
OXFORD

Operator Theory by Example

Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross

OXFORD GRADUATE TEXTS IN MATHEMATICS

3.0

Operator Theory by Example

STEPHAN RAMON GARCIA

W. M. Keck Distinguished Service Professor and Chair of the Department of Mathematics and Statistics, Pomona College

JAVAD MASHREGHI

Professor, Laval University

WILLIAM T. ROSS

Richardson Professor of Mathematics, University of Richmond

Copyrighted Material

CONTENTS

Pr	eface		XV
Notation			xvii
Overview			
1	Hill	pert Spaces	1
		Euclidean Space	1
		The Sequence Space ℓ^2	8
		The Lebesgue Space $L^2[0,1]$	10
	1.4	Abstract Hilbert Spaces	16
		The Gram-Schmidt Process	20
	1.6	Orthonormal Bases and Total Orthonormal Sets	21
	1.7	Orthogonal Projections	22
	1.8	Banach Spaces	25
	1.9	Notes	28
	1.10	Exercises	29
	1.11	Hints for the Exercises	39
2	Diagonal Operators		41
	2.1	Diagonal Operators	41
	2.2	Banach-Space Interlude	47
	2.3	Inverse of an Operator	48
	2.4	Spectrum of an Operator	52
	2.5	Compact Diagonal Operators	55
	2.6	Compact Selfadjoint Operators	57
	2.7	Notes	60
	2.8	Exercises	62
	2.9	Hints for the Exercises	66
3	Infi	nite Matrices	69
	3.1	Adjoint of an Operator	69
	3.2	Special Case of Schur's Test	74
	3.3	Schur's Test	77
	3.4	Compactness and Contractions	80
	3.5	Notes	82
	3.6	Exercises	83
	3.7	Hints for the Exercises	91

x | CONTENTS

4	Two Multiplication Operators	93	
	4.1 M_x on $L^2[0,1]$	93	
	4.2 Fourier Analysis	96	
	4.3 M_{ξ} on $L^{2}(\mathbb{T})$	99	
	4.4 Notes	101	
	4.5 Exercises	102	
	4.6 Hints for the Exercises	108	
5	The Unilateral Shift		
	5.1 The Shift on ℓ^2	109	
	5.2 Adjoint of the Shift	111	
	5.3 The Hardy Space	112	
	5.4 Bounded Analytic Functions	117	
	5.5 Multipliers of H ²	120	
	5.6 Commutant of the Shift	122	
	5.7 Cyclic Vectors	122	
	5.8 Notes	124	
	5.9 Exercises	126	
	5.10 Hints for the Exercises	132	
6	The Cesàro Operator	133	
	6.1 Cesàro Summability	133	
	6.2 The Cesàro Operator	134	
	6.3 Spectral Properties	137	
	6.4 Other Properties of the Cesàro Operator	139	
	6.5 Other Versions of the Cesàro Operator	145	
	6.6 Notes	147	
	6.7 Exercises	148	
	6.8 Hints for the Exercises	154	
7	The Volterra Operator	155	
	7.1 Basic Facts	155	
	7.2 Norm, Spectrum, and Resolvent	157	
	7.3 Other Properties of the Volterra Operator	161	
	7.4 Invariant Subspaces	163	
	7.5 Commutant	164	
	7.6 Notes	167	
	7.7 Exercises	168	
	7.8 Hints for the Exercises	172	
8	Multiplication Operators	175	
	8.1 Multipliers of Lebesgue Spaces	175	
	8.2 Cyclic Vectors	179	
	8.3 Commutant	183	
	8.4 Spectral Radius	184	
	8.5 Selfadioint and Positive Operators	186	

The second secon	0.000
CONTENTS	37
CONTENTS	

	8.6	Continuous Functional Calculus	189
	8.7	The Spectral Theorem	193
	8.8	Revisiting Diagonal Operators	195
	8.9	Notes	198
	8.10	Exercises	199
	8.11	Hints for the Exercises	205
9	The	Dirichlet Shift	207
	9.1	The Dirichlet Space	207
	9.2	The Dirichlet Shift	209
	9.3	The Dirichlet Shift is a 2-isometry	213
	9.4	Multipliers and Commutant	214
	9.5	Invariant Subspaces	215
	9.6	Cyclic Vectors	215
	9.7	The Bilateral Dirichlet Shift	216
	9.8	Notes	217
	9.9	Exercises	219
	9.10	Hints for the Exercises	223
10	The	Bergman Shift	225
	10.1	The Bergman Space	225
	10.2	The Bergman Shift	227
	10.3	Invariant Subspaces	231
	10.4	Invariant Subspaces of Higher Index	234
	10.5	Multipliers and Commutant	236
	10.6	Notes	237
	10.7	Exercises	238
	10.8	Hints for the Exercises	244
11		Fourier Transform	245
		The Fourier Transform on $L^1(\mathbb{R})$	245
		Convolution and Young's Inequality	247
	11.3	Convolution and the Fourier Transform	249
	11.4	The Poisson Kernel	250
		The Fourier Inversion Formula	253
	11.6	The Fourier-Plancherel Transform	255
	11.7	Eigenvalues and Hermite Functions	258
	11.8	The Hardy Space of the Upper Half-Plane	260
		Notes	261
		Exercises	262
	11.11	Hints for the Exercises	267
12		Hilbert Transform	269
		The Poisson Integral on the Circle	269
		The Hilbert Transform on the Circle	272
	12.3	The Hilbert Transform on the Real Line	276

