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Principles of Fourier Analysis develops the four core theories of Fourier analy-
sis—the classical theory for Fourier series, the classical theory for Fourier trans-
forms, the generalized theory uniting and extending the classical theories, and the
theory for discrete Fourier transforms and FFIs.

The text is written in an engaging style, with the reader motivated and enlightened
through the use of easily understood arguments and examples. Any non-rigorous
development is |later backed up by solid, mathematically rigorous arguments. As
the author says, “Good proofs keep us honest.”

This book serves as a text and reference for everyone who Lses or may use Fou-
rier analysis, including the beginning student first discovering Fourier analysis and
the more advanced student desiring a deeper understanding. This book may also
be used in a general applied analysis course. Parts should be of interest to pro-
fessionals who are already experts in Fourier analysis since the generalized theory
presented here substantially extends the theory presented elsewhere.
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series
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