JEAN BACON & TIM HARRIS

1!

A R
. 2-005-588-1

&

f,

Sy

Operating Systems

Concurrent and Distributed Software Design

Jean Bacon and Tim Harris

University of Cambridge

A
V V ADDISON-WESLEY

An imprint of Pearson Education

Harlow, England + London « New York « Boston » San Francisco « Toronto « Sydney « Singapore s Hong Kong
Tokyo = Seoul « Taipei « New Delhi « Cape Town « Madrid « Mexico City « Amsterdam « Munich « Paris = Milan

Brief contents

Preface

1 System design requirements

PART | SYSTEM DESIGN: TECHNOLOGY AND PRINCIPLES

System structure and dynamic execution

The hardware interface, I/0 and communications
Support for processes

Memory management

File management

Fundamentals of distributed systems

Security

PART Il CONCURRENCY CONTROL IN MAIN MEMORY

9 System structure

10 Low-level synchronization: Implementation
11 Low-level synchronization: Algorithms

12 IPC with shared memory

13 IPC and system structure

14 IPC without shared memory

15 Crash resilience and persistent data

16 Distributed IPC

PART lll TRANSACTIONS

17 Composite operations
18 Resource allocation and deadlock

vi | Brief contents

19
20
21
22
23

Transactions
Concurrency control
Recovery

Distributed transactions
Distributed computations

PART IV CASE STUDIES

24
25
26
21
28
29
30

Classical UNIX

LINUX, Solaris and contemporary UNIX
Extensible systems

Windows 2000

The World Wide Web

Middleware

Transaction processing monitors and systems

Appendix: Evolution of computer systems
Bibliography

Glossary

Author index

Subject index

Preface

System design requirements

Inherently concurrent systems

1.1.1 Real-time and embedded systems

1.1.2 Operating systems and distributed operating systems
1.1.3 Window-based interfaces

1.1.4 Database management and transaction processing systems
1.1.5 Middleware

1.1.6 Distributed systems: The World Wide Web
Supporting potentially concurrent applications

1.2.1 Replicated code, partitioned data

1.2.2 Pipelined processing

1.2.3 Tree-structured algorithms

1.2.4 Shared data

1.2.5 Application areas

1.2.6 Requirements for supporting concurrent applications
Architectures for software systems

1.3.1 System classification

1.3.2 Conventional uniprocessors

1.3.3 Shared-memory multiprocessors

1.3.4 Multicomputer multiprocessors

1.3.5 Dataflow (data-driven) architectures

1.3.6 Architectures for functional languages

1.3.7 Network-based systems

1.3.8 Summary of hardware bases for concurrent systems
Defining a concurrent system

Systems implementation requirements

Security, protection and fault tolerance in system design
Exercises

PART | SYSTEM DESIGN: TECHNOLOGY AND
PRINCIPLES

2
2.1

System structure and dynamic execution

System structure: Conceptual views

2.1.1 Types and abstract data types

2.1.2 Interfaces

2.1.3 State

System structure: Implementational views
2.2.1 Object-oriented programming

2.2.2 Interfaces

2.2.3 Implementation

2.2.4 Object interactions

2.2.5 The life-cycle of an object

2.2.6 Specialization and generalization
2.2.7 Composition

2.2.8 Object collaboration

The process concept

2.3.1 Process by analogy

2.3.2 Multi-threaded processes

Operating system functions

Operating system invocation and protection
2.5.1 Protection of the operating system
Operating system structure

2.6.1 Layering

2.6.2 Microkernels

Object structuring within and supported by operating systems
2.7.1 Object naming

2.7.2 Object protection, invocation and sharing
2.7.3 Unified object mechanisms
Distributed object systems, platforms and middleware
Security and protection

