Texts in Statistical Science

Introduction to Probability with R

Kenneth Baclawski

Texts in Statistical Science

Introduction to Probability with R

Kenneth Baclawski

Northeastern University Boston, Massachusetts, U.S.A.

Boca Raton London New York

Chapman & Hall/CRC is an imprint of the Taylor & Francis Group, an **informa** business

Contents

Foreword				
Preface				
1	Sets, Events and Probability	1		
	1.1 The Algebra of Sets	2		
	1.2 The Bernoulli Sample Space	5		
	1.3 The Algebra of Multisets	7		
	1.4 The Concept of Probability	8		
	1.5 Properties of Probability Measures	9		
	1.6 Independent Events	11		
	1.7 The Bernoulli Process	12		
	1.8 The R Language	14		
	1.9 Exercises	19		
	1.10 Answers to Selected Exercises	22		
2	Finite Processes	29		
	2.1 The Basic Models	30		
	2.2 Counting Rules	31		
	2.3 Computing Factorials	32		
	2.4 The Second Rule of Counting	33		
	2.5 Computing Probabilities	35		
	2.6 Exercises	38		
	2.7 Answers to Selected Exercises	42		
3	Discrete Random Variables	47		
	3.1 The Bernoulli Process: Tossing a Coin	49		
	3.2 The Bernoulli Process: Random Walk	61		
	3.3 Independence and Joint Distributions	62		
	3.4 Expectations	64		
	3.5 The Inclusion-Exclusion Principle	67		
	3.6 Exercises	71		
	3.7 Answers to Selected Exercises	75		
4	General Random Variables	87		
	4.1 Order Statistics	91		

vii	i		CONTENTS
	4.2	The Concept of a General Random Variable	93
	4.3	Joint Distribution and Joint Density	96
	4.4	Mean, Median and Mode	97
	4.5	The Uniform Process	98
	4.6	Table of Probability Distributions	102
	4.7	Scale Invariance	104
	4.8	Exercises	106
	4.9	Answers to Selected Exercises	111
5	Sta	tistics and the Normal Distribution	119
	5.1	Variance	120
	5.2	Bell-Shaped Curve	126
	5.3	The Central Limit Theorem	128
	5.4	Significance Levels	132
	5.5	Confidence Intervals	134
	5.6	The Law of Large Numbers	137
	5.7	The Cauchy Distribution	139
	5.8	Exercises	143
	5.9	Answers to Selected Exercises	153
6	Cor	nditional Probability	165
	6.1	Discrete Conditional Probability	166
	6.2	Gaps and Runs in the Bernoulli Process	170
	6.3	Sequential Sampling	173
	6.4	Continuous Conditional Probability	177
	6.5	Conditional Densities	180
	6.6	Gaps in the Uniform Process	182
	6.7	The Algebra of Probability Distributions	186
	6.8	Exercises	191
	6.9	Answers to Selected Exercises	199
7	The	e Poisson Process	209
	7.1	Continuous Waiting Times	209
	7.2	Comparing Bernoulli with Uniform	215
	7.3	The Poisson Sample Space	220
	7.4	Consistency of the Poisson Process	228
	7.5	Exercises	229
	7.6	Answers to Selected Exercises	235
8	Rai	adomization and Compound Processes	241
_	8.1	Randomized Bernoulli Process	242
	8.2	Randomized Uniform Process	243
	8.3	Randomized Poisson Process	245
	8.4	Laplace Transforms and Renewal Processes	247

251

8.5 Proof of the Central Limit Theorem

CC	CONTENTS				
	8.6	Randomized Sampling Processes	252		
	8.7	Prior and Posterior Distributions	253		
	8.8	Reliability Theory	256		
	8.9	Bayesian Networks	259		
	8.10	Exercises	263		
	8.11	Answers to Selected Exercises	266		
9	Ent	275			
	9.1	Discrete Entropy	275		
	9.2	The Shannon Coding Theorem	282		
	9.3	Continuous Entropy	285		
		Proofs of Shannon's Theorems	292		
		Exercises	297		
	9.6	Answers to Selected Exercises	298		
10	Mar	ckov Chains	303		
	10.1	The Markov Property	303		
	10.2	The Ruin Problem	307		
	10.3	The Network of a Markov Chain	312		
	10.4	The Evolution of a Markov Chain	314		
	10.5	The Markov Sample Space	318		
	10.6	Invariant Distributions	322		
		Monte Carlo Markov Chains	327		
		Exercises	330		
	10.9	Answers to Selected Exercises	332		
\mathbf{A}	Ran	dom Walks	343		
	A.1	Fluctuations of Random Walks	343		
	A.2	The Arcsine Law of Random Walks	347		
В	Mer	norylessness and Scale-Invariance	351		
	B.1	Memorylessness	351		
	B.2	Self-Similarity	352		
$\mathbf{R}\epsilon$	355				
Ind	357				