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Nomenclature 
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𝑐𝑐𝑝𝑝  : specific heat capacity at constant 
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𝑠𝑠 : specific entropy, normalized distance. 
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𝑀𝑀 : Mach number. 
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𝐼𝐼𝐼𝐼𝐼𝐼 : specific impulse. 
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𝐶𝐶𝑇𝑇 : thrust coefficient. 
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𝜀𝜀 : section area ratio, turbulent dissipation. 
𝑡𝑡 : time. 
𝑥𝑥,𝑦𝑦, 𝑧𝑧 : cartesian space coordinates, distances. 
𝑟𝑟 : radial coordinate component. 
𝑀𝑀𝑤𝑤 : molecular weight. 
𝜏𝜏 : viscous stress tensor. 
𝛿𝛿  : boundary layer thickness, Kronecker 
tensor. 
𝑆𝑆 : strain tensor. 
 𝜇𝜇 : dynamic viscosity. 
𝜆𝜆  : second viscosity coefficient, thermal 
conductivity. 
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𝐸𝐸 : total energy. 
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𝑘𝑘 : kinetic turbulent energy. 
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𝑅𝑅𝑅𝑅 : Reynolds number. 
𝑢𝑢𝜏𝜏 : frictional velocity. 
𝜏𝜏𝑤𝑤 : wall shear stress. 
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Ω : rotation tensor. 
 
Subscripts 
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 "𝑔𝑔𝑔𝑔𝑔𝑔" : geometrical. 
"𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜" : normal shock. 
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Superscripts 
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"𝑠𝑠𝑠𝑠𝑠𝑠"  : supersonic divergent with an exit 
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ABSTRACT 

This investigation presents a rigorous experimental, numerical, and analytical study of flow 
separation and its associated interactions in over-expanded supersonic nozzles. An experimental 
conical Laval nozzle is used to measure the axial static pressure evolution at various nozzle 
pressure ratios (NPR). This empirical data is meticulously supplemented by detailed numerical 
simulations employing three distinct and commonly used turbulence models. Furthermore, the 
study incorporates an analysis of a typical analytical engineering model and a widely used semi-
empirical shock wave boundary layer interaction (SWBLI) criterion. 

Key Words: Conical Nozzle, Over-Expanded, Supersonic, Experiment, SWBLI, 𝑘𝑘-𝜔𝜔, SST 𝑘𝑘-𝜔𝜔, 
Spalart-Allmaras, Free Interaction Theory. 

 

Cette investigation présente une étude expérimentale, numérique et analytique rigoureuse du 
phénomène de séparation d'écoulement et de ses interactions associées dans les tuyères 
supersoniques sur-détendues. Une tuyère de Laval conique expérimentale est utilisée pour mesurer 
l'évolution de la pression statique axiale à travers la tuyère à différents rapports de pression de 
tuyère (NPR). Cette fondation empirique est méticuleusement complétée par des simulations 
numériques détaillées employant trois modèles de turbulence distincts et couramment utilisés. En 
outre, l'étude intègre une analyse d'un modèle d'ingénierie analytique typique et d'un critère semi-
empirique largement utilisé pour l'interaction onde de choc-couche limite (IOCCL). 

Mots-clés : tuyère conique, sur-détendue, supersonique, expérience, IOCCL, 𝑘𝑘-𝜔𝜔, SST 𝑘𝑘-𝜔𝜔, 
Spalart-Allmaras, théorie d’interaction libre. 

 

یقدم ھذا البحث دراسة تجریبیة، عددیة، وتحلیلیة دقیقة لظاھرة انفصال التدفق وتفاعلاتھا المصاحبة ضمن الفوھات الأسرع من 
الصوت مفرطة التوسع. یتضمن الجانب التجریبي استخدام فوھة لافال ذات تصمیم مخروطي، حیث یتم قیاس تطور الضغط 

تسُتكمل ھذه المعطیات التجریبیة بدقة من خلال محاكاة عددیة  (NPR) .الفوھة عند نسب ضغط مختلفةالساكن المحوري عبر 
تفصیلیة توُظّف ثلاثة نماذج اضطراب متمیزة وشائعة الاستخدام. علاوة على ذلك، یتضمن البحث تحلیلاً لنموذج ھندسي تحلیلي 

  (SWBLI) .جة الصدمة مع الطبقة الحدودیةتقلیدي ومعیار شبھ تجریبي واسع الانتشار خاص بتفاعل مو

، SWBLI ،k-ω ،SST k-ω ،Spalart-Allmarasتجربة،  فوق صوتي،  ، التمدد الزائد،فوھة مخروطیة الكلمات المفتاحیة:
 .نظریة التفاعل الحر
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INTRODUCTION 

The space sector is a rapidly evolving frontier, encompassing everything from satellite technology 

and scientific exploration to burgeoning commercial ventures, all pushing the boundaries of human 

ingenuity and our understanding of the universe. Governments and private companies are 

collaboratively developing cutting-edge spacecraft and launch systems that facilitate global 

communication, Earth monitoring, and ambitious missions to distant celestial bodies like Mars, 

fundamentally shaping the future of interplanetary travel and space-based industries [1]. 

At the core of this expansion is the relentless pursuit of more efficient and cost-effective space 

access, which has redefined the very paradigm of space launch systems. The industry is currently 

witnessing a dramatic shift towards reusability, moving away from the historically expensive and 

resource-intensive expendable rocket model [1]. This new approach heavily emphasizes cost 

reduction, increased launch cadence, and enhanced flexibility. While this paradigm prioritizes 

multi-stage reusable rockets, the long-standing aspiration for Single Stage to Orbit (SSTO) 

technology remains. SSTO promises ultimate simplicity and aircraft-like operational efficiency by 

eliminating stage jettison [2]. However, achieving it is profoundly challenging due to the "tyranny 

of the rocket equation," which demands an exceptionally high propellant mass fraction [2]. This 

necessitates incredibly lightweight, robust structures, and propulsion systems capable of 

maintaining high efficiency across vastly different atmospheric and vacuum conditions [2]. 

Overcoming these hurdles requires revolutionary advancements in materials science, such as high-

strength composites and advanced thermal protection, alongside propulsion innovations like 

altitude-compensating nozzles or complex combined-cycle engines that can seamlessly transition 

from air-breathing to rocket mode. Despite decades of research, ensuring a viable payload fraction, 

guaranteeing reliability, and managing complex aerodynamic and thermal loads, both ascent and 

reentry continue to present formidable engineering obstacles, solidifying the current paradigm's 

pragmatic reliance on reusable multi-stage designs [1] [2]. 

Beyond reusability, the commercial viability of space flight is intrinsically linked to the quotient 

of system performance and system weight, with system costs primarily driven by this ratio. 

Historically, efforts focused on reducing system weight and pushing the limits of mechanical load 

capacities. The current aim is to further enhance the thrust-to-weight ratio for rocket nozzles by 

reducing the divergent length and increasing specific momentum [3]. 
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The optimum thrust on rocket launchers is achieved when the nozzle exit pressure perfectly 

matches the ambient pressure (an adapted or ideally expanded nozzle). Conversely, Under-

Expansion, where exit pressure exceeds ambient pressure, leads to thrust loss due to inefficient gas 

expansion and suboptimal exit velocity [3]. 

A more critical challenge arises from Over-Expansion, which occurs when the exit pressure is 

lower than the ambient pressure. In such cases, the exit flow adapts to the higher ambient pressure 

through a complex shock-wave system. Critically, if the exit pressure becomes too low, the 

boundary layer at the nozzle wall can no longer withstand the adverse pressure gradient, leading 

to nozzle flow separation. The inherent unsteadiness of this flow separation induces significant 

side loads on the nozzle wall, which can be of dimensioning concern, meaning they dictate the 

required size and strength, for both the nozzle and the broader rocket structure, including the 

payload. For sea-level launchers like Ariane 5 and the Space Shuttle, which traverse a wide range 

of ambient pressures during their ascent, ideally adapting the nozzle's expansion ratio would 

maximize thrust. However, as such adaptive nozzles are not yet readily available, current designs 

frequently operate in off-design conditions (under- or over-expanded) for much of their flight [3]. 

Extensive studies over the years have been dedicated to understanding the complex phenomenon 

of flow separation in over-expanded rocket nozzles. A deeper comprehension of this behavior 

could lead to more effective prevention or even active control of flow separation. Furthermore, a 

reliable separation model is essential for accurately predicting the side-loads experienced during 

engine start-up and shut-down phases. While Computational Fluid Dynamics (CFD) offers a 

means to determine separation points and pressure distribution, these calculations are often highly 

time-consuming, sometimes taking days or even weeks, and their accuracy is significantly 

influenced by the chosen turbulence model. Given these computational demands, there is a clear 

desirability for faster predictive methods, thus necessitating the development and use of a semi-

empirical model [3]. 

Compressible flows in supersonic rocket-engine nozzles have been the subject of a considerable 

amount of experimental and numerical study since the second half of the twentieth century, after 

the first operational application of the famous German V2 missile in 1943, following the work of 

the German Werner Von Braun. This research work has continued and intensified until today in 

specific research laboratories in different countries, a complete review can be found on [4]. 
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Objective and Motivation of this Work 

The primary objective of this work is to provide a comprehensive insight into the complex 

phenomenon of flow separation in over-expanded nozzles. We leverage the unique capabilities of 

the experimental facility at the Laboratory of Aerodynamics and Heat Transfer, Higher School of 

Aeronautical Technics, Dar El Beida, Algeria, which enables direct observation of this critical 

flow behavior. Our experimental findings are rigorously complemented by extensive numerical 

investigations employing a range of widely used turbulence models, along with analytical and 

semi-empirical separation criteria. This multifaceted approach is designed to elucidate the full 

impact and various facets of flow separation from multiple perspectives, offering detailed 

comparisons and revealing intrinsic characteristics. 

The significance of this research extends well beyond its direct application to supersonic nozzles, 

holding profound relevance for a broad spectrum of supersonic flow applications. These include 

but are not limited to, the design of supersonic diffusers and air intakes for advanced propulsion 

systems such as ramjets and scramjets, the aerodynamic optimization of transonic blades in jet 

engine compressors and turbines, and the fundamental understanding of external supersonic 

aerodynamics around flight bodies. Consequently, this work holds considerable importance and 

makes a meaningful contribution to the advancement of aerospace engineering. 

 

 

Figure 1 : European CRISTAL research group [4]. 
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 INSIGHT INTO SUPERSONIC NOZZLES 

Nozzles constitute a crucial part of every propulsion system, thanks to their ability to convert the 

internal energy of a working fluid, such as the hot gaseous products of a combustion reaction, into 

kinetic energy. This process accelerates the fluid, generating the momentum required for the thrust 

force. Nozzles are primarily regarded as continuous ducts with variable cross-sectional areas. The 

basic theory of nozzles is well-established, straightforward to apply, and provides satisfactory 

predictions of the flow field and its performance. All these aspects are found in more detail through 

subsequent readings. 

Based on their geometrical configuration, two basic types of nozzles can be distinguished:   

• Convergent nozzles (CN): They are primarily used in subsonic and low-speed flow 
applications. These nozzles are commonly found in industrial machinery, such as jet engines 
operating at subsonic speeds, gas turbines, and chemical processing equipment, where controlled 
flow and pressure are essential. Convergent nozzles accelerate the fluid or gas to the desired 
velocity without reaching supersonic speeds, making them ideal for applications where the flow 
remains below the speed of sound.   
• Convergent-Divergent nozzles (CDN): First proposed by Gustaf de Laval at the end of 
the 19th century (hence they are often referred to as Laval nozzles), these nozzles form the 
foundational model for supersonic nozzle concepts. Their unique characteristics have made them 
the workhorse in rocket, missile, and supersonic aircraft propulsion applications. Typically, they 
consist of a convergent section where the flow is accelerated in the subsonic regime to reach sonic 
conditions at the throat (the minimum cross-sectional area of the nozzle). The flow then expands 
in the divergent section, accelerating to supersonic speeds. The well-known Area-Mach relation 
mathematically describes this behavior. 

Figure 1.2 : Schematic description of supersonic CD nozzle.  

Figure 1.3 : Gustave de Laval 
(Wikipedia). 

Figure 1.1 : De 
Laval Steam 

Engine 
(Wikipedia). 
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1.1 Steady Quasi One-Dimensional Ideal Flow Relations 

In this first part, we will assume that the pressure governing the outlet of the nozzle is so small that 

it doesn’t have any influence on the behavior of the flow inside the nozzle. This assumption allows 

the properties studied in this case to be considered intrinsic to the nozzle. These properties, which 

are of great importance, include the maximum flow rate and the thrust. 

As soon as we give the pressure 𝑃𝑃0 and the enthalpy ℎ0 of the fluid supposed practically at rest at 

the nozzle inlet, we can demonstrate that all the expansion is determined by the nozzle shape. A 

first approximation can be obtained by neglecting the effect of viscosity and fluid conductivity, or 

in other words we consider an Ideal Gas, and by supposing the flow to be uniform at any cross-

sectional station in the nozzle, we define the mono-dimensional theory. Now let’s get deeper into 

the equations. 

For the assumptions given above and considering a steady-state flow, we can show easily that the 

governing flow equations reduce to the following, 

• Mass Conservation, 

𝑚̇𝑚 = 𝜌𝜌𝜌𝜌𝜌𝜌 = 𝜌𝜌∗𝑈𝑈∗𝐴𝐴∗ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (1-1) 

This states that the mass flow rate is conserved at any section on the nozzle. Where the mass flow 

rate is the product of density, axial velocity (the uniform sectional velocity along the principle axis) 

into the surface area of the section perpendicular to flow at that position (note that the Asterix 

notation refers to the throat properties).  

• Momentum Conservation, 

𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 = 0  (1-2) 

This is only an application of Newton’s second law to an infinitesimal fixed control volume. Here 

in this particular example, as the flow is one dimensional, we can correctly speak about an 

infinitesimal line element without loss of generality and it could be expressed as 𝑑𝑑𝑑𝑑 if we denote 

our principle axis "𝑥𝑥" and as all proprieties are only functions of 𝑥𝑥 so any derivative can also be 

expressed as total differential.  

• Energy Conservation, 

ℎ +
1
2

 𝑈𝑈2 = ℎ0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1-3) 
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This is a statement of the principle of conservation of energy. In this particular equation, we can 

observe that the total energy of the flow is conserved, and no heat or work is exchanged by the gas, 

so the gas is converting its energy by external influence (continuous shape variation of the nozzle) 

between kinetic and internal energy as it flows through the nozzle. 

In this we can find that the maximum limiting velocity attainable by the flow can be expressed as, 

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 = �2 ⋅ ℎ0   (1-4) 

• Thermodynamic State Equations, 

 𝑃𝑃 = 𝜌𝜌𝜌𝜌𝜌𝜌 (1-5) 

𝑒𝑒(𝑇𝑇) = 𝑐𝑐𝑣𝑣𝑇𝑇
ℎ(𝑇𝑇) = 𝑐𝑐𝑝𝑝𝑇𝑇

  (1-6) 

Here are the last equations needed to close the system and resolve this problem. These are models 

that describe the relations between state variables of the fluid which are macroscopic properties of 

the gas, alternatives to the microscopic or molecular description, in the continuum concept. Much 

more attention should be given to this part as it’s essential, it relates the flow to fluid properties. 

Eq. (1-5) is the expression of the thermodynamic state equation of a perfect gas, by definition a 

perfect gas is one in which intermolecular forces are neglected. By ignoring intermolecular forces, 

this equation can be derived from theoretical concepts of modern statistical mechanics or kinetic 

theory. In this, we note that: 

• 𝑅𝑅 = ℝ/𝑀𝑀𝑤𝑤  is the gas constant. where ℝ = 8314 𝐽𝐽/(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 𝐾𝐾) , and 𝑀𝑀𝑤𝑤 [𝐾𝐾𝐾𝐾/𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘] is 
the molecular weight of the gas. 

• 𝑇𝑇 is the gas Temperature. 

Returning to our microscopic view of gas as a collection of particles in random motion, the 

individual kinetic energy of each particle contributes to the overall energy of the gas. Moreover, if 

the particle is a molecule, its rotational and vibrational motions also contribute to the gas energy. 

Finally, the motion of electrons in both atoms and molecules is a source of energy. In turn, these 

energies, summed over all the particles of the gas, constitute the internal energy, 𝐸𝐸, of the gas. 

Moreover, if the particles of the gas (called the system) are rattling about in their state of 

“maximum disorder”, the system of particles will be in equilibrium [5]. 

Return now to the macroscopic view of the gas as a continuum. Here, equilibrium is evidenced by 

no gradient in velocity, pressure, temperature, and chemical concentrations throughout the system, 

i.e., the system has uniform properties in a given state conditions. For an equilibrium system of 
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real gas where intermolecular forces are important, and also for an equilibrium chemically reacting 

mixture of perfect gases, the internal energy is a function of both temperature and volume [5]. Let 

𝑒𝑒 denote the specific internal energy (internal energy per unit mass). Then, enthalpy, ℎ, is defined, 

per unit mass, as ℎ = 𝑒𝑒 + 𝑝𝑝𝑝𝑝, and we have 

𝑒𝑒 = 𝑒𝑒(𝑇𝑇, 𝑣𝑣)
ℎ = ℎ(𝑇𝑇,𝑃𝑃)  (1-7) 

For both a real gas and a chemically reacting mixture of perfect gases. 

If the gas is not chemically reacting, and if we ignore intermolecular forces, the resulting system 

is a thermally perfect gas, where internal energy and enthalpy are functions of temperature only, 

and where the specific heat capacities at constant volume and pressure, 𝑐𝑐𝑣𝑣  and 𝑐𝑐𝑝𝑝 , are also 

functions of temperature only: 
𝑒𝑒 = 𝑒𝑒(𝑇𝑇)
ℎ = ℎ(𝑇𝑇)
𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑣𝑣 𝑑𝑑𝑑𝑑
𝑑𝑑ℎ = 𝑐𝑐𝑝𝑝 𝑑𝑑𝑑𝑑

  (1-8) 

The temperature variation of 𝑐𝑐𝑣𝑣 and 𝑐𝑐𝑝𝑝 is associated with the vibrational and electronic motion of 

the particles. 

Finally, if the specific heats are constant, the system is a calorically perfect gas, where the energies 

result in Eq. (1-6) (it has been assumed that ℎ = 𝑒𝑒 = 0 at 𝑇𝑇 = 0). This small sketch of atomic and 

molecular energies can be enlarged to a massive portrait in [5]. 

Now let us move to introduce some other important concepts related to compressible flow. 

Entropy, or specific entropy denoted "𝑠𝑠", is another state variable that is used in combination with 

the second law of thermodynamics, allows us to predict the direction that nature takes when energy 

(heat) is transferred across the boundaries of the system. So, by definition, 

𝑑𝑑𝑑𝑑 =
𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

 (1-9) 

Where 𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 is an incremental amount of heat added reversibly to the system, and 𝑇𝑇 is the system 

temperature. Do not be confused by this definition. It defines a change in entropy in terms of a 

reversible addition of heat. However, entropy can be used in conjunction with any type of process, 

reversible or irreversible. The quantity 𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 is just an artifice; an effective value of 𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 can 

always be assigned to relate the initial and end points of an irreversible process, where the actual 

amount of heat added is 𝛿𝛿𝛿𝛿. Indeed, an alternative and probably more lucid relation is 
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𝑑𝑑𝑑𝑑 =
𝛿𝛿𝑞𝑞
𝑇𝑇

+ 𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1-10) 

This last equation applies in general; it states that the change in entropy during any incremental 

process is equal to the actual heat added divided by the temperature, 𝛿𝛿𝛿𝛿/𝑇𝑇, plus a contribution 

from the irreversible dissipative phenomena of viscosity, thermal conductivity, mass diffusion, 

and shock waves occurring within the system, 𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . These dissipative phenomena always 

increase the entropy: 

𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0  (1-11) 

The equal sign denotes a reversible process, where, by definition, the dissipative phenomena are 

absent. Hence, a combination of Eqs. (1-9) and (1-10) yields 

𝑑𝑑𝑑𝑑 ≥
𝛿𝛿𝛿𝛿
𝑇𝑇

 (1-12) 

Furthermore, if the process is adiabatic, 𝛿𝛿𝛿𝛿 = 0, and Eq. (1-11) becomes 

 𝑑𝑑𝑑𝑑 ≥ 0 (1-13) 

Equations (1-12) and (1-13) are forms of the second law of thermodynamics. The second law tells 

us in what direction a process will take place. A process will proceed in a direction such that the 

entropy of the system plus its surroundings always increases, or at best stays the same. 

In this hypothetical theory, we assumed equilibrium perfect gas neglecting all dissipative 

phenomena with no heat or work done by the system. So, the system is said to be isentropic, it 

means no variation in the entropy is made as the gas flows (the limiting case 𝑑𝑑𝑑𝑑 = 0), this gives 

important relations that govern the fluid flow properties. These are obtained by combining Eqs. 

(1-3), (1-5), (1-6), (1-9) along with the definitions of enthalpy and the first principle of energy for 

a system. The derivation is not given here but they can be found in any textbook of 

thermodynamics or compressible flow [5] [6]. Before displaying the equations, we need to define 

some parameters that appear explicitly in the equations. 

1.1.1 Mach Number and Sound Velocity 

The Mach number (𝑀𝑀) is a very important parameter in this study and generally in all compressible 

flow, it is defined as the ratio between the actual flow velocity to the sound velocity at a given 

location. 
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𝑀𝑀 =
𝑈𝑈
𝑐𝑐

 (1-14) 

Here the sound speed "𝑐𝑐"  is another important parameter in compressible flow, it is closely 

connected with the velocity of propagation of small pressure disturbances, i.e., with the velocity 

of sound. It can be shown that these pressure waves imply variation in density as they propagate 

through the flow field [6]. The rate of change of density with respect to pressure is, therefore, 

related to the sound speed by 

𝑐𝑐2 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑠𝑠

 𝑜𝑜𝑜𝑜  𝑐𝑐 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑠𝑠
 (1-15) 

The ratio 𝜕𝜕𝑃𝑃/𝜕𝜕𝜕𝜕 is written in Eq. (1-15) as a partial derivative at constant entropy because the 

variations in pressure and temperature are vanishingly small, and consequently, the process is 

nearly reversible. Moreover, the comparative rapidity of the process, together with the smallness 

of the temperature variations, makes the process nearly adiabatic [6]. In the limit, for an 

infinitesimal wave, the process may be considered both reversible and adiabatic, and, therefore, 

isentropic [6]. 

 Thus, for a perfect gas the Eq. (1-14) & (1-15) yields, 

𝑐𝑐 = �𝛾𝛾𝛾𝛾𝛾𝛾 

𝑀𝑀 =
𝑈𝑈

�𝛾𝛾𝛾𝛾𝛾𝛾
  (1-16) 

Here 𝛾𝛾 is the ratio between heat capacities. Important expressions that relate these quantities are,  

𝛾𝛾 = 𝑐𝑐𝑝𝑝/𝑐𝑐𝑣𝑣
𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑣𝑣 = 𝑅𝑅

𝑐𝑐𝑝𝑝 = 𝛾𝛾𝛾𝛾/(𝛾𝛾 − 1)
𝑐𝑐𝑣𝑣 = 𝑅𝑅/(𝛾𝛾 − 1)

  (1-17) 
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1.1.2 Isentropic Flow Relations 

𝑇𝑇0
𝑇𝑇

= 1 +
𝛾𝛾 − 1

2
 (𝑀𝑀)2

𝑃𝑃0
𝑃𝑃

= �1 +
𝛾𝛾 − 1

2
 (𝑀𝑀)2�

𝛾𝛾
𝛾𝛾−1

𝜌𝜌0
𝜌𝜌

= �1 +
𝛾𝛾 − 1

2
 (𝑀𝑀)2�

1
𝛾𝛾−1

𝑈𝑈
𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 

= �
(𝛾𝛾 − 1) 𝑀𝑀2

2 + (𝛾𝛾 − 1) 𝑀𝑀2�

1
2

  (1-18) 

These Equations are valid in any isentropic flow, they relate the stagnation conditions "0" to the 

local flow variables. They are all given explicitly as a function of the local Mach number 𝑀𝑀 and 

heat capacities ratio 𝛾𝛾 . In our problem we have supposed that the stagnation conditions are 

governing our nozzle inlet and sonic conditions (𝑀𝑀 = 1) are those characterizing the flow at the 

throat so that Eq. (1-18) yields. 
𝑇𝑇∗

𝑇𝑇0
=

2
𝛾𝛾 + 1

 

𝑃𝑃∗

𝑃𝑃0
= �

2
𝛾𝛾 + 1

�
𝛾𝛾

𝛾𝛾−1

𝜌𝜌∗

𝜌𝜌0
= �

2
𝛾𝛾 + 1

 �
1

𝛾𝛾−1

𝑈𝑈∗

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 
= �

𝛾𝛾 − 1 
𝛾𝛾 + 1 

�
1
2

   (1-19) 

1.1.3 Area-Mach Relation 

Finally, in this section, we will try to express the most important equation the Area-Mach relation. 

By differentiating the natural logarithm of Eq. (1-1) and substituting Eqs. (1-15), (1-2), (1-16) 

respectively, we arrive to the result, 

𝑑𝑑𝑑𝑑
𝐴𝐴

= −
𝑑𝑑𝑑𝑑
 𝜌𝜌
−
𝑑𝑑𝑑𝑑
𝑈𝑈

= −�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑠𝑠
⋅
𝑑𝑑𝑑𝑑
𝜌𝜌
−
𝑑𝑑𝑑𝑑
𝑈𝑈

=
1
𝑐𝑐2
⋅

(𝜌𝜌 𝑈𝑈2𝑑𝑑𝑑𝑑)
𝜌𝜌 𝑈𝑈

−
𝑑𝑑𝑑𝑑
𝑈𝑈

= �
𝑈𝑈2

𝑐𝑐2
− 1� ⋅

𝑑𝑑𝑑𝑑
𝑈𝑈

 

𝑑𝑑𝑑𝑑
𝐴𝐴

= (𝑀𝑀2 − 1) ⋅
𝑑𝑑𝑑𝑑
𝑈𝑈

 

(1-20) 
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The equation (1-20) relates the variation in the area of the duct to the internal flow velocity. Here 

we can see that the Mach number is a proportionality factor and it drives a very interesting result 

between velocity and area. See Figure 1.4. 

By combining Eq. (1-2) with this result we can also obtain a relation between area variation and 

pressure as pressure behaves in contrast to velocity. 

More interestingly, we can obtain an explicit relation between area ratio and Mach number in the 

form of Eqs. (1-18). Returning to equations (1-1) and (1-18) we can express that,  
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  (1-22) 

In Eq. (1-21), to find the condition of maximum flow rate per unit area, we could compute the 

derivative (𝑚̇𝑚/𝐴𝐴) with respect to 𝑀𝑀 and set this derivative equal to zero. At this condition, we 

would find that it corresponds to 𝑀𝑀 = 1. Respectively, the cross-sectional area for an isentropic 

flow passes through a minimum at Mach Number unity (choked nozzle).  Therefore, in Eq. (1-21), 

Figure 1.4 : Shematic representation of area velocity relation [12]. 
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for a given gas, the maximum flow per unit area depends only on the ratio 𝑃𝑃0/�𝑇𝑇0. While, for 

specific values of stagnation pressure, stagnation temperature, and a passage with a defined 

minimum area, the maximum flow that can be passed is relatively large for gases of high molecular 

weight and relatively small for gases of low molecular weight. 

1.1.4 Summery 

In this Table, we summarize all the important relations derived from the mono-dimensional theory. 

Table 1.1 : Steady Quasi-1D Isentropic Flow Relations 
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An application of these equations to our problem will be for air considered as calorically perfect 

gas, since, we will perform clod test experiments.  

For air at normal conditions 𝑅𝑅 = 287.034 𝐽𝐽
𝐾𝐾𝐾𝐾 𝐾𝐾

 and 𝛾𝛾 = 1.4, results are given in Table 1.2 and 

Figure 1.5. 
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Table 1.2 : Theory Application to Air 

 

𝑇𝑇∗

𝑇𝑇0
=

5
6
≈ 0.833

𝑃𝑃∗

𝑃𝑃0
= 0.52828

𝜌𝜌∗

𝜌𝜌0
= 0.63394

𝑈𝑈∗

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙
= 0.40825

𝑚̇𝑚 �𝑇𝑇0
𝐴𝐴∗ 𝑃𝑃0

= 0.040416

  

 

1.1.5 The limits associated with the use of the hypothesis of calorically perfect gas 

The simplicity of equations derived above allows the use of the hypothesis of perfect gas in first 

approximation, however, in real cases, for thermally perfect gas and/or dissociative gas such as in 

combustion (high-temperature gases), these equations would not be such explicit. 

Figure 1.5 : Graphical representation of isentropic relations for air at 
normal conditions. 
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The above graphic shows the variation of 𝛾̅𝛾 for air-kerosene combustion gases at diverse mixture 

ratios. (the overbar denotes a mixture average value). 

𝜙𝜙 =
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
  (1-23) 

 

We note that: 

• For 𝑇𝑇 < 600 𝐾𝐾, we can assume without many errors the value 𝛾̅𝛾 = 1.4; 
• For 600 𝐾𝐾 < 𝑇𝑇 < 1600 𝐾𝐾 , the gas behaves in this case as a thermally perfect gas for 

which  𝛾̅𝛾 becomes highly dependent on 𝑇𝑇 due to the molecular agitation described before; 
• For 1600 𝐾𝐾 < 𝑇𝑇,  𝛾̅𝛾 varies with 𝑇𝑇 and  𝑃𝑃 as a result of dissociations in the gas. In this case, 

the air can no longer be considered as a perfect gas, and much more precise calculations 
here are necessary. 

However, we notice that in the calculation of the mass flow rate, the variation in temperature 

between the inlet and the throat is always moderated [7]. 
𝑇𝑇0 − 𝑇𝑇∗

𝑇𝑇0
=
𝛾𝛾 − 1
𝛾𝛾 + 1

 ~ 10% 

Such that until 𝑇𝑇 = 2000 𝐾𝐾, we can use the formula for 𝛾𝛾 = 𝑐𝑐𝑐𝑐𝑐𝑐, where 𝛾𝛾 is taken as the average 

value between (𝑃𝑃0,𝑇𝑇0) and (𝑃𝑃∗,𝑇𝑇∗). But for the other flow parameters, it is not possible as non-

negligible errors would be made. 

Figure 1.6 : Variation of γ� for air-kerosene mixture with Temperature [7]. 
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1.2 Rocket Nozzle Performance 

1.2.1 The Thrust Force 

The application of the general principle of conservation of momentum to the control volume that 

bounds the nozzle contour would yield, in the steady state, the General Thrust Equation [7]. 

𝐹𝐹 = �𝑚̇𝑚𝑝𝑝 𝑉𝑉 + 𝑃𝑃 ⋅ 𝐴𝐴�
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

− �𝑚̇𝑚𝑝𝑝 𝑉𝑉 + 𝑃𝑃 ⋅ 𝐴𝐴�
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (1-24) 

Here 𝑚̇𝑚𝑝𝑝 denote the mass flow rate of propellants. As in most cases for rocket engines as well in 

our mono-dimensional theory, the inlet conditions are supposed to be the stagnation conditions, so 

theoretically, no flow crosses the boundaries at the inlet. The term drops from the equation yielding 

the Intrinsic (Ideal) Thrust Force for rocket nozzles. 

