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Abstract 

Citrus diseases pose a significant threat to global citrus production, affecting yield, 

fruit quality, and economic sustainability. Traditional detection methods are often time- 

consuming, labor-intensive, and prone to human error. Recent advances in Artificial 

Intelligence (AI), particularly in machine learning and computer vision, have enabled the 

development of automated and accurate systems for early disease detection. AI-powered 

models can analyze images of citrus leaves, fruits, and trees to identify diseases such as 

Citrus Greening (HLB), canker, and black spot with high precision. Techniques like 

Convolutional Neural Networks (CNNs) are commonly used to classify disease symptoms 

from visual data, while integrated systems leverage remote sensing and Internet of Things 

(IoT) devices for real-time monitoring .The purpose of this study is to develop and evaluate 

an AI-based detection framework in a drone for identifying major citrus diseases at an early 

stage, aiming to improve diagnostic accuracy, reduce crop losses, and support timely 

disease management in citrus orchards. This approach seeks to enhance agricultural 

productivity and sustainability through the adoption of intelligent, data-driven 

technologies. 

 

 

 

 

 

 

 ملخص 
 

  جهدًا  وتتطلب  بطيئة  التقليدية الكشف  طرق تكون  ما  غالباً  .الاقتصادية  والاستدامة  الثمار  وجودة   الغلة  على  تؤثر  حيث  العالم،  مستوى  على  الحمضيات  لإنتاج   كبيرًا  تهديداً  الحمضيات  أمراض  تشكل

  عن المبكر للكشف ودقيقة  مؤتمتة أنظمة تطوير  من الحاسوبية، والرؤية الآلة تعلم   في وخاصة  الاصطناعي،  الذكاء  تقنيات  في  الحديثة  التطورات مكّنت   وقد  .للأخطاء عرضة أنها   كما   كبيرًا،  بشريًا 

  السريع التدهور ومرض التقرح، ومرض الأسود، التبقع  مرض مثل أمراض لتحديد وأشجارها   وثمارها  الحمضيات  لأوراق  صور  تحليل الاصطناعي الذكاء على  المعتمدة النماذج  تستطيع  .الأمراض 

  وأجهزة  بُعد   عن   الاستشعار على  المتكاملة   الأنظمة  تعتمد  كما   البصرية،  البيانات من   الأمراض  أعراض   لتصنيف  شائع  بشكل   (CNNs)  الالتفافية  العصبية الشبكات  وتسُتخدم .عالية  بدقة )هوانغلونغبنغ /التخضير(

 تحسين   بهدف  طيار،  بدون   الطائرات  في الاصطناعي  الذكاء  باستخدام الحمضيات  أمراض  عن للكشف   عمل  إطار   وتقييم  تطوير  إلى الدراسة  هذه وتهدف   .الفعلي  الوقت   في  للمراقبة (IoT) الأشياء  إنترنت 

 .البيانات على  تعتمد ذكية تقنيات تبني  خلال  من  والاستدامة الزراعية الإنتاجية  تعزيز  إلى   المقاربة  هذه  وتسعى   .الحمضيات   بساتين  في للأمراض  الفعالة  الإدارة   ودعم   المحاصيل،  في  الخسائر   وتقليل   التشخيص،   دقة



Résumé 

Les maladies des agrumes représentent une menace majeure pour la production 

mondiale, affectant le rendement, la qualité des fruits et la durabilité économique. Les 

méthodes traditionnelles de détection sont souvent longues, coûteuses en main-d'œuvre et 

sujettes à l’erreur humaine. Les avancées récentes en intelligence artificielle (IA), 

notamment dans l’apprentissage automatique et la vision par ordinateur, ont permis le 

développement de systèmes automatisés et précis pour la détection précoce des maladies. 

Les modèles basés sur l’IA peuvent analyser des images de feuilles, de fruits et d’arbres 

d’agrumes afin d’identifier avec précision des maladies telles que le verdissement des 

agrumes (HLB), le chancre et la tache noire. Des techniques comme les réseaux de 

neurones convolutifs (CNN) sont couramment utilisées pour classer les symptômes des 

maladies à partir de données visuelles, tandis que des systèmes intégrés exploitent la 

télédétection et les dispositifs de l’Internet des objets (IoT) pour une surveillance en temps 

réel. L'objectif de cette étude est de développer et d’évaluer un cadre de détection basé sur 

l’intelligence artificielle dans un conception de drone pour identifier précocement les 

principales maladies des agrumes, dans le but d'améliorer la précision diagnostique, de 

réduire les pertes de récolte et de favoriser une gestion rapide et efficace des maladies. 

Cette approche vise à renforcer la productivité agricole et la durabilité grâce à l’adoption 

de technologies intelligentes basées sur les données . 
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General introduction 

 
Agriculture plays a fundamental role in driving the economic growth of nations across the 

globe. Among various agricultural products, citrus fruits hold particular importance due to 

their health benefits, including immune-boosting properties and their ability to combat 

infections. However, citrus crops are vulnerable to a range of diseases that can significantly 

reduce yield and cause substantial financial losses for farmers. 

Early and accurate detection of citrus diseases is critical for effective disease management, 

reducing economic impact, and promoting sustainable agricultural practices. Traditional 

disease detection methods typically rely on laboratory testing and expert analysis, which can 

be time-consuming, labor-intensive, and prone to human error. Delays in diagnosis and 

intervention can lead to the rapid spread of diseases, further exacerbating losses. 

There is a pressing need for automated systems capable of early disease detection, 

classification, and the recommendation of preventive measures. Recent advancements in 

Artificial Intelligence (AI), particularly in Machine Learning (ML), offer promising 

solutions for the automatic and reliable detection of plant diseases. By integrating image 

processing with ML techniques [1], these systems can identify diseases with high precision 

using images of infected citrus plants. 

Machine learning models, when properly trained, can predict diseases based on unknown 

input images by analyzing visual patterns and extracting key features. These features capture 

important statistical characteristics from the images, allowing the models to determine the 

type and severity of the disease. 

The effectiveness of ML-based disease detection largely depends on: 

⚫ The availability of a comprehensive and high-quality dataset, 

⚫ The resolution and clarity of the input images, 

⚫ The optimization of relevant features used for training. 