2.9.1 An object model for access control
Summary

Study questions and exercises

The hardware interface, 1/0 and
communications

Overview

Device interfacing

3.2.1 Processor and device speeds

3.2.2 CISC and RISC computers

3.2.3 A simple device interface

3.2.4 Polling and interrupts

3.2.5 Interrupt handling: Priorities

3.2.6 Interrupt vectors

3.2.7 The RISC approach to interrupt handling
3.2.8 Direct memory access (DMA) devices
3.2.9 Memory-mapped /O

3.2.10 Timers

Contents \ ix

Exceptions

3.3.1 Exceptions caused by a running program

3.3.2 System (privileged) mode and user (unprivileged) mode

3.3.3 The system call mechanism

3.3.4 Summary of the use of the exception mechanism

3.3.5 User-level exception handling

Multiprocessors

User-level input and output

3.5.1 Buffers and synchronization

3.5.2 Synchronous and asynchronous input and output

Communications management

Communications networks, interfaces and drivers

3.7.1 Ethernet

3.7.2 Ring-based LANs

3.7.3 Examples of network interfaces

Communications software

3.8.1 The ISO reference model for Open Systems
Interconnection

3.8.2 Connection-oriented and connectionless
communication

Communications handling within and above an

operating system

Summary

Exercises

Support for processes

Use of processes in systems

Processes and processors

Process state

4.3.1 Saving process state

4.3.2 Context switching

Synchronizing with the hardware: Events and the WAIT
operation

4.4.1 Race conditions

4.4.2 Event and process objects

The process data structure

Scheduling: General approaches

4.6.1 Unary, binary and general scheduling

4.6.2 Process behaviour and priority

Scheduling for shared-memory multiprocessors
Process scheduling to meet real-time requirements
4.8.1 System structure and response to events

Process abstraction and implementation

Operating system structure and placement of processes
Multi-threaded process implementation

Processes in languages, runtime systems and
operating systems

Process state in language systems and operating systems
4.13.1 Activation records and the runtime stack

4.13.2 The heap and garbage collection

i

s = = =

x | Contents

Sequential programs with system calls

Evolution of concurrency in programming languages
4.15.1 Examples

4.15.2 Concurrency from a sequential language
4.15.3 Coroutines

4.15.4 Processes

4.15.5 Issues arising

Implementation of processes in language systems
4.16.1 Specification, creation and termination

4.16.2 Parental control of processes

4.16.3 Exception handling in programming languages
4.16.4 Storage allocation for language-level processes
Thread package architectures

Java threads and exceptions

Summary

Study questions and exercises

Memory management

Memory management

The memory hierarchy

The address space of a process

5.3.1 Address binding

5.3.2 Static binding

5.3.3 Dynamic binding

5.3.4 Hardware-assisted relocation and protection

Segmented virtual memory

5.4.1 Segmented virtual addresses

5.4.2 Address translation

5.4.3 Segmentation: Summary

Paged virtual memory

5.5.1 Address translation

5.5.2 Copy-on-write paging

5.5.3 Paging: Summary

Combining segmentation and paging

5.6.1 Hardware-supported segments, hardware-supported
pages

5.6.2 Software-supported segments, hardware-supported
pages

Operating system data structures

5.7.1 Multi-level page tables

5.7.2 Guarded page tables

5.7.3 Inverted page tables

5.7.4 Managing pages in main memory

5.7.5 Managing pages on backing store

5.7.6 Page replacement

An example of a memory management unit (MMU)

Memory management in system design

Summary

Exercises

o

th o

W s N

File management

File management

An overview of filing system functions

File and directory structure

6.3.1 Pathnames and working directories
6.3.2 File sharing: Access rights and links
6.3.3 Existence control

The filing system interface

6.4.1 The directory service as type manager
6.4.2 The directory service interface

6.4.3 The file service interface

The filing system implementation

6.5.1 Hard links and symbolic links

6.5.2 Locating a file on disk

6.5.3 Storing new media types

Modern file system design

6.6.1 Logical volume management

6.6.2 Striping and mirroring

6.6.3 Journaling and logging
Network-based file servers

6.7.1 Open and closed storage architectures
6.7.2 The storage service interface

6.7.3 Location of function

6.7.4 Stateless servers: NFS

6.7.5 Write-mostly functionality and caching
6.7.6 File identifiers and protection at the storage service level
Integrating virtual memory and storage
6.8.1 File mapping