xii | CONTENTS

	12.4	Notes	280	
	12.5	Exercises	281	
	12.6	Hints for the Exercises	287	
13	Bish	nop Operators	289	
	13.1	The Invariant Subspace Problem	289	
	13.2	Lomonosov's Theorem	290	
	13.3	Universal Operators	292	
	13.4	Properties of Bishop Operators	294	
	13.5	Rational Case: Spectrum	297	
	13.6	Rational Case: Invariant Subspaces	299	
	13.7	Irrational Case	302	
	13.8	Notes	302	
	13.9	Exercises	303	
	13.10	Hints for the Exercises	306	
14	Ope	Operator Matrices		
	14.1	Direct Sums of Hilbert Spaces	307	
	14.2	Block Operators	309	
	14.3	Invariant Subspaces	311	
	14.4	Inverses and Spectra	312	
	14.5	Idempotents	314	
	14.6	The Douglas Factorization Theorem	316	
	14.7	The Julia Operator of a Contraction	317	
	14.8	Parrott's Theorem	319	
	14.9	Polar Decomposition	321	
	14.10	Notes	326	
	14.11	Exercises	326	
	14.12	Hints for the Exercises	330	
15	Con	structions with the Shift Operator	333	
	15.1	The von Neumann-Wold Decomposition	333	
	15.2	The Sum of S and S^*	337	
	15.3	The Direct Sum of S and S^*	342	
	15.4	The Tensor Product of S and S^*	345	
	15.5	Notes	352	
	15.6	Exercises	352	
	15.7	Hints for the Exercises	356	
16	Toe	Toeplitz Operators 3		
	16.1	Toeplitz Matrices	357	
	16.2	The Riesz Projection	359	
	16.3	Toeplitz Operators	361	
		Selfadjoint and Compact Toeplitz Operators	363	
		The Brown-Halmos Characterization	364	
	16.6	Analytic and Co-analytic Symbols	365	

				111.5		٠	
CO	NT	EV	ITS	1 2	v i	1	1

	16.7	Universal Toeplitz Operators	366			
	16.8	Notes	367			
	16.9	Exercises	368			
	16.10	Hints for the Exercises	374			
17	Hankel Operators					
	17.1	The Hilbert Matrix	375			
	17.2	Doubly Infinite Hankel Matrices	379			
	17.3	Hankel Operators	381			
	17.4	The Norm of a Hankel Operator	382			
	17.5	Hilbert's Inequality	386			
	17.6	The Nehari Problem	387			
	17.7	The Carathéodory–Fejér Problem	389			
	17.8	The Nevanlinna-Pick Problem	390			
	17.9	Notes	391			
	17.10	DExercises	393			
	17.11	Hints for the Exercises	399			
18	Con	Composition Operators				
	18.1	A Motivating Example	401			
	18.2	Composition Operators on H ²	404			
	18.3	Compact Composition Operators	409			
	18.4	Spectrum of a Composition Operator	414			
	18.5	Adjoint of a Composition Operator	415			
	18.6	Universal Operators and Composition Operators	418			
	18.7	Notes	419			
	18.8	Exercises	420			
	18.9	Hints for the Exercises	427			
19	Sub	normal Operators	429			
	19.1	Basics of Subnormal Operators	429			
	19.2	Cyclic Subnormal Operators	431			
	19.3	Subnormal Weighted Shifts	434			
	19.4	Invariant Subspaces	438			
	19.5	Notes	439			
	19.6	Exercises	440			
	19.7	Hints for the Exercises	444			
20	The	Compressed Shift	445			
	20.1	Model Spaces	445			
	20.2	From a Model Space to $L^2[0,1]$	448			
	20.3	The Compressed Shift	449			
	20.4	A Connection to the Volterra Operator	451			
	20.5	A Basis for the Model Space	453			
	20.6	A Matrix Representation	458			
	20.7	Notes	460			

xiv | CONTENTS

20.8 Exercises	461
20.9 Hints for the Exercises	466
References	467
Author Index	483
Subject Index	489