Feature optimization plays a vital role in enhancing model performance by selecting the most 

informative variables from image data. Using robust feature selection and extraction 

techniques helps maintain high classification accuracy while improving computational 

efficiency. This not only reduces processing time but also contributes to the development of 

more reliable and interpretable detection systems. 
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This study proposes a machine learning framework that integrates feature optimization 

techniques for the accurate identification of citrus diseases. 

 

By isolating the most discriminative features from citrus leaf images, the approach aims to 

improve both the accuracy and efficiency of disease classification models. This work 

evaluates multiple machine learning classifiers, feature selection methods, and performance 

metrics to develop a consistent and reliable detection system. 

In recent years, ML-based approaches have emerged as powerful tools for automating citrus 

disease diagnosis. These techniques combine advanced image processing, feature extraction, 

and classification to detect symptoms in leaves, fruits, and stems. Incorporating feature 

optimization further enhances model accuracy, reduces computational complexity, and 

delivers a scalable, cost-effective solution for real-world agricultural use. 

The study and analysis can be done through two methods, the traditional method and the 

technology method. 

Traditional methods for citrus disease detection largely depend on visual inspection carried 

out by farmers or agricultural experts. An overview of these detection techniques is 

illustrated in Figure 1. Despite being widely used, conventional diagnostic approaches face 

several critical limitations: 

⚫ Dependence on Expert Knowledge: The accuracy of manual disease 

identification heavily depends on the expertise and experience of the evaluator. 

Inaccurate diagnoses by untrained or less experienced personnel can lead to 

inappropriate treatments and ineffective disease management. 

⚫ Labor-Intensive and Time-Consuming: Conducting field surveys and visually 

inspecting each plant requires considerable time and physical effort, making it 

difficult to perform frequent or large-scale monitoring. 

⚫ Delayed Detection: Manual methods are often unable to identify diseases at their 

early stages. By the time symptoms become visually apparent, the disease may 

have already progressed and spread, reducing the effectiveness of any remedial 

actions. 
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⚫ Limitations of Laboratory Testing: While laboratory-based techniques such as 

Polymerase Chain Reaction (PCR) [2] and Enzyme-Linked Immunosorbent 

Assay (ELISA) [2] offer high accuracy, they are resource-intensive. 

These methods require specialized equipment, trained personnel, and considerable 

time and cost, them impractical for or large-scale deployment in the field. 

In contrast to traditional techniques, machine learning (ML)-based approaches offer several 

significant advantages for citrus disease detection: 

⚫ Automated and Scalable Analysis: ML models are capable of analyzing large 

volumes of data efficiently, enabling rapid and automated disease detection 

without the need for continuous human oversight. 

⚫ Enhanced Accuracy and Reliability: By eliminating subjectivity and human 

error, especially through deep learning and optimized feature selection, ML 

models deliver more accurate and consistent classification results. 

⚫ Early-Stage Detection: Machine learning systems can identify diseases at an 

early stage by detecting subtle patterns or visual indicators that may not be 

noticeable to the human eye, allowing for timely and effective intervention. 

⚫ Cost-Effective and User-Friendly Deployment: Once trained, ML models can 

be implemented on low-cost mobile or edge devices, making the technology 

accessible and practical for farmers, even those with limited technical expertise. 

 

 

This work is divided into three chapters 

 

 

The first chapter: presents generalities about the citrus diseases that we choosed. 

 

 

The second chapter: presents an explanation about the Artificial Intelligence 

and image processing. 

 

 

The third chapter: presents the analysis of results. 
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I.1. Introduction 

Citrus fruits including oranges, lemons, mandarins, limes, and grapefruits are cultivated in 

over 140 countries and represent a vital component of global agriculture and economy. 

Valued for their nutritional benefits, culinary versatility, and high market demand, citrus 

fruits contribute significantly to food security and rural development, especially in tropical 

and subtropical regions. However, this vibrant sector faces serious challenges due to the 

widespread incidence of citrus diseases. 

 

Citrus plants are vulnerable to a wide variety of pathogens, including fungi, bacteria, 

viruses, viroids, and phytoplasmas [2] as well as damage from nematodes and abiotic 

stresses (such as nutrient deficiencies, drought, or frost) [2]. These diseases can affect every 

part of the plant from roots to leaves, flowers, and fruits and often result in yield reduction, 

fruit deformities, tree decline, and even death. 

 

The economic impact of citrus diseases is profound. Infected orchards often suffer from 

reduced productivity, increased cost of chemical control, and strict quarantine regulations 

that limit international trade. Some pathogens can spread rapidly across entire regions, 

leading to large-scale destruction and loss of biodiversity in commercial and traditional 

citrus varieties. 

 

I.2. Citrus Black Spot (CBS) 

Citrus Black Spot (CBS) is a fungal disease caused by Phyllotactic citric Arpa (previously 

known as Guignardia citric Arpa) that affects citrus plants [3], leading to a decline in both 

fruit quality and yield. The pathogen produces noticeable lesions on the fruit rind, 

significantly reducing the fruit’s visual appeal and making it unsuitable for fresh markets. 

Among the most susceptible citrus types are Navel and Valencia oranges, lemons, and 

grapefruits, while sour orange and its variants show moderate resistance. Notably, rough 

lemons and acid limes do not typically exhibit symptoms of CBS. 

 

The disease presents itself in several forms, including hard spots, cracked spots, false 

melanose,  and  virulent  spots,  each  with  its  own  distinct  appearance. 
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The most characteristic and widely recognized symptom is the hard spot small, 

sunken, round lesions with grayish centers and reddish-brown borders. CBS thrives under 

specific climatic conditions, particularly in cool and moist environments during the winter 

season. Because of its potential to spread and affect trade, CBS is classified as a quarantine 

disease in many regions. Effective management includes the application of fungicides, 

especially copper-based or strobilurin compounds, along with careful monitoring and 

orchard sanitation practices. 

