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 ملخص

في هذا العمل، يتم دراسة التحكم النشط بالاهتزاز للوحات المركبة البوليمرية المقوية بأنابيب نانوية من الكربون           

(CNTs( أو صفائح الجرافين )GPLs .ذات التدرج الوظيفي متعددة الطبقات والمغطاة بطبقات من المواد الكهرضغطية )

( للحشو النانوي في جميع طبقاتها، أو بتوزيع خطي أو غير خطي في اتجاه UDتم تقوية اللوحات المركبة بتوزيع موحد )

(. FG-A، وFG-X ،FG-O) Aو Oو Xالسماكة باستخدام قوانين القوى والأسس الأسية كأنواع التدرج الوظيفي 

(. وبالتالي، يفُترض أن الخصائص FSDTنظرية اللوحة المستخدمة في هذا العمل هي نظرية التشوه القص الأولي )

الميكانيكية للحشو النانوي تختلف عبر السماكة ويتم تقييمها باستخدام قاعدة خلط معدلة. تستخدم هذه الدراسة طريقة 

لوك لوحة مربعة تحت ظروف الحمل الثابتة والديناميكية. يتم تقسيم اللوحة المدروسة إلى العناصر المحددة لدراسة س

عناصر تربيعية عقدية من تسع عقد، حيث تمتلك كل عقدة خمس درجات حرية. يتم حل المعادلات الديناميكية بواسطة 

في  .حلول العددية والرسوم البيانيةالللحصول على  Matlabمطور في برنامج  برنامجطريقة تكامل نيومارك. تم تنفيذ 

في الصفائح  هذه الدراسة، ثبت أن استخدام الطبقات الكهرضغطية والدالة الأسيّة يؤدي إلى تخفيف الاهتزازات النشطة

 .(GPLs( أو صفائح الجرافين )CNTsالمقواة بأنابيب الكربون النانوية ) و من البوليمر والمكونةالطبقات المركبة متعددة 

الكلمات المفتاحية: طريقة العناصر المحدودة، أنابيب الكربون النانوية، صفيحات الجرافين النانوية، طريقة نيومارك بيتا، 

 التحكم النشط في الاهتزاز، نظرية تشوه القص من الدرجة الأولى.

 

ABSTRACT 

This work investigates active vibration control of multilayer functionally graded 

carbon nanotubes (CNTs) or graphene platelets (GPLs) reinforced polymer composite 

plates, covered with piezoelectric layers. The composite plates is composed of multilayers, 

and reinforced with uniform distribution (UD) of nanofillers, and linearly or non-linearly 

distribution through the thickness direction using power and exponential laws, these are 

Functionally Graded types: X, O, and A (FG-X, FG-O, and FG-A). The plate theory used in 

this work was the first-order shear deformation theory (FSDT). Thus, the mechanical 

properties of the nanofillers are supposed to vary through the thickness and are evaluated 

using a modified rule of mixture. This study utilizes the finite element method to investigate 

the behavior of a square plate under both static and dynamic loading conditions. The studied 

plate is discretized into nine-node quadratic elements, with five degrees of freedom in each 

node. The dynamic equations are solved using the Newmark integration method. A 

developed code has been implemented in Matlab software to get the numerical and graphical 

solutions for the present work. In this study, it was proven that the use of piezoelectric layers 



and exponential function leads to active vibration attenuation of polymer multilayer 

composite plates reinforced with functionally graded carbon nanotubes (CNTs) or graphene 

platelets (GPLs). 

Keywords: Finite element method, Carbon Nanotubes, Graphene Nanoplatelets, 

Newmark β-method, Active vibration control, First order shear deformation theory.  

 

RESUME 

Ce travail présente une étude de contrôle actif des vibrations de plaques composites 

multicouches en polymère renforcées par des nanotubes de carbone (CNTs) ou des 

plaquettes de graphène (GPLs) à gradient fonctionnel recouvertes de couches 

piézoélectriques. Les plaques composites sont composées de plusieurs couches, renforcées 

avec une distribution uniforme (UD) de nanomatériaux, ou avec des distributions linéaires 

ou non linéaires à gradient fonctionnel de type X, O et A (FG-X, FG-O et FG-A) à travers 

l'épaisseur par utilisation de lois de puissance et exponentielles. La théorie des plaques 

utilisée dans ce travail est la théorie de la déformation de cisaillement du premier ordre 

(FSDT). Ainsi, on suppose que les propriétés mécaniques des nanomatériaux varient à 

travers l'épaisseur, et sont évaluées à l'aide d'une règle de mélange modifiée.   Cette étude 

utilise la méthode des éléments finis pour étudier le comportement d'une plaque carrée 

soumise à des charges statiques et dynamiques. La plaque étudiée est discrétisée en éléments 

quadratiques à neuf nœuds, chaque nœud possédant cinq degrés de liberté. Les équations 

non linéaires de la dynamique sont résolues par la méthode d'intégration de Newmark. Un 

code de calcul a été développé en Matlab pour obtenir les solutions numériques et graphiques 

du présent travail. Dans cette étude, il a été prouvé que l'utilisation des couches 

piézoélectriques et la fonction exponentielle conduit à une atténuation des vibrations active 

des plaques composites multicouches en polymère renforcées par des nanotubes de carbone 

(CNTs) ou des plaquettes de graphène (GPLs).  

Mots clés : Méthode des éléments finis, Nanotubes de carbone, Nano-plaquettes de 

graphène, Méthode β de Newmark, Contrôle actif des vibrations, Théorie de la déformation 

par cisaillement du premier ordre. 
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[Kϕϕ]: dielectric stiffness matrix.  

{Fmec}: mechanical force. 

{Qelec}: electrical charge. 



ϕa: electrical potential given to the actuator. 

ϕs: electrical potential read from sensor. 

[Cad]: active damping matrix. 

[Csd]: structural damping matrix. 

αR, βR : Rayleigh damping coefficient.  

γn, βn : Newmark algorithm stability and accuracy parameters. 

Gv: derivative control gain. 

Gd: proportional control gain. 

x0: initial displacement. 

v0: initial speed.   

a0: initial acceleration.  

tn+1: previous time. 

tn: present time. 

Δt : period between tn and tn+1. 

P: predicted value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF ABREVIATIONS 

CNT, CNTs: Carbon NanoTube, Carbon Nanotubes. 

GPL, GPLs:  graphene platelet, graphene platelets. 

CNTRC: carbon nanotubes reinforced composite plate. 

GPLRC: graphene platelets reinforced composite plate. 

( )T: transpose of vector or matrix. 

inv: inverse of matrix.  

UD: uniform distribution. 

FG-X: X functionally graded configuration.  

FG-O: O functionally graded configuration. 

FG-A: A functionally graded configuration. 

FG-V: V functionally graded configuration. 

SWCNTs: single-walled carbon nanotubes. 

DWCNTs: double-walled carbon nanotubes. 

MWCNTs: multi-walled carbon nanotubes. 

FG-CNTRC: functionally graded carbon nanotubes reinforced composite plate. 

FG-GPLRC: functionally graded graphene platelets reinforced composite plate. 

CLPT: classical laminated plate theory. 

FSDT: first order shear deformation theory. 

HSDT: high order shear deformation theory. 

SSSS: simply supported plate on their four edges. 

CCCC: clamped plate on their four edges. 

CFFF: clamped plate on one edge and free on the other edges. 

PZT: titano-zirconates of Plomb (lead). 
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Introduction 
 

    Vibrations are a common occurrence in various engineering applications. Managing 

these vibrations is effectively crucial for the performance, the durability and the safety of 

different structures and different systems. These vibrations are an oscillatory movement with 

high amplitudes, which lead to structural fatigue, decreased operational efficiency, and even 

discomfort for users. Vibration control is employed in various industries and applications 

such as aerospace, automotive, civil engineering, manufacturing, and many others. Using 

vibration control can improve structural integrity, enhanced operational performance and 

can increase comfort for users. For example, it can be used to reduce vibrations in aircraft in 

order to enhance passenger comfort and protect sensitive equipment. In manufacturing, it 

helps maintain the precision of machining processes by minimizing machine tool vibrations. 

Actually, we have two kinds of controlling the vibrations:  passive and active control. For 

example, We can use Rubber mounts, springs, or elastomeric dampers strategically between 

the vibrating source and its surroundings to absorb and dissipate a substantial amount of 

vibration energy. In another way, a strategically suspended mass placed on a spring system 

is tuned to resonate at the same frequency as the unwanted vibration in the structure. More 

than those cited, the creation of friction between surfaces in contact with a vibrational system 

could be used to dissipate vibrational energy. It is a simple control compared to active 

vibration control, which is a proactive and dynamic approach to managing vibrations, where 

technology actively responds to vibration data to ensure the safety, reliability, and 

performance of structures and systems. This kind of control uses a piezoelectric transducer. 

Piezoelectric materials exhibit a unique property that can generate an electrical charge in 

response to mechanical deformation and can be deformed when it is subjected to an electric 

field. This exceptional characteristic makes piezoelectric materials invaluable in the field of 

vibration control.  

     The sensors are responsible for detecting vibrations or oscillations in the structure 

or system. They can be accelerometers, strain gauges, piezoelectric sensors, or other types 

of sensors depending on the application. The control algorithms process is down from the 

sensors. Then the controller analyzes the vibration data and determines the necessary 

corrective actions to reduce or eliminate the vibrations. The algorithms are designed to be 

adaptive which means they can adjust their responses in real time based on changing 

vibration conditions. Actuators generate forces or motions in response to control signals 
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from the algorithms. In active vibration control, these actuators are strategically placed 

within the structure or system to apply forces or motions that counteract the undesired 

vibrations. 
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CHAPTER 1: STATE OF THE ART 

    Smart composite plates refer to composite materials that incorporate advanced 

technologies and materials to enhance their properties and functionality. These plates are 

typically made by the combination of different materials, such as fibers (carbon, glass, or 

aramid) and a matrix (epoxy resin), to create a composite material that exhibits superior 

mechanical, thermal, and sometimes even electrical properties compared to traditional 

materials like metals or plastics. The term "smart" in this context implies that these 

composite plates have additional functionalities beyond their structural capabilities. Smart 

materials find applications in a wide range of fields and industries due to their unique 

properties and ability to respond to external stimuli. Some key areas where smart materials 

are used include aerospace, automotive, civil engineering and infrastructure, electronics, 

medical devices, energy, consumer electronics, defense and military, and robotics. Today 

carbon nanotubes (CNTs) and graphene platelets (GPLs) are some of the best smart materials 

used in the majority of industries due to their high performance. A Japanese physicist “Sumio 

Iijima” is credited with the discovery first studied carbon nanotubes in a research paper in 

1991 [1]. He published a groundbreaking paper in the journal Nature in November 1991, 

describing the synthesis and characterization of carbon nanotubes. His work opened up a 

new field of nanotechnology and nanomaterial science, and carbon nanotubes have since 

been the subject of extensive research and have found numerous applications in various 

fields due to their unique properties (mechanical, electrical, and thermal) and structure 

(single, double or multi-walled). Due to these remarkable material properties, the mechanical 

analysis of CNT-reinforced composite (CNTRC) materials and structures has attracted a lot 

of researcher’s attention. For example, In 2009, Hui-Shen was the first researcher who 

investigate the CNT-based functionally graded material (FGM) polymer composite [2]. He 

illustrated the nonlinear distribution of nanotubes from the Power-law functionally graded 

material concept (P-FGM). In addition, he studied the nonlinear bending of simply 

supported, functionally graded Nano-composite plates reinforced by single-walled carbon 

nanotubes (SWCNTs) subjected to a transverse uniform or sinusoidal load in thermal 

environments. Their results show that the load-bending torque curves of the plate can be 

significantly increased because of a functionally graded reinforcement. They also confirm 

that the characteristics of nonlinear bending are significantly influenced by temperature rise, 

the character of in-plane boundary conditions, the transverse shear deformation, the plate 
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aspect ratio as well as the nanotube volume fraction.  Kim and all fabricated and 

characterized Carbon fiber-reinforced epoxy composites modified with carbon nanotubes 

(CNTs) [3]. They used High-energy sonication to disperse CNTs in the resin, followed by 

an infiltration of fiber preform with the resin/CNT mixture, they showed a tendency to 

overestimate the properties and therefore may be utilized by the composite designers as a 

tool to obtain the upper bound. In order to strengthen the interface of a composite scarf joint. 

Faulkner and all investigated the benefits of using locally applied carbon nanotubes to 

reinforce a carbon fiber composite scarf joint [4]. Also, the effects of the waviness of the 

CNTs and the interfacial deboning between them and the matrix on the effective moduli of 

CNT-reinforced composites were studied by Shao and all [5]. After a modification was done 

on composites, which released the addition of multi-walled carbon nanotubes into the matrix 

material, the fracture energy of hybrid carbon fiber reinforced polymers was investigated by 

Karapappas and all [6]. The reinforcing effects of carbon nanotubes (CNTs) for aluminum 

matrix composites are investigated by Choi and all to achieve strong bonding between CNTs 

and the aluminum matrix using a controlled mechanical milling process in the composites 

[7]. In 2010, Formica and all studied the vibrational properties of carbon nanotube-

reinforced composites by employing an equivalent continuum model based on the Eshelby–

Mori–Tanaka approach [8]. Similarly, Ke and all investigate the nonlinear free vibration of 

functionally graded Nano-composite beams reinforced by single-walled carbon nanotubes 

(SWCNTs) based on Timoshenko beam theory and von Kármán geometric nonlinearity [8]. 

The material properties of functionally graded carbon nanotube-reinforced composites (FG-

CNTRCs) are assumed to be graded in the thickness direction and estimated through the rule 

of mixture. Shen and all came back and presented the thermal buckling and post-buckling 

behavior for functionally graded Nano-composite plates reinforced by single-walled carbon 

nanotubes (SWCNTs) subjected to in-plane temperature variation [8].  

Another study about the effective dispersion of different-length multiwall carbon 

nanotubes (MWCNTs) in water was achieved by applying ultrasonic energy and in 

combination with the use of a surfactant, the effects of ultrasonic energy and surfactant 

concentration on the dispersion of MWCNTs at an amount of 0.08 wt.% of cement were 

investigated by Konsta-Gdoutos and all [9]. Nano-composite reinforced with carbon 

nanotubes (CNTs/AZ91D) and magnesium matrix using mechanical stirring and Liu and all 

fabricated high-intensity ultrasonic dispersion processing. Their tensile fracture analysis 

shows that the damage mechanism of Nano-composite is still brittle fracture. However, the 

CNTs can prevent the local crack propagation to some extent [10]. Furthermore, Kwon and 
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all [11]fabricated a functionally graded CNT in-forced aluminum  matrix composite by a 

powder metallurgy route [10]. The use of CNTs as an epoxy adhesive additive for adhesive 

joints between steel-composite interfaces and composite interfaces is explored. The effect of 

CNT functionalization to enhance CNT dispersion and, consequently, joint strength was also 

investigated by Burkholder and all [12]. Ayatollahi and all presented a Multi-scale modeling 

for the nonlinear properties of polymer/single wall carbon nanotube (SWNT) Nano-

composite under tensile, bending, and torsional loading conditions [13]. A novel and simple 

approach was developed by Yang for overcoming the limits of traditional mixing methods 

and to obtain homogeneously dispersed carbon nanotube (CNT) reinforcement with good 

structure in Al powder. [14]. Thereafter, Khan and all studied Vibration damping 

characteristics of Nano-composites and carbon fiber-reinforced polymer composites 

(CFRPs) containing multiwall carbon nanotubes (CNTs) using the free and forced vibration 

tests. [14]. De Greef produced a composite using resin transfer molding and containing 

0.25% weight of CNTs in the matrix to investigate the effect of carbon nanotubes (CNTs) 

on the initiation and development of damage in a woven carbon fiber/epoxy composite under 

quasi-static tensile loading. [14]. Yas and all assumed an aligned and straight with uniform 

layout SWCNTs to study the free vibrations and buckling analysis of Nano-composite 

Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an 

elastic foundation. [14]. Similarly, four types of distributions of the uniaxial aligned 

reinforcement material are considered. That are uniform and three kinds of functionally 

graded distributions of carbon nanotubes along the thickness direction of plates, which are 

proposed by Zhu and all to study the bending, and free vibration analyses of thin-to-

moderately thick composite plates reinforced by single-walled carbon nanotubes using the 

finite element method based on the first order shear deformation plate theory. [14]. 