𝐹𝐹� = 𝑚̇𝑚𝑝𝑝 𝑉𝑉𝑒𝑒 + 𝑃𝑃𝑒𝑒 ⋅ 𝐴𝐴𝑒𝑒 (1-25) 

The thrust force that is defined here results only from the action of the flow on the nozzle body. 

This is true as long as the external ambient conditions would not influence the flow, this is the case 

of supersonic nozzle discharging in a low-pressure atmosphere as at high altitude flight and out 

space conditions. However, in the general case if we take the effect of ambient pressure 𝑃𝑃𝑎𝑎 yields 

the equation of the Conventional Thrust Force. 

 𝐹𝐹 = 𝑚̇𝑚𝑝𝑝 𝑉𝑉𝑒𝑒 + (𝑃𝑃𝑒𝑒 − 𝑃𝑃𝑎𝑎) ⋅ 𝐴𝐴𝑒𝑒 (1-26) 

If the conditions are such that 𝑃𝑃𝑒𝑒 = 𝑃𝑃𝑎𝑎, the nozzle is said to be adapted and the resulting adapted 

conventional thrust force is then, 

𝐹𝐹𝑎𝑎𝑎𝑎 = 𝑚̇𝑚𝑝𝑝 𝑉𝑉𝑒𝑒 (1-27) 

1.2.2 Effective Exhaust velocity 

We know that the velocity profile at the nozzle exit is not one-dimensional for practical situations. 

It is quite cumbersome to determine the velocity profile at the exit of a rocket nozzle. To tackle 

this problem, we can define a one-dimensional effective exhaust velocity 𝑉𝑉𝑒𝑒𝑒𝑒 as, 

𝑉𝑉𝑒𝑒𝑒𝑒 =
𝐹𝐹
𝑚̇𝑚𝑝𝑝

= 𝑉𝑉𝑒𝑒 +
𝑃𝑃𝑒𝑒 − 𝑃𝑃𝑎𝑎
𝑚̇𝑚𝑝𝑝

⋅ 𝐴𝐴𝑒𝑒  (1-28) 
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1.2.3 The specific impulse  

It provides a measure of the efficiency of a rocket engine, defined as the thrust produced per unit 

of propellant consumed per second (𝐼𝐼𝑠𝑠𝑠𝑠). It is usually expressed in seconds and indicates how 

effectively the engine uses the propellant. 

𝐼𝐼𝑠𝑠𝑝𝑝 =
𝐹𝐹

𝑚̇𝑚𝑝𝑝 𝑔𝑔0
 (1-29) 

𝑔𝑔0 is the acceleration due to gravity at the earth’s sea level. 

1.2.4 Total Impulse 

Total Impulse 𝐼𝐼 is a measure of the overall performance of a rocket engine. It represents the total 

amount of momentum change (or thrust) produced over the entire duration of the engine's 

operation. Mathematically, it is defined as: 

𝐼𝐼 = 𝐹𝐹 ⋅ 𝑡𝑡  (1-30) 

Alternatively, if the thrust is not constant, the total impulse is calculated by integrating the thrust 

over time. 

𝐼𝐼 = � 𝐹𝐹 ⋅ 𝑑𝑑𝑑𝑑
𝑡𝑡

0
  (1-31) 

The total impulse is an essential parameter in evaluating a rocket's performance, as it directly 

correlates to the ability of the engine to propel a vehicle or payload. 

1.2.5 The Thrust coefficient 

The thrust coefficient 𝐶𝐶𝑇𝑇 is a dimensionless parameter used to evaluate the efficiency of a nozzle 

in converting the pressure and momentum of exhaust gases into thrust. It is an important 

performance metric in rocket engine design and analysis. 

Mathematically, the thrust coefficient is defined as: 

𝐶𝐶𝑇𝑇 =
𝐹𝐹

𝑃𝑃0𝐴𝐴∗
 (1-32) 

The thrust coefficient depends on factors like: 

• The nozzle's geometry (divergence angle and expansion ratio); 
• The pressure ratio between the chamber and the ambient; 
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• Flow conditions (subsonic or supersonic). 

It is particularly useful for comparing nozzles of different sizes and configurations, as it normalizes 

thrust with respect to chamber pressure and nozzle throat area. 

1.2.6 Different Losses encountered in nozzles 

Performance data for rocket engines are practically always lower than the theoretically attainable 

values because of imperfections in the mixing, combustion, and expansion of the propellants [8]. 

Figure 1.7 illustrates the different loss sources in rocket engine nozzles. The examination and 

evaluation of these loss effects is and has for some time been the subject of research at scientific 

institutes and in industry.  

Table 1.3 summarizes performance losses in the thrust chambers and nozzles of typical high-

performance rocket engines: The SSME- and Vulcain 1 engine [8] (Space Shuttle main engine, 

Rocketdyne hydrogen-oxygen engine and hydrogen-oxygen core engine of European Ariane-5 

launcher). Among the important loss sources in thrust chambers and nozzles are viscous effects 

because of turbulent boundary layers and the nonuniformity of the flow in the exit area, whereas 

chemical nonequilibrium effects can be neglected in 𝐻𝐻2 − 𝑂𝑂2  rocket engines with chamber 

pressures above 𝑃𝑃𝑐𝑐  =  50 𝑏𝑏𝑏𝑏𝑏𝑏 [8]. Furthermore, the nonadaptation of the exhaust flow to varying 

ambient pressures induces a significant negative thrust contribution. Ambient pressures that are 

higher than nozzle wall exit pressures also increase the danger of flow separation inside the nozzle, 

resulting in the possible generation of side loads. A brief description of state-of-the-art prediction 

methods for both phenomena is the subject of the next chapter. 

Table 1.3 : Performance losses in conventional rocket nozzles [8]. 

Losses Vulcain 1, % SSME,% 

Chemical nonequilibrium 0.2 0.1 

Friction 1.1 0.6 

Divergence, nonuniformity of exit flow 1.2 1.0 

Imperfections in mixing and combustion 1.0 0.5 

Non-adapted nozzle flow 0 − 15 0 − 15 
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1.3 The behavior of the Nozzle in Atmosphere 

The different operating modes for a given CDN in the presence of an adverse pressure, or back 

pressure (atmospheric effect), can be also described by the mono-dimensional theory for ideal gas. 

This approach allows us to understand the formation of normal shock wave inside the nozzle. The 

difference between the generating pressure (𝑃𝑃𝑐𝑐 ≅ 𝑃𝑃0) upstream and the ambient pressure (𝑃𝑃𝑎𝑎 ) 

downstream of the nozzle creates the flow (see Figure 1.8). The first regime of flow is subsonic 

throughout the nozzle. At this stage by continuously decreasing 𝑃𝑃𝑎𝑎, the mass flow rate increases 

progressively until it gets to its limit when the flow reaches sonic conditions at the throat. The 

mass flow rate is then blocked (chocked nozzle) and the pressure downstream will tend to 𝑃𝑃𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

If the pressure downstream goes below 𝑃𝑃𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the throat remains in the chocked state and the flow 

in the divergent section will start reaching supersonic conditions. However, the adaptation to the 

ambient pressure will proceed through a normal shock wave positioned at 𝑋𝑋𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 , which is 

represented by a jump in the evolution of 𝑃𝑃/𝑃𝑃𝑐𝑐  . The flow follows the isentropic supersonic 

solution upstream the shock and downstream side we will get subsonic flow. The normal shock 

moves downstream the nozzle as the back pressure is reduced and for one specific back pressure 

𝑃𝑃𝑎𝑎 = 𝑃𝑃𝑎𝑎
𝑠𝑠𝑠𝑠𝑠𝑠  we will have a normal shock standing at the nozzle exit plane, while the flow is 

completely supersonic in the divergent [9]. 

Figure 1.7 : Flow phenomena and loss sources in rocket nozzles [8]. 
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Reducing the back pressure further, results in over-expanded conditions leading to the generation 

of oblique shocks at the nozzle exit going out from the nozzle.  

With the further decrease of back pressure, we 

may reach pressure-matched conditions 

(adapted nozzle conditions, flow without 

shocks or expansion waves), and below that, 

we will get the formation of expansion waves 

at the nozzle exit. In the latter case, the nozzle 

is said to be operating at under-expanded 

conditions.  

Note that all these latter effects (Figure 1.9) 

will not influence the constrained supersonic 

flow inside the nozzle, nevertheless, these 

effects will significantly characterize nozzle 

performance. To perform such calculations, 

the quasi-1D theory along with shock and 

expansion waves relations described in Appendix A are sufficient. An example of such application 

to the experimental conical nozzle studied here is given in Appendix B. 

The introduction of viscosity effects significantly complicates the described flow regimes. One 

notable consequence is the formation of a boundary layer, caused by non-slip conditions. The 

Figure 1.8 : Working principle of a convergent 
divergent nozzle [9]. 

Figure 1.9 : Under-expended and over-expended 
nozzle flow [10]. 
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interaction of this boundary layer with the main flow, shock waves, and ambient field can result 

in transient, non-uniform, and asymmetric flow behavior (see Figures 1.10, 1.11) [11]. 

Adapted Regime ( 𝑷𝑷𝒂𝒂 = 𝑷𝑷𝒆𝒆 ): In this 

regime, the flow completes its expansion 

within the nozzle with final pressure 

adapted to the ambient. At the nozzle exit, 

the supersonic jet flow is quasi-uniform, 

shockless, and an isobaric boundary 

separates the jet from the surrounding air. 

Viscous forces (shear layers) at the edges of 

the plume will cause it to diverge gradually 

in this case as ambient air is entrained into 

the high-speed flow. 

Under-Expanded Regime ( 𝑷𝑷𝒂𝒂 <  𝑷𝑷𝒆𝒆 ): 

Here, the gas does not fully expand within 

the nozzle and continues expanding at its exit. This results in a series of expansion waves, causing 

the jet to extend outward. Consequently, the free jet boundary or shear layer takes on a divergent-

like shape. 

Over-Expended Regime (𝑷𝑷𝒂𝒂 > 𝑷𝑷𝒆𝒆): At this stage, the boundary layer at the exit of the nozzle is 

subtended to an adverse pressure gradient forcing it to become thicker. Compression waves, then, 

Figure 1.10 : Flow phenomena for a conventional 
rocket nozzle [8]. 

Figure 1.11 : Nozzle plume characteristics at various exit pressure conditions 
[11]. 
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start forming at the lips of the nozzle leading to the development of a shock wave which, in the 

first case, doesn’t result in boundary layer separation.  Further downstream, a system of shocks 

and expansion waves leads to the characteristic barrel-like form of the exhaust flow. 

When the flow is highly over-expanded, there is potential for separation within the nozzle. The 

separation can occur over just a portion of the circumference (asymmetric separation), or 

uniformly around the entire circumference.  At the separation region, the flow is qualitatively 

illustrated in Figure 1.12. Point O marks the origin of interaction, where compression waves 

emerge and converge into an oblique shock at the separation point S, deflecting the flow. 

Downstream of point S, the interaction between the separated turbulent boundary layer and the 

low-speed flow downstream (commonly referred to as "dead water" flow) generates a viscous and 

turbulent mixed layer.  

Figure 1.13 depicts the impact of separation on the wall pressure distribution. The dotted curve 

represents the evolution of wall pressure in the adapted regime. In the over-expanded regime 

without separation, the pressure increases near the nozzle lip and ultimately reaches atmospheric 

pressure. Conversely, in the over-expanded regime with separation, the pressure initially rises but 

then asymptotically approaches the pressure in the dead water zone, which is close to ambient 

pressure, 𝑃𝑃𝑎𝑎. This evolution in wall pressure influences the nozzle thrust. Therefore, knowing the 

Figure 1.12 : Over-expended nozzle with free shock separation [4]. 
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position of the separation point 𝑆𝑆 and the pressure jump across the shock is crucial for accurately 

assessing nozzle performance [9].  

 

For a given nozzle pressure ratio (𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑃𝑃𝑐𝑐/𝑃𝑃𝑎𝑎), it is still difficult to predict whether the over-

expansion will cause separation and, if separation occurs, determining the position of the 

separation point and the evolution of the wall pressure remains challenging. This difficulty arises 

from the complexity of the physical phenomena encountered in such flows, which are highly 

compressible and turbulent. The following chapter gives an insight into the phenomenology of 

flow separation in over-expanded nozzles and some predictive criteria, often derived from 

experimental data and theoretical models, that have been obtained from researchers in the literature.  

Lastly, in Figure 1.14 where the thrust ratio between the maximum 𝑃𝑃𝑎𝑎 = 𝑃𝑃𝑒𝑒 (adapted regime) and 

the actual thrust force for different values of 𝑃𝑃𝑎𝑎/𝑃𝑃𝑒𝑒 is plotted. When 𝑃𝑃𝑒𝑒 is less then 𝑃𝑃𝑎𝑎, there is a 

drop in the thrust such that in the absence of separation, this loss rises regularly as 𝑃𝑃𝑒𝑒/𝑃𝑃𝑎𝑎  is 

decreasing. The intervention of separation has as effect of limiting the zone of over-expansion in 

the nozzle, in such a way that the thrust stabilizes practically when the separation occurs [7].  

 

 

 

 

Figure 1.13 : Wall pressure distribution for free shock 
separation [9]. 
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1.4 Supersonic Nozzle Designs 

1.4.1 Conventional Nozzles 

In the design of rocket nozzles, there are several parameters that must be considered, such as 

performance requirements, maximum acceptable engine mass, limitations on the main dimensions, 

cooling performance, lifetime considerations, manufacturing methods, etc. Minimizing the weight 

is one of the main parameters, i.e. keeping the nozzle length and surface area at a minimum. The 

main gas dynamics problem lies in optimally contouring the nozzle in order to maximize efficiency. 

From a purely inviscid point of view, nozzles can be classified into different types, each producing 

its specific internal flow field [3]. 

The designer must understand these features, since the internal flow field determines the flow 

separation and side load behavior. Figure 1.15 shows examples of the Mach number distribution 

in some of the most common nozzle types, which will be discussed below. 

Figure 1.14 : Thrust force variation with pressure ratio Pa/Pe at all operation 
regimes off- and adapter conditions [7]. 
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The initial expansion region (Kernel) 

As it turned out in Figure 1.15, the flow field has a more complex structure than the isentropic 1D 

flow described in Section 1.1. Currently, the method of characteristics (MOC), discussed 

subsequently, is the most common calculation method to compute flow fields in rocket nozzles. 

The calculations of the flow properties downstream of the nozzle are based on the kernel, which 

is determined by the initial expansion that occurs along the throat contour 𝑇𝑇𝑇𝑇, which is usually 

designed as a circular arc, see Figure 1.16. 

Conical Nozzle 

The conical nozzle has historically been the most common contour for rocket engines since it is 

simple and usually easy to fabricate. The exhaust velocity of a conical nozzle is essentially equal 

to the one-dimensional value corresponding to its expansion ratio, except that the flow direction is 

Figure 1.15 : Mach distribution in different nozzles with ε = 43.4. The thick line indicates the 
approximate position of the internal shock, [13]. 

Figure 1.16 : Initial expansion region, kernel, [13]. 
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not axial all over the exit area. Hence, there is a performance loss due to the flow divergence. 

Assuming conical flow at the exit, Malina [14] showed that the geometrical efficiency is 

𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔 =
1 + cos(𝛼𝛼)

2
 (1-33) 

Where 𝛼𝛼 denotes the nozzle cone half angle. The length of the conical nozzle can be expressed as 

𝐿𝐿𝛼𝛼°,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑟𝑟𝑡𝑡�√𝜀𝜀 − 1� + 𝑟𝑟𝑡𝑡𝑡𝑡  (sec(𝛼𝛼) − 1)

tan𝛼𝛼
  (1-34) 

 

Where: 

𝑟𝑟𝑡𝑡: Represents the throat radius. 

𝜀𝜀: Denotes the expansion ratio. 

𝛼𝛼: Denotes the half-angle of the divergence. 

𝑟𝑟𝑡𝑡𝑡𝑡: Denotes the radius contribution at the divergent exit or trailing edge. 

𝐿𝐿𝛼𝛼,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: Overall conical divergent length. 

Typically, cone half angles range between 12° to 18°. A common compromise is a half angle of 

15°. 

Due to its high divergence losses, the conical nozzle is nowadays mainly used in short nozzles like 

solid rocket boosters and small thrusters, where simple fabrication is preferred over aerodynamic 

performance. 

Ideal (Bell) Nozzle 

The ideal nozzle is designed to produce an isotopic flow (i.e. a flow without any internal shocks) 

and a uniform exit velocity. Figure 1.17 describes the flow field of an ideal nozzle. After the initial 

section 𝑇𝑇𝑇𝑇, the contour 𝑁𝑁𝑁𝑁 turns the flow in the axial direction. TN also defines the Mach number 

at 𝐾𝐾, which is equal to the design Mach number obtained at the exit. With the characteristic line 

𝑁𝑁𝑁𝑁 defined and the condition that the characteristic line 𝐾𝐾𝐾𝐾 is a uniform exit characteristic, it is 

possible to use MOC to construct the streamline between 𝑁𝑁 and 𝐸𝐸, which patches the flow to 

become uniform and parallel at the exit. 
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Truncated Ideal Contoured nozzles (TIC and CTIC) 

Making the exit flow uniform demands the nozzle to be very long, therefore, the ideal nozzle is 

not suitable for rocket applications. However, since the thrust contribution in the last part of the 

nozzle is negligible due to the small wall slope a more effective nozzle is obtained by truncating 

the contour, i.e. the truncated ideal contoured nozzle (TIC). The exit velocity profile of a TIC 

nozzle will have a central part that is uniform and parallel, and a divergent part close to the wall, 

see Figure 1.17. The truncation can be made as far upstream as the kernel, and as long as the kernel 

is undisturbed, the MOC can be used to calculate the flow field downstream of the nozzle. Figure 

1.15(b) illustrates the Mach number distribution. An optimization technique by Ahlberg [15] is 

used to find the best performances for a nozzle with a certain mass, surface area, exit diameter, 

length, and thrust coefficient. TIC nozzles are for example used in the European Ariane 4 and the 

American Saturn-1 launcher. 

A version of the TIC nozzle is the compressed TIC nozzle (CTIC). The design method of the CTIC 

nozzle was developed by the Japanese Gogish in the 60s. The idea is to compress a TIC nozzle 

linearly in the axial direction to a desired length. The compression causes the area ratio to grow 

faster which causes the flow to expand more rapidly compared to a TIC nozzle. As a consequence, 

right-running compression waves will propagate from the compressed contour into the flow field. 

If the compression is strong enough, the characteristic lines will coalesce and form a right-running 

oblique shock wave. If the shock wave lies near the nozzle wall, the pressure along the wall is 

increased, thus, increasing the nozzle thrust. The CTIC nozzle is used on the Japanese H-II 

launcher (the LE7A nozzle). 

Figure 1.17 : Basic flow structures in an ideal nozzle, [13]. 
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Thrust Optimized Contoured nozzles (TOC) 

Another design procedure for rocket nozzles today is a modified version of the calculus of 

variables, developed by Rao [16]. The concept is; to find the exit area and nozzle contour which 

produces the optimum thrust for a given nozzle length and ambient pressure. The procedure can 

be divided into two steps. First, the kernel flow (TNKO) is generated with MOC, for a variety of 

𝜃𝜃𝑁𝑁 and a given throat curvature 𝑟𝑟𝑡𝑡𝑡𝑡, see Figure 1.18. Then by using the calculus of variables for 

given design parameters (such as Mach number and area ratio or area ratio and nozzle length), the 

points 𝑃𝑃 and 𝑁𝑁 can be found by satisfying the following conditions; 

1) Mass flow across 𝑃𝑃𝑃𝑃 equals the mass flow across 𝑁𝑁𝑁𝑁. 
2) The resulting nozzle gives the maximum thrust. 

Once, 𝑃𝑃 and 𝑁𝑁 are found the kernel line 𝑁𝑁𝑁𝑁𝑁𝑁 is fixed. The nozzle contour can then be generated 

by a series of parallel control surfaces 𝑃𝑃’𝐸𝐸’, 𝑃𝑃’’𝐸𝐸’’ from 𝑁𝑁 to 𝑃𝑃 (𝑃𝑃’ and 𝑃𝑃’’ are fixed on the kernel 

line and 𝐸𝐸’ and 𝐸𝐸’’ are generated), see Figure 1.18. As the turning of the flow (contour) are more 

drastic compared to an ideal nozzle (𝑃𝑃 = 𝐾𝐾) it will induce weak compression waves in the region 

𝑁𝑁𝑁𝑁𝑁𝑁, which will coalesce into a right running shock illustrated in the Mach number distribution, 

Figure 1.15(c). 

Parabolic bell nozzles (TOP) 

Rao [16] also developed an approximated version of the TOC nozzles, the Parabolic bell nozzles 

(TOP). He approximated the TOC nozzles by a skewed parabolic geometry from the inflection 

point to the nozzle exit. 

�
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𝑟𝑟𝑡𝑡

+ 𝑏𝑏
𝑥𝑥
𝑟𝑟𝑟𝑟
�
2

+ 𝑐𝑐
𝑥𝑥
𝑟𝑟𝑟𝑟

+ 𝑑𝑑
𝑟𝑟
𝑟𝑟𝑟𝑟

+ 𝑒𝑒 = 0 (1-35) 

Figure 1.18: Thrust optimized nozzle contour, [13]. 
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By freely varying the five independent variables, 𝑟𝑟𝑡𝑡𝑡𝑡, 𝜃𝜃𝑁𝑁, 𝐿𝐿, 𝑟𝑟𝐸𝐸, and 𝜃𝜃𝑁𝑁, which defines the nozzle 

contour, any parabolic nozzle can be generated. However, all of these parabolic nozzles are not a 

faithful approximation to a TOC, and will cause serious performance losses. Comparing the Mach 

number distribution of the approximated parabolic nozzle (TOP) in Figure 1.15(d) with the 

proposed TOC nozzle in Figure 1.15(c) it can be seen that the flow conditions along the wall are 

similar and that the performance is slightly less in the TOP nozzle, but there is a big difference in 

the shock pattern. The shock in the TOP nozzle is caused by the discontinuity in the contour at 

point N when the circular arc is continued with a parabolic curve. The discontinuity creates 

compression waves that coincide with an internal shock. This phenomenon is utilized in sea-level 

nozzles because it will affect the flow properties at the wall and increase the exit wall pressure, i.e. 

decrease the overexpansion. The gain to reduce the overexpansion will outweigh the slight loss in 

performance and that’s why the Vulcain 2 (used on the Ariane 5 launcher) and SSME (Space 

Shuttle Main Engine) are designed as TOP nozzles. 

1.4.2 Altitude Adaptative Nozzles 

A critical comparison of performance losses shown in Table 1.3 reveals that the most significant 

improvements in nozzle performance for first-stage or SSTO engines can be achieved through the 

adaptation of nozzle exit pressures to the variations in ambient pressure during the launcher’s 

ascent through the atmosphere. Various concepts have been investigated for this purpose and can 

be found in further details at [8]. 
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 PHYSICAL PROPERTIES AND PHENOMENOLOGY OF 
FLOW SEPARATION IN OVER-EXPANDED NOZZLES 

As discussed in Chapter 1, the flow issuing from the nozzle is only ideally expanded or adapted to 

the surrounding flow when the pressure of the surrounding atmosphere is equal to the pressure of 

the nozzle jet. During most of the operational time of a rocket engine, the supersonic discharge 

from the nozzle occurs under off-design conditions, where the nozzle exit pressure 𝑃𝑃𝑒𝑒 differs from 

that of the atmosphere, 𝑃𝑃𝑎𝑎. It is customary to describe the conditions for off-design supersonic 

discharge by the degree of departure from the theoretical value, which is given as the ratio between 

the nozzle design exit pressure to the pressure in the surrounding medium. 

𝑛𝑛 = 𝑃𝑃𝑒𝑒/𝑃𝑃𝑎𝑎 (2-1) 

An illustration of the exhaust plume patterns at under-expanded (𝑛𝑛 > 1), adapted (𝑛𝑛 = 1), and at 

over-expanded—but not separated flow—condition (𝑛𝑛 < 1) is given in Figure 1.8 from Chapter 1. 

The actual shape of the overexpansion shock pattern depends on the nozzle contour type (internal 

flow field) and degree of overexpansion as will be seen below. 

 

This chapter will delve into the flow characteristics within over-expanded supersonic nozzles, 

highlighting the primary phenomenon governing this operational regime: Shock Wave Boundary 

Layer Interaction (SWBLI). Subsequently, we'll develop the most basic theory describing pressure 

evolution within the interaction region, known as Chapman's Free Interaction Theory (FIT). 

Finally, we'll examine the different behaviors encountered in conical over-expanded nozzles. 

2.1 Exhaust plume patterns in over-expanded nozzle 

Different shock patterns in the plume of over-expanded rocket nozzles have been observed: the 

classical Mach disc, Figure 2.1(a); the cap-shock pattern, Figure 2.1(b); and the apparent regular 

shock reflection at the centerline, Figure 2.1(c). In the case of axisymmetric flow, a pure regular 

reflection at the centerline is not possible. Instead, a very small normal shock exists at the 

centerline [18]. 
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The observed luminous regions in the over-expanded jet of liquid propellant rocket nozzles at sea 

level express the thermal radiation of the gases taken to high temperatures as they suddenly 

decelerated when crossing intense shock waves. 

In ideal and TIC nozzles, a transition between the Mach 

disc and the apparent regular shock reflection can be 

observed as the degree of overexpansion is decreased [13]. 

This is because a nozzle flow with a small overexpansion 

can adapt to the ambient pressure without forming a strong 

shock system (i.e., the Mach disc). 

The difference between the Mach disc and cap-shock 

pattern is shown schematically in Figure 2.2. The cap-

shock pattern is only observed in nozzles featuring an 

internal shock, such as TOC, TOP, and CTIC nozzles. 

Figure 2.1(b) proves the existence of the cap-shock pattern 

in the exhaust plume of the Vulcain nozzle, which has a 

parabolic contour [13]. This is the pattern that first appears 

at the nozzle exit during start-up. Upon increasing the 

combustion chamber pressure, the flow becomes less over-

expanded. At some point, the internal shock intersects the 

centerline and a transition to a Mach disc pattern takes 

place, see Figure 2.1(a). Recent subscale experiments 

Figure 2.2 : Exhaust plume patterns for 
subscale nozzles. Parabolic nozzles with 
cap-shock pattern: (a) VOLVO S1. (b) 
TOP ONERA. (c) P6 TOP DLR. (d) TIC 
nozzle with Mach disc: VOLVO S6. (e) 
sketch of cap-shock pattern. (f) sketch of 
Mach disc pattern (Courtesy photos: 
DLR and ONERA). [13] 

Figure 2.1 : Exhaust plume patterns. Overexpanded flow: (a) Vulcain, with classical Mach 
disc. (b) Vulcain, with cap-shock pattern. (c) RL10-A5, with apparent regular reflection.; 

Courtesy photos: SNECMA, CNES, NASA [13]. 
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performed within the European FSCD group also confirmed the stable existence of the cap-shock 

pattern in the plume of parabolic subscale rocket nozzles [13]. 

Navier-Stokes calculations of the flow in the Vulcain nozzle [19], operating at expansion rates 

relatively close to the nominal rate on the ground, have indeed shown that two shock systems can 

exist (see Figure 2.3). The upper part of Figure 2.3 shows a classic Mach disk structure, formed 

by the singular reflection of the shock from the nozzle lip on the axis of symmetry. This Mach 

reflection is in no way disturbed by the internal focusing shock, the regular reflection of which we 

observe upstream of the Mach disk. However, the structure in the lower part of Figure 2.3 takes a 

completely different form, resulting from the interaction between the non-matching shock system 

and the internal focusing shock. 

The above-described shock patterns are not only an exhaust plume phenomenon; they also exist 

inside the nozzle at highly over-expanded flow conditions, when the jet is separated from the 

nozzle wall. As will be shown later in sections. 2.4.1 and 2.4.2, the different shock patterns 

determine the characteristics of the nozzle separation and side loads. 

2.2 The nature of supersonic separation 

From the unidimensional flow theory of a perfect fluid, the high over-expanded regime in nozzles 

was reflected by the apparition of a normal shock wave Figure 2.4(b). The pressure jump through 

the shock follows a discontinuous evolution which is exclusively dependent on the Mach number 

upstream. 

Figure 2.3 : Mach disk structure (top) and cap shock structure (bottom). 
Navier-Stokes calculations for expansion rates close to the nominal rate 

of the Vulcain engine [19]. 
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In reality, the development of a boundary layer allows the pressure signal induced by the shock to 

propagate into the upstream direction through the subsonic sublayer. Thus, the pressure jump is 

felt upstream of the point where the shock would occur at the inviscid limit, Figure 2.4(a). 

Correlatively, thickening the subsonic zone due to the deceleration induced by the compression 

waves contributes to the enlargement and the weakness of the shock, which becomes generally 

oblique (Figure 2.4(c)).  

The supersonic nozzle flow separation is always the consequence of the interaction of sufficiently 

high adverse pressure gradient concentrated on an oblique shock with a boundary layer, namely, a 

shock wave boundary layer interaction. The word interaction means the reciprocity of the two 

mechanisms, on the one part, the action of pressure gradient which slows down and stiffens the 

boundary layer, and, on the other part, the growth of the boundary layer that results in a deviation 

of the supersonic flow. Thus, from this mechanism and interaction of viscous and inviscid regions, 

the pressure jump at the wall operates progressively from the upstream undisturbed flow until a 

downstream level in a distance called the interaction length [20]. 

 

Figure 2.4 : Schematic representations of the over-expanded flow in a nozzle for perfect fluid and 
viscous fluid [20]. 
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2.2.1 Origin and length of the interaction 

The origin 𝐼𝐼 of the interaction is defined as the point where the evolution of the wall pressure 

deviates from that which would have been obtained without interaction (Figure 2.5). This point 

marks the beginning of the detachment process.  

The interaction length 𝐿𝐿𝑆𝑆 is defined as the distance between the origin 𝐼𝐼 of the interaction and the 

average position 𝑆𝑆 of the detachment point, i.e. 𝐿𝐿𝑆𝑆 = 𝑥𝑥𝑆𝑆 − 𝑥𝑥𝐼𝐼. 

2.3 Shock Wave Boundary Layer Interaction 

When a supersonic flow is exposed to an adverse pressure gradient, it adapts to the higher-pressure 

level through a shock wave system. Separation occurs when the turbulent boundary layer cannot 

withstand the adverse gradient imposed upon it by the inviscid outer flow. Thus, flow separation 

in any supersonic flow is a process involving complex shock wave boundary layer interactions 

(SWBLI). SWBLI is an intrinsically unsteady and three-dimensional phenomenon, which may 

generate large fluctuating forces on the structure. In the following, we will first discuss 

observations and basic models for determining the mean pressure distribution in the separation 

zone and, thereafter, some observations concerning the fluctuating pressure field. 

Figure 2.5 : Over-expanded nozzle with free shock separation [20]. 
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2.3.1 Basic interaction 

Shock wave boundary layer interaction has been 

extensively studied in the last 50 years with the help of 

basic experiments [13]. Three nominally basic 

configurations involving interaction between a shock 

wave and a turbulent boundary layer in supersonic flows, 

which have been studied extensively, are represented 

schematically in Figure 2.6. In all of these cases, the 

incoming flow is a uniform stream along a flat plate. 

The first and conceptually most simple configuration is 

the wedge (or ramp) flow. Here, a discontinuity in the 

wall direction is the origin of a shock wave through 

which the supersonic flow undergoes a deflection equal 

to the ramp angle 𝛼𝛼, Figure 2.6(a). 