 

 

Figure 1: Citrus Black Spot (CBS) 

 

 

 

 

I.3. Citrus Greening Disease (Huanglongbing - HLB) 

Citrus Greening Disease, also known as Huanglongbing (HLB) [4], is one of the most 

devastating diseases affecting citrus crops worldwide. It is caused by the bacterium 

Candidatus Liberibacter (primarily asiaticus) [4], which is transmitted by the Asian citrus 

psyllid (Diaphorina citri) [3]. The disease disrupts the flow of nutrients within the plant, 

leading to symptoms such as yellowing of leaves, shoot dieback, misshapen and bitter- 

tasting fruits, and a general decline in tree health. Affected fruits often remain partially 

green, which gives the disease its name. Over time, infected trees produce less fruit and 

may eventually die. There is currently no cure for citrus greening, making it a major threat 

to citrus industries in Asia, the Americas, and parts of Africa. 
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Management strategies focus on controlling the psyllid vector, removing infected trees, and 

using disease-free planting material. HLB's rapid spread and severe impact have made it a 

key target for global citrus research and quarantine efforts. 

 

Figure 2: Citrus Greening (HLB) 

 

I.4. Citrus Canker 

Citrus canker is a highly contagious bacterial disease caused by Xanthomonas citri subsp 

[3]. citri, affecting a wide range of citrus species, especially grapefruit, Mexican lime, and 

sweet orange. It produces characteristic raised, corky lesions with yellow halos on leaves, 

stems, and fruit, leading to defoliation, fruit blemishes, and premature fruit drop. The 

pathogen enters through stomata or wounds and spreads rapidly via wind-driven rain, 

contaminated tools, and infected plant material, especially under warm, humid conditions. 

The disease significantly impacts citrus production and trade due to reduced fruit quality 

and yield, as well as strict quarantine measures. Management involves integrated 

approaches including the use of certified disease-free nursery stock, copper-based 

bactericides, removal of infected trees, sanitation practices, and, where available, planting 

of more resistant cultivars. Despite control efforts, citrus canker remains a major threat to 

the global citrus industry due to its persistence and the lack of fully resistant commercial 

varieties. 
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Figure 3: Citrus Canker 

 

I.5. Comparison of Citrus Greening, Black Spot, and Canker 

The three diseases Citrus Greening (HLB), Citrus Black Spot (CBS), and Citrus Canker 

differ significantly in terms of causal agents, modes of transmission, plant symptoms, and 

management strategies, each requiring a tailored approach to detection and control. 

 

 

I.5.1. Causal Agents and Pathogen Type 

Citrus greening is caused by a bacterium from the genus Candidatus Liberibacter, most 

notably Candidatus Liberibacter asiaticus [3]. This pathogen is phloem-limited, meaning it 

resides inside the vascular tissues of the plant, blocking nutrient transport and resulting in 

systemic decline. In contrast, citrus black spot is due to a fungus, Phyllosticta citricarpa 

[3], which primarily infects external tissues like the fruit rind and leaf surfaces, and 

reproduces via fungal spores. Meanwhile, citrus canker is caused by another bacterium, 

Xanthomonas citri subsp [4]. Citri, which colonizes intercellular spaces of leaf, fruit, and 

twig tissues, forming characteristic lesions. The fundamental difference between these 

pathogens fungal vs. bacterial, vascular vs. surface-localized determines how they affect 

the tree and how they spread. 

 

 

I.5.2. Vectors and Modes of Transmission 

A major distinction lies in how these pathogens are spread. Citrus greening relies on insect 

vectors, particularly the Asian citrus psyllid (Diaphorina citri) and African citrus psyllid 

(Trioza erytreae) [4]. These tiny insects acquire the bacteria while feeding on infected trees 

and inject it into healthy trees during feeding, making vector control a top priority. By 
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contrast, citrus black spot does not have an insect vector. Its fungal spores are dispersed 

mainly by rain splash, wind, and through infected leaf litter, which makes humidity and 

rainfall important factors in its epidemiology. 

 

Citrus canker spreads through wind-driven rain, but also mechanical contact such as tools, 

equipment, workers’ clothing, and contaminated nursery stock. These differing 

transmission modes highlight why greening demands psyllid monitoring and eradication 

campaigns, while black spot and canker require environmental management and strict 

hygiene protocols. 

 

 

I.5.3. Symptoms and Disease Progression 

The symptoms of each disease also vary widely in both appearance and severity. In citrus 

greening, leaves show blotchy mottling that is often asymmetrical, a key diagnostic feature. 

Fruits become small, green, misshapen, and bitter, often with aborted seeds and delayed 

color change. The infection progresses internally, eventually killing the tree. In black spot, 

the damage is mostly cosmetic in nature, affecting the outer fruit rind with distinct necrotic 

lesions ranging from “hard spot” (sunken black lesions) to speckled or freckled blotches 

leading to early fruit drop and economic loss due to downgraded fruit. The disease is not 

systemic and doesn’t kill trees. Citrus canker, on the other hand, causes raised, corky 

lesions surrounded by a yellow halo on leaves, fruit, and stems. These lesions may merge 

into large blisters, leading to defoliation, twig dieback, and reduced fruit quality, but the 

disease does not move systemically in the plant like HLB does. 

 

 

 

I.5.4. Management and Control Strategies 

Control measures reflect these biological differences. Citrus greening is the most difficult 

to manage because it is systemic and incurable once a tree is infected, it must often be 

removed. Management relies on early detection, mass removal of infected trees, biological 

and chemical control of psyllid populations, and the use of certified disease-free nursery 

stock. Research into resistant or tolerant rootstocks and scions is ongoing but no 

commercial solution has yet proven fully effective. 



Chapter I GENERALITIES 

10 

 

 

For citrus black spot, control is more feasible through protective fungicide sprays 

especially strobilurins and copper-based fungicides applied at key periods during the fruit 

development stage. Cultural practices like pruning for better airflow, sanitation of leaf 

litter, and use of resistant cultivars can reduce spore load and delay onset. 

 

Citrus canker control is similarly complex but involves copper-based bactericides, strict 

quarantine, and sanitation measures. In many regions, infected trees are destroyed to 

prevent spread. The use of windbreaks helps reduce rain splash transmission. Unlike HLB, 

canker can survive on the plant surface, making tool disinfection and worker hygiene 

especially important. 

