Monographs on Statistics and Applied Probability 120

Statistical Inference

The Minimum Distance Approach

Ayanendranath Basu Hiroyuki Shioya Chanseok Park

Monographs on Statistics and Applied Probability 120

Statistical Inference

The Minimum Distance Approach

Ayanendranath Basu

Indian Statistical Institute Kolkata, India

Hiroyuki Shioya

Muroran Institute of Technology Muroran, Japan

Chanseok Park

Clemson University Clemson, South Carolina, USA

CRC Press is an imprint of the

Taylor & Francis Group an informa business

A CHAPMAN & HALL BOOK

Contents

Pr	Preface			$\mathbf{x}\mathbf{v}$
A	Acknowledgments			
1	Intr	oducti	on	1
	1.1	Genera	al Notation	3
	1.2	Illustra	ative Examples	4
	1.3	Some 1	Background and Relevant Definitions	7
		1.3.1	Fisher Information	7
		1.3.2	First-Order Efficiency	9
		1.3.3	Second-Order Efficiency	9
	1.4	Param	netric Inference Based on the Maximum	
		Likelih	nood Method	10
		1.4.1	Hypothesis Testing by Likelihood Methods	11
	1.5	Statist	cical Functionals and Influence Function	14
	1.6	Outlin	e of the Book	18
2	Sta	tistical	Distances	21
	2.1	Introd	uction	21
	2.2	Distan	ices Based on Distribution Functions	22
	2.3	Densit	y-Based Distances	25
		2.3.1	The Distances in Discrete Models	26
		2.3.2	More on the Hellinger Distance	33
		2.3.3	The Minimum Distance Estimator and the Estimating	
			Equations	34
		2.3.4	The Estimation Curvature	38
		2.3.5	Controlling of Inliers	39
		2.3.6	The Robustified Likelihood Disparity	40
		2.3.7	The Influence Function of the Minimum Distance	
			Estimators	43
		2.3.8	ϕ -Divergences	45
	2.4		num Hellinger Distance Estimation: Discrete Models	46
		2.4.1	Consistency of the Minimum Hellinger Distance	5533
			Estimator	47
		2.4.2	Asymptotic Normality of the Minimum Hellinger	
			Distance Estimator	52

	2.5	Minim	um Distance Estimation Based on Disparities: Discrete	
		Models	s	55
	2.6	Some 1	Examples	67
3	Con	tinuou	s Models	73
	3.1	Introd	uction	73
	3.2	Minim	um Hellinger Distance Estimation	75
		3.2.1	The Minimum Hellinger Distance Functional	75
		3.2.2	The Asymptotic Distribution of the Minimum Hellinger	
			Distance Estimator	78
	3.3	Estima	ation of Multivariate Location and Covariance	83
	3.4	A Gen	eral Structure	87
		3.4.1	Disparities in This Class	93
	3.5	The B	asu-Lindsay Approach for Continuous Data	94
		3.5.1	Transparent Kernels	98
		3.5.2	The Influence Function of the Minimum Distance	
			Estimators for the Basu–Lindsay Approach	100
		3.5.3	The Asymptotic Distribution of the Minimum	
		F1970003	Distance Estimators	102
	3.6	Examp	oles	107
4	Mea	sures	of Robustness and Computational Issues	115
	4.1		esidual Adjustment Function	116
	4.2	The G	raphical Interpretation of Robustness	118
	4.3	The G	eneralized Hellinger Distance	126
		4.3.1	Connection with Other Distances	129
	4.4		Order Influence Analysis	129
	4.5	- 20	Order Influence Analysis: Continuous	
		Models		136
	4.6		ototic Breakdown Properties	137
		4.6.1	Breakdown Point of the Minimum Hellinger Distance	
			Estimator	137
		4.6.2	· · · · · · · · · · · · · · · · · · ·	139
		4.6.3	A General Form of the Breakdown Point	141
		4.6.4	Breakdown Point for Multivariate Location and	
		TD1	Covariance Estimation	144
	4.7		-Influence Function	147
	4.8		r Stability of Minimum Distance Estimators	149
		4.8.1	Outlier Stability of the Estimating Functions	152
	4.0	4.8.2	Robustness of the Estimator	153
	4.9		mination Envelopes	156
	4.10		eratively Reweighted Least Squares (IRLS)	160
			Development of the Algorithm	160
			The Standard IREE	163
		4.10.3	Optimally Weighted IREE	164

		4.10.4	Step by Step Implementation	166	
5	The	Нуро	othesis Testing Problem	167	
	5.1	Dispar	rity Difference Test: Hellinger Distance Case	167	
	5.2	-	rity Difference Tests in Discrete Models	172	
		5.2.1	Second-Order Effects in Testing	175	
	5.3	Dispar	rity Difference Tests: The Continuous Case	180	
		5.3.1	The Smoothed Model Approach	182	
	5.4		Breakdown of Disparity Difference Tests	184	
	5.5		er Stability of Disparity Difference Tests	186	
		5.5.1	The GHD and the Chi-Square Inflation Factor	189	
	5.6		'wo-Sample Problem	191	
6	Techniques for Inlier Modification 19				
	6.1	_	num Distance Estimation: Inlier Correction in Small		
		Sampl	les	195	
	6.2	Penali	ized Distances	197	
		6.2.1	The Penalized Hellinger Distance	198	
		6.2.2	Minimum Penalized Distance Estimators	200	
		6.2.3	Asymptotic Distribution of the Minimum Penalized		
			Distance Estimator	201	
		6.2.4	Penalized Disparity Difference Tests: Asymptotic		
			Results	206	
		6.2.5	The Power Divergence Family versus the Blended		
			Weight Hellinger Distance Family	207	
	6.3	Comb	ined Distances	212	
		6.3.1	Asymptotic Distribution of the Minimum Combined		
			Distance Estimators	216	
	6.4	ϵ -Com	abined Distances	222	
	6.5	Coupl	ed Distances	225	
	6.6		nlier-Shrunk Distances	227	
	6.7	Nume	rical Simulations and Examples	230	
7	Weighted Likelihood Estimation 23				
	7.1	The D	Discrete Case	236	
		7.1.1	The Disparity Weights	237	
		7.1.2	Influence Function and Standard Error	242	
		7.1.3	The Mean Downweighting Parameter	244	
		7.1.4	Examples	245	
	7.2	The C	Continuous Case	249	
		7.2.1	Influence Function and Standard Error: Continuous		
			Case	251	
		7.2.2	The Mean Downweighting Parameter	252	
		7.2.3	A Bootstrap Root Search	253	
		7.2.4	Asymptotic Results	254	

