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Abstract 

 

The goal of this thesis is to accurately estimate the motion of a camera embedded in a robot or 

a moving object in a static scene using RGB-D images. These images can be provided by a stereo 

camera or by using a color digital camera as well as one that provides the depth of the scene. 

Therefore, RGB-D images are the only information acquired by the system from the environment. 

Thus, the movement of the system is estimated using different consecutive images. The unknown 

camera motion can be determined by minimizing the intensity error between every two 

consecutive images. Hence, the challenge of motion estimation is transformed into a non-linear 

least squares optimization problem, with robot motion being the unknown solution. The solution 

of such problems typically involves iterative approaches. Exact methods use the linearization of 

the least square equation to resolve this problem. Alternatively, we can use metaheuristic 

optimization methods to solve this non-linear equation. Note that the optimal solution will be used 

to estimate the position of a mobile robot. To evaluate the visual odometry methods, both exact 

and metaheuristic methods, we apply the root mean square error to an extensive set of images. 

 

Key words: RGB-D images, static scene, stereo camera, metaheuristic method, visual 

odometry. 
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 ملخص

 

بدقة في مشهد  المتحرك جسم أو روبوتالهدف من هذه الأطروحة هو تقدير حركة الكاميرا المدمجة في 

بواسطة كاميرا استريو أو باستخدام كاميرا رقمية  هاصور يمكن توفيرهذه ال. RGB-D باستعمال صور ثابت

مات الوحيدة التي يحصل هي المعلو RGB-Dتوفر عمق المشهد. حيث صور  كاميرا إلىملونة بالإضافة 

مختلفة. يمكن تحديد حركة متتابعة باستخدام صور الكاميرا . وبالتالي، يتم تقدير حركة المحيط عليها النظام من

تحدي  تحويل يتم. ومن ثم، متتابعتين صورتينكل طريق تقليل خطأ الكثافة بين الكاميرا، غير المعروفة، عن 

. المجهولحيث تكون حركة الروبوت هي الحل  ل المربع غير الخطي،تقدير الحركة إلى مشكلة تحسين تقلي

يتضمن حل مثل هذه المشكلات أساليب تكرارية. تستخدم الطرق الدقيقة الخطية لمعادلة تقليل المربع عادةً ما 

لة لحل هذه المعاد الميتايورستيةوبدلاً من ذلك، يمكننا استخدام طرق التحسين المشكلة. غير الخطي لحل هذه 

. يلُاحظ أن الحل الأمثل سيسُتخدم لتقدير موضع روبوت متحرك. لتقييم طرق قياس المسافة غير الخطية

الميتايورستية، نطبق متوسط جذر مربع الخطأ على مجموعة واسعة من و الدقيقة الطرق من كلالبصرية، 

 الصور.

 

الميتايورستية، القياس البصري ، مشهد ثابت، كاميرا ستيريو، طريقة  RGB-Dصور: المفتاحيةالكلمات 

 .للمسافة

 

 

 

 

 

 

 

 

 

 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Acknowledgments 

 

First and foremost, I would like to thank Allah ‘Âzza wa Jal’ for giving me the courage, patience, 

health, and will to finish this work. 

This thesis is a result of years of hard work, and it is with the help of people who did not give 

up. During these years, I learned a lot in my field and that is what led me to make contributions and 

continue research n order to improve my knowledge. 

I am very grateful for the support of my thesis directors, who have helped me through the 

PhD. I would like to express my deep gratitude to Mr. Zoubir Abdeslem Benselama, professor at 

the University of BLIDA 1 and director of this thesis, and without your continuous support and 

encouragement, I would probably not have finished this modest work. I would also like to thank Mr. 

Ramdane Hedjar, Professor at King Saud University and co-director of this thesis. I have benefited 

from our many interesting discussions regarding this work, and I have really appreciated your help 

in wrapping my head around some of the more technical aspects and for the support you were kind 

enough to give me throughout my work and, above all, your confidence in me as well as your 

incessant encouragement. 

My sincere thanks also go to the members of the jury: Pr. YKHLEF Farid, president of the 

jury, Pr. DJENDI  Mohamed, and Pr. HOCINE  Abdelfettah, examiners of this thesis,  for 

agreeing to evaluate this work. 

I would like my friends, my siblings, and members of LATSI Laboratory to find here the expression 

of my most sincere and deep thanks in recognition of their support, sacrifices and encouragement. 

 



6 
 

 

 

Dedication 

 

 

I dedicate this modest work as a testimony of my great respect to my dearest. I would like to 

thank all of them, particularly and above all, MY PARENTS, for all their sacrifices, their support, 

and their prayers all along my studies, and I am happy to have been able to read joy and pride in 

their eyes. May Allah preserve your health and grant you a long life. 

 

To my brothers, sisters, wife, sons, all my grand family DJEMA, friends, and classmates who 

shared their words of advice and encouragement to finish this doctorate study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Table of contents 

 

Abstract…………………………………………………………………………………. 2 

Acknowledgments.…………………………………………………………………….5 

Dedication……………………………………………………………………………….6 

Table of contents……………………………………………………………………… 7 

List of abbreviations ……………………………………………….………………… 7 

List of figures………………………………….……………………….………………12 

List of tables……………………………………….………………...……………...….13 

 

General introduction……………………………….…………………………...…..15 

 

I. Related work 

I.1. Introduction…………………………………………………….……...…....………. 18 

I.2. Sparse Visual Odometry ………………………………………...…………………. 18 

I.3. Dense Visual Odometry …………………………………...….……………………. 19 

I.4. Metaheuristic method…………………………………………….…………………. 21 

I.5. RGB-D Benchmark……………………………...……………….…………………. 22 

I.6. Conclusion……………………………………………….…….……………………. 23 

 

II. Visual odometry method 

II.1. Introduction ……………………………………………………..…………………. 25 

II.2. System modeling……………………………………………………...……………. 25 

II.3. Construct the Warp function …………………………………………….……….... 26                                                                                                                           

II.4. Pyramid Multi-resolution………………………………………………..……....…. 32 

II.5. Conclusion ……………………………………………………………………...…. 34 

 

 

 

 

 



8 
 

III. Optimization Methods 

III.1. Introduction ………………………………………………………………………. 36 

III.2. Overview optimization methods...……………………………………………..…. 36 

III.2.1. Exact method ……………………...…………………………………………..... 37 

III.2.2. Approximate methods…………………………………………………..………. 38 

 

III.3. Energy-Based using Gauss-Newton method …………………………......………. 40 

III.3.1. linearization of the least squares method ………………………………………. 41 

III.3.2. Calculation of the Jacobian matrix …………………………………………..…. 44 

 

III.4. Genetic Algorithm for motion estimation …………………………………...…… 46 

III.4.1. Representation ………..……………………………………………...…………. 46 

III.4.2. Population initialization………………………………………………….…..…. 46 

III.4.3. Objective function ………………………...………………………………...…. 46 

III.4.4. Selection strategy ……………………………………….…………………...…. 47 

III.4.5. Reproduction strategy …………………..…………………………………...…. 48 

III.4.6. Replacement strategy ……………………………...………………………...…. 49 

III.4.7. Stopping criteria …………………………………...………………………...…. 49 

III.4.8. Overall algorithm ……………………………….…………………………..….. 50 

 

III.5. Geometric particle swarm optimization for visual ego-motion Estimation ...…….. 52 

III.5.1. PSO on a vector space ………………………………………………..……..….. 53 

III.5.2. The special Euclidean group SE(3) …………………………...……………..…. 54 

III.5.3. PSO on SE(3) ………………………………………….……………………..…. 55 

III.5.4. PSO coefficients used for convergence ….…..…………………………………. 60 

 

III.6. Firefly algorithm for motion estimation ………………….…………..………..…. 61 

III.6.1. Material and methods ………………………………….……………...….....….. 61 

III.6.2. The proposed motion estimation algorithm .…………….…………………...…. 62 

III.6.3. Firefly algorithm on SE(3) ………………………..……….………………...….. 63 

III.6.4. Overall algorithm…………………………………………..……….………...…. 65 

III.7. Conclusion……………………………………………………….……………..…. 67 

 



9 
 

IV. Performance evaluation metrics 

IV.1. Introduction ………………………………………………….…………….…..…. 69 

IV.2. Real-time graphical user interfaces ……………………..…….………..………… 69 

IV.3. Relative pose error ………………………………………………………….....…. 70 

IV.4. Root mean square error ………………………….…………………………….…. 71 

IV.5. Conclusion ……….…………………………………….……………………....…. 72 

V. Experimental setup 

V.1.    Introduction ………………………………………….……………………….…. 74 

V.2.    Dataset and camera …………………..….………………………………………. 74 

V.2.1. Kinect camera ……………………………..…………….…………………..…... 75 

V.2.2. RGB-D image …………………………………………...……………………..... 78 

V.2.3. Data acquisition ………………………………………….…………………..….. 80 

V.3.    Experimental and discussion ……….…………………….…………………..…. 82 

V.4.    Conclusion …………………………………………..………………………..…. 91 

 

Conclusion and future work …………………………….…………………....…. 93 

 

Annexes …………………………………………………..………………………..…. 95 

References …...……………………………………………..………………..…..…. 100 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

List of abbreviations 

 

2D Two Dimension 

3D Three Dimension 

3-DOF Tree Degree of Freedom  

ABC Artificial Bee Colony 

AR Augmented Reality 

Cumsum The cumulative sum.  

det(R) determinant of matrix R 

DMS Down Mean Sampling 

DSR Down-Sampled Resolution  

DTAM Dense Tracking and Mapping  

EB Energy-Based method 

FA Firefly Algorithm 

FAST Features from Accelerated Segment Test 

fr1_xyz   dataset freiburg 1 in xyz direction   

fr2_desk dataset freiburg 2 desk   

GA Genetic Algorithm  

Gbest Global best solution 

GPU Graphics Processing Unit 

GUI graphical user interfaces 

ICP Iterative Closest Points  

IFA Iterative Firefly Algorithm 

IMU Inertial Measurement Unit 

IR Infrared  

LIDAR LIght Detection And Ranging sensor 

LIMO LIdar-Monocular visual Odometry 

MER Mars Exploration Rovers  

NASA National Aeronautics and Space Administration 

Pbest Personal best solution 

PNG Portable Network Graphics 

POSIX Portable Operating System Interface for uniX 

probci The cumulative probability sum of the particle index i 



11 
 

probi The select probability of the particle index i 

PSO Particle Swarm Optimization 

PTAM the Parallel Tracking and Mapping 

quat2dcm quaternion to direction cosine matrix 

RGB-D Red Green Blue - Depth 

RMSE Root Mean Square Error 

ROS Robot Operating System  

RPE Relative pose error  

RPEI Relative pose error between current and precedent image 

SE(3) Special Euclidean group in three dimensions 

se(3) Lie algebra of Special Euclidean group in three dimensions 

SIFT Scale-Invariant Feature Transform 

SLAM Simultaneous Localization And Mapping  

SO(3) special orthogonal group 

so(3) Lie algebra of Special Orthogonal group 

SURF Speeded-Up Robust Features 

TGZ Tape Archive compressed using Gzip 

UNIX Uniplexed Networked Interface eXecution 

UTC Coordinated Universal Time  

VectError Vector of error 

VGA Visual graphics array 

VR Virtual Reality 

 

 

 

 

 

 

 

 

 

 



12 
 

List of figures 

II.1: The warp process consists of transforming each pixel in the frame It+1 into                   

another pixel in the warped frame It+1(ω(ξ,pi)). ……………………………….......…. 27 

II.2: Pinhole camera model ………………………………………………..………….....…. 27 

II.3: Parameters camera calibration ………………………….…………………….…..….... 29 

II.4: Representation of an image pyramid with 5 levels …………….……………………... 33 

II.5: Iterative image alignment process using a multi-resolution image pyramid ……....….. 33 

III.1: General classification of the optimization techniques …………………………....….. 37 

III.2: Flowchart of the motion estimation using the energy-based method……………...…. 43 

III.3: strategy Tournament selection consists of selecting a group of                                                                   

the best particles or individuals randomly from the population, and then                              

the best solution from the picked individuals is selected. …………………………..... 47 

III.4: Strategies of roulette wheel selection include choosing a single individual                                       

for each spin. …………………………………………….………....……………...…. 48 

III.5: Flowchart of the motion estimation using the genetic algorithm............................…. 51 

III.6: SE and the corresponding Lie algebra as tangent space at the identity…...………….. 54 

III.7: Graphical representation of geometric PSO on a general Riemannian manifold.….... 56 

III.8: Flowchart of the motion estimation using the PSO method...……………………...... 59 

III.9: Flowchart of the motion estimation using the Firefly algorithm……………….....…. 66 

IV.1: The real-time graphical user interfaces view code execution in MATLAB……....…. 69 

V.1: Hardware Kinect sensor, and two captured frames using RGB camera                                                

and depth camera…………………………………………….……….......….....….…. 76 

V.2: Measurement of Kinect camera depth……….……………….………........…....….…. 76 

V.3: Depth image from “fr2_desk” sequence………...…………….……….......…........…. 79 

V.4: RGB image from “fr2_desk” sequence……….……………….………........…..….…. 80 



13 
 

V.5: RGB image from the “fr1/ xyz” sequence……………………….……....……...….…. 81 

V.6: Camera trajectory error of GA, PSO, and classic method using                                                

a part of fr1_xyz dataset……………………………....………….……...….......….…. 83 

V.7: True camera trajectory and classic method using a part of fr1_xyz dataset….…….…. 83 

V.8: True camera trajectory with GA method using a part of fr1_xyz dataset…...……..…. 84 

V.9: True camera trajectory with PSO method using a part of fr1_xyz dataset…..……..…. 84 

V.10:  Camera trajectory error of GA, PSO, and Classic method using                                           

a part of fr2_desk dataset……………………….……………….……...…...……..…. 85 

V.11: True camera trajectory with GA, PSO, and Classic method using                                         

a part of fr2_desk dataset……………………….……………………....……....….…. 86 

V.12: Camera trajectory error of FA, PSO, and the Classic method (BE) using                               

a part of fr2_desk dataset.……………………………………….……...……...….…. 87 

V.13: True camera trajectory with FA, PSO, the classic method trajectory using                           

a part of the fr2_desk dataset………………………………….……...……....….…. 88 

V.14: The true trajectory and estimated trajectory using FA on 3D scene…..............….…. 89 

V.15: The true trajectory and estimated trajectory using the classic method                                                 

on a 3D scene…………….……………………………...……….……...……...….…. 89 

V.16: The true trajectory and estimated trajectory using PSO on a 3D scene……...….…... 90 

V.17: Camera trajectory error of FA, PSO, and the Classic method using                                                            

a part of the fr1_xyz dataset…………………………………….………...…...….…. 91 

 

List of tables 

V.1: Root mean square error (RMSE) of drift in meters per second for different                         

methods for ground truth…………………..…………………….……...……....….…. 86 

V.2: Root mean square error (RMSE) of drift in meters per second of different                                                           

methods compared with ground truth…………..……………….……...……....….…. 88 

 



14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

General introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

General introduction 

 

In literature, odometry involves exploiting data provided by different sensors, such as speed 

and orientation sensors, to estimate the motion of a robot, drone, or car. However, this approach 

has its limitations, as the wheels may experience slippage on slick surfaces or remain stationary 

while spinning in sandy terrain, and flying drones in bad weather conditions, such as rain and 

strong winds makes it difficult for them to gauge their speed and direction of movement, leading 

to inaccuracies in movement calculations. Over time, these errors can accumulate, resulting in a 

growing disparity between the ground truth and the estimated motion as the path length increases. 

The process of calculating motion using consecutive frames from a moving camera is known 

as visual odometry, and various algorithms perform this process. It improves navigation accuracy 

for mobile entities employing various forms of locomotion, including robots with legs or wheels 

operating on surfaces with different difficulties, such as sticky or sandy terrain. This process 

enhances the overall performance of the robots and drones in executing their designated tasks. 

Over the past decade, substantial advancements in data processing technology and computer 

science, driven by the growing demand in the fields of autonomous driving, robotics, drones, and 

the Internet of Things, have significantly enhanced visual odometry. The Internet of Things has 

become one of the most important technologies, and locating objects is one of its six main 

objectives. 

Various techniques, such as sparse and dense methods, exist for visual odometry. The sparse 

technique [1] extracts features from an image and uses them to estimate motion. Conversely, dense 

techniques make use of every pixel in the image for navigation. 

Furthermore, various optimization strategies can be identified, including both exact and 

metaheuristic techniques. Exact methods employ traditional mathematical rules to calculate the 

optimal motion. On the other hand, metaheuristic methods are employed to compute an 

approximate motion, which has proven acceptable for practical applications. 

Metaheuristics can be used in a wide range of artificial intelligence domains, including visual 

odometry, due to their effectiveness in addressing both routine and complex challenges. It is an 

efficient technique for enhancing the solution to make it optimal by modifying the initial 

parameters, and it is considered one of the optimization methods. 

In these experiments, we made use of the dense visual odometry method, which utilizes the 

complete RGB-D image that a Microsoft Kinect sensor [2] provides. RGB-D cameras are digital 

devices that furnish color information about the scene for each pixel in two images: red, green, 
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and blue, as an RGB image, as well as a depth (D) frame. The website [3] provides RGB-D images 

along with associated information, such as the ground truth path and the calibration of the camera 

used.  

The first chapter focuses on the related work of this thesis because this field is rich in research 

and ideas, as much as it is important in the fields of navigation [4], transportation, and robotics, 

which have become the backbone of the economy and a tool for achieving prosperity. A brief 

reference to previous works is important to gain a comprehensive overview of this field. We 

categorized the various methods of visual odometry into sparse and dense methods, and some 

works in this field use the metaheuristics method; moreover, we recalled some common work that 

is widespread for evaluating these optimization methods. 

To solve a real problem in our daily lives by exact or metaheuristic methods, we need to develop 

an objective function in the form of a mathematical equation; this is called the modeling of the 

system. This modeling is mentioned in Chapter II, where we explain the components of the 

objective function as described in [5]. Here, we will describe how to use the images captured by a 

moving camera to deduce the motion using a mathematical model that we can solve by various 

techniques. 