 

 

I.5.5. Host Range and Affected Tissues 

All three diseases affect various parts of the tree but with different scopes. Citrus greening 

affects the entire tree, disrupting vascular flow and eventually leading to tree death. In black 

spot, the disease is primarily superficial, affecting fruit rinds and leaves, but not the fruit's 

internal quality. Citrus canker affects leaves, fruit, and young twigs, causing lesions that 

compromise the market appearance and potentially reduce yield, but it doesn’t directly kill 

the tree unless compounded by other stresses. 

 

 

 

 

I.5.6. Geographic Distribution and Economic Importance 

From a geographic standpoint, citrus greening is now present in all major citrus-growing 

regions including Asia, North and South America, and parts of Africa. It is the most feared 

disease in the citrus industry due to its devastating long-term effects and lack of cure. Citrus 

black spot is more localized widespread in South Africa, Brazil, and parts of the United 

States (notably Florida) but is heavily regulated by international trade barriers, making it a 

major concern for exporters. Citrus canker, originally from Asia, has spread to South 

America and the southern U.S., causing severe outbreaks in areas with warm, humid 

climates. Countries that are canker-free enforce strict quarantine protocols to prevent 

introduction. 
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I.6. Conclusion 

Citrus diseases such as greening (HLB), black spot, and canker represent serious threats to 

global citrus production, each with distinct symptoms, transmission methods, and 

management challenges. Traditional detection approaches, although widely used, suffer 

from key limitations including labor intensity, dependence on expert judgment, and delayed 

disease identification. These issues are particularly pronounced in large-scale agricultural 

settings, where visual inspections and manual diagnostics become impractical. 

To overcome these challenges, the introduction of modern technologies—especially 

Artificial Intelligence (AI) and Remote Sensing (RS) through drone platforms—has become 

essential. These innovations enable scalable, precise, and real-time disease detection, 

significantly enhancing the efficiency of citrus orchard monitoring. By combining advanced 

image processing with machine learning, AI systems can detect diseases in early stages, 

reducing crop loss and guiding effective intervention strategies. 

This chapter has laid the foundational understanding of the biological, economic, and 

geographical dimensions of citrus diseases. In the next chapter, we will explore in detail how 

AI and image processing technologies can be applied to detect these diseases with high 

accuracy, offering a transformative approach to sustainable and intelligent citrus farming. 
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II.1. Introduction 

Artificial Intelligence (AI) and image processing are closely related fields that have seen 

remarkable advancements in recent years. AI, particularly through subfields such as deep 

learning and machine learning, has revolutionized the way images are processed and 

analyzed. 

II.2. Artificial Intelligence 

 

II.2.1. Overview of Artificial Intelligence 

 

II.2.1.1. Definition of Artificial Intelligence 

The word "intelligence" is derived from the Latin "intellegere" or "intelligere." It is worth 

noting that the Internet, by amplifying the mechanisms of information reinforcement 

among humans, has greatly contributed to establishing the concept of collective 

intelligence. Intelligence is the dynamic ability to make inferences from stimuli, derive 

abstractions, and create a language that enables the naming, exchange, and connection of 

these abstractions. Intelligence has made it possible to define the concept of context, 

thereby clarifying that relationships are not necessarily repetitive. These capabilities are 

what distinguish humans from other mammals. Not only can a dog not say "tomorrow," but 

it is also likely that the concept of "tomorrow" is not developed within its cognitive abilities. 

An example of artificial intelligence was proposed by British mathematician Alan Turing 

in 1950 . 
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II.2.1.2. The Objective and General Impact of Artificial Intelligence 

The goal of Artificial Intelligence (AI) is to design systems capable of replicating human 

behavior in reasoning activities. AI aims to model intelligence as a phenomenon, much like 

physics, chemistry, or biology seek to model other natural phenomena. 

 

Artificial Intelligence has a profound and multifaceted impact on various aspects of society, 

the economy, and daily life, particularly in areas such as the economy and employment, 

healthcare and medicine, transportation and logistics, education, security and defense, 

environment, and agriculture, among others. In summary, AI holds immense potential to 

positively transform many aspects of society, but it is essential to address the associated 

ethical and social challenges to ensure the responsible and equitable deployment of these 

technologies. 
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II.2.2. History of Artificial Intelligence 

• Gestation of AI (1943–1955): During this period, the first foundational works that 

can be considered the beginning of artificial intelligence were carried out, even 

though the term "AI" did not yet exist. Notably, McCulloch and Pitts introduced a 

model of artificial neurons in 1943. 

 

A few years later, Hebb proposed a rule for modifying connections between 

neurons, and Minsky and Edmonds built the first neural network. It was also 

during this time that Turing published his famous paper introducing the Turing 

Test [8]. 

 

• Birth of AI (1956): In this year, a small group of computer scientists interested 

in the study of intelligence gathered for a conference that marked the official birth 

of AI as a field. 

• Rising Hopes (1952–1969): This was a highly active period for the young field of 

AI. A large number of programs were developed to solve a wide variety of 

problems. The Logic Theorist (by Newell and Simon) and the Geometry Theorem 

Prover (by Gelernter) were able to prove certain mathematical theorems—already 

known, but sometimes with more elegant proofs [8]. 

• Early Disappointments (1966–1973): During these years, it became increasingly 

clear that the predictions made by AI researchers had been overly optimistic. A 

notable example of this was the failure of machine translation to meet 

expectations. 
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• Expert Systems (1969–1979): The first expert system, called DENDRAL, was 

created in 1969 for the specialized task of determining a molecule’s structure 

based on its chemical formula and mass spectrometry results. 

• AI in Industry (1980–present): In the early 1980s, the company DEC began 

using an expert system to assist in configuring computer systems, saving tens of 

millions of dollars annually. 

• Modern AI (1987–present): Over time, artificial intelligence has become an 

increasingly rigorous and formal scientific discipline. Most modern approaches 

are based on mathematical theories or experimental studies rather than intuition, 

and they are more frequently applied to real-world problems [8]. 

 

II.3. Application Areas of Artificial Intelligence 

 

II.3.1. Fields of Application 

o Expert systems (used in medicine, financial analysis, and device 

configuration), are employed for tasks such as diagnostics, 

monitoring, or troubleshooting in industrial settings [7]. 

 

o Robotics and CAD/CAM (Computer-Aided Manufacturing): 

Involves the introduction of robots that gather information through 

sensors or cameras, allowing them to navigate and operate in 

diverse environments. 