The second type is separation induced by a step of height 

ℎ  facing the incoming flow, Figure 2.6(b). Such an 

obstacle provokes separation of the flow at point 𝑆𝑆. The 

rapid pressure rise accompanying separation gives rise to 

a shock wave emanating from a place very close to the 

separation point 𝑆𝑆, and a separated zone develops between the separation point 𝑆𝑆 and the step. 

The third type is separation caused by the impingement of an oblique shock on a smooth wall, 

Figure 2.6(c). The incident shock causes a deflection of the incoming flow, and a reflected shock 

is formed as the downstream flow tends to become parallel to the wall. 

Similarity in supersonic separations 

It has been shown in many experiments that the upstream part of the shock/boundary layer 

interaction is nearly independent of the cause of separation, whether it is a solid obstacle or an 

incident shock wave [13]. In fact, the features of the static wall pressure for the above different 

experimental configurations are the same and are illustrated in Figure 2.7. The wall pressure has a 

steep rise shortly after the beginning of the interaction at 𝐼𝐼. The flow separates from the wall at 

Figure 2.6 : Basic shock/boundary layer 
interactions in supersonic flow: (a) ramp 
flow, (b) step-induced separation, and (c) 
shock reflection (adopted from [53]) [13]. 
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point 𝑆𝑆, located a distance 𝐿𝐿𝑠𝑠 from 𝐼𝐼. If the separated flow scale is large enough, the wall pressure 

then gradually approaches a plateau with almost constant pressure, labeled plateau pressure 𝑃𝑃𝑝𝑝. 

The extent of this plateau reflects the size of the closed recirculation bubble, and 𝑃𝑃𝑝𝑝  thus 

corresponds to the wall pressure in the bubble. A second pressure rise can be observed as the 

reattachment point 𝑅𝑅  is approached. These characteristics are independent of the downstream 

geometry, as already mentioned; everything happens as if the flow were entirely determined by its 

properties at the onset of the interaction. 

However, experiments have shown three scenarios where we have found a disagreement with this 

rule of similarity: 

• When the boundary layer is laminar or in a transitional state, the pressure in the detached 
region has a plateau level much lower than the recognized turbulent level. 

• When the nozzles have a low divergence, we no longer observe a pressure plateau in the 
area after effective separation but a choppy evolution of the pressure. 

• When the detachment process is close to the nozzle lip, the pressure plateau is not reached 
before the nozzle exit; this is referred to as the incipient separation. 

The incipient Separation 

In two-dimensional or axisymmetric mean flow, the notion of incipient separation is linked to the 

interaction region where the positive wall shear stress decreases abruptly until it is zero at a point. 

This notion arises from an average representation of the flow. In reality, the locally intermittent 

nature of the separation acts so that short appearances of separation can occur upstream of this 

Figure 2.7 : Typical static wall pressure distribution observed in 
ramp, shock reflection and step flow (adopted from [42,54]) [13]. 
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point where the wall friction coefficient is on average zero. Similarly, the incident flow can remain 

attached momentarily downstream of this point. In practice, two notions of incipient separation are 

defined [20]: 

The ‘‘true’’ incipient separation point corresponds to the first appearance of a tiny separation 

bubble, while the ‘‘effective’’ incipient separation corresponds to a stage where the separation 

bubble has reached a size large enough to produce a significant change in the flow field. The latter 

is most important for practical applications.  

Influence of the nature of the boundary layer 

The first experimental and theoretical analysis of supersonic separation [21] highlighted the strong 

influence of the nature of the boundary layer on the wall pressure profile. Experimental studies 

undertaken at Onera [7] also showed this influence during separation. In addition to the laminar 

and turbulent cases, Carrière distinguished two other forms of pressure evolution corresponding to 

transitional cases (see Figure 2.8). 

Type I, II, and III curves are primarily relevant for small-scale tests at Reynolds numbers that are 

too low. We mention them here only as a reminder and to draw the attention of experimenters to 

the danger of error inherent in using older separation criteria, established before these distinctions 

were demonstrated [7]. 

On the scale of real engines, Reynolds numbers are always high enough that only turbulent type 

IV separations are observed. 

Figure 2.8 : Types of free separation in nozzles, laminar or turbulent [7]. 
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Effect of the Reynolds Number 

Based on the free interaction theory (that will be described in more detail just after), it can be 

shown that the critical pressure rise along the interaction length was dependent on the square root 

of the local friction coefficient at the interaction point 𝐼𝐼 (see Eq. (2-18)). Following this result, 

Figure 2.9 shows how the separation pressure reflecting the two distinct incipient separation points 

varies with the Mach number. 

From Figure 2.9, The general conclusion concerning the pressure rise at the separation obtained 

with the free interaction theory is that: 

• The pressure rise increases when the Mach number is increased. 
• The pressure rise decreases when the skin friction coefficient decreases (corresponding to 

an increase in the Reynolds number). 

Both of these tendencies have been confirmed by experiments performed at low to moderate 

Reynolds numbers [13]. 

However, in several experiments performed at higher Reynolds numbers (𝑅𝑅𝑒𝑒𝛿𝛿𝛿𝛿 > 105), it has been 

observed that the pressure rise tends to become independent of the Reynolds number and even 

slightly increases with it. As an example, Zukoski [22] made a series of experiments on step flows 

at 𝑅𝑅𝑒𝑒𝛿𝛿𝛿𝛿 > 105  with 𝑀𝑀𝑖𝑖  varying between 1.4 and 6.0, and found that the pressure rise at high 

Reynolds numbers depended only on the upstream Mach number 𝑀𝑀𝑖𝑖 as 

 

Figure 2.9 : Separation pressure obtained with the free interaction theory for uniform flow. 
‘‘Effective separation’’: (point P); ‘‘True separation’’ (point S): (from [56]) [13]. 
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(2-2) 

Hence, there appears to be a change of tendency in both 𝑅𝑅𝑅𝑅 and Mach number behavior as these 

parameters become large. An explanation for this behavior may be that, as the Reynolds number 

increases, the viscous sublayer occupies a smaller part of the entire boundary layer, and it becomes 

far thinner than the subsonic layer. These facts combine to make the pressure propagation at the 

high Reynolds number boundary layer an essentially inviscid process. 

Viscous parameters also influence the separation length 𝐿𝐿𝑠𝑠 . Experiments on ramp flows have 

shown that in turbulent flow, the separation length is very short, 𝐿𝐿𝑠𝑠/𝛿𝛿𝑖𝑖 is of order 1, compared to 

the laminar case where the separation length is far larger than the incoming boundary layer 

thickness [13].  

For turbulent flow, the influence of the Reynolds number on the separation length can be divided 

into two regions. For low or moderate Reynolds number 

(𝑅𝑅𝑒𝑒𝛿𝛿𝑖𝑖 < 105), 𝐿𝐿𝑠𝑠 increases with increasing Reynolds and 

Mach numbers (see Figure 2.10(a)), and agrees with the 

free interaction theory. Whereas at high Reynolds 

number (𝑅𝑅𝑒𝑒𝛿𝛿𝑖𝑖 > 105), several investigators have found 

that the separation length tends to become independent 

of the Reynolds number and even to decrease with it, as 

indicated in Figure 2.10(b). This change in behavior at 

𝑅𝑅𝑒𝑒𝛿𝛿𝑖𝑖 ≈ 105 can be explained by the fact that the shape of 

the velocity profile is dependent on the Reynolds number 

and that a fuller velocity profile has a higher resistance 

against separation. At low to moderate Reynolds 

numbers, the velocity ‘‘fullness’’ initially decreases with 

increasing Reynolds numbers, but at higher Reynolds 

numbers the opposite behavior occurs (see, e.g., Johnson 

& Bushnell [23]). 

Figure 2.10 : Influence of Reynolds 
number and ramp angle on separation 
length (a) at low to moderate Reδi , Ls/δi 
increases with Re (data from [43]), (b) at 
high Reδi , Ls/δi decreases with Re (data 
from [39]) [13]. 
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Effect of Wall Temperature 

Another parameter that influences the separation length is the 

heat transfer. The cooling effect can be seen in Figure 2.11, 

where 𝐿𝐿𝑠𝑠  is plotted versus 𝑇𝑇𝑤𝑤 /𝑇𝑇𝑟𝑟  based on experimental 

data from Spaid and Frishett [24]. 𝐿𝐿𝑠𝑠�  is the ratio between 

𝐿𝐿𝑠𝑠/𝛿𝛿𝑖𝑖 when heat transfer is present and 𝐿𝐿𝑠𝑠/𝛿𝛿𝑖𝑖 with adiabatic 

flow evaluated at the same 𝑅𝑅𝑒𝑒𝛿𝛿𝑖𝑖.  

As indicated in the figure, wall cooling decreases the 

separation distance. This reduction of 𝐿𝐿𝑠𝑠  with decreasing 

wall temperature can be explained with the help of the free 

interaction theory. When reducing 𝑇𝑇𝑤𝑤 /𝑇𝑇𝑟𝑟  (𝑇𝑇𝑟𝑟  is the wall 

recovery temperature), the skin friction coefficient will increase and this provokes a decrease of 

𝐿𝐿𝑠𝑠. Another interpretation of the reduction of 𝐿𝐿𝑠𝑠 is that an overall contraction of the interaction 

domain is obtained due to a thinning of the subsonic layer, as the temperature level and thus the 

speed of sound near the wall become lower. 

Factors influencing the evolution of pressure in the overlap or detachment zone 

The pressure recovery zone is the region from downstream of the shock wave boundary layer 

interaction where the pressure has undergone a strong increase, to the nozzle outlet where the 

pressure is close to the ambient external pressure. In cases of over-expanded nozzles where there 

is no free separation, the term pressure recovery may be preferred to that of separation. 

The geometry of the divergent is a particularly influential factor on the pressure in the detached 

zone as has been highlighted by Onera experiments [20] carried out in ideal profiled nozzles and 

nozzles with a conical divergent.  

 

 

 

 

 

 

Figure 2.11 : Influence of wall cooling 
on the separation length in a ramp 
flow. (data from [43]) [13]. 
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The pressure profiles obtained in the conical nozzles, Figure 2.12(a), show a very clearly defined 

pressure plateau. On the other hand, in the ideal nozzles profiled in Figure 2.12(b), there is a 

significant positive pressure gradient downstream of the separation. As suggested by Carrière et 

al. [20] the evolution of the pressure after separation is linked to the confinement of the separated 

region in which the recirculation takes place. This confinement parameter is determined by the 

proximity of the external boundary of the mixing layer to the wall of the divergent as indicated by 

Herbert and Herd [25] through the diagrams in Figure 2.13. 

Figure 2.13 : Separated jet boundary, calculated by the MOC method [20]. 

Figure 2.12 : Wall pressure evolution in the detached zone; a)- conical nozzle, b)- ideal 
bell nozzle, [20]. 
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Thus, when the separation point is located very far upstream of the outlet, the mixing layer 

develops over a large distance and its expansion means that it will be very close to the wall of the 

diverging nozzle. In nozzles with low divergence, the flaring of the sheared layer induces a narrow 

volume in which the reflux must be organized. A smaller volume of the separated zone will cause 

higher reflux velocities as well as a faster evolution of the separated pressure. The role played by 

the geometry of the volume in which the fluid recirculation evolves on the jet fluctuations has also 

been highlighted by Lawrence [20]. 

Another consequence of the proximity of the detached shear layer to the wall, which can be 

suggested here, would be an intermittent reattachment process; the phenomenon would be driven 

by the transport of large-scale coherent structures in the mixing layer that would intermittently 

impact the diverging wall. This intermittent reattachment would be a source of increased pressure 

fluctuations, inducing an increase in the measured mean pressure. This idea of "intermittent 

reattachment" could explain the appearance of the mean pressure profiles obtained in the Hunter 

Mach 2 nozzle [26] in a range of intermediate expansion ratios (Figure 2.14). 

For the lowest expansion rates (𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 1.4) the study [26] specifies that there is no separation, 

and beyond 𝑁𝑁𝑁𝑁𝑁𝑁 = 2 there is free separation of the jet. Between the two ranges of expansion rates, 

the author notes that the profiles present an inflection but do not conclude on a physical 

interpretation, the Strioscopic visualizations being moreover very difficult to read [26]. 

Figure 2.14 : Wall pressure profiles in Mach 
2 planar nozzle with half angle of 11°, over-
expanded regime [20]. 
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2.3.2 The Free interaction theory 

The free interaction theory is based on the notion of free separation. It was Mager [20] who 

described separations as "free" when the flow downstream of the separation itself is free to adjust 

in a direction resulting from the shock/boundary layer interaction process. This condition, 

according to Mager, is respected when reattachment does not occur (case of over-expanded nozzles 

with free jet separation) or only occurs quite far downstream of the separation (case of rising steps 

sufficiently high relative to the boundary layer, or of a high-intensity shock reflection).  

The striking feature of this free or extended separation is that the wall pressure profiles present a 

well-marked plateau just after the sudden rise in pressure when crossing the induced shock. The 

term free separation is no longer really appropriate when a reattachment process occurs quickly 

after the detachment. 

As we have seen earlier, the correspondent pressure evolution is divided into two distinct regions: 

• The branch 𝐼𝐼𝐼𝐼, which is called by the Chapman region of the free separation [27], as its 
shape is independent of the condition operating downstream of 𝑆𝑆. For example, if we 
modify simultaneously the profile 𝑆𝑆𝑆𝑆  of the nozzle and we adjust 𝑃𝑃𝑎𝑎  such that 𝐼𝐼  is 
maintained fix, this branch can, at first approximation, be considered invariant.    

• The branch 𝑆𝑆𝑆𝑆, in contrast, is highly dependent on the downstream conditions and notably 
on the form of the nozzle profile.  

This observation of a general form of the pressure distribution over the interaction region led 

Chapman et al. [27] to formulate the concept of free interaction. This theory is applicable for two-

dimensional uniform flow before the separation (branch 𝐼𝐼𝐼𝐼), it is also valuable for the laminar as 

well as turbulent cases. 
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Let's assume that the pressure is uniform at each abscissa 𝑥𝑥 within the boundary layer, and in the 

separated region, we therefore have 𝑃𝑃 = 𝑃𝑃(𝑥𝑥) 

If 𝛿𝛿∗(𝑥𝑥) represents the displacement thickness of the boundary layer, and 𝜙𝜙 the angle of deflection 

of the external flow under the displacement effect, we have 

𝜙𝜙 =
𝑑𝑑𝛿𝛿∗

𝑑𝑑𝑑𝑑
 (2-3) 

The linearized PRANDTL-MEYER compression law, applicable to this flow if remains small 

enough, therefore allows us to write: 

𝑃𝑃(𝑥𝑥) − 𝑃𝑃𝑖𝑖
𝑞𝑞𝑖𝑖

=
2
𝛽𝛽𝑖𝑖
𝑑𝑑𝛿𝛿∗

𝑑𝑑𝑑𝑑
 (2-4) 

Where 

𝑞𝑞𝑖𝑖 =
1
2
𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖2 

𝛽𝛽𝑖𝑖 = �𝑀𝑀𝑖𝑖
2 − 1 

(2-5) 

Let us assume, as the experiment suggests, that the phenomenon obeys to similarity law over the 

length 𝑙𝑙. If 𝛿𝛿𝑖𝑖∗  is the displacement thickness at the position 𝐼𝐼, we have then 

𝑑𝑑𝛿𝛿∗

𝑑𝑑𝑑𝑑
=
𝛿𝛿𝑖𝑖∗

𝑙𝑙
⋅ 𝑓𝑓1(𝑠𝑠) (2-6) 

Where 𝑠𝑠 = (𝑥𝑥 − 𝑥𝑥𝑖𝑖)/𝑙𝑙, and 𝑓𝑓1 is a nondimensional function characterizing the outer streamline 

deflection.  

We can therefore write the variation law of 𝑃𝑃(𝑥𝑥) in the form: 

𝑃𝑃(𝑥𝑥) − 𝑃𝑃𝑖𝑖
𝑞𝑞𝑖𝑖

=
2
𝛽𝛽𝑖𝑖
⋅
𝛿𝛿𝑖𝑖∗

𝑙𝑙
⋅ 𝑓𝑓1(𝑠𝑠) (2-7) 

Now, let us consider further the momentum equation of the boundary layer:  

𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (2-8) 

Written at the wall, where 𝑢𝑢 = 𝑣𝑣 = 0, it results in: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
𝑤𝑤

 (2-9) 
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Let us integrate from 𝑥𝑥 = 𝑥𝑥𝑖𝑖 in the 𝐼𝐼𝐼𝐼 region, and we obtain: 

𝑃𝑃(𝑥𝑥) − 𝑃𝑃𝑖𝑖 = � �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑤𝑤
𝑑𝑑𝑑𝑑

𝑥𝑥

0
 (2-10) 

Introducing the appropriate reference values by considering the hypothesis of similitude, the 

equation becomes: 

𝑃𝑃(𝑥𝑥) − 𝑃𝑃𝑖𝑖
𝑞𝑞𝑖𝑖

=
𝑙𝑙 𝜏𝜏𝑤𝑤,𝑖𝑖

𝑞𝑞𝑖𝑖 𝛿𝛿𝑖𝑖∗
 � �

𝜕𝜕 � 𝜏𝜏
𝜏𝜏𝑤𝑤,𝑖𝑖

�

𝜕𝜕 � 𝑦𝑦𝛿𝛿𝑖𝑖∗
�
�  𝑑𝑑𝑑𝑑

𝑠𝑠

0
 (2-11) 

Where 𝜏𝜏𝑤𝑤,𝑖𝑖 is the partial friction at 𝐼𝐼, expressed using the friction coefficient, we write 𝜏𝜏𝑤𝑤,𝑖𝑖 = 𝑞𝑞𝑖𝑖 ⋅

𝑐𝑐𝑓𝑓,𝑖𝑖. 

The integral, by hypothesis, is uniquely dependent on 𝑠𝑠, thus we get: 

𝑃𝑃(𝑥𝑥) − 𝑃𝑃𝑖𝑖
𝑞𝑞𝑖𝑖

=
𝑙𝑙 𝑐𝑐𝑓𝑓,𝑖𝑖

𝛿𝛿𝑖𝑖∗
⋅ 𝑓𝑓2(𝑠𝑠) (2-12) 

Where 𝑓𝑓2 is a function, similar to 𝑓𝑓1, which characterizes the pressure rise. 

Multiplying members by the member (2-7) and (2-12), we eliminate 𝑙𝑙/𝛿𝛿𝑖𝑖∗ and we obtain: 

𝐹𝐹(𝑠𝑠) = �𝑓𝑓1(𝑠𝑠) ⋅ 𝑓𝑓2(𝑠𝑠) =
𝑃𝑃(𝑥𝑥) − 𝑃𝑃𝑖𝑖

𝑞𝑞𝑖𝑖
⋅ �

𝛽𝛽𝑖𝑖
2 ⋅ 𝑐𝑐𝑓𝑓,𝑖𝑖

 (2-13) 

Or  

𝐹𝐹(𝑠𝑠) =
𝑃𝑃(𝑥𝑥) − 𝑃𝑃𝑖𝑖

𝑞𝑞𝑖𝑖
⋅ �

�𝑀𝑀𝑖𝑖
2 − 1

2 ⋅ 𝑐𝑐𝑓𝑓,𝑖𝑖
 

(2-14) 
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The function 𝐹𝐹(𝑠𝑠)  is assumed to be a universal function, independent of Mach number and 

Reynolds number, to be determined from experiments [13]. Figure 2.15 shows the generalized 

wall pressure correlation function 𝐹𝐹(𝑠𝑠) obtained by Erdos and Pallone [28]. The axial distance 

from the onset of the interaction has been normalized with the separation length, i.e., 𝑙𝑙 = 𝐿𝐿𝑠𝑠 =

𝑥𝑥𝑠𝑠 − 𝑥𝑥𝑖𝑖. In the original work by Erdos and Pallone, the distance to the pressure plateau of the 

extended separated flow was used as the characteristic length scale, i.e., 𝑙𝑙 = 𝐿𝐿𝑝𝑝 = 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑖𝑖. From 

the figure, the following particular values of 𝐹𝐹  can be found: 𝐹𝐹𝑠𝑠 = 𝐹𝐹(𝑠𝑠 = 1) = 4.22  at the 

separation point (𝑆𝑆), and 𝐹𝐹𝑝𝑝 = 𝐹𝐹(𝑠𝑠 = 4) = 6.00 at the plateau point (𝑃𝑃) [13]. 

Chapman also showed that the characteristic length 𝑙𝑙 could be expressed as  

𝑙𝑙
𝛿𝛿𝑖𝑖∗

= �
2

𝑐𝑐𝑓𝑓,𝑖𝑖 �𝑀𝑀𝑖𝑖
2 − 1

 �
𝑓𝑓1(𝑠𝑠)
𝑓𝑓2(𝑠𝑠)

 (2-15) 

 At the separation point 𝑆𝑆 (𝑠𝑠 = 1), this relation can be evaluated as, 

𝑙𝑙
𝛿𝛿𝑖𝑖∗

= 𝑘𝑘�
2

𝑐𝑐𝑓𝑓,𝑖𝑖 �𝑀𝑀𝑖𝑖
2 − 1

  (2-16) 

Figure 2.15 : Generalized wall pressure correlation function F(s) for uniform 
turbulent flow, by Erdos and Pallone [28]. 
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Here, 𝑘𝑘 is the value of �𝑓𝑓1/𝑓𝑓2 evaluated at 𝑠𝑠 = 1. From different experiments, an average value 

of 𝑘𝑘 = 0.37 has been obtained [13]. However, the experimental data have a significant scatter 

around this value; 𝑘𝑘 = 0.27– 0.57  has been observed, presumably due to the difficulty of 

accurately determining the separation length, which in turbulent flows is very short—typically a 

few boundary layer thicknesses. 

Separation Criteria Based on Free Interaction Theory 

Supersonic separation criteria refer to the conditions under which a supersonic flow separates from 

a surface. Two theories of supersonic boundary layer separation, developed in the 1950s, have 

given rise to a multitude of empirical separation criteria. One is the integral method of Reshotko 

and Tucker [20], which was developed to predict the effect of a sudden pressure change on a 

supersonic turbulent boundary layer with a Mach number less than 3. This analysis predicts the 

onset of shock wave-induced separation for a Mach number ratio equal to:  

𝑀𝑀1/𝑀𝑀0  =  0.762  (2-17) 

The other falls within the framework of the present theory; a more elaborate list can be found at 

[20]. 

The free interaction theory can be used to establish separation criteria for supersonic flow. The 

best known is the type of criteria first proposed by Erdos and Pallone [28] in 1962. They 

determined the critical pressure rise between the pressure 𝑃𝑃𝑟𝑟 at location 𝑠𝑠 = 𝑟𝑟 and 𝑃𝑃𝑖𝑖 (𝑠𝑠 = 0) by 

assuming that the separation occurs when the pressure jump 𝑃𝑃𝑟𝑟  /𝑃𝑃𝑖𝑖 is 

𝑃𝑃𝑟𝑟
𝑃𝑃𝑖𝑖

= 1 + 𝐹𝐹𝑟𝑟𝛾𝛾𝑀𝑀𝑖𝑖
2
�

𝑐𝑐𝑓𝑓,𝑖𝑖

2�𝑀𝑀𝑖𝑖
2 − 2

 (2-18) 

This equation is obtained by rewriting Eq. (2-14) and using the fact that the dynamic pressure can 

be written as 

𝑞𝑞𝑖𝑖 =
1
2
𝜌𝜌𝑖𝑖𝑢𝑢𝑖𝑖2 =

1
2
𝑃𝑃𝑖𝑖𝛾𝛾𝑀𝑀𝑖𝑖

2 (2-19) 

The pressure rise, corresponding to ‘‘true’’ incipient separation (point 𝑆𝑆 in Figure 2.7) is obtained 

with 𝐹𝐹𝑟𝑟 = 𝐹𝐹𝑠𝑠 = 4.22, while the ‘‘effective’’ incipient separation (point 𝑃𝑃 in Figure 2.7) is obtained 

with 𝐹𝐹𝑟𝑟 = 𝐹𝐹𝑝𝑝 = 6.0. The ‘‘true’’ incipient separation point (𝐹𝐹𝑟𝑟 = 4.22) corresponds to the first 
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appearance of a tiny separation bubble, while the ‘‘effective’’ incipient separation (𝐹𝐹𝑟𝑟 = 6.0) 

corresponds to a stage where the separation bubble has reached a size large enough to produce a 

significant change in the flow field. The latter (which is the value used by Erdos and Pallone) is 

most important for practical applications. 

Generalization of the free interaction criteria for a non-uniform flow 

The flow separation in nozzles doesn’t follow exactly the conditions of Chapman; On the one hand, 

the flow is axisymmetric, on the other, it exist generally a high favorable pressure gradient which 

results from nozzles expansion waves, they superpose between 𝐼𝐼 and 𝑆𝑆 to the phenomenon of 

separation. If the length 𝐼𝐼𝐼𝐼 of the wall filling these waves was short, then the criteria of Chapman 

would be applicable. However, experience has shown that usually, this distance is far from being 

negligible. This resulted in great disagreement between the Chapman criteria and experiments. 

Research undertaken at Onera has elaborated a new method of calculation of these phenomena see 

Carrière et al. [29], [7]. 

2.3.3 Unsteadiness and Three-Dimensional Effects 

In the previous section, we only looked at the mean properties of shock-induced separation. The 

unsteady pressure behavior has been the topic of a number large of studies, some of which are 

found at [13]. 

2.4 Configurations of flow separation phenomena in over-expanded nozzles 

A flow exposed to an adverse pressure gradient of sufficient strength can cause the boundary layer 

to separate from the wall. In the previous section, we examined the influence of such adverse 

pressure gradients generated by obstacles. A similar condition occurs when a nozzle is operating 

in an over-expanded condition, i.e., 𝑛𝑛 < 1 (cf. Eq. (2-1)). In rocket engines, this situation is faced 

in off-design operations. It also occurs during start transients, shut-off transients, or engine 

throttling modes. 
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Recent research has made it clear that two different separation patterns exist, the classical free 

shock separation, and the restricted shock separation, in the following denoted by their acronyms 

FSS and RSS, respectively. Figure 2.16 shows schematic figures for the two separation patterns 

together with the definition of their characteristic points. In the following, these two regimes will 

be described in more detail.  

2.4.1 Free Shock Separation (FSS) 

In the free shock separation case, the over-expanded nozzle flow fully separates from the wall. The 

resulting streamwise wall pressure evolution is mainly governed by the physics of shock wave 

boundary layer interactions occurring in any supersonic flow separation, cf. Section 2.3. However, 

in contrast to obstacle-induced separation, the separation location is not fixed by the geometrical 

properties of the test configuration but results mainly from the degree of overexpansion. As the 

degree of overexpansion is reduced, i.e., 𝑛𝑛 is increased toward one, the separation shock moves 

out of the nozzle. 

Based on the static wall pressure distribution, the flow can be divided into three regions:  

• The non-perturbated region is similar to an attached full-flowing nozzle.  
• The separation region is also referred to as the interaction or the intermittent region. 
• The last portion of the nozzle, where the flow is fully separated, is referred to as the 

recirculation zone. 

 

Figure 2.16 : Phenomenological sketch of free shock separation (FSS, top), and restricted shock 
separation (RSS, bottom) [13]. 
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Pressure Fluctuations and Side Loads 

Looking at the pressure fluctuations, we find distinct characteristics for the separation zone, as 

compared to the attached flow upstream of it, or the recirculation zone downstream of it. 

An example is given in Figure 2.17, which shows fluctuating wall pressure signals recorded at 

different positions through the interaction region in the truncated VOLVO S7 nozzle [13]. In the 

attached zones (signal(a)), the pressure fluctuations are quite small. They are due only to the 

turbulent fluctuations of the attached boundary layer upstream. Signals (b)–(d) are from the 

separation zone. The large fluctuations are caused by the intermittent motion of the separation 

shock, causing an oscillation between the two levels 𝑃𝑃𝑖𝑖 upstream of the separation shock, and 𝑃𝑃𝑝𝑝 

at the beginning of the recirculation zone—depending on the instantaneous position of the 

separation shock relative to the pressure sensor. Signal (e) shows the pressure fluctuations caused 

by the shear layer of the separated free jet in the recirculation downstream of separation. These 

fluctuations are low compared to the separation zone, yet substantially higher than in the attached 

flow. 

Figure 2.17 : Pressure signals at different positions through the interaction region in the VOLVO S7 short 
nozzle. Measurements made during down ramping of P0. (cf. [56,76]). (a): attached flow; (b), (c), and (d): 
separation zone; (e): recirculation zone downstream of separation, [13]. 
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One should keep in mind that the oscillation of the separation front reflects a time-dependent 

motion of the nozzle jet. It is not a local wall phenomenon but affects the entire flow field 

downstream of separation. This is reflected in the relatively high fluctuation level in the 

recirculation zone as compared to the attached flow 

region (see Figures 2.17(e) and 2.17(a), respectively). 

This is a feature particular to internal flow separation 

in nozzles, and it also explains why a correlation 

between the pressures at different circumferential 

positions has to exist. 

This circumferential variation of the pressure is not 

necessarily axisymmetric, and may hence produce 

side forces perpendicular to the nozzle axis. Figure 

2.18 shows side loads measured in the VOLVO S6 

short nozzle during a sequence of slow up- and down-

ramping of the chamber pressure (i.e., the different 

times correspond to different operational conditions). 

The side load level is largest in the range of 𝑛𝑛 = 0.05 

to 𝑛𝑛 = 0.25. 

2.4.2 Restricted Shock Separation (RSS) 

During cold-flow subscale tests for the J-2S engine development in the early 70s, a previously 

unknown flow separation pattern was observed at strongly over-expanded operating conditions 

[30]. In this flow regime, which only occurred at certain pressure ratios, the pressure downstream 

of the separation point showed an irregular behavior and partly reached values above the ambient 

pressure. This is due to a reattachment of the separated flow to the nozzle wall, inducing a pattern 

of alternating shocks and expansion waves along the wall (see Figure 2.16). Due to the short-

separated region, this flow regime was called restricted shock separation (RSS) by Nave and 

Coffey [30]. The separation characteristics of RSS, as observed in the J-2S nozzle, and recently 

confirmed for subscale and full-scale rocket nozzles, are described in the following [13]. 

 

Figure 2.18 : Side loads in a truncated ideal 
nozzle (VOLVO S6) at free shock condition 
(from [77]) [13]. 
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FSS-RSS Transition 

Figure 2.20 shows CFD calculations visualizing the flow field (Mach number contours) during a 

start-up sequence of the VOLVO S1. 

During the start-up of the nozzle flow, featuring 

initially a pure free shock separation, a transition from 

FSS to RSS occurs at a well-defined pressure ratio 

[13]. Figure 2.19 shows some typical measured 

steady-state wall pressure profiles in the VOLVO S1 

nozzle during start-up, as 𝑛𝑛 is increased toward one. 

The wall pressure profiles indicate FSS for 𝑛𝑛 < 0.14 

and RSS for 𝑛𝑛 > 0.14 (cf. Fig. 2.16). The transition of 

the flow separation pattern from FSS to RSS takes 

place at 𝑛𝑛 ≈ 0.14 . This can also be seen in Figure 

2.20: at 𝑛𝑛 < 0.14, the exhaust jet is seen to occupy 

only a fraction of the nozzle exit, whereas at 𝑛𝑛 > 0.14 

the exhaust is attached to the nozzle wall. 

 

Figure 2.20 : Calculated Mach number contours 
in the VOLVO S1 nozzle at different 
operational conditions, n = 0.07–  0.45, (from 
[56]), [13]. 