Thereafter, Sobhani Aragh and all assumed that the volume fractions of oriented, straight 

single-walled carbon nanotubes (SWCNTs) to be graded in the thickness direction to study 

the natural frequencies characteristics of a continuously graded carbon nanotube-reinforced 

(CGCNTR) cylindrical panels based on the Eshelby–Mori–Tanaka approach. [14]. Shen 

came back to the interface and presented the thermal post-buckling analysis for Nano-

composite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) 

subjected to a uniform temperature rise. [14]. He assumed the SWCNTs to be aligned and 

straight by two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, 

uniformly distributed (UD) and functionally graded (FG) reinforcements, with a uniform 

layout. Using a multi-scale simulation, Sevvas and all investigate in their study the effect of 
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interfacial shear strength (ISS) on the mechanical and damping properties of carbon 

nanotube-reinforced composites (CNT-RCs) [15]. The  mechanical buckling of a 

functionally graded Nano-composite rectangular plate is reinforced by aligned and straight 

single-walled carbon nanotubes (SWCNTs) subjected to uniaxial and biaxial in-plane 

loadings. It  is investigated by Jafari Mehrabadi and all [16]. They assumed the material 

properties of the Nano-composite plate to be graded in the thickness direction and vary 

continuously and smoothly according to two types of symmetric carbon nanotube volume 

fraction profiles. Lei and all used different types of distributions of uniaxially aligned 

SWCNTs, and the element-free kp-Ritz method to study the free vibration analysis of 

functionally graded Nano-composite plates reinforced by single-walled carbon nanotubes 

(SWCNTs). [17]. Rafiee and all follow them and present the large amplitude free vibration 

of functionally graded carbon nanotube reinforced composite (CNTRC) beams with surface-

bonded piezoelectric layers subjected to a temperature change and an applied voltage. [18] . 

Similarly, Wattanasakulpong and all use an aligned single-walled CNTs distributed in the 

polymeric matrix to investigate the bending, buckling, and vibration behaviors of carbon 

nanotube-reinforced composite (CNTRC) beams. [19]. The beams resting on the Pasternak 

elastic foundation, including a shear layer and Winkler spring. Ke and all came back to carry 

out a dynamic stability analysis of functionally graded Nano-composite beams reinforced by 

single-walled carbon nanotubes (SWCNTs) based on the Timoshenko beam theory. [20]. 

Based on the three-dimensional theory of elasticity, the bending behavior of functionally 

graded carbon nanotube reinforced composite (FG-CNTRC) plate embedded in thin 

piezoelectric layers subjected to mechanical uniform load with simply supported boundary 

conditions is carried out by Alibeigloo and all [21]. Devalve and all investigate the damping 

effects of carbon nanotubes (CNTs) embedded in the matrix of fiber-reinforced composite 

materials. They analyzed composite materials using dynamic mechanical analysis and 

various modal analysis techniques to determine the damping characteristics of the composite 

as a function of strain, fiber volume fraction, and nanotube type and weight percentage 

loading. [22]. Deriving the stability equations using the adjacent equilibrium (Trefftz) 

buckling criterion and based on the first-order shear deformation theory (FSDT) of plates, 

Malekzadeh and all study the buckling behavior of quadrilateral laminated thin-to-

moderately thick plates composed of perfectly bonded carbon nanotube reinforced 

composite (CNTRC) layers [23]. 
    It is worth mentioning that Carbon nanotube applications are not limited to those 

reported in the scientific research mentioned in the above paragraph. It was aimed in 
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different articles of CNTs in those engineering fields are important for a mechanical engineer 

but not in all different applications of composites. In fact, the focus was on the major 

mechanics-based industries involved with composites. We can see when checking works 

that have been published by 2014, all research was processed on the buckling and post-

buckling of CNTs reinforced composite, and a few research have been released on 

vibrations. The thing that the majority of researchers have not been able to address is the 

treatment of all types of vibrations related to nanotube-reinforced plates. However from 

2014, some researchers began to address it. For example, Abdollahzadeh Shahrbabaki and 

all analyze the three-dimensional free vibration of carbon nanotube (CNT) reinforced 

composite rectangular plates with various boundary conditions by developing a set of 

orthogonal admissible functions used in the Ritz method [24] . Ansari and all study the forced 

vibration behavior of Nano-composite beams reinforced with single-walled carbon 

nanotubes (SWCNTs) based on the Timoshenko beam theory [25]. They considered carbon-

nanotube reinforced composite (CNTRC) beams with uniform distribution (UD) and three 

types of functionally graded (FG) distribution patterns of SWCNT reinforcements. Based on 

the governing equations of the first-order shear deformation theory (FSDT), Malekzadeh and 

all present the study of free vibration behavior of quadrilateral laminated thin-to-moderately 

thick plates with carbon nanotube-reinforced composite (CNTRC) layers [26]. Lin and all 

investigate the free vibration of Nano-composite beams reinforced by single-walled carbon 

nanotubes (SWCNTs), where the distribution of the SWCNTs may vary through the 

thickness of a beam and are aligned along the beam's axial direction [27]. Hydarpour and all 

used composites reinforced by functionally graded carbon nanotube- (FG-CNTRCs) 

distribution to study the influences of centrifugal and Coriolis forces on the free vibration 

behavior of rotating carbon nanotube-reinforced composite (CNTRC) truncated conical 

shells [28].  Natarajan and all investigated the bending and free flexural vibration behavior 

of sandwich plates with carbon nanotube reinforced face sheets [29]. They used QUAD-8 

shear flexible element developed based on higher-order structural theory. Fan and all 

investigate the large amplitude vibration behavior of a matrix-cracked laminated beam that 

contains carbon nanotube-reinforced composite (CNTRC) layers resting on an elastic 

foundation in thermal environments [30]. Wattanasakulpong investigate the static and 

dynamic behavior of carbon nanotube-reinforced composite plates resting on the Pasternak 

elastic foundation including the shear layer and Winkler springs [31]. In his work, he 

considered that the plates are reinforced by single-walled carbon nanotubes with four types 

of distributions of uniaxial aligned reinforcement material. Then, Shahriari and all used the 
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third-order shear deformation theory and the size parameter is taken into consideration by 

using Mindlin’s strain gradient theory to investigate vibrations of functionally graded carbon 

nanotube-reinforced composite (FG-CNTRC) Nanoplates [32]. Mathematical modeled 

carbon nanotube-reinforced composite plate using higher-order shear deformation theory is 

presented by Mehar and all to study the free vibration behavior of functionally graded carbon 

nanotube-reinforced composite plate under an elevated thermal environment [32] . Zhang 

and all studied the free vibration characteristics of functionally graded Nano triangular plates 

reinforced by single-walled carbon nanotubes (SWCNTs) [32]. It employs the first-order 

shear deformation theory (FSDT) to account for the effect of transverse shear deformation of 

the plates and the element-free IMLS-Ritz method for numerical computation. Thomas and 

all study the vibration analysis of functionally graded carbon nanotube-reinforced composite 

(FG-CNTRC) shell structures [33]. Material properties of an FG-CNTRC shell are graded 

smoothly through the thickness direction of the shell according to uniform distribution and 

some other functionally graded (FG) distributions (such as FG-X, FG-V, FG-O, and FG-) of 

the volume fraction of the carbon nanotube, and the effective material properties are 

estimated by employing the extended rule of mixture. The multi-term Kantorovich-Galerkin 

method was proposed by Wang to investigate the buckling and free vibration behavior of 

thin carbon nanotube-reinforced composite plates with the classical plate theory [34]. First-

order shear deformation theory of shell structure and Donnell-type kinematic assumptions 

for the investigation of free vibration characteristics of composite plates reinforced with single-

walled carbon nanotubes. It was studied where the distribution of the carbon nanotubes through 

the thickness of the panel may be uniform or functionally graded. This case was studied by 

Mirzaei [35]. Kamarian and all took for their case a free vibration analysis of Carbon 

Nanotube-Reinforced Composite (CNTRC) conical shells performed by considering the 

agglomeration effect of Carbon Nanotubes (CNTs) [36]. They employ the Eshelby-Mori-

Tanaka approach to estimate the material properties of the Nano-composite conical shell. 

They reveal that, frequencies of the panel are dependent to both, volume fraction of carbon 

nanotubes and their distribution pattern across the thickness. Also, while the volume fraction 

of carbon nanotubes increases, the frequencies of the panel increase too.  Setoodeh and all 

solved geometrically nonlinear free vibration of functionally graded carbon nanotube-

reinforced composite quadrilateral plates using a formulated differential quadrature (DQ) 

method in conjunction [37]. Fu and all studied the nonlinear dynamic stability of carbon 

nanotube-reinforced composite plates resting on an elastic foundation [38]. They aligned 

single-walled carbon nanotubes (SWCNTs) that are distributed in the form of uniformly 
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distributed (UD) and functionally graded (FG) in the composite. They found that the effect 

of a nonlinear factor on the boundary of the principle dynamic unstable regions is essential 

with the increase of amplitude. Wu and all studied the nonlinear vibration of imperfect shear 

deformable functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams 

based on the first-order shear deformation beam theory and von Kármán geometric 

nonlinearity [39]. They observed that whether the FG-CNTRC beam exhibits the “hard-

spring” or “soft-spring” vibration behavior is largely dependent on the initial imperfection 

mode. Also, Wu and all observed that whether the FG-CNTRC beam exhibits the “hard-

spring” or “soft-spring” vibration behavior is largely dependent on the initial imperfection 

mode, its amplitude as well as the vibration amplitude. 

    Later and with the appearance of graphene Nano-platelets with different dimensions, some 

researchers took the opportunity to study and compare this material with Carbon nanotubes 

and published many papers that discuss which one of them was the right choice for 

reinforcement. We can name Garcia-Macias and all [40]. He mentioned in his work the 

bending and the vibrational behavior of functionally graded graphene and carbon nanotube-

reinforced composite flat plates. Also, Zhao and all used a modified Halpin-Tsai model and 

the rule of mixture [40] . They determined the effective material properties including 

Young’s modulus, mass density, and Poisson’s ratio of the Nano-composites. Their aim is 

to study the bending and vibration behaviors of a novel class of functionally graded 

trapezoidal plates reinforced with graphene Nano-platelets (GPLs) by employing the finite 

element method. They concluded that the bending and vibration behaviors of trapezoidal 

plates with such a distribution pattern are more sensitive to the GPL weight fraction and 

plate geometry compared to the other distribution patterns. Song and all presented the biaxial 

compressed buckling and post-buckling behaviors of functionally graded multilayer 

composite plates reinforced with a low content of graphene Nano-platelets that are randomly 

oriented and uniformly dispersed in the polymer matrix within each individual layer [41]. 

Feng and all studied the nonlinear free vibration of a multi-layer polymer Nano-composite 

beam reinforced by graphene platelets non-uniformly distributed along the thickness 

direction [41]. They used theoretical formulations of Hamilton’s principle like the 

Timoshenko beam theory, and von Kármán nonlinear strain displacement relationship. They 

found that adding a very small amount of GPLs into the polymer matrix as reinforcements 

significantly increases the natural frequencies of the beam. Ahmadi and all analyzed the 

bending, buckling, and free vibration of hybrid polymer matrix composites reinforced by 
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carbon fibers and carbon nanotubes (CF/CNT-RP) [41]. They used a finite element-based 

multi-scale modeling approach. They found that bending was affected by reinforcement with 

both CF and CNT. In 2018, Guo and all employed the first-order shear deformation theory 

(FSDT) of the energy function to investigate on free vibration of graphene Nano-platelet 

reinforced laminated composite quadrilateral plates using the element-free IMLS-Ritz 

method [55]. After comparing with GPLRC with CNTRC, they found that GPLRC induces 

a dramatically higher natural frequency. Lin and all discussed the different GPL Nano-filler 

distribution patterns across the thickness [42]. They  presented the vibration characteristics 

and nonlinear aero-elastic response of the functionally graded multilayer composite plate 

reinforced with graphene Nano-platelets. It was subjected to in-plane excitations and applied 

voltage using modified Halpin-Tsai model. Based on the Pasternak foundation, and the 

sinusoidal shear deformation theory, Arefi and all analyze the free vibration behavior of 

functionally graded (FG) polymer composite Nano plates reinforced with graphene Nano-

platelets [43]. Their paper relates the sensitivity of the response to the Pasternak coefficient, 

an increased foundation stiffness yielding a meaningful increase in the composite structure's 

frequency. The modified Halpin-Tsai model is used to formulate the Material properties with 

gradient variation in the thickness aspect. It was presented by Wang and all to analyze the 

free vibration and static bending of functionally graded (FG) graphene Nano-platelet [44]. 

This reinforced composite doubly curved shallow shells with three distinguished 

distributions. Their numerical calculations revealed that an addition of a small quantity of 

GPLs can remarkably improve the fundamental frequency and cut down the static bending 

deflection of the shells. Garcia-Macias and all used the superior properties of graphene, as 

well as better dispersion and relatively low manufacturing cost. Also, and in that case, they 

noticed that the superior load-bearing capacity of graphene-reinforced composite plates for 

both fully aligned and randomly oriented filler configurations.  

       Our study showed that few articles worked worked on an active vibration control of 

Nano-composite plates. From 2019, a considerable number of papers was published in this 

field. Selim and all were among were the first who study the active vibration control of 

functionally graded multilayer graphene Nano-platelets reinforced composite plates 

integrated with piezoelectric layers [45]. Where the theoretical formulation of the composite 

plates with piezoelectric layers was developed utilizing the element-free improved moving 

least-squares Ritz (IMLS-Ritz) method in association with the higher-order shear 

deformation theory (HSDT). To provide a numerical solution to underlying problems, 
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Nguyen and all develop a computational approach based on a C° -HSDT polygonal finite 

element formulation (PFEM) to investigate the s free vibration and dynamic responses of 

smart FG metal foam plate structures reinforced by graphene platelets [46]. In their 

conclusion, they explained that the combination of advantages of both the metal foam 

architecture and GPL reinforcement into engineering material is a good idea to provide 

advanced ultra-light high-strength structures. Mirjavadi and all investigated on forced 

vibrational characteristics of a porous Nano-composite shell reinforced by graphene platelets 

under radial dynamic loads [47]. Material properties of the shell depend on uniform and non-

uniform distributions of GPLs and porosities. After checking their results, they showed that 

the resonance frequency of a Nano-composite shell can be increased by increasing the GPL 

percentage.  It was done by using the Halpin– Tsai model. Also, the rule of mixture determine 

the effective Young’s modulus and to compute the effective Poisson’s ratio and mass density 

respectively. Karami and all forced resonance vibration of graphene Nano-Platelets 

reinforced Functionally Graded Polymer Composite Nano-plates [48].  In 2020, Ma and all 

investigate the smart control and dynamic of a graphene Nano-platelets reinforced by a 

composite cylindrical shell surrounded [49]. A piezoelectric layer was used as actuator and 

sensor based on a numerical solution method called generalized differential quadrature 

method (GDQM). This was presented for the first time. In their outcomes, they found that 

the PD controller, viscoelastic foundation, slenderness factor, external voltage, and GPL’s 

weight fraction have a considerable impact on the amplitude and vibration behavior of a 

GPLRC cylindrical shell. An active vibration control and vibration characteristics of a 

sandwich thin cylindrical shell whose intermediate layer is made of the graphene-reinforced 

composite that is bonded with integrated piezoelectric actuator and sensor layers at its outer 

and inner surfaces was presented by Dong and all [50].  They used a constant velocity 

feedback control algorithm and employing the Runge-Kutta method. They concluded that 

the results showed that the sandwich cylindrical shell with higher GPLs weight fractions and 

length-to-thickness ratio, lower temperature variation, and smaller thicknesses of 

piezoelectric layers has a higher natural frequency. In addition, the greater control gain 

makes the amplitude peak of the shell attenuate substantially faster. The vibration amplitude 

of the shell with active vibration control is insensitive to GPL distribution patterns. Similarly, 

Fadaee and all studied the vibration analysis of a beam-fluid coupled system and then, 

employing magnetostrictive layers, the vibration amplitude of the cantilever beam was 

controlled according to a closed-loop velocity proportional feedback control approach [51]. 