An overview of the different types of optimization methods is mentioned at the beginning of 

Chapter III. Then, we describe four optimization methods that are most commonly used; one is a 

classic method called energy-based as mentioned in [6], and the others are metaheuristic methods 

that we have worked with and developed some of these methods in the field of visual odometry. 

The evaluation of optimization methods in visual ego-motion lies mainly in experimenting with 

them over the same sequence of images and under the same initial parameters, and then comparing 

the results in terms of their closeness to the true trajectory. For this purpose, we used the root mean 

square error [7], which represents the drift of the estimated trajectory from the real path in all parts 

of the experiment by a numerical value, and we provided our experiments with a platform to 

monitor the results in real-time, as described in Chapter IV. Additionally, we included 3D 

drawings on the same graph of the true and estimated trajectories. 

The dataset used in our experiments was downloaded from a website, and we will explain the 

type of dataset and the camera used to capture the images in Chapter V. Then we will explain the 

experiments conducted and discuss the results obtained, and we will end our thesis with a 

conclusion and perspectives for future work. 
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I. Related work 

I.1. Introduction 

Visual odometry, or visual ego-motion, computes the motion of the camera using images 

captured during movement. There are different techniques published for visual ego-motion. We 

will mention in this chapter some work related to our ideas; such as sparse and dense visual 

odometry, which uses the exact or metaheuristic methods, in addition to the previous methods 

published to evaluate these techniques. 

I.2. Sparse Visual Odometry 

Sparse visual odometry is a method employed for calculating the motion of a robot or any 

moving body that carries a camera. It relies solely on unique features identified from images by 

focusing on particular points of interest. Sparse visual odometry allows for more efficient 

computation, particularly in scenarios with limited computational resources, as mentioned in [1], 

[8], [9], and [10]. 

By comparing characteristics between two photos, the sparse visual odometry approach has 

been widely employed to manage a range of moving equipment, including autonomous ground 

vehicles in [11], [12], and recently quadcopters [13], [14], and [15].  

Engel [14] and Weiss [15] utilize the Parallel Tracking And Mapping (PTAM) system [16]. 

Huang [13] employs a comparable system but evaluates various alternatives for each component 

of the processing pipeline and selects the optimal one based on the balance between accuracy and 

runtime. All have in common that the visual odometry estimates are fused with measurements 

from the IMU mounted on the quadcopter. In a sparse visual odometry system, the typical 

trajectory is estimated like this: First, using detectors such as FAST [17] or Harris [18], feature 

points are retrieved from the newly acquired image. Subsequently, associations are built between 

the newly added features and those from the preceding frame. Comparing small regions 

surrounding the feature points will help achieve this. 

If there is little error between two patches, it is assumed that they match. Feature descriptors 

such as SIFT [19] or SURF [20] can be utilized in place of patches. These descriptors are vector 

representations that are computed from a feature point's surrounding pixels. While they provide 

enhanced robustness against mismatches relative to image patches, they are significantly more 

computationally expensive. Then, by reducing the reprojection error between each pair of matched 

feature points, the transformation between the two images is calculated. It is possible to guarantee 

precise feature association and raise the motion estimate's correctness by utilizing a variety of 

advanced strategies. Scaramuzza and Fraundorfer examine these points in [16], [17], and also 
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discuss matching strategies and feature extractors and descriptors for sparse visual odometry in 

addition to giving a thorough summary of visual odometry research over the previous few decades. 

In order to estimate the camera motion, knowledge of the depth of points is necessary. Otherwise, 

only a homography aligning the images can be estimated. When using a monocular camera, such 

as in PTAM, stereo initialization is required initially to provide depth for the first feature points. 

Subsequently, the depth of new points can be calculated through triangulation once the camera 

motion is estimated from points with known depth. However, the depth of the points can only be 

determined up to a scale factor, not in metric values. Engel et al. [14] and Weiss et al. concurrently 

estimated the unknown scale using the IMU readings and an extended Kalman filter. The difficulty 

is simplified when RGB-D cameras are used, as in [13], as the absolute depth is known.  

As a next step, the identified features and camera motion can be combined into a comprehensive 

map. By employing optimization methods, both the map and the camera's path can be refined to 

achieve more accurate position estimates and counteract drift over time. These methodologies are 

referred to as simultaneous localization and mapping (SLAM) [21]. 

Alternatively, instead of minimizing the error between images, we can minimize the geometric 

error between 3D surfaces using iterative closest point (ICP) algorithms. These algorithms have 

various variants [22]. However, they come with drawbacks such as the requirement for structured 

3D surfaces and the involvement of computationally expensive nearest neighbor searches to 

establish point correspondences. For small displacements, the projective lookup algorithm [23] 

can overcome this by finding correspondences in 2D depth maps. By representing 3D surfaces as 

2D depth maps, the correspondence for a point in one depth map can be found by applying rigid 

body motion and projecting it to 2D coordinates, simplifying the correspondence lookup by 

computing the memory address. 

To accelerate the process, Henry et al. [24] extracted features from the color images and then 

applied ICP to match these features with their corresponding 3D points computed from the depth 

map. 

Every RGB-D image was transformed into a surfel octree by Stuckler et al. [25], where each 

node represented a Gaussian distribution that modeled the color and point distribution. Next, 

feature descriptors for each octree node were calculated. Establishing point correspondences 

between features in two octrees and then applying ICP is how alignment is accomplished. 

I.3. Dense Visual Odometry  

Dense visual odometry methods, unlike sparse ones, utilize all the image data. They estimate 

camera motion by aligning consecutive images, and minimizing an error equation. 
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Comport et al. proposed one of the earliest dense visual odometry methods using stereo image 

pairs [8]. Steinbrucker et al. [26] and Tykkala et al. [27] have recently introduced similar dense 

methods employing data from RGB-D images. These approaches all aim to minimize the 

photometric difference between two consecutive frames, which can be viewed as an extension of 

the image alignment algorithm described by Lucas-Kanade [28]. Baker and Matthews [29] discuss 

some optimizations to the Lucas-Kanade algorithm in detail in their article. 

Most odometry techniques that accumulate motion estimates between successive images are 

susceptible to long-term drift [30]. Consequently, [31] and Dense Tracking and Mapping (DTAM) 

[32] construct a global environment model in parallel with camera tracking. The camera's motion 

is tracked by aligning the current image with synthesized views generated from the model, and 

each new frame is integrated into the model. DTAM employs a monocular camera and requires 

the model to determine the scene's three-dimensional structure [32]. Kinect Fusion [31] uses a 

variant of the ICP algorithm to align surfaces from an RGB-D camera to the model, while DTAM 

[32] employs a photometric error similar to that of Steinbrucker et al. These model-based methods 

reach real-time speed thanks to GPU general-purpose computing. A dense approach utilizes all 

pixels in the image for trajectory estimation, as demonstrated in [33]. The initial dense method, as 

mentioned in [34], [28], and [35], involves frame alignment and the reduction of geometric error. 

Following the discovery of the RGB-D image, this format has recently become widely used in 

visual odometry, as shown in [5], [36], [26], or [37], and [38]. In this thesis, we use dense visual 

odometry with RGB-D frames. 

Visual odometry is used in Virtual Reality (VR) and Augmented Reality (AR) applications to 

enhance spatial awareness [28]. It enables the accurate overlay of virtual objects onto the real-

world environment, creating a seamless and immersive experience. 

In addition, visual odometry aids in stabilizing and controlling the flight of drones by providing 

real-time information about their position and orientation [39]. This is crucial for tasks such as 

aerial photography, surveillance, and package delivery. 

 In manufacturing [4] and logistics [40], visual odometry is employed to track the movement of 

objects on conveyor belts or within warehouses. This facilitates automation processes and ensures 

efficient material handling. 

In modern warfare, unmanned systems rely on visual odometry to navigate complex terrains 

without GPS, which is essential in hostile environments or GPS-denied areas. Visual odometry 

can assist in real-time tracking and positioning, improving the accuracy of surveillance and 

reconnaissance missions and minimizing human risks. The popularity of small unmanned aircraft 
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systems (SUAS), developed using visual odometry as mentioned in [41] and [42], has exploded in 

recent years and has seen increasing use in both commercial and military sectors. 

Space rovers use visual odometry to navigate and explore extraterrestrial terrains, where GPS 

is unavailable, making it an indispensable technology for future space missions. The two Mars 

Exploration Rovers (MER) operated by NASA have successfully shown off their robotic visual 

odometry capabilities on a different planet, as stated in [43] and [44]. This gives every rover 

precise positional information, enabling it to recognize and adjust for unanticipated slippage 

during a drive independently. Since it has decreased the number of days needed to drive to 

intriguing locations, it has enhanced mission science return and allowed the rovers to drive more 

safely and effectively in highly sloped and sandy terrains. 

 Visual odometry is a fundamental component of SLAM systems, enabling devices to create 

maps [13] of unknown environments while simultaneously tracking their own position within 

those environments. This is valuable in applications ranging from robotics [45] to augmented 

reality (AR). 

It is used in medical robotics [46] to provide real-time feedback during surgical procedures. It 

helps in precisely tracking the movement of surgical instruments and maintaining accurate 

alignment with preoperative imaging. 

 

I.4. Metaheuristic method 

Numerous optimization techniques utilizing metaheuristic methods have been developed in the 

literature for motion estimation by vision issue employing sparse methods. A block matching 

approach for movement estimation based on the artificial bee colony (ABC) algorithm was 

proposed by Cuevas et al. [47]; this algorithm significantly minimizes the computation of search 

locations. Marco [48] introduced an optical flow estimation method that utilizes a genetic 

algorithm (GA). The technique segments the image into generic shape regions based solely on 

luminance and color information. Subsequently, for each region, a motion model is estimated using 

a GA. Additionally, Shahbazi et al. [49] used genetic algorithms and RANSAC to improve robust 

sparse matching method in movement estimation. 

The odometry estimation technique LIdar-Monocular visual Odometry (LIMO) combines a 

camera and Light Detection and Ranging sensor (LIDAR) dataset for visual localization. It tracks 

features from both the camera and LIDAR measurements to estimate motion using bundle 

adjustment based on robust key frames. Adarsh et al. argued in [50] that the utilization of the 

genetic algorithm to optimize parameters for LIMO aims to enhance its localization and motion 
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estimation performance. In addition, the genetic algorithm can find the rotation and translation of 

a device accurately when the 3D structure of the device is given. Yu and Wong described in their 

paper [51] a method to estimate the pose using the genetic algorithm of a real object. They showed 

that the proposed approach applies to visual odometry and augmented reality applications.  

The diagnosis of diseases often makes use of the ultrasound image sequence of the soft tissue. 

A novel algorithm for evaluating soft tissue motion has been created. The proposed iterative firefly 

algorithm (IFA) outlined in [52] selects a few candidate points to determine the optimal motion 

vector.  

However, dense methods use all pixels in the frame to estimate the motion. Although this 

method has a high computational cost, it produces very valuable results. If the amount of input 

information increases, the movement will be estimated with high accuracy. In [53] , Baik et al. 

presented a new particle filtering-based system for visual odometry that shows remarkable 

resilience to sudden camera movements. Additionally, by reorganizing the traditional vector space 

PSO method while taking the geometry of the special Euclidean group SE(3) into account, they 

were able to perform the suggested visual ego-motion estimation approach in real-time. 

Kostusiak and Piotr described a particle swarm optimization (PSO) method and an evolutionary 

algorithm variant in various robots as a means of finding the best parameters of a simple RGB-D 

visual odometry system as mentioned in [54].  

    PSO has already been used for several vision tasks, including visual SLAM [55], [56] and 

visual tracking [57], [58]. References [55] and [56] also exclusively address 3-DOF ego-motion 

estimation issues, meaning that the state space is limited to a 2-D plane. We address generic 6-

DOF ego-motion estimation issues, unlike references [55] and [56]. Our goal in this study is to 

solve visual odometry in the 6-DOF search space by using various optimization methods. 

I.5. RGB-D Benchmark  

The RGB-D benchmark created by Sturm et al. [7] offers a framework for evaluating algorithms 

that use RGB-D images, such as SLAM or visual odometry. It includes multiple consecutive RGB-

D images along with a dataset of ground truth camera motion information and camera calibration. 

This information is used to evaluate the different optimization methods. 

Furthermore, the RGB-D benchmark includes some tools that may be used to determine quality 

measures for an estimated motion in relation to the ground truth. The absolute trajectory error and 

the relative pose error are two examples of these measurements. The absolute trajectory error 
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evaluates the difference between the estimated and real endpoints and provides insight into the 

performance of the visual odometry method. On the other hand, the relative pose error measures 

the translational or rotational drift of the estimation relative to the ground truth over a specific 

temporal distance, such as drift per frame or per second, making it suitable for evaluating visual 

odometry approaches. For each metric, we can compute the Root Mean Square Error (RMSE), 

mean, median, standard deviation, minimum, and maximum values.  

However, a drawback of these diverse options is the absence of a standardized metric, leading 

to varying measurements among authors; some may measure the median drift per frame while 

others measure the RMSE drift per second. 

Utilizing the RGB-D benchmark for evaluation offers the benefit of enabling an objective 

comparison among various methods. The extensive array of datasets featuring diverse scene 

content guarantees robustness in the generalization of the evaluated approach. Additionally, it frees 

researchers from the laborious process of capturing real-world datasets with ground truth data. 

 

I.6. Conclusion 

In this section, we mentioned some related work associated with our project. Our work 

represents a continuation of previous research. Subsequently, we focus on optimization methods 

for dense visual odometry. 

Our research builds upon the findings of earlier studies in this field. Specifically, we delve into 

optimization techniques tailored for dense visual odometry. The significance of our work lies in 

its contribution to advancing the understanding and implementation of methods that enhance the 

accuracy and efficiency of visual odometry processes. This detailed examination serves as the 

foundation for our subsequent discussions and findings. 
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II. Visual odometry method 

 

II.1. Introduction 

In this part, we will briefly explain the development of the visual odometry system in a static 

scene, from reality to an abstract model expressed as a mathematical equation, which we call system 

modeling, as described in [28] and [59]. Only a sequence of images is received from the scene by 

a camera mounted on a moving device whose path of movement needs to be accurately tracked. 

The warping of an image is an important component in this equation, and this is related to the 

parameters of the camera that captures the images. If the camera moves quickly, it becomes difficult 

to determine its exact location, and this problem can be solved by using a multi-resolution pyramid, 

which we will discuss next. 

 

II.2. System modeling 

Visual odometry estimates the motion between two consecutive frames (It, It+1) that are taken by 

a camera fixed to the top of a moving robot. We will demonstrate how a mathematical equation has 

been created to represent this problem. 

An image r, named residual, is produced by subtracting the intensities of each pair of pixels at 

the same position from two consecutive gray images; the pixels’ intensity values of these pixels in 

these RGB images is calculated as: 

It=(IR+IG+IB)/3                                                                            II.1 

where IR, IG, and IB are the pixels’ color components, respectively, red, green, and blue. 

The pixels’ intensity in r is lower, resulting in a small error value. The intensity error E between 

two successive RGB frames of N pixels, as mentioned in [5], is represented by the following 

function: 

E(ξ)=
1

𝑁
 ∑  𝑁
𝑖= 1 |It+1(ω(ξ,pi))-It|²=

1

𝑁
∑  𝑁
𝑖=1 |ri(ξ)|²                           II.2 

Where: 

 N is the pixel number of the full image, when image resolution is (640,480); N=640×480. 

 pi  is the pixel at index i. 

 ξ ϵ ℝ 6 is the estimated motion represented in six degrees of freedom. 

 ω(ξ, pi) is the warping function of the next image captured at t+1. 

 It  is the image captured at time t. 

 It+1(ω(ξ,pi)) is the warping of the image It+1 and it consists of the migration of the pixels 

towards new positions in the image by the inverse of the assumed motion value. Thus, 

an image is created that is identical to the image taken at time t.  
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 ri(ξ) is the residual image, which is produced from the difference between the current 

image It and the warped image It+1(ω(ξ,pi)). 

The estimation of the camera motion is based on minimizing the average value of image residual 

intensity r, or the error value produced by equation II.2. In the ideal case, when this error is equal 

to zero, it implies that the assumed motion is equal to the motion in reality. However, in practice, 

this error is never null due to capture noise, variations in the visibility angles of objects during the 

motion, and other factors. 

This is why our goal is limited to minimizing the error in estimating the optimal motion vector 

by optimizing the following function: 

ξ=minξE(ξ)=minξ  
1

𝑁
∑  𝑁
𝑖=1 |ri (ξ)|².                                           II.3 

This function is solved by various optimization methods in this thesis. The warping function is 

considered the principal component for calculating the error Ei (ξ). 

II.3. Construct the Warp function 

Most of the pixels in the frame It+1 change their position using the warping equation ω(ξ, p) in 

order to create the warped frame It+1  (ω(ξ, p)) noted in equation II.2 . This frame would have been 

captured by a camera if the robot returned to the position where it originally captured the frame It, 

after moving in a direction inverse to the real motion ξ. Subsequently, we subtract this newly warped 

image from the original It, and the effectiveness of the proposed motion ξ is assessed by calculating 

the error using equation II.2. If the error is smaller and tends towards 0, then the corresponding 

movement ξ is closer to the real movement because the two images, It+1  (ω(ξ, p)) and It ,are almost 

identical. This operation of warping serves as a critical step in determining the optimal motion. 

The warp function is made up of the collection of transformations depicted in Figure II.1 as 

described in  [5], [6] and [60]. A pixel p of the frame It+1, which has the coordinates (u;v;d), is 

projected onto a 3D point M (X; Y; Z) by the transformation P-1, as mentioned in equations II.7 . 

After that, M is transformed from the landmark associated with It+1 to a 3D point M′ in coordinates          

(X'; Y'; Z' ) in the landmark attached to It+1(ω(ξ, pi)) by the transformation g (ξ) as shown in the 

following equation: 

PM ' = g (ξ)×PM .                                                                          II.4 

 

Finally, M′ is projected onto a pixel p′ in the frame It+1(ω(ξ,pi)) by the transformation P as 

mentioned in equations II.6. Thus, in the following, the function of the warp is formed as: 

 

                       ω(ξ,p)=P(g (ξ)P-1(p)).                                                                  II.5 
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Figure II.1: The warp process consists of transforming each pixel in the frame It+1 into another 

pixel in the warped frame It+1(ω(ξ, pi)). 