Figure 2.19 : Wall pressure profiles in the VOLVO S1 
nozzle during start-up, (from [56]), [13]. 
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The wall pressure distributions measured during shutdown are shown in Figure 2.21. Here, it can 

be seen that the transition between RSS and FSS occurs at a lower chamber pressure, 𝑛𝑛 = 0.11, 

indicating that there is a hysteresis effect.  

Figure 2.22 compares the wall pressure profiles at FSS and RSS conditions at a pressure ratio of 

𝑛𝑛 = 0.12. As can be seen, the wall pressure distribution is quite different for the two cases. The 

main difference is that the RSS separation line is located much further downstream of the FSS 

separation line. The reason is that when the jet attaches to the wall a closed recirculation zone is 

formed, with static pressures significantly below the ambient pressure level. Therefore, when an 

FSS-RSS or RSS-FSS transition takes place, the separation line jumps. 

The End Effect 

Upon further increasing 𝑛𝑛, the closed recirculation zone is pushed toward the nozzle exit. Finally, 

the reattachment point reaches the nozzle exit, and the recirculation zone opens to the ambient 

flow. This is connected with a pressure increase in the recirculation zone behind the separation 

shock that pushes the separation point back upstream. The recirculation zone then closes again, 

connected with a drop in static pressure, which results again in a downstream movement of the 

separation point. A pulsating process is observed, connected with the opening and closing of the 

separation zone. This retransition from RSS back to FSS is referred to in the literature as the end 

effect [13] and occurs in the VOLVO S1 nozzle at 𝑛𝑛 ≈ 0.25 [13]. The end effect is also observed 

during shutdown, at the same degree of overexpansion as during start-up, however in this case the 

transition is from FSS to RSS. 

Figure 2.21 : Wall pressure profiles in the VOLVO 
S1 nozzle during shutdown, (from [56]), [13]. 

Figure 2.22 : Comparison between wall pressure 
profile at FSS and RSS condition at n = 0.12, 

(from [56]), [13]. 
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Side Loads Generated by FSS-RSS Transition 

Östlund [13] was the first to show, based on analysis of the VOLVO S1 test, that these transitions 

between separation patterns are associated with distinct side load peaks, which occur impulsively 

and are characterized by high amplitude. Figure 2.23 shows a time record of the measured side 

load torque in the VOLVO S1 nozzle during a start-up and shutdown process. In each case, two 

distinct load peaks can be identified, one at 𝑛𝑛 = 0.14 and one at 0.11 for start-up and shutdown, 

respectively, indicating an FSS-RSS transition, and one at 𝑛𝑛 = 0.25, where the ‘‘end effect’’ takes 

place. 

The above observations and conclusions by Östlund 

[13] were followed up by intensive research both 

within and outside Europe. Further subscale 

experiments were performed within different FSCD 

test campaigns [13] as well as recent Japanese 

experiments [13], which confirmed this mechanism 

for TOP and CTIC nozzles (both of which have 

internal shocks). In addition, a reevaluation of the test 

results of the Vulcain 1 engine confirmed this 

mechanism as the key driver for side loads during 

both start-up and shutdown [13]. 

Physical Mechanisms Driving the FSS-RSS Transition 

The theory of reattached flow in the J-2S subscale nozzle was first confirmed by numerical 

simulations of Chen et al. in 1994 [13]. In addition, their calculations revealed a trapped vortex 

behind the central normal shock, but they did not provide any explanation for the generation of 

such a flow structure. 

Later, Nasuti and Onofri stressed the role played by the centerline vortex on the separation pattern 

and side load generation [13]. The centerline vortex acts as an obstruction for the exhausting jet, 

Figure 2.23 : Side loads due to transition in 
separation pattern in the VOLVO S1 nozzle 
(from [32]) [13]. 
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which is thereby pushed toward the wall. As a consequence, a radial flow component is generated 

that tends to reattach the separated region, thus switching the flow from FSS to RSS. 

Frey and Hagemann have given another explanation of the reattached flow, based upon 

experimental observations and numerical simulation [13]. According to their results, the key driver 

for the transition from FSS to RSS and vice versa is the specific cap-shock pattern. Thus, a 

transition from FSS to RSS can only occur in nozzles featuring an internal shock. According to 

their findings, the cap-shock pattern results from the interference of the separation shock with the 

inverse Mach reflection of the weak internal shock at the centerline [13]. A key feature of this 

inverse Mach reflection is the trapped vortex downstream of it, driven by the curved shock 

structure upstream of it, which generates a certain vorticity in the flow [13]. Thus, the vortex would 

be a result of the curved shock structure, which is partially in contrast to the explanation given by 

Nasuti and Onofri, which also includes an effect of flow gradients upstream. Further experimental 

and numerical verification is planned to finally reach a conclusion with respect to this interesting 

vortex phenomenon. 

An interesting point is that both the hypotheses of Nasuti and Onofri and Frey and Hagemann 

identify the curved cap-shock profile as a driver for the transition from FSS to RSS, in agreement 

with what is experimentally proven in [13]. 

2.5 Over-expanded operation of Conical Nozzles  

The performance of fully expanded and under-expanded conical exhaust nozzles, having 

conventional divergence angles, can be described adequately based on one-dimensional theory. 

Even though a one-dimensional model of nozzle flow can be postulated for over-expanded nozzles, 

it is now well-known that it generally does not correspond to reality. Whereas for the one-

dimensional model, it is assumed that the boundary condition of ambient pressure at the nozzle 

exit is satisfied by normal shock deceleration followed by subsonic compression within the nozzle 

(see Chapter 1), in actuality the flow may attain ambient pressure as the result of oblique shock 

compression accompanied by flow separation from the wall [31].  

Over-expanded conical nozzle performance may be divided into the following five distinct regimes, 

in order of increasing nozzle pressure ratio (NPR) [31]: 
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1. Essentially one-dimensional flow with a normal shock downstream of the throat. This 
condition occurs for pressure ratios slightly above those required to choke the nozzle. 

2. Unstable flow with oblique shock boundary layer separation. The shock pattern is 
asymmetric and unsteady. 

3. Stable flow with symmetric oblique shock boundary layer separation around the nozzle 
circumference. As the pressure ratio is raised, the separation point moves toward the nozzle 
exit. This regime exists from a nozzle pressure ratio sufficient to establish stable flow until 
the pressure ratio is raised to the point where separation occurs in the immediate proximity 
of the nozzle exit plane. 

4. Flow with oblique shock boundary layer interaction within the nozzle but in the immediate 
proximity of the nozzle exit plane. This regime exists until the pressure ratio is sufficiently 
high to expel the oblique shock pattern from the nozzle. 

5. Undisturbed flow in the nozzle with oblique shocks initiating in the nozzle exit plane. The 
shocks become weaker as the nozzle pressure ratio is raised and disappear when the full 
expansion pressure ratio is reached.  

For rocket motors and jet engines, nozzle geometry, and operating pressure are usually such that 

only regimes 3-5 are of interest to the engine designer. Nozzle performance in regime 5 can be 

estimated adequately based on a one-dimensional model while correcting for velocity deviations 

from axial in the exit plane (cf. Eq. (1-33)). Regime 4 covers only a very small range of pressure 

ratios. Since the shock wave boundary layer interaction is restricted to the immediate vicinity of 

the nozzle exit plane, nozzle performance, except for base drag effects, can be estimated as for 

regime 5. Estimating nozzle performance for regime 3 requires knowledge of the location of the 

boundary layer separation. 

Several experimental investigations on conical and straight-walled two-dimensional nozzles have 

been carried out to determine the conditions for which flow separation takes place and the location 

of the separation points [31]. Within the scatter of the experimental data for the ratio of the wall 

pressure at the separation point to the ambient pressure, there seems to be no consistent significant 

difference between two-dimensional and axisymmetric nozzles, nor can any trend be detected as 

a function of nozzle half angle, for a range of half angles between 7° and 30°. Fraser et al.; 

McKenney, and Foster and Cowles conclude that flow separation occurs at the point where the 

nozzle wall pressure reaches a particular fraction of the ambient pressure [31]. The "Summerfield 

criterion" predicts separation for 𝑃𝑃𝑠𝑠/𝑃𝑃𝑎𝑎  <  0.4. An alternate attempt to predict the separation point 

assumes that the oblique shock causing separation is such as to turn the flow at the wall to the axial 

direction [31]. 
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 GOVERNING FLOW EQUATIONS AND TURBULENCE 
MODELING 

 

In this chapter, we present the set of equations that describes the compressible turbulent flows, 

which will be used to resolve the flow phenomena in our problem. In the first hand, we start by 

presenting the physical and mathematical model of fluid dynamics which are the compressible 

Navier-Stokes equations. Then, making the appropriate averaging techniques for the flow variables, 

and based on some assumptions, we form the FANS (Favre-Averaged Navier Stokes) equations. 

Lastly, we will speak about the closure problem and modeling of the correlation’s terms, especially, 

for the Reynolds stresses which will form the basis for turbulence modeling (effects).  Finally, we 

will present three different turbulence models based on the Boussinesq hypothesis, or eddy-

viscosity models, that will be adopted in this study.  

3.1 The Fundamental Equations for Compressible Flows: 

The flow phenomena are fully described by three sets of conservation principles namely, 

• The conservation of mass (continuity) equation, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 0 (3-1) 

• The conservation of momentum equation, 

𝜕𝜕(𝜌𝜌𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕𝑇𝑇𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕�−𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖�

𝜕𝜕𝑥𝑥𝑗𝑗
 (3-2) 

Where,  

𝑇𝑇𝑖𝑖𝑖𝑖, is the complete stress tensor applied to a fluid element or fluid parcel. 

𝑃𝑃𝑖𝑖𝑖𝑖, is the hydrostatic or more properly the thermodynamic pressure. 

𝜏𝜏𝑖𝑖𝑖𝑖, is the stress tensor due to viscosity. 

𝛿𝛿𝑖𝑖𝑖𝑖, is the Kronecker tensor (1 if 𝑖𝑖 = 𝑗𝑗 , 0 if 𝑖𝑖 ≠ 𝑗𝑗). 

For Newtonian fluids the stress tensor, 𝜏𝜏𝑖𝑖𝑖𝑖, is proportional to the rate of strain tensor 𝑆𝑆𝑖𝑖𝑖𝑖 [32] [33]: 

𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜇𝜇 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑆𝑆𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 (3-3) 
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Where 𝜇𝜇 is the dynamic viscosity coefficient, 𝜆𝜆 is usually called the second viscosity coefficient, 

and, 

𝑆𝑆𝑖𝑖𝑖𝑖 =
1
2
�
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� (3-4) 

It may now be useful to express the tensor 𝑆𝑆𝑖𝑖𝑖𝑖 as the sum of its isotropic and deviatoric parts, says 

𝑆𝑆𝑖𝑖𝑖𝑖𝐴𝐴 and 𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷 respectively: 

𝑆𝑆𝑖𝑖𝑖𝑖𝐴𝐴 =
1
3
𝑆𝑆𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 =

1
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖 (3-5) 

𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷 = 𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑖𝑖𝑖𝑖𝐴𝐴 =
1
2
�
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� −
1
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖 (3-6) 

Thus, we get, 

𝜏𝜏𝑖𝑖𝑖𝑖 = �𝜆𝜆 +
2
3
𝜇𝜇�
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇 𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷 = 𝜇𝜇𝑣𝑣
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇 𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷 (3-7) 

Where we introduce the bulk viscosity coefficient 𝜇𝜇𝑣𝑣, defined as 𝜇𝜇𝑣𝑣 = (𝜆𝜆 + 2𝜇𝜇/3).  

As can be seen, the viscous stress tensor has, in general, both an isentropic part and a deviatoric 

part. By recalling form Eq. (3-2) that the complete stress tensor as applied to a fluid element is 

both composed of pressure action as well as a viscous contribution thus it follows that the complete 

stress tensor is given by, 

𝑇𝑇𝑖𝑖𝑖𝑖 = �−𝑃𝑃 + 𝜇𝜇𝑣𝑣
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

� 𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜇𝜇 �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

−
2
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖� (3-8) 

Eq. (3-8) shows that, in general, the isentropic part of the complete stress tensor contains a viscous 

term that is additive to the pressure term. We may then interpret 𝜇𝜇𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽 as the difference between 

the thermodynamic pressure and the opposite of the average of the normal stresses acting on any 

three orthogonal planes passing through a point in the fluid, which is usually referred to as the 

mechanical pressure. This difference is generally considered to be due to the time lag with which 

the thermodynamic equilibrium condition is reached in a motion that implies an isotropic dilatation 

of a fluid element [33]. 

Following a suggestion by stocks [33] [34], it is customary to assume that 𝜇𝜇𝑣𝑣 is negligible or, in 

other words, that the two coefficients of viscosity appearing in Eq. (3-3) are linked by the relation 

𝜆𝜆 +
2
3
𝜇𝜇 = 0 (3-9) 
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This is known as Stokes’ hypothesis, and its use has become common practice in the analysis of 

the motion of compressible fluids. As may be seen from Eq. (3-8), it implies that the 

thermodynamic pressure coincides with the mechanical pressure and characterizes the isotropic 

part of the complete stress tensor; furthermore, the viscous stress tensor becomes a purely 

deviatoric tensor and corresponds to the deviatoric part of 𝑇𝑇𝑖𝑖𝑖𝑖. In other words, assuming the validity 

of Eq. (3-9) is equivalent to stating that isotropic dilatations of an elementary volume of fluid do 

not produce viscous stresses. 

The use of Stokes’ hypothesis renders the mathematical treatment of compressible flows 

considerably easier, but it has been the object of long-lasting discussions (see, e.g., the papers 

presented at the workshop chaired by Rosenhead [35], or the considerations in [36]). Indeed, for 

polyatomic gases, the available data for 𝜇𝜇𝑣𝑣 (though not numerous due to the complexity of its 

experimental evaluation) show that it is certainly not zero and often far from being negligible. For 

instance, 𝜇𝜇𝑣𝑣 is of the same order as 𝜇𝜇 for nitrogen and oxygen, but other gases, such as carbon 

dioxide, are characterized by much larger values of 𝜇𝜇𝑣𝑣, of the order of 103𝜇𝜇. On the other hand, it 

is usually claimed that a fundamental result of the kinetic theory of gases is that 𝜇𝜇𝑣𝑣 = 0 for 

monatomic gases. This would agree with the physical interpretation that the bulk viscosity is 

connected with the time lag for reaching local equilibrium conditions. This time would be much 

shorter for monatomic gases, due to the absence of the rotational and vibrational modes 

characterizing polyatomic gases. Furthermore, the rather scarce available experimental evidence 

(see, e.g., [37]) seems to suggest that the bulk viscosity of monatomic gases is indeed practically 

negligible. However, already more than sixty years ago, Truesdell [38] observed that a zero value 

of the bulk viscosity is not derived from but implicitly assumed in Maxwell’s kinetic theory of 

gases. More recently, Rajagopal [39], starting from a different approach to the constitutive 

equations of a viscous fluid—in which the rate of strain is expressed as a linear function of the 

stress tensor rather than the opposite—concluded that the bulk viscosity can never be zero for 

physically realistic fluids, including monatomic gases. Finally, the bulk viscosity is significantly 

higher than the dynamic viscosity also for many liquids (see, e.g., [35], [40]). 

In summary, one may consider as amply demonstrated that for most fluids of practical interest, the 

bulk viscosity is not zero and that the ratio 𝜇𝜇𝑣𝑣/𝜇𝜇 may vary from almost negligible to very large 

values. Therefore, such evaluations of the order of magnitude of the bulk viscosity seem to be in 

contradiction with the fact that, excluding very particular conditions, in most applications 
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concerning compressible flows good results may indeed be obtained by using the usual formulation 

of Stokes’ hypothesis, namely that 𝜇𝜇𝑣𝑣 = 0. Thus, we are seemingly left with the paradox that, to 

get adequate descriptions of most flow fields, we must retain the viscosity coefficient 𝜇𝜇 in Eq. (3-

10), which defines the viscous stress tensor, but we are allowed to neglect the other one, 𝜇𝜇𝑣𝑣, which 

may be of the same order of magnitude or even much larger.  

A reasonable explanation of this circumstance may be obtained from a deeper analysis of the 

contribution of the stress tensor term in which the bulk viscosity appears—namely 𝜇𝜇𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽—and 

from a reflection on the admissibility of the operation that is done when a term is neglected in a 

relation or an equation (see also [41]). To this end, it is useful to rewrite the expressions of the 

tangential and normal components of the complete stress tensor separately. For a generic tangential 

stress (𝑖𝑖 ≠ 𝑗𝑗), we have 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜇𝜇 �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗  

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� = 2𝜇𝜇 𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷 (3-10) 

Whereas the expression for a generic normal stress (𝑖𝑖 = 𝑗𝑗) is: 

𝑇𝑇𝑖𝑖𝑖𝑖 = �−𝑃𝑃 + 𝜇𝜇𝑣𝑣
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

� + 2𝜇𝜇 �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

−
1
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

� = �−𝑃𝑃 + 3𝜅𝜅 𝑆𝑆𝑖𝑖𝑖𝑖𝐴𝐴� + 2𝜇𝜇 𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷  (3-11) 

The essential point to be observed now is that the terms 𝑆𝑆𝑖𝑖𝑖𝑖𝐴𝐴 are all equal, whereas this cannot 

happen for the terms 𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷 because the trace of the deviatoric tensor D is zero. The effect of 𝜇𝜇𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽 

is thus perfectly additive to that of the thermodynamic pressure; in other words, this term is 

associated with the same deformation—isotropic dilatation of a fluid element—that is connected 

with the thermodynamic pressure, which, however, is generally larger than 𝜇𝜇𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽 (in absolute 

value) by several orders of magnitude. Conversely, the coefficient 𝜇𝜇, however small it may be, is 

associated with normal and tangential stresses causing deformations that cannot be justified 

without taking viscosity into account, namely pure strain (i.e., non-isotropic normal deformation) 

and pure distortion. 

The above analysis suggests that we might formulate a different condition, which in practical 

applications is equivalent to the original Stokes’ hypothesis but is much more satisfactory from 

the physical point of view and does not require disregarding the available experimental evidence. 

Indeed, rather than putting 𝜇𝜇𝑣𝑣 = 0, we may simply assume that the absolute value of 𝜇𝜇𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽 is 

negligible compared to the thermodynamic pressure, i.e., that the following relation holds: 

|𝜇𝜇𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽| ≪ 𝑃𝑃 (3-12) 
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In other words, with this assumption, we are neglecting any difference between the mechanical 

and the thermodynamic pressures. The rationale for this different approach and its applicability 

stands upon the obvious fact that a term appearing in a relation or equation cannot be neglected 

just because it is small, but only if it is small compared to a qualitatively similar one, i.e., to one 

that has the same effect. If this different point of view is adopted, there are indeed good reasons 

for the modified formulation Eq. (3-12) of Stokes’ hypothesis to be a largely acceptable 

approximation. Only in very particular conditions will the term 𝜇𝜇𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽 be comparable to the 

thermodynamic pressure. This may happen, for instance, when the fluid is characterized by large 

values of 𝜇𝜇𝑣𝑣 (e.g., CO2), and the motion is such that extremely large values of 𝑑𝑑𝑑𝑑𝑑𝑑𝑽𝑽 occur, as 

happens in hypersonic flows or flows through shock waves (see [42] [43]). 

Thus, for our analysis we follow the Stokes hypothesis in the above philosophy, so, the viscous 

stress tensor is linearly dependent only on the deviatoric part of the strain tensor namely, 

𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜇𝜇 𝑆𝑆𝑖𝑖𝑖𝑖𝐷𝐷 = 𝜇𝜇 �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

−
2
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

 𝛿𝛿𝑖𝑖𝑖𝑖� (3-13) 

 

• The conservation of energy equation, 

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕 �𝑢𝑢𝑖𝑖�𝜏𝜏𝑖𝑖𝑖𝑖 − 𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖��

𝜕𝜕𝑥𝑥𝑗𝑗
 (3-14) 

In equations (3-2) and (3-14) body forces due to gravity are assumed small (negligible) and no 

heat sources are present. 𝜌𝜌, 𝑢𝑢𝑖𝑖, 𝑃𝑃 denotes the density, velocity, and pressure. 𝐸𝐸 is the total energy 

which comprises the internal energy 𝑒𝑒 and the kinetic energy per unit mass: 

𝐸𝐸 = 𝑒𝑒 +
1
2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 (3-15) 

According to Fourier’s law, the heat flux by conduction, 𝑞𝑞𝑗𝑗 is related to the temperature gradient: 

𝑞𝑞𝑗𝑗 = −𝜆𝜆
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

= −𝑐𝑐𝑝𝑝
𝜇𝜇
𝑃𝑃𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 (3-16) 

Where 𝜆𝜆 is the heat conductivity coefficient and the laminar Prandtl number 𝑃𝑃𝑃𝑃 is defined by 

𝑃𝑃𝑟𝑟 =
𝑐𝑐𝑝𝑝𝜇𝜇
𝜆𝜆

 (3-17) 

To close these equations, it’s also necessary to specify an equation of state, this part has been 

widely discussed in Chapter 1, refer to it for more information. Assuming a calorically perfect gas, 

the following relations are valid: 
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𝑃𝑃 = 𝜌𝜌𝜌𝜌𝜌𝜌 

𝑒𝑒 = 𝑐𝑐𝑣𝑣𝑇𝑇 

𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑣𝑣 = 𝑅𝑅 

𝛾𝛾 = 𝑐𝑐𝑝𝑝/𝑐𝑐𝑣𝑣 

(3-18) 

The above corresponding governing equations, supplemented with gas data for 𝐶𝐶𝑝𝑝, 𝜇𝜇, 𝜆𝜆 and 𝑅𝑅, 

form a closed set of partial differential equations, and need only to be complemented with 

boundary and initial conditions [48]. It’s worth well to emphasis that these equations are applicable 

for laminar as well as turbulent compressible flow without the need for any additional modeling, 

but the computational power required for such application is practically unavailable today at least 

not to the industrial or academic level except for some specialized organization. 

For air the corresponding data are [44]: 

𝑅𝑅 = 287.035
𝐽𝐽

𝐾𝐾𝐾𝐾 ⋅ 𝐾𝐾
 

𝑐𝑐𝑝𝑝 = 1004.7257
𝐽𝐽

𝐾𝐾𝐾𝐾 ⋅ 𝐾𝐾
 

(3-19) 

Sutherland's formula for the shear viscosity is valid in a range of temperatures, between 200K and 

1200K [45]: 

𝜇𝜇
1.716 ⋅ 10−5

= �
𝑇𝑇

273
�
3
2
⋅

384
𝑇𝑇 + 111

 (3-20) 

The heat conductivity is likewise affected by the state of the internal energy of the molecules and 

follows a similar Sutherland law (Bertolotti(1997)) obtained from the best fit to experimental data 

[45]: 

𝜆𝜆
0.0241

= �
𝑇𝑇

273
�
3/2

⋅
467

𝑇𝑇 + 194
 (3-21) 

3.2 The Statistical Equations for Compressible Turbulent Flows (FANS) 

We begin the discussion with a rough classification of compressible turbulent flows into [46]: 

I) Flows with unimportant compressibility effects due to turbulent fluctuations and; 
II) Flows in which such effects play a role. 

Type I flows are assumed to follow Morkovin's hypothesis in its weak form (Morkovin (1962)) 

which states that thermodynamic pressure and total temperature fluctuations are negligible for 

small turbulent Mach numbers implying negative density-temperature correlations. The hypothesis 
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has led to the so-called strong Reynolds analogy (SRA) and is in line with the Van Driest 

transformation (Van Driest (1951)) which collapses velocity profiles of compressible turbulent 

boundary layers onto the incompressible law of the wall (Fernholz & Finley (1980), Huang & 

Coleman (1994)). Compressibility effects therefore manifest themselves in terms of mean density 

variations and can be modeled by straightforward adaptations of classical incompressible models. 

Besides boundary layers with zero or weak pressure gradient and freestream Mach numbers less 

than 5, mixing layers with convective Mach numbers less than 1 are commonly considered 

examples of type I flows (Bradshaw (1977)). It is also expected (although not confirmed at present) 

that type II flows in which fluctuations of the thermodynamic pressure become important, are 

encountered at hypersonic speeds. Unfortunately, direct numerical simulation data are not yet 

available to clarify this issue. A closer look at DNS results for different classes of flows, however, 

unveils the lack of subtlety of such a classification. Coleman et al.'s (1995) DNS of supersonic 

fully developed flow in a channel with cooled walls e.g. shows that, although compressibility 

effects due to turbulent fluctuations are unimportant, the strong Reynolds analogy in its form for 

nonadiabatic flows (Gaviglio (1987), Rubesin (1990)) does not apply. A more general 

representation of the analogy was therefore derived by Huang et al. (1995) and shown to match 

the DNS data. Recent direct simulations of annular mixing layers with convective Mach numbers 

ranging from 𝑀𝑀𝑐𝑐 = 0.1  to 1.8  by Freund et al. (1997) indicate that pressure fluctuations are 

subordinate to temperature and density fluctuations (related to their mean values, respectively) 

only for 𝑀𝑀𝑀𝑀 <  0.2. For higher values of 𝑀𝑀𝑀𝑀, Morkovin's hypothesis for adiabatic flows does not 

apply. A third example where pressure fluctuations are non-negligible is shock isotropic turbulence 

interaction. Based on DNS and linear theory Mahesh et. al. (1995) found a considerable deviation 

from Morkovin's hypothesis (in its weak form) behind shocks, although the deviations were seen 

to decrease with the downstream distance. To be more specific, total temperature fluctuations are 

generated immediately behind the shock as a result of shock oscillation and are convected into the 

far field. A second important finding of their work is that upstream entropy fluctuations lead to 

higher amplification rates of turbulent kinetic energy and vorticity across the shock than pure 

vortical fluctuations. This result should be of great value in explaining the interaction between 

shocks and strongly cooled boundary layers [46]. 
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These examples show that a conclusive classification scheme for compressible turbulent flows is 

difficult to find at present, especially as long as our knowledge of compressibility effects is not 

complete [46]. 

In summary, adopting the weak form of Morkovin's hypothesis suggests that these density 

fluctuations in compressible turbulent flows have a negligible impact on the dynamics of 

turbulence, allowing the flow to be modeled similarly to incompressible turbulence. 

3.2.1 Definition of averages 

Engineering applications often face challenges when dealing with turbulent flow. The governing 

equations, under high Reynolds numbers typical of real-world situations, exhibit unpredictable and 

chaotic behavior. Directly solving these equations is not feasible due to the complexity introduced 

by turbulence. To simplify this problem, turbulence modeling focuses on capturing the overall 

effects rather than resolving all minute details. One-point averaging techniques are commonly used, 

these techniques focus on calculating averaged quantities, such as velocity, pressure, and 

temperature, at a single spatial location over time or across an ensemble of realizations. This 

removes the chaotic fluctuations caused by turbulence, allowing us to focus on the general 

behavior of the flow. 

For compressible flows, it is common practice to work with two different averages simultaneously, 

the Reynolds average, denoted by a bar, and the Favre- or mass-weighted average, characterized 

by a tilde [46].  

Let 𝜙𝜙 be any dependent variable. 

 Classical time averaging (Reynolds averaging): 

𝜙𝜙 = 𝜙𝜙� + 𝜙𝜙′ 

𝜙𝜙� =
1
𝑇𝑇
�𝜙𝜙(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑇𝑇

 
(3-22) 

This definition implies that, 

𝜙𝜙′� = 0 (3-23) 

 Density-weighted time averaging (Favre averaging): 

𝜙𝜙 = 𝜙𝜙� + 𝜙𝜙″  

𝜙𝜙� =
𝜌𝜌𝜌𝜌����
𝜌̅𝜌 

 
(3-24) 
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This definition implies that, 

𝜌̅𝜌𝜙𝜙� = 𝜌𝜌𝜌𝜌���� 

𝜌𝜌𝜙𝜙″����� = 0 

𝜙𝜙″���� ≠ 0 

(3-25) 

3.2.2 Favre Averaged Navier Stocks Equation (FANS) 

When dealing with compressible flows (or variable density flows), besides the velocity and 

pressure fluctuation, we must account for density and temperature fluctuations. If we introduce the 

Reynolds decomposition and time-averaging the equations, additional fluctuating correlation 

arises. To achieve closure, we need to somehow approximate the correlation between the 

fluctuating quantities. Besides the complexity of the problem, it’s yet practically impossible. One 

way to reduce these correlations and simplify the problem is to introduce a density-weighted 

averaging procedure suggested by Favre [47]. Following Favre, introducing a density-weighted 

time average decomposition (3-22) of 𝑢𝑢𝑖𝑖 and 𝐸𝐸, and a standard time average decomposition (3-24) 

of 𝜌𝜌 and 𝑃𝑃 to the instantaneous continuity equation (3-1), momentum equation (3-2), and energy 

equation (3-14), then, time-averaging gives the following exact open equations [48]: 
∂ρ�
∂t

+
∂
∂xi

[ρ�u�i] = 0 (3-26) 

∂
∂t

(ρ�u�i) +
∂
∂xj

�ρ�𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 + 𝑃𝑃�𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑢𝑢𝚤𝚤″𝑢𝑢𝚥𝚥″�������� − 𝜏𝜏𝚤𝚤𝚤𝚤��� � = 0 (3-27) 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌̅𝜌𝐸𝐸�� +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌̅𝜌𝐸𝐸�𝑢𝑢�𝑗𝑗 + 𝑢𝑢�𝑗𝑗𝑃𝑃� + 𝑢𝑢𝚥𝚥″𝑃𝑃����� + 𝜌𝜌𝑢𝑢𝚥𝚥″𝐸𝐸″�������� + 𝑞𝑞𝚥𝚥� − 𝑢𝑢𝚤𝚤𝜏𝜏𝚤𝚤𝚤𝚤������� = 0 

 
(3-28) 

The density average total energy 𝐸𝐸�  is given by, 

𝐸𝐸� = 𝑒̃𝑒 +
𝑢𝑢�𝑘𝑘𝑢𝑢�𝑘𝑘

2
+ 𝑘𝑘 (3-29) 

Where 𝑘𝑘 is the turbulent kinetic energy 𝑘𝑘 is defined as, 

𝑘𝑘 =
𝑢𝑢𝑘𝑘″𝑢𝑢𝑘𝑘″�������

2
 (3-30) 

Note that the corresponding expression (3-15) for Favre averaged turbulent flows contains an extra 

term related to the turbulent energy. 
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Equations (3-26) - (3-28) are referred to as the Favre averaged Navier-Stokes equations. 𝜌̅𝜌, 𝑢𝑢�𝑖𝑖 and 

𝐸𝐸�  are the primary solution variables. Note that this is an open set of partial differential equations 

that contains several unknown correlation terms. To obtain a closed form of equations that can be 

solved it is necessary to model these unknown correlation terms. 