Results show that the vibration suppression times for a beam with various distributions of 
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the CNT are approximately the same. While increasing the location from the top of the cavity 

to the beam, the overshoot response, and the vibration suppression time of a beam submerged 

in a fluid cavity decrease. Mozafari and all gives an analytical solution for free vibration of 

a composite sandwich plate reinforced with graphene Nano-platelets enclosed by 

piezoelectric layers. They consider a multilayer functionally graded graphene platelets-

reinforced composite plate [66].Their results show that the best way to predict the most 

effective reinforcement is to distribute more GPLs with a larger surface area near the top and 

bottom surfaces of the plate. Besides, adding a small amount of GPLs as reinforcing Nano-

fillers can significantly improve the stiffness of the plate. Wang and all analyze the thermal 

vibration of functionally graded graphene platelets reinforced composite annular plate 

resting on an elastic foundation under the mechanical load framework of HSDT. [67]. Their 

results revealed that applying sinusoidal temperature rise and locating more square-shaped 

GPLs approximately to the top and bottom surface result in the highest natural frequency. In 

the same year, Y. Chiker and all investigated the influence of the linear and nonlinear 

distribution of Nano-fillers on the vibrational behavior of Nano-composite plates using a 

layer-wise formulation model, where the carbon nanotube is distributed inside a composite 

plate based on the power law distribution (P-FGM) [68]. They conclude that the best way to 

increase the reinforced composite plate stiffness is to disperse more Nano-fillers near 

composite lateral surfaces.  In 2021, Abbaspour and all investigated the active control of 

vibrations of rectangular Nano-composite micro-plates reinforced with graphene platelets 

bonded with piezoelectric layers in a thermal environment regarding the structural damping. 

[51]. Results illustrate the effectiveness of the designed PD controller for X-GPL micro-

plates with four clamped boundaries especially when the size dependency is incorporated 

into the formulation. Moreover, the PD controller performance boosts up at higher 

temperatures. Based on the Halpin–Tsai model and a modified rule of mixture, the 

effectiveness approximating material properties are represented by Shen and all [52].  Their 

use was to study the forced resonance vibration analysis of curved micro-size beams made 

of graphene Nano-platelets reinforced polymer composites. It was shown in their work that 

the resonance position is significantly affected by changing length scale coefficients, 

opening angle, weight fraction, and the total number of layers in GNPs on composite curved 

micro beams corresponding to different GPLs distribution parameters. Employing the first-

order shear deformable theory, Moradi and all investigate the smart control and wave 

propagation examination of graphene Nano-platelets reinforced cylindrical micro-shell 

covered with piezoelectric layers as the sensor and actuator (PLSA) in the framework of an 
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analytical method [51]. As a result, they remarked that consideration of the PD controller 

leads to expanding the stable area and improving the dynamic behaviors of the smart system. 

Yu and all  investigate the active control of free and forced vibration for piezoelectric-

integrated functionally graded linear distribution of carbon nanotube reinforced composite 

plate using the finite element method (FEM) based on Hamilton’s principle and the FSDT 

[53]. They derived the governing equations of the motion of a piezoelectric-integrated FG-

CNTRC plate. They showed that the velocity feedback control method can achieve the 

dynamic response control of the piezoelectric FG-CNTRC plate with excellent control effect 

on both forced vibration and free vibration. Later, Liu and all studied the nonlinear transient 

response of fluid-conveying pipes made of graphene Nano-platelet (GPL)-reinforced 

composite (GPLRC) under blast loads and in a thermal environment [54]. Their numerical 

results showed that due to the fluid–structure interaction, the vibration amplitudes of the 

GPLRC pipes conveying fluid decay after the impact of blast loads. In order to evaluate the 

damped response, Ly and all derived a smoothie finite element model to simulate the 

laminated FG-CNTRC plate integrated with active constrained layer damping treatment 

patches consisting of 1-3 piezoelectric composite layer and a viscoelastic layer [55]. 

Moreover, the effect of CNT distribution, nanotube volume fraction, and CNT orientation 

on the damping behavior of FG-CNTRC plates are investigated. Additionally, the influence 

of symmetrical and asymmetrical damping treatment configuration for controlling the 

vibration is also carried out. Alnujaie and all examine the dynamics of thick rectangular 

plates reinforced with rectangular Nano-fillers known as graphene Nano-platelets (GNPs) 

utilizing the quasi-3D hyperbolic shear deformation theory (quasi-3D HSDT) [56]. He 

discovered that for a specific GNPs percentage, growth in the amount of agglomerated GNPs 

leads to lower natural frequencies and higher dynamic deflection. Meanwhile, for a specific 

mass fraction of the agglomerated GNPs, growth in the volume of clusters brings about 

higher natural frequencies and lower dynamic deflection. Ezzraimi and all [57] presented an 

examination of a carbon nanotube reinforced composite plate. This is the same plate that 

Chiker and all [58] studied. they considered that the composite plate is reinforced by 

nonlinear distributions of CNTs, where nonlinear distribution is based on power law 

functions in accordance to the work of Chiker and all [58].  

    According to these articles: Chiker and all [58], Yu and all [53], Chiker and all [59], 

we found that they do not propose the use of exponential functions in order to distribute 

carbon nanotubes inside composite plates and to study their effect. On the other hand, we 
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also found that few articles included the vibration control of functionally graded composite 

plates reinforced by linear distribution of CNTs or GPLs and covered with piezoelectric 

sensors and actuators, where the CNTs or GPLs are distributed based on the nonlinear power 

law function inside composite plates.  

Our work aims to study and control the stiffness of this kind of plates during active 

vibration. We tried to investigate a free vibration analysis of functionally graded material 

‘FGM’ plates reinforced with carbon nanotubes (CNTs), distributed using exponential law 

functions [60]. A comparative study was done between frequencies of plate reinforced by 

CNTs, distributed using a nonlinear power low function [58], and those obtained using the 

proposed exponential law distribution. The results showed a better distribution of CNTs 

through the thickness, which leads to an improved plate stiffness. After comparing natural 

frequencies, it was found that our results are higher than the one found in the following 

article “Free vibration analysis of multilayer functionally graded polymer nanocomposite 

plates reinforced with nonlinearly distributed carbon-based nanofillers using a layer-wise 

formulation model” [58]. This pushed us to study the vibration control of plates reinforced 

with a nonlinear distribution of carbon nanotubes or graphene nanoplatelets based on the 

exponential law functions, which gave unexpected positive results.  

 

 

 

 



   13 
 

 

CHAPTER 2: ACTIVE VIBRATION CONTROL FOR NANO 

COMPOSITE STRUCTURES USING PIEZOELECTRIC MATERIAL 
 

2.1. Introduction 

Driving on a smooth road is often a pleasant experience, providing a sense of comfort 

and stability. However, the presence of constant tremors in a car seat, often caused by engine 

vibrations, disrupts this comfort. Similarly, imagine a building swaying alarmingly during 

strong winds, both scenarios highlight the pervasive issue of unwanted vibrations. Vibration, 

defined as the rapid back-and-forth motion of an object, is a common phenomenon with 

diverse implications. While it can be advantageous in specific applications, such as moving 

materials efficiently on a vibrating conveyor belt, uncontrolled or excessive vibration can 

have serious consequences.  In civil engineering, persistent vibrations can weaken structures, 

causing damage to buildings and bridges. In machinery, they reduce operational efficiency, 

accelerate wear, and increase the risk of mechanical failure. In vehicles, excessive vibration 

affects ride quality, contributes to component degradation, and diminishes passenger 

comfort. Furthermore, prolonged exposure to strong vibrations can negatively impact human 

health, leading to discomfort, fatigue, and even nerve damage. Because of these numerous 

drawbacks, engineers quickly recognized the critical need to control and manage vibrations 

effectively. For example, they use the active control of vibration to detect, analyze and 

attenuate vibrations. This consists mainly of controllers, piezoelectric sensors and actuators. 

2.2. Piezoelectric Material 

Piezoelectric materials are a fascinating class of materials with the unique ability to 

convert mechanical stress (pressure, vibration) into electrical energy, and vice versa. When 

a mechanical force is applied, it generates an electrical voltage. Conversely, applying a 

voltage can cause them to physically deform (Figure 2.1 [61]) 
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Figure 2.1: a) Direct and b) inverse, piezoelectricity effect. 

2.3.  Poling of Piezoelectric Material 

The piezoelectric effect is strongly coupled with the existence of electric dipoles in the crystal 

structure of the ceramic. Generally, the raw material does not exhibit strong piezoelectric properties, 

because the electric dipoles in the material are pointing in random directions. Thus, the net dipole 

properties of the material are very small after the fabrication process. The orientation of the individual 

electric dipoles in a piezoelectric material must be aligned for the material to exhibit strong 

electromechanical coupling. The dipoles are oriented toward one another through a process called 

poling. Poling requires that the piezoelectric material placed in a strong electric field. The electric field 

produces an alignment of the dipoles along the direction of the electric field [83] as shown in Figure 

2.2. 

Polarised  

piezoelectric

material 

Compressed material Streched material 

Polarised 

piezoelectric

material 

Compressed material Streched material 

a) Direct effect 

b) inverse effect 
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Figure 2.2: Process of poling a piezoelectric material. 

Figure 2.3: Structure bent under the elongation and shrunk of the top and bottom 

piezoelectric patches respectively. 

 

2.4. Mechanism of Action in Structure   
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The bending of the isotropic or composite structures is the consequence of an 

interaction between opposing forces. Applying a voltage triggers the direct piezoelectric 

effect, causing the top patch to expand like a stretched spring with a positive voltage, while 

the bottom patch contracts like a squeezed sponge under a negative voltage. This creates an 

imbalance of forces on the structure, pushing it downwards from the top and pulling it 

downwards from the bottom [62]. Conversely, when inverse the voltage applied on the two 

piezoelectric patches. The structure will balance in the opposite way, pulling it upwards from 

the top by the top piezoelectric patch and pushing it upwards from the bottom by the bottom 

piezoelectric patch (Figure 2.3). 

2.5. Vibration Control    

Vibration control is a broad field of engineering concerned with reducing or eliminating 

unwanted vibrations in objects or systems. Vibrations can be caused by various factors such 

as: 

 Internal forces, for example in machines, vibrations can arise from unbalanced 

rotors, misaligned gears, or engine imbalances.  

 External forces, for example buildings experience vibrations due to earthquakes, 

wind, or traffic. Also, vehicles encounter vibrations from road imperfections or 

engine operation. 

   The importance of vibration control arises from its applications across diverse engineering 

fields. For instance, in civil engineering, vibration control ensures the safety and stability of 

structures like buildings and bridges under dynamic loads. In mechanical engineering, 

vibration control allows to: 

 Improves the performance, lifespan, and noise characteristics of machinery.  

 Enhances ride comfort, and reduces noise in vehicles.  

 Counteract engine vibrations and enhance vehicle comfort by using active engine 

mounts.  

 Reduce noise and vibration of transmission exhaust systems. 

   To mitigate these challenges, engineers have developed innovative techniques to manage 

and control vibration, ensuring the safety, reliability, and efficiency of various systems.  
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They can be categorized into two classes: Passive and active vibration control, (PVC) and 

(AVC) respectively.  

2.6. Vibration Control Types  

2.6.1. Passive Vibration Control  

   Passive control techniques like isolators and dampers have been used for many years.  

Passive vibration control offers a less complex and more economical way to manage 

unwanted vibrations in structures and machines. Unlike active control systems, it doesn't 

require external power or intricate electronics. Instead, it relies on clever design and material 

properties to absorb or isolate vibrations, preventing them from transferring or causing 

damage. However, they may not always be effective across a wide range of vibration 

frequencies or amplitudes. 

2.6.1.1. Vibration isolators 

   The isolators are elements placed between the vibrating source and the structure you want 

to protect. They absorb vibration energy, reducing its transmission. (e.g., rubber mounts 

under a washing machine figure 2.4). 

Figure 2.4: Washing machine vibration isolators [63].  
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2.6.1.2. Vibration damping materials 

    Vibration damping materials are materials that absorb and dissipate the energy of 

vibrations. They are commonly used in various applications to reduce noise, improve 

comfort, and protect equipment from damage. (e.g., acoustic damping pads in car doors 

Figure 2.5). 

Figure 2.5: Damping acoustic in car doors [64].  

2.6.1.3. Tuned mass dampers 

Figure 2.6: Building vibration dampers [65].  

    These consist of a mass-spring system attached to the structure. They are tuned to resonate 

at the same frequency as the unwanted vibration, absorbing that specific frequency 

effectively. (e.g., dampers used to reduce wind sway in tall buildings Figure 2.6). 

2.6.2. Active Vibration control  

   Active vibration control is a technology used to reduce unwanted vibrations in structures 

and machines. It is based on the idea of applying a force to the structure that is equal in 

magnitude but opposite in direction to the excitation force causing the vibration. Active 

vibration control use loop mechanisms, consisting mainly of controllers, sensors, and 
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actuators (figure 2.7). The latter are made of piezoelectric material because of the 

electromechanical properties of piezoelectricity.  

Figure 2.7: Active vibration control loop. 

   An interesting application field of vibration control lies in the field of aeronautics, where 

mitigating vibrations is essential for the comfort and well-being of pilots and passengers. 

Active Vibration Control is employed in aircraft and spacecraft to minimize structural 

vibrations, enhance ride comfort, and ensure operational efficiency. Additionally, vibration 

damping in airplane wings and helicopter rotor blades plays a critical role in improving 

stability, reducing noise, and enhancing overall performance. Figure 2.8 illustrates a test 

room for an airplane wing and fuselage covered by piezoelectric patches. 

 

Figure 2.8: Vibration control for airplane ail using piezoelectric patches [66]. 

2.6.2.1. Piezoelectric Sensor  

   In a vibration control loop, the piezoelectric sensor is attached to the vibrating structure.  

As the structure vibrates, it exerts a force on the piezoelectric material. This mechanical 

force creates a varying voltage within the sensor, acting like a fingerprint of the vibration 

itself.  The greater the force (indicating a stronger vibration), the higher the voltage 

Actuator 

Structure 

Sensor 

Controller 
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generated.  Similarly, the frequency of the vibration is reflected in the frequency of the 

voltage fluctuations the sensor picks up. This way, the piezoelectric sensor acts as a 

translator, converting the mechanical motion of the vibration into a corresponding electrical 

signal the control system can understand and use to counteract the unwanted movement. 

2.6.2.2. Controller  

    In Active Vibration Control, the controller serves as the central processing unit, 

orchestrating the entire system. It receives signals from sensors that provide detailed 

information about the vibration's amplitude and frequency. Using advanced algorithms, the 

controller interprets this data, effectively "decoding" the vibrations. Based on this analysis, 

it determines the optimal counteracting force and timing to mitigate the vibrations. 

   Control algorithms can range from straightforward, pre-programmed responses to adaptive 

systems that dynamically adjust in real time. Once the calculations are complete, the 

controller sends precise commands to the actuators, specifying the magnitude and timing of 

the force to be applied. This counteracting force neutralizes the vibrations, resulting in a 

more stable and balanced system. 