The transformations P and P -1, along with the rigid body motion g, are important components 

for constructing the warp function. In the following, we will demonstrate the formula for this 

transformation based on the camera model. After that, we will explain how to express the motion 

in the form of rigid body motion g.  

The camera model provides the transformation of points in the 3D scene to the 2D plane as pixels 

in the image; this process is accomplished with a camera [61]. This transformation P from 3D to 

2D plane is called projection and is represented by 

P: ℝ 3→ ℝ 2 

A simple pinhole camera model, represented in Figure II.2, summarizes the working principle 

of the camera as a 3D point L(X; Y; Z) being projected to a pixel S(u; v; d) in the image plane of an 

ideal pinhole camera. This figure aids in deducing the mathematical relationship between the 3D 

scene and the 2D plane as a transformation P and P -1.  

 

Figure II.2: Pinhole camera model. 

 

L(X;Y;Z) 
S(u;v;d) 

S 

L 
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The projection of a spatial point L to plane point S as presented in Figure II.2 is called a 

perspective projection. Only light rays that pass through the pinhole and are projected onto the 

image plane are translated into a two-dimensional image. The position of the pinhole is the camera 

optical center C. The distance between the image plane and the optical center is the focal length f. 

In practice, the image plane is situated behind the optical center rather than in front of it. However, 

for the sake of the model's generality, this rearward displacement can be disregarded without 

sacrificing accuracy. Every 3D point, at where the line connecting it to the optical center intersects 

the image plane, is effectively represented in the image according to this simplified model. 

Camera calibration is a critical process that involves the determination of both intrinsic and 

extrinsic parameters of a camera. These parameters play a pivotal role in numerous computer vision 

applications, including image analysis and augmented reality. 

Intrinsic parameters, which encompass key internal characteristics such as the principal point 

and focal length, are acquired through a standardized camera calibration procedure as outlined in 

references [62], [63], and [64]. This calibration process typically entails capturing images of a 

known calibration object from various viewpoints, enabling the accurate determination of intrinsic 

camera characteristics, where: 

 

- Focal length ( f ) indicates the distance between the image plane and the optical center of the 

camera. While the physical focal length (f ), measured in millimeters, cannot be directly determined, 

the focal lengths in the x and y directions, represented by fx and fy, can be obtained through camera 

calibration. fx and fy are fundamentally the focal lengths represented in pixels. These focal lengths 

in pixels account for the rectangular nature of each pixel on a typical imager, where the lengths in 

the x and y directions are distinct. Since each pixel on a common imager is rectangular, we use two 

extra parameters with varying pixel lengths in x and y. 

 

- Principal Point (C) indicates the optical center's coordinates in the image and is conventionally 

denoted as (cx, cy), where cx represents the horizontal coordinate and cy represents the vertical 

coordinate. These two parameters, cx and cy, deal with any potential misalignment between the 

image's center and the principal point. It is important to remember that cx and cy are given in pixel 

units, providing a precise indication of the offset from the image center and facilitating accurate 

camera calibration procedures. 
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The following formula links each 3D point of coordinates (X; Y; Z) in space to its matching 2D 

pixel (u;v;d) as mentioned in [59] and [61]: 

𝑃:ℝ3 → ℝ2;     (𝑋;  𝑌;  𝑍 ) → (𝑢, 𝑣) 

{ 

   𝑢 =
𝑋 × 𝑓𝑥

𝑍
+ 𝑐𝑥.    

𝑣 =
𝑌 × 𝑓𝑦

𝑍
+ 𝑐𝑦.

  d = 𝑍  .                 

                                                                      II. 6 

     Where f (fx, fy) is the focal length and c (cx, cy) is the principal point of the camera. d is the 

depth of the pixel returned by the camera. The intrinsic parameters (f, c) can be obtained by a 

standard camera calibration procedure [62]. 

The RGB-D image allows the reconstruction of the 3D point of the scene from the pixel. 

It is possible to transition from a 3D scene to a 2D image using the projection P. The 

transformation 𝑃−1 links every 2D pixel (u, v, d) to its corresponding 3D point with coordinates   

(X, Y, Z) in space, as seen in the following equation: 

𝑃−1: ℝ2 → ℝ3;     (𝑢, 𝑣, 𝑑) → (𝑋; 𝑌; 𝑍) 

{
 
 

 
 𝑋 =

𝑢 − 𝑐𝑥
𝑓𝑥

× 𝑑

 𝑌 =
𝑣 − 𝑐𝑦

𝑓𝑦
× 𝑑 

  Z =  d               

                                                                              II. 7  

 

Figure II.3: Parameters camera calibration 

 

On the other hand, the camera's motion in the outside world is described by extrinsic parameters, 

as represented in Figure II.3, where: 

- The translation vector (t) typically refers to the displacement of the robot's position in the 

Cartesian coordinate system. This can be along the X, Y, and Z directions in three-dimensional 

space. 
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- The rotation matrix (R) is an action of turning a robot around a particular axis. Rotation can 

occur around the X, Y, or Z axis in three-dimensional space. 

In the context of camera extrinsic parameters or robotics, the combination of translation and 

rotation captures the overall transformation or pose of an object or camera in three-dimensional 

space. The combination of these movements is often represented by matrices [R,t], such as the 

extrinsic matrix in the case of a camera's pose. 

Extrinsic parameters define the camera's location and orientation in the external environment. 

As the camera moves or is relocated, it may also change. 

A rigid object's location in relation to a fixed reference point at all times precisely describes its 

motion in three-dimensional space. R and t can be combined into one rigid transformation matrix, 

g, as shown below: 

g =[
 𝑅     𝑡 
 0      1 

]   ϵℝ4×4.                                                                   II.8 

 

Where R = [

𝑟11   𝑟12   𝑟13
𝑟21   𝑟22   𝑟23
𝑟31   𝑟32   𝑟33

]  is the rotation of movement, and   t = [

 𝑡𝑥
𝑡𝑦
𝑡𝑧

]is the translation of 

movement. 

The concise and effective representation of the vector ξ with six degrees of freedom simplifies 

the complexity associated with describing the motion of a rigid body. This streamlined approach is 

particularly beneficial when employing optimization methods for motion determination. This 

vector is represented as follows: 

ξ = [ 𝑣1 𝑣3 𝑣 2 𝑤1 𝑤2 𝑤3].                                                               II.9 

With v = (v1; v2; v3)
T  as the linear velocity and w= (w1;w2;w3)

T as the angular velocity.  

Multiple rigid body motions can be chained by multiplying consecutive matrices g, which 

represent small transformations, to build all the trajectories. This shows that there is significant 

importance in writing the movement in the form of g. The identity transformation, meaning no 

translation and no rotation, is given by R = I and t = 0. 

The translation vector t stands out as canonical due to its equivalence to the first three degrees 

of freedom of the motion vector ξ. The simplicity of having three components in the vector mirrors 

the translational degrees of freedom, facilitating a clear and concise representation that aids both 

understanding and computation. 

In contrast, the representation of rotation as a matrix R is non-canonical. Despite comprising 

nine parameters, it inherently possesses only three degrees of freedom associated with the rotational 

motion of the motion vector ξ. Despite its non-canonical nature, the matrix representation remains 
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a powerful tool for capturing the nuances of rotational motion within the broader context of rigid 

body transformations. 

A minimal representation ξ for a robot motion g can be deduced by using the parameters of its 

associated Lie algebra se(3) given in [65]. Each transformation matrix in the Lie group SE(3) 

describing a rigid  body movement has a representation with a 6 × 1 parameter vector ξ = [v ,w] in 

its corresponding Lie algebra.  

The robot motion g can be computed from its Lie algebra vector ξ using the exponential map, as 

described in [5] and [66]: 

                      exp: se(3) → SE(3);  ξ → g                    

g (ξ )= eξ̂                                                                                       II.10 

With 𝜉is the skew symmetric matrix and it is written as: 

ξ̂=[
    [𝑤]×        𝑣 
    0          0

]=[

 0    − 𝑤3        𝑤2      𝑣1
𝑤3        0    − 𝑤1     𝑣2
−𝑤2    𝑤1       0         𝑣3
0           0          0          0

]                               II.11 

 

The operator [k]ₓ creates a 3×3 skew symmetric matrix from a 3×1 vector k = (x; y; z), 

[𝑘]×  =[

0     −𝑧        𝑦 
𝑧         0    − 𝑥
−𝑦       𝑥       0 

]                                                                 II.12 

The exponential matrix eξ̂ is written in the following form as mentioned in [67] and [68] 

eξ̂= [𝑒
[𝑤]×      𝑉𝑣

𝑇
 

 0           0
]=[

 𝑅     𝑡 
 0      1 

]                                                       II.13 

 

𝑒[𝑤]×   =I + 
sin (||𝑤||)

||𝑤||
[𝑤]× +  

1−cos (||𝑤||)

||𝑤||²
[𝑤]×²                             II.14 

 

and V is : 

V =I +
1−cos (||𝑤||)

||𝑤||²
[𝑤]×  +  

||𝑤||−sin (||𝑤||)

||𝑤||3
[𝑤]×²                           II.15 

 

The inverse of the exponential map is called the logarithm map. 

                     log: SE(3) → se(3);  g → ξ  

ξ = log (g)                                                                                    II.16 

The code MATLAB of the exponential and logarithm map is mentioned in annex C. 

Where the identity transformation is obtained for ξ = 0. 
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The corresponding w is given by 

w =   
||𝑤||

2sin (||𝑤||)
[

 𝑟32−  𝑟23 
 𝑟13−  𝑟31 
 𝑟21−  𝑟12  

]                                                           II.17 

Where:                                

||w|| = cos−1( 
trace(R) −1

2
 )                                                              II.18 

And                                               

v=V \ t                                                                                            II.19 

The vectors v and w will be used to construct the motion ξ as mentioned in equation II.9. We 

have demonstrated how to move from expressing motion in the form ξ to the form g and vice versa. 

In addition, we mentioned the importance of the need for the two forms to implement the algorithms 

in optimization methods. 

Thus, we explained all the parts of the warp function II.5 as ξ, g (ξ), P, and P-1, which construct 

the warping of each pixel in the frame It+1 to It+1(ω(ξ, pi)), and this frame is used to deduce the 

residual image r and the error using the Function II.2. Regarding ξ, the metaheuristic approach 

suggests a range of values as motions for the particles; we then compute the associated error value 

for every particle, as we shall detail in our suggested method. However, the exact algorithm is an 

iterative method. At each iteration, an increment is calculated and added to the solution obtained at 

the previous iteration. This process continues for several times until the stopping condition is 

reached. 

 

II.4. Pyramid Multi-resolution  

In the context of visual odometry, a pyramid multi-resolution approach is a technique used to 

enhance the efficiency of motion estimation algorithms. Visual odometry is the process of 

estimating the motion of a camera by analyzing sequential images. The pyramid multi-resolution 

technique involves creating a multi-level image pyramid, with each level representing a different 

scale or resolution of the original image. This pyramid is then utilized to perform motion 

estimation at different scales, as mentioned in [6], [69], and [70]. Here's how the pyramid multi-

resolution is used in our visual odometry experiments. The original image is down-sampled to 

create a series of images at different resolutions, forming a pyramid structure, where the down-

sampled resolution (DSR) of the captured frame is performed by a factor of 2, as represented in 

Figure II.4. 
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Figure II.4: Representation of an image pyramid with 5 levels. 

 Each level of the pyramid represents a different scale of the image, with the bottom level having 

the original resolution and subsequent levels having reduced resolutions.  

The visual odometry algorithm starts motion estimation at the highest resolution level and 

calculates an initial motion estimate. This initial estimate is then used as an initialization for the 

next lower resolution level, as represented in Figure II.5.  

 

Figure II.5: Iterative image alignment process using a multi-resolution image pyramid.  
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In the first phase, we compute the motion ξ4 using the image corresponding to high-level DSR 

(level 4). This motion will be utilized as the initialization for the next lower level in the pyramid 

down to the original resolution of the image, where we deduce the optimal motion ξ. Starting with 

a rough motion estimate at high levels helps in quickly converging to a solution. This initial 

estimate provides a good starting point for the lower levels, where the algorithm can focus on 

refining the motion with greater precision.  

The motion estimation process is iteratively refined at each level of the pyramid. Starting from 

a coarser level allows for capturing large-scale motion, and as the algorithm progresses to finer 

levels, it refines the Function II.3 and it is solved by minimizing the photometric intensities of the 

residual image r. The solution will be closer to the ground truth motion in the case of tiny motion 

ξ or a small image resolution. To improve the accuracy of motion estimation in the case of a large 

displacement between two consecutive frames and the variations in scale due to changes in scene 

depth, visual odometry should be able to handle variations in scale using pyramid multi-resolution. 

The multi-resolution approach helps handle variations in scale and perspective across different 

frames. By initially processing lower-resolution images, the algorithm reduces computational 

demands, making it more efficient. This pyramid multi-resolution strategy is widely used in visual 

odometry algorithms to improve their performance in various environments and conditions and 

ensure convergence to the optimal solution. 

 

II.4. Conclusion 

Modeling a real-life problem into a mathematical equation while simplifying all its parts is the 

first step toward solving this problem. We have devoted an important part of this chapter to 

explaining the modeling of the visual odometry problem through a mathematical function as an 

error equation that uses two consecutive images as input. The error equation of visual odometry 

was explained in detail, in addition to the benefits of using the multi-resolution pyramid to solve 

the problem of large motion and the breadth of the scene in which the camera moves. This equation 

will be solved using several optimization methods in the next chapter, which is the core of our work 

in this thesis. 
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III. Optimization Methods 

 

III.1. Introduction 

At the outset of this section, an overview of optimization methods is presented, with the focus 

being on what was used in the experiments of exact or approximate methods. The subsequent 

narrative delves into a meticulous exploration of the Gauss-Newton method. Additionally, 

attention is directed towards an evolutionary method, specifically the genetic algorithm, and its 

implementation. 

Then there are two noteworthy swarm-intelligence methods, called particle swarm optimization 

and the firefly algorithm. The intricate workings of these two algorithms are explained in this 

section. This comprehensive exploration of the diverse optimization methods landscape not only 

enriches the reader's understanding, but also sets the stage for a nuanced comparison and 

evaluation within the context of the experiments, and opens new horizons for discovering other 

methods. 

 

III.2. Overview optimization methods 

There exists a large number of real-life problems that are complex and difficult to solve, taking 

a significant amount of time to solve or being unsolvable at all mathematically. In these cases, 

exact algorithms are not appropriate or require a large amount of resources (e.g., computational 

cost) for using them. Therefore, approximate algorithms are needed. Among approximate 

algorithms, we can find two types: heuristics and metaheuristics. We focus in this work on 

metaheuristics. Figure III.1 shows a simple classification of optimization methods used throughout 

the history of computer science as described in [71]. 
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Figure III.1: General classification of the optimization techniques. 

 

III.2.1. Exact method 

Exact optimization methods aim to find the global optimum of a given objective function with 

a high degree of precision. They guarantee convergence to the global optimum, provided certain 

conditions are met. These methods often rely on mathematical proofs and theorems to ensure the 

correctness of their results. Exact methods are essentially composed of two types: direct and 

iterative. 

A. Iterative method 

In the realm of exact methods, the iterative approach plays a pivotal role. Iterative optimization 

techniques dynamically enhance solutions through incremental adjustments, iterating until 

convergence is achieved. One exemplary instance of an iterative method is the Gauss-Newton 

method. This method iteratively refines solutions, ultimately converging toward an optimal 
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solution. These methods improve the solution iteratively, making small adjustments at each step 

until convergence. Gradient descent [72] is another example of an iterative method. 

B. Direct method 

Direct methods involve solving problems in a finite number of steps (in theory), providing an 

exact solution if no rounding or computational errors occur. They are often contrasted with 

iterative methods, which converge to the solution through repeated iterations. Direct methods are 

commonly used in linear algebra, especially for solving systems of equations.  Direct methods 

often involve mathematical transformations or explicit formulas to identify optimal points in the 

solution space. 

Direct methods solve specific mathematical problems (like linear equations) exactly and are 

more focused on solving broader classes of optimization problems (like linear programming (LP) 

[73], integer programming, and Gaussian elimination [74], etc.). 

III.2.2. Approximate methods 

The exact methods are limited when it comes to solving complex and highly nonlinear 

problems. These methods may struggle with complex models, fail to find feasible solutions, or 

fail to converge to local optima, particularly in cases of non-linearity. 

To address these challenges, the passage towards approximate methods is considered a 

successful trend. These approaches are required due to their potential to combine efficiency with 

the ability to find global optima. Unlike traditional techniques, approximate methods are 

positioned as a solution to overcome the lack of global optimum attainment in nonlinear 

optimization as well as the computational intensity associated with complex systems. Two 

methods can be distinguished in the approximate approach: heuristic and metaheuristic methods. 

 

A. Heuristic methods 

Heuristics and metaheuristics are used to solve optimization problems in different fields, such 

as artificial intelligence and computer vision, but their applications differ. 

Heuristic methods, as outlined in references [75] and [76], are problem-solving strategies that 

rely on rules of thumb or practical approaches. While not guaranteeing an optimal solution, 

heuristics are instrumental in swiftly finding feasible solutions, particularly in computationally 

expensive scenarios involving complex problems.  
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These methods are used to solve a specific problem and are tailored to the characteristics of a 

given problem. Notably, heuristics do not guarantee an optimal solution but prioritize efficiency, 

providing solutions deemed "good enough" based on available information and constraints. 

Greedy algorithms are a common example of heuristics, as noted in [77]. They make locally 

optimal choices at each stage with the hope of finding a global optimum. 

On the other hand, metaheuristics represent a higher-level approach, functioning as techniques 

or heuristics. The primary goal of a metaheuristic is to yield a heuristic that is capable of delivering 

a sufficiently good solution to an optimization problem. Unlike heuristics, metaheuristics operate 

on a broader scale, providing a framework for guiding the search for an optimal solution rather 

than being addressed to a specific problem. 

 

B. Metaheuristic methods 

Metaheuristic methods are an optimization approach designed to solve difficult and non-linear 

problems. Two Greek words are combined to form the word “metaheuristic”: 

- The word "heuristic" is derived from the verb "heuriskein" (ευρισκειv), meaning better 

approximations that do not ensure the attainment of an exact solution. 