Approximation and modeling 

It is convenient to rewrite the unknown terms in the following way: 

𝜏𝜏𝚤𝚤𝚤𝚤��� = 𝜏̃𝜏𝑖𝑖𝑖𝑖 + 𝜏𝜏𝚤𝚤𝚤𝚤″��� (3-31) 

𝑢𝑢𝚥𝚥″𝑃𝑃����� + 𝜌𝜌𝑢𝑢𝚥𝚥″𝐸𝐸″�������� = 𝑐𝑐𝑝𝑝 𝜌𝜌𝑢𝑢𝚥𝚥″𝑇𝑇������� + 𝑢𝑢�𝑘𝑘𝜌𝜌𝑢𝑢𝑘𝑘″𝑢𝑢𝚥𝚥″�������� +
𝜌𝜌𝑢𝑢𝚥𝚥″𝑢𝑢𝑘𝑘″𝑢𝑢𝑘𝑘″�����������

2
  (3-32) 

𝑞𝑞𝚥𝚥� = − 𝑐𝑐𝑝𝑝
𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝚥𝚥

������������
= −𝑐𝑐𝑝𝑝

𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕𝑇𝑇�  
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝑐𝑐𝑝𝑝
𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕𝑇𝑇″����
𝜕𝜕𝑥𝑥𝑗𝑗

 (3-33) 

𝑢𝑢𝚤𝚤𝜏𝜏𝚤𝚤𝚤𝚤������ = 𝑢𝑢�𝑖𝑖𝜏̃𝜏𝑖𝑖𝑖𝑖 + 𝑢𝑢𝚤𝚤″𝜏𝜏𝚤𝚤𝚤𝚤������� + 𝑢𝑢�𝑖𝑖𝜏𝜏𝚤𝚤𝚤𝚤″��� (3-34) 

Where the perfect gas relations (3-18) and Fourier's law (3-16) have been used. Note also that 

fluctuations in the molecular viscosity, 𝜇𝜇, have been neglected [48]. 

inserting (3-31) - (3-34) into (3-26), (3-27) and (3-28) gives: 
∂ρ�
∂t

+
∂
∂xi

[ρ�u�i] = 0 (3-35) 

∂
∂t

(ρ�u�i) +
∂
∂xj

�ρ�𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 + 𝑃𝑃�𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑢𝑢𝚤𝚤″𝑢𝑢𝚥𝚥″�������� (1) − 𝜏̃𝜏𝑖𝑖𝑖𝑖 − 𝜏𝜏𝚤𝚤𝚤𝚤″��� (2)� = 0 (3-36) 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌̅𝜌𝐸𝐸�� +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌̅𝜌𝐸𝐸�𝑢𝑢�𝑗𝑗 + 𝑢𝑢�𝑗𝑗𝑃𝑃� + 𝑐𝑐𝑝𝑝 𝜌𝜌𝑢𝑢𝚥𝚥″𝑇𝑇������� (3) + 𝑢𝑢�𝑘𝑘𝜌𝜌𝑢𝑢𝑘𝑘″𝑢𝑢𝚥𝚥″��������(4) +
𝜌𝜌𝑢𝑢𝚥𝚥″𝑢𝑢𝑘𝑘″𝑢𝑢𝑘𝑘″�����������

2
 (5)

− 𝑐𝑐𝑝𝑝
𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕𝑇𝑇�  
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝑐𝑐𝑝𝑝
𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕𝑇𝑇″����
𝜕𝜕𝑥𝑥𝑗𝑗

(6) − 𝑢𝑢�𝑖𝑖𝜏̃𝜏𝑖𝑖𝑖𝑖 − 𝑢𝑢𝚤𝚤″𝜏𝜏𝚤𝚤𝚤𝚤�������(7) − 𝑢𝑢�𝑖𝑖𝜏𝜏𝚤𝚤𝚤𝚤″��� (8)� = 0 

 

(3-37) 

The terms marked in red from (1) to (8) are unknown, and have to be modeled in some way. 

Terms (1) and (4) can be modeled using an eddy-viscosity assumption for the Reynolds 

stresses,𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, based on the Boussinesq hypothesis [48], 

𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≡ − 𝜌𝜌𝑢𝑢𝚤𝚤″𝑢𝑢𝚥𝚥″�������� ≈ 2𝜇𝜇𝑡𝑡𝑆𝑆𝚤𝚤𝚤𝚤𝐷𝐷� −
2
3
𝜌̅𝜌𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 (3-38) 
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Where 𝜇𝜇𝑡𝑡 is a turbulent viscosity, which is estimated with a turbulence model. The last term is 

included to ensure that the trace of the Reynolds stress tensor is equal to −2𝜌𝜌𝜌𝜌, as it should be 

[48]. 

Terms (2) and (8) can be neglected if; 

�𝜏̃𝜏𝑖𝑖𝑖𝑖� ≫ �𝜏𝜏𝚤𝚤𝚤𝚤″���� (3-39) 

This is true for virtually all flows [17]. 

Term (3) corresponding to the turbulent transport of heat, can be modeled using a gradient 

approximation for the turbulent heat flux: 

𝑞𝑞𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≡ 𝑐𝑐𝑝𝑝 𝜌𝜌𝑢𝑢𝚥𝚥″𝑇𝑇������� ≈ − 𝑐𝑐𝑝𝑝
𝜇𝜇𝑡𝑡
𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕𝑇𝑇�  
𝜕𝜕𝑥𝑥𝑗𝑗

 (3-40) 

Where 𝑃𝑃𝑃𝑃𝑡𝑡 is the turbulent Prandtl number, often a constant 𝑃𝑃𝑃𝑃𝑡𝑡 ≈ 0.9 is used [48]. 

Terms (5) and (7), corresponding to turbulent transport and molecular diffusion of turbulent energy, 

can be neglected if the turbulent energy is small compared to the enthalpy: 

𝑘𝑘 ≪ ℎ� = 𝑐𝑐𝑝𝑝𝑇𝑇�  (3-41) 

This is a reasonable approximation for most flows below the hypersonic regime [48]. A better 

approximation might be a gradient expression of the form: 

𝜌𝜌𝑢𝑢𝚥𝚥″𝑢𝑢𝑘𝑘″𝑢𝑢𝑘𝑘″�����������

2
− 𝑢𝑢𝚤𝚤″𝜏𝜏𝚤𝚤𝚤𝚤������� ≈ −�𝜇𝜇 +

𝜇𝜇𝑡𝑡
𝜎𝜎𝑘𝑘
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

  (3-42) 

Where 𝜎𝜎𝑘𝑘is a model constant [48]. This approximation will not be included in the derived formulas 

below. Instead, term (5) and (7) will be set to zero in the energy equation. 

Term (6) is an artifact from the Favre averaging. It is related to heat conduction effects associated 

with temperature fluctuations. It can be neglected if: 

�
𝜕𝜕2𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗2

� ≫ �
𝜕𝜕2𝑇𝑇″����
𝜕𝜕𝑥𝑥𝑗𝑗2

� (3-43) 

This is true for virtually all flows, and has been assumed in all following equations [48]. 

Closed approximated equations 

To summarize, the governing equations (3-35) - (3-37), with assumptions (3-38), (3-39), (3-40), 

(3-41), and (3-43) can be written as in (3-44) - (3-54). These equations are valid for a perfect gas. 

Note also that all fluctuations in the molecular viscosity have been neglected. 
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∂ρ�
∂t

+
∂
∂xi

[ρ�u�i] = 0 (3-44) 

∂
∂t

(ρ�u�i) +
∂
∂xj

�ρ�𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 + 𝑃𝑃�𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜏̃𝜏𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 � = 0 (3-45) 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌̅𝜌𝐸𝐸�� +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌̅𝜌𝐸𝐸�𝑢𝑢�𝑗𝑗 + 𝑢𝑢�𝑗𝑗𝑃𝑃� + 𝑞𝑞𝚥𝚥� − 𝑢𝑢�𝑖𝑖𝜏̃𝜏𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡� = 0 (3-46) 

Where, 

𝜏̃𝜏𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜏̃𝜏𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜏̃𝜏𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (3-47) 

𝜏̃𝜏𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 ≡ 𝜏̃𝜏𝑖𝑖𝑖𝑖 = 𝜇𝜇 �
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

−
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

 𝛿𝛿𝑖𝑖𝑖𝑖� (3-48) 

𝜏̃𝜏𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≡ − 𝜌𝜌𝑢𝑢𝚤𝚤″𝑢𝑢𝚥𝚥″�������� ≈ 𝜇𝜇𝑡𝑡 �
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

−
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

 𝛿𝛿𝑖𝑖𝑖𝑖� −
2
3
𝜌̅𝜌𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 (3-49) 

𝑞𝑞�𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡 ≡ 𝑞𝑞�𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑞𝑞�𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (3-50) 

𝑞𝑞�𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙 ≡ 𝑞𝑞�𝑗𝑗 ≈ −𝑐𝑐𝑝𝑝
𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝛾𝛾

𝛾𝛾 − 1
𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝑃𝑃�
𝜌̅𝜌
� (3-51) 

𝑞𝑞�𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≡ 𝑐𝑐𝑝𝑝 𝜌𝜌𝑢𝑢𝚥𝚥″𝑇𝑇������� ≈ − 𝑐𝑐𝑝𝑝
𝜇𝜇𝑡𝑡
𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕𝑇𝑇�  
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝛾𝛾

𝛾𝛾 − 1
𝜇𝜇𝑡𝑡
𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝑃𝑃�
𝜌̅𝜌
�  (3-52) 

And the perfect gas law transforms into, 

𝑃𝑃� = 𝜌̅𝜌𝑅𝑅𝑇𝑇� = 𝜌̅𝜌𝑅𝑅
𝑒̃𝑒
𝑐𝑐𝑣𝑣

= (𝛾𝛾 − 1)𝜌̅𝜌 �𝐸𝐸� −
𝑢𝑢�𝑘𝑘𝑢𝑢�𝑘𝑘

2
− 𝑘𝑘� (3-53) 

If a separate turbulence model is used to calculate 𝜇𝜇𝑡𝑡, 𝑘𝑘 and 𝑃𝑃𝑟𝑟𝑡𝑡, and gas data is given for 𝜇𝜇 ,𝛾𝛾 and 

𝑃𝑃𝑃𝑃  these equations form a closed set of partial differential equations, which can be solved 

numerically [48]. 

3.3 Eddy Viscosity Turbulence Models 

At the first stage, when Reynolds introduced his decomposition to the primitive variables of the 

flow, he formed the well-known RANS equation. Turbulence manifested its effects by three terms 

in the three momentum equations, for a total of nine terms. These terms were grouped and called 

the Reynolds stress tensor 𝑅𝑅𝑖𝑖𝑖𝑖. 𝑅𝑅𝑖𝑖𝑖𝑖 has the property to be symmetric, meaning that only six of the 

nine terms are independent, that 𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑗𝑗𝑗𝑗. Thus, six additional independent quantities are still 

needed! This is the famous “closure problem” that has plagued turbulence modeling since 1895 to 

the present and is not going away any time soon. The Reynolds stresses are therefore approximated 
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(modeled) experimentally, empirically, or numerically (e.g., DNS). Bold engineers, in a desire to 

reach closure, began attempting ways to relate the fluctuating properties to the averaged quantities, 

based on dimensional arguments and a gradient transport analogy. So, for better or for worse, these 

arguments are employed fairly commonly in turbulence research [49]. In this case and based on 

the discussion made at the start of this part, 

− 𝜌𝜌𝑢𝑢𝚤𝚤″𝜙𝜙″��������� ≈ −𝜌̅𝜌 𝑢𝑢𝚤𝚤″𝜙𝜙″�������� (3-54) 

−𝑢𝑢𝚤𝚤″𝜙𝜙″�������~
𝜕𝜕𝜙𝜙�
𝜕𝜕𝑥𝑥𝑖𝑖

 (3-55) 

Where 𝜙𝜙 is any primitive variable, e.g., 𝑢𝑢𝑖𝑖, 𝑇𝑇, 𝑃𝑃, 𝜌𝜌, etc. An inspection of Eq. (3-55) shows that it 

can be made fully dimensionless by including a quantity that has units of 𝑚𝑚2/𝑠𝑠. Out of incredible 

inspiration (or desperation!), a new quantity was coined, “turbulent kinematic viscosity,” 𝜈𝜈𝑡𝑡, which 

is analogous to the kinematic viscosity [49]. Hence, 

−𝑢𝑢𝚤𝚤″𝜙𝜙″������� = 𝜈𝜈𝑡𝑡
𝜕𝜕𝜙𝜙� 
𝜕𝜕𝑥𝑥𝑖𝑖

 (3-56) 

The turbulent kinematic viscosity is typically, orders of magnitude, higher than the fluid viscosity, 

thus providing a reasonable way to gauge the degree of turbulence in a flow: 
𝜈𝜈𝑡𝑡
𝜈𝜈
≫ 1 (3-57) 

That 𝜈𝜈𝑡𝑡 ≫ 𝜈𝜈 is consistent with the expectation that the more turbulent the flow is, the larger 𝜈𝜈𝑡𝑡 will 

be. At this point, it is noteworthy to point out that both the kinematic viscosity and the turbulence 

viscosity have the same units and similar names. But, that is where the similarities end. The 

kinematic viscosity is based on the fluid type, pressure, and temperature, and is a measure of 

damping, with higher kinematic viscosity resulting in higher damping. On the other hand, the 

turbulent kinematic viscosity is based on 𝑅𝑅𝑅𝑅, where the higher 𝑅𝑅𝑅𝑅 is, the higher the turbulent 

kinematic viscosity. Thus, the turbulent viscosity is a measure of the degree of turbulence being 

experienced by the fluid, with higher turbulent viscosities implying a higher degree of turbulence 

in the local region. In fact, if 𝜈𝜈𝑡𝑡 →  𝜈𝜈, then it is a safe bet that the flow is laminar [49].  

Note that whereas the dynamic and kinematic viscosities are always positive, the turbulent 

dynamic and turbulent kinematic viscosities can become negative if the eddies are violent enough 

to impart energy onto the mean flow. Though not common, it is an issue associated with large-

scale flows with high anisotropy, such as violent weather patterns (Sivashinsky and Yakhot 1985; 
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Dubrulle and Frisch 1991; Sivashinsky and Frenkel 1992) and ferrofluids under alternating 

magnetic fields at high frequencies (Shliomis and Morozov 1994) [49]. 

Continuing on, each of the nine Reynolds stresses can finally be approximated using Eq. (3-54), 

𝑹𝑹 ≡ �
𝜌𝜌𝑢𝑢″𝑢𝑢″�������� 𝜌𝜌𝑢𝑢″𝑣𝑣″�������� 𝜌𝜌𝑢𝑢″𝑤𝑤″���������
𝜌𝜌𝑣𝑣″𝑢𝑢″�������� 𝜌𝜌𝑣𝑣″𝑣𝑣″�������� 𝜌𝜌𝑣𝑣″𝑤𝑤″���������
𝜌𝜌𝑤𝑤″𝑢𝑢″��������� 𝜌𝜌𝑤𝑤″𝑣𝑣″��������� 𝜌𝜌𝑤𝑤″𝑤𝑤″���������

� ≅ −𝜌̅𝜌 �
𝑢𝑢″𝑢𝑢″������� 𝑢𝑢″𝑣𝑣″������� 𝑢𝑢″𝑤𝑤″�������
𝑣𝑣″𝑢𝑢″������� 𝑣𝑣″𝑣𝑣″������� 𝑣𝑣″𝑤𝑤″�������
𝑤𝑤″𝑢𝑢″������� 𝑤𝑤″𝑣𝑣″������� 𝑤𝑤″𝑤𝑤″��������

� ≈ 𝜇𝜇𝑡𝑡
�

�

𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤�
𝜕𝜕𝜕𝜕

�

�
 (3-58) 

Where, 

𝜈𝜈𝑡𝑡 =
𝜇𝜇𝑡𝑡
𝜌̅𝜌

 (3-59) 

However, a new unknown was introduced, 𝜇𝜇𝑡𝑡, which now requires an additional equation to solve.  

The approximation from Eq. (3-58) takes inspiration from the Newtonian stress tensor Eq. (3-7). 

The Boussinesq turbulence approximation assumes an analogous expression to the laminar 

Newtonian stress tensor, thereby asserting Eq. (3-49). The approximation asserts that the Reynolds 

stress tensor 𝑅𝑅𝑖𝑖𝑖𝑖 is proportional to the mean strain rate tensor 𝑆̃𝑆𝑖𝑖𝑖𝑖 , with the proportionality being 

twice the turbulent dynamic viscosity. Thus, 𝑅𝑅𝑖𝑖𝑖𝑖  is “aligned” with 𝑆̃𝑆𝑖𝑖𝑖𝑖  along the principal axes 

(Hinze 1987; Peng and Davidson 1999; Wilcox 2006). The vast majority of the RANS-based 

turbulence models use this linear constitutive relationship for closure to estimate the Reynolds 

stresses; this is at the core of many modern one- and two-equation RANS models. The 

approximation is sometimes referred to as the Boussinesq hypothesis, but because it is more akin 

to an “assumption,” Wilcox referred to it as the Boussinesq assumption (Wilcox 2006). The 

“assumption,” of course, lies in the belief that the Reynolds stresses behave similarly as the 

Newtonian stress tensor. Though greatly successful, the Boussinesq approximation has some 

shortcomings, including the following situations: 

• Secondary motion in ducts (rectangular pipe flow in the corner region, semi-truck vortex), 
• Rapid changes in the mean strain rate tensor (rapid dilatation resulting in large volume 

change, high Mach), 
• Curved surfaces (concave, convex, large swirl angle, airfoils), 
• Rotating fluids (turbomachinery, wind turbines), 
• Nonhomogeneous turbulent flows. 
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Under such situations, it is advisable to consider some corrections to the models that take the form 

of: 

• Additional source terms, 
• Extra terms in the transport equations, 
• Corrective factors (damping, blending, limiting) in some of the terms of the transport 

equations. 

Or extended, nonlinear versions of the Boussinesq approximation. There are many nonlinear 

constitutive equations in the literature, some of which include the curl operator to evaluate the 

mean vorticity. Such models are suitable for modeling curved surfaces, high swirls, secondary 

flows, flow separation, recirculation, highly anisotropic flows, and so forth (Lumley 1970; Bakker 

2005; Alfonsi 2009; Wilcox 2006). Recent DNS and experimental data investigations continue to 

show issues with the Boussinesq approximation; some of these can be resolved using nonlocal, 

nonequilibrium approaches (Speziale and Eringen 1981; Hamba 2005; Schmitt 2007; Hamlington 

and Dahm 2009; Wilcox 2006; Spalart 2015) [49]. 

3.3.1 Specifying the Eddy Viscosity 

The kinematic eddy viscosity has dimensions of [𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣] × [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ], which suggests that it be 

modeled as 

𝜈𝜈𝑡𝑡 = 𝑢𝑢0𝑙𝑙0 (3-60) 

Physically, 𝑢𝑢0 should reflect the magnitude of velocity fluctuations and 𝑙𝑙0 the size of turbulent 

eddies [50]. For wall-bounded flows a candidate for 𝑢𝑢0  is the friction velocity, 𝑢𝑢𝜏𝜏 = �
𝜏𝜏𝑤𝑤
𝜌𝜌

. 

However, this is not a local scale, since it depends on where the nearest wall is, and it is ambiguous 

near corners since it can be equidistant from two (or more) walls. A more appropriate velocity 

scale in general is 𝑘𝑘1/2, where 𝑘𝑘 is the turbulent kinetic energy [50]. 

For simple wall-bounded flows, 𝑙𝑙0 is proportional to the distance from the boundary (e.g. 𝑙𝑙0 = 𝜅𝜅𝜅𝜅). 

For simple free shear flows (e.g. jet, wake, mixing layer) 𝑙𝑙0 is proportional to the width of the shear 

layer. However, these values are geometry-dependent and not conducive to complex geometries. 

For greater generality, we need to relate 𝑙𝑙0 to local turbulence properties [50]. 
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Common practice is to solve transport equations for one or more turbulent quantities (usually 𝑘𝑘 + 

one other), from which 𝜇𝜇𝑡𝑡 can be derived on dimensional grounds. The following classification of 

eddy-viscosity models is based on the number of transport equations [50]. 

 Zero-equation models: 
 Constant-eddy-viscosity models; 
 Mixing-length models: 𝑙𝑙0 specified geometrically; 𝑢𝑢0 from mean flow gradients. 

 One-equation models: 
 𝑙𝑙0 specified geometrically; transport equation to derive 𝑢𝑢0; 

 Two-equation models: 
 Transport equations for quantities from which 𝑢𝑢0 and 𝑙𝑙0 can be derived. 
 Of these, by far the most popular in general-purpose CFD are two-equation models: notably 

the 𝑘𝑘 − 𝜀𝜀 and 𝑘𝑘 − 𝜔𝜔 models. 

3.3.2 Low-Re Turbulence Models 

Low Reynolds number (Low-Re) turbulence models are specifically designed to account for 

viscosity-dominated flows, particularly in regions near walls where turbulence is weak or 

transitioning from laminar flow. Unlike standard turbulence models, these models do not require 

special wall functions, as they can resolve flow quantities down to the viscous sublayer (𝑦𝑦+ ≤ 1), 

making them ideal for applications with fine near-wall resolution [49] [50]. 

From this definition, we focus in this study on three major Low-Re turbulence models: 

Wilcox  𝑘𝑘 − 𝜔𝜔 Standard Model: 

• Based on the transport of turbulent kinetic energy (𝑘𝑘) and specific dissipation rate (𝜔𝜔). 
• Effectively resolves near-wall turbulence without needing a wall function [49]. 
• More accurate for boundary layers, separation, and transition compared to its 𝑘𝑘 − 𝜀𝜀 

counterpart [49]. 
• Better adaptability and performance for compressible flow extension, thus, applicable 𝑀𝑀 

ranging from incompressible to hypersonic flows [49] [51]. 
• Relevant for shock-separated flows, free shear flows, Backward-facing steps …ect. 

Menter SST 𝑘𝑘 − 𝜔𝜔  Model: 

• An improvement over the standard 𝑘𝑘 − 𝜔𝜔 model, combining features of both 𝑘𝑘 − 𝜀𝜀 and 
𝑘𝑘 − 𝜔𝜔 for better adaptability [49]. 

• Uses 𝑘𝑘 − 𝜔𝜔 formulation near the wall for better Low-𝑅𝑅𝑅𝑅 accuracy, while transitioning to 
𝑘𝑘 − 𝜀𝜀 formulation in the free stream (high-𝑅𝑅𝑅𝑅) to improve stability [49]. 

• Highly effective for boundary layer flows, aerodynamic simulations, and curved surfaces 
[49]. 
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• Ideal for adverse pressure gradients, separated flows, turbulent heat transfer, and aerospace 
applications [49].  

Spalart-Allmaras Model: 

• A single-equation turbulence model optimized for aerodynamic applications. 
• Performs well in Low-𝑅𝑅𝑅𝑅 flows, particularly in boundary layers with minimal separation. 
• Frequently used in aerospace CFD simulations due to its robustness and computational 

efficiency. 

In summary, Low-𝑅𝑅𝑅𝑅 turbulence models provide a more precise representation of wall-bounded 

turbulence by capturing near-wall effects without relying on empirical wall functions. The 

Standard 𝑘𝑘 − 𝜔𝜔, SST 𝑘𝑘 − 𝜔𝜔, and Spalart-Allmaras models are three widely used approaches that 

ensure accuracy in simulations requiring fine near-wall resolution. Their effectiveness makes them 

the preferred choices for applications such as boundary layer modeling, aerodynamic optimization, 

and fluid-thermal interactions. 

3.3.3 Spalart-Allmaras Model 

The Spalart-Allmaras model [52] is a one-equation turbulence model designed for aerospace 

applications, particularly wall-bounded flows with adverse pressure gradients. Initially formulated 

as a low-Reynolds-number model, it requires near-wall resolution (𝑦𝑦+ ∼  1).  

In Ansys Fluent, it has been extended with a 𝑦𝑦+-insensitive wall treatment, allowing automatic 

blending from viscous sublayer to logarithmic formulations, ensuring consistent wall shear stress 

and heat transfer coefficients on intermediate grids (1 <  𝑦𝑦+  <  30). However, a minimum 

resolution of 10– 15 cells is still recommended for accuracy [53]. 

While effective in aerodynamic and turbomachinery applications, the model is less reliable for free 

shear flows (e.g., plane and round jets) and does not accurately predict homogeneous isotropic 

turbulence decay [53]. 

Transport Equation for the Spalart-Allmaras Model 

The transported variable in the Spalart-Allmaras model, 𝜈𝜈�, is identical to the turbulent kinematic 

viscosity except in the near-wall (viscosity-affected) region. The transport equation for the 

modified turbulent viscosity 𝜈𝜈� is 
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𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌̅𝜌𝜈𝜈�) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌̅𝜌𝜈𝜈�𝑢𝑢�𝑖𝑖) = 𝐺𝐺𝑣𝑣 +
1
𝜎𝜎𝑣𝑣�
�
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌̅𝜌(𝜈𝜈 + 𝜈𝜈�)
𝜕𝜕𝑣𝑣�
𝜕𝜕𝑥𝑥𝑗𝑗

 � + 𝐶𝐶𝑏𝑏2𝜌̅𝜌 �
𝜕𝜕𝜈𝜈�
𝜕𝜕𝑥𝑥𝑗𝑗

�
2

� − 𝑌𝑌𝑣𝑣 + 𝑆𝑆𝑣𝑣�  (3-61) 

Where 𝐺𝐺𝑣𝑣 is the production of turbulent viscosity, and 𝑌𝑌𝑣𝑣 is the destruction of turbulent viscosity 

that occurs in the near-wall region due to wall blocking and viscous damping. 𝜎𝜎𝑣𝑣�  and 𝐶𝐶𝑏𝑏2 are the 

constants and 𝜈𝜈 is the molecular kinematic viscosity. 𝑆𝑆𝑣𝑣�  is a user-defined source term. Note that 

since the turbulence kinetic energy, 𝑘𝑘, is not calculated in the Spalart-Allmaras model, thus, it is 

ignored when estimating the Reynolds stresses [53]. 

3.3.4 Standard 𝒌𝒌 −𝝎𝝎 Model 

The standard 𝑘𝑘 − 𝜔𝜔 model in Ansys Fluent is based on a 𝑘𝑘 − 𝜔𝜔 model proposed by Wilcox in [54], 

which incorporates modifications for low-Reynolds number effects, compressibility, and shear 

flow spreading. One of the weak points of the 1998 Wilcox model is the sensitivity of the solutions 

to values for 𝑘𝑘 and 𝜔𝜔 outside the shear layer (freestream sensitivity), which can have a significant 

effect on the solution, especially for free shear flows [55]. There is a newer version of the model 

(Wilcox 2006 k-ω model [56]), which also did not fully resolve the freestream sensitivity as shown 

in [55]. 

The standard 𝑘𝑘 − 𝜔𝜔 model is an empirical model based on model transport equations for the 

turbulence kinetic energy (𝑘𝑘) and the specific dissipation rate (𝜔𝜔), which can also be thought of as 

the ratio of 𝜀𝜀 to 𝑘𝑘 [54]. As the 𝑘𝑘 − 𝜔𝜔 model has been modified over the years, production terms 

have been added to both the 𝑘𝑘 and 𝜔𝜔 equations, which have improved the accuracy of the model 

for predicting free shear flows. 

Transport Equations for the Standard 𝒌𝒌 − 𝝎𝝎 Model 

The turbulence kinetic energy, 𝑘𝑘 , and the specific dissipation rate, 𝜔𝜔 , are obtained from the 

following transport equations: 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌̅𝜌𝑘𝑘) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌̅𝜌𝑘𝑘𝑢𝑢�𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 � + 𝐺𝐺𝑘𝑘 − 𝑌𝑌𝑘𝑘 + 𝑆𝑆𝑘𝑘 + 𝐺𝐺𝑏𝑏 (3-62) 

And 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌̅𝜌𝜔𝜔) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌̅𝜌𝜔𝜔𝑢𝑢�𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝜔𝜔
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 � + 𝐺𝐺𝜔𝜔 − 𝑌𝑌𝜔𝜔 + 𝑆𝑆𝜔𝜔 + 𝐺𝐺𝜔𝜔𝜔𝜔 (3-63) 
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In these equations, 𝐺𝐺𝑘𝑘 represents the generation of turbulence kinetic energy due to mean velocity 

gradients. 𝐺𝐺𝜔𝜔 represents the generation of 𝜔𝜔. Γ𝑘𝑘 and Γ𝜔𝜔 represent the effective diffusivity of 𝑘𝑘 and 

𝜔𝜔, respectively. 𝑌𝑌𝑘𝑘 and 𝑌𝑌𝜔𝜔 represent the dissipation of 𝑘𝑘 and 𝜔𝜔 due to turbulence. All of the above 

terms are calculated as described below. 𝑆𝑆𝑘𝑘  and 𝑆𝑆𝜔𝜔are user-defined source terms. 𝐺𝐺𝑏𝑏  and 𝐺𝐺𝜔𝜔𝜔𝜔 

account for buoyancy terms as described in Effects of Buoyancy on Turbulence in the k-ω Models 

(p. 69 [53]). 

3.3.5 Menter SST 𝒌𝒌 − 𝝎𝝎 turbulence model 

The main problem with the Wilcox model is its well-known strong sensitivity to freestream 

conditions. The baseline (BSL) 𝑘𝑘 − 𝜔𝜔 model was developed by Menter [57] to effectively blend 

the robust and accurate formulation of the 𝑘𝑘 − 𝜔𝜔 model in the near-wall region with the freestream 

independence of the 𝑘𝑘 − 𝜀𝜀 model in the far field. To achieve this, the 𝑘𝑘 − 𝜀𝜀 model is converted 

into a 𝑘𝑘 − 𝜔𝜔  formulation. The BSL 𝑘𝑘 − 𝜔𝜔  model is similar to the standard 𝑘𝑘 − 𝜔𝜔  model, but 

includes the following refinements: 

• The standard 𝑘𝑘 − 𝜔𝜔 model and the transformed 𝑘𝑘 − 𝜀𝜀 model are both multiplied by a blending 
function and both models are added together. The blending function is designed to be one in 
the near-wall region, which activates the standard 𝑘𝑘 − 𝜔𝜔  model, and zero away from the 
surface, which activates the transformed 𝑘𝑘 − 𝜀𝜀 model. 

• The BSL model incorporates a damped cross-diffusion derivative term in the equation. 
• The modeling constants are different. 

The Shear Stress Transport (SST) 𝑘𝑘 − 𝜔𝜔 model includes all the refinements of the BSL 𝑘𝑘 − 𝜔𝜔 

model, and in addition accounts for the transport of the turbulence shear stress in the definition of 

the turbulent viscosity [53]. 

These features make the SST 𝑘𝑘 − 𝜔𝜔 model (Menter [57]) more accurate and reliable for a wider 

class of flows (for example, adverse pressure gradient flows, airfoils, transonic shock waves) than 

the standard and the BSL 𝑘𝑘 − 𝜔𝜔 models. 

Transport Equations for the SST 𝒌𝒌 − 𝝎𝝎 Model 

The SST 𝑘𝑘 − 𝜔𝜔 model has a similar form to the standard 𝑘𝑘 − 𝜔𝜔 model: 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌̅𝜌𝑘𝑘) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌̅𝜌𝑘𝑘𝑢𝑢�𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 � + 𝐺𝐺𝑘𝑘 − 𝑌𝑌𝑘𝑘 + 𝑆𝑆𝑘𝑘 + 𝐺𝐺𝑏𝑏 (3-64) 
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And 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌̅𝜌𝜔𝜔) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌̅𝜌𝜔𝜔𝑢𝑢�𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝜔𝜔
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 � + 𝐺𝐺𝜔𝜔 − 𝑌𝑌𝜔𝜔 + 𝐷𝐷𝜔𝜔 + 𝑆𝑆𝜔𝜔 + 𝐺𝐺𝜔𝜔𝜔𝜔 (3-65) 

In these equations, 𝐺𝐺𝑘𝑘 represents the generation of turbulence kinetic energy, and is defined in the 

same manner as in the Standard 𝑘𝑘 − 𝜔𝜔 model. 𝐺𝐺𝜔𝜔 represents the generation of 𝜔𝜔, calculated as 

described in a section that follows. Γ𝑘𝑘  and Γ𝜔𝜔  represent the effective diffusivity of 𝑘𝑘  and 𝜔𝜔 , 

respectively, which are calculated as described in a section that follows. 𝑌𝑌𝑘𝑘 and 𝑌𝑌𝜔𝜔 represent the 

dissipation of 𝑘𝑘  and 𝜔𝜔  due to turbulence, calculated as described in the 𝑘𝑘 − 𝜔𝜔  model. 𝐷𝐷𝜔𝜔 

represents the cross-diffusion term, calculated as described in the section that follow. 𝑆𝑆𝑘𝑘 and 𝑆𝑆𝜔𝜔are 

user-defined source terms. 𝐺𝐺𝑏𝑏  and 𝐺𝐺𝜔𝜔𝜔𝜔  account for buoyancy terms as described in Effects of 

Buoyancy on Turbulence in the k-ω Models (p. 69 [53]). 
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 NUMERICAL DISCRETIZATION & SOLUTION 
PROCEDURE 

In this chapter, we will examine the steps and setups adapted for the generation of the numerical 

system equivalent and used to solve the last system of equations along with the boundary and 

initial conditions. 