6.8.2 Object mapping

Summary

Exercises

Fundamentals of distributed systems

Introduction

Evolution of distributed systems for the workplace
Personal computing

Model and software architecture

Special characteristics of distributed systems
Time in distributed systems

7.6.1 Physical earth time

7.6.2 Use of time by distributed processes

7.6.3 Logical time: Event ordering

7.6.4 Algorithms for clock synchronization
Naming

7.7.1 Creating unique names

7.7.2 Pure and impure names

7.7.3 An example: The internet Domain Name Service (DNS)
7.7.4 Naming, name services and binding

7.7.5 Attributes stored by name services

Contents | xi

Xii ‘ Contents

Mobile users, computers and objects
7.8.1 Mobile computers

7.8.2 Pervasive computing
Summary

Exercises

Security

Scenarios and security requirements
8.1.1 Client-server interactions

8.1.2 Importing source code and object code
8.1.3 Connection to home

Threats and risk analysis

Approaches to encryption

8.3.1 Secret key encryption

8.3.2 Public key encryption

8.3.3 One-way functions

Algorithms

8.4.1 Substitution ciphers

8.4.2 Transposition ciphers

8.4.3 Rotor machines (e.g. Enigma)
8.4.4 Encryption by computer
Protocols

8.5.1 Secure communication

8.5.2 Session keys in hybrid protocols
8.5.3 Authentication

8.5.4 Replay attacks and ‘nonces’
Examples

8.6.1 X.509 certification

8.6.2 Simple Public Key Infrastructure (SPKI)
8.6.3 Authentication and key exchange
8.6.4 Pretty Good Privacy (PGP)

8.6.5 Secure Socket Layer (SSL)
Summary

Exercises

PART Il CONCURRENCY CONTROL IN
MAIN MEMORY

9
9.1

9.2
9.3
9.4
9.5
9.6

System structure

Processes sharing an address space

9.1.1 Placement of processes within the subsystem
Processes in separate address spaces

Sharing the operating system

Summary of process placement in the two models
Requirements for process interaction

Types of process interaction

I Wi

A process interaction

9.7.1 Problems when processes share data in memory

9.7.2 Problems when processes do not share data in memory
9.7.3 Granularity of concurrency

Definition of single concurrent actions

Study questions and exercises

Low-level synchronization: Implementation

Process synchronization compared with event signal and wait

Mutual exclusion

Hardware support for mutual exclusion

10.3.1 Mutual exclusion without hardware support

Semaphores

Styles of use of semaphores

10.5.1 Mutual exclusion

10.5.2 Condition synchronization

10.5.3 Multiple instances of a resource

Implementation of semaphore operations

10.6.1 Concurrency in the semaphore implementation

10.6.2 Scheduling the semWait queue, priority inversion and
inheritance

10.6.3 Location of IPC implementation and process (thread)
management

Summary

Study questions and exercises

Low-level synchronization: Algorithms

Introduction

An example of semaphores in system design: The THE system

The producer-consumer, bounded buffer problem

11.3.1 Use of buffers

11.3.2 Definition of a cyclic or bounded buffer

11.3.3 Algorithm for a single producer and a single consumer

11.3.4 Algorithm for more than one producer or consumer

Safety and liveness properties

The multiple readers, single writer problem

Limitations of semaphores

Eventcounts and sequencers

11.7.1 Use of eventcounts for synchronization

11.7.2 Use of a sequencer to enforce mutual exclusion

11.7.3 Producer-consumer, bounded buffer with eventcounts
and sequencers

11.7.4 Implementation of eventcounts and sequencers

11.7.5 Discussion of eventcounts and sequencers

POSIX threads

11.8.1 Objects, handles and attributes

11.8.2 Synchronization

11.8.3 pthread operations summary

Summary

Contents

xiv | Contents

Case study with exercises: Management of a disk block cache

11.10.1 Disk read and write and the requirement for buffers
and a cache

11.10.2 Allocated and free buffers

11.10.3 The structure of a buffer

11.10.4 Outline of the algorithms for buffer access

Study questions and exercises

IPC with shared memory

Critical regions in programming languages
Monitors

12.2.1 Java: Synchronization overview

12.2.2 Java: Critical regions

12.2.3 Java: Condition synchronization

12.2.4 Java monitors: An example

12.2.5 Some further issues relating to monitors
12.2.6 Single resource allocator

12.2.7 Bounded buffer manager

12.2.8 Multiple readers, single writer

12.2.9 Discussion of monitors

Synchronization at the granularity of operations
12.3.1 Path expressions

12.3.2 Active objects

Summary

Study questions and exercises

IPC and system structure

Styles of inter-process communication

System structure and IPC with shared memory
System structure and IPC without shared memory
Systems where shared-memory communication is appropriate
Systems where shared-memory communication is
not appropriate