- The prefix "meta," which means "beyond" or "on an elevated level," and the inclusion of the 

term "meta" indicate that the area of using metaheuristics must be able to extend to many varied 

problems that they can adapt to with more or less difficulty rather than being restricted to a specific 

problem. 

A metaheuristic is officially characterized as an iterative generation method that implements 

learning strategies to organize information systematically, enhancing the efficiency of identifying 

near-optimal solutions. It cleverly directs a subordinate heuristic through the clever integration of 

diverse concepts, facilitating the exploration and exploitation of the search area. 

Metaheuristics represent approximate algorithms that have proven to be effective stochastic 

optimization tools, capable of delivering satisfactory results for complex optimization problems 

[78], [79], and [80]. Metaheuristics, being generic tools, generally do not assume anything about 

the problem to be solved; instead, they merely use suitable representations of the solution, quality 

or fitness functions, and specific operators to direct the solution towards a good result. Nature is 

considered the inspiration for many metaheuristics, including swarm intelligence, evolutionary 

algorithms (EAs), and simulated annealing (SA). 
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Simulated annealing (SA) is one of the earliest bio-inspired optimization methods and  it relies 

on the metal and crystal annealing process described in [81]. It is regarded as the oldest technique 

that explicitly outlines a plan for getting out of local optima. 

These algorithms, which draw inspiration from nature, can be categorized as either population-

based or trajectory-based. The first group works with a group of components called a population 

or swarm, whereas the second group deals with one element in the search space at a time, such as 

SA. In this chapter, we will explain these algorithms and their applications in visual odometry, the 

basic principles of swarm intelligence (SI) and evolutionary algorithms (EA), and then some of 

the major types of these methods. 

 

a. Swarm Intelligent 

The term swarm intelligence was first used to describe cellular robotic multi-agent systems, 

where a group of basic agents interacted with one another according to local rules in a given area 

[82]. These days, this term refers to the process of creating algorithms or tools for addressing 

problems inspired by the group behavior of social creatures. Several swarm intelligence methods 

are employed to tackle challenging optimization problems, such as particle swarm optimization 

(PSO) [83].  

 

b. Evolutionary Algorithm 

The Darwinian theory of evolution, as presented in [84], serves as the foundation for 

evolutionary algorithms. According to Darwin's theory, as stated in [85], a population of 

individuals with the ability to reproduce through genetic diversity after selection would produce 

new populations of individuals that are progressively better adapted to their surroundings. When 

these straightforward natural methods are used in computation, a variety of algorithms are 

produced, including genetic algorithms (GA) in [86]. 

III.3.    Energy-Based using Gauss-Newton method 

Visual odometry (VO) refers to the process of estimating the position and orientation of a robot 

or vehicle using visual data from a camera. There are several methods for visual odometry, 

including feature-based, exact, and approximate methods. Among these, the energy-based method, 

which falls under exact methods, is particularly interesting. 
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In the context of visual odometry, as detailed in [26] and [6], an energy-based method typically 

involves the formulation of an energy function that estimates the motion based on a visual dataset, 

as in our experiments, using RGB-D images captured  from a Microsoft Kinect camera. Visual 

odometry is a computer vision technique used in robotics and autonomous systems to estimate the 

motion of a camera or vehicle by analyzing sequential images. 

This method does not rely on extracting and matching features (such as points or edges) 

between images. Instead, it uses the entire image dataset, which can be more effective for 

estimation. The main step of the energy-based method is the photometric error minimization 

between successive images. An optimization algorithm, such as the Gauss-Newton method, is used 

to minimize the photometric error. 

The basic steps of an energy-based visual odometry method can be outlined as follows: we 

suggest an energy Function II.2 that seeks to determine the optimal rigid body motion that 

transforms one RGB-D image into another, assuming that these images were captured by a 

moving camera in a static scene. Next, we propose linearizing the energy function, which leads 

to a normal equation for the twist coordinates that represent the movement of the rigid body ξ. 

The resolution of the least squares equation II.2, as outlined in [87], aims to determine the 

unknown variables ξ.  

In the quest to find this unknown, the method minimizes the quadratic sum of the difference 

between two successive RGB-D frames. Once the derivative with regard to ξ equals zero, the 

minimum of this function is attained, and vice-versa: 

𝜕𝐸(ξ)

𝜕ξ
 = 

2

𝑁
∑

𝜕𝑟i(ξ) 

𝜕ξ
 𝑁

𝑖=1 ri(ξ) =0                                                          III.1 

III.3.1. linearization of the least squares method 

In cases where the equation E(ξ) is nonlinear, achieving a direct solution becomes challenging. 

Multiple approaches exist for addressing this nonlinear case, and here we use the Gauss-Newton 

method. This method provides an iterative solution by making the function ri(ξ) linear to establish 

a linear dependence with k. Therefore, using the first order Taylor series, as described in [88],      

ri(ξ k) is linearized at each iteration k in the vicinity of the solution of the preceding iteration                 

ξ = ξk-1 so that: 

ri(ξ k)|ξ = ξk-1  ≈ ri(ξ k-1) +
𝜕𝑟i(ξ) 

𝜕ξ
  |ξ = ξk-1 . (ξ k - ξk-1)                         III.2 
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The Jacobian Ji( ξk-1) is equal to the derivative of residual ri(ξ k) with respect to the camera pose 

parameters ξ. 

𝜕𝑟i(ξ) 

𝜕ξ
  |ξ = ξk-1 = Ji( ξk-1)                                                                 III.3 

This is the Jacobian matrix and ξ k - ξk-1 is considered the increment, represented as ∆ξ. Thus, 

the Function III.2 can be constructed as follows: 

ri(ξ k)|ξ = ξk-1  = ri(ξ k-1) + Ji( ξk-1). ∆ξ                                             III.4 

By replacing the equivalence of the equations ri(ξ k)  and 
𝜕𝑟i(ξ) 

𝜕ξ
 into equation III.2, it produces: 

∑  𝑁
𝑖=1 (Ji( ξk-1)

T .( ri(ξ k-1) + Ji( ξk-1). ∆ξ))=0                                   III.5 

 

After developing and rearranging the terms, we obtain: 

∑  𝑁
𝑖=1 Ji( ξk-1)

T .Ji( ξk-1). ∆ξ= - ∑  𝑁
𝑖=1 Ji( ξk-1)

T . ri(ξ k-1)                 III.6 

The Equation III.6 is written in matrix form as follows: 

J( ξk-1)
T .J( ξk-1). ∆ξ= - J( ξk-1)

T . r(ξ k-1)                                     III.7 

The solution to this equation is obtained by multiplying by the term (J( ξk-1)
T .J( ξk-1))

-1 on both 

sides: 

∆ξ= -(J( ξk-1)
T .J( ξk-1))

-1. J( ξk-1)
T . r(ξ k-1)                                  III.8 

With J(ξk) being the Jacobian matrix of size n×m. Therefore, at each iteration k, the increment 

∆ξ is first calculated using Equation III.8, and the solution at iteration k is obtained by adding to 

the value of obtained at iteration k -1: 

ξk = ξk-1  +∆ξ                                                                                III.9 

The iteration value corresponds to the number of pyramid multiresolution levels. At each level, 

the increment is calculated and added to the motion of the previous iteration until the first level is 

reached, where the image is complete, and thus the optimal solution is found using this method.  
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Figure III.2: Flowchart of the motion estimation using the energy-based method 

Exact or direct methods for visual odometry estimate the motion directly from image intensities 

by minimizing the photometric error. The main steps in the energy-based method involve 

minimizing the photometric error between two consecutive images, thereby calculating the pixel 

displacement in the second image with the first image as a reference. The photometric error ri(ξ ) 

is defined as the difference in intensity values of corresponding pixels in two consecutive images; 

the first image It is considered the reference and the second is the warped image It+1(ω(ξ, pi)). 

As previously explained, the energy-based method converges to the nearest global minimum 

and may exhibit divergence in certain situations, such as large motions. To handle this and improve 
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convergence, a multi-scale pyramid approach is often used. Images are processed at different 

resolutions, starting from a coarse level and refining the estimates at finer levels. The initial motion 

ξ 1, as mentioned in Figure II.5, is crucial in this iterative process and should be close to the global 

minimum for successful convergence. Utilizing a multi-resolution pyramid helps guide the 

algorithm towards a favorable selection of ξ 1 during its execution. At level 4 of the multi-

resolution pyramid, where DSR = 16, the process begins. 

Figure III.2 presents a flowchart describing the execution process of the energy-based method. 

The initial parameters include the focal lengths in both the x and y directions (fx, fy), and the pixel 

coordinates of the principal point (cx, cy), which are input into the algorithm. The motion vector is 

initialized as zero. These initial parameters, along with the motion and the RGB-D image It+1, are 

used to calculate the warping image using Equation II.5, subsequently deducing the composition 

of the residual image ri(ξ) by Function II.2. 

This prior motion is used to calculate the warping Jacobian Jw, as shown in Figure III.2 and 

described in Equation A.12. The next step is to deduce the Jacobian components using the warping 

Jacobian Jw and the gradient ∇ I of the residual image ri(ξ). This process paves the way for 

calculating the increment using Equation III.8 and updating the motion by relation III.9. 

Thus, as iteration k increases, the image resolution moves to the lower level of the pyramid until 

the DSR equals one, corresponding to the use of the original image at full resolution. An optimal 

solution is produced at the end of the energy-based method's execution. 

III.3.2. Calculation of the Jacobian matrix 

The Jacobian matrix J(ξk) takes the form of an n×6 matrix with the following structure: 

J(ξ k )= 

[
 
 
 
 
 
 
 
𝜕𝑟1

𝜕𝑣1

𝜕𝑟1

𝜕𝑣2

𝜕𝑟1

𝜕𝑣3
𝜕𝑟2

𝜕𝑣1

𝜕𝑟2

𝜕𝑣2

𝜕𝑟2

𝜕𝑣3

⋮ ⋮ ⋮

 

𝜕𝑟1

𝜕𝑤1

𝜕𝑟1

𝜕𝑤2

𝜕𝑟1

𝜕𝑤3
𝜕𝑟2

𝜕𝑤1

𝜕𝑟2

𝜕𝑤2

𝜕𝑟2

𝜕𝑤3

⋮ ⋮ ⋮
𝜕𝑟𝑖

𝜕𝑣1

𝜕𝑟𝑖

𝜕𝑣2

𝜕𝑟𝑖

𝜕𝑣3

⋮ ⋮ ⋮
𝜕𝑟𝑁

𝜕𝑣1

𝜕𝑟𝑁

𝜕𝑣2

𝜕𝑟𝑁

𝜕𝑣3

𝜕𝑟𝑖

𝜕𝑤1

𝜕𝑟𝑖

𝜕𝑤2

𝜕𝑟𝑖

𝜕𝑤3

⋮ ⋮ ⋮
𝜕𝑟𝑁

𝜕𝑤1

𝜕𝑟𝑁

𝜕𝑤2

𝜕𝑟𝑁

𝜕𝑤3 ]
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
𝐽1(𝜉 𝑘 )
𝐽2(𝜉 𝑘 )

⋮
𝐽𝑖(𝜉 𝑘 )

⋮
𝐽𝑁(𝜉 𝑘 )]

 
 
 
 
 

            III.10 

Where N denotes the number of pixels in the image, and 6 represents the number of degrees of 

freedom, encompassing linear speed (v1; v2; v3), and angular motion (w1; w2; w3). Each row Ji(ξk) 

within this matrix signifies the derivative of the residue ri associated with pixel pi with respect to 
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the iteration k. It's essential to note that ri corresponds to the intensity error of pixels in the two 

frames. 

ri(ξ)= It+1(ω(ξ,pi))-It(pi)                                                              III.11 

Moreover, we have the following equation: 

Ji (ξk) = 
𝜕𝑟i  

𝜕ξ
  | ξ= ξk                                                                      III.12 

Applying the theorem of compound function differentiation, as described in Annex A, we can 

express Ji(ξk) in the following manner:  

Ji (ξk) = ∇I. Jw (ξk)                                                                    III.13 

The gradient of each pixel in the image in the direction of x and y is represented by a 1×2 matrix 

called ∇I as follows: 

∇I=[ ∇Ix  , ∇Iy ]                                                                         III.14 

The detailed computation of the warping Jacobian Jw is available in Annex A. Ultimately; the 

final Jacobian matrix as described in [89], takes the following form: 

Ji (ξk) =[ ∇I x  , ∇Iy ] . [

𝑓𝑥

𝑍′
0 −

𝑓𝑥.𝑋′

𝑍′²

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌′

𝑍′²

 
−
𝑓𝑥.𝑋′.𝑌′

𝑍′²
𝑓𝑥 +

𝑓𝑥.𝑋′²

𝑍′²
−
𝑓𝑥.𝑌′

𝑍′

−𝑓𝑦 −
𝑓𝑦.𝑌′²

𝑍′²

𝑓𝑦.𝑋′.𝑌′

𝑍′²

𝑓𝑦.𝑋′

𝑍′

]       III.15 

The calculation of Ji(k) depends on the coordinates of the transformed pixel M'(X'; Y'; Z') and 

so must be calculated at each DSR. Backer and Matthews introduced a technique in [29] known as 

the compositional inverse, enabling the pre-computing of the Jacobian on the reference image It. 

This pre-calculated Jacobian remains constant throughout the minimization process, significantly 

enhancing the algorithm's execution speed by eliminating the need to recalculate the extensive 

Jacobian matrix ℝn×6 at each iteration. Consequently, employing the inverse compositional method 

transforms the new Jacobian, denoted as Ji in the subsequent discussion, as follows: 

Ji   =[ ∇Ix  , ∇Iy ] . [

𝑓𝑥

𝑍
0 −

𝑓𝑥.𝑋

𝑍²

0
𝑓𝑦

𝑍
−
𝑓𝑦.𝑌

𝑍²

 
−
𝑓𝑥.𝑋  .𝑌

𝑍²
𝑓𝑥 +

𝑓𝑥.𝑋²

𝑍²
−
𝑓𝑥.𝑌

𝑍

−𝑓𝑦 −
𝑓𝑦.𝑌²

𝑍²

𝑓𝑦.𝑋  .𝑌

𝑍²

𝑓𝑦.𝑋

𝑍

]           III.16 

Nevertheless, in our experiments, we recalculated the Ji (ξk) at each DSR as a choice. 
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III.4. Genetic Algorithm for motion estimation 

In the 1970s, researchers created genetic algorithms [90], an important type of optimization 

algorithm, to understand how genes behave and how living things reproduce. Over time, these 

algorithms have found applications in the fields of artificial intelligence and computer science. The 

primary function of a genetic algorithm is to generate multiple motions by employing 

predetermined equations based on the existing motions of parents. Subsequently, the algorithm 

selects motions that yield minimal error, and this error is determined by Function II.2.  This process 

is iteratively repeated until the specified stopping conditions are met. Ultimately, the optimal 

motion, denoted as ξ, is determined using Equation II.3. 

The following explains the genetic algorithm (GA) design as it is mentioned in [91]: 

 

III.4.1. Representation 

The position ξ is recognized as a chromosome, where the decision variables within ξ represent 

genes, each comprising six alleles. Furthermore, the position of an element (gene) within a 

chromosome is denoted as a locus. The initial three alleles are specifically designated for linear 

velocity, while the last three are allocated for angular velocity. 

III.4.2. Population initialization 

Every particle within the population is required to possess an initial position ξ, established 

through an array of continuous, uniform random numbers. Each variable is constrained by defined 

lower and upper bounds. These boundaries are related to the speed of the robot in the considered 

direction. If we have a predefined speed, we choose the smallest possible values; otherwise, we 

select the boundaries to be as wide as possible. 

III.4.3. Objective function 

The objective function defines the desired goal, associating a numerical value with each 

solution within the search space to quantify its quality and thus determines the efficacy of the 

method. This assigned result is given as an absolute value, enabling a comprehensive ranking of 

all solutions within the scene. The objective function plays a crucial role in the development of a 

metaheuristic, steering the search towards optimal motion within the solution space. This function 

is expressed as a mathematical equation, with its minimum value indicating the most favorable 

motion within the search domain. The objective function in our case is the error Function II.2. 

However, the term "fitness" is denoted by the Function III.17. It is written in the form of a fraction, 

and each individual has a percentage, which represents the probability of choosing parents for 

mating, and the Function III.17 was used only in the genetic method. 
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III.4.4. Selection strategy 

At this point in the process, the selection of particles for reproduction is carried out, and various 

approaches can be employed for this purpose.  

Tournament Selection:  

Tournament selection involves the random selection of k particles, where k represents the 

tournament group size. Subsequently, a tournament is conducted among the particles to determine 

the best one. To choose µ individuals, the tournament process is repeated µ times. 

 

Figure III.3: strategy tournament selection consists of selecting a group of the best 

particles or individuals randomly from the population, and then the best solution from 

the selected individuals is chosen. 

Roulette wheel selection method: 

In the experiments carried out in this thesis, we implemented the genetic algorithm using the 

roulette wheel selection method. This method assigns a probability value, denoted as probi, to each 

particle pi within the population, and this value is proportional to the particle's fitness as outlined in 

Equation III.18. It is important to highlight that Ei represents the error of individual pi, and Emin 

signifies the minimum error of the particles. In the subsequent discussion, the fitness fi of particle 

pi is expressed as: 

fi=exp(-8×Ei/Emin).                                                                         III.17 

Its probability of being chosen is   

probi=fi /(∑   𝑛
 𝑖 = 1 fi).                                                                       III.18 

Then we apply, to each selection probability, the cumulative sum of elements  

probci=cumsum(probi).                                                                  III.19 

The selection of µ particles for mating involves a random process, akin to the independent spin 

of a roulette wheel, influenced by an indiscriminate variable. Individuals demonstrating superior 

qualities, characterized by minimal error and thus maximum fitness, are more likely to be chosen 

for the subsequent stage, as determined by Equation III.19. 
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To simplify the roulette wheel selection process, assume a pie chart where each particle in the 

population has a section on the pie that corresponds to their level of fitness:  

 

 

Figure III.4: The strategies of roulette wheel selection include choosing a single individual for 

each spin.  

 An outer roulette wheel surrounds the pie. The process of selecting µ particles involves µ 

independent spins of the roulette wheel, with each spin targeting a single particle. Superior 

individuals are allocated more space, increasing their likelihood of being chosen.  