4.1 Domain Definition 

Note: The Geometrical properties of the experimental nozzle can be found at Appendix B. 

 

Based on a 2D axisymmetric analysis, I divided the domain into three multi-block parts. The 

convergent part (subsonic region), the divergent part (supersonic region), and the far field exit part. 

This was in response to the difficulties faced by the complexity of the nozzle geometry, very high 

curvature, and the requirement of refined mesh near the walls (mesh conformity & quality 

problem). 

This indeed required the use of non-conformal mesh and the introduction of interfaces between 

the blocks. 

 

• Convergent Part  

 
Figure 4.1 : Convergent Part Block. 
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• Divergent part 

• Exit Field part 

 

• Complete assembled domain 

 

 

 

 

 

 

 

 

Figure 4.2 : Divergent Part Block. 

Figure 4.3 : Exit Far field Block. 

Figure 4.4 : The Complete Numerical Domain. 
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4.2 Domain discretization (Meshing) 

The domain discretization and mesh generation were done using ANSYS Meshing. A hybrid mesh 

type was adopted, taking advantage of both structured and unstructured meshes as the conditions 

required. The study of boundary layer refinement was performed through the inflation function 

while the method to estimate the thickness of the first layer is given below. As mentioned above, 

the use of a multi-block domain has as its purpose the use of a non-conformal mesh and the 

introduction of interfaces (type interior) for the transfer of information (fluxes) across the blocks. 

4.2.1 Mesh Proprieties 

2D geometries allow the use of two types of cells (Figure 4.6) for domain discretization. The 

quadrilateral elements as structured mesh and the triangular elements for unstructured mesh. These 

Figure 4.5 : Blocks Interfaces. 

Figure 4.6 : 2D cell types [58]. 
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elements represent an approximation of the original geometry. The sides of the triangles and 

quadrilaterals are called element edges, and their corners are element vertices (or nodes) [58]. 

The choice between structured and unstructured meshes depends on several factors, including 

accuracy, computational efficiency, and adaptability to complex geometries. 

• Structured Mesh: Offers higher accuracy and lower numerical diffusion, making it ideal 
for capturing shock waves and boundary layers. Their structured nature enables faster 
computations and lower memory usage, but it can be difficult to generate for complex 
geometries. 

• Unstructured Mesh: Provides flexibility in handling complex geometries and is easier to 
generate. However, it may introduce more numerical diffusion, which can affect wake and 
drag predictions. Refining the mesh in critical regions can help mitigate these issues. 

A hybrid approach, such as structured-unstructured zonal meshing, can combine the benefits of 

both methods, improving accuracy while maintaining flexibility. 

Mesh Sensibility Analysis 

Mesh Number of 
Elements Throat mass flow rate [kg/s] 

Relative 
Deviation 
from the 

Mean (%) 

Average exit Mach 
number 

Relative 
Deviation 
from the 

Mean (%) 
62716 0.032807652 0.0182 1.4633943 0.254516 
75362 0.032803557 0.005716 1.4675301 0.027382 

116869 0.032791912 0.029785 1.4728323 0.388782 
140335 0.032803607 0.005869 1.4647568 0.161647 
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Figure 4.7 : Mesh Sensibility Analysis. 
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Mesh Statistics 

Number of elements Quadrilaterals 
elements Triangles elements Number of nodes 

75362 70952 4410 74541 

Mesh Quality 

Aspect ratio metric 

It’s the ratio of the longest edge length to the shortest edge length in an element. Its value varies 

between 1 to infinite while a lower aspect ratio (closer to 1) indicates better quality. Figure 4.9 

shows quadrilaterals and triangles with aspect ratios of 1 and 20. 

Figure 4.9 : Quadrilateral & triangular elements with aspect ratios 1 and 20 [58].   

Figure 4.8 : Mesh visualization. 



 
 

91 
 

 

Skewness metric 

Skewness is one of the primary quality metrics for a mesh. Skewness determines how close to 

ideal (equilateral or equiangular) a face or cell is (see Figure 4.11). 

According to the definition of skewness, a value of 0 indicates an equilateral cell (best), and a 

value of 1 indicates a completely degenerated cell (worst). Degenerate cells are characterized by 

nodes that are nearly coplanar (colinear in 2D). 

Highly skewed faces and cells are unacceptable because the equations being solved assume that 

the cells are relatively equilateral/equiangular. 

 

Figure 4.10 : Current mesh aspect ratio assessment. 

Figure 4.11 : Ideal and Skewed Triangles and Quadrilaterals [58]. 
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Two methods for measuring skewness are: 

• Based on the equilateral volume (applies only to triangles and tetrahedra). Where the 
skewness is defined as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (4-1) 

Where, the optimal cell size is the size of an equilateral cell with the same circumradius. 

• Based on the deviation from a normalized equilateral angle. This method applies to all cell 
and face shapes, including pyramids and prisms. Where the skewness is defined as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = max �
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜃𝜃𝑒𝑒
180 − 𝜃𝜃𝑒𝑒 

 ,
𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃𝑒𝑒 
� (4-2) 

Here, 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  : largest angle in the face or cell. 
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  : smallest angle in the face or cell. 
𝜃𝜃𝑒𝑒     : angle for an equiangular face/cell (60 for a triangle, 90 for a square). 

Orthogonal Quality metric 

The range for orthogonal quality is 0 − 1, where a value of 0 is the worst and a value of 1 is the 

best. 

Figure 4.12 : Current mesh skewness assessment. 
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The orthogonal quality for cells is computed using the face normal vector 𝐴𝐴𝚤𝚤���⃗  for each face, the 

vector from the cell centroid to the centroid of each of the adjacent cells 𝑐𝑐𝚤𝚤��⃗ , and the vector from 

the cell centroid to each of the faces 𝑓𝑓𝚤𝚤��⃗ . Figure 4.13 illustrates the vectors used to determine the 

orthogonal quality for a cell. 

For each face, the cosines of the angle between 𝐴𝐴𝚤𝚤���⃗  and 𝑐𝑐𝚤𝚤��⃗ , and between 𝐴𝐴𝚤𝚤���⃗  and 𝑓𝑓𝚤𝚤��⃗ , are calculated. 

The smallest calculated cosine value is the orthogonality of the cell. Finally, orthogonal quality 

depends on cell type: 

• For tetrahedral, prism, and pyramid cells, the orthogonal quality is the minimum of the 
orthogonality and (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 

• For hexahedral and polyhedral cells, the orthogonal quality is the same as the orthogonality. 

Figure 4.13 : Vectors Used to Compute Orthogonal Quality for a Cell [58]. 

Figure 4.14 : Current mesh 
orthogonal quality 

assessment. 
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4.2.2 Non-Conformal Mesh 

In Ansys Fluent it is possible to use a mesh that has non-conformal interfaces, that is, boundaries 

between cell zones that connect to each other in which the mesh node locations are not identical. 

Such nonconformal interfaces permit the cell zones to pass fluxes from one mesh to another. 

To compute the flux across the non-conformal boundary, Ansys Fluent must first compute the 

intersection between the interface zones that make up the boundary. In the case of a solid-to-solid 

zone interface of the same material or a fluid-to-fluid zone interface, the resulting intersection 

produces an interior zone where the two interface zones overlap (see Figure 4.15). In the case of a 

solid-to-solid zone interface of different materials or a fluid-to-solid zone interface, the boundary 

is treated as a coupled wall (see The Coupled Wall Option (p. 1148) [58]). 

If one of the interface zones extends beyond the other (Figure 4.16), by default Ansys Fluent will 

create additional boundary zones for the portion(s) of the boundary where the two interface zones 

do not overlap; these are referred to as "non-overlapping zones", and you can change their settings 

and/or zone type at your discretion [58]. 

Fluxes across the mesh interface are computed using the faces resulting from the intersection of 

the two interface zones, not from the interface zone faces [58]. In the example shown in Figure 

4.17, the interface zones are composed of faces A-B and B-C, and faces D-E and E-F. 

Figure 4.15  : Completely Overlapping Mesh Interface Intersection 
[58]. 

Figure 4.16  : Partially Overlapping Mesh Interface 
Intersection [58]. 
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The intersection of these zones produces the faces a-d, d-b, b-e, and e-c. Faces produced in the 

region where the two cell zones overlap (d-b, b-e, and e-c) are grouped to form an interior or 

coupled wall zone (depending on the types of the adjacent cell zones), while the remaining face 

(a-d) forms a wall zone. 

To compute the flux across the interface into cell IV, face D-E is ignored and instead faces d-b and 

b-e are used to bring information into cell IV from cells I and III [58]. 

While the previous discussion described the default treatment of a non-conformal interface, there 

are several options you can enable at the interface to revise the treatment of the fluxes and/or 

reduce the memory usage and processing time: 

• Periodic boundary condition. 
• Periodic repeats. 
• Coupled wall. 
• Matching. 
• Mapped. 
• Static. 

For more details on these non-conformal interface options refer to [58]. 

Figure 4.17  : Two-Dimensional Non-Conformal Mesh Interface [58]. 
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4.2.3 The method used for the estimation of 𝒚𝒚+ 

The dimensionless variable 𝑦𝑦+ is a key parameter in the study of turbulent boundary layers. It 

represents the normalized wall distance in terms of viscous effects and is defined as: 

𝑦𝑦+ =
𝑦𝑦 𝑢𝑢∗

𝜈𝜈
 (4-3) 

Where, 

• 𝑦𝑦+  is the distance from the wall, 

• 𝑢𝑢𝜏𝜏 is the friction velocity (𝑢𝑢𝜏𝜏 = �
𝜏𝜏𝑤𝑤
𝜌𝜌

 , with 𝜏𝜏𝑤𝑤 being the wall shear stress), 

• 𝜈𝜈 is the kinematic viscosity of the fluid. 

This parameter helps classify different regions in the near-wall turbulence (Figure 4.19): the 

viscous sublayer (𝑦𝑦+ < 5), where molecular diffusion dominates; the buffer layer (5 < 𝑦𝑦+ < 30), 

where both viscosity and turbulence interact; and the log-law region (30 < 𝑦𝑦+ < 700), where 

fully developed turbulence follows a logarithmic velocity profile; And for 𝑦𝑦+ > 700 , the 

measured turbulent velocity exceeds the magnitude predicted by the log law and is therefore called 

the “defect layer” [49].  

𝑦𝑦+  is crucial in Computational Fluid Dynamics (CFD) for mesh refinement and turbulence 

modeling to ensure accurate simulations of near-wall flow behavior. 

Figure 4.18  : Non-conformal mesh visualization at the interface. 
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Calculating 𝒚𝒚 based on 𝒚𝒚+ 

To find the value of 𝑦𝑦 (typically, represents the wall-normal distance of the first cell to the wall) 

for our target dimensionless value of 𝑦𝑦+~ 1 or any, first calculate 𝑅𝑅𝑅𝑅 based on the characteristics 

of the flow. The one-dimensional theory from chapter 1 is used here as reference values for flow 

variables in the calculations. At this point, it is necessary to obtain the appropriate characteristic 

length and velocity, 𝑥𝑥𝑐𝑐ℎ𝑎𝑎𝑎𝑎 and 𝑢𝑢𝑐𝑐ℎ𝑎𝑎𝑎𝑎, so they properly reflect their impact on 𝑅𝑅𝑅𝑅, 

𝑅𝑅𝑅𝑅 =
𝜌𝜌 𝑢𝑢𝑐𝑐ℎ𝑎𝑎𝑎𝑎 𝑥𝑥𝑐𝑐ℎ𝑎𝑎𝑎𝑎

𝜇𝜇
 (4-4) 

For characteristic length, we will use here the hydraulic diameter based on the values of area ratio 

𝐴𝐴/𝐴𝐴∗ and throat area 𝐴𝐴∗, and the characteristic velocity is estimated from 1D theory. 

 

The next step is to calculate the skin friction, 𝐶𝐶𝑓𝑓, which is defined as 

𝐶𝐶𝑓𝑓 =
𝜏𝜏𝑤𝑤

1
2𝜌𝜌𝑢𝑢𝑐𝑐ℎ𝑎𝑎𝑎𝑎

2
 (4-5) 

 

 

Figure 4.19  : Laminar (viscous), buffer, log, and defect layers [49]. 
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The formulas used in this analysis in based on the work by Lawrence J. De Chant and Marc J. 

Tattar [59], where they have obtained an analytical skin friction formula for compressible internal 

flows. The final form of the equation is: 
𝐶𝐶

𝐶𝐶𝑓𝑓
1/2 �12 (𝛾𝛾 − 1)𝑀𝑀𝑎𝑎𝑎𝑎

2 𝑟𝑟� 
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1.77 ln�𝐶𝐶𝑓𝑓

1/2𝑅𝑅𝑅𝑅� + 1.77 ln(𝐸𝐸) − 1.77 �1 + 0.2121 𝑅𝑅𝑅𝑅
𝑘𝑘
𝐷𝐷
𝐶𝐶𝑓𝑓
1/2𝐸𝐸� (4-6) 

Where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −0.6005 for axisymmetric flow or 1.5086 for two-dimensional duct flow, 𝑟𝑟 is 

the recovery factor for air 𝑟𝑟 =  0.88 [59]. 

And, 

𝐴𝐴′ = �
𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑤𝑤

− 1� +
1
2

(𝛾𝛾 − 1)𝑀𝑀𝑎𝑎𝑎𝑎
2 𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑤𝑤

 

𝐵𝐵′ = �
1
2

(𝛾𝛾 − 1)𝑀𝑀𝑎𝑎𝑎𝑎
2
𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑤𝑤

𝑟𝑟�
1/2

 

𝐶𝐶 = asin �
2𝐵𝐵′ − 𝐴𝐴′

�4𝐵𝐵′2 + 𝐴𝐴′2�
1
2
� + asin �

𝐴𝐴′

�4𝐵𝐵′2 + 𝐴𝐴′2�
1
2
� 

𝐸𝐸 =
𝑇𝑇𝑎𝑎𝑎𝑎
𝑇𝑇𝑤𝑤

�
1.505

1 + 0.505 𝑇𝑇𝑤𝑤
𝑇𝑇𝑎𝑎𝑎𝑎

� 

(4-7) 

For the adiabatic wall, they suggested that, 
𝑇𝑇𝑤𝑤
𝑇𝑇𝑎𝑎𝑎𝑎

= 1 +
1
2

(𝛾𝛾 − 1)𝑀𝑀𝑎𝑎𝑎𝑎
2  (4-8) 

Once 𝐶𝐶𝑓𝑓 is known, it can be used to solve for the wall shear 𝜏𝜏𝑤𝑤, Eq. (4-5), which for convenience, 

is now rewritten as 

𝜏𝜏𝑤𝑤 = 𝐶𝐶𝑓𝑓
𝜌𝜌 𝑢𝑢𝑐𝑐ℎ𝑎𝑎𝑎𝑎2

2
  (4-9) 

Finally, the variable 𝑢𝑢𝜏𝜏 can be obtained as 

𝑢𝑢𝜏𝜏 = �
𝜏𝜏𝑤𝑤
𝜌𝜌

 (4-10) 

Based on the target value of 𝑦𝑦+, the thickness of the first cell from the wall, 𝑦𝑦, can be estimated 

via Eq. (4-3). Table 4.1 summarizes all the steps. 
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Table 4.1 : Calculation of y at the desired value of y+[49]. 
Step Equation Unknowns 

1 𝑅𝑅𝑅𝑅 =
𝑥𝑥𝑐𝑐ℎ𝑎𝑎𝑎𝑎 𝑢𝑢𝑐𝑐ℎ𝑎𝑎𝑎𝑎

𝜈𝜈
 𝑅𝑅𝑅𝑅 

2 Eq. (4-6) by Lawrence J. De Chant and Marc J. Tattar [59]. 𝐶𝐶𝑓𝑓 ,𝑅𝑅𝑅𝑅 

3 𝜏𝜏𝑤𝑤 = 𝐶𝐶𝑓𝑓
𝜌𝜌𝑢𝑢𝑐𝑐𝑐𝑐ℎ𝑟𝑟

2

2
  𝜏𝜏𝑤𝑤,𝐶𝐶𝑓𝑓 

4 𝑢𝑢𝜏𝜏 = �
𝜏𝜏𝑤𝑤
𝜌𝜌

  𝑢𝑢𝜏𝜏, 𝜏𝜏𝑤𝑤 

5 𝑦𝑦 = 𝑦𝑦+𝜈𝜈
𝑢𝑢𝜏𝜏

  𝑦𝑦,𝑢𝑢𝜏𝜏 

 

Based on the calculation made on my work for 𝑦𝑦+ ≈ 1, I have estimated a value for 𝑦𝑦 in the range 

of 1.3 × 10−6 𝑚𝑚 as a global value, and I have used a value of 1 × 10−6 𝑚𝑚 as the actual value for 

mesh generation near the wall, see Figure 4.20. 

4.3 Boundary Conditions  

Ansys Fluent has a wide range of boundary conditions that permit flow to enter and exit the 

solution domain. A description of the boundary conditions that have been used along with 

recommendations for determining inlet values are provided. 

Figure 4.20  : First cell distance assessment. 
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4.3.1 Pressure inlet 

Pressure inlet boundary conditions are used to define the fluid pressure at flow inlets, along with 

all other scalar properties of the flow. They are suitable for both incompressible and compressible 

flow calculations. Pressure inlet boundary conditions can be used when the inlet pressure is known 

but the flow rate and/or velocity is not known. Pressure inlet boundary conditions can also be used 

to define a “free” boundary in an external or unconfined flow [58]. 

I have used the following information for the pressure inlet boundary: 

• Type of reference frame. 
• Total (stagnation) pressure. 
• Total (stagnation) temperature. 
• Flow direction. 
• Static pressure. 
• Turbulence parameters (see Determining Turbulence Parameters). 

All values are entered in the Pressure Inlet Dialog Box (Figure 4.21), which is opened from the 
Boundary Conditions task page. 

4.3.2 Pressure Outlet 

Pressure outlet boundary conditions require the specification of a static (gauge) pressure at the 

outlet boundary. The value of the specified static pressure is used only while the flow is subsonic. 

Should the flow become locally supersonic, the specified pressure will no longer be used; pressure 

will be extrapolated from the flow in the interior (domain). All other flow quantities are 

extrapolated from the interior [58]. 

Figure 4.21 : The Pressure Inlet Dialog Box [58]. 
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I selected the following information for a pressure outlet boundary: 

• Static pressure. 
• Pressure profile multiplier. 
• Backflow conditions. 

– Backflow pressure specification. 
– Backflow direction specification method. 

• Total (stagnation) temperature (for energy calculations). 
• Turbulence parameters (see Determining Turbulence Parameters). 

All values are entered in the Pressure Outlet Dialog Box (Figure 4.22), which is opened from the 

Boundary Conditions task page. 

4.3.3 Wall Boundary Conditions 

Wall boundary conditions are used to bind fluid and solid regions. In viscous flows, the no-slip 

boundary condition is enforced at walls by default, but you can specify a tangential velocity 

component in terms of the translational or rotational motion of the wall boundary, or model a “slip” 

wall by specifying shear. (You can also model a slip wall with zero shear using the symmetry 

boundary type, but using a symmetry boundary will apply symmetry conditions for all equations. 

See Symmetry Boundary Conditions, [58]). 

The shear stress and heat transfer between the fluid and wall are computed based on the flow 

details in the local flow field. 

Figure 4.22  : The Pressure Outlet Dialog Box [58]. 
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Shear Conditions at Walls 

Two types of shear conditions have been used: 

• No-slip. 

• Specified shear. 

The no-slip condition is the default, and it indicates that the fluid sticks to the wall and moves with 

the same velocity as the wall, if it is moving. The specified shear boundary condition is useful in 

modeling situations in which the shear stress (rather than the motion of the fluid) is known. 

Examples of such situations are applied shear stress, slip wall (zero shear stress), and free surface 

conditions (zero shear stress or shear stress dependent on surface tension gradient). The specified 

shear boundary condition allows you to specify the 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 and components of the shear stress as 

constant values or profiles [58]. 

Shear conditions are entered in the Momentum tab of the Wall Dialog Box, which is opened from 

the Boundary Conditions Task Page. 

Thermal Boundary Conditions at Walls 

When you are solving the energy equation, you need to define thermal boundary conditions at wall 

boundaries. The walls have been modeled as adiabatic walls by setting a zero-heat flux condition 

which is the default condition. 

Figure 4.23 : The Wall Dialog 
Box for Specified Shear [58]. 
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Thermal conditions are entered in the Thermal tab of the Wall Dialog Box (Figure 4.24), which is 

opened from the Boundary Conditions task page. 

4.3.4 Determining Turbulence Parameters 

Default values of turbulence parameters have been used because no information on the inlet non-

on the outlet boundaries could be reached in the basis of the experiment. This default value 

expresses moderate turbulence (medium intensity) [58]. 

For more details about the specification of transported turbulence quantities. Refer to [58]. Or use 

any online turbulent quantities ‘calculator (ex. [60]). 

4.4 Initiating the Solution 

Before starting a CFD simulation, you must provide Ansys Fluent with an initial “guess” for the 

solution flow field. In many cases, you must take extra care to provide an initial solution that will 

allow the desired final solution to be attained. A real-life supersonic wind tunnel, for example, will 

not “start” if the back pressure is simply lowered to its operating value; the flow will choke at the 

tunnel throat and will not transition to supersonic. The same holds for a numerical simulation: the 

flow must be initialized to a supersonic flow or it will simply choke and remain subsonic [53]. 

There are two methods for initializing the solution, [53]: 

• Initialize the entire flow field (in all cells). Three methods are available: 
– Standard initialization. 
– Hybrid initialization. 
– FMG initialization. 

• Patch values or functions for selected flow variables in selected cell zones or cell registers. 

Figure 4.24 : The Wall Dialog Box 
(Thermal Tab) [58]. 
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4.4.1 Standard Initialization 

In this method, the entire flow field is initiated with constant cell values, where you can compute 

the values from information in a specified zone, enter them manually, or have the solver compute 

average values based on all zones. You can also indicate whether the specified values for velocities 

are absolute or relative to the velocity in each cell zone [53]. 

4.4.2 Hybrid Initialization 

Hybrid Initialization is a collection of recipes and boundary interpolation methods. It solves the 

Laplace equation to produce a velocity field that conforms to complex domain geometries, and a 

pressure field that smoothly connects high- and low-pressure values in the computational domain. 

All other variables (that is temperature, turbulence, VOF, species, and so on) will be patched based 

on domain-averaged values or a predetermined recipe [53].  

4.4.3 Full Multigrid (FMG) Initialization 

For many complex flow problems such as those found in rotating machinery, or flows in expanding 

or spiral ducts, flow convergence can be accelerated if a better initial solution is used at the start 

of the calculation. The Full Multigrid initialization (FMG initialization) can provide this initial and 

approximate solution at a minimum cost to the overall computational expense. 

FMG initialization utilizes the Ansys Fluent FAS Multigrid technology (see [53]) to obtain the 

initial solution. Starting from a uniform solution (after performing standard or hybrid initialization 

or reading data), the FMG initialization procedure constructs the desirable number of geometric 

grid levels using the procedure outlined in Full-Approximation Storage (FAS) Multigrid [53]. To 

Figure 4.25 : The FMG Initialization [53]. 
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begin the process, the initial solution is restricted all the way down to the coarsest level. The FAS 

multigrid cycle is then applied until a given order of residual reduction is obtained or the maximum 

number of cycles is reached. The solution is then interpolated one grid level up and the FAS 

multigrid cycle is applied again between the current level all the way down to the coarsest level. 

This process will repeat until the finest level is reached. The FMG initialization iteration is 

illustrated in Figure 4.25. 

Since FMG initialization does most of the work on coarse levels, this initialization procedure is 

computationally inexpensive, and for large problems, a good initial solution can be obtained in a 

fraction of the time spent to converge on a final solution. Note that FMG initialization can be used 

with the pressure-based and density-based solvers [53]. 

When FMG initialization is started, the algorithm will perform the following steps: 

1. Records the current solver selection and all current solver parameters. 
2. Switches from the selected solver to the density-based explicit formulation. 
3. Performs one FMG iteration using the FMG parameters given in the text command 

interface. 
4. Switches back to the initially selected solver and resets all solver parameters back to the 

original solver settings. 

In the FMG iteration, the Euler equations for inviscid flow are solved using first-order 

discretization to obtain the approximate solution [53]. If species are present, then the FMG 

initialization will solve the species equations. While turbulence equations or any other transport 

scalars are not solved during the FMG initialization cycles, their values will be updated once after 

the final FMG sweep on the fine mesh using the latest velocity and pressure fields [53]. 

Limitations of FMG Initialization 

• FMG initialization is not available for unsteady flows. 
• FMG will not solve turbulence or other transport equations field variables. 
• FMG cannot be used with multiphase flow. 

4.5 General Scalar Transport Equation: Discretization and Solution 

Ansys Fluent uses a control-volume-based technique (Finite Volume Method) to convert a general 

scalar transport equation to an algebraic equation that can be solved numerically [53]. This control 
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volume technique consists of integrating the transport equation about each control volume, 

yielding a discrete equation that expresses the conservation law on a control-volume basis. 

Discretization of the governing equations can be illustrated most easily by considering the 

unsteady conservation equation for the transport of a scalar quantity 𝜙𝜙. This is demonstrated by 

the following equation written in integral form for an arbitrary control volume 𝑉𝑉 as follows, [53]: 

�
𝜕𝜕𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕𝑉𝑉

𝑑𝑑𝑑𝑑 + �𝜌𝜌𝜌𝜌𝑉𝑉�⃗ ⋅ 𝑑𝑑𝐴𝐴   = �Γ𝜙𝜙∇𝜙𝜙 ⋅ 𝑑𝑑𝐴𝐴 + �𝑆𝑆𝜙𝜙𝑑𝑑𝑑𝑑
𝑉𝑉

 (4-11) 

Where, 

𝜌𝜌 : density. 

𝑉𝑉�⃗  : Velocity vector. 

𝐴𝐴 : surface area vector. 

Γ𝜙𝜙 : diffusion coefficient for 𝜙𝜙. 

∇𝜙𝜙 : gradient of 𝜙𝜙. 

𝑆𝑆𝜙𝜙 : source term of 𝜙𝜙 per unit volume. 

Eq. (4-25) is applied to each control volume, or cell, in the computational domain. The two-

dimensional, triangular cell shown in Figure 4.26 is an example of such a control volume. 

Discretization of Eq. (4-25) on a given cell yields, [53]: 

𝜕𝜕𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕

𝑉𝑉 + � 𝜌𝜌𝑓𝑓𝜙𝜙𝑓𝑓𝑉𝑉𝑓𝑓���⃗
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑓𝑓

⋅ 𝐴𝐴𝑓𝑓����⃗   = � Γ𝜙𝜙∇𝜙𝜙𝑓𝑓 ⋅ 𝐴𝐴𝑓𝑓����⃗
𝑁𝑁𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓

+ 𝑆𝑆𝜙𝜙𝑉𝑉 (4-12) 

Where, 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 : number of faces enclosing cell. 

𝜙𝜙𝑓𝑓: value of 𝜙𝜙 convected through face 𝑓𝑓. 

𝜌𝜌𝑓𝑓𝑉𝑉�⃗𝑓𝑓 ⋅ 𝐴𝐴𝑓𝑓 : mass flux through the face. 

𝐴𝐴𝑓𝑓 : area vector of face 𝑓𝑓. 

∇𝜙𝜙𝑓𝑓 : gradient of 𝜙𝜙 at face 𝑓𝑓. 

𝑉𝑉 : cell volume. 
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Where 𝜕𝜕𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕

𝑉𝑉 is defined in Temporal Discretization. The equations solved by Ansys Fluent take 

the same general form as the one given above and apply readily to multi-dimensional, unstructured 

meshes composed of arbitrary polyhedral [53]. 

4.5.1 Solving the Linear System 

The discretized scalar transport equation (Eq. (4-26)) contains the unknown scalar variable 𝜙𝜙 at 

the cell center as well as the unknown values in surrounding neighbor cells. This equation will, in 

general, be non-linear with respect to these variables. A linearized form of Eq. (4-26) can be 

written as, [53]: 

𝑎𝑎𝑝𝑝𝜙𝜙 = �𝑎𝑎𝑛𝑛𝑛𝑛𝜙𝜙𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛

+ 𝑏𝑏 (4-13) 

where the subscript “𝑛𝑛𝑛𝑛” refers to neighbor cells, and 𝑎𝑎𝑝𝑝 and 𝑎𝑎𝑛𝑛𝑛𝑛 are the linearized coefficients 

for 𝜙𝜙 and 𝜙𝜙𝑛𝑛𝑛𝑛. The number of neighbors for each cell depends on the mesh topology, but will 

typically equal the number of faces enclosing the cell (boundary cells being the exception) [53]. 

Similar equations can be written for each cell in the mesh. This results in a set of algebraic 

equations with a sparse coefficient matrix. For scalar equations, Ansys Fluent solves this linear 

system using a point implicit (Gauss-Seidel) linear equation solver in conjunction with an algebraic 

multigrid (AMG) method that is described in Algebraic Multigrid (AMG), [53]. 

 

Figure 4.26 : Control Volume Used to Illustrate Discretization of a Scalar 
Transport Equation [53]. 
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4.5.2 Equations Discretization 

Spatial Discretization 

By default, Ansys Fluent stores discrete values of the scalar 𝜙𝜙 at the cell centers (𝑐𝑐0 and 𝑐𝑐1 in 

Figure 4.26). However, face values 𝜙𝜙𝑓𝑓 are required for the convection terms in Eq. (4-26) and 

must be interpolated from the cell center values. This is accomplished using an upwind scheme.  

Upwinding means that the face value 𝜙𝜙𝑓𝑓 is derived from quantities in the cell upstream, or 

"upwind," relative to the direction of the normal velocity 𝑉𝑉𝑛𝑛 in Eq. (4-26). Ansys Fluent allows 

you to choose from several upwind schemes: first-order upwind, second-order upwind, and 

QUICK [53]. 

The diffusion terms in Eq. (4-26) are central-differenced and are always second-order accurate 

[53]. 

Temporal Discretization 

For transient simulations, the governing equations must be discretized in both space and time. The 

spatial discretization for the time-dependent equations is identical to the steady-state case. 

Temporal discretization involves the integration of every term in the differential equations over a 

time step Δ𝑡𝑡. The integration of the transient terms is straightforward, as shown below. 