 

o Language understanding and machine translation: 

Development of natural language interfaces, enabling users to 

query databases in English or French [7]. 

 

o Pattern recognition (speech, image, and handwriting 

recognition): For example, IBM uses a voice interface that 

recognizes 20,000 English business-related words and displays 

them on screen [7]. 
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o Learning: Refers to creating programs capable of generating their 

own knowledge by modifying themselves based on their successes 

and failures. 

 

o Artificial emotion: Refers to research on emotional computing, 

such as the work of Rosalind Picard on emotion recognition and 

modeling. 

II.3.2. Research Areas 

o Machine Learning: This process includes analytical learning systems, 

which aim to analyze and reformat existing knowledge into a more efficient 

or "operational" form. Synthetic learning systems, on the other hand, aim to 

discover fundamentally new knowledge [7]. 

o Virtual Reality: This field offers new forms of interaction between humans 

and machines. The advent of more powerful computers with advanced 

graphic capabilities, combined with visualization and interaction devices 

(such as headsets, gloves, etc.), makes it possible to provide the necessary 

sensory information (Figure 4). 

o Pattern Recognition: Research in this field focuses on automating the 

identification of typical situations in terms of perception. Its methods have 

numerous applications, including computer vision, speech recognition, 

optical character reading, and image synthesis [7]. 
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Figure 4: Photos on the use of virtual reality and artificial intelligence in research [7]. 

 

 

II.4. UAV-Based Smart Farming (Overview) 

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are increasingly becoming 

vital tools in smart farming a component of precision agriculture that leverages advanced 

technologies to optimize field-level management. UAV-based smart farming involves using 

aerial platforms equipped with sensors and cameras to collect high-resolution spatial data, 

enabling real-time monitoring, mapping, and analysis of agricultural environments. 

These drones contribute significantly to improving crop yield, reducing resource wastage, and 

enhancing decision-making in farming operations. From seeding and spraying to health 

assessment and irrigation management, UAVs serve as versatile instruments in both large- 

scale and smallholder agriculture [14] . 

 

II.4.1. Implementation of UAVs in Agriculture 

II.4.1.1. Crop Monitoring & Health Assessment 

• UAVs equipped with multispectral or hyperspectral cameras help detect early signs of 

stress, disease, or pest infestation by analyzing vegetation indices like NDVI 

(Normalized Difference Vegetation Index) [15] . 
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• Enables precision intervention, reducing pesticide usage and increasing plant health 

[15] . 

II.4.1.2. Soil and Field Analysis 

• UAVs assist in generating 3D maps of terrain, moisture levels, and soil texture [16] . 

• Helps in pre-planting decision-making and assessing soil variability across fields [16]. 

II.4.1.3. Precision Spraying 

• Drones with autonomous spraying systems can apply fertilizers, herbicides, and 

pesticides with high precision. [17] . 

• Reduces chemical usage and exposure risks for human workers [17] . 

II.4.1.4. Irrigation Management 

• Thermal imaging cameras detect areas with water stress, allowing farmers to optimize 

irrigation schedules and reduce water waste [18] . 

II.4.1.5. Crop Counting and Yield Prediction 

• Using computer vision and AI models, UAVs can count plants/fruits and estimate 

expected yields, which supports supply chain planning and harvesting logistics [19] . 

II.4.1.6. Livestock Monitoring 

• Some UAVs are used for herding and tracking livestock, especially in large-scale 

ranching [20] . 

 

II.4.2. Problems and Challenges of UAVs in Agriculture 

Despite their potential, UAV-based farming faces several technical, economic, and regulatory 

challenges: 

II.4.2.1. High Initial Cost 

• The acquisition and maintenance costs of UAVs, especially those with advanced 

sensors (e.g., multispectral, LiDAR), are often prohibitive for smallholder farmers 

[21] . 

• Software and data analysis tools add to the overall expense [21] . 
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II.4.2.2. Technical Complexity 

• Requires specialized knowledge to operate UAVs, process data, and interpret outputs 

[22] . 

• Not all farmers are trained in GIS, remote sensing, or AI-based analysis, necessitating 

external support [22] . 

II.4.2.3. Limited Flight Time and Range 

• Most commercial UAVs have short battery life (20–40 minutes), limiting their 

application over large fields without multiple recharges or battery swaps [23] . 

II.4.2.4. Data Processing Challenges 

• UAVs generate large volumes of data (images, video, thermal maps), which require 

powerful computing systems and often cloud-based platforms to process effectively 

[24] . 

II.4.2.5. Regulatory Restrictions 

• Many countries have strict regulations on drone flights (e.g., altitude limits, no-fly 

zones, licensing) [25] . 

• Weather conditions, such as wind and rain, can also severely affect drone operations[ 

25] . 

II.4.2.6. Privacy and Security Concerns 

• UAVs raise data privacy issues when flying over shared or neighboring land [26] . 

• Cybersecurity risks also exist if drones are hacked or intercepted [26] . 

II.4.2.7. Environmental and Safety Risks 

• Risk of accidental crashes, especially in adverse weather or around power lines [27] . 

• Improper handling or malfunctions can cause harm to people, animals, or crops [27] . 

 

II.5. CNN 

CNN (Convolutional Neural Network) is a deep learning algorithm which takes an image 

as an input and extracts all possible features from the images making the need for hand- 

engineered feature extraction obsolete. Compared to other algorithms, the pre-processing 

complexity of CNN is much less. In the earlier algorithms, filters were manually provided, 

but with server iterations of training, CNN has the capacity to learn those filters by 

themselves. The CNN was designed according to the circuit of neurons in the human brain. 
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The role of CNN is to compress the images in way that reduces processing complexities so 

that no features are lost and maximum accuracy is achieved. This characteristic is essential 

when we want to create a model does not only adept at extracting features but can also 

adapt to large datasets. The pooling layer has the task of decreasing the spatial area of the 

convolved features. 

This serves the purpose of decreasing the effort to minimize the dimension of the matrix 

still maintaining matrix integrity. Max pooling and average pooling are the two types of 

pooling available. Max pooling gives the maximum value that the kernel encloses on the 

part of the image. On the other hand, average pooling gives the average of every value that 

the kernel encloses. High-level features are learned from the fully connected layer. 