In our experiment, we used the cumsum given in Equation III.19 to compute the cumulative 

sum along the first non-singleton dimension of probi, which performs the same function as the 

pie. The cumulative sum of the probability values given in Equation III.18 is calculated to select 

the particles. The goal is to find the first index i where µ is less than or equal to an element of 

probci. Since µ is a random number between 0 and 1, it will be compared against the values in 

probci. 

For example, let's assume µ = 0.25 and probc = [0.1, 0.3, 0.6, 1.0]. The condition µ ≤ probc 

gives: [false, true, true, true]. The first true occurs at index 2, so i = 2. 

This process effectively randomly selects an index based on the probability distribution 

defined in probc. The elements of probc act as weights (probabilities summing to 1). 

This is commonly used in roulette wheel selection for probabilistic sampling in genetic 

algorithms. 

However, in roulette wheel selection, outstanding particles can introduce a bias in the initial 

stages of the search, potentially leading to premature convergence and a reduction in divergence 

because the error Ei will be close to the Emin. 

III.4.5. Reproduction strategy 

The process of reproduction consists of two stages required to generate a new individual. 
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• Mutation: every particle undergoes this process independently. A random selection of thirty 

percent of the population is chosen to experiment with the mutation. The likelihood that a change 

in particle genes will be chosen for mutation is known as the mutation rate (pm = 0.1). The genes in 

the chromosome in this work represent the elements composed of the motion vector ξ. 

The mutation formula is: 

ξ′=ξ+M.                                                                                          III.20 

In addition, M is a mutation random vector calculated as follows: 

M=δi×randn(size_ξ )                                                                      III.21 

Where the equation δi is: 

δi= pm ×(ξi
U-ξi

L )                                                                            III.22 

And ξi
U(respectively, ξi

L) represents the upper bound (respectively, lower bound) for ξi. 

• Crossover: either the parents selected through the roulette wheel selection method or the 

tournament selection strategy will undergo recombination, specifically the crossover process. The 

objective of recombination is to generate offspring that inherit genetic material from both parents. 

One of the commonly employed crossover techniques is the intermediate crossover [92], which 

attempts to average the positions corresponding to the two parents. Through the equations of 

crossover, two individuals, O1 and O2, are produced using a weighted average: 

 
{

 
 
 
 

O1
i=αξ1

i+(1–α)ξ2
i 

O2
i=αξ2

i+(1–α)ξ1
i 

 

                    III.23 

 

 The additional crossover factor, denoted as α, signifies the proportion to which parents are 

chosen as random arrays from the continuous uniform distribution.  

Subsequently, the combination of the old and new individuals generated after mutation and 

crossover will be merged and will give rise to the future population for the next stage. 

III.4.6. Replacement strategy 

The future population is determined through a competition between the newly generated 

offspring and the old particles, including the parents. This is achieved by forming a combined 

population that includes both the previous elements and the offspring produced through crossover 

and mutation strategies. Then, all the particles are sorted based on the errors resulting from equation 

II.2 for each individual, and particles with the minimum error value, based on the required number 

of individuals, are selected. The process concludes with an update to the minimum error ever 

recorded and the best individual corresponding to it. 

III.4.7. Stopping criteria 

Numerous stopping criteria are applied during the execution of the metaheuristic code. We 

employed two stopping procedures, as outlined below: 
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• Static procedure: The end of execution is based on a maximum iteration value that is 

predetermined and specified for each DSR level of image resolution. 

• Diversity procedure: The code execution stops when the error of the best individual remains 

stagnant after a predefined number of iterations, rendering further algorithm execution with more 

iterations futile. 

III.4.8. Overall algorithm  

We present the key steps that GA takes to determine the optimal motion in the following: 

1. Initialization  

          a. Set the number of particles as N.  

          b. Set the number of GA iterations as M. 

      c. Set the variables bound 

     d. Set crossover and mutation percentage 

         e. For i=1,…,N, set ξ0
i=rand(1). 

         f. Set initial parameters camera intrinsic  

2. Main Loop 

for j=1:M iterations.  

     -Select parents using the roulette wheel selection  

       for i=1:ns particles selected (also called Parents) 

       -Update the particles via Crossover and Mutation 

          end 

       -Evaluate f(Pj
i) and update Pi  and get ξ  of Pbest 

     end 

Return ξ  

 

The Genetic Algorithm (GA) is a metaheuristic method used to solve various optimization 

problems. This method is widely used in the artificial intelligence field, particularly for visual 

odometry. It is based on how genes behave and how a population reproduces to find an optimal 

solution by the end of the algorithm's execution. The chromosome of a particle in the population 

represents its motion, ξ, with six genes or six degrees of freedom. The motion of these particles 

occurs within a limited search space. 

Figure III.5 presents a flowchart describing the execution process of the genetic algorithm. The 

initial parameters include the camera intrinsic, the focal lengths in both the x and y directions        

(fx, fy), and the pixel coordinates of the principal point (cx, cy), which are defined as the input to the 

algorithm. 
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Figure III.5: Flowchart of the motion estimation using the genetic algorithm 
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Initially, the algorithm assigns a random initial motion ξ to each item in the particle group. The 

initial parameters, along with the motion of each particle and the RGB-D image It+1, are used to 

calculate the warping image using Equation II.5. This subsequently deduces the composition of 

the residual image ri(ξ) by Function II.2. The residual image of each particle is then used to 

calculate the error E(ξ) associated with each particle's motion. This step is crucial for evaluating 

the motions of the particles and ranking them in order of increasing error E(ξ). 

A predetermined number of particles are then chosen to create new particles with different 

motions using crossover and mutation. The new and old particles will form a merged population. 

After that, the best of these new particles replaces the worst older ones in the previous population, 

which have a greater error E(ξ). Thus, one iteration using the same DSR value is completed. The 

algorithm then selects a new set of particles for the subsequent iteration, repeating the main loop. 

The process continues until the stopping criteria are reached. 

Afterward, the original image is down sampled to create images at higher resolutions by down 

sampling the two RGB-D images' resolution by dividing the previous DSR by 2. The GA then uses 

the population resulting from the previous down sampled resolution (DSR) and repeats the main 

loop. The process continues until the stopping criteria are reached and DSR = 1, where the image 

used is the original with a resolution of 640×480 pixels. At this point, the motion ξ of the best 

individual is calculated. The algorithm's performance will be evaluated through various 

experiments. 

 

III.5. Geometric particle swarm optimization for visual ego-motion Estimation  

Visual ego-motion estimation, also known as visual odometry, involves the continuous 

determination of 3D camera movement using sequences of 2D images taken by a camera. This 

process is crucial in numerous computer vision and robotics applications, including visual 

simultaneous localization and mapping (SLAM) and augmented reality. 

This estimation method is derived from reworking the traditional vector space geometric 

particle swarm optimization (PSO) algorithm to account for the geometry of the special Euclidean 

group SE(3). SE(3) is a Lie group that characterizes the space of 3D camera poses, as outlined in 

[53]. 

In this section, we introduce the geometric PSO metaheuristic method, designed with 

consideration for the geometry of SE(3). First, we provide a concise overview of traditional PSO 

within a vector space. For a more detailed examination of PSO refer to the reference [93]. 
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III.5.1. PSO on a vector space 

The core concept of Particle Swarm Optimization (PSO) is to leverage the interactions and 

information-sharing among particles to efficiently identify the global optimum. Consider a 

collection of particles, denoted as ξ≙{ξ1,⋯, ξ M} scattered randomly across the search space. Each 

particle ξi∈ ℝ6 navigates this space to locate the global optimum, guided by two relative position 

vectors:  pgb − ξ i and pib
i − ξ i, where pgb represents the globally best particle, while pib

i is the best 

position recorded by each individual i. 

The velocity vi ∈ℝ6, which indicates where to go, of each individual is calculated by summing 

three vectors as 

v t+1
i= w v t

i +c1r1 (pib
i − ξ t i ) + c2r2  (p

gb − ξ t i )                          III.24 

Where w represents inertia, c1 and c2 are the weighting coefficients for the two relative position 

vectors. r1 and r2∈ℝ6 are random vectors drawn from a uniform distribution ranging from 0 and 1, 

introducing stochasticity into the optimization process. The value of the constants used to execute 

the algorithms for the equation III.24 are mentioned in Annex B. Subsequently, each particle ξ t+1 

i updates its position using v t+1
i as follows: 

ξ t+1
i= ξ t i + v t+1

i                                                                            III.25 

Then, pgb and pib
i are updated as 

pib
i = ξ t+1

i   if    E(ξ t+1
i)< E(pib

i)                                                  III.26 

pgb
 = ξ t+1

i   if    E(ξ t+1
i)< E(pgb)                                                 III.27 

Where E is the error Function II.2, i.e., an objective function that aims to minimize. 

By repeating Equations III.24, III.25, III.26, and III.27 several times, particles can explore the 

solution space efficiently, and convergence can be guaranteed. 

The mathematical operations of addition and subtraction contained in Equations III.24 and 

III.25 cannot be performed directly in the traditional formula but must formulate the geometric 

PSO algorithm on the special Euclidean group SE(3) and perform these operations using a general 

Riemannian manifold. 
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III.5.2. The special Euclidean group SE(3) 

A camera's position can be described using a rigid body transformation matrix structured as 

[
 𝑅     𝑡 
 0      1 

] in homogeneous coordinates, where R denotes a 3×3 rotation matrix in ℝ3 × 3, and t is a 

3×1 vector in ℝ3 space. These rigid body transformation matrices, along with the rotation matrices, 

correspond to matrix Lie groups: specifically, the special Euclidean group SE(3) and the special 

orthogonal group SO(3). Formally, SO(3) and SE(3) are defined as follows: 

SO(3)={ R ∈ℝ 3 × 3 | RTR=RRT=I, det(R)=+1}                         III.28 

And              SE(3)= { g = [
 𝑅     𝑡 
 0      1 

] ∈ℝ 4 × 4  }                                             III.29 

Where R ∈ SO(3) and t ∈ ℝ 3. 

A Lie group is a differentiable manifold that possesses a group structure with smooth product 

and inverse operations. The Lie algebra associated with a Lie group is defined as the tangent vector 

space at the identity of the Lie group. The exponential map is a fundamental tool that relates Lie 

algebras to Lie groups. It allows you to "exponentiate" elements of the Lie algebra to obtain 

elements of the Lie group, and vice versa. This map provides a bridge between the abstract group 

structure of the Lie group and the linear structure of the Lie algebra. The Lie algebras associated 

with the Lie group SE(3) and SO(3) are denoted by se(3) and so(3), respectively. A Lie group and 

its Lie algebra can be related via the exponential map, i.e., exp: so(3) → SO(3) and                            

exp: se(3) → SE(3), as presented in Figure III.6. The logarithmic (log) map is defined as the inverse 

of the exponential (exp) map.  

 

Figure III.6: SE and the corresponding Lie algebra as tangent space at the identity 
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For matrix Lie groups, the matrix exponential and log give the exponential and log maps. so(3) 

is a set of ℝ3×3 skew symmetric matrices of the form : 

𝑤=[

      0    − 𝑤3        𝑤2  
      𝑤3        0     − 𝑤1   
    −𝑤2       𝑤1           0      

]                                                                    III.30 

 And se(3)  is given by   [
 𝑤     𝑣 
 0      0 

] , with 𝑤 ∈ so(3) and v ∈ ℝ 3. 

 

In this part, we represent the camera pose as an SE(3) group, instead of employing the vector 

parameterization of rotation matrices such as Euler angles [94]. Using the SE(3) representation 

allows us to avoid the singularity issues associated with any ℝ³ vector parameterization of rotation 

matrices. However, since SE(3) constitutes a curved space rather than a flat vector space, it is 

necessary to reformulate particle swarm optimization (PSO) to account for the geometric 

properties of SE(3) for improved optimization performance. 

 

III.5.3. PSO on SE(3) 

To formulate a geometric PSO algorithm on SE(3), we first consider a general Riemannian 

manifold case. What we have to consider when formulating PSO on a Riemannian manifold is that 

the difference between particles’ motion should be calculated as the minimal geodesic distance on 

a manifold. Since the Riemannian logarithmic and exponential maps are derived from the minimal 

geodesics on the Riemannian manifold, we can represent the difference between the elements on 

the Riemannian manifold as the one on its tangent vector space obtained via the Riemannian log 

map. In this manner, a particle can be considered to be a point ξi on a manifold, and its velocity vi 

can be defined as the one on the tangent vector space of ξi. 

Points on a manifold are projected onto the tangent vector space via the Riemannian log map 

at ξi
old, then the velocity calculation is performed on the tangent vector space according to the 

original PSO in a vector space. A new particle position ξi
new is obtained by the Riemannian 

exponential map at ξi
old of the resulting velocity vector in the tangent vector space.  
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Figure III.7: Graphical representation of geometric PSO on a general Riemannian manifold. 

 

The difference between ξi and the individual best Pib
i can be identified as a vector on the tangent 

space at ξi obtained via log ξi , the Riemannian log map at ξi, and can be represented as log ξi (Pi
ib). 

The difference between ξi and the global best Pgb also can be represented as log ξi (P
gb). Then the 

velocity vi is obtained by log ξi (Pi
ib) and log ξi (P

gb) similarly to Equation III.31 and the particle 

update with vi is realized via exp ξi , the Riemannian exponential map at ξi , as expξi(vi). Figure III.7 

depicts this geometric PSO procedure on a general Riemannian manifold. 

The procedure of PSO on manifolds has some similarity to the nonlinear mean shift on 

manifolds, as described in [95], since the required operations are done on the tangent vector space 

of a manifold. However, it is not straightforward to directly apply this geometric PSO on a general 

Riemannian manifold to SE(3). The first requirement of geometric PSO is to obtain the 

Riemannian exponential and log maps on a specific manifold. Since the minimal geodesics on 

SE(3) is given by the union of the respective geodesics on SO(3) and ℝ 3 [96], it is hard to obtain 

a single expression of the Riemannian exponential and log maps for SE(3). Fortunately, the 

Riemannian exponential and log maps for SO (3) are simply given by the left and right translations 
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of exp and log, which are the matrix exponential and logarithmic. Thus, we can perform geometric 

PSO on SE(3) appropriately by splitting gi ∈ SE(3) into Ri ∈ SO(3) and ti∈ ℝ 3.  

The calculations of particle velocity vR i ∈ so(3) and particle update for Ri are given by:  

vR
 i

  (t+1)= w vR
i
  (t) +c1r R1 log (R T

i R
ib

i ) + c2r R2 log (R T
i R

gb ) )       III.31 

R t+1
i= Ri  exp(vR

i)                                                                                 III.32 

 

where Rib
i and Rgb are the rotation parts of the individual best particles and global best particles, 

respectively. Note that the differences are calculated by log after multiplying Ri
⊤ to Rib i and Rgb. 

Then the exponential of the resulting vector on the tangent vector space is multiplied by Ri. This 

is to apply the exact Riemannian exponential and logarithmic maps of SO(3). In Equation III.31, 

rR
1 and   r R2 represent ℝ 3 uniform random vectors, with SO(3) elements represented in ℝ 3 column 

vectors with respect to basis elements of SO(3) using the function log. The velocity calculation 

and particle update equations for ti can be represented by the ordinary PSO algorithm as follows: 

vt  i 
 (t+1)= w vt i  (t) +c1r t1 (t

ib
i − t 

i ) + c2r t2 (t
gb − t 

i ) )                III.32 

tt+1
i= t t i+ v t

i (t+1)                                                                            III.34 

 

Where tib
i and tgb are the translation parts of the individual and global best particles, 

respectively. r1 
t and r2 

t represent uniform random vectors on ℝ3. After particle update, the fitness 

function evaluation is performed at the new position determined by merging the newly updated Ri 

and ti into gi. Where body transformation g is: 

g = [
 𝑅     𝑡 
 0      1 

]  ∈ℝ 4 × 4                                                                    III.35 

We can calculate ξ using:  

ξ = log g                                                                                         III.36 

And we conclude the error Function II.2. 
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We present the key steps that PSO takes to determine the optimal motion in the following 

Overall algorithm: 

 

1. Initialization  

   a. Set the number of particles as N and k = 0. 

   b. Set the number of PSO iterations as M. 

   c. For i = 1,…,N, set ξ 0 i = rand(1) , and v0 i = 0. 

   d. Set c1 , c2, r1, r2 

2. Main 

for j=1:M iterations. 

   k = 0   

   for i=1:N 

      - Update the particles via Eqs. III.24 and III.25 

      - Calculate E(ξ t+1
i) and update Pgb and Pib i. 

       k = k + 1. 

   end 

end 

Return Pgb 

 

 

The particle swarm optimization (PSO) method is a metaheuristic optimization technique that 

uses particles to search for an optimal solution within a defined 3D search space. These particles 

are attracted to their own or personal best solution (Pbest) and to the best global solution (Gbest) 

of all particles by the Function III.24. 
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Figure III.8: Flowchart of the motion estimation using the PSO method 

 

Initially, we need to define the motion and initial velocity of the particles, as indicated at the 

beginning of the PSO algorithm flowchart in Figure III.8. Additionally, the initial parameters, 

including the focal length in both the x and y directions (fx, fy) and the pixel coordinates of the 
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principal point (cx, cy) are defined as the algorithm's input. These parameters, along with the motion 

of each particle and the RGB-D image It+1, are used to calculate the warping image using Equation 

II.5. Subsequently, the residual image ri(ξ) is deduced by Function II.2. 

The residual image of each particle is used to calculate the error E(ξ) linked to each motion. 

This process is crucial for evaluating the motions of the particles and ranking them from least to 

greatest error. In the subsequent process of the PSO flowchart, the algorithm determines the best 

motion achieved by each particle (Pbest or the personal best motion) and the best motion achieved 

by all particles (Gbest or the global best motion) during the execution of the algorithm, both with 

the same DSR value.  

These two motion values (Pbest and Gbest) are used in the next step to update the motions and 

velocities of the particles using Equations III.24 and III.25. This last process, along with 

calculating the errors of the particles’ motion using Equation II.2 and the process of determining 

Pbest and Gbest is repeated over several iterations, as the main loop of the algorithm, until the 

stopping criteria are met. 