A generic expression for the time evolution of a variable 𝜙𝜙 is given by 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐹𝐹(𝜙𝜙) (4-14) 

Where the function 𝐹𝐹 incorporates any spatial discretization. If the time derivative is discretized 

using backward differences, the first-order accurate temporal discretization is given by 

𝜙𝜙𝑛𝑛+1 − 𝜙𝜙𝑛𝑛

Δ𝑡𝑡
= 𝐹𝐹(𝜙𝜙) (4-15) 

and the second-order discretization is given as described in Second-Order Time Integration Using 

a Variable Time Step Size [58]. 

Where 

𝜙𝜙: is scalar quantity. 

𝑛𝑛 + 1 : value at the next time level, 𝑡𝑡 + Δ𝑡𝑡. 

𝑛𝑛 : value at the next time level, 𝑡𝑡. 
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Once the time derivative has been discretized, a choice remains for evaluating 𝐹𝐹(𝜙𝜙) : in particular, 

which time level values of 𝜙𝜙 should be used in evaluating. This give rise to the implicit and explicit 

formulations. 

Evaluation of Gradients and Derivatives 

Gradients are needed not only for constructing values of a scalar at the cell faces, but also for 

computing secondary diffusion terms and velocity derivatives. The gradient ∇𝜙𝜙 of a given variable 

𝜙𝜙 is used to discretize the convection and diffusion terms in the flow conservation equations. The 

gradients are computed in Ansys Fluent according to the following methods, [53]: 

• Green-Gauss Cell-Based 
• Green-Gauss Node-Based 
• Least Squares Cell-Based 

4.6 Density-Based Solver 

The density-based solver solves the governing equations of continuity, momentum, and (where 

appropriate) energy and species transport simultaneously (that is, coupled together). Governing 

equations for additional scalars will be solved afterward and sequentially (that is, segregated from 

one another and the coupled set) using the procedure described in General Scalar Transport 

Equation: Discretization and Solution [53]. Because the governing equations are nonlinear (and 

coupled), several iterations of the solution loop must be performed before a converged solution is 

obtained. Each iteration consists of the steps illustrated in Figure 4.27 and outlined below: 

1. Update the fluid properties based on the current solution. (If the calculation has just begun, 

the fluid properties will be updated based on the initialized solution.) 

2. Solve the continuity, momentum, and (where appropriate) energy and species equations 

simultaneously. 

3. Where appropriate, solve equations for scalars such as turbulence and radiation using the 

previously updated values of the other variables. 

4. When the interphase coupling is to be included, update the source terms in the appropriate 

continuous phase equations with a discrete phase trajectory calculation. 

5. Check for convergence of the equation set.  
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These steps are continued until the convergence criteria are met [58]. 

In the density-based solution method, the coupled system of equations (continuity, momentum, 

energy and species equations if available) is linearized to produce a system of algebraic equations 

for the dependent variables in every computational cell. The manner in which the governing 

equations are linearized may take an "implicit" or "explicit" form with respect to the dependent 

variable (or set of variables) of interest [58]. By implicit or explicit we mean the following: 

• Implicit: For a given variable, the unknown value in each cell is computed using a relation 
that includes both existing and unknown values from neighboring cells. Therefore, each 
unknown will appear in more than one equation in the system, and these equations must be 
solved simultaneously to give the unknown quantities. 

• Explicit: For a given variable, the unknown value in each cell is computed using a relation 
that includes only existing values. Therefore, each unknown will appear in only one 
equation in the system and the equations for the unknown value in each cell can be solved 
one at a time to give the unknown quantities. 

In summary, the coupled implicit approach solves all variables (𝑃𝑃, 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑇𝑇) in all cells at the 
same time. Whereas, the density-based explicit approach solves for all variables (𝑃𝑃, 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑇𝑇) 
one cell at a time [58]. 

Figure 4.27 : Overview of the Density-Based Solution 
Method [58]. 
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4.6.1 Governing Equations in Vector Form 

The system of governing equations for a single-component fluid, written to describe the mean flow 

properties, is cast in integral Cartesian form for an arbitrary control volume 𝑉𝑉 with differential 

surface area 𝑑𝑑𝑑𝑑 as follows: 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑊𝑊 𝑑𝑑𝑑𝑑
𝑉𝑉

+ �[𝐹𝐹 − 𝐺𝐺] ⋅ 𝑑𝑑𝑑𝑑 = �𝐻𝐻 𝑑𝑑𝑑𝑑
𝑉𝑉

 (4-16) 

where the vectors 𝑊𝑊, 𝐹𝐹 and 𝐺𝐺 are defined as 

𝑊𝑊 =

⎩
⎪
⎨

⎪
⎧
𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌⎭

⎪
⎬

⎪
⎫

,𝐹𝐹 =

⎩
⎪
⎨

⎪
⎧ 𝜌𝜌𝑉𝑉�⃗

𝜌𝜌𝜌𝜌 𝑉𝑉�⃗ + 𝑃𝑃 𝚤𝚤̂
𝜌𝜌𝜌𝜌 𝑉𝑉�⃗ + 𝑃𝑃 𝚥𝚥̂
𝜌𝜌𝜌𝜌 𝑉𝑉�⃗ + 𝑃𝑃 𝑘𝑘�

( 𝜌𝜌𝜌𝜌 + 𝑃𝑃) 𝑉𝑉�⃗ ⎭
⎪
⎬

⎪
⎫

,𝐺𝐺 =

⎩
⎪
⎨

⎪
⎧

0
𝜏𝜏1𝑖𝑖
𝜏𝜏2𝑖𝑖
𝜏𝜏3𝑖𝑖

𝜏𝜏𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗 + 𝑞𝑞⎭
⎪
⎬

⎪
⎫

 (4-17) 

In Eq. (4-39) 𝑊𝑊 is called the solution vector because the elements in 𝑊𝑊 are the dependent variables 

which are usually obtained numerically in steps of time; the column vectors 𝐹𝐹 and 𝐺𝐺 are called the 

flux terms (or flux vectors), and 𝐻𝐻 represents a source term (which is zero if body forces and 

volumetric heating are negligible). And Here 𝜌𝜌, 𝑉𝑉�⃗ , 𝐸𝐸, and 𝑃𝑃 are the density, velocity, total energy 

per unit mass, and pressure of the fluid, respectively. 𝜏𝜏 is the viscous stress tensor, and 𝑞𝑞 is the 

heat flux. 

Total energy 𝐸𝐸 is related to the total enthalpy 𝐻𝐻 by 

𝐸𝐸 = 𝐻𝐻 − 𝑃𝑃/𝜌𝜌 (4-18) 

 

Where 

𝐻𝐻 = ℎ + �𝑉𝑉�⃗ �
2

/2 (4-19) 

The Navier-Stokes equations as expressed in Eq. (4-39) become (numerically) very stiff at low 

Mach numbers due to the disparity between the fluid velocity and the acoustic speed (speed of 

sound). This is also true for incompressible flows, regardless of the fluid velocity, because acoustic 

waves travel infinitely fast in an incompressible fluid (the speed of sound is infinite). The 

numerical stiffness of the equations under these conditions results in poor convergence rates. This 

difficulty is overcome in Ansys Fluent’s density-based solver by employing a technique called 

(time-derivative) preconditioning [53]. 
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4.6.2 Convective Fluxes 

Roe Flux-Difference Splitting Scheme 

The inviscid flux vector appearing in Eq. (4-39) is evaluated by a standard upwind, flux-difference 

splitting [53]. This approach acknowledges that the flux vector contains characteristic information 

propagating through the domain with speed and direction according to the eigenvalues of the 

system. By splitting into parts, where each part contains information traveling in a particular 

direction (that is, characteristic information), and upwind differencing the split fluxes in a manner 

consistent with their corresponding eigenvalues. 

This formulation can be viewed as a second-order central difference plus an added matrix 

dissipation [53]. The added matrix dissipation term is not only responsible for producing an 

upwinding of the convected variables, and of pressure and flux velocity in supersonic flow, but it 

also provides the pressure-velocity coupling required for stability and efficient convergence of 

low-speed and incompressible flows [53]. 

AUSM+ Scheme 

An alternative way to compute the flux vector appearing in Eq. (4-39) is by using a flux-vector 

splitting scheme [53]. The scheme called the Advection Upstream Splitting Method (AUSM), was 

first introduced by Liou and Steffen in 1993 [53]. The AUSM scheme first computes a cell 

interface Mach number based on the characteristic speeds from the neighboring cells. The interface 

Mach number is then used to determine the upwind extrapolation for the convection part of the 

inviscid fluxes. A separate Mach number splitting is used for the pressure terms. Generalized Mach 

number-based convection and pressure splitting functions were proposed by Liou and the new 

scheme was termed AUSM+ [53]. The AUSM+ scheme has several desirable properties: 

• Provides exact resolution of contact and shock discontinuities. 
• Preserves positivity of scalar quantities. 
• Free of oscillations at stationary and moving shocks. 

4.6.3 Steady-State Flow Solution Methods 

The coupled set of governing equations Eq. (4-39) in Ansys Fluent is discretized in time for both 

steady and unsteady calculations [53]. In the steady case, it is assumed that time marching proceeds 
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until a steady-state solution is reached. Temporal discretization of the coupled equations is 

accomplished by either an implicit or an explicit time-marching algorithm [53]. 

Marching solution concept 

Exploring the ramifications of Eq. (4-39) further. It is written with a time derivative 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

; hence it 

applies to an unsteady flow. In a given problem, the actual transients in an unsteady flow may be 

of primary interest. In other problems, a steady-state solution may be desired but wherein the best 

manner to solve for this steady state is to solve the unsteady equations and let the steady state be 

approached asymptotically at large times. (This approach is sometimes called the time-dependent 

solution of steady flows). For either an inherently transient solution, or a time-dependent solution 

leading to a steady state, the solution of Eq. (4-39) takes the form of a time-marching solution, i.e., 

where the dependent flow-field variables are solved progressively in steps of time. For such a time-

marching solution, we isolate 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 by rearranging Eq. (4-39) [61]. 

In CFD, marching solutions are not limited to marching just in time. Under certain circumstances, 

steady-state flows can also be solved by marching in a given spatial direction. The circumstances 

that allow the use of a spatially marching solution depend on the mathematical properties of the 

governing equation [61]. 

Stability Criterion and CFL-based solution 

Stability in numerical methods ensures that errors do not amplify uncontrollably over time, 

keeping the solution well-bounded. It is crucial for solving differential equations, especially when 

dealing with stiff systems or long-time simulations. Stability analysis helps determine whether a 

numerical method will produce a reliable solution or diverge due to accumulating errors [61]. Two 

methods are often invoked for stability analysis the Eigenvalue Method and Von Neumann 

Stability Analysis [61]. 

The CFL (Courant-Friedrichs-Lewy) condition is a crucial stability criterion in time-marching 

schemes for solving partial differential equations (PDEs) numerically. It ensures that the time step 

𝛥𝛥𝛥𝛥 is small enough relative to the spatial discretization to maintain numerical stability, particularly 

for explicit methods [61]. 
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The CFL condition states that for stability: 
Δt
Δ𝑥𝑥

≤
1

|𝜆𝜆| (4-20) 

Where, 

Δ𝑡𝑡 : is the time step, 

Δ𝑥𝑥 : is the spatial gird resolution, 

𝜆𝜆 : represents the wave speed or characteristic velocity of the system. 

For different equations, 

Advection Equation: 𝜆𝜆 = 𝑢𝑢, so the CFL condition becomes Δ𝑡𝑡
Δ𝑥𝑥
≤ 1

|𝑢𝑢|. 

Diffusion Equation: 𝜆𝜆 = 𝛼𝛼, where 𝛼𝛼 is the diffusion coefficient, requiring Δ𝑡𝑡
Δ𝑥𝑥2

≤ 1
2
. 

Wave Equation: 𝜆𝜆 = 𝑐𝑐, where 𝑐𝑐 is the wave speed. 

CFL-Based Solution Approach 

1. Choose an appropriate discretization scheme (Explicit Euler, Runge-Kutta, Lax-
Wendroff, etc.). 

2. Determine the maximum wave speed in the problem. 
3. Compute the stable time step using Δ𝑡𝑡 ≤ 𝐶𝐶 Δ𝑥𝑥

|𝜆𝜆|. where 𝐶𝐶 is the CFL number (typically 

between 0.1 and 1). 
4. March in time using the computed 𝜟𝜟𝜟𝜟 while checking the CFL stability criterion at each 

step. 
5. Ensure convergence to a steady-state solution, if applicable. 

4.6.4 Under-relaxation technique 

Under-relaxation is a numerical technique used in iterative solvers to enhance stability and prevent 

divergence by controlling the update step in each iteration. Instead of applying the full computed 

correction, an under-relaxation factor (𝜔𝜔) between 0 and 1 is introduced to gradually adjust the 

solution, following the formula 

𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜔𝜔 Δ𝑄𝑄 (4-21) 

Where 𝑄𝑄 is the solution vector. 

This method is widely used in computational fluid dynamics (CFD), nonlinear equation solvers, 

and optimization problems where abrupt changes may lead to oscillatory or unstable behavior. By 
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carefully choosing (𝜔𝜔), the solver can balance fast convergence and numerical stability, ensuring 

smooth and reliable results.  

4.6.5 Residuals and Convergence criteria 

Residuals measure the difference between the current approximate solution and the exact solution 

(or next iteration). They indicate how much the solution deviates from satisfying the governing 

equations. 

The residual 𝑅𝑅𝑖𝑖 is computed from the intermediate solution 𝑄𝑄𝑖𝑖 and, for Eq. (4-39) is given by 

𝑅𝑅𝑖𝑖 = � �𝐹𝐹�𝑄𝑄𝑖𝑖� − 𝐺𝐺�𝑄𝑄𝑖𝑖�� ⋅ 𝐴𝐴 − 𝑉𝑉 𝐻𝐻

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 (4-22) 

This are called the absolute residuals. While, relative residuals are defined as the change of the 

absolute residuals between two subsequent iterations divided by the absolute residual. 

𝑅𝑅� =
𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (4-23) 

Then convergence is reached when the solution approaches a steady or correct result as iterations 

progress. Common convergence criteria include: 

• Residual-based convergence: Iterations stop when |𝑅𝑅𝑁𝑁| < 𝜖𝜖 , where 𝜖𝜖  is a predefined 
tolerance. 

• Relative error convergence: �𝑅𝑅�𝑁𝑁� < 𝛿𝛿 , ensuring that successive solutions change 
insignificantly. 

If the method fails to meet the criteria within a set number of iterations, adjustments may be 

required. 

4.7 Solution Strategies for Compressible Flows 

The difficulties associated with solving compressible flows are a result of the high degree of 

coupling between the flow velocity, density, pressure, and energy. This coupling may lead to 

instabilities in the solution process and, therefore, may require special solution techniques in order 

to obtain a converged solution [58]. In addition, the presence of shocks (discontinuities) in the 

flow introduces an additional stability problem during the calculations. Solution techniques that 

may be beneficial in compressible flow calculations include the following: 
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 (Pressure-based solver only) Initialize the flow to be near stagnation (that is velocity small but 
not zero, pressure to inlet total pressure, temperature to inlet total temperature). Turn off the 
energy equation for the first 50 iterations. Leave the energy under-relaxation at 1. Set the 
pressure underrelaxation to 0.4, and the momentum under-relaxation to 0.3. After the solution 
stabilizes and the energy equation has been turned on, increase the pressure under-relaxation 
to 0.7. 

 Set reasonable limits for the temperature and pressure (in the Solution Limits Dialog Box [58]) 
to avoid solution divergence, especially at the start of the calculation. If Ansys Fluent prints 
messages about temperature or pressure being limited as the solution nears convergence, the 
high or low computed values may be physical, and you must change the limits to allow these 
values. 

 If required, begin the calculations using a reduced pressure ratio at the boundaries, increasing 
the pressure ratio gradually in order to reach the final desired operating condition. If the Mach 
number is low, you can also consider starting the compressible flow calculation from an 
incompressible flow solution (although the incompressible flow solution can in some cases be 
a rather poor initial guess for the compressible calculation). 

 In some cases, computing an inviscid solution as a starting point may be helpful. 
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 RESULTS AND DISCUSSIONS 

5.1 Overview of The Experimental Setup 

Cold Test Experiments were conducted using the TQ-AF27 Apparatus at the Laboratory of 

Aerodynamics and Heat Transfer, situated within the Higher School of Aeronautical Techniques 

(ESTA) in Dar-El-Beida. 

The AF27 facility serves as a comprehensive platform for studying the thermodynamic and fluid 

mechanics principles governing the adiabatic expansion of air through subsonic and supersonic 

nozzles. It provides valuable insights into how nozzle geometry influences airflow characteristics, 

including mass flow rate, pressure distribution, and expansion behavior. 

By simulating real-world applications, such as steam and gas turbines, the facility reinforces 

fundamental laws governing the expansion of compressible fluids through nozzles. Additionally, 

it enables the investigation of key flow phenomena, including choked flow—where sonic velocity 

is attained at the nozzle throat—and variations in nozzle operation under off-design and adapted 

conditions. 

Figure 5.1 : The Nozzle Flow Apparatus. 
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5.1.1 Description of the Apparatus 

The nozzle flow apparatus utilizes a separate compressed air source to provide airflow for 

experimentation. An adjustable regulator controls the maximum air pressure entering the pressure 

chest, while a shut-off valve controls the flow. The air enters the pressure chest and passes 

downwards through one of three interchangeable nozzles. 

Once the air exits the nozzle, it discharges into a vertical pipe fitted with a throttling valve, which 

controls the nozzle downstream pressure. The airflow then moves through a curved section before 

entering a straight pipe, allowing it to stabilize. Before leaving the system, the air passes through 

an orifice, which plays a key role in measuring the mass flow rate. 

The apparatus is equipped with a digital pressure display that monitors chest pressure, pressure 

within the nozzle probe assembly, ambient pressure, and differential pressure across the orifice. 

The cylindrical ‘constant area’ probe assembly measures the static pressures at successive 

transverse planes along the nozzle axis, with a sensing hole positioned at a fixed distance from the 

probe tip. A digital indicator records probe movement along the nozzle length, while a mimic plate, 

graduated in 2 𝑚𝑚𝑚𝑚 interval marks, provides a visual reference for the sensing hole’s position. 

To ensure reliability, the system includes an analog pressure gauge that offers chest pressure 

readings even in case of electrical failure. A digital temperature display measures ambient air 

Figure 5.2  : Schematic Layout of the AF27. 
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temperature, as well as temperatures inside the pressure chest and downstream of the orifice. These 

temperature and pressure readings help determine mass flow through the apparatus. 

5.1.2 Versatile Data Acquisition System (VDAS) 

TecQuipment’s VDAS is an optional extra for the Nozzle Flow Apparatus. It is a two-part product 

(Hardware and Software) that can: 

• Automatically log data from your tests. 
• Automatically calculate data for you. 
• Create charts and tables of your data. 
• Export your data for processing in other 

software.  

 

 
 
 

 

5.1.3 Technical Specifications 

Table 5.1: Apparatus Technical Specifications. 

Orifice Pressure 
Probe Pressure Display Temperature Display 

Diameter 50 𝑚𝑚𝑚𝑚 
Area = 0.001963𝑚𝑚2 
𝐶𝐶𝐶𝐶 = 0.62  

Nominal 
diameter 
3.2 𝑚𝑚𝑚𝑚 

 𝛥𝛥𝛥𝛥1: Two input 
(differential) pressure 
transducer - 2000 𝑃𝑃𝑃𝑃. 
 𝑃𝑃2: Single input - 10 𝑏𝑏𝑏𝑏𝑏𝑏 

(gauge). 
 𝑃𝑃3: Single input - 10 𝑏𝑏𝑏𝑏𝑏𝑏 

(gauge). 
 𝑃𝑃4: (Internal) Absolute 

Atmospheric Pressure. 
 

Four inputs, 𝑇𝑇1 to 𝑇𝑇4: K-type 
connections. Temperatures 
displayed in °𝐶𝐶. 

 

 

Figure 5.3 : The VDAS Hardware and Software. 
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5.1.4 Nozzles 

Three nozzles are supplied with the apparatus. 

Convergent Nozzle 

 

Convergent-divergent (or ‘Laval’) Nozzle 

 

 

 

 

 

Figure 5.4 : Convergent Nozzle. 

Figure 5.5 : The Convergent-Divergent Nozzle. 
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Convergent Nozzle with a Parallel Extension 

 

5.1.5 Experimental Procedures 

The RENNER Kompressoren RSF-H series, screw compressor, is used as a high-pressure air 

source. Maintained for a target pressure of 7 bar, it first fills an accumulator tank with compressed 

air. 

Compressed air filters are installed before the apparatus connection to remove water, dirt, oil, and 

other contaminants. 

Once the tank is full, we press and hold the reset button to zero the recorded pressure values of the 

pressure display before opening the shut-off valve. Similarly, the digital position recorder must be 

calibrated to the zero-reference value position, for that, we use the mimic to set up this position 

upstream of the nozzle.  

At this stage, compressor noise is already significant, but it increases further when airflow begins, 

so ear defenders are obligatory. 

As we open the valve. First, we adjust the pressure (gauge) of the chest to a mid-value of 5 bar. 

Even for such simple setup, it’s yet difficult to achieve a steady-state operation as the pressure 

oscillates down and up over a certain range. 

Secondly, we move the probe all the way downstream the nozzle, and then, we set up the 

downstream pressure (gauge) through the downstream valve, monitoring its value via the recorded 

probe value. This pressure represents the back or simulated ambient pressure at which the nozzle 

operates. Be sure that, at the time you fix its value, the recorded chest pressure is effectively 5 bar, 

Figure 5.6 : The Convergent - Parallel Nozzle. 
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and this rule should be the same for all the measurements. Then, upload the value into the computer 

using VDAS. 

Finally, move the probe across different points along the nozzle while continuously uploading 

values. Again, make sure that at the moment when you upload the data values, the chest pressure 

is effectively 5 bar. 

Once all data are recorded, visualize the results within VDAS for quality assessment and, if 

necessary, remeasure specific values for better accuracy. After collecting the complete dataset, 

export it in an Excel file. 

The same loop applies for the next tests, move the probe downstream and adjust the downstream 

pressure to its new value, while keeping the same chamber (chest) pressure for all tests. 

 

 

 

Figure 5.7 : Picture of the complete experimental setup. 
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5.1.6 The different experimental tests data 

Table 5. 2 : Tests Data’s. 

Test NPR 

Chamber 
Pressure, 
𝑷𝑷𝟎𝟎 [𝒃𝒃𝒃𝒃𝒃𝒃] 
(gauge) 

Downstream 
Pressure, 
𝑷𝑷𝒂𝒂 [𝒃𝒃𝒃𝒃𝒃𝒃] 
(gauge) 

Ambient 
Pressure, 

𝑷𝑷𝒂𝒂𝒕𝒕𝒎𝒎 [𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎] 
(absolute) 

Chamber 
Temperature, 

𝑻𝑻𝟎𝟎 [𝑲𝑲] 

1 4.84988 5.0 0.23 1009 296.95 
2 3.5058 5.0 0.7 1016 301 
3 3.141 5.0 0.9 1015 301 
4 2.8575 5.0 1.09 1015 302.35 
5 2.5878 5.0 1.31 1014 300.75 
6 2.3922 5.0 1.5 1014 301.45 
7 1.9695 5.0 2.04 1013 300.05 
8 1.7076 5.0 2.51 1009 298.15 
9 1.4911 5.0 3.02 1012 300.65 

10 1.3353 5.0 3.49 1013 302.25 
11 1.16 5.0 4.13 1015 301.65 

 

5.2 Numerical vs Experimental Probe Pressure Distribution 
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In the preceding graphs, gauge pressure values where used instead of absolute pressure. Both the 

experimental and numerical results demonstrate excellent coherence, exhibiting only a small error 

offset. This error is estimated to range from a maximum of 50% down to nearly 0%, with a global 

average of 12%, as visually represented by the constant error bars of 0.3 bar. This discrepancy is 

likely attributable to unsteady fluctuations in chamber pressure, which can significantly affect 

measurement accuracy. 

Additionally, static pressure probes are essential tools for measuring static pressure in fluid flows. 

However, their presence and design can introduce various effects and errors that influence the 

accuracy of experimental measurements. The following factors illustrate how these probes can 

affect results: 

1. Boundary Layer Effects: A static pressure tap that is not flush with the wall (either 
protruding or recessed) can introduce errors due to boundary layer interaction and local 
disturbances. 

2. Shock Wave Formation: In supersonic flows, the probe itself can generate shock waves. 
These waves may significantly alter the pressure field, causing the measured static pressure 
to deviate from the true freestream value. 

3. Pressure Tap Location and Size: The location and diameter of the pressure taps are critical. 
Larger holes can introduce more pronounced errors, particularly in wall static pressure 
measurements, by causing local recirculation within the cavity. Similarly, protruding or 
recessed taps induce errors from flow disturbances at the tap. 

4. Response Time: The length and diameter of the tubing connecting the pressure tap to the 
transducer can affect the response time of the measurement, particularly for unsteady 
pressures. Long, thin tubes can smooth out high-frequency content and introduce a time 
lag. 

5. Sensor Characteristics: The pressure transducer itself may contribute to measurement 
inaccuracies due to: 
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• Zero-point error: Drift in the instrument’s baseline reading over time. 
• Span error: Deviations in the full-scale reading. 
• Non-linearity: The signal may not remain proportional to the pressure across the entire 

range. 
• Temperature sensitivity: Fluctuations in temperature may alter sensor output. 
• Mechanical wear or damage: Physical deterioration of the sensor’s diaphragm can lead 

to erroneous readings. 
6. Calibration: Proper calibration of the entire measurement system (probe + tubing + 

transducer) is crucial to account for the inherent errors and characteristics of the setup. 

In terms of a purely numerical comparison of turbulence models, the Spalart-Allmaras model 

demonstrated the best agreement with the experimental data. The SST 𝑘𝑘 − 𝜔𝜔 model followed, 

showing improved accuracy compared to the Standard 𝑘𝑘 − 𝜔𝜔  model, which, in many cases, 

exhibited similarities when compared with the Spalart-Allmaras predictions. 

These findings are consistent with those reported in the literature ([58], [49]), underscoring the 

Spalart-Allmaras model's unique advantages, particularly its robustness and stability in steady-

state simulations. It has demonstrated faster convergence and reduced susceptibility to numerical 

instabilities when compared to the two-equation models during our simulations. Originally 

developed for aerodynamic applications, the model delivers enhanced accuracy in predicting 

shock-wave boundary layer interactions involving mild separation, closely reflecting the 

characteristics of the current study. 

 In the following sections, all numerical results will be presented using the Spalart-Allmaras model. 

5.3 Numerical Mach Number Contours 

 

 
 

 



 
 

129 
 

 

 

 

 

 

 

 

 
 

 



 
 

130 
 

 

 

  
 

The previous figures illustrate the numerical results of Mach number contours at different Nozzle 

Pressure Ratio (NPR) values. 

At the highest NPR value (𝑁𝑁𝑁𝑁𝑁𝑁 =  4.84988), the nozzle operates in a nearly adapted regime. 

However, small expansion waves, characteristic of under-expanded flow, are observed emanating 

from the nozzle lips. 

As the NPR decreases to the range 2.8575 ≤  𝑁𝑁𝑁𝑁𝑁𝑁 ≤  3.5058, the flow enters an over-expanded 

regime, characterized by the presence of an oblique shock and a barrel-shaped plume at the nozzle 

exit. This oblique shock becomes more pronounced as the downstream pressure increases, 

resulting in a larger shock angle and greater flow deviation.  

At 𝑁𝑁𝑁𝑁𝑁𝑁 =  2.8575, an incipient flow separation at the nozzle exit is observed, which will be 

demonstrated in more clearly later. 

By further decreasing the NPR to 2.5878 and below, the shock structure transitions from a 

barrel-like configuration to a Mach disk pattern, followed by alternating zones of expansion and 

compression until the flow structures fully dissipates. This behavior is further clarified in the 

subsequent figure, which presents the Mach number distribution along the centerline of the 

divergent section as a function of axial position. 
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The Mach number distribution clearly reveals the presence of a Mach disk, with the normal shock 

indicated by a rapid drop to a subsonic Mach value. This is followed by successive zones of 

expansion and recompression, manifested as "wiggles" in the Mach number profile, continuing 

until the cycles fully decays. As the NPR decreases (i.e., as the downstream pressure increases), 

the shock structure shifts upstream toward the throat. Simultaneously, the strength of the normal 

shock weakens due to the decreasing upstream Mach number associated with this upstream 

movement. The expansion and recompression zones also become narrower and less distinct. 

This last observed flow structure, uncharacteristic of typical conical nozzles [31], reflects the 

presence and influence of the central probe. The probe encountered a localized shock wave 

originating from the nozzle wall, which subsequently induced flow separation at its surface. This 

oblique shock, in conjunction with its reflection, then coalesced into a singular normal shock as 

the two separation points propagated inward within the nozzle (see the Mach contours). 

A final notable transition occurs with the emergence of a single normal shock, followed by a fully 

subsonic flow, without any indication of boundary layer separation. This solution resembles the 

ideal one-dimensional nozzle flow with an internal normal shock and represents the final flow field 

behavior before the nozzle transitions to a completely subsonic regime. These two distinct flow 

regimes are illustrated for NPR values of 1.3353 and 1.16, respectively. 
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5.4 Analytical vs Numerical Results 

The analytical calculations are more detailed in the Appendix. B. 