Then the images are converted to a column to its reduced form. These variables define the 

prominent features using provided numbers of iterations using SoftMax. 

 

 

Figure 5: simple Architecture of CNN [5] 

 

 

II.6. Image Processing 

II.6.1. Definition of Image Processing 

Image processing is a field positioned at the intersection of computer science, computer 

vision, and digital photography. It involves various operations and manipulations aimed at 

enhancing, analyzing, or extracting useful information from digital images with the 

purpose of: 

• Enhancing image quality: This includes color correction, brightness and 

contrast adjustment, noise reduction, smoothing, and edge enhancement. 
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• Restoring degraded images: Techniques used to correct defects caused 

during image capture, such as blurring, scratches, and other forms of 

degradation. 

• Segmenting and analyzing: Dividing an image into different parts or 

objects for deeper analysis. This may involve edge detection, feature 

extraction, and object recognition. 

• Compression and storage: Reducing image file size to save storage space 

and facilitate transmission. Techniques include both lossless and lossy 

compression methods. 

• Image synthesis and generation: Creating new images from data, often 

used in augmented reality, video games, and 3D modeling. 

 

II.7. Transfer Learning 

A unique event can be perceived in numerous deep neural networks: in the starting layers 

of the network, a deep learning model tries to learn a low level of features, like detecting 

edges, colors, variations of intensities, etc. 

These features do not seem to fall under a specific dataset or an errand because of no matter 

what type of images we are processing either for detecting a lion or cars. In both cases, we 

must detect these low-level features. All these features occur regardless of the exact cost 

function or image dataset. Thus, learning these features in one task of detecting lion can be 

used in other tasks like detecting humans. This is what transfer learning is. Nowadays, it is 

very hard to see people training a complete CNN from the ground up, and it is common to 

use any pretrained model trained on a plethora of images in a similar task, e.g. models 

trained on ImageNet (1000 categories of around 1 million images), and use features from 

them to solve a new task . 
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Figure 6: Block Diagram of transfer-learning [6] 
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II.8. Machine learning 

Machine learning (ML) is a transformative subfield of artificial intelligence that empowers 

systems to automatically learn and improve from experience without being explicitly 

programmed. At its core, machine learning relies on algorithms that build mathematical 

models based on input data to make predictions or decisions. The architectural backbone 

of machine learning involves several key components: data preprocessing, feature 

extraction, model selection, training, and evaluation. The foundational architecture was 

laid by pioneers such as Arthur Samuel, who first coined the term in the 1950s, and was 

later formalized by researchers like Tom M. Mitchell, who defined a machine learning 

system as one that improves its performance on a task through experience. Architecturally, 

ML systems are structured in layers where data flows from raw input to predictive output, 

often through complex pipelines involving neural networks, decision trees, support vector 

machines, and ensemble methods. The architecture evolves depending on the problem 

supervised, unsupervised, or reinforcement learning and is enhanced by feedback loops, 

optimization strategies like gradient descent, and loss functions guiding the learning 

process. Modern advancements in computational power and big data have enabled deep 

learning architectures, such as convolutional and recurrent neural networks, to solve 

complex tasks in vision, language, and decision-making, continuing the legacy of 

structured, layered learning systems envisioned by early architects of the field. 

 

 

 

Figure 7: Traditional Learning vs Transfer Learning [9] 
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II.9. VGG16 

The VGG-16 model is a convolutional neural network (CNN) architecture that was 

proposed by the Visual Geometry Group (VGG) at the University of Oxford. It is 

characterized by its depth, consisting of 16 layers, including 13 convolutional layers and 3 

fully connected layers. VGG-16 is renowned for its simplicity and effectiveness, as well as 

its ability to achieve strong performance on various computer vision tasks, including image 

classification and object recognition. The model's architecture features a stack of 

convolutional layers followed by max-pooling layers, with progressively increasing depth. 

This design enables the model to learn intricate hierarchical representations of visual 

features, leading to robust and accurate predictions. Despite its simplicity compared to 

more recent architectures, VGG-16 remains a popular choice for many deep learning 

applications due to its versatility and excellent performance. The ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) is an annual competition in computer vision 

where teams tackle tasks including object localization and image classification. VGG16, 

proposed by Karen Simonyan and Andrew Zisserman in 2014, achieved top ranks in both 

tasks, detecting objects from 200 classes and classifying images into 1000 categories. 

 

 

 

Figure 8: VGG-16 architecture [12] 

https://media.geeksforgeeks.org/wp-content/uploads/20200219152207/new41.jpg
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II.10. VGG Architecture 

VGG16 is a deep convolutional neural network architecture developed by Karen 

Simonyan and Andrew Zisserman from the Visual Geometry Group at the University of 

Oxford. It was introduced in 2014 through the paper "Very Deep Convolutional 

Networks for Large-Scale Image Recognition" and became notable for its simplicity, 

uniform design, and strong performance in the ImageNet competition. The architecture 

consists of 16 weight layers: 13 convolutional layers and 3 fully connected layers. It 

processes input images of size 224×224 with 3 color channels (RGB) and uses only 

small 3×3 convolution filters throughout the network, combined with 2×2 max pooling 

layers for down sampling. The model is structured in blocks: the first two blocks have 

two convolutional layers with 64 and 128 filters respectively, followed by max pooling; 

the next three blocks each have three convolutional layers with 256, 512, and 512 filters 

respectively, all followed by max pooling. After the convolutional part, the network has 

three dense (fully connected) layers: the first two with 4096 neurons and the third with 

1000 neurons corresponding to the 1000 classes of ImageNet, followed by a SoftMax 

activation. Despite its relatively simple design, VGG16 has over 138 million 

parameters, making it computationally heavy and memory-intensive, especially in the 

fully connected layers. However, its deep structure and consistency make it highly 

effective for feature extraction and transfer learning in various computer vision tasks. 