Afterward, the DSR value is divided by 2, the iteration value is reset, and the main loop is 

repeated until the DSR equals 1, corresponding to the use of the original image at full resolution. 

An optimal solution is produced at the end of the execution of the PSO algorithm. 

III.5.4. PSO coefficients used for convergence  

The particle swarm optimization is an algorithm for finding optimal regions of complex search 

spaces through the interaction of individuals in a population of particles.  The present section 

analyzes a particle’s trajectory as it moves. These analyses lead to a generalized model of the 

algorithm, containing a set of coefficients to control the system’s convergence tendencies. 

Clerc and Kennedy define in [97] the construction coefficients by 

χ = 
2𝑘

| 2−𝜑− √𝜑(𝜑−4)|
                                                                           III.37 

Where φ = φ1+φ2 ≥ 4 
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After conducting several experiments and analyzing the results, they arrived at the following 

conclusions: 

{
𝑘 = 1   
𝜑1 = 2.05
𝜑2 = 2.05

                                                                                    III.38 

 Therefore, the values of the PSO coefficients for achieving the best convergence are as follows 

{

𝑤 = 𝜒      
𝑐1 = 𝜒𝜑1
𝑐2 = 𝜒𝜑2

                                                                                    III.39 

This part explores how the particle swarm algorithm works from the inside, i.e., from the 

individual particle’s point of view. The coefficients can be chosen to guarantee convergence and 

encourage the particles to explore the entire search space. We remind that the real strength of the 

particle swarm derives from the interactions among particles as they search the space 

collaboratively. Effectively, the particles keep moving as they find better and better points in the 

search space with each iteration. As a particle swarm population searches over time, individuals 

are drawn toward one another’s successes, with the usual result being the clustering of individuals 

in optimal regions of the space, thus achieving the optimal solution. 

 

III.6. Firefly algorithm for motion estimation 

In mathematical optimization, the firefly algorithm is a metaheuristic method proposed by       

Xin-She Yang and inspired by the flashing behavior of fireflies as described in [98], [99] and [91]. 

 

III.6.1. Material and Methods 

In essence, the firefly algorithm (FA) uses the following idealized rules. 

The brightness of a firefly is inversely proportional to the calculated error value using Equation 

II.2. Brightness that relies on light intensity determines attractiveness. The attractiveness of a 

firefly is inversely proportional to the distance between that firefly and the best firefly (i.e., the 

one with the highest brightness). The variation of attractiveness β, with respect to the distance r, 

is defined by: 

β  = β0e
-γr²                                                                                   III.40 
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Where β0 is the base value of the attraction coefficient, and γ is the light absorption coefficient. 

The motion of a firefly i is attracted to the best firefly j and is determined by: 

ξ t+1
i= ξ t i+β0e

-γrij²( ξ t j - ξ
 t i) + αt ϵ i                                             III.41 

With 

rij=|| ξ t j - ξ
 t i  ||                                                                           III.42 

The second part of Equation III.41 refers to the attraction between the particles i and the best 

particle j. The last part refers to the randomness factor, with αt being the randomization parameter, 

and ϵi being a vector of randomness from uniform distribution. The value of the constants used to 

execute the algorithms for the equation III.41 are mentioned in Annex B. 

III.6.2. The proposed motion estimation algorithm 

The algorithm FA uses interactions between particles sharing information among themselves 

to achieve the optimal solution. Let it be a population as ξ ≙{ ξ 1,⋯, ξ M} randomly chosen in 3D 

space. Each particle ξ i ∈ℝ6 moves in 3D space to achieve an optimal solution using the equation 

of this algorithm. 

      Each particle of the population calculates its velocity v t+1
i ∈ℝ6, by the following equation: 

v t+1
i =β (ξ t j - ξ

 t i) + αt ϵ i                                                                   III.43 

With   

β= β0e
-γrij²                                                                                        III.44 

Then, this velocity will be used to update the motion ξ i as 

ξ t+1
i
 = ξ t i + v t+1

i                                                                            III.45 

Finally, ξ t j is newly updated as: 

ξ t j  ξ
 t i    if   f (ξ

 t i )  > f (ξ
 t j)                                                            III.46 

Where f is an objective function. With: 

f(pi)=min (E(ξ))                                                                               III.47 

By repeating Equations III.43, III.45, and III.46 the optimal solution can be achieved. 

 



63 
 

III.6.3. Firefly algorithm on SE(3) 

 

The coordinates of movement ξ defined by six degrees of  freedom do not allow us to perform 

addition and subtraction operations contained in Equations III.43 and III.45 using the traditional 

way, in this part we will explain the method of calculating the previous equations, following the 

method of Baik in [53]. 

First, we note that: 

Pt+1= g × Pt                                                                                      III.48 

And 

Pt+1=R× Pt +T                                                                                III.49 

   The rigid body transformation matrices are formulated with matrix Lie groups in III.35. 

    The difference between two motions, as required in Equation III.41, was made using the 

Riemannian manifold (exponential and logarithmic maps in Riemannian manifolds) as described 

in [95].  

     First, we formulate a geometric attractiveness β on SE(3), we suggest the difference:      

d = ξ t j - ξ
 t i

                                                                                   III.50 

 

The log map is used to compute the difference as follows: 

h=log Ri
TRj                                                                                   III.51 

We find:    

Rd =exp(h)                                                                                      III.52 

And 

td=tj-ti                                                                                            III.53 

 

We compute the distance by:    

rij = || d ||,                                                                                       III.54 

The attractiveness is:        

β= β0e
-γrij²                                                                                      III.55 

 

       The main Equation III.41 of FA can be decomposed into III.43 and III.45. The difference 

in Equation III.43 with mentioned in III.50 cannot be done element by element, but through 

splitting ξi ∈ SE(3) into Ri
 ∈ SO(3) ( special orthogonal group) and  ti∈ ℝ3.  
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 The rotation part of velocity (VR
i∈so(3)) and motion (Ri ) are given by: 

 
{

 
 
 
 

Vi
R =β (log R i

T R j) + αt ϵ Ri                    

R i
 = R i . exp (Vi

R)  
 

                                III.56 

                               III.57 

Where ϵ Ri represents ℝ3 uniform random vectors, R i and R j are the rotation parts of the current 

and the brighter particle respectively, and: 

 

Ri
⊤ R = RRi

⊤                                                                      III.58 

Note that the differences are calculated by taking the log after multiplying R i
T with R j, and we 

have the condition  

RT R = I                                                                             III.59 

Which implies that  

R−1 = RT                                                                             III.60 

This clearly exists for every R. Since 

det RT = det R = 1                                                             III.61 

RT is also a rotation matrix.   

The translation part of velocity and motion can be updated as: 

{

 
 
 
 

 

Vi
t =β (t j - t i) + αt ϵ i

 t 

t i
 = t i + Vi

t 

               III.62                                               

III.63  

     Where ti and tj are the translation components of the current particle and the brighter particle 

respectively. ϵt
i represents uniform random vectors on ℝ3. 

After updating Ri and ti and merging them into body transformation g using Equation III.35, ξ 

is defined by III.36, and after that, the cost function is calculated with II.2, which corresponds to 

the new motion of the current particle i. 

After that, we calculate the error Function III.28, and then we conclude the fitness function:  

f(pi)=min (E(ξ ))                                                                 III.64 

This function is used to update the motion ξ of the best particle Pj as mentioned in the overall 

algorithm. 
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III.6.4. Overall algorithm 

 

In the following, we present the most important steps that the algorithm FA goes through 

to reach the best solution: 

 

1. Initialization  

 a. Choose N for the count of the number of particles. 

 b. Choose M  for the number of FA iterations. 

 c. For i = 1,…,N, set ξ 0i = rand(1). 

 d. Set β0,γ,αt, ϵ j,  

 

2. FA Loop 

    for j=1:M iterations. 

      for i=1:N 

       - Update the particles via Eqs. III.43 and III.45 

       - Evaluate E(ξ j i ) and update ξ j. 

     end 

  end 

             Return ξ j 

 

 

The Firefly Algorithm (FA) is a metaheuristic method used to solve various optimization 

problems, including visual odometry equations. This method relies on a population-based 

approach to find the optimal solution. The behavior of firefly motion is influenced by two key 

factors: attraction to brighter fireflies, which exhibit better motion, and a randomness factor. The 

movement of these fireflies, or particles, occurs within a limited search space. 

Figure III.9 presents a flowchart describing the execution process of the Firefly Algorithm. The 

initial parameters include the focal lengths in both the x and y directions (fx, fy) and the pixel 

coordinates of the principal point (cx, cy), which are defined as the input to the algorithm. Random 

initial motions are assigned to the fireflies. 
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Figure III.9: Flowchart of the motion estimation using the Firefly algorithm 
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These initial parameters, along with the motion of each firefly and the RGB-D image It+1, are 

used to calculate the warping image using Equation II.5. This subsequently deduces the 

composition of the residual image ri(ξ) by Function II.2. The residual image of each particle is 

then used to calculate the error E(ξ) associated with each firefly's motion. This step is crucial for 

evaluating the motions of the fireflies and ranking them in order of increasing error E(ξ). The 

subsequent process in the FA flowchart identifies the best motion achieved by all the fireflies 

during the algorithm's execution, using the same DSR value. 

The main loop of FA begins by using the previous best motion to calculate attractiveness β. The 

next step is to update the motions of the nPop fireflies using Equation III.41, where these fireflies 

are attracted to the brighter firefly j. This process helps calculate the error E(ξ) corresponding to 

each firefly's motion using Function II.2. The best motion ξ for the current iteration is then 

determined. 

This main loop repeats over several iterations until the stopping criteria are met. Subsequently, 

the DSR value is halved, the iteration value is reset, and the main loop is repeated until the DSR 

equals 1, which corresponds to using the original image at full resolution. An optimal solution is 

produced at the end of the Firefly Algorithm's execution. 

Our algorithms are made intelligent to find the optimal motion as fast as possible and to avoid 

the divergence of our algorithms towards a local minimum, which corresponds to non-optimal and 

false solutions. In practice, the future motion for robots or cars is often close to or equal to the 

previous one, and the variation of motion between two consecutive small instants of time is very 

small or zero. Therefore, when we generate random initial motions for an algorithm, it is necessary 

to equip a particle with the optimal motion found in the previous transition. Even better, it is better 

to give the motions of the ten best previous particles as initial motions to the current particles, 

while the other motions are generated randomly. With this operation, the optimal solution will be 

ensured. 

III.7. Conclusion 

In this section, four of the most important optimization methods in computer vision were 

explained. At the beginning of the section, the energy-based method is presented, which is 

considered an exact method. After that, three metaheuristic methods were explained, where GA is 

an evolutionary algorithm while PSO and FA are swarm intelligence methods.  

We point out that GA and FA are innovative methods. With these four methods, most branches 

of optimization techniques have been addressed, as presented in Figure III.1. To show the role and 

effectiveness of these methods, we need to evaluate them after conducting several experiments, 

and this is what we will see below. 
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IV. Performance evaluation metrics 

 

IV.1. Introduction 

In this section, we evaluate our methods for motion estimation on a static scene using RGB-D 

frames that are available in [3]. For this, we use the relative pose error (RPE), root mean square 

error (RMSE), and 3D trajectory to compare our innovative methods (GA and FA) to particle 

swarm optimization (PSO) and energy-based method as a classic method, which are mentioned 

respectively in [53] and [26]. 

IV.2. Real-time graphical user interfaces  

Multicriteria optimization involves choosing the most favorable option from a range of possible 

alternatives. Key factors in a metaheuristic approach, such as the number of particles, probability 

values, and other parameters, serve as criteria that need to be adjusted to obtain the best outcomes. 

This necessity led us to develop a graphical user interface (GUI) in MATLAB, as depicted in 

Figure IV.1. This interface allows for real-time monitoring and assessment of code execution 

results, enabling the selection of the most effective criteria values for achieving an optimal 

solution. 

 

Figure IV.1: The real-time graphical user interfaces view code execution in MATLAB 
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The graphical user interfaces illustrated in Figure IV.1 consists of four windows. On the right, 

there is a three-dimensional space depicted as a parallelogram, with its dimensions representing 

the field of motion of the particles. This space shows how the particles search for the optimal 

motion value by seeking the lowest error value in Equation II.2. At the center of this finite space, 

a green disk indicates the three-dimensional position where the previous image was taken. The red 

star marks the true location where the subsequent image was captured, representing the target area 

where the colored particles are searching. The color of the particles indicates the error value, with 

blue signifying the lowest error value or the best cost. This visualization helps us observe particle 

behavior and assess the proposed method during the execution of the MATLAB code. 

The red arrow indicates the direction of accumulated error (RPE) during the image sequence 

processing, extending as a three-dimensional ray with its length specified. We have displayed the 

actual value of this error at the top of the 3D scene as RPE = 1/5 * ||VectError||, where ||VectError|| 

is the length of the red vector represented in the 3D scene, but its real length is RPE. The best 

value of relative pose error achieved between the current and previous images is also shown as 

RPEI. Displaying the value and direction of the RPE as a ray in the same 3D scene with the 

behavior of particles and RPEI helps to identify whether the behavior of the particles is in favor of 

reducing the RPEI, the accumulated error (RPE), or both, which helps in choosing the best initial 

parameters such as the number of particles and others. 

Additionally, the number of particles, Down Sampled Resolution (DSR), and RPE for the best 

particle are shown. This image clearly demonstrates the particles' behavior in detecting motion 

between two consecutive photos. The final RPE between these images for the best particle is 

represented as impulses in the upper graphical example. On the right, there is a graph showing the 

camera trajectory RPE, while the bottom graph compares the true and estimated trajectory within 

the same 3D scene. 

IV.3. Relative pose error 

Relative pose error (RPE) in the evaluation of visual odometry methods refers to a metric used 

to quantify the accuracy of estimating the relative pose or motion between consecutive frames in 

a sequence of images captured by a camera. Visual odometry is a crucial aspect of computer vision 

and robotics that aims to determine the camera's movement and position by analyzing image 

sequences. 

The relative pose error measures the disparity between the estimated relative pose, typically 

represented by translation and rotation parameters, and the ground truth or reference pose. It 
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provides a numerical assessment of how well the visual odometry algorithm performs in terms of 

capturing the actual movement between frames. 

The relative pose error (RPE) between two consecutive images corresponds to the best particle 

and is represented in the form of impulses, as shown in Figure III.1. 

RPE calculates the drift of the trajectory estimated relative to the true trajectory as described in 

[7], [100], and [101] for the time interval ∆ at step i as  

Ei=(Qi
− 1Qi+∆)−1(Pi

−1Pi+∆).                                                             IV.1 

Where Pi +∆ is the position of the camera deduced from motion estimation g and the previous 

position Pi using the following equation: 

Pi+∆ = g × Pi                                                                                                                          IV.2 

Thus, the second part of Equation VI.1 is the estimated motion, written in the following form: 

g =  Pi
− 1

 Pi+∆                                                                                                                       IV.3 

Qi represents the pose of ground truth at time i, and ∆ denotes a temporal displacement or the 

time interval between the two frames. Qi
− 1 and Qi+∆ denote the 3D positions (translations and 

rotations with respect to a principal point in 3D space) of the camera at time steps i and i+∆ 

respectively. As in the previous demonstration, Qi
− 1 Qi+∆ represents the difference between the two 

consecutive poses of ground truth, thus the real motion carried out by the camera. 

Equation VI.1 represents the difference between the estimated and the true motion of the camera; 

this difference is represented in the calculation by the multiplication of motion using the 

Riemannian manifold (exponential and logarithmic maps in Riemannian manifolds), as described 

in [95].  

Lower RPE values signify better performance, indicating that the visual odometry method 

provides more accurate relative pose estimates. 

IV.4. Root mean square error 

Root Mean Square Error (RMSE) is a common metric used in the evaluation of visual odometry 

methods. In the context of visual odometry, RMSE provides a measure of the average deviation 

between the estimated trajectory and the ground truth trajectory. 
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The RMSE is calculated by taking the square root of the mean of the relative pose error. In the 

case of visual odometry, these values represent the positional differences between the estimated 

camera trajectory and the true camera trajectory over time. 

From a sequence of n images, m=n−∆ is the individual relative pose errors. We define the root 

mean square error (RMSE) as 

RMSE(E1:n ,∆)=(
1

𝑚
∑ ||𝑡𝑟𝑎𝑛𝑠(𝐸𝑖)||²𝑚
𝑖=1 )1/2                                 IV.4 

Where Ei is the relative pose error and trans(Ei) is the translational component of the RPE. E1:n 

indicates the relative pose error of n images, in the experiments carried out, we used a frequency 

of 30 images. Thus, to determine RMSE, first, calculate the accumulated RPE of 30 images, and 

then compute the absolute value of the translational component (without the rotational 

component). After that, calculate the mean of the RMSEi for each 30 consecutive images. 

A lower RMSE value indicates better performance, as it signifies a smaller average deviation 

between the estimated and ground truth trajectories, reflecting greater accuracy in the visual 

odometry method. 

IV.5. Conclusion 

In this chapter, three evaluation methods are explained. RMSE is the most well-known method 

to test and compare the effectiveness of visual odometry methods because each method will have 

a numerical value, making it easy to use for evaluation and comparison. The equation of this 

method is based on the relative pose error, which is the distance between the ground truth and the 

estimated trajectory. This distance is tracked in real time during the execution of our code thanks 

to a platform that also contains the 3D real and estimated paths. In addition, a 3D distribution of 

particles helps to properly supervise their behavior during code execution and determine if they 

are converging towards the true solution, which thereby helps in the development of algorithms.  

All of these methods help to evaluate the algorithm's execution during and after the experiment. 

These evaluation methods will be used in the experiments below.  
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V. Experimental setup 

V.1. Introduction 

Visual odometry is an estimation of camera motion based on vision or captured images. The 

experiments performed in this chapter used data provided by a website that publishes research and 

datasets in this field. The following section is dedicated to explaining the composition of the 

dataset and methods for utilizing it. In addition, several experiments were conducted to better 

demonstrate the effectiveness of the visual odometry methods mentioned previously. An 

evaluation will be carried out to compare these methods using different techniques. In subsequent 

experiments, the focus will be on proving the effectiveness of two of our innovative visual 

odometry methods, the GA and FA algorithms, and comparing them with two existing techniques, 

the BE and PSO methods. 