2.6.2.3. Piezoelectric Actuator   

   The controller serves as the conductor, orchestrating the actuator's movements. When it 

sends an electrical signal, the actuator doesn't simply receive a command, it undergoes a 

transformation. The signal generates an electric field across the piezoelectric material inside 

the actuator, which acts as a powerful nudge, causing the material to deform physically. This 

deformation depends on the material's intrinsic properties and the specific characteristics of 

the electrical signal. For instance, imagine a slender, plate-like structure made of 

piezoelectric material. When voltage is applied, the resulting electric field may cause the 

plate to bend in a precise manner. This bending is not random but carefully dictated by the 

actuator's design, translating into a directional force. The actuator uses this force to 

counteract unwanted vibrations effectively. In essence, the controller's electrical signal is 

converted into a deliberate physical movement through the synergy of the piezoelectric 

material and the actuator's engineered structure. 
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2.7. Nano fillers for the reinforcement of composite structures 

Many structural components, including beams, plates, and shells made from isotropic or orthotropic 

materials, such as aircraft wings, bridge columns, girders, and vehicle frames, are often exposed to 

harmful vibrations. These vibrations can lead to structural fatigue-causing cracks and reducing their 

lifespan (Figure 2.9). 

Figure 2.9: a) Crack in a pillar of a bridge [67] , b) Crack in house wall [68], and c) Crack in airplane 

wing [69].  

   In the order to repair these cracks and minimizing the cost and time, a novel composite 

material has been developed, offering superior properties compared to conventional 

materials. These composites incorporate nanoscale reinforcements to enhance their overall 

performance, earning them the name "nanocomposites." The primary advantage of using 

nanoscale elements lies in leveraging the exceptional properties of nanoparticles to 

strengthen a desired matrix, which can be metallic, polymeric, or other materials. 
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   Polymeric matrices are the most commonly used, leading to the creation of polymeric 

nanocomposites. Additionally, a wide variety of nanoscale Fibers and particles can be 

utilized to improve matrix properties. Among the most renowned reinforcements are carbon 

nanotubes, cylindrical structures formed by rolling one or more layers of graphene (graphene  

 Figure 2.10: State to obtain single-walled carbon Nanotubes: (A) armchair, (B) Zig-zag, 

(C) Chiral.   

platelets, or GPLs). These nanotubes are widely employed in the fabrication of polymeric 

nanocomposites due to their remarkable strength, stiffness, and unique properties. 

   All types of CNTs, namely single-walled CNTs (SWCNTs), double-walled CNTs 

(DWCNTs), and multi-walled (MWCNTs), can be implemented to enhance the material   

properties of a polymeric matrix. CNTs can support Young’s moduli of Terra-Pascal (TPa) 
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order depending on their chiral, Zig-Zag, or armchair form (Figure 2.10). Hence, the 

remarkable stiffness of CNTs can improve the total stiffness of the Nano-composite properly 

[70]. 

2.7.1.  Single-Walled CNTs 

   Single-Walled CNTs (SWCNT) consists of one layer of carbon sheet. The structure of a 

SWCNT can be conceptualized by wrapping a graphitic layer into a seamless cylinder (figure 

2.11). A massive amount of SWCNTs is produced mainly by the chemical vaporization 

deposition (CVD) method. Most SWCNTs have a diameter close to one nanometer, with 

lengths extendable up to millimeter or even centimeter scales[71]. 

Figure 2.11: Single-walled Carbon Nanotube. [71] 

2.7.2. Double–Walled CNTs 

    A double-walled carbon nanotube is a microscopic cylindrical structure composed of two  

Figure 2.12: Double-walled Carbon Nanotube. [71] 

sheets of graphene (a honeycomb structure of carbon atoms) wrapped around each 

other.(figure 2.12 [71]).  
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2.7.3. Multi-Walled CNTs 

   Multi-walled carbon nanotubes (MWCNTs) are made up of multiple graphene layers, and 

their description requires considering not only morphology and structure, as for single-

walled carbon nanotubes (SWCNTs), but also texture and Nano-texture. One possible 

definition of MWCNTs is as "Nano-sized, hollow, carbon filaments whose wall is made up 

of more than one graphene (figure 2.13), with the inter-graphene distance being equal to the 

regular 0.34 nm van der Waals distance for turbo-stratic, poly-aromatic carbons [72]".  

However, this definition is not universally accepted, as some researchers prefer to restrict 

the use of the term "MWCNT" to concentric assemblies of two or more SWCNTs with 

increasing diameters [72].  

 

Figure 2.13: Multi-walled Carbon Nanotube. [72] 

2.8. Functionally Graded Materials (FGMs) 

Functionally graded materials (FGMs) are a class of advanced materials with a 

continuous variation of material properties from one surface to another (Figure 2.14). This 

variation in properties can be tailored to meet the specific needs of an application, resulting 

in a material that is more efficient and durable than traditional materials[72]. FGMs are 

typically made from two or more different materials, which are gradually mixed together to 

create a gradient in properties. For example, an FGM might be made with a metal on one 

side and a ceramic on the other, with a gradual transition from one material to the other in 

between. This gradation in properties (such as Young’s modulus and density) is based on 

different functions of distribution, these are:  

 The sigmoidal distribution [73]: 



                                                                                                                               25 

 

  1 2 1 2
1 1 1 0 2

2 2 2 2

in inP P

m c
k h z h z

E E E for z h
h h

        
                        

         

(2.1) 

  1 2 1 2
1 2 0

2 2 2 2

in inP P

m c
k h z h z

E E E for h z
h h

        
                       

          (2.2) 

 

Figure 2.14: Functionally graded material (Ceramic/Metal). 

 The power law distribution [74] [58]:  
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 The exponential law distribution [75]:  
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Where Pin is the power law index and the superscripts Ec, Em signify, respectively, the 

Young’s modulus on the top ceramic and the bottom metal surfaces of the structural element. 
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ρc, ρm signify, respectively, the density of both ceramic and metal. (z) is the position of the 

considered layer, and h is the thickness of the plate 

2.9. Functionally Graded Nano Composite Materials 

Functionally graded Nano-composite materials were first observed in early 2009, where 

Shen [2] was the first one who proposed four linear functionally graded distributions of 

carbon nanotubes inspired by the FGM concept. Namely: the uniform, the FG-X, the FG-O, 

and the FG-A distribution. Afterward, Chiker et al [59] followed them and proposed the 

nonlinear distribution of CNTs by using the following power law functions: 
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In which *
rf is the volume fraction of carbon nanotubes or graphene Nano-platelets, kth is the 

number of layers, and NLis the total number of layers. Pin is an index and his variation gives 

the nonlinear distribution.   
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wi is the weight fraction of the nano-fillers. 

   A new method of distribution is proposed by us in reference [60], it is based on the 

exponential law distributions, which is given as:   
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In Figure 2.15, we present the curve of power and exponential law distribution of the volume 

fraction from the 1st to the last layer. 

Figure 2.15: Volume fraction ratio fr
 (k)/ fr

* along the plate thickness. 

2.9.1. SWCNTs Reinforced Composite Plate Material Properties 

   In this section, we will implement the well-known rule of mixtures to predict the effective 

material properties of composites reinforced with carbon nanotubes (CNTs). This approach 

accounts for the small size of CNTs by using scale-dependent coefficients, which were 

derived by comparing experimental data with molecular dynamics simulations. According 

to this approach, the equivalent stiffness of the CNTR Nano-composite can be calculated for 

all layers using the following formula [76]: 

( ) ( ) ( )

11 1 11

k k CNT k

r m mE k f E f E                                      (2.10) 

 
( ) 2
22 ( ) ( )

22

k

k k
r m

CNT
m

k
E

f f

EE




                                                        (2.11) 

11

CNTE , 
22

CNTE , and mE are the elastic young moduli of CNTs and matrix, respectively.   

 

 

 

 



                                                                                                                               28 

 

 
( ) 3
12 ( )( )

12

k

kk

mr

CNT

m

k
G

ff

G G





                                             (2.12) 

12

CNTG and mG  are the shear moduli of CNT and matrix respectively. 

Furthermore, the equivalent Poisson’s ratio and mass density of the CNTR Nano-

composites can be calculated using the following formula: 
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12

CNT and
m  are the Poisson’s ratios of CNTs and matrix, respectively. 
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CNT , and m  are the densities of both CNT and matrix respectively. k1, k2, k3 are the 

efficiency parameters. These coefficients vary as the volume fraction of the CNTs changes. 

They were determined by the comparison between the obtained results from the molecular 

dynamics simulation and the mixing law of CNT material properties. 
 k

mf is the volume 

fraction of the matrix of the kth layer, which equals to
( )1 k

r
f . 

2.9.2. GPLs Reinforced Composite Plate Material Properties 

   In this section, we are going to compute the effective material properties of graphene 

platelet-reinforced (GPLR) composites using the Halpin-Tsai micromechanical method. 

This method takes into account the small size and unique shape of the Nano-fillers to predict 

the material properties of the Nano-composite. According to this method, the equivalent 

stiffness of the GPLRC can be determined for all layers as follows [76]: 
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Where EL and ET are longitudinal and transverse modules in x and y directions, respectively.  

Then:                 
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


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
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In the previous equations, EGPL and Em denote the Young’s moduli of GPLs and polymeric 

matrix, respectively. The Halpin-Tsai method includes the impact of the particular geometry 

of the reinforcements on the mechanical properties of the Nano-composite material. These 

geometrical parameters can be determined as follows: 

2w GPL GPLw h    ,        2L GPL GPLL h                              (2.17) 

LGPL, wGPL, and hGPL are the average length, width, and thickness of the GPLs, respectively. 

Moreover, the terms, that are provided to account for the geometrical shape of the GPLs, are 

ξL and ξw. Poisson’s ratio and mass density of the GPLR Nano-composite material can be 

estimated via the simple form of the rule of the mixture as follows: 

 
m

k

m

GPLk

r

k

eff ff  )()(


                                        (2.18) 

m

k

m

GPLk

r

k

eff ff  )()()(


                                       (2.19) 

Where the subscript eff means effective.  

2.10. Conclusion  

   In this chapter, we defined and explained the mechanism of action of piezoelectric 

materials and their application in the vibration control of structures. Additionally, we 

proposed a method for controlling composite plate structures reinforced with nanomaterials. 

This chapter sets the stage for a more in-depth exploration in the subsequent sections, which 

will focus on the advanced control of composite plates using piezoelectric sensors and 

actuators. 
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CHAPTER 3: THEORY AND BEHAVIOR LAW FOR NANO 

COMPOSITE, PIEZOELECTRIC, AND SANDWICH PLATES 
 

3.1. Introduction 

    In this chapter, the theoretical formulation will be presented to define kinetic, strain, and 

external forces for isotropic and orthotropic plates using the first-order shear deformation 

theory. Additionally, the relationship between stress and strain will be discussed.  

3.2. Plate Deformation Theory  

The First-order Shear Deformation Theory (FSDT) or Mindlin-Reissner theory is an 

advanced extension of the Classical Lamination Plate Theory (CLPT) that incorporates the 

effects of transverse shear strains. Following the Kirchhoff hypothesis, CPLT assumes that 

the sections perpendicular to the plate's mid-surface remain perpendicular after deformation 

(Figure 3.1). However, transverse shear strains are negligible in thin plates, like those made 

of piezoelectric materials. As we said, the FSDT is an extension of the CPLT were this take 

in consideration the effect of transverse shear strains, and said that sections perpendicular to 

the plate's mid-surface remain non-perpendicular after deformation for thick plates. The 

FSDT addresses this by modifying the displacement field of the CLPT to account for these 

strains, providing a more accurate description of plate deformation behavior [74][77][78], 

[79]:   

( , , , ) ( , , ) . ( , , )

( , , , ) ( , , ) . ( , , )

( , , , ) ( , , )

x

y

U x y z t u x y t z x y t

V x y z t v x y t z x y t

W x y z t w x y t





 


 
 

                                       (3.1) 

   U, V, and W are the displacements in the x, y, and z directions, respectively. u, v, and w are 

the displacements of the mid-surface (z = 0), and θx and θy are the rotations of a transverse 

normal about the y and x axes, respectively:  

CLPT: ,CLPT CLPT

x y

w w

x y
 
  

  
  

,  FSDT:   ,FSDT CLPT FSDT CLPT
x y

x x y y
          

Equation (3.1) can be rewritten in matrix form as follows: 



                                                                                                                               31 

 

 

 
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X

u
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X V z w
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

 
          

      
         

  

                                    (3.2) 

[L] is an operator for the localized translation and rotation variables. It can be expressed  

With another form as [78]: 

 

 

 
 

 

1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0x x

y y
tra rot

X X

u u

U v v

X V zw w

W

L L

 

 

   
   

                
          
                

      

                 (3.3) 

[Ltra] and [Lrot] are the localized translation and rotation operator, respectively. 

Figure 3.1: Deformation of plate according to FSDT and CLPT. 
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3.3. Strain-Displacement Relationship  

The strain components in terms of displacement for a plate structure are given by the 

following relationships [80]: 

.

.
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.
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x x
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  

 
  

    
  

   
    

   
          

       
   

   
 
 


 

  

                                         (3.4) 

The equation (3.4) can be rewritten with matrix form as follows: 

 

0 0 . 0

0 0 0

0 0 0 0 0

0 . .

0 0 1 0

0 0 0 1
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     
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           
         
 
 

 

 

Where the matrix [Dstr], called the strain operator matrix, is composed of the three-operator 

below [78] 
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  

          (3.5)                                      

We can reorganize the strain {ε} vector as follows [78]:   

 
   

 

membrane deformation bending deformation

mb

s

shear deformation

z  


 

 
    

    
   

  

                                    (3.6) 

In which  ,  and  are the membrane, bending and shear deformation vectors, 

respectively. [Dmem], [Dben] and [Dshe] are the membrane, bending and shear operator’s 

matrices, respectively. {εmb} is the membrane-bending deformation vector and εs is the 

shear deformation vector. 

3.4. Theoretical Formulation for Composite Material  

3.4.1. Stress- Strain Relationships 

     The constitutive equation for such a Nano-composite layer can be presented in the 

following form of the relationship between strain and stress [81]: 

   ( )

1

N
k

ij

k

Q 


                                                     (3.7) 
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    
     

   

                           (3.8) 

   ( )k
ijQ  are the elastic constants. These are formulated for composite plates in equations (3.9) 

and (3.10) for both types of composite reinforced with CNTs and GPLs, respectively, as 

follows:   

( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11 11 2122

,11 22 12 44 23 55 13 66 12
12 2112 21 12 21

, , , ,
11 1

kk k
k k k k k k k k kEE E

Q Q Q Q G Q G Q G


    
     

 
     (3.9) 
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Q Q Q Q Q Q
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
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
                (3.10) 

If the fibers are oriented inside the composite plate the subscript equation, (3.7) can be 

rewritten as:        

   ( )

1

N
k

ij

k

Q 


 
                                              (3.11) 

In which 
( )k

ijQ are determined as [81]:  

 ( ) ( ) 4 ( ) ( ) 2 2 ( ) 4

11 11 12 66 222 2k k k k kQ Q C Q Q S C Q S                             (3.12) 

   ( ) ( ) ( ) ( ) 2 2 ( ) 4 4

12 11 22 66 124k k k k kQ Q Q Q S C Q S C                            (3.13) 

   ( ) 4 ( ) ( ) 2 2 ( ) 4

22 11 12 66 222 2
k k k k kQ Q S Q Q S C Q C                           (3.14) 

     ( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) 3

13 11 12 44 12 22 44 222 2
k k k k k k k kQ Q Q Q S C Q Q Q Q S C                 (3.15) 

     ( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) 3

23 11 12 44 12 22 44 222 2
k k k k k k k kQ Q Q Q S C Q Q Q Q S C                  (3.16) 
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33 11 22 12 44 442 2
k k k k k kQ Q Q Q Q S C Q S C                     (3.17) 
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  ( ) 2 ( ) 2

44 11 66

k k kQ Q C Q S                                                (3.18) 

   ( ) ( )

45 66 55 .
k k kQ Q Q C S                                                (3.19) 

  ( ) 2 ( ) 2

55 55 66

k k kQ Q S Q C                                                (3.20) 

The subscript S and C denote the sine and cosine. 