 

Figure 9: VGG-16 architecture Map [12] 

https://media.geeksforgeeks.org/wp-content/uploads/20200219152327/conv-layers-vgg16.jpg
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II.10.1. The difference between the “VGG-16” and the ”VGG-19” networks 

 

Table 1: Comparison between VGG19 and VGG16 [12] 

 

 

 

II.11. Keras function 

Keras is a high-level neural networks API, written in Python and capable of running on 

top of deep learning frameworks like TensorFlow, Theano, or CNTK. It simplifies the 

creation, training, and deployment of deep learning models by offering an intuitive 

interface for both beginners and experts. Keras operates through a functional architecture 

built around modular blocks including models, layers, optimizers, loss functions, metrics, 

callbacks, and preprocessing utilities. 

The core component is the Model API, which includes the Sequential model—ideal for 

linear layer stacks—and the Functional API, allowing the construction of more complex, 

non-linear architectures like multi-input or multi-output models, shared layers, and 

directed acyclic graphs. Layers like Dense, Conv2D, LSTM, and Dropout represent 

neural components that can be stacked or combined flexibly, while optimizers such as 

SGD, Adam, and RMSprop adjust learning based on gradients to minimize a loss function 

like categorical_crossentropy or mean_squared_error. Keras also includes metrics (e.g., 

accuracy, precision) to monitor performance during training and validation, and callbacks 

such as EarlyStopping, ModelCheckpoint, and TensorBoard for monitoring and 

controlling the training loop dynamically. For data handling, Keras provides 

preprocessing functions to load, augment, and batch datasets efficiently (e.g., 

ImageDataGenerator, Tokenizer, pad_sequences). 
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Architecturally, Keras is designed with modularity, extensibility, and minimalism at its 

core: every element is a standalone, configurable object that can be plugged into a model 

seamlessly. This design philosophy allows Keras to act as a rapid prototyping tool while 

remaining powerful enough for production-level deployment. It abstracts away much of 

the complexity of deep learning backend frameworks, enabling users to focus on building 

and testing models without getting lost in low-level operations. [11] 
 

 

Figure 10: Summary Diagram of the Main Functions Through Keras 

 

II.12. TensorFlow function 

TensorFlow is an open-source end-to-end machine learning framework developed by 

Google, designed for building and deploying machine learning and deep learning models 

at scale. It operates using a highly flexible, layered architecture that supports development 

from simple prototypes to complex production systems. At its core, TensorFlow uses 

computational graphs, where nodes represent operations (like addition or matrix 

multiplication) and edges represent tensors (multidimensional arrays of data). 
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This graph-based architecture enables optimized execution across different platforms 

(CPUs, GPUs, TPUs) and environments (mobile, edge, cloud). The foundational API 

provides low-level operations for tensor manipulation (tf.constant, tf.Variable, tf.matmul, 

etc.), allowing fine-grained control for researchers and developers. 

On top of this, TensorFlow offers high-level APIs such as tf.keras, which simplifies 

model building, training, evaluation, and deployment through familiar objects like 

Sequential, Model, Layer, compile(), and fit(). TensorFlow includes powerful tools for 

automatic differentiation (tf.GradientTape) essential for training deep networks, and 

supports various optimizers (SGD, Adam, Adagrad) and loss functions 

(categorical_crossentropy, mse) for different learning tasks. It also provides advanced 

modules for data pipeline management using the tf.data API, which allows efficient 

loading, preprocessing, batching, and shuffling of large datasets. For deployment, 

TensorFlow supports TensorFlow Lite (for mobile and embedded devices), 

TensorFlow.js (for browser and JavaScript apps), and TensorFlow Serving (for scalable 

inference in production). The architecture is extensible, with support for custom layers, 

training loops, distributed training (tf.distribute.Strategy), and integration with tools like 

TensorBoard for visualization and TF Hub for model reuse.Designed with scalability, 

flexibility, and performance in mind, TensorFlow bridges the gap between research and 

production, enabling developers to move seamlessly from experimentation to deployment 

in real-world environments. 

 

II.13. ImageDataGenerator 

ImageDataGenerator is a high-level utility provided by the tf.keras.preprocessing.image 

module in TensorFlow that plays a crucial role in preparing image data for training deep 

learning models, especially in computer vision tasks. It is designed to handle image 

loading, preprocessing, augmentation, and real-time data feeding in a memory-efficient 

and automated manner. The architecture of ImageDataGenerator revolves around a 

generator-based pipeline that yields batches of preprocessed images directly to the 

training loop, which is ideal for handling large datasets that cannot fit entirely into 

memory. It includes functionality for rescaling pixel values (e.g., rescale=1./255 to 

normalize images), and powerful data augmentation techniques such as rotation, shifting, 

zooming, flipping, shearing, and brightness adjustment, which help improve model 

generalization by artificially expanding the training set with realistic image variations. 
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The flow_from_directory() method is a key component that loads images from a directory 

structure organized by class labels, automatically labeling them and generating batches 

for training, validation, or testing. Alternatively, flow() supports direct input from Numpy 

arrays, and flow_from_dataframe() enables integration with data in tabular formats. 

Architecturally, ImageDataGenerator sits between raw data and the model, operating in 

real-time without needing to store augmented copies of data on disk.This streamlines the 

training process, especially for convolutional neural networks (CNNs), by continuously 

feeding fresh, varied data that reduces overfitting and enhances robustness. Furthermore, 

it supports shuffling, batch sizing, and label encoding as part of the pipeline, making it a 

comprehensive tool for image preprocessing and augmentation. Although TensorFlow 

2.x has moved toward using the more flexible tf.data API for production pipelines, 

ImageDataGenerator remains widely used for its simplicity and effectiveness in 

prototyping and small-to-medium scale computer vision tasks. Its modular, plug-and-play 

architecture integrates directly with model.fit() or model.fit_generator() methods, 

allowing users to efficiently train models on enriched image datasets with minimal code 

and maximal flexibility. 