 
NPR=4.84988 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032952 0.032949845 0.032923424 

Exit Mach 
Number, 1.74641037 1.74641037 1.490421 1.4665339 1.4458934 

Thrust Force, [N] 15.50224546 15.50224546 14.04613 13.886195 13.743144 
Specific Impulse, 

[s] 47.65340513 47.65340513 43.45166 42.95966403 42.55122766 

Thrust Coefficient, 1.091914412 1.091914412 0.989352 0.978086465 0.96801054 
Normal Shock/ 

Separation position 
[mm] 

/ / / / / 

 
NPR=3.5058 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032744 0.032744956 0.032720968 

Exit Mach 
Number, 1.74641037 1.74641037 1.466748 1.4484933 1.4335753 

Thrust Force, [N] 13.94376417 13.94376417 13.87363 13.756227 13.6545 
Specific Impulse, 

[s] 42.86268365 42.86268365 43.19035 42.82387032 42.53835108 

Thrust Coefficient, 0.980998616 0.980998616 0.976551 0.967804639 0.960647745 
Normal Shock/ 

Separation position 
[mm] 

/ / / / / 

 
NPR=3.141 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032738 0.032740056 0.032714983 

Exit Mach 
Number, 1.74641037 1.74641037 1.401483 1.4105584 1.4079975 

Thrust Force, [N] 13.29358016 13.29358016 13.38659 13.462382 13.448513 
Specific Impulse, 

[s] 40.86403887 40.86403887 41.68159 41.91538739 41.90429715 

Thrust Coefficient, 0.935411102 0.935411102 0.941956 0.94728895 0.946313049 
Normal Shock/ 

Separation position 
[mm] 

/ / / / / 
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NPR=2.8575 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032661 0.03266417 0.032639702 

Exit Mach 
Number, 1.74641037 1.74641037 1.19764 1.2996195 1.3536873 

Thrust Force, [N] 12.67280145 12.67280145 11.88507 12.616983 13.022951 
Specific Impulse, 

[s] 38.95578503 38.95578503 37.09353 39.37448471 40.67187687 

Thrust Coefficient, 0.891729619 0.891729619 0.836301 0.887801919 0.916368112 
Normal Shock/ 

Separation position 
[mm] 

/ / 49.0651 49.5601 49.89 

 
NPR=2.5878 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032734 0.032735138 0.032711481 

Exit Mach 
Number, 1.74641037 / 1.113713 0.97455282 1.1539107 

Thrust Force, [N] 11.95727231 11.84594 11.2234 10.110337 11.472239 
Specific Impulse, 

[s] 36.75627141 36.41403946 34.95033 31.48345953 35.75024081 

Thrust Coefficient, 0.841520867 0.833685596 0.789873 0.711538496 0.807385519 
Normal Shock/ 

Separation position 
[mm] 

/ 49.99938 48.2952 48.9001 49.4501 

 
NPR=2.3922 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032703 0.03270655 0.03268233 

Exit Mach 
Number, 1.74641037 / 1.020991 1.0723061 1.0480184 

Thrust Force, [N] 11.3364936 11.67956 10.4497 10.870441 10.679996 
Specific Impulse, 

[s] 34.84801758 35.90259268 32.57221 33.88000145 33.31110749 

Thrust Coefficient, 0.79783212 0.821976216 0.735422 0.765032584 0.751629574 
Normal Shock/ 

Separation position 
[mm] 

/ 44.61201 47.1953 47.7453 48.6802 
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NPR=1.9695 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032776 0.032778617 0.032755067 

Exit Mach 
Number, 1.74641037 / 0.876439 0.87547674 0.8577259 

Thrust Force, [N] 9.575442419 11.41833 9.193076 9.1816741 9.0269263 
Specific Impulse, 

[s] 29.43460275 35.09958004 28.59136 28.55369001 28.09262987 

Thrust Coefficient, 0.674006118 0.80372519 0.647092 0.646289147 0.635396599 
Shock/ Separation 

position [mm] / 29.97199 43.5108 43.4558 44.6657 

 
NPR=1.7076 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032856 0.032859198 0.032835585 

Exit Mach 
Number, 1.74641037 / 0.735403 0.73223307 0.72242456 

Thrust Force, [N] 8.052900966 11.23427 7.886805 7.8562709 7.7662108 
Specific Impulse, 

[s] 24.75435918 34.53378551 24.46911 24.37196152 24.1099 

Thrust Coefficient, 0.567213224 0.791295774 0.555514 0.553363411 0.547019948 
Normal Shock/ 

Separation position 
[mm] 

/ 21.35112 37.5165 36.8016 37.6815 

 
NPR=1.4911 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032736 0.032738658 0.032718395 

Exit Mach 
Number, 0.6028 / 0.624279 0.62575966 0.61937631 

Thrust Force, [N] 6.70138 / 6.817746 6.8300829 6.767862 
Specific Impulse, 

[s] 20.59983 / 21.22975 21.26650362 21.08582006 

Thrust Coefficient, 0.47178 / 0.479974 0.480842887 0.47646249 
Normal Shock/ 

Separation position 
[mm] 

44.98953 / 28.3877 27.0678 27.6178 
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NPR=1.3353 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033161309 0.033161309 0.032681 0.032671648 0.032647437 

Exit Mach 
Number, 0.54328 / 0.55413 0.55541512 0.5530979 

Thrust Force, [N] 6.07841 / 6.113748 6.12363 6.0967155 
Specific Impulse, 

[s] 18.68485 / 19.06944 19.10596128 19.03609351 

Thrust Coefficient, 0.42785 / 0.430341 0.431036385 0.429141899 
Normal Shock/ 

Separation position 
[mm] 

31.91716 / 16.7841 15.0793 14.5294 

 
NPR=1.16 

Ideal Theory Free Interaction 
Theory 𝑘𝑘 − 𝜔𝜔 SST 𝑘𝑘 − 𝜔𝜔 Spalart-Allmaras 

Mass flow rate, 
[kg/s] 0.033112835 0.033112835 0.028069 0.027957096 0.027778918 

Exit Mach 
Number, 0.477748171 0.477748171 0.422785 0.42216934 0.41751623 

Thrust Force, [N] 4.598914811 4.598914811 4.064636 4.0421284 3.9744073 
Specific Impulse, 

[s] 14.15761152 14.15761152 14.76116 14.73835591 14.58438226 

Thrust Coefficient, 0.323605524 0.323605524 0.286011 0.284426899 0.279661661 
Normal Shock/ 

Separation position 
[mm] 

/ / / / / 

 

 

These tables show typical nozzle parameters based on both ideal 1D and FIT theories, along with 

numerical results from the different turbulence models. They serve as a comparative reference 

between analytical predictions and CFD-based approaches while simultaneously providing 

benchmark values for subsequent graphical representations.  
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5.4.1 Nozzle Wall Pressure Distribution 

 

 

 
 

 

 



 
 

137 
 

 
In the first figure, which illustrates the numerical wall pressure distribution, the characteristic 

pressure profile of an over-expanded conical nozzle is clearly identified, consistent with the 

discussion in Chapter 2. A well-defined pressure plateau appears downstream of the separation 

point, indicating the expected flow behavior [20]. 

Furthermore, a qualitative comparison between the analytical and numerical wall pressure 

distributions reveals notable differences. The Chapman free interaction theory provides more 

accurate pressure profiles than the ideal one-dimensional theory; however, it does not precisely 

predict the exact location of the separation point [7], [13]. This limitation will be further examined 

in the subsequent discussion. Nevertheless, the overall shape of the pressure distribution remains 

consistent and serves as a reasonable approximation. 

5.5 Shock/ Separation Behavior and Position 
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As illustrated in the above figures, the separation point is clearly marked by a recirculating flow 

bubble forming along the nozzle wall. However, an unexpected behavior emerges: the flow does 

not remain fully separated, as typically observed in a Free Shock Separation (FSS) regime. Instead, 

it reattaches shortly after separation, confining the separated region to a small recirculating bubble. 

This characteristic behavior persists across nearly all Nozzle Pressure Ratios (NPRs). The size of 

the separated region progressively decreases with increasing NPR, becoming virtually absent at 

higher values. The only case exhibiting a near-FSS-like separation occurs at an NPR of 2.5878, 

where the separation region shifts closer to the nozzle exit. At the next higher NPR, only incipient 

separation is observed at the nozzle lips. 

These trends are further supported by the wall shear stress distributions presented in the subsequent 

figures. 
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Examining the numerical shear stress distribution along the nozzle wall reveals the separation point 

as an initial drop in shear stress, approaching nearly zero. For cases with a higher degree of over-

expansion, this is followed by a distinct "ballistic" evolution of shear stress within the separated 

region, culminating in a second minimum that marks the reattachment point. 

Both the height of the apogee (the peak within the "ballistic" curve) and the distance between the 

separation and reattachment points progressively decrease as the NPR increases. Eventually, at an 

NPR of 1.4911, the shear stress profile appears nearly flat, indicating a very thin and almost 

negligible separated region. 

The final NPR value of 1.3353 corresponds to the case of a normal shock without separation, as 

previously described and confirmed here through the shear stress analysis. 
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5.5.1 Shock/ Separation position comparison 

The following figures illustrate the separation and normal shock positions obtained from the 

numerical solutions (black points), the separation point predicted by Chapman’s Free Interaction 

Theory (FIT) (red line), and the normal shock position estimated using one-dimensional theory 

(green line) at various NPR values. 

As previously noted, the Free Interaction Theory is typically applicable to configurations 

exhibiting Free Shock Separation (FSS). However, since reattachment occurs shortly after 

separation in our numerical results, it is difficult to draw definitive conclusions about the theory's 

accuracy in predicting separation points across all cases. Nevertheless, the theory provides a good 

approximation in the single case that closely resembles FSS, corresponding to an NPR value of 

2.5878 where the numerical separation point aligns most closely with the FIT prediction. 

Another noteworthy point regarding FIT's accuracy is its prediction of incipient separation at the 

nozzle lips starting from an NPR of approximately 3 (corresponding to a downstream pressure of 

1.99714 bar). This prediction is consistent with our current numerical findings. 
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5.6 Mass Flow Rate and Exit Mach Number Comparison 

The following figure compares the mass flow rates obtained from the analytical one-dimensional 

theory, the numerical solution, and the experimental orifice measurements across different NPR 

values. 

It is important to note that the experimental mass flow rate does not represent the exact mass flow 

rate through the nozzle itself. Instead, it reflects the mass flow rate measured further downstream 

at the machine’s exit orifice. Its primary purpose here is to illustrate the concept of a choked nozzle 

and to capture the general flow behavior, as evidenced by the observed mass flow trends. 

Compared to the analytical predictions, the numerical results show excellent agreement in the 

supersonic regime, with the only notable deviation occurring in the final case corresponding to 

subsonic nozzle flow. 

 

 
For the exit Mach number, an entirely opposite behavior is observed between the numerical results 

and the one-dimensional theory. Throughout most of the supersonic regime, a significant offset 

error is evident except for the cases corresponding to NPR values that result in a one-dimensional 

normal shock solution and subsonic nozzle flow. 
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5.7 Nozzle Performance Comparison 

As the following results demonstrate, the theoretical performance estimates align remarkably well 

with the numerical results. This agreement is particularly significant, as engineers in most nozzle 

design frameworks are primarily concerned with these final performance metrics. Consequently, 

this simplified theoretical approach, which provides reasonably accurate performance predictions, 

serves as a powerful tool for initial design and approximate estimations. 
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CONCLUSION 

The over-expanded operation of a nozzle is primarily governed by Shock Wave–Boundary Layer 

Interaction (SWBLI), a complex phenomenon involving the interplay between the internal flow 

field, separated regions, and the exhaust plume. Experimental observations reveal distinct 

separation configurations—most notably Free Shock Separation (FSS) and Restricted Shock 

Separation (RSS)—both of which contribute to performance losses and the generation of side loads 

due to unsteady and asymmetric flow behavior. Additionally, conventional nozzle operations 

exhibit various exhaust flow structures, such as barrel shocks, Mach disks, and cap shocks. 

This study confirms that numerical modeling of these interactions, complemented by simplified 

analytical and empirical approaches, demonstrates strong agreement with experimental results. 

This alignment underscores the reliability and accuracy of the developed models in simulating, 

approximating, and understanding the complex flow behaviors within over-expanded nozzle 

regimes. 

The limited exit-to-throat area ratio of the experimental conical nozzle has led to a relatively small 

separation bubble [31]. This finding contrasts with the foundational assumptions of Chapman’s 

Free Interaction Theory, which anticipates an FSS-type separation. As a result, a definitive steady-

state validation of this model could not be achieved within the constraints of the current 

experimental configuration. To refine this theoretical assessment, future investigations using 

alternative nozzle geometries—particularly those that clearly exhibit FSS behavior—are 

recommended. 

Based on the results obtained from this study. The Spalart-Allmaras model delivers enhanced 

accuracy in predicting shock-wave boundary layer interactions involving mild separation 

[rodriguez][Ansys]. 

While the nozzle's original configuration was conical, the presence of the cylindrical probe proved 

to be non-negligible. This observation reinforces the general preference against intrusive 

experimental methods in supersonic regimes, given their significant impact on the flow 

characteristics. 

To further advance nozzle flow understanding and design methodologies, it is crucial to rigorously 

assess and enhance current separation criteria. Moreover, there is a compelling need to innovate 
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and develop new criteria applicable to advanced nozzle architectures, including those introduced 

in Chapter 1. 

Another important aspect that remains beyond the scope of this study is the inherently unsteady 

nature of flow separation and the associated turbulence modeling challenges. A more detailed 

exploration of unsteady interactions and three-dimensional effects would require the 

implementation of advanced computational approaches, such as Large Eddy Simulation (LES), 

Detached Eddy Simulation (DES), or Reynolds Stress Transport (RST)-based models. 

The scope of this work was limited to the experimental, numerical, and analytical investigation of 

mean flow properties associated with flow separation in conical over-expanded nozzles. A 

comprehensive comparison and analysis of the results have been presented. This was preceded by 

an extensive state-of-the-art review and bibliographical survey of flow separation in over-

expanded nozzles, serving as a thorough introduction to the topic. 
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APPENDIX A.  SHOCK / EXPANSION WAVES RELATIONS 

Normal Shock Wave Relations 

Oblique shock relations 
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Expansion waves 
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APPENDIX B. THEORICAL STUDY OF THE EXPERIMENTAL 
CONICAL NOZZLE 

Geometrical Characteristics 

Table B.1 : Nozzle geometrical characteristics. 

Inlet Section Area 498.665 𝑚𝑚𝑚𝑚² 
Throat Section Area 23.62674025 𝑚𝑚𝑚𝑚² 
Exit Section Area 32.6725636 𝑚𝑚𝑚𝑚² 
Divergent half Angle 0.6016° 

 

 Expression for nozzle section area variation with position 

The reference position for length is the nozzle inlet section, all length and area dimensions are 

based on 𝑚𝑚𝑚𝑚. 

Convergent Part, 

𝑦𝑦 = �19.05𝑥𝑥 − 𝑥𝑥2 

𝑟𝑟 = 12.7 − 𝑦𝑦 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜋𝜋 ⋅ (𝑟𝑟2 − 1.62) 

(B-1) 

Figure B.1 : Technical drawing of the experimental conical nozzle with the cylindrical probe. 
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Divergent Part, 

𝑟𝑟 =
7.2 − 6.35
2 ⋅ 40.475

 (𝑥𝑥 − 9.525) + 3.175 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜋𝜋 ⋅ (𝑟𝑟2 − 1.62) 
(B-2) 

Intrinsic Nozzle Characteristics 

Operating Conditions 
Total Pressure, 𝑃𝑃0 6.0 [𝑏𝑏𝑏𝑏𝑏𝑏] 
Total Temperature, 𝑇𝑇0 300.0 [𝐾𝐾] 
Mass flow rate, (𝑚̇𝑚, Eq. (1-21)) 0.03316130879 [𝑘𝑘𝑘𝑘/𝑠𝑠] 

 

Throat Conditions (relations Table 1.2) 
Temperature, 𝑇𝑇∗ 249.9 [𝐾𝐾] 
Pressure, 𝑃𝑃∗ 3.16968 [𝑏𝑏𝑏𝑏𝑏𝑏] 
Density, 𝜌𝜌∗ 4.417177 [𝑘𝑘𝑘𝑘/𝑚𝑚3] 
Velocity, 𝑈𝑈∗ 316.9754 [𝑚𝑚/𝑠𝑠] 

 

Exit Conditions (relations Table 1.1) 
Exit Area ratio, 𝐴𝐴𝑒𝑒/𝐴𝐴∗ 1.382864 
Exit Mach Number, 𝑀𝑀𝑒𝑒 1.74641 
Exit Temperature, 𝑇𝑇𝑒𝑒 186.3366 [𝐾𝐾] 
Exit Pressure, 𝑃𝑃𝑒𝑒 1.133105 [𝑏𝑏𝑏𝑏𝑏𝑏] 
Exit Velocity, 𝑉𝑉𝑒𝑒 477.9133 [𝑚𝑚/𝑠𝑠] 
Critical Exit Pressure, 𝑃𝑃𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  5.129 [𝑏𝑏𝑏𝑏𝑏𝑏] 

 

Adapted Regime Performance 
Thrust Force, (𝐹𝐹𝑎𝑎𝑎𝑎, Eq. (1-27)) 15.84823051 [𝑁𝑁] 
Specific Impulse, (𝐼𝐼𝐼𝐼𝐼𝐼, Eq. (1-29)) 48.716952 [𝑠𝑠] 
Thrust Coefficient, (𝐶𝐶𝑇𝑇, Eq. (1-32)) 1.117958603 

 
All flow field variables follow the isentropic solution across the nozzle, the relations are described 

in Table 1.1. 
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Models Comparison 

Type of Analysis 1D (Ideal) Theory Inviscid (Euler) 2D Viscous Full Solution 
Mass flow rate, [𝐤𝐤𝐤𝐤/𝐬𝐬] 0.03316130879  0.033043253 0.032731018 
Exit Mach Number, 𝐌𝐌𝐞𝐞 1.74641034 1.7468278 1.4855325 
Thrust Force, [𝐍𝐍] 15.84823051  15.79511 14.016029 
Specific Impulse, [𝐬𝐬]  48.7169517 48.727131 43.651229 
Thrust Coefficient, 𝐂𝐂𝐓𝐓 1.117958603 1.1142114 0.9887123 
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Under-Expanded Calculations 

All flow field variations are identical to the adapted regime, unless for performance calculation 

where losses of flow stream divergence from axial direction at nozzle lips occur. Which are due to 

the higher outlet pressure 𝑃𝑃𝑒𝑒 of the flow compared to ambient operating pressure. 

So, losses can be well estimated by a small rearrangement of the thrust equation as follows, 

𝐹𝐹 = 𝑚̇𝑚 𝑉𝑉𝑒𝑒 + (𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑒𝑒) 𝐴𝐴𝑒𝑒 (B-3) 

All other equations remain the same. The reported analytical calculation is given at the end. 

Over-Expanded Calculations 

In this part, we will focus on two studies, one of purely 1D (ideal) theory and the other using the 

free interaction theory. 

Ideal Theory analysis 

In this theory, the overexpansion is divided into two cases, the first and simpler one, is the case 

with exit interaction where a match between exit and ambient pressure is reached by a system of 

oblique shock waves emanating from nozzle lips. And a second case, where there is a formation 

of a strong normal shock wave inside the nozzle, this will lead to a jump in the evolution of flow 

parameters along the nozzle. Let’s start getting into the application. 
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Exit oblique shock waves Interaction 

In this regime, the nozzle interior is not influenced by these exit interactions but, as earlier, nozzle 

performance gets triggered. Especially, the thrust force where the high ambient pressure acts 

against the exit jet, this effect is established using the conventional thrust equation given by Eq. 

(1-26), repeated here 

 𝐹𝐹 = 𝑚̇𝑚𝑝𝑝 𝑉𝑉𝑒𝑒 + (𝑃𝑃𝑒𝑒 − 𝑃𝑃𝑎𝑎) ⋅ 𝐴𝐴𝑒𝑒 (B-4) 

All other equations remain the same. The reported analytical calculation is given at the end. 

Normal shock wave interaction 

Returning to Figure 1.8, we said that, if the pressure is reduced below 𝑃𝑃𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 the nozzle becomes 

“chocked;” i.e., the flow remains sonic at the throat, and the mass flow rate becomes a fixed value, 

no matter how 𝑃𝑃𝑎𝑎 is reduced bellow 𝑃𝑃𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The match in pressure, in the first case, is reached 

through a normal shock wave standing at position 𝑋𝑋𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 in the divergent portion of the nozzle. 

The location of the shock is such that, static-pressure-increase across the shock wave, plus the 

further static pressure increase downstream the shock results precisely in ambient pressure 𝑃𝑃𝑎𝑎 at 

the exit. 

 

Consider the nomenclature shown above. The normal shock wave is located at area 𝐴𝐴1. Conditions 

immediately upstream of the shock are denoted with a subscript 1 , and those immediately 

downstream of the shock are denoted with subscript 2. The flow from the reservoir, where the 

pressure is 𝑃𝑃0, to station 1 is isentropic (with constant entropy 𝑠𝑠1). Hence, the total pressure is 

constant in this flow; that is, 𝑃𝑃01 = 𝑃𝑃0. The total pressure decreases across the shock (due to the 
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entropy increase across the shock). The flow in station 2 downstream of the shock to the nozzle 

exit is also isentropic (with constant entropy 𝑠𝑠2 , where 𝑠𝑠2 > 𝑠𝑠1 ). Hence the total pressure is 

constant in this portion of the flow, with (𝑃𝑃0)𝑒𝑒 = 𝑃𝑃02. Keep in mind that 𝑃𝑃01 > 𝑃𝑃02. For the flow 

in front of the shock, 𝐴𝐴1∗  is a constant value, equal to the area of the sonic throat, 𝐴𝐴1∗ = 𝐴𝐴𝑡𝑡. However, 

due to the entropy increase across the shock, the value of 𝐴𝐴∗ in the subsonic flow downstream of 

the shock, denoted 𝐴𝐴2∗ , takes on the role of the reference value. Indeed, 𝐴𝐴2∗ > 𝐴𝐴1∗ . 

Calculations methodology 

For the case where the normal shock wave is standing at the exit plane of the nozzle, the internal 

flow field is identical to a full-flowing nozzle such that exit conditions are supposed to be the 

limiting conditions to the shock front. Normal shock jump relations given at Appendix A are used 

to get flow condition after the shock. The ambient pressure denoted 𝑃𝑃𝑎𝑎
𝑠𝑠𝑠𝑠𝑠𝑠 which operates after the 

shock presents the upper limit for this regime. While for every 𝑃𝑃𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑃𝑃𝑎𝑎 ≤ 𝑃𝑃𝑎𝑎
𝑠𝑠𝑠𝑠𝑠𝑠  the 

calculations proceed as follows: 

Using the equation for mass flow rate (Eq. (1-21)), and noting that the mass flow rate as well as 

total temperature are conserved across the shock. Then we can write, from the two sides of the 

shock, that, 

𝑚̇𝑚
𝐴𝐴1∗

= �
𝛾𝛾
𝑅𝑅
⋅
𝑃𝑃01
�𝑇𝑇0

⋅ �
2

𝛾𝛾 + 1
�

𝛾𝛾+1
2(𝛾𝛾−1)

 

𝑚̇𝑚
𝐴𝐴2∗

= �
𝛾𝛾
𝑅𝑅
⋅
𝑃𝑃02
�𝑇𝑇0

⋅ �
2

𝛾𝛾 + 1
�

𝛾𝛾+1
2(𝛾𝛾−1)

 

Thus,  

 𝑃𝑃01𝐴𝐴1∗ = 𝑃𝑃02𝐴𝐴2∗  (B-5) 

Keep in mind that 𝐴𝐴∗ is always defined as the sonic throat area; in the supersonic flow ahead of 

the shock, 𝐴𝐴1∗  is equal to the actual throat area 𝐴𝐴𝑡𝑡, because the flow is sonic at 𝐴𝐴𝑡𝑡, whereas behind 

the shock 𝐴𝐴2∗  is the area, the flow behind the shock, would have to be reduced to in order to make 

it locally sonic. Since the flow behind the shock is always subsonic, then 𝐴𝐴2∗  never equals the actual 

physical throat area in the nozzle itself, because the entropy in region 2 is higher than in region 1.  
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Forming the ratio 𝑃𝑃𝑒𝑒𝐴𝐴𝑒𝑒/(𝑃𝑃0𝐴𝐴∗)𝑒𝑒 , where (𝐴𝐴∗)𝑒𝑒 =  𝐴𝐴2∗  , we have 

 𝑃𝑃𝑒𝑒𝐴𝐴𝑒𝑒
𝑃𝑃0𝑒𝑒 𝐴𝐴𝑒𝑒∗

= 𝑃𝑃𝑒𝑒𝐴𝐴𝑒𝑒
𝑃𝑃02 𝐴𝐴2∗

= 𝑃𝑃𝑒𝑒𝐴𝐴𝑒𝑒
𝑃𝑃01𝐴𝐴1∗

= 𝑃𝑃𝑒𝑒
𝑃𝑃01

𝐴𝐴𝑒𝑒
𝐴𝐴𝑡𝑡

 (B-6) 

The terms on the right-hand side are known, because 𝑃𝑃𝑒𝑒/𝑃𝑃01 and 𝐴𝐴𝑒𝑒/𝐴𝐴𝑡𝑡 are specified.  

For the isentropic relations, we can use the relations, 

𝐴𝐴𝑒𝑒
𝐴𝐴𝑒𝑒∗

=
𝐴𝐴𝑒𝑒
𝐴𝐴2∗

=
1
𝑀𝑀𝑒𝑒

�
2

𝛾𝛾 + 1
�1 +

𝛾𝛾 − 1
2

𝑀𝑀𝑒𝑒
2��

(𝛾𝛾+1)/(2𝛾𝛾−2)

 (B-7) 

 

and 

𝑃𝑃𝑒𝑒
𝑃𝑃0𝑒𝑒

=
𝑃𝑃𝑒𝑒
𝑃𝑃02

= �1 +
𝛾𝛾 − 1

2
𝑀𝑀𝑒𝑒
2�

−𝛾𝛾/(𝛾𝛾−1)

 (B-8) 

 

By substituting into Eq. (B-6), we solve for 𝑀𝑀𝑒𝑒. Then, we use the resulting value to solve for 𝑃𝑃02. 

Using the value for 𝑃𝑃02, we form the total pressure ratio across the normal shock. Which is only a 

function of 𝑀𝑀1 in front of the shock, given by (see Appendix A), 

 𝑃𝑃02
𝑃𝑃01

= � (𝛾𝛾+1)𝑀𝑀1
2

(𝛾𝛾−1)𝑀𝑀1
2+2

�
𝛾𝛾

𝛾𝛾−1 � (𝛾𝛾+1)
2𝛾𝛾𝑀𝑀1

2−(𝛾𝛾−1)�
1

𝛾𝛾−1 (B-9) 

Then, solving for 𝑀𝑀1 we can then get the area section, in somewhat the location, of the shock 

𝐴𝐴1(𝑥𝑥) using area section ratio. 

 𝐴𝐴1(𝑥𝑥)
𝐴𝐴𝑡𝑡1

= 1
𝑀𝑀1
� 2
𝛾𝛾+1

�1 + 𝛾𝛾−1
2
𝑀𝑀1
2��

(𝛾𝛾+1)/(2𝛾𝛾−2)
 (B-10) 

All other flow parameters can thus be calculated using isentropic relations in each of the respective 

regions. 

For performance calculations, the same can be said as before, while the thrust is given by, 

 𝐹𝐹 = 𝑚̇𝑚 𝑉𝑉𝑒𝑒 (B-11) 

 The results of the calculations will be reported at the end. 

Free Interaction Theory Application 

By combining the 1D ideal theory with the analytical formula of the skin friction coefficient 

presented in Chapter 4, the practical method for calculating thrust with separation criteria is 

summarized as follows.  

After determining the isentropic nozzle law 𝑃𝑃(𝑥𝑥)/𝑃𝑃0 of the adapted nozzle: 
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1- For a given value of 𝑃𝑃𝑎𝑎. Find on 𝑃𝑃(𝑥𝑥), the point 𝐼𝐼 such that the free interaction separation 
criterion (Eqs. (2-14) or (2-18)) applied at this point results in a pressure jump 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝐼𝐼; 

2- determine 𝑃𝑃𝐼𝐼𝐼𝐼 using the Campbell-Farley correlation. To consider the effects of the separated 
region while in the absence of any completely satisfactory theory, CAMPBELL et FARLEY 
[7] have established an empirical relation that estimates the average pressure 𝑃𝑃𝐼𝐼𝐼𝐼���� in the 
recovered region, this takes the form: 

 1 − 𝑃𝑃𝐸𝐸𝐸𝐸�����

𝑃𝑃𝑎𝑎
cos �𝜃𝜃

2
� = 𝑓𝑓 �𝑃𝑃𝑎𝑎

𝑃𝑃0
⋅ 𝐴𝐴𝐸𝐸−𝐴𝐴𝐼𝐼

𝐴𝐴∗
� (B-12) 

 

Figure B. 2 : Campbell-Farley correlation function [7]. 

Where 𝑃𝑃𝐼𝐼𝐼𝐼���� is a pressure such that, 

𝑃𝑃𝐼𝐼𝐼𝐼���� ⋅ (𝐴𝐴𝐸𝐸 − 𝐴𝐴𝐼𝐼) 

Become the thrust of the separated region (𝐸𝐸𝐸𝐸); 
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3- Calculate the thrust 𝐹𝐹 up to the separation point using the general method 𝐹𝐹𝐼𝐼 = 𝑚̇𝑚 𝑉𝑉𝐼𝐼 +
(𝑃𝑃𝐼𝐼 − 𝑃𝑃𝐸𝐸) 𝐴𝐴𝐼𝐼; 

4- The total thrust is then: 𝐹𝐹 =  𝐹𝐹𝐼𝐼  +  𝑃𝑃𝐼𝐼𝐼𝐼  (𝐴𝐴𝐸𝐸 − 𝐴𝐴𝐼𝐼). 

All other performance calculations remain the same. It is noted that the estimated pressure jump 

predicted using the separation criteria should be compared with the pressure jump that would 

operate from a normal shock wave standing at the separation position. If this last pressure is less 

than the other, it does mean that separation will not occur and the flow will follow the normal 

shock wave solution. 

Subsonic Calculations 

The exact analytical solution of the purely subsonic flow case proceeds as follows. The exit-to-

reservoir pressure ratio must be specified; that is,  𝑃𝑃𝑒𝑒/𝑃𝑃0  is given. Since the total pressure is 

constant through the nozzle, the value of 𝑃𝑃0/𝑃𝑃𝑒𝑒 defines 𝑀𝑀𝑒𝑒 through Eqs. (1-18), i.e.,  

 𝑃𝑃0
𝑃𝑃𝑒𝑒

= �1 + 𝛾𝛾−1
2

 𝑀𝑀𝑒𝑒
2�

𝛾𝛾
𝛾𝛾−1 (B-13) 

Once 𝑀𝑀𝑒𝑒 is known from the solution of Eq. (B-13), the value of 𝐴𝐴∗ can be calculated from Eq. 

(1.22) as 

 𝐴𝐴𝑒𝑒
𝐴𝐴∗

= 1
𝑀𝑀𝑒𝑒
2 �

2
𝛾𝛾+1

�1 + 𝛾𝛾−1
2
𝑀𝑀𝑒𝑒
2��

(𝛾𝛾+1)/(2𝛾𝛾−2)
 (B-14) 

where 𝐴𝐴∗ is simply a reference value in this case; 𝐴𝐴∗ is smaller than the throat area 𝐴𝐴𝑡𝑡,. In turn, 

with 𝐴𝐴∗ known, the local area divided by 𝐴𝐴∗, namely, 𝐴𝐴/𝐴𝐴∗, determines the local Mach number 𝑀𝑀 

via Eq. (1-22). Finally, this local value of 𝑀𝑀 determines the local values of 𝑃𝑃0/𝑃𝑃, 𝜌𝜌0/𝜌𝜌, and 𝑇𝑇0/𝑇𝑇 

from Eqs. (1-18). 

For performance, the thrust is given by Eq. (B-11), and the other metrics remain the same. 

Results and Analysis 

The solutions for different values of 𝑛𝑛 = 𝑃𝑃𝑎𝑎/𝑃𝑃𝑒𝑒 or 𝑁𝑁𝑁𝑁𝑁𝑁, hence ambient pressure, is studied in the 

operating conditions of the experimental nozzle. Where performance calculations from the 

different theories listed above are reported and examined as follows. 
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In Figure B.3, we can see the results for theoretical calculations of nozzle thrust performance. 

Different regions can be distinguished, from the solution of under-expanded regime, through 

adapted, and over-expanded regime. While the right portion of the solution defines a subsonic 

nozzle flow. 

In an over-expended regime, the solutions of both ideal unidimensional theory and free interaction 

theory (FIT) are shown. It has been noted that, for the FIT, it exists a bounded region between 

3.44 < 𝑃𝑃𝑎𝑎/𝑃𝑃𝑒𝑒 < 4.404 where the theory doesn’t give a coherent solution. It is believed that, it 

marks the region of an unsteady wave motion as defined in the last section of chapter 2 (Sec. 2.5). 

Figure B.3 : Theorical analysis result on thrust force performance of the experimental nozzle. 

Figure B.4 : Normal shock/Separation position analysis.  
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Figure B.5 : Specific impulse analysis results. 

 

 

 

Figure B.6 : Thrust coefficient analysis results. 
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