3.4.2. Stress, Torque, and Shear Resultants for Composite Plate 

     Integrating the stresses in each lamina through the laminate thickness, the resultant forces 

N, Torques M, and shears Q  acting on a laminate cross section are defined as follows 

[82][83]: 
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                           (3.23) 

Where: 

 Nxx and Nyy represent the resultant normal forces in the x and y directions, respectively.  

Nxy denotes the shear force resultant. 

Mxx and Myy are the resultant bending Torques in the oyz and oxz planes, respectively. While 

Mxy is the resultant twisting torque (torsion). 

xQ and 
yQ  are the resultant shear forces in the x and y direction, respectively. 

With accumulate form:   
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          

                        (3.24) 

Where, the subscript Aij, Bij, Dij refer to the membrane, membrane-bending (coupling) and 

bending stiffness matrices respectively, along with the shear stiffness matrix Fij for the 

orthotropic plates. These are expressed as:  
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 Zk+1 and Zk are the positions of the top and bottom surfaces of the considered layer, 

respectively.                         

3.5. Theoretical Formulation for an Elastic Plate  

3.5.1. Stress-Strain Relationships 

   The stress-strain relationship for homogeneous isotropic lamina is [84] [83][76]: 
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                                          (3.29) 

Decomposed the equation (3.29), we can write the stress vector {σ} with following matrix 

form:  
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In which ν is the Poisson’s ratio, and E is the Young modulus of the isotropic material. 

[C] is the global elastic constants matrix. 

[Cmb] is the elastic constants matrix for membrane and bending deformation. 

[Cs] is the elastic constants matrix for shear deformation. 

 
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0

0

mb mbmb

s ss

C

C

 
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    
    

    
                                        (3.31) 

{σmb} and {σs} are the membrane-bending and shear stress. 

3.5.2. Stress, Torque, and Shear Resultants  

     The Mindlin plate theory assumes that the normal stresses in the thickness direction are 

negligible within the volume of the plate (σz = 0). For an isotropic material the stress, torque, 

and shear resultants are given by substitute equation (3.6) in (3.32), these are [85][79][86] 

[78]: 
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The Torques resultants, Mx, My and Mxy are:   
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          (3.33) 
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The Shear resultants, Qx, Qy are:  
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                           (3.34) 
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We can assemble the last three equations (3.32), (3.33) and (3.34) in the following resume 

equation [86] :  
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       

                     (3.35) 

Where Aij, Bij, Dij, Fij are the membrane, bending, membrane-bending (coupling), and shear 

stiffness matrices for the elastic (Elas) plate, respectively. 

3.6. Energy Conservation by Hamilton's Principle 

   Hamilton's principle is a universal principle that governs the motion of a wide range of 

mechanical systems. It states that the actual trajectory of a system between two points in 

time is the one that extremizes the time integral of the Lagrangian function. This is achieved 

if the variation of the time integral of the Lagrangian is set to zero [87][88][89]: 

 
1

0

0

t

k s

t

E E W dt                                                 (3.36) 

δ is the variation operator. 

    Hamilton's principle can be used to derive the equations of motion and boundary 

conditions for a mechanical systems, given the strains ES, external work W, and kinetic 

energy Ek. To accomplish this, the equations of these quantities are substituted into 
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Hamilton's principle equation, and the coefficients of the virtual displacements are set to 

zero. The Lagrangian for the three-dimensional elasticity problem is: 

           
k sL E E W                                                     (3.37) 

3.6.1. Kinetic Energy 

   The Lagrange is defined as the difference between the kinetic energy and potential energy 

of the system. For an isotropic plate, the kinetic energy is given by: 

21 1

2 2

T

k

V V

E X dV X X dV                                       (3.38) 

ρ is the material density of the elastic considered plate and V is the volume of the plate.  

Substituting equation (3.3) into equation (3.38), one obtains: 
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(3.39) 

Integrating the kinetic energy through the thickness direction between the born [-h/2, h/2], 

the equation (3.39) will be:  
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 
                       (3.40) 

Where [M]Elas is the mass matrix for the elastic plate and A the area of plate. By replacing    

[Ltra] and [Lrot] mentioned in equation (3.3) with their matrices, the mass matrix will be:   
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                                          (3.41) 

  hc is the thickness of the plate.   

3.6.2. Strain Energy 

    The strain energy was given as follow [90][88]: 
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      The integral of the strain energy density over the volume of the plate is given by 

substituting equations (3.6) and (3.30) in (3.42) [91]: 
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  (3.43)    

Where [Cmb] and [Cc] represent the elastic constant matrices for the membrane bending and 

shear effect, respectively.  

 As we have four sections of deformations, equation (3.43) may divide into the following 

parts: 
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3.6.2.1. Membrane deformation  
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In which [A] Elas = hc [Cmb].    

 

3.6.2.2. Bending deformation 
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                                        (3.45)     

In which [D] Elas = (hc
3/12) [Cmb].    

3.6.2.3. Membrane-Bending deformation 
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The membrane bending energy is equal to zero because of the symmetry of the structure by 

her mid-plan.       
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3.6.2.4. Shear deformation 

    

    

   

 

 

/2

/2

1

2

1
.

2

1

2

Ts

s s

V

h
T

s

A h

T

c s

A

Elas
F

E C dV

C dz dA

k h C dA

 

 

 













 



                                        (3.47)     

In which [F]Elas= k hc [Cs], and k is the shear correction factor.    

3.6.3. External Forces Works 

    The work obtained due to the forces applied to the plate structure may depend on the type 

of force. It can be expressed in the following formulation forms [92]: 

3.6.3.1. Body load                        

   
T

V V

V

W U F dV                                                 (3.48) 

3.6.3.2. Surface load 

   
T

S S

S

W U F dS                                                 (3.49) 

3.6.3.3. Concentrated load 

   
T

P PW U F                                                   (3.50) 

3.7. Theoretical Formulation for Piezoelectric Plate  

    Most of the practical piezoelectric materials used in sensor and actuator applications are 

elastic and isotropic. They are poled in a specific direction. For our study, we suppose that 

it is poled throw its thickness direction. The behavior law of piezoelectricity, which relies 

upon the mechanical properties with electrical ones is given in the following [93]: 

 Direct Effect of Piezoelectricity: 
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         (3.51) 

 Inverse Effect of Piezoelectricity: 
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Where:  

{D} is the electric displacement array. 

 [emb] and [es]  are the piezoelectric stress constants for membrane-bending and shear effects, 

respectively.  

 [d] is the electrical permittivity for constant mechanical strain.  

{E} is the electrical field intensity. 

3.8. Electrical Field Intensity 

    The electrical charge field witch penetrate the piezoelectric plate throw its thickness is 

distributed linearly through the thickness direction yields [93][94][95]. The electric field 

derive a potential [92][94]: 
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                                      (3.53) 
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Where hp is the thickness of the piezoelectric plate figure (3.2) and z  is the electrical 

voltage (potential) applied to the piezoelectric plate (piezo-plate). 

Figure 3.2: Piezoelectric plate. 

We can write the equation (3.53) in matrix form as follow: 

    
0 0 0 0

0 0 0 0

0 0 1 p z

E D

h

 


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     

                                (3.54) 

Where D  is the potential operator matrix, and   is the electrical potentials vector. 

3.9. Kinetic Energy for Piezoelectric Plate 

   In the above, we say that piezoelectric plates are isotropic, so we can deduce the kinetic 

energy for piezoelectric plate from equation (3.40) as follow: 
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                   (3.55)      

ρp is the density of the piezoelectric plate, and [M]piezo is the matrix of the piezoelectric plate:                  

ph 
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 b 

 0 
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                                      (3.56) 

3.10. Strain Energy for Piezoelectric Plate 

The strain energy for the piezoelectric plate is composed of an elastic strain energy and an 

electric strain energy [96][97]: 
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2 2
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V V

Elastic Electric

E E E dV D E dV                               (3.57) 

Substituting the stress vector and electrical displacement vector (equation (1.1)) in equation 

(3.57) we get: 
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Then, we substitute equation (3.51) and (3.52) in the above equation, we found [92]: 
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        (3.59) 

3.10.1. Elastic strain energy 

    The elastic energy for the piezoelectric plate is assumed to be equivalent to the elastic 

energy derived in section 3.4.2, with different elastic constants. This similarity is obtained 

because the piezoelectric material is considered isotropic in its thickness direction, and the 

shear effects within this material are not deemed significant, γyz = γxz =0. 
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    
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E C dV                                                 (3.60) 

3.10.2. Piezoelectric strain energy 
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Substitute {εmb} by her expression mentioned in equation (3.6) in the previous equation: 
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(3.62) 

By integrating of the equation (3.61) between [-hp /2 +hp /2] we found:  
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3.10.3. Dielectric strain energy 
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3.10.4. External Forces Works 

The external forces that can be applied to the piezoelectric plate are both mechanical and 

electrical forces. The mechanical forces (volume, surface, and point forces) are described as 

in section 3.4.3, while the electrical force is expressed as follows [97]: 

       
T

electric

A

W D dA                                                 (3.65) 
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3.11. Theoretical Formulation for Piezoelectric Sandwich Plate 

The objective of presenting the formulation of a piezoelectric sandwich plate is to prepare 

for active vibration control. A piezoelectric sandwich plate consists of a nanocomposite core 

reinforced by nanofillers, with two piezoelectric plates covering the top and bottom surfaces 

of the nanocomposite (Figure 3.3). The governing behavior laws of the piezoelectric 

sandwich plate, which link the piezoelectric plates to the nanocomposite core, are as follows: 

Figure 3.3: Sandwich plate made of composite in heart and covered by two piezoelectric 

plates. 

3.11.1. Kinetic Energy for Piezoelectric Sandwich Plate 

The kinetic energy of the piezoelectric sandwich plate can be expressed as the sum of the 

kinetic energy of the elastic plate (as detailed in section 3.6.1) and the kinetic energy of the 

top and bottom piezoelectric plates. It is assumed that both piezoelectric plates have the same 

thickness, hp. This can be formulated as follows: 
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(3.67) 

   After substituting equation (3.3) and integrating the expression through the thickness 

direction, the following mass system is obtained: 
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              (3.68)                                  
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   

With, hp and hc are the thickness of the piezoelectric and composite plate, respectively. 

3.11.2. Strain Energy for Piezoelectric Sandwich Plate 

The strain energy of the piezoelectric sandwich plate is composed of the strain energy of 

the two piezoelectric layers and the strain energy of the elastic core (nanocomposite). 

However, in this case, the integral of the strain energy for the piezoelectric layers is 
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calculated between the born of the bottom layer ,
2 2
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 
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and top layer

,
2 2
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h h
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 
   
 

. 
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s s s sE E E E                            (3.69) 

Omitting the shear effect, and due to the symmetry to the average plane of the sandwich 

plate, the components of equation (3.69) are [78]: 

           
2 2

2

2 2

1 1

2 2

c c

c c
p p

Bottom piezo Bottom piezo Bottom piezo Bottom piezo

s s elastic s piezoelectric s dielectric

h h

T TBottom piezo

s elastic mb mbpiezo piezo
h hA A

h h

Bottom pi

s eleastic

E E E E

E C dz dA z C dz dA

E

   

   

  

 





   





  

    

   

 

     

 

 

          

3 3
1 1 1

2 2 3 2 2

1 1

2 2

Bottom piezo

Bottom piezo

T Tezo c c
p mb p mbpiezo piezo

A A
A

D

TT TBottom piezo

s piezoelectric mb mb mb mb

V V

s dielectric

h h
h C dA h C dA

E E e dV e E dV

E

   

 











    
            

 
   

 

 

 

     
1

2

TTBottom piezo

V

E d E dV   

  (3.70) 

   

 

     

 

     

 

 
3

12

1 1 1

2 2 2

T T TNanocomp c
s elastic c mb mb c s

A A A

Nanocomp Nanocomp
Nanocomp

A F
D

h
E h C dA C dA k h C dA          

   (3.71) 

           

   

 

2 2
2

2 2

1 1

2 2

1

2

c c
p p

c c

Top piezo Top piezo Top piezo Top piezo

s s elastic s piezoelectric s dielectric

h h
h h

T TTop piezo

s elastic mb mbpiezo piezo
h hA A

TTop piezo

s elastic p mb piezo

A

E E E E

E C dz dA z C dz dA

E h C

   



   

  

   





 





  

 



   

     

 

 

          

     

3 3
1 1

2 3 2 2

1 1

2 2

1

2

Top piezo

Top piezo

T c c
p mb piezo

A A

D

TT TTop piezo

s piezoelectric mb mb mb mb

V V

TTTop piezo

s dielectric

V

h h
dA h C dA

E E e dV e E dV

E E d E dV

  

 













    
           

 
   

 

 

 

 



 (3.72) 
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From equations (3.70) (3.71) and (3.72), we can deduce the matrices of “membrane”, 

“bending”, “membrane-bending” (coupling), and “shear” stiffness for the sandwich plate as 

follows: 

       

 

       
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                       (3.73) 

3.11.3. External Forces Works 

   The external forces that can be applied on the piezoelectric sandwich plate are the same 

applied on piezoelectric, isotropic, and orthotropic plates (section 3.4.3).  

3.12. Conclusion  

   In this chapter, we successfully presented the theoretical formulation for nanocomposite 

plates, piezoelectric plates, and sandwich plates. All the behavior laws, the relationship 

between strain and stress, kinetic energy, strain energy, forces works, and the laws of the 

electrical field, are involved in this part. This presentation was done to know how we are 

going to bring out the elementary matrices of mass and stiffness from a discretized medium, 

which will be presented in the next chapter. Having established the groundwork here, the 

next chapter will detail the steps to extract the elementary mass and stiffness matrices from 

a discretized medium. 
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CHAPTER 4: FINITE ELEMENT METHOD FOR PLATES 

 

 

4.1. Introduction  

     The Finite Element Method (FEM) is a powerful numerical technique used to solve a 

wide range of structural problems like displacement, static and dynamic analysis. This 

method consists of discretizing the domain into small subdomains to make the resolution of 

the problem easy and faster. 

      The problems tackled in the field of structural dynamics generally involve determining 

the magnitudes of displacement, velocity and acceleration of any point in the structure, in 

response to external excitations.  These problems can be solved using a variety of 

approaches. In this chapter, we lay the foundations for the approach adopted in our thesis by 

rewriting the expressions for the deformation quantities and kinetic energy for the 

quadrilateral element under consideration. Newmark's integration method will also be 

presented in order to use it to solve the resulting problem. 

4.2. Finite Element Method FEM 

     FEM involves discretizing the plate into small, interconnected elements. These elements 

typically take the form of triangles or quadrilaterals for 2D structures. By analyzing the 

behavior of the plate over each element, the complex problem can be broken down into a 

series of simpler problems that are easier to solve. This makes FEM a valuable tool for 

engineers who need to understand and predict the behavior of complex structures. 

The FEM-based structural analysis consists of four main phases [98]:  

 Element choice and interpolation function generation. 

 Discretization and transcription of the problem into a boundary value problem, this 

involves the calculation of element properties such as the mass and stiffness 

matrices through a variational method such as the Rayleigh-Ritz method.  

 Transformation of the element mass, stiffness, and other characteristic matrices 

from an element-based reference frame to a global reference frame.  
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 Assembly of element equations into matrix format and obtaining a solution. The 

final step involves the solution of a large set of simultaneous algebraic equations. 

4.2.1. Presentation of the chosen finite element  

   In our study, the plate is discretized into a considerable number of identical square 

elements, each of which contained nine nodes, every node has five degrees of freedom {u v 

w θx θy}. Figure 4.1 represents the geometrical characteristics of a representative element. 

Using this type of element with 9 nodes will allow to represent more precisely the curvatures 

and non-linear gradients of the displacement field.

       Figure 4.1: The representative nine-node element. 

