

Introduction to QUANTUM CRYPTOGRAPHY

Thomas Vidick | Stephanie Wehner

Introduction to Quantum Cryptography

Thomas Vidick

*California Institute of Technology, USA
Weizmann Institute of Science, Israel*

Stephanie Wehner

Delft University of Technology, The Netherlands

Contents

<i>Preface</i>	<i>page ix</i>
1 Background Material	1
1.1 Mathematical Notation	1
1.2 What Are Quantum Bits?	4
1.3 Multiple Qubits	6
1.4 Combining Qubits Using the Tensor Product	9
1.5 Simple Measurements	13
1.6 Unitary Transformations and Gates	21
1.7 The Bloch Sphere	26
1.8 Implementing Quantum Cryptography	28
Chapter Notes	36
Problems	36
Quiz Solutions	37
Cheat Sheet	38
2 Quantum Tools and a First Protocol	40
2.1 Probability Notation	40
2.2 Density Matrices	41
2.3 General Measurements	53
2.4 The Partial Trace	58
2.5 Secure Message Transmission	63
Chapter Notes	72
Problems	72
Quiz Solutions	75
Cheat Sheet	76
3 Quantum Money	78
3.1 A (Too) Simple Quantum Money Scheme	78
3.2 Wiesner's Quantum Money	79
3.3 Quantum Channels	83
3.4 Attacks on Wiesner's Scheme	86
3.5 The Elitzur–Vaidman Bomb Tester	91
Chapter Notes	96
Problems	96
Quiz Solutions	98
4 The Power of Entanglement	99
4.1 Entanglement	99
4.2 Purifications	102

4.3 Two Applications	107
4.4 Bell Nonlocality	110
4.5 The Monogamy of Entanglement	115
Chapter Notes	119
Problems	119
Quiz Solutions	123
Cheat Sheet	124
5 Quantifying Information	125
5.1 When Are Two Quantum States Almost the Same?	125
5.2 What It Means to Be Ignorant	130
5.3 Measuring Uncertainty: The Min-Entropy	133
5.4 Uncertainty Principles: A Bipartite Guessing Game	140
5.5 Extended Uncertainty Relation Principles: A Tripartite Guessing Game	144
Chapter Notes	149
Problems	149
Quiz Solutions	151
Cheat Sheet	152
6 From Imperfect Information to (Near) Perfect Security	153
6.1 Privacy Amplification	153
6.2 Randomness Extractors	155
6.3 Solving Privacy Amplification Using Extractors	161
6.4 An Extractor Based on Hashing	161
Chapter Notes	172
Problems	172
Quiz Solutions	175
7 Distributing Keys	176
7.1 Honest and Dishonest	176
7.2 Secure Key Distribution	177
7.3 Distributing Keys Given a Special Classical Channel	180
7.4 Information Reconciliation	183
7.5 Everlasting Security	188
Chapter Notes	190
Problems	190
Quiz Solutions	193
8 Quantum Key Distribution Protocols	194
8.1 BB'84 Quantum Key Distribution	194
8.2 A Modified Protocol	201
8.3 Security of BB'84 Key Distribution	204
8.4 Correctness of BB'84 Key Distribution	211
Chapter Notes	214
Problems	214
Quiz Solutions	217

9 Quantum Cryptography Using Untrusted Devices	218
9.1 The DIQKD Protocol	218
9.2 Security of Device-Independent Quantum Key Distribution	222
9.3 Testing EPR Pairs	228
Chapter Notes	235
Problems	235
Quiz Solutions	240
10 Quantum Cryptography beyond Key Distribution	241
10.1 Coin Flipping	241
10.2 Two-Party Cryptography	246
10.3 Oblivious Transfer	250
10.4 Bit Commitment	252
10.5 Kitaev's Lower Bound on Strong Coin Flipping	258
Chapter Notes	263
Problems	264
Quiz Solutions	269
11 Security from Physical Assumptions	270
11.1 The Noisy Storage Model	271
11.2 1-2 Oblivious Transfer in the Noisy Storage Model	272
11.3 Security from Quantum Uncertainty	274
Chapter Notes	280
Problems	280
Quiz Solutions	283
12 Further Topics around Encryption	284
12.1 The Key Length Requirements for Secure Quantum Encryption	284
12.2 Encryption with Certified Deletion	292
Chapter Notes	300
Problems	300
Quiz Solutions	301
13 Delegated Computation	302
13.1 Definition of the Task	302
13.2 Verifiable Delegation of Quantum Circuits	305
13.3 Delegation in the Measurement-Based Model	311
13.4 Classically Delegating to Two Quantum Servers	316
Chapter Notes	325
Problems	325
Quiz Solutions	326
<i>Index</i>	327