G. Dissanayake, “A robust RGB-D

SLAM algorithm,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Vilamoura-Algarve, Portugal, Oct. 2012, pp. 1714–1719. doi:

10.1109/IROS.2012.6386103.

[109] T. Lee, S. Lim, S. Lee, S. An, and S. Oh, “Indoor mapping using planes extracted from

noisy RGB-D sensors,” in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Vilamoura-Algarve, Portugal, Oct. 2012, pp. 1727–1733. doi:

10.1109/IROS.2012.6385909.

[110] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based 3D tracking of hand

articulations using Kinect,” in Procedings of the British Machine Vision Conference 2011,

Dundee, 2011, p. 101.1-101.11. doi: 10.5244/C.25.101.

[111] L. Bo, X. Ren, and D. Fox, “Unsupervised Feature Learning for RGB-D Based Object

Recognition,” in Experimental Robotics, vol. 88, J. P. Desai, G. Dudek, O. Khatib, and V.

110

Kumar, Eds. Heidelberg: Springer International Publishing, 2013, pp. 387–402. doi:

10.1007/978-3-319-00065-7_27.

[112] L. Chen, H. Wei, and J. Ferryman, “A survey of human motion analysis using depth

imagery,” Pattern Recognit. Lett., vol. 34, no. 15, pp. 1995–2006, Nov. 2013, doi:

10.1016/j.patrec.2013.02.006.

[113] J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics, vol. 3,

no. 2, p. 128, Jun. 2011, doi: 10.1364/AOP.3.000128.

[114] Lionel Heng, “camodocal.” Accessed: Jan. 01, 2023. [Online]. Available:

https://github.com/hengli/camodocal

[115] L. Heng, Bo Li, and M. Pollefeys, “CamOdoCal: Automatic intrinsic and extrinsic

calibration of a rig with multiple generic cameras and odometry,” in 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Tokyo, Nov. 2013, pp. 1793–

1800. doi: 10.1109/IROS.2013.6696592.

[116] G. R. Bradski and A. Kaehler, Learning OpenCV: computer vision with the OpenCV

library, 1. ed., [Nachdr.]. Beijing: O’Reilly, 2011.

[117] Christian Kühling, “Fisheye Camera System Calibration for Automotive Applications,”

Masterarbeit am Institut für Informatik der Freien Universität Berlin, Dahlem Center for

Machine Learning and Robotics, Berlin, Germany, 2017. [Online]. Available:

https://www.mi.fu-berlin.de/inf/groups/ag-ki/Theses/Completed-theses/Master_Diploma-

theses/2017/Kuehling/Master-Kuehling.pdf

[118] J.-Y. Bouguet, “Camera Calibration Toolbox for Matlab.” [object Object], May 04, 2022.

doi: 10.22002/D1.20164.

[119] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A Flexible Technique for Accurate

Omnidirectional Camera Calibration and Structure from Motion,” in Fourth IEEE

International Conference on Computer Vision Systems (ICVS’06), New York, NY, USA,

2006, pp. 45–45. doi: 10.1109/ICVS.2006.3.

[120] S. Djema, Z. A. Benselama, R. Hedjar, and A. Krabi, “Dense Visual Odometry Using

Genetic Algorithm,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 3, pp. 611–619, Jul. 2023,

doi: 10.48550/arXiv.2311.06149.

[121] Slimane Djema, Zoubir Abdeslem Benselama, Ramdane Hedjar, and Abdellah krabi,

“Firefly Algorithm Based Visual Odometry,” University of 20 August 1955 Skikda,

Algeria, May 2023.