4.2.2. The Interpolation Polynom 

    The interpolation polynom used for the previous element with nine nodes is taken from 

Pascal’s triangle as follows:  

    2 2 2 2 2 2
9 1G                                  (4.1) 

4.2.3. The Interpolation Matrix 

In order to get the interpolation matrix [A9], we just need to replace    and   by their values 

which are the natural coordinates: 
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4.2.4. The Interpolation Functions 

The interpolation functions for the nine nodes element are obtained by multiplying the 

inverse of the interpolation matrix by the interpolation polynomial [81] [99]: 
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                              (4.2) 

4.2.5. The Transformation of the Reference Element into a Real Element 

   The shape function matrices, denoted as [ uN ] and [ N ] for displacement and electric 

potential, respectively, serve as fundamental tools in finite element analysis. They act as 

bridges between nodal variables (i.e. between the displacement {ui} or potential {øi} values 
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at the nodes of the discretized domain and the actual displacement { X } or potential { } 

field throughout the domain) [81]: 

    u iX N u  ,       iN                                    (4.3) 
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,         i=1, 2, 3….9 

   The integrals in the previous chapter were integrated into the global base in the x and y 

coordinates system. Since our plate is discretized into finite elements, the integrals will be 

integrated into the new base,   and    using the following transformation [100] [101][102]:  
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x y
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With the corresponding matrix form: 
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N x y N
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NN x y

y

  

  

       
           

    
      

            

                                      (4.4) 

Ni is the interpolation function of the considered node, and [J] is the Jacobin matrix.   

Therefore, the new area of integration is:               

              ( , ) ( , ), ( , ) det
A x y

f dA f x y dx dy f x y J d d


                                        (4.5)                            

4.3. Finite Element Formulation for the Piezoelectric Sandwich Plate 

In order to formulate the expressions for the kinetic and deformation energies, as well as the 

work carried out by the external forces, it is recommended to follow the steps below 
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 Replace the actual displacement { X } with its nodal displacement 

approximation   u iN u  (eq. (4.3)). 

 The electrical filed {E} with its  D     (equation (3.54)). 

 Replace the electrical potential    with its nodal approximation   iN   (eq. 

(4.3)). 

 Replace the integration domain dA with the approximation (det [J] dξ dη) (eq. 

(4.5)). 

 Replace {εmb} by    z  (eq. (3.6)). 

 Replace β and χ by its matrix form (eq. (3.5)). 

4.3.1. Kinetic Energy for the Sandwich Element     

   The expression of the approximated kinetic energy obtained after applying the previous 

first and third steps on equation (3.67) is as follows [78]:  
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(4.6) 

    We can notice that the obtained sandwich mass matrix is the same as it is founded in equation 

(3.68) but with nodal approximation.  
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4.3.2. Strain Energy for the Sandwich Element  

   The expression of the approximated strain energy obtained after applying all the previous 

steps on equations (3.70), (3.71), and (3.72) is as follows [78]:  
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                                 (4.7)        
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                                (4.8) 
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(4.9) 

4.4. Elementary Mass Matrix  

 We can deduce the elementary mass matrix from the developed kinetic energy in equation 

(4.6) as follows [78]: 
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                         (4.10) 

4.5. Elementary Stiffness Matrices   

    We can also deduce the elementary elastic, piezoelectric, and dielectric stiffness matrices 

from the developed kinetic energy in equations (4.7), (4.8), and (4.9) as follows [78]: 
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4.5.1. Elastic Stiffness Matrix  
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The Piezo-Mechanical Coupling Stiffness Matrix is as follow:  
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4.5.2. Permittivity Stiffness Matrix 

 2
T T Tsandwich

p
dielect elem

A

K h N D d D N dA    


 
                    

 
                   (4.13) 

After determining all the elementary matrices, it is necessary to assemble them to get the 

global matrices. The accumulated form of the three stiffness components is as follows: 
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Where the elementary stiffness 
uK

   =
T

uK 
   . 
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   After integrating the previous equations and getting the elementary matrices, a code on 

Matlab software has been written to assemble these matrices to obtain the global mass and 

rigidity matrices  uu elastic
M , uu elastic

K , u piezoelectric
K 
   ,

dielectric
K
    of the sandwich plate. 

Then, it is possible to solve the resulting dynamic equation: 
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                   

     (4.14) 

   In which, Fmech, and Qelec are the external mechanical force and electrical charge that can 

be applied to the plate. X  and   are the mechanical displacement vector and the electrical 

potential vector obtained due to the applied external force and charge respectively. Where 

   ( ) ' i tX t A e  and    ( ) i tt e    are the solutions obtained from the dynamics 

equation. 

4.6. Modal Analysis [92] 

     Modal analysis is a technique used in structural mechanics to study the dynamic behavior 

of structures. It focuses on determining the studied structure's natural frequencies, mode 

shapes. This process involves manipulating high-order matrices. The MATLAB software 

offers a large diversity of tools facilitating the accomplishment of this process, particularly 

computing eigenvalues, and the corresponding eigenvectors. 

4.6.1. Eigenvalue problem analysis for nanocomposite plate  

    The equation of motion for the undamped and unforced plate is established as follows:  

                                 0uu uuNanocomp Nanocomp
M X K X                             (4.15) 

Equation (4.15) can be reduced to the following standard eigenvalue equation: 

     2 0uu i uuNanocomp Nanocomp
det K M X                           (4.16) 

Where: “det” refers to the determinant of the considered matrix, i  are the natural 

frequencies or proper values, and X is the mode shape vector or adequate vector. 



                                                                                                                               61 

 

4.6.2. Eigenvalue problem analysis for sandwich plate  

    The equation of motion for the undamped and unforced plate is:  
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                (4.17) 

Equation (4.17) can be reduced to a standard eigenvalue equation as follows: 
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X
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With  
1

eff uu d u usandwich
K K G K K K  



                 is the effective rigidity. 

 Gd is the proportional control gain. 

4.7. Static Analysis 

   The equation of motion for the static undamped, forced and non-charged plate is: 

       uu u asandwich piezo
K X K F                                             (4.19) 

Were a  is the electrical potential of the actuator. 

   Since the load is constant, the velocity and acceleration of the plate are equal to zero, and 

the displacement field depends on the electrical potential and the applied uniform load. 

4.8. Dynamic Analysis 

    Dynamic analysis of plates is an important field in structural dynamics, which aims to 

determine the behavior of plates under the action of dynamic loads. This involves calculating 

the deformations in the plate as a function of time. The equation of motion for the damped, 

forced, and non-electrically charged plate is as follows: 
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    (4.20) 

Where: F(t) is the variable load applied on the sandwich plate, which depends on time, 
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[Cuu] sandwich is the proportional damping matrix, given by                                                    

     uu ad sdsandwich
C C C   

[Csd] is the structural damping matrix: 

     sd R uu R uusandwich sandwich
C M K    

R , and R  are Rayleigh's coefficients given by [103]: 

  

2

2
1 1 1 1 1 1

2 2 2 2

2 2
1 1 1 1

1

2 , 2
1 1

N N N N N N

i i i

i i i i i ii i i
R RN N N N

i i

i i i ii i

N N

N N

 
  

  
 

 
 

     

   

 

 

 

     

   
             (4.21) 

   In eq. (4.21), ѱ, ꞷi and N are the design values for the damping ratio, the ith natural 

frequency, and the number of modes contributing in the estimation of Rayleigh’s 

coefficients, respectively. 

   Moreover, [Cad] is the active damping matrix produced by the proposed controller. It is 

formulated as follows: 

 
1

ad v u uC G K K K  



             

Where Gv is the velocity control gain or derivative control gain. 

4.8.1. The Generated Electrical Potential by the Sensor 

   When a transverse external force bends the nanocomposite plate, the piezoelectric layer 

converts this deflection into an electric potential within the sensor layer s . Assuming no 

external electrical charge is present, this generated potential reads as: 

 
1

s uK K X 


                                                 (4.22) 

4.8.2. The Actuator’s Electrical Potential  

   The electrical potential ( s ) is transformed to a displacement and then given to the 

controller (The controller is based on Newmark’s technique to achieve the dynamic time 

history response of the piezoelectric nanocomposite plate). The controller generates a new 
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displacement, which is then transformed into an electrical potential ( a ). This potential is 

assumed to be applied to the actuator layer (Figure 4.2). The electrical potential is thus given 

by: 

.

a v s d sG G                                                 (4.23) 

 

Figure 4.2: Control loop. 

 

4.9. Newmark β-Method of Resolution 

    The Newmark direct integration method is one of the well-known and widely used 

methods in the resolution of the second-order equations of motion. It is based on the 

prediction of the solution and then corrects it [104] [95]. 

    The principle of this method consists in determining, by using a limited development, the 

position and the speed at time tn+1 from the same quantities at time tn. This expansion 

contains a third-order error term proportional to the derivative of acceleration. Various 

hypotheses make it possible to replace this third derivative with the acceleration at the 

previous time by introducing two parameters γn and βn [104] [95]. 

    The Newmark Direct Integration Method involves multiple steps for each time step in 

dynamic analysis. In the following, we set the core steps [104] [95]: 

I) Initialization: 

 Define the initial displacement {u0}, velocity {v0} and load {F0}. 

 

au

Resolution of the equation of motion 

using the Newmark Method 

 

su

nu

1nu 

Sensor 

Actuator 
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 Choose appropriate values for β and γ (Newmark algorithm parameters) to 

balance the desired stability and accuracy. 

II) Loop for each time step (n+1): 

a) Calculate current accelerations (an) using the equation involving {u0}, {v0}, 

{F0}, mass [M], damping [C], and stiffness [K]:   

             0 0 0 0a inv M F C v K x    

b) Time increment: 

                                               1n nt t t     

c) Predict the displacement and velocity in the present step ( 1

p

nu  ) and ( 1

p

nv  ), 

using the displacement, velocity, and acceleration of the previous step:  

       

     

2

1

1

1

2

(1 )

p

n n n n

p

n n n

u u t v t a

v v t a









 
      

 

   

 

d) Calculate the acceleration of the present step: 

       
       

            

2

1

1 1 1 1

p p

n n n n

S M t C t K

a S F C v K u

 



   

    

  
 

e) Correct the displacement and velocity: 

     

     

2

1 1 1

1 1 1

c p

n n n

c p

n n n

u u t a

v v t a





  

  

  

  
 

f) Go back to step (b). 

In which un, un+1, vn, vn+1, an, and an+1 are the displacement, velocity, and acceleration for 

the previous n and present n+1 step. P means the predicted value. t is the period (seconds) 

between n and n+1. The stability and accuracy parameters βn and γn are token equals to 0.25 

and 0.5 respectively, for the unconditionally stable system. 

4.10. Conclusion 

    In this chapter, a brief presentation of the finite element method (FEM) was done, in order 

to achieve the approximate expressions for the kinetic, and strain energy of composite and 

sandwich plates. In addition, a presentation of the resolution method for the equations of 

motion of a free plate is well mentioned. In addition, The Newmark resolution method was 

also presented in order to compute the dynamic response of an unconditionally stable plate. 
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CHAPTER 5: NUMERICAL RESULTS AND DISCUSSIONS 

 

 

5.1. Introduction  

    This study focused on identifying the optimal control parameters, configurations, and 

distribution functions for nanofillers to achieve high performance and stiffness in plates. 

At the beginning of this chapter, we present a validation study to demonstrate the high 

performance of the developed code and to illustrate the degree of accuracy in the results. 

First, a modal analysis was conducted to obtain the natural frequencies and modes of a 

composite plate and a piezoelectric sandwich plate under different boundary conditions, 

followed by a comparison with results from cited references. Second, a static control analysis 

was performed for clamped-free (CFFF) and simply supported (SSSS) sandwich plates, 

reinforced with various configurations using power and exponential laws, to identify the 

stiffest plate. Third, a dynamic analysis was carried out, where the identified stiffest plate 

was subjected to active vibration control. The Newmark prediction-correction method was 

employed to determine the dynamic response of the forced plate. The study concludes with 

promising and significant results. 

5.2. Modal Analysis of Multilayer Nanocomposite Plates  

   In our work, a square multilayer polymer composite plate reinforced by carbon nanotubes 

(CNTs) is considered. The CNTs, specifically the armchair single-walled nanotubes, are 

chosen as the reinforcement for the plate, with the following geometrical dimensions: length 

L=9.26 nm, radius R=0.68 nm, and thickness h=0.067 nm. In the objective of studying the 

comparison between two different plates, the graphene platelets (GPLs) are also chosen as 

the reinforcement of the second composite plate. It is considered that the distribution of nano 

-reinforcement within each layer of the plate is either uniform or varies according to the 

power and exponential law functions as presented in equations (2.7) and (2.9), respectively, 

to form the configurations shown in Figure 5.1.  
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Figure 5.1: Different configurations of carbon nanotubes  

   The CNT properties are: longitudinal Young modulus E11
CNT = 5646.6 GPa, transversal 

modulus E22
CNT = 7080 GPa, density of ρCNT = 1400 kg/m3 shear modulus G12

CNT = 1944.5 

GPa, and Poisons ratio νCNT = 0.175. The correction factors used in the mixing law are 

presented in Table 5.1. 

Table 5.1 The Correction coefficient used corresponds to volume fractions. 

   The graphene platelets properties are: Young modulus EGPL = 1010 GPa, density ρGPL = 

1060 kg/m3, and Poisons ratio νGPL = 0.186.  Their geometrical dimensions are L = 2.5 µm 

W = 1.5 µm and h=1.5 nm. The matrices used in the conception of plates are the [poly (m 

phenylene vinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene] PmPV matrix with the 

following properties: Em = 2.1 GPa, ρm = 1150kg/m3 and νm = 0.34, and the epoxy matrix 

with: Em = 3.0 GPa, ρm = 1200kg/m3 and νm = 0.34. 

5.2.1. Validation study  

    Let us consider a square multilayer composite plate made of epoxy and graphene platelets, 

with the following geometrical characteristics: length L= 0.45 m, width W = 0.45 m, and 

       fr
*                η1                       η2                              η3 

     0.11           0.149           0.934              0.934 

     0.12           0.137           1.022              0.7 η2 

     0.14           0.150           0.941              0.941 

     0.17           0.149           1.381              1.381 

     0.28           0.141           1.585              0.7 η2 

 

UD FG-O FG-X FG-A FG-V 

Layer poor of 

GPLs or CNTs 

Layer rich of 

GPLs or CNTs 
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thickness hGPL/Epoxy = 0.045 m. The plate is assumed to be divided into 10 layers, each with 

the same thickness hL =0.0045 m. In addition, each layer is designed to support a specified 

weight of graphene platelets (GPLs) as a form of a volume fraction (fr
*). Similary, another 

square multilayer composite plate made of PmPV and carbon nanotubes with L= 1 m, W = 

1 m, and thickness hCNT/PmPV = 0.1 m is considered. This plate is divided into 20 layers, each 

with a thickness hL = 0.005 m. Both plates are supposed to be simply supported (SSSS) along 

their four edges (see figure 5.2) and follow the conditions below: 

     
0

0

y

x

v w

u w





  


  
   at   

0

0

x

y




                                                   

 

  Figure 5.2: Boundary conditions.                                             

Table 5.2 presents the first non-dimensional natural frequencies  2 / /m mb h E  

for the CNTs / PmPV plate using volume fraction fr
* = 0.11, and those frequencies of Chiker 

et al 2020 [58] and Zhu et al 2012 [105]. The comparison of the obtained results with those 

from the references shows a close agreement.  

Table 5.2 non-dimensional first natural frequencies of a SSSS CNTs/ PmPV plate. 

Table 5.3 presents the first non-dimensional natural frequencies /m mh E   for the 

GPLs / Epoxy plate using weigh fraction wt = 0.4%, and those frequencies of Chiker et al 

2020 [58], Song et al [106] , and Reddy et al [107]. The obtained results with those from the 

references are in good agreement.  

 

 

 

  h (m)        Source                          
Pin = 1 

UD              FG-X           FG-O           FG-V  

   0.1         Present method         
                Chiker et al [58]           

                Zhu et al [105]                

13.506        14.578          11.558         12.434        

13.532        14.653          11.593         12.478 

13.564         14.616          11.550         12.452 

 

S 

S 

S 

S 
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Table 5.3 Non-dimensional first natural frequencies of a SSSS GPLs/ Epoxy plate. 