Examples from classical UNIX

Overview of inter-process communication

Duality of system structures

Naming

Summary

Study questions and exercises

IPC without shared memory

Introduction

Use of files for common data

UNIX pipes

14.3.1 Use of pipes by UNIX: Command composition
14.3.2 Evaluation of the pipe mechanism

A
on

.
i

N oun

o

Asynchronous message passing

Variations on basic message passing

14.5.1 Receiving from ‘anyone’

14.5.2 Request and reply primitives

14.5.3 Multiple ports per process

14.5.4 Input ports, output ports and channels
14.5.5 Global ports

14.5.6 Broadcast and multicast

14.5.7 Message forwarding

14.5.8 Specifying WAIT time

14.5.9 Discarding out-of-date messages
Implementation of asynchronous message passing
Synchronous message passing

Message passing in programming languages
14.8.1 occam channels for synchronous communication
14.8.2 The Linda abstraction

Multi-threading in clients and servers

Summary

Study questions and exercises

Crash resilience and persistent data

Crashes

A model of a crash

Crash resilience or failure transparency
dempotent (repeatable) operations

Atomic operations on persistent objects
15.5.1 Volatile, persistent and stable storage
mplementation of atomic operations

15.6.1 Logging

15.6.2 Shadowing

Non-volatile memory

A single operation on persistent data
Database management systems’ requirements on
operating systems

Summary

Study questions and exercises

Distributed IPC

ntroduction

Special characteristics of distributed systems
Distributed IPC: Message passing

16.3.1 Distributing IPC

16.3.2 Distributed, asynchronous message passing
ntegration of IPC with communications

16.4.1 IPC above sockets

Java’s sockets and streams

16.5.1 The java.net package

16.5.2 The InterestRate client

Contents \ XV

xvi | Contents

16.5.3 The client-server mechanism and asynchronous
message passing

Distributed programming paradigms

16.6.1 Synchronous and asynchronous communication

16.6.2 Procedural versus message passing style

Remote procedure call (RPC)

16.7.1 An RPC system

16.7.2 The RPC protocol with network or server congestion

16.7.3 The RPC protocol with node crash and restart

16.7.4 An example: CCLU RPC call semantics

16.7.5 RPC and the ISO reference model

RPC-language integration

16.8.1 Distribution transparency

16.8.2 Argument marshalling

16.8.3 Object-oriented systems

16.8.4 Type checking and consistency checking

16.8.5 Data representation for a heterogeneous environment

Java's RMI: RPC in the general object model

16.9.1 RMI and the general object model

16.9.2 RMI mechanisms

16.9.3 RMI: An example

16.9.4 Comparison of RMI with stream and socket
programming

Critique of synchronous invocation

Naming, location and binding

16.11.1 Naming the objects used in IPC

16.11.2 Locating named objects

16.11.3 The ANSA trader

Summary of Part |l

Study questions and exercises

PART Il TRANSACTIONS

17

171
17.2
17.3

Composite operations

Composite operations

Composite operations in main memory
Composite operations involving main memory and
persistent memory

17.3.1 Examples from operating systems

17.3.2 An example from a database system
Concurrent execution of composite operations
17.4.1 Desirability of concurrent execution
Potential problems

17.5.1 Uncontrolled interleaving of suboperations
17.5.2 Visibility of the effects of suboperations
17.5.3 Deadlock

Crashes

Summary

Study questions and exercises

o0 00

i

—Y
-

-t
w

-
-
20
-
-
-
—
9
-~
-
b

PR p—
w w w

W N -

DD -

Resource allocation and deadlock

Requirements for dynamic allocation

Deadlock

Livelock and starvation

Conditions for deadlock to exist

18.4.1 Deadlock prevention

The dining philosophers problem

Object allocation graphs

Data structures and algorithms for deadlock detection
18.7.1 An algorithm for deadlock detection