V.2. Dataset and camera 

In recent decades, extensive research in computer vision has focused on RGB images [102], 

[103]. Despite their widespread use, RGB images primarily convey only the visual appearance of 

objects within a scene. This limited scope makes it exceedingly challenging, if not impossible, to 

address certain issues, such as differentiating between foreground and background when they share 

similar colors and textures, or recognizing objects. Moreover, the visual data captured by RGB 

images are not robust against common variations such as changes in lighting, which significantly 

hinders the effectiveness of RGB-based vision algorithms in practical applications. RGB-D 

images, which incorporate both visual (RGB) and depth information, have emerged as a powerful 

data representation. This combination of depth and visual data addresses fundamental problems 

more effectively. Additionally, integrating RGB and depth information has been shown to 

significantly enhance the accuracy of high-level tasks such as image and video classification [104], 

[105]. 

The essence of an RGB-D image or video lies in the depth image, typically produced by a range 

sensor. Unlike a 2D intensity image, a range image is more resilient to changes in color, lighting, 

rotation, and scale [2]. With the introduction of the affordable 3D Microsoft Kinect sensor on 

November 4, 2010, capturing RGB-D data has become more accessible and cost-effective. 

Consequently, research into computer vision algorithms utilizing RGB-D data has gained 

significant traction in recent years. RGB-D images support a broad array of applications, including 

computer vision, robotics, construction, and medical imaging [106]. As numerous algorithms have 

been developed to address technological challenges in these fields, a growing number of RGB-D 

datasets have been established to validate and evaluate these algorithms. The availability of public 
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RGB-D datasets not only conserve time and resources for researchers but also allows for the fair 

comparison of various algorithms. 

RGB-D data has proven to be an invaluable representation of indoor scenes for addressing key 

computer vision challenges. This data combines the benefits of color images, which provide 

appearance information, with depth images, which are resistant to variations in color, lighting, 

rotation angle, and scale. The introduction of the low-cost Microsoft Kinect sensor, initially 

intended for gaming [2] but later widely adopted in computer vision, has made it easy to obtain 

high-quality RGB-D data. Recently, an increasing number of RGB-D image and video datasets 

have been created for various applications, playing a crucial role in benchmarking state-of-the-art 

methods. This thesis systematically employs popular RGB-D datasets for motion estimation using 

different approaches. The primary objective of this section is to thoroughly describe the available 

RGB-D datasets and the Kinect camera used to capture this data, thereby facilitating the selection 

of appropriate datasets for evaluating our algorithms. 

V.2.1. Kinect camera 

Over the past few years, RGB-D data obtained from the consumer-grade Kinect sensor has 

emerged as a new type of scene representation, demonstrating its potential for addressing complex 

computer vision challenges. Microsoft launched both the hardware sensor and the accompanying 

software package in November 2010, and they have achieved significant sales since then [107]. 

This device, coupled with advanced algorithms, has been utilized in a range of applications, 

including 3D simultaneous localization and mapping (SLAM) [108], [109], people tracking [110], 

object recognition [111], visual ego-motion, and human activity analysis [112], among others. 

The Kinect sensor includes a near-infrared laser that projects a refracted pattern on the 

environment, an infrared camera that captures this pattern, and a color camera situated between 

them. Since the projected pattern is predetermined, the Kinect can collect a large dataset of 

sequences that include RGB-D data as well as ground truth positions from an external system. 

A. Kinect hardware configuration 

Generally, the basic version of Microsoft Kinect consists of an RGB camera, an infrared 

camera, an IR projector, a multi-array microphone, and a motorized tilt mechanism. Figure V.1 

illustrates the components of the Kinect and two example images captured by the RGB and depth 

sensors, respectively. 

The technology used for generating the depth map is based on analyzing the speckle patterns 

of infrared (IR) laser light [113]. 



76 
 

 

Figure V.1: Hardware Kinect sensor, and two captured frames using RGB camera and 

depth camera. 

This illustrates the setup of a Kinect sensor, which includes a depth sensor and an RGB camera. 

The depth sensor consists of the IR projector and the IR camera. The IR projector emits an IR 

speckle dot pattern onto the scene, which is then captured by the IR camera. Thus, the Kinect 

camera functions as a structured light-depth sensor. The geometric relationship between the IR 

projector and the IR camera is determined through an offline calibration process. The IR projector 

projects a specific light speckle pattern into the environment, which is not visible to the RGB 

camera but detectable by the IR camera. It is possible to match the calibrated projector dot patterns 

with the observed local dot patterns in the image because every local pattern of projected dots is 

distinct. The dot pattern's relative left-to-right translation can be used to determine a point's depth. 

The object's distance from the camera-projector plane affects this translation. A process like this 

is depicted in Figure V.2.  Further information on the 3-D imaging method using structured light 

is available in [113]. 

 

Figure V.2: Measurement of Kinect camera depth 
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The following explains each Kinect hardware part: 

1) RGB Camera: Provides the video's three primary color components: red, green, and blue. 

This VGA camera can capture images at a resolution of 640×480 pixels with 8 bits per channel. It 

runs at 30 Hz.  

2) 3-D Depth Sensor: It is made up of an infrared camera and an infrared laser projector. A 

depth map that shows the distance between an object and the camera is produced by the projector 

and camera working together. The sensor can detect objects at distances ranging from 0.8m to 

3.5m and can output video with a resolution of 640×480 pixels of video at a frame rate of 30 frames 

per second. 43◦ vertically and 57◦ horizontally is the angular field of vision. 

3) The Motorized Tilt: This pivot allows you to adjust the sensor. The sensor has a 27◦ tilt range 

in both the upward and downward directions. The two interconnected and crucial internal systems 

of Kinect are an accelerometer and a mechanism for tilting the Kinect head up and down. A motor 

that has gears to move the head up and down is used to tilt the head. The accelerometer is the 

method by which Kinect ascertains the head's location. 

A tool for measuring acceleration is an accelerometer. By detecting the acceleration brought on 

by gravity, the accelerometer informs the system which way is down. This enables the device to 

calibrate to a value and position its head precisely so that it may be moved at particular angles.  

4) The microphone array has four microphone capsules and processes 16-bit audio at a sampling 

frequency of 16 kHz for each channel. 

B. Intrinsic Camera Calibration of the Kinect 

The process of determining internal camera parameters, such as the image center c, focal length 

f, and lens distortion parameters, that have an impact on imaging is known as camera calibration. 

Because of poor lens quality and manufacturing flaws in cameras, accurate camera calibration is 

necessary. This is crucial for 3D image interpretation, reconstructing world models, and enabling 

robot interaction with their environments. A flat checkerboard pattern with a defined 3D geometry 

is used in the most commonly used technique. The user must capture many shots of the 

checkerboard in various positions, making sure to fill the camera's field of vision as much as 

possible. By resolving a least squares minimization problem where the input data consist of the 

3D positions of the square corners on the checkerboard pattern and the associated 2D image 
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coordinates, the parameters are calculated. A variety of open-source tools are available for 

estimating camera parameters, including the C/C++ OpenCV calibration toolbox [114], as detailed 

in [115], [116], and [117], as well as the MATLAB camera calibration toolbox [118] and [119]. 

V.2.2. RGB-D image 

The dataset utilized in these experiments contains RGB-D frames and ground-truth information, 

which serve to evaluate visual ego-motion algorithms. This dataset comprises RGB and depth 

frames captured by a Microsoft Xbox Kinect camera connected to a laptop, as detailed in [7], along 

with the true trajectory of the camera. The recordings of these images were taken at a rate of 30 

Hz with a camera resolution of 640×480. 

We used RGB-D datasets available on the website [3] for our experiments. A Kinect camera 

was used to capture the images in an office environment. An infrared (IR) camera captured the 

pattern that creates the depth image, as shown in Figure V.3, while a near-infrared laser projects a 

refraction pattern onto the surroundings as part of the Kinect sensor. The depth of the scene in this 

region is represented by the pixels’ value. 

RGB images, as represented in Figure V.4, reconstruct color by additive synthesis from three 

primary colors: red, green, and blue; abbreviated as RGB, this is the computer color coding system 

closest to hardware. For each of the primary colors, the value is expressed in an interval ranging 

from 0 to 255, which represents the maximum value. This applies to each pixel of the RGB image. 

Additionally, for simplicity, we only use the grayscale values of the color, i.e., we define     

I = (IR + IG + IB)/3                                                                    V.1 

And, for this, the residual image of the difference between two consecutive images appears in 

gray (or what we call a black and white image).  

Using these two images, we have a dataset of a 3D scene. A large set of data sequences was 

acquired, containing both RGB-D data from the Kinect and ground truth poses delivered from the 

motion capture system. 
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Figure V.3: Depth image from the “fr2_desk” sequence. 

Each sequence is provided as a single compressed TGZ archive, which consists of the following 

files and folders: 

 “ rgb/ ”: a folder containing all color images that are stored in PNG format at 640×480 

resolution with 3 channels, 8 bits per channel (capable of representing 256 colors in each 

one). 

 “ depth/ ”: the same for the depth images, which are stored in PNG format at 640×480 

resolution with 1 channel, 16 bits per channel (but transfers the data as integers with 11 bits 

to save space. Kinect quantizes the depth measurements in a range from 1 to 10.000 values), 

distance in meters scaled by a factor of 5000. 

 “ rgb.txt ” : a text file containing a sequential list of all color image names (format: timestamp 

filename). 

 “ depth.txt ” : a text file containing a sequential list of all depth image names (format: 

timestamp filename).      

 “ imu.txt ” : a text file containing the timestamped accelerometer data (format: timestamp     

ax ay az). 

  “ kinect_params.txt ” : a text file that includes focal length in both the x and y directions      

(fx, fy) and the pixel coordinate of the principal point (cx, cy), containing the camera parameter 

data (fx cx fy cy). 

 “ groundtruth.txt ” : a text file containing the ground truth trajectory, which is stored as a 

timestamped translation vector and unit quaternion. 
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Figure V.4: RGB image from the “fr2_desk” sequence. 

   The format of each line of “groundtruth.txt” is 'timestamp tx ty tz qx qy qz qw', We explain the 

significance of each part below: 

 timestamp (float) gives the number of seconds since the Unix epoch. Unix time (also 

known as POSIX time or UNIX Epoch time) is a system for describing a point in time. 

It is the number of seconds that have elapsed since 00:00:00 Coordinated Universal 

Time (UTC), Thursday, 1 January 1970, excluding leap seconds. 

 tx ty tz (3 floats) give the position of the optical center of the color camera relative to the 

world origin as defined by the motion capture system. The difference between two 

consecutive positions represents t in Equation II.8. 

 qx qy qz qw (4 floats) give the orientation of the optical center of the color camera in the 

form of a unit quaternion relative to the world origin as defined by the motion capture 

system. The difference between two consecutive orientations can be converted into 

matrix R using the MATLAB function quat2dcm as represented in Equation II.8.  

V.2.3. Data acquisition 

Visual odometry is usually based on RGB-D images provided by a stereo camera. In our case, 

we do not have this type of camera, so we retrieved these images from the website [3]. This website 

provides the information needed to perform the experiments, such as the camera parameters used 

and the actual path traveled by this camera to capture these images. 

The RGB-D data consists of two different folders: the first contains the RGB images, and the 

second contains the depth images. These images are named by Unix time. This data also contains 

three text documents .txt files: one contains the names of the RGB images, another contains the 
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names of the depth images, and the third contains the information about the actual journey traveled 

to capture these images in the form: 'timestamp tx ty tz qx qy qz qw', where the first piece of 

information 'timestamp' represents Unix time. To link each RGB image to its depth image and the 

pose where it was captured, we exploit the information they have in common, which is Unix time. 

If we do not have an image depth timestamp equivalent to that of the RGB image, we take the 

closest depth image time, and apply the same approach with the real pose of the ground truth. Each 

pixel of the RGB image provided by the website contains three pieces of information representing 

the three colors. The first step after reading these images is to transform these three pieces of 

information into one for each pixel, which we call the grayscale image, according to Equation V.1, 

because the input image must be a single channel one. Then this frame will be subject to down 

mean sampling one or more times, depending on the DSR required as represented in Figure II.5. 

  The pose delivered with respect to the real trajectory is in the form of a 1×4 quaternion as       

'qx qy qz qw', and therefore we are required to transform it into a direction cosine matrix 3×3 using 

the MATLAB function quat2dcm to make the evaluation using Equation IV.I. The direction cosine 

matrix R, which is mentioned in Equation II.8, performs the coordinate transformation of a vector 

in inertial axes to a vector in body axes. 

Thus, we have explained, in this part, how we use the data delivered by the website to conduct 

our experiments. 

 

Figure V.5: RGB image from the “fr1/ xyz” sequence. 
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V.3. Experimental and discussion 

 

We evaluated our algorithms through various experiments in a static environment using      

RGB-D images of dimensions 640×480 with a frame rate of 30Hz. These images and their 

corresponding ground truths are available on the website [3]. 

The experiments were conducted on a personal computer of the marque Pavilion dv6, with a 

processor specification of Intel(R) Core(TM) i5 CPU M430 @ 2.27GHz (2.27GHz). The memory 

(RAM) is 3.80 Go usable, and the operating system is 64-bit. This PC uses Windows 7 Ultimate 

Edition. 

In the first part, we compare our innovative genetic algorithm with PSO and the classic method 

(Energy-Based (EB)) as mentioned in [120]. 

In our first experiment, we used 90 consecutive frames of rgbd_dataset_freiburg1_xyz. These 

sequences are intended to facilitate the development of novel algorithms with separate motions 

along and around the principal axes of the Kinect in a typical office environment (6×6 m2) as 

represented in Figure V.5. In the “xyz” sequences, the camera was moved approximately along the 

X-, Y- and Z-axis (left/right, up/down, forward/backward) with little rotational components.  

The Function IV.1 gives the distance error between estimated motion and ground truth. 

Therefore, using this function, we compute the camera trajectory error of different methods 

through 90 consecutive images, and we represent these results in the same graph in Figure V.6. 

The evolution of distance error indicates that the accumulated error of 90 frames related to the 

classic method is the least, but the quasi-stabilization of the error of the PSO method in the last 60 

frames allowed it to outperform in RMSE, as we can see in Table V.1, which is considered the 

most important evaluation criterion in visual odometry. 

Although the final accumulation error of GA is greater, the error almost maintained its value 

between the beginning and the end of the last thirty frames, which helped it improve the value of 

translational components of RPE and thus outperform the RMSE of the classic method (BE). 
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Figure V.6: Camera trajectory error of GA, PSO, and classic method (BE) using a part of the 

fr1_xyz dataset. 

The representation in the 3D scene of the truth and estimated camera trajectory clearly shows 

the effectiveness of the motion estimation methods. Figures V.7, V.8, and V.9 show the camera 

trajectory using the fr1_xyz dataset of ground truth and different motion estimation methods: 

based-energy and metaheuristic methods. 

 

Figure V.7: trajectory of the true camera and the energy-based method using a part of the 

fr1_xyz dataset. 

Through ninety RGB-D frames and following a back-and-forth path, the three methods 

produced very acceptable results, which confirm that the representation error in Figure V.6 is very 

small compared to the distance traveled, and there wasn't any deviation away from the true 

trajectory. 
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Figure V.8: True camera trajectory with the GA method using a part of the fr1_xyz dataset. 

 

Figure V.9: The true trajectory of the camera and the PSO method trajectory using a part of 

the fr1_xyz dataset. 

In the second experiment, we used a sequence of 60 consecutive frames from 

rgbd_dataset_freiburg2_desk, or fr2_desk. For this sequence, the scene is a large industrial hall 

(10×12 m2), which contains an office environment in the middle of the motion capture area, 

consisting of two tables with various accessories like a monitor, a keyboard, and books. The 

distance error between the ground truth and the trajectory of GA, PSO, and the energy-based 

method is represented in Figure V.10. We notice that in the first thirty frames, the GA method 
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achieved the least distance error compared to the other methods. This is clearly shown in Table 

V.I, which demonstrates the superiority of the GA, although the final result of the GA was close 

to those of the classic method. 

 

 

Figure V.10:  The camera trajectory error of GA, PSO, and the classic method using a part of 

the fr2_desk dataset. 

 

The representation in the same 3D scene of the true and estimated camera trajectory clearly 

shows the effectiveness of the motion estimation method. Figure V.11 shows the camera trajectory 

using the fr2_desk dataset of ground truth and different motion estimation methods: classic and 

meta-heuristic methods. The three methods gave acceptable results, and we observed that the 

corresponding trajectories are very close to the true trajectory. However, for the trajectory 

corresponding to the GA method, we notice that it is the closest to the true trajectory, which 

confirms through this experiment that this innovative method competes with the previous methods: 

classic and PSO, and may even be better. This confirms the results previously obtained from Figure 

V.11 and Table V.1. 
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Figure V.11: The true trajectory of the camera and GA, PSO, and Classic method (BE) 

trajectories using a part of the fr2_desk dataset. 

 

Table V.1 shows the root mean square error (RMSE) computed using the Function IV.4, for the 

two previous methods: GA, and PSO, as well as the results of the method classic presented in [5].  

 

Table V.1: Root mean square error (RMSE) of drift in meters per second for different 

methods relative to ground truth. 

Dataset GA PSO Classic (BE) 

fr1_xyz 0.04062 m 0.03598 m 0.04827 m 

fr2_desk 0.01856 m 0.02836 m 0.02524 m 

 

 

As a summary and synthesis of the results of the first phase of the experiments, we conclude that 

for the dataset (freiburg1_xyz), our method using GA has proven its efficacy in comparison to the 

classic method. Regarding the dataset (freiburg2_desk), our innovative method using GA has 

successfully proven its efficiency compared to both methods used in the experiments PSO and the 

classic method. 



87 
 

In the second phase, we evaluated our innovative FA method by conducting two experiments 

in a static environment and using RGB-D images as mentioned in [121]. These images and their 

corresponding ground truth are available on the website [3]. First, we used 60 images of 

rgbd_dataset_freiburg2_desk. Figure V.12 represents the distance between the trajectory of 

ground truth and the trajectory of the three methods used in our experiment to estimate the motion 

as given by Equation III.33. 

Our method using FA has proven its efficacy compared to the classic method and PSO in the 

first 25 consecutive frames. After that, FA maintains a more valuable RPE but is close to other 

methods.  