   One can observed in both tables 5.2 and 5.3, the FG-X configuration is the only one that 

exhibits high frequencies compared to the other configurations. This behavior may be 

attributed to the condensation of Nano-fillers at the top and bottom layers of the plate. In the 

next table (table 5.4), we present the results showing the effect of varying the parameter Pin 

on the non-dimensional first natural frequencies. The finding results are as follows: 

Table 5.4 Effect of nonlinear distributions of both Nanofillers on the non-dimensional 

natural frequencies, with W/h = 10, Pin = 0 - 0.4 - 0.8 - 1 - 1.4 - 1.8, fr
* = 0.11, wt = 0.4%, 

SSSS. 

   The results given in Table 5.4 are in excellent agreement with those cited in reference [58]. 

After observing the results, one can conclude that increasing the Pin index from zero to 1.8 

may increase the frequencies for the FG-X configuration, whereas a decrease is observed 

with the other configurations. This behavior is attributed to the condensation of nanotubes 

on the lateral regions.  

 

  h (m)        Source                           
Pin = 1 

UD              FG-X           FG-O           FG-V  

   0.045    Present method      
                Chiker et al [58]           

                Song et al [106]           

                Reddy et al [107]                

0.1216        0.1378          0.1020          0.1118 

0.1216        0.1378          0.1020          0.1118           

0.1216        0.1378          0.1020          0.1118           

0.1225        0.1420          0.0912          0.1080            

 

Reinfor        Source         Configuration 

-cement                

Pin 

0              0.4           0.8           1              1.4           1.8 

 CNTs     Chiker et al [58]        FG-X 

                Present method       FG-X 

                Chiker et al [58]       FG-O  

                Present method        FG-O  

                Chiker et al [58]       FG-A 
                Present method             FG-A 

GPLs      Chiker et al [58]        FG-X 

                Present method       FG-X 

                Chiker et al [58]       FG-O  

                Present method        FG-O  

                Chiker et al [58]       FG-A 
                Present method             FG-A 

13.564     14.141     14.512     14.653     14.879     15.054 

13.506     14.074     14.439     14.578     14.801     14.974 

13.564     12.735     11.950     11.593     10.954     10.405 

13.506     12.687     11.911     11.558     10.925     10.381 

13.564     13.165     12.706     12.478     12.045     11.646         

13.506     13.113     12.659     12.434     12.007     11.612 

0.0892     0.0945     0.0984     0.0999     0.1025     0.1045 

0.0892     0.0945     0.0984     0.0999     0.1025     0.1045 

0.0892     0.0834     0.0786    0.0766      0.0735     0.0712  

0.0892     0.0834     0.0786    0.0766      0.0735     0.0712 

0.0892     0.0869     0.0851     0.0850     0.0837     0.0833 

0.0892     0.0869     0.0851     0.0850     0.0837     0.0833      
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Figure 5.3: First six modes for CCCC FG-(X, O, A) plates reinforced with CNTs based on 

exponential distribution approach with 11.0
*
rf , 1L W  , 10W h  , 20

L
N . 

 

FG-X 

FG-O 

FG-A 
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5.2.2. Free vibrations analysis of FG-CNTRC and FG-GPLRC plates  

   In the previous chapter (Chapter 2), we presented a new distribution method, referred to 

as the exponential distribution, described by Equation (2.9). We found that this method could 

provide higher stiffness to the plate with an X form of distribution. This is due to the 

exponential function, which concentrates a significant high quantity of Nano-fillers on the 

lateral surfaces of the FG-X configuration.  

Table 5.5 Non-dimensional first five natural frequencies of an SSSS CNTs/PmPV and 

GPLs/ Epoxy plate using the novel exponential distribution.  

 

Table 5.5 presents the natural frequencies obtained when using the novel method of 

distribution. 

   As first comment on the results obtained in Table 5.6 is that the decrease in the thickness 

of both plates led to a decrease in frequencies for the GPLs-reinforced composite plate, and 

an increase for the CNTs reinforced composite plate. Furthermore, the clamped plate 

frontiers (CCCC) give high frequencies. Figure 5.3 presents the first six 3D modes shape of 

the plate with CNTs reinforcement using the exponential distribution.     

 

Reinfor        Source         Configuration 

-cement                

Mode 

1                2                 3               4                5 

 CNTs     Present method       FG-X 

                Present method        FG-O  

                Present method             FG-A 

 GPLs     Present method       FG-X 

                Present method        FG-O  

                Present method             FG-A 

15.205      19.213        19.213       19.613       28.942  

10.070      15.256        19.256       19.615       25.542 

11.880      16.919        19.919       19.621       27.397 

0.1385      0.3235        0.3235       0.3651       0.3651  

0.0647      0.1556        0.1556       0.2399       0.2479 

0.0879      0.2096        0.2096       0.3011       0.30.11 
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Table 5.6 Non-dimensional first five natural frequencies for both CNTRC and GPLRC 

plates based on exponential distribution and using L / W=1, W / h =20, NL=20, fr
* = 0.11, 

wt = 0.4%. 

5.2.3. CNTs /PmPV versus Carbon/PmPV plate  

   In the following section, we compare between the performance of a square nanocomposite 

plate (200x200x4 mm3) reinforced with CNTs to that of a square composite plate made of 

Carbon/ PmPV. The Carbon/PmPV plate consists of four layers in which fibers have the 

same orientation as the nanocomposite plate. Both plates are simply supported along all four 

sides. Table 5.7 provides the properties of Carbon fibers. 

 

Table 5.7 Properties of Carbon Fibers. 

Nano      Boundary     Configurations 

filler       conditions       

Mode number 

1                 2                 3                 4                 5       

                                          FG-X 

CNTs        SSSS                FG-O       

                                          FG-A 

                                          FG-X 

GPLs         SSSS               FG-O       

                                          FG-A 

                                           FG-X 

CNTs        CCCC              FG-O       

                                          FG-A 

                                           FG-X 

GPLs        CCCC              FG-O       

                                          FG-A 

                                           FG-X 

 CNTs       CFFF               FG-O       

                                          FG-A 

                                           FG-X 

 GPLs       CFFF                FG-O       

                                          FG-A 

21.433        25.120        35.376        39.226        39.226         

11.201        16.768        28.597        37.113        39.230         

14.006        19.370        31.443        39.245        39.245            

0.0359        0.0883        0.0883        0.1684        0.1716 

0.0165        0.0409        0.0409        0.0646        0.0806 

0.0259        0.0557        0.0557        0.0879        0.1095 

31.470        36.031        47.201        63.254        65.623         

21.267        27.081        39.358        47.952        51.417        

25.077        30.679        43.070        54.150        57.405         

0.2735        0.5017        0.5017        0.6868        0.7898 

0.1357        0.2594        0.2594        0.3627        0.4307 

0.1818        0.3429        0.3429        0.4757        0.5612 

1.0997        2.6916        6.8039        9.7221        13.315         

0.9889        2.4187        6.1279        8.7544        13.316         

1.0650        2.6027        6.5920        9.4094        13.311 

0.0309        0.0699        0.1383        0.1739        0.2231 

0.0142        0.0329        0.0826        0.0939        0.1054   

0.0194        0.0446        0.1116        0.1142        0.1422      

 

 

 

Properties Carbon 

Ef (GPa) 

Gf (GPa) 

ν 

ρ (kg/m3) 

390 

20 

0.35 

1800 
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   The objective of this part of the study is to examine the natural frequencies of the 

Carbon/PmPV and those of the nanocomposite reinforced plate to address the following 

points: 

 Ascertain the effect of the volume fraction (percentage) of carbon fibers on the natural 

frequencies. 

 To determine the threshold volume fraction of carbon composite giving similar 

frequency to that of the nanocomposite. 

 Compare the frequencies of carbon/PmPV with those of the nanocomposite. 

Table 5.8 First Natural frequencies for different volume fractions of 

Carbon/PmPV plate. 

    Table 5.8 presents the fundamental natural frequencies of both Carbon/PmPV and 

Nanocomposite plates. Therefore, the Carbon fiber volume fraction that makes a 

Carbon/PmPV plate having the same rigidity as CNTs/PmPV is 28.11%.  

 

 

Fiber volume fraction 

(%) 

Carbon/PmPV CNTs/PmPV 

UD FGX 

11 

15 

20 

25 

28.11 

30 

35 

40 

45 

50 

55 

60 

65 

462.70 

484.55 

509.36 

531.84 

544.81 

552.36 

571.19 

588.56 

604.66 

619.61 

633.56 

646.58 

658.77 

544.82 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 
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5.3. Free vibration analysis of piezoelectric sandwich plate 

   Let us now consider a piezoelectric sandwich plates reinforcement in the heart with 

graphene platelets GPLs and Carbon Nanotubes CNTs. The plate is geometrically 

characterized by dimensions of L×W× (hc+2×hp) = 400×400× (20+2×2) mm3 as illustrated 

in figure 5.4. The composite plate is reinforced with different configurations for the 

distribution of nanofillers, and is covered by zirconate titanate (PZT-5A) piezoelectric 

material on both the top and bottom surfaces.      

Figure 5.4: a) Piezoelectric sandwich plate made of CNTs. 

b) Piezoelectric sandwich plate made of GPLs. 

The properties of PZT-5A material are: Young’s modulus EPZT-5A = 63 GPa, density ρPZT-5A 

= 7750 Kg/m3, Poisson’s ratio νPZT-5A = 0.3, e31 = e32 = 6.1468 C/m2, d33 = 1.5 ×10-8 F/m. 

CNTs 

 

UD FG-X FG-O FG-A FG-V 

  

Piezoelectric layers hp 

hc 

hp 

 

Composite layers 

GPLs 

 

UD FG-X FG-O FG-A FG-V 

 
 

Piezoelectric layers hp 
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Composite layers 
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  Table 5.9 presents the first three natural frequencies obtained from the developed code for 

the plates reinforced with CNTs, and those of Y Kiani [108]. The results look too close to 

each other. In Table 5.10, we present the first six natural frequencies for plates reinforced 

with GPLs. It is observed that the FG-X configuration is still giving high frequency. 

Additionally, it is noted that the frequencies obtained using GPLs as reinforcement are 

higher compared to those obtained with CNTs. This difference is obtained due to the 

geometrical characteristics of the reinforcement.   

Table 5.9 First three natural frequencies of piezoelectric sandwich plate reinforced with 

different configurations of CNTs using Pin = 1 and SSSS boundary conditions. 

Table 5.10 First six natural frequencies of piezoelectric sandwich plate reinforced with 

different configurations of GPLs. 
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2 

Mode 

 3 

Mode  

4 
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 5 
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 6 

0.12 

 

 

 

0.17 

 

 

 

0.28 
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  FG-X 

  FG-V 
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  UD 

  FG-X 

  FG-V 

  FG-O 
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905.177 

1045.45 

865.155 

736.774 

1028.55 

1203.24 

975.321 

815.208 

1259.57 

1496.46 

1182.70 

966.409 

2217.14 

2551.07 

2004.71 

1811.57 
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2243.33 

2006.73 
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3657.58 

2697.24 
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6028.27 
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5269.98 
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4313.11 

4933.41 
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3547.03 
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5688.36 

4412.16 
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5486.53 
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5.4. Static analysis of piezoelectric sandwich plate 

   In this section of the study, we managed to identify the stiffest plate among the five types 

of configurations: UD, FG-X, FG-O, FG-A, and FG-V, each is covered with piezoelectric 

layers (PZT G1195-N) on the top acting as actuators. The plates are initially subjected to a 

uniform load of 100 Pa, and then charged by an electrical potential equal to 150 volts to their 

piezoelectric layers. It is assumed that the plates have the same length and width as the plate 

described in the previous section, but with different thickness of layers (L=W= 400 mm, hc= 

1 mm, hp= 0.1 mm). The plates are supposed to be clamped on one edge and free on the other 

three edges (CFFF) or simply supported on their four edges (SSSS).  

Figure 5.5: Deflection of plates reinforced with different FG-CNTs configurations, under 

a load of 100 Pa, with 0 and 150 voltage applied, stacking sequences [-45°/45°] 20   and 

CFFF boundary conditions. 

 The effect of applied an electrical potential (ϕa) on the piezoelectric layers, makes the forced 

sandwich plate turn back to the original position (horizontal position). As observed in Figure 

5.5, the stiffest plate before the application of the electrical potential is the one reinforced 

with FG-X configuration, and after the application of the electrical potential, this plate  still 

give the high stiffest. Additionally, it is noted that the deflection of the FG-A and FG-V is 
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the same deflection before the application of the potential. However, after the electrical 

potential is applied, the deflections of both configurations differ. This discrepancy can be 

explained by the boundary conditions (CFFF) that are applied to each configuration and the 

position of the piezoelectric layer on the top of both FG-A and FG-V plates. This difference 

was caused by the approach of the piezoelectric layer to the upper layers of the composite of 

the FG-A configuration that contains fewer nanofillers. This mismatch of nanofiller in the 

nanocomposite makes the piezoelectric layer deflecting the system easy. Conversely, in the 

FG-V configuration, where the composite contains a higher concentration of nanofillers, the 

piezoelectric layer faces more resistance, making it harder to deflect the system (refer Figure 

5.6). In contrast, Figure 5.7, which corresponds to the SSSS boundary condition, shows a 

distinct behavior compared to the CFFF boundary conditions in figure 5.5, where nothing 

happens to the plates with FG-V and FG-A after electrifying them, they deflected naturally. 

Additionally, the distribution following an exponential law affects the plate by reducing the 

bending of the FG-X plate while increasing the bending of FG-O, FG-A or FG-V plates. 

Figure 5.6: Explanation of the zones closes to piezoelectric layer, having less and high 

quantities of nanofillers. 

Figure 5.8 shows the effect of varying the Pin index of the power law and the use of 

exponential law function in the distribution of Nanofillers on the deflection of the centerline 

of a sandwich plate reinforced with oriented [-45°/45°]20 CNTs using the FG-X 

configuration, subjected to a uniform load of 100 Pa and electrified with 190 volts.  

Therefore, the curve with discontinuous line represents the plate reinforced with FG-X 

configuration and oriented [-45°/45°]20 CNTs, showing the least deflection. The other curves 

were bending decreases progressively are curves obtained due to the increases in Pin index.      

   To compare the stiffness of plates reinforced with GPLs, CNTs, and oriented CNTs, the 

FG-X configuration was chosen for all three plates. Moreover, each of these plates is either 

clamped on one side and free on the other side, or simply supported on their four sides. All 

plates are subjected to a uniform load of 100 Pa.   

Zones have 

less quantity 

of nanofillers 

(Elastic area) 

Zones have 

high quantity 

of nanofillers 

(Solid area) 

Piezoelectric layer 
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Figure 5.7: Deflection of plates reinforced with different FG-CNTs configurations, under 

a load of 100 Pa with 0 and 20 voltage applied, with SSSS boundary conditions. 

Figure 5.8: Deflection of CFFF FG-X plates reinforced with oriented CNTs and reinforced 

with nonlinear distribution (using power and exponential law). 

Figures 5.9 and 5.10 illustrate the bending and deflection behavior of the sandwich plates 

reinforced with FG-X configuration based on the exponential distribution of reinforcements, 

and the consideration of an applied load under CFFF and SSSS boundary conditions 
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respectively. From the results given in Figure 5.9, one can say clearly that the plate 

reinforced with GPLs exhibits the least bending while it need 210 v to turn it back to the 

horizontal position. In opposite, the plates reinforced with oriented or non-oriented CNTs 

need less electrical potential (200 Volt and 170 Volt respectively). This is due to the 

difference between reinforcements, the effect of stacking sequences, and the function that 

distribute nanofillers (expo law). 

Figure 5.9: Deflection of CFFF plates reinforced with (0°) 20, (-45°/45°) 20 oriented CNTs 

and GPLs. 
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  The Figure 5.10 present the plate deflection under SSSS boundary conditions. The applied 

electrical potential that needs the plate to be in horizontal position looks small compared to 

the electrical potential applied in previous this is due to the type of boundary conditions. The 

plate reinforced with GPLs and FG-X distribution looks still needs high electrical potential 

to turn back to the horizontal position which explain the stiffness of the plate  (more than 35 

v). 