18.7.2 Example

18.7.3 Action on detection of deadlock

Deadlock avoidance

18.8.1 Problems of deadlock avoidance

Information on releasing objects: Multiphase processes
Distributed deadlocks

18.10.1 Distributed deadlock detection

Summary

Study questions and exercises

Transactions

Introduction

Transaction specification and programming

The definition of serializability and consistency

The ACID properties of transactions

Indicating specific orderings of transactions

A system model for transaction processing

19.6.1 Non-commutative (conflicting) pairs of operations
19.6.2 Condition for serializability

Dependency graphs for transactions

Histories and serialization graphs

Dealing with aborts: More about the property of isolation
19.9.1 Cascading aborts

19.9.2 The ability to recover state

Summary

Study questions and exercises

Concurrency control

Introduction

Concurrent composite operations in main memory only
20.2.1 Objects in the main memory of a single computer
20.2.2 Objects in main memory in a distributed system
20.2.3 Systematic approaches to concurrent program development
Structure of transaction management systems
Concurrency control through locking

20.4.1 Two-phase locking (2PL)

20.4.2 An example of two-phase locking

20.4.3 Semantic locking

20.4.4 Deadlock in two-phase locking

Contents | xvii

xviii | Contents

Time-stamp ordering (TSO)

20.5.1 Cascading aborts and recovery of state
Optimistic concurrency control (OCC)
Summary

Study questions and exercises

Recovery

Requirements for recovery

The object model, object state and recovery
Concurrency, crashes and the properties of transactions
Logging and shadowing for crash resilience

Use of a recovery log

21.5.1 Log records and their use in recovery
21.5.2 Log write-ahead

21.5.3 Checkpoints and the checkpoint procedure
Idempotent undo and redo operations
Transaction states on a failure

An algorithm for recovery

Location databases for mobile objects

Summary

Exercises

Distributed transactions

An object model for distributed systems
Distributed transaction processing
Communication

Concurrency control: Two-phase locking (2PL)
Concurrency control: Time-stamp ordering (TSO)
Optimistic concurrency control (OCC)

Commit and abort in a distributed system
Atomic commitment: The two-phase commit (2PC) protocol
Two-phase validation for OCC

Summary

Study questions and exercises

Distributed computations

Introduction

Process groups

23.2.1 Leadership election

Consistency of data replicas

23.3.1 Quorum assembly for strong consistency
23.3.2 Large-scale systems

Ordering message delivery

23.4.1 Vector clocks

Distributed, N-process mutual exclusion
23.5.1 Algorithms

Summary of Part |l

Exercises

PART IV CASE STUDIES

24

Classical UNIX

Introduction

Evolution of UNIX

System structure and the UNIX kernel

24.3.1 System calls and kernel execution

24.3.2 Device management

24.3.3 The buffer cache

File system interfaces

24.4.1 Mounting and unmounting file systems
24.4.2 Graph navigation and the current directory
File system implementation

24.5.1 Inodes

24.5.2 Directory files

24.5.3 Access protection

24.5.4 Allocation of disk blocks to a file system
24.5.5 File system data structures in main memory
24.5.6 Consistency issues

Process creation, termination and scheduling
24.6.1 Process creation

24.6.2 Parent-child synchronization on process termination
24.6.3 Process creation during system initialization
24.6.4 Process creation by the command interpreter
24.6.5 Process scheduling

24.6.6 The swapping algorithm

24.6.7 Process states

IPC: Pipes and signals

24.7.1 Pipes between commands

24.7.2 Signals

24.7.3 Overview of classical IPC mechanisms
Summary

Exercises

LINUX, Solaris and contemporary UNIX

Introduction

Kernel structure

25.2.1 Loadable kernel modules

25.2.2 Communication with kernel modules
25.2.3 Interrupt handling

25.2.4 Multiprocessor kernel structure
SVr4 IPC

25.3.1 Message queues

25.3.2 SVr4 semaphore sets

25.3.3 SVr4 shared memory segments
Sockets and file subsystem integrated IPC
25.4.1 Named pipes

25.4.2 Sockets API

25.4.3 Server process structure

Contents

Xix

xx | Contents

Memory management

25.5.1 Memory-mapped files

25.5.2 Communication through shared memory
25.5.3 Physical memory allocation
Multiprocessor scheduling

25.6.1 UNIX scheduling for multiple CPUs
25.6.2 Exposing parallelism

Summary

Exercises

Extensible systems

Mechanisms for extensibility
Compile-time specialization
Microkernel operating systems
26.3.1 Mach