		7.2.5 Robustness of Estimating Equations	255			
	7.3	Examples	256			
	7.4	Hypothesis Testing	261			
	7.5	Further Reading	263			
8	Mu	ltinomial Goodness-of-Fit Testing	265			
	8.1	Introduction	265			
		8.1.1 Chi-Square Goodness-of-Fit Tests	266			
	8.2	Asymptotic Distribution of the Goodness-of-Fit Statistics	267			
		8.2.1 The Disparity Statistics	268			
		8.2.2 The Simple Null Hypothesis	268			
		8.2.3 The Composite Null Hypothesis	270			
		8.2.4 Minimum Distance Inference versus Multinomial				
		Goodness-of-Fit	272			
	8.3	Exact Power Comparisons in Small Samples	273			
	8.4	Choosing a Disparity to Minimize the Correction Terms	277			
	8.5	Small Sample Comparisons of the Test Statistics	280			
		8.5.1 The Power Divergence Family	280			
		8.5.2 The BWHD Family	282			
		8.5.3 The BWCS Family	283			
		8.5.4 Derivation of $F_S(y)$ for a General Disparity Statistic .	284			
	8.6	Inlier Modified Statistics	286			
		8.6.1 The Penalized Disparity Statistics	287			
		8.6.2 The Combined Disparity Statistics	288			
		8.6.3 Numerical Studies	290			
	8.7	An Application: Kappa Statistics	294			
9	The	The Density Power Divergence 29				
	9.1	The Minimum L_2 Distance Estimator	298			
	9.2	The Minimum Density Power Divergence Estimator	300			
		9.2.1 Asymptotic Properties	303			
		9.2.2 Influence Function and Standard Error	308			
		9.2.3 Special Parametric Families	309			
	9.3	A Related Divergence Measure	311			
		9.3.1 The JHHB Divergence	311			
		9.3.2 Formulae for Variances	314			
		9.3.3 Numerical Comparisons of the Two Methods	316			
		9.3.4 Robustness	316			
	9.4	The Censored Survival Data Problem	317			
		9.4.1 A Real Data Example	318			
	9.5	The Normal Mixture Model Problem	322			
	9.6	Selection of Tuning Parameters	323			
	9.7	Other Applications of the Density Power Divergence	324			

10		er Applications	327
	10.1	Censored Data	327
		10.1.1 Minimum Hellinger Distance Estimation in the	
		Random Censorship Model	327
		10.1.2 Minimum Hellinger Distance Estimation Based on	
		Hazard Functions	329
		10.1.3 Power Divergence Statistics for Grouped Survival Data	330
	10.2	Minimum Hellinger Distance Methods in Mixture Models	331
	10.3	Minimum Distance Estimation Based on Grouped Data	332
	10.4	Semiparametric Problems	335
		10.4.1 Two-Component Mixture Model	335
		10.4.2 Two-Sample Semiparametric Model	336
	10.5	Other Miscellaneous Topics	337
		•	
11		ance Measures in Information and Engineering	339
	11.1	Introduction	339
		Entropies and Divergences	340
	11.3	Csiszár's f -Divergence	341
		11.3.1 Definition	341
		11.3.2 Range of the f -Divergence	343
		11.3.3 Inequalities Involving f -Divergences	345
		11.3.4 Other Related Results	346
	11.4	The Bregman Divergence	346
	11.5	Extended f -Divergences	347
		11.5.1 f-Divergences for Nonnegative Functions	347
		11.5.2 Another Extension of the f -Divergence	351
	11.6	Additional Remarks	352
12		olications to Other Models	353
		Introduction	353
		Preliminaries for Other Models	354
	12.3	Neural Networks	356
		12.3.1 Models and Previous Works	356
		12.3.2 Feed-Forward Neural Networks	356
		12.3.3 Training Feed-Forward Neural Networks	357
		12.3.4 Numerical Examples	360
		12.3.5 Related Works	360
	12.4	Fuzzy Theory	361
		12.4.1 Fundamental Elements of Fuzzy Sets	361
		12.4.2 Measures of Fuzzy Sets	362
		12.4.3 Generalized Fuzzy Divergence	364
	12.5	Phase Retrieval	365
		12.5.1 Diffractive Imaging	365
		12.5.2 Algorithms for Phase Retrieval	367
		12.5.3 Statistical-Distance-Based Phase Retrieval Algorithm	368

xiv	
12.5.4 Numerical Example	. 369
12.6 Summary	. 371
Bibliography	373
Index	403