

Data Analysis

A gentle introduction for future data scientists

Graham Upton

Former Professor of Applied Statistics, University of Essex

and

Dan Brawn

Lecturer, Department of Mathematical Sciences, University of Essex

Contents

Pre	i	
1.	First steps	1
	1.1 Types of data	1
	1.2 Sample and population	2
	1.2.1 Observations and random variables	3
	1.2.2 Sampling variation	3
	1.3 Methods for sampling a population	4
	1.3.1 The simple random sample	5
	1.3.2 Cluster sampling	5
	1.3.3 Stratified sampling	6
	1.3.4 Systematic sampling	
	1.4 Oversampling and the use of weights	7
2.	Summarizing data	9
	2.1 Measures of location	9
	2.1.1 The mode	9
	2.1.2 The mean	10
	2.1.3 The trimmed mean	11
	2.1.4 The Winsorized mean	11
	2.1.5 The median	12
	2.2 Measures of spread	12
	2.2.1 The range	12
	2.2.2 The interquartile range	12
	2.3 Boxplot	13
	2.4 Histograms	14
	2.5 Cumulative frequency diagrams	16
	2.6 Step diagrams	17
	2.7 The variance and standard deviation	18
	2.8 Symmetric and skewed data	20
3.	Probability	21
	3.1 Probability	21
	3.2 The rules of probability	24
	3.3 Conditional probability and independence	25
	3.4 The total probability theorem	28
	3.5. Bayes' theorem	30

vi Contents

4.	Probability distributions	33
	4.1 Notation	33
	4.2 Mean and variance of a probability distribution	33
	4.3 The relation between sample and population	35
	4.4 Combining means and variances	37
	4.5 Discrete uniform distribution	39
	4.6 Probability density function	39
	4.7 The continuous uniform distribution	41
5.	Estimation and confidence	43
	5.1 Point estimates	43
	5.1.1 Maximum likelihood estimation (mle)	43
	5.2 Confidence intervals	43
	5.3 Confidence interval for the population mean	44
	5.3.1 The normal distribution	44
	5.3.2 The Central Limit Theorem	45
	5.3.3 Construction of the confidence interval	48
	5.4 Confidence interval for a proportion	48
	5.4.1 The binomial distribution	49
	5.4.2 Confidence interval for a proportion (large sample case)	50
	5.4.3 Confidence interval for a proportion (small sample)	50
	5.5 Confidence bounds for other summary statistics	50
	5.5.1 The bootstrap	50
	5.6 Some other probability distributions	52
	5.6.1 The Poisson and exponential distributions	52
	5.6.2 The Weibull distribution	55
	5.6.3 The chi-squared (χ^2) distribution	56
6.	Models, p-values, and hypotheses	59
	6.1 Models	59
	6.2 <i>p</i> -values and the null hypothesis	60
	6.2.1 Two-sided or one-sided?	60
	6.2.2 Interpreting <i>p</i> -values	61
	6.2.3 Comparing <i>p</i> -values	62
	6.2.4 Link with confidence interval	63
	6.3 <i>p</i> -values when comparing two samples	63
	6.3.1 Do the two samples come from the same population?	63
	6.3.2 Do the two populations have the same mean?	65
7.	Comparing proportions	67
	7.1 The 2×2 table	67
	7.2 Some terminology	69
	7.2.1 Odds, odds ratios, and independence	70

			Contents	vii
		7.2.2 Relative risk		70
		7.2.3 Sensitivity, specificity, and related quantities		71
	7.3	The $R \times C$ table		72
		7.3.1 Residuals		73
		7.3.2 Partitioning		74
8.	Rel	ations between two continuous variables		77
		Scatter diagrams		78
	8.2	Correlation		79
		8.2.1 Testing for independence		81
		The equation of a line		84
		The method of least squares		84
	8.5	A random dependent variable, Y		87
		8.5.1 Estimation of σ^2		88
		8.5.2 Confidence interval for the regression line		88
	0.0	8.5.3 Prediction interval for future values		88
	8.6	Departures from linearity 8.6.1 Transformations		89
		8.6.2 Extrapolation		89 90
		8.6.3 Outliers		91
	87	Distinguishing x and Y		93
		Why 'regression'?		93
9.	Sev	veral explanatory variables		97
	9.1	AIC and related measures		98
	9.2	Multiple regression		99
		9.2.1 Two variables		99
		9.2.2 Collinearity		101
		9.2.3 Using a dummy variable		102
		9.2.4 The use of multiple dummy variables		104
		9.2.5 Model selection		107
		9.2.6 Interactions		107
		9.2.7 Residuals		109
	9.3	Cross-validation		110
		9.3.1 <i>k</i> -fold cross-validation		110
		9.3.2 Leave-one-out cross-validation (LOOCV)		112
		Reconciling bias and variability		112
	9.5	Shrinkage		113
	0.0	9.5.1 Standardization		114
	9.6	Generalized linear models (GLMs)		115
		9.6.1 Logistic regression		116
		9.6.2 Loglinear models		118
10		assification		121
		.1 Naive Bayes classification		121
	10	.2 Classification using logistic regression		124

viii Contents 10.3 Classification trees 125 10.4 The random forest classifier 127 10.5 k-nearest neighbours (kNN) 128 10.6 Support-vector machines 131 10.7 Ensemble approaches 133 10.8 Combining variables 134 11. Last words 135 Further reading 138

139

Index