26.3.2 Mach IPC

26.3.3 Memory objects and object sharing in main memory
Downloadable code

Exokernels and vertical structuring
26.5.1 The exokernel architecture
26.5.2 Nemesis

Nested virtual machines
Extensible virtual machines

26.7.1 The Sceptre XVM

26.7.2 Java operating systems
Summary

Exercises

Windows 2000

Introduction to Windows 2000

27.1.1 Design principles

System structure

27.2.1 Executive components

The object model and object manager

27.3.1 How executive objects are used

27.3.2 The structure of an object

27.3.3 Object types

27.3.4 Object names and directories

27.3.5 Object handles

27.3.6 Type-specific object methods

27.3.7 Protecting objects

The kernel

27.4.1 Kernel objects, kernel process and thread objects
27.4.2 Thread scheduling and dispatching

27.4.3 Interrupt and exception handling
Processes, threads, fibres and concurrency control
27.5.1 Thread synchronization

27.5.2 Alerts and asynchronous procedure calls

Contents ‘ XXi

27.5.3 Address space management
27.5.4 Sharing memory: Sections, views and mapped files
27.5.5 Memory protection

The |/O subsystem

27.6.1 I/O design features

27.6.2 /O processing

27.6.3 Windows Driver Model

The NT filing system, NTFS

27.7.1 NTFS requirements

27.7.2 New features of NTFS
27.7.3 NTFS design outline
Networking

Summary

Exercises

The World Wide Web

A simple web-client, web-server interaction
Naming web pages

Communication using HTTP

Document representation

Executing programs at server and client
Security

Concurrency control

Scalability issues

Web-based middleware: XML and SOAP
Summary

Exercises

W AN

N RN NN
o0 00 G0 00 O OO

o U

Middleware

Middleware paradigms

29.1.1 Evolution of object-oriented middleware

Java middleware

29.2.1 Java for web programming

29.2.2 Java remote method invocation (RMI)

29.2.3 Jini, including JavaSpaces

29.2.4 The Java component model, JavaBeans
29.2.5 Java Messaging Service (JMS)

29.2.6 JXTA

OMG and OMA

29.3.1 OMA Reference Model component definitions
29.3.2 The OMG Object Model

CORBA

29.4.1 The ORB core

29.4.2 OMG's Interface Definition Language (IDL)
29.4.3 Other CORBA features

29.4.4 CORBA support for asynchronous communication
ODMG

COM, DCOM and .NET

Message-oriented middleware (MOM)

NN
W w w
Jd O

xxii

Contents

29.7.1 IBM’s MQSeries
29.7.2 TIB/Rendezvous
Summary
Exercises

Transaction processing monitors and systems

Transaction processing monitors

30.1.1 Use of processes and IPC

30.1.2 Buffered transaction requests

30.1.3 Monitoring system load and performance

Introduction to some electronic funds transfer (EFT) applications
30.2.1 Paying by cheque

30.2.2 Paying by credit card

30.2.3 Paying by debit card: Point of sale transactions

30.2.4 Some security issues

International inter-bank payments: SWIFT

Authentication by PIN

The international automatic teller machine (ATM) network service
30.5.1 How bank accounts are held

30.5.2 Local control of ATMs

30.5.3 Remote use

Load and traffic in TP systems

Summary and trends

Exercises

Appendix: Evolution of computer systems

A1
A.2

Evolution and exploitation of technology

Operating systems and distributed operating systems

A.2.1 Multiprogramming batch

A.2.2 Centralized time-sharing (interactive) systems

A.2.3 Workstations and personal computers

Databases

Concurrency control

A.4.1 Mutual exclusion without hardware support

A.4.2 Requirements

A.4.3 The N-process mutual exclusion protocol of Eisenberg
and McGuire (1972)

A.4.4 The N-process bakery algorithm

Exercises

Bibliography
Glossary
Author index
Subject index