 

Figure V.12: the camera trajectory error of FA, PSO, and the Classic method (BE) using a part 

of the fr2_desk dataset. 

 

The FA method produced acceptable results in this experiment, which are shown in Figure 

V.12. The trajectory in the 3D scene of the FA is parallel and close to the true trajectory, and the 

result is similar to the classic method (EB) and PSO. 
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Figure V.13: The true camera trajectory with FA, PSO, and the classic method (BE) 

trajectories using a part of the fr2_desk dataset. 

 

   Table V.2 gives the RMSE of FA, PSO, and the classic method based on Function IV.4 as 

described by Dib  [9]. We noticed the RMSE of FA in the previous experiment, which was slightly 

greater than the RMSE of the other methods, but it did not affect its trajectory in the 3D scene. 

 

Table V.2: Root mean square error (RMSE) of drift in meters per second of different methods 

compared with ground truth. 

dataset FA PSO Classic  (BE) 

fr2_desk 0.03376 m 0.02836 m 0.02524 m 

fr1_xyz 0.03176m 0.03598 m 0.04827 m 

  

In the second experiment, we utilized rgbd_dataset_freiburg1_xyz for 90 consecutive images. 

We can evaluate our novel method more accurately as the camera's actual trajectory is one of back 

and forth.  
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The representation of the 3D landmarks of the true trajectory and the trajectories of previous 

methods in the same graph (Figures V.14, V.15, and V.16) shows the effectiveness of these 

methods. The three methods gave acceptable results, where we noticed the corresponding 

trajectories are very close to the true trajectory in black. 

 

Figure V.14: The true trajectory and estimated trajectory using FA in a 3D scene. 

 

Figure V.15: The true trajectory and estimated trajectory using the classic method (EB) in a 

3D scene. 
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Figure V.16: The true trajectory and estimated trajectory using PSO on a 3D scene. 

 
 

The evolution of the distance error RPE in Figure V.17 indicates that the FA method is more 

efficient in motion estimation than the PSO and classic method because the evolution of the error 

value is more stable for every sequence of 30 images. In contrast, the graphic curve of the classic 

method in the second stage (the second thirty of the image sequence) increased greatly, and in the 

third stage, there was a significant decrease, which made the RMSE value greater. The same note 

applies to the first stage of the PSO method. Additionally, Table V.2 confirmed that FA, in this 

experiment, gave excellent results and outperformed the other methods. 
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Figure V.17: Camera trajectory error of FA, PSO, and the Classic method using a part of the 

fr1_xyz dataset.  

 

We conducted two important experiments to prove the efficiency of our innovative algorithm 

FA. Drawing the trajectory in a 3D scene shows that our method achieves the goal of estimating 

the trajectory using images coming from a mobile camera. 

The second experiment, which used a large number of images and a complex true trajectory, 

clearly demonstrates the superiority of our method over other methods, as shown in Figure V.17 

and Table V.2.   

V.4.    Conclusion 

In this thesis, we have presented four optimization methods; among these methods, there are 

two newly created ones. Two types of experiments were conducted with two different groups of 

RGB-D images, fr2_desk, and fr1_xyz, to evaluate these methods. This evaluation was performed 

by comparing each new method, GA or FA, with the two existing methods, PSO and the classical 

EB method. All four methods produced acceptable results based on the RMSE values, 

demonstrating their effectiveness for use in real-world applications in visual odometry.   

 

 

 



92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion and future work 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

Conclusion and future work 

 

Visual odometry is a technique for estimating motion using images captured by a camera 

mounted on the head of a mobile robot or moving object. In this work, a comprehensive 

exploration and analysis of various optimization methods for dense visual odometry are presented 

in a static scene. The objective of this research is to enhance the accuracy and efficiency of visual 

odometry for use in crucial fields such as robotics, augmented reality, and autonomous navigation. 

The investigation involves the development and evaluation of four optimization methods, with a 

focus on their applicability and performance in dense visual odometry tasks. 

This thesis commences with a review of related work, providing a foundation for understanding 

the existing landscape of visual odometry and optimization techniques. The review highlights the 

challenges associated with dense visual odometry and underscores the significance of optimization 

methods in addressing these challenges. It serves as the backdrop against which the novel 

contributions of this research are framed. 

After that, a literature review of visual odometry is presented, along with an explanation of how 

this physical problem is modeled as a mathematical equation. 

The third part of the thesis introduces the four optimization methods under consideration: the 

three metaheuristic methods are the Genetic Algorithm (GA), the Firefly Algorithm (FA), and the 

Particle Swarm Optimization (PSO) method, as well as the classical Energy-Based (EB) method, 

which is considered an exact method. Each method is carefully explained, detailing its underlying 

principles. 

Following the methodological introduction of different optimization methods, the core of the 

thesis delves into experimental design and implementation. Two distinct sets of experiments are 

conducted using RGB-D image data from fr2_desk and fr1_xyz. These experiments aim to evaluate 

and compare the performance of each optimization method in the context of dense visual 

odometry. 

The evaluation metrics employed in the experiments include the Root Mean Square Error 

(RMSE), a widely accepted measure for assessing the accuracy of dense visual odometry. The 

results were carefully analyzed, and comparisons were conducted between two novel methods (GA 

and FA) and two existing methods (PSO and EB). These results provide valuable insights into the 

strengths of each optimization approach. 
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One of the noteworthy findings is the superior performance of GA and FA in certain 

experiments, displaying their effectiveness in optimizing dense visual odometry. The adaptability 

of these novel methods to diverse datasets and their ability to handle complex optimization 

problems is demonstrated. In the future, we plan to extend this work to estimate body motion in a 

dynamic scene. 

Visual odometry (VO) is a technology that plays a crucial role in various domains, leveraging 

computer vision and sensor fusion techniques to estimate the motion of a camera or sensor system 

in a given environment. Visual odometry is essential for autonomous robots to navigate and move 

through their surroundings. By continuously analyzing visual input from cameras, robots can 

determine their position and adjust their movements accordingly. 

Visual odometry helps autonomous vehicles determine their precise location by tracking the 

movement of the vehicle through visual input. This is critical for safe and reliable navigation in 

real-world scenarios. It assists in recognizing obstacles and adjusting the robot's path accordingly. 

It enhances the vehicle's ability to respond dynamically to changes in the environment. 

 Visual odometry is used in AR and VR applications to enhance spatial awareness. It enables 

the accurate overlay of virtual objects onto the real-world environment, creating a seamless and 

immersive experience. 

In summary, visual odometry plays a vital role across various technology domains by providing 

accurate and real-time information about the motion and position of devices or systems. It 

enhances navigation, control, and perception capabilities, contributing to the development of 

advanced and intelligent technologies. 

Finally, we hope that this comprehensive work in the field of visual odometry serves as a 

support for future research by students and researchers, further enriching the domain and 

advancing its application in the local development of robots, drones, autonomous vehicles, and 

other innovations that will elevate our country to the forefront of technological advancement. We 

will devote ourselves and all our efforts and resources to realizing this goal. 

 

  

 

 

 

 

 



95 
 

Annexes 

 

Annex A 

Calculation of the Jacobian components Ji 

 

From Equation III.4, the i-th row of Jacobian Ji(ξk) is equal to the derivative of image residual 

ri with respect to the camera pose parameters ξk. According to the chain rule, we can find this 

equation: 

Ji(ξk)= 
 𝜕 𝑟𝑖  

𝜕 𝜉
  |

𝜉=𝜉𝑘 
 = 

 𝜕 𝑟𝑖 

𝜕𝑃(𝑥,𝑦)
  .
 𝜕𝑃(𝑥,𝑦) 

𝜕 𝜉
|
𝜉=𝜉𝑘

                                                    A.1 

We can compute the derivative of image ri with respect to frame coordinates 𝑃(𝑥, 𝑦) through 

the gradient of each pixel in the image in the direction of x and y as follows: 

 𝜕 𝑟𝑖 

𝜕𝑃(𝑥,𝑦)
  = gradient (𝑟𝑖) = ∇𝐼  = [ ∇𝐼𝑥  , ∇𝐼𝑦]                                                           A.2 

Where ∇𝐼𝑥 (resp. ∇𝐼𝑦) denotes the gradient of image I in the direction x (resp. y).  

Thus, we have the following equation 

Ji(ξk)= 
 𝜕 𝑟𝑖  

𝜕 𝜉
  |

𝜉=𝜉𝑘 
= gradient (𝑟𝑖). 

 𝜕𝑃(𝑥,𝑦) 

𝜕 𝜉
|
𝜉=𝜉𝑘

 = ∇𝐼 .  
 𝜕𝑃(𝑥,𝑦) 

𝜕 𝜉
|
𝜉=𝜉𝑘

= ∇𝐼 . Jw(ξk)    A.3 

Using the decomposition theorem, we can decompose the warping Jacobian Jw as follows: 

Jw(ξk) =
 𝜕𝑃(𝑥,𝑦) 

𝜕 𝜉
 | ξ= ξk = 

𝜕𝑃(𝑥,𝑦) 

𝜕𝑃′(𝑋′,𝑌′,𝑍′) 
 .  

 𝜕𝑃′(𝑋′,𝑌′,𝑍′)

𝜕𝜉 
   | ξ= ξk = JP . Jξ (ξk)             A.4 

According to the perspective projection function described in the Equations II.6, we can 

calculate JP the derivative of image coordinates 𝑃(𝑥, 𝑦) with respect to the world point 

𝑃′(𝑋′, 𝑌′, 𝑍′) as below: 

Jp=
𝜕𝑃(𝑥,𝑦) 

𝜕𝑃′(𝑋′,𝑌′,𝑍′) 
                                                                                                 A.5 

The Jacobean Jp  is a 2×3 matrix, and it is written as follows: 

JP =  [ 

𝜕𝑃𝑥

𝜕𝑋′
𝜕𝑃𝑥

𝜕𝑌′
𝜕𝑃𝑥

𝜕𝑍′
   

𝜕𝑃𝑦

𝜕𝑋′

𝜕𝑃𝑦

𝜕𝑌′

𝜕𝑃𝑦

𝜕𝑍′

 

 

] =  

[
 
 
 

 

𝑓𝑥

𝑍′
  0 −

𝑓𝑥.𝑋
′

𝑍′2

   

0  
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌

′

𝑍′2
 

 

 ]
 
 
 

                                              A.6 

 

Jξ (ξk) is the Jacobian matrix 2×6 of the exponential map with respect to ξ, and it is calculated 

as: 

Jξ (ξk)= 
 𝜕𝑃′(𝑋′,𝑌′,𝑍′)

𝜕𝜉 
   | ξ= ξk = [ 𝐼 [𝑃′(𝑋′, 𝑌′, 𝑍′)]×

 
 ]                               A.7 
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Where          𝑃′(𝑋′, 𝑌′, 𝑍′) = [ 𝑋′, 𝑌′, 𝑍′ ]                                             A.8 

 

And the operator [𝑃′(𝑋′, 𝑌′, 𝑍′)]×
 
 creates a 3×3 skew symmetric matrix from a 3×1 vector: 

 

[𝑃′(𝑋′, 𝑌′, 𝑍′)]×
 
= [

0 −𝑍′ 𝑌′

𝑍′ 0 −𝑋′

−𝑌′ 𝑋′ 0
]                                                     A.9 

We point out that I denotes a 3×3 identity matrix. 

So, we conclude from the above that the equation Jξ is  

Jξ (ξk)= [
1 0 0 0 −𝑍′ 𝑌′

0 1 0 𝑍′ 0 −𝑋′

0 0 1 −𝑌′ 𝑋′ 0
]                                                   A.10 

 

The warping Jacobian matrix Jw is calculated as: 

 

Jw (ξk) = JP . Jξ (ξk) = 

[
 
 
 

 

𝑓𝑥

𝑍′
  0 −

𝑓𝑥.𝑋
′

𝑍′2

   

0  
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌

′

𝑍′2
 

 

 ]
 
 
 

. [
1 0 0 0 −𝑍′ 𝑌′

0 1 0 𝑍′ 0 −𝑋′

0 0 1 −𝑌′ 𝑋′ 0
]             A.11 

 

Thus, the form of the matrix Jw is as shown below 

Jw (ξk) = JP . Jξ (ξk) =  [

𝑓𝑥

𝑍′
0 −

𝑓𝑥.𝑋′

𝑍′²

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌′

𝑍′²

 
−
𝑓𝑥.𝑋′.𝑌′

𝑍′²
𝑓𝑥 +

𝑓𝑥.𝑋′²

𝑍′²
−
𝑓𝑥.𝑌′

𝑍′

−𝑓𝑦 −
𝑓𝑦.𝑌′²

𝑍′²

𝑓𝑦.𝑋′.𝑌′

𝑍′²

𝑓𝑦.𝑋′

𝑍′

]        A.12 

 

In the previous analysis, we had the following form: 

Ji(ξk)=
 𝜕 𝑟𝑖  

𝜕 𝜉
  | ξ= ξk =

 𝜕 𝑟𝑖 

𝜕𝑃(𝑢,𝑣)
  . 

 𝜕𝑃(𝑢,𝑣) 

𝜕 𝜉
| ξ= ξk = gradient (𝑟𝑖). Jw(ξk)  = ∇It+1 . Jw(ξk)       A.13 

The final Jacobian is written as follows: 

Ji(ξk)= [ ∇𝐼𝑡 + 1, 𝑥  , ∇𝐼𝑡 + 1, 𝑦 ]. [

𝑓𝑥

𝑍′
0 −

𝑓𝑥.𝑋′

𝑍′²

0
𝑓𝑦

𝑍′
−
𝑓𝑦.𝑌′

𝑍′²

 
−
𝑓𝑥.𝑋′.𝑌′

𝑍′²
𝑓𝑥 +

𝑓𝑥.𝑋′²

𝑍′²
−
𝑓𝑥.𝑌′

𝑍′

−𝑓𝑦 −
𝑓𝑦.𝑌′²

𝑍′²

𝑓𝑦.𝑋′.𝑌′

𝑍′²

𝑓𝑦.𝑋′

𝑍′

]      A.14 
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Annex B 

In this part, we have provided the values of the constants for the important equations used to 

execute the algorithms of the considered optimization methods.  

Equation number Constants value  

II.6 𝑓𝑥=525.0, 𝑓𝑦=525.0, 𝑐𝑥=319.5, 𝑐𝑦=239.5, 

III.22 pm = 0.1 

III.24 w=0.72984, c1=1.496172, c2=1.496172, 

III.37 𝑘 =1, 𝜑 =4.1, χ =0.72984, 

III.41 β0=2, γ=1, αt=0.2, 

 

Annex C 

MATLAB code of Lie Algebra and Lie Group Mapping. 

Here is the code for se3 -> SE3 where ksi= ξ 

      function g = RBMotion(ksi) 

% Project: Dense Visual Odometry 

% Function: RBMotion 

% 

% Description: 

%   Rigid Body Motion Calculation (Lie Algebra) 

%  g: (SE3) Rigid body motion matrix (4*4), which describe the camera  

%  motion 

%   between the two successive snapshot. 

%   ksi: (se3) A 6*1 matrix which includes camera motion parameters (ksi   

%   = (v1 v2 v3 w1 w2 w3)'). 

%    

% 

%   [ SE3 ] = se3_SE3( se3 ) 

%   se3_SE3 Exponential Mapping from Lie Algebra to Lie Group 

%   each of the six elements on multiplication with the generator matrices 

%   as follows give the complete matrix: 

%   se3 = v1* g1 + v2* g2 + v3* g3 + w1* g4 + w2* g5 + w3* g6 

%   To map se3 to SE3 we need to perform e^(se3) 

https://math.stackexchange.com/questions/1312314/lie-algebra-to-lie-group-mapping
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%   This can be done by following the algorithm: 

%    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

g = eye(4); 

v = ksi(1:3); 

w = ksi(4:6); 

  

len_w = sqrt(dot(w,w)); 

Wx = TwistMatrix(w); 

if len_w < 1e-7 

R = eye(3) + Wx + 0.5*Wx*Wx; 

 

V = eye(3) + 0.5*Wx + Wx*Wx/3; 

else 

R = eye(3) + sin(len_w)/len_w*Wx + (1- cos(len_w))/len_w^2*(Wx*Wx); 

V = eye(3) + (1-cos(len_w))/len_w^2*Wx + (len_w-...         

sin(len_w))/len_w^3*(Wx*Wx); 

end 

t = V*v'; 

  

g(1,1:3) = R(1,:); 

g(2,1:3) = R(2,:); 

g(3,1:3) = R(3,:); 

g(1:3,4) = t; 

Here is the code for SE3 -> se3 

 

function ksi = LieLogrithm(g) 

% Project: Dense Visual Odometry 

% Function: LieLogrithm 

% 

% Description: 

%   Get the camera motion parameter ksi from its corresponding rigid  

%   body 
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%   motion matrix. 

% 

% Example: 

%   ksi = LieLogrithm(g) 

%    

%   ksi: (se3) The camera motion parameters (a 6*1 matrix  

%   (v1,v2,v3,w1,w2,w3)') 

%   g  : (SE3) The rigid body motion matrix (a 4*4 matrix) 

%   [ se3] = SE3_se3_back( SE3 ) 

%   SE3_se3_back Logarithm Mapping from Lie Group to Lie Algebra 

%   To map SE3 to se3 we need to perform log^(SE3) 

%   This can be done by following the algorithm: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R = g(1:3,1:3); 

t = g(1:3,4); 

theta = acos((trace(R)-1)/2); 

if theta < 0.001 

    w = (0.5*[R(3,2)-R(2,3),R(1,3)-R(3,1),R(2,1)-R(1,2)])'; 

else 

    w =(0.5*theta/sin(theta)*[R(3,2)-R(2,3),R(1,3)-R(3,1),R(2,1)- ... 

R(1,2)])'; 

end 

len_w = sqrt(dot(w,w)); 

Wx = TwistMatrix(w); 

if len_w < 0.001 

    V = eye(3) + 0.5*Wx + (Wx*Wx)/3; 

else 

    V =eye(3) + (1-cos(len_w))/len_w^2*Wx + (len_w-... 

sin(len_w))/len_w^3*(Wx*Wx); 

end 

v = V\t; 

ksi = [v',w']; 
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