Figure 5.10: Deflection of the centerline of the SSSS plates reinforced with non-oriented 

CNTs, oriented CNTs and GPLs. 
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5.5. Dynamic analysis of piezoelectric sandwich plate 

5.5.1. Validation study 

    To validate the effectiveness of our vibration control code, a comparative study was 

carried out to prove its ability to produce accurate results. For this purpose, we use the data 

provided by Yu and al [53], which used to analyze  the vibration of a square sandwich plate 

400 × 400 mm, with hc = 5 mm, and hp  = 0.1 mm. The top and bottom layers are made of 

G1195-N piezoelectric material, while the core is a functionally graded composite reinforced 

with CNTs. Figure 5.11 presents the vibration control of the proposed sandwich, using the 

velocity control gain Gv. After comparing our present results with those of Yu and al [53], 

one can observe that there is an excellent concordance between results. 

Figure 5.11: Vibration control of piezoelectric composite plate reinforced with CNTs and 

FG-X configuration using control gain: Gv = 0, 0.001, 0.005, and 0.01. 

5.5.2. Uncontrolled sandwich plate 

For the present application, we will study the dynamic behavior of the same plate used in 

previous work, with simply supported edges, reinforced using the FG-X configuration and 

the exponential law for the distribution of oriented, non-oriented CNTs, and GPLs. The two 

points of interest A and B will be analyzed as explained in Figure 5.12. The plate was 

supposed to be initially excited by a load of 100 Pa, after which it would be free. The 

deflection at point A, situated in the center of the plate, is shown in Figure 5.13.  
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The results obtained show that the vibrations are attenuated for the plate with non-oriented 

CNTs after approximately 0.45s, and 0.3s for the plate reinforced with oriented CNTs (-

45°/45°)20, and less than 0.25s for the plate with GPLs. This is due to the stiffness of each 

of these plates. Furthermore, the plate with GPLs has a less bending about 3.4×10-6m 

compared to the other plates, which makes her the stiffest one.  

Figure 5.12: position of the two points studied. 

Figure 5.13: Deflection of the middle point situated at (x = 0.2 m, y = 0.2 m).  
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Figure 5.14: Effect of increasing the volume fraction of GPLs on vibration amplitudes. 

In the following, we studied the effect of varying the volume fraction of GPLs on the 

deflection of the plate and the time needed to attenuate vibrations. Figure 5.14 presents the 

obtained signal. It can be seen that when increasing the volume fraction from 0.4% to 1.2%, 

one notices a decrease in vibrations and this is normal because when we add more 

reinforcement, the vibrations are decreased and the time is reduced.  

In Figure 5.15 we present the vibration of plates reinforced using the four configurations: 

UD, FG-X, FG-O, and FG-A of distribution. 

Figure 5.15: Vibration control of a simply supported composite plate reinforced with 

UD, FG-X, FG-O, and FG-A distributions of CNTs. 
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Figure 5.16: Vibration control of SSSS Composite plate reinforced with CNTs nonlinear 

FG-X distribution using Pin = 0, 1.8 and Expo. 

 The objective of this part of the study is to determine the stiffest plate configuration and 

identify which distribution of carbon nanotubes (CNTs) offers the highest performance in 

terms of vibration control.  Further efforts were made to evaluate the effect of increasing the 

Pin index of the power law distribution and the use of exponential distribution on the 

vibration behavior of the plate reinforced with the stiffest configuration, identified as the 

FG-X configuration. The results presented in Figure (5.16) indicate that increasing the Pin 

index of the power law distribution help reduce vibrations, but the exponential distribution 

help more.  

Controlled sandwich plate  

   In this section, we act the bottom piezoelectric layer as a sensor layer to convert the 

deformation response into an electrical signal, and the top piezoelectric layer as the actuator. 

Our sandwich plate is supposed to be simply supported at its four edges. The plate is 

considered to support a uniform load of 3000 Pa. The Rayleigh damping coefficients αR and 

βR are calculated [103] using the design value for the damping ratio (0.8%), the ith natural 

frequency and the number of modes (N) used to estimate Rayleigh's coefficients. For our 

application, these parameters are taken as ѱ = 0.8%, ith = 10 and N = 10, respectively. The 

parameters in the Newmark method are taken as β = 0.25 and γ = 0.5, respectively. The goal 

of this study is to identify the configuration and control parameters that produces the least 

deflection.  



                                                                                                                               84 

 

 

Figure 5.17: Dynamic transient response for the observing point A of the SSSS square 

piezoelectric X-GPL sandwich plate using the exponential distribution and velocity control 

gain (Gv = 0, 0.01, 0.05, 0.1 and 0.2). 

Figure 5.18:  The applied voltage to the center point of the actuator layer of the SSSS 

square piezoelectric X-GPL plate. 

 

 

 

 



                                                                                                                               85 

 

Figures 5.17, 5.18 and 5.19 explore the impact of the velocity control gain Gv on the dynamic 

transient response of deflection, actuator and sensor at the observation point A for SSSS 

plate. As first see, it is noted that the form of the sensor signal is the same as deflection but 

in term of tension, while the actuator signal differ completely. From figure 5.17 on see 

clearly that the vibrations are attenuated completely at more than 0.25s for the uncontrolled 

plate (Gv = 0), at 0.1s when using Gv = 0.01, 0.025s when using Gv = 0.05, less than 0.02s 

when using Gv = 0.1, and 0.01s when using Gv = 0.2. Another remark, when increasing in 

the velocity gain, the actuator layer receive a high voltage from controller to attenuate 

vibration at the first part of the second (0.1s).    

Figure 5.19:  The generated voltage in the center point of the sensor layer of the SSSS 

square piezoelectric X-GPL plate. 

Figure 5.20: Dynamic transient response for the observing point B of the CFFF square  
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piezoelectric X-GPL sandwich plate using the exponential distribution and velocity control 

gain (Gv = 0, 0.01, 0.05, 0.1, and 1). 

Figure 5.21:  The applied voltage to the center point of the actuator layer of the CFFF 

square piezoelectric X-GPL plate.  

Figure 5.22:  The generated voltage in the center point of the sensor layer of the CFFF 

square piezoelectric X-GPL plate. 

Figures 5.20, 5.21 and 5.22 explore the impact of the velocity control gain Gv on the dynamic 

transient response of deflection, actuator and sensor at the observation point B for CFFF 

plate. From figure 5.20, which represent the vibrations of CFFF plate, the vibrations lock’s 

attenuated completely at 1.6s for the uncontrolled CFFF plate, at 1.2s for the controlled plate 

using Gv = 0.01, less than 0.8s when using Gv = 0.05, 0.4s when using Gv = 0.1, and 0.15s 

when using Gv = 1. For the CFFF, the plate vibration locks not completely attenuated which 
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means that we needs to generate high value of Gv (more than 0.5) to attenuate plate 

vibrations. Moreover, after comparison between SSSS and CFFF plate vibration it is noted 

that the SSSS plate vibrations needs low velocity control gain to attenuate vibration in short 

period, oppositely to the CFFF plate, which need high Gv.    

Figure 5.23: Dynamic transient response for the observing point A of the SSSS square 

piezoelectric X-GPL sandwich plate using the exponential distribution, the proportional 

and velocity control gain (Gv and Gd). 

Figure 5.24: Dynamic transient response for the observing point B of the CFFF square 

piezoelectric X-GPL sandwich plate using the exponential distribution, the proportional 

and velocity control gain (Gv and Gd). 

Figure 5.23 and 5.24 show the effect of increasing the proportional gain Gd on the deflection 

of the considered square plate. As can be seen, the results indicate that Gd does not affect the 
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vibrations for low values, but the increase of this to high values is followed by a decrease in 

plate vibrations. The physical explanation for the use of high Gd values is that this plate 

exhibit high structural damping  uu sandwich
C  than the stiffness eff sandwich

K   . 

In another phase of the study, which tests the strength and validates the stiffness of the 

chosen plate, the plate is considered to keep supporting the uniform load (F0 = 3000 Pa), and 

is subjected to step or sinusoidal loads. The total exerted force is expressed below:     

     0 1 2. ( ) ( ). ( )TotalF F f t F t f t                                          (5.1) 

SSSS:              0( ) .sin ( . / ). ( . / )A AF t F x a Sin y b                                  (5.2) 

CFFF:             0( ) .cos( . / ). ( . / )B BF t F x a Sin y b                                  (5.3) 
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Figure 5.25: Dynamic transient response for the observing point A of the forced SSSS 

square piezoelectric X-GPL sandwich plate using step load, the exponential function in 

distribution, and velocity control gain (Gv = 0, 0.01, 0.05, and 0.2). 
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Where the x and y are the coordinates of the middle point A (xA = 0.2m, yA = 0.2m) of the 

plate for the SSSS configuration, and the end point B (xB = 0m, yB = 0.2m) of the plate for 

the CFFF configuration. a and b are the length and width of the plate (a = 0.4m, b = 0.4m). 

Figure 5.26: The applied voltage to the center point of the actuator layer of the forced 

SSSS square piezoelectric X-GPL plate using step load.  

Figure 5.27: The generated voltage in the center point of the sensor layer of the forced 

SSSS square piezoelectric X-GPL plate using step load. 
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Figure 5.28: Dynamic transient response for the observing point B of the forced CFFF 

square piezoelectric X-GPL sandwich plate using step load, the exponential function in 

distribution, and velocity control gain (Gv = 0, 0.1 and 1). 

Figures 5.25, 5.26, and 5.27 present the deflection, actuator, and sensor response, 

respectively of a SSSS plate, while figures 5.28, 5.29, and 5.30 present the deflection, 

actuator, and sensor response, respectively of a CFFF plate,   under the application of a step 

load explained in equations 5.1, 5.2, 5.3, and 5.4 during the time interval [0s , 0.3s] and [0s 

, 1.5s ] respectively. After picking up the F(t) load at t > 0s both SSSS and CFFF plate signal 

looks on the same staircase compared to the deflection and sensor signals, which have the 

stairs form.  

Figure 5.29: The applied voltage to the center point of the actuator layer of the forced 

CFFF square piezoelectric X-GPL plate using step load.  
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Figure 5.30:  The generated voltage in the center point of the sensor layer of the forced 

CFFF square piezoelectric X-GPL plate using step load. 

Figures 5.31, 5.32, and 5.33 present the deflection, actuator, and sensor response, oscillate, 

till they will stabilizes in the bending position obtained in figure 5.17 and 5.20 respectively.  

Then all the forces are picked up (after 0.3s for SSSS, and 1.5s for CFFF plate respectively). 

The bending of plate goes to zero. Another observation is that the actuator respectively, of 

an SSSS plate, while figures 5.34, 5.35, and 5.36 present the deflection, actuator, and sensor 

response, respectively of a CFFF plate, under the application of a sinusoidal load explained 

in equations 5.1, 5.2, 5.3, and 5.5 during the time interval [0s 0.3s] and [0s 1.5s ] respectively.  

Figure 5.31:  Dynamic transient response for the observing point A of the forced SSSS 

square piezoelectric X-GPL sandwich plate using sinusoidal load, the exponential function 

in distribution, and velocity control gain (Gv = 0, 0.01, 0.05 and 0.2). 
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As we see, the response obtained in deflections of both SSSS and CFFF are transient and 

permanent response. The increase in the derivative gain leads to the attenuation of vibration 

in transient response. 

Figure 5.32: The applied voltage to the center point of the actuator layer of the forced 

SSSS square piezoelectric X-GPL plate using sinusoidal load.  

Figure 5.33:  The generated voltage in the center point of the sensor layer of the forced 

SSSS square piezoelectric X-GPL plate using sinusoidal load. 
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Figure 5.34:  Dynamic transient response for the observing point A of the forced CFFF 

square piezoelectric X-GPL sandwich plate using sinusoidal load, the exponential function 

in distribution, and velocity control gain (Gv = 0, 0.1, and 1). 

In the CFFF plate, the vibrations do not look completely attenuated, which is due to the 

boundary conditions that play an essential role in the shrinking and elongation of the 

piezoelectric actuator layer. 

Figure 5.35: The applied voltage to the center point of the actuator layer of the forced 

CFFF square piezoelectric X-GPL plate using sinusoidal load. 

. 
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Figure 5.36:  The generated voltage in the center point of the sensor layer of the forced 

CFFF square piezoelectric X-GPL plate using sinusoidal load. 
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Conclusion 

 
   In this thesis, the objective of active vibration control in a sandwich plate, fabricated from 

a multilayer nanocomposite reinforced with carbon nanotubes or graphene nanoplatelets and 

utilizing piezoelectric layers as both actuators and sensors, has been achieved. To establish 

a strong foundation, existing literature on carbon nanotube and graphene nano-platelet-

reinforced structures, with a focus on research conducted within the last ten years, is delved 

into in Chapter one. 

    The generation of vibrations in various domains where control can be applied, as well as 

the direct and inverse phenomena of piezoelectricity, are explained in the second chapter. 

The mechanism of piezoelectric actuator layers in a beam structure is also covered. 

Subsequently, the nano-fillers considered as reinforcement for the studied composite plates 

are presented, along with the functions that distribute the nano-fillers inside the composite 

material. These functions are inspired by the Power and Exponential functionally graded 

material concept (P-FGM and E-FGM, respectively). 

The third chapter successfully presents the first-order shear deformation theory, along with 

the necessary formulations for kinetic and potential energy and the work done by the external 

forces of a piezoelectric sandwich plate. 

    Chapter four focuses on the analysis of the behavior of a square plate subjected to various 

boundary conditions, using the finite element method (FEM). The main objective is to 

deduce the stiffness and mass matrices of the plate from the expressions for kinetic and 

potential energy in the discretized model. 

    Chapter five presents the main results obtained. It begins with a comparison of the 

stiffness of two composite plates reinforced with CNTs or GPLs, using power and 

exponential laws in their distribution. The effect of increasing the volume fraction and the 

Pin index on the high vibration amplitude is also studied. Subsequently, the plate vibrations 

were controlled, and their performance was proven. The following important points are 

derived from the analysis: 

 The highest frequencies are exhibited by a plate with concentrated CNTs on the top 

and bottom surfaces of an FG-X configuration. 

 As the volume fraction of CNTs or GPLs rises, so do the natural frequencies. 

 Frequencies are increased exponentially, exceeding those predicted by the power law. 

 An investigation into the amount of carbon fiber needed in a conventional composite 

to match the stiffness of a composite containing 11% of CNTs is required. 
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 Among the three plates reinforced with graphene platelets (GPLs), carbon nanotubes 

(CNTs), and oriented CNTs, the highest stiffness is exhibited by the GPL-reinforced 

plate, due to the geometrical characteristics of the nanoplatelets. 

 The transient behavior (time history response) observed at the point of interest is not 

affected by the use of low values for the proportional control gain. However, a 

significant impact on the response is seen with the derivative control gain. 

 As the derivative control gain increases, the time history response at the observation 

point settles faster, resulting in reduced overshoot. 

 An increase in the derivative control gain value leads to a decrease in the generated 

voltage at the center of the sensor layer, an increase in the applied voltage at the 

center of the actuator layer, and an attenuation in vibration at the first part of the 

second. 

 In the FG-X configuration, strengthening of the structure and a potential reduction in 

vibrations are achieved by condensing nano-fillers on the top and bottom layers of 

the plate. 

 The piezoelectric layer, considered as an actuator, is left acting hard on the structure 

by the use of SSSS boundary conditions. Conversely, the piezoelectric layer is left 

acting weakly on the structure by the CFFF boundary conditions. 

 

 

Perspectives 

   In the end, our mind did not stop thinking here, and proposed to explore the active vibration 

control of the previously studied plate under the influence of external factors like 

temperature and humidity, and internal factors such as cracks. 

    Additionally, we propose investigating active vibration control of these plates using 

electromagnetic attraction and repulsion and doing the comparison with previous control 

method witch use the piezoelectric material. 
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