 

II.14. Flatten and dense 

Flatten and Dense are fundamental layers in the architecture of neural networks, 

especially within the Keras and TensorFlow frameworks, and they play a central role in 

connecting different parts of a model. The Flatten layer acts as a structural bridge between 

convolutional or recurrent layers and fully connected (dense) layers; it reshapes a multi- 

dimensional tensor (e.g., a 2D feature map from a convolutional layer) into a one- 

dimensional vector while preserving the batch size. This transformation is essential 

because fully connected layers require 1D input vectors. Flatten performs no learning— 

its role is purely structural—but it enables the transition from spatial feature extraction to 

decision-making layers. In contrast, the Dense layer is a fully connected neural layer, 

where every input neuron is connected to every output neuron. Architecturally, a Dense 

layer performs a linear transformation (output = activation(Wx + b)) where W is the 

weight matrix, x is the input, b is the bias vector, and the result is passed through an 

activation function such as ReLU, sigmoid, or softmax . This layer learns patterns and 

decision boundaries based on input features and is commonly used in both intermediate 

and output layers of neural networks. 
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Dense layers are critical for classification, regression, and decision-making tasks as they 

combine features extracted by earlier layers and map them to output labels or predictions. 

Both Flatten and Dense integrate seamlessly within the Sequential or Functional API of 

Keras/TensorFlow, and their architecture supports custom configurations such as 

specifying the number of units, activation functions, kernel initializers, and regularization 

strategies. 

Together, Flatten and Dense form the backbone of the transition from raw feature 

extraction to high-level reasoning in deep learning pipelines, making them indispensable 

components in neural network design. 

 

II.15. Earlystopping 

EarlyStopping is a crucial regularization technique in deep learning that helps prevent 

overfitting by halting the training process when a monitored performance metric, such as 

validation loss or accuracy, stops improving. It is implemented as a callback in Keras and 

is integrated directly into the training loop via the Model.fit() function. Architecturally, 

EarlyStopping is built as a class that inherits from tf.keras.callbacks.Callback, and it 

overrides key methods like on_train_begin, on_epoch_end, and on_train_end. At the start 

of training, it initializes internal variables to track progress. After each epoch, it evaluates 

whether the monitored metric has improved; if not, it increases a patience counter. If the 

counter exceeds a predefined threshold (set via the patience parameter), training stops. If 

the restore_best_weights flag is set to True, it rolls back the model to the best-performing 

weights recorded during training. The callback can operate in different modes such as 

'min' or 'max', depending on whether the metric is expected to decrease (like loss) or 

increase (like accuracy). This mechanism is particularly useful as it not only reduces 

training time and computational cost but also ensures that the model generalizes better by 

avoiding overfitting to the training data. EarlyStopping acts as an intelligent checkpoint 

system that guards model performance dynamically, making it essential for robust model 

development. 
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II.16. Matplotlib.pyplot 

Matplotlib.pyplot is a widely used plotting module in Python, part of the larger matplotlib 

library, and is primarily designed for creating static, interactive, and animated 

visualizations. It is often imported using the alias plt with the command import 

matplotlib.pyplot as plt.Architecturally, pyplot functions as a state-machine-based 

interface built on top of matplotlib's object-oriented (OO) API. It mimics the MATLAB 

plotting style, making it easy for users to generate plots with minimal code. Behind the 

scenes, pyplot manages the creation and manipulation of figure and axes objects 

automatically, allowing users to focus on plot content rather than the underlying figure 

hierarchy. 

For instance, when a function like plt.plot() is called, pyplot checks if a figure or axes 

exist, creates them if not, and plots the data accordingly. 

This abstraction is ideal for quick data visualization and prototyping. Internally, pyplot 

uses a rendering engine to draw the plots on various backends (e.g., Agg for PNGs, 

TkAgg for GUIs). It provides a vast collection of functions to control every aspect of a 

plot, including titles, labels, ticks, legends, grids, and layout. matplotlib.pyplot supports 

various plot types such as line charts, bar charts, histograms, scatter plots, and more. It is 

particularly powerful when combined with data libraries like NumPy or Pandas, enabling 

high-quality and highly customizable visual representations of data for analysis and 

presentation. [13] 

 

II.17. MobileNet 

MobileNet is a class of lightweight deep convolutional neural network architectures 

designed specifically for mobile and embedded vision applications, where computational 

resources and memory are limited. Architecturally, MobileNet is built on a highly efficient 

model design based on dep thwise separable convolutions, which significantly reduce the 

number of parameters and computational cost compared to traditional convolutional 

networks like VGG or ResNet. Instead of using a single standard convolution, MobileNet 

factorizes it into two layers: a depth wise convolution, which applies a single filter per input 

channel, followed by a pointwise convolution (a 1×1 convolution), which combines the 

outputs of the depth wise convolution. 
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This architectural innovation drastically lowers the number of multiply-add operations 

(FLOPs) while preserving most of the accuracy, making it ideal for real-time inference on 

devices like smartphones, IoT hardware, and edge computing platforms. There are multiple 

versions of MobileNet MobileNetV1, V2, and V3 each introducing additional 

improvements. MobileNetV2 introduces an inverted residual structure and linear 

bottlenecks, which enhance feature reuse and reduce information loss. MobileNetV3, the 

latest in the family, combines ideas from V2 with Neural Architecture Search (NAS) to 

automatically discover the most efficient architectures for a given hardware constraint, and 

includes additional components like SE blocks (Squeeze-and-Excitation) for better feature 

recalibration. In TensorFlow or Keras, MobileNet can be easily imported via from 

keras.applications import MobileNet or using MobileNetV2 and MobileNetV3 variants. 

 

These models are widely used in transfer learning for tasks like image classification, object 

detection, and segmentation by leveraging their pre-trained weights on ImageNet and fine- 

tuning them for specific tasks. In summary, MobileNet achieves an optimal balance 

between speed and accuracy, making it a cornerstone model for deploying deep learning 

on edge devices. 
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II.18. DenseNet 201 

DenseNet-201 is a deep convolutional neural network that belongs to the DenseNet (Densely 

Connected Convolutional Networks) family, specifically designed to improve the flow of 

information and gradients throughout the network. Its architecture is based on the principle of 

dense connectivity, where each layer receives the feature maps of all preceding layers as input, 

and passes its own feature maps to all subsequent layers. This results in 201 total layers, 

making it a very deep model while still being parameter-efficient. Architecturally, DenseNet- 

201 is composed of multiple dense blocks, each containing a sequence of convolutional layers, 

and separated by transition layers that use 1x1 convolutions and pooling to compress feature 

maps and control model complexity. Each layer within a dense block consists of a batch 

normalization layer, a ReLU activation, a 1x1 bottleneck convolution, followed by a 3x3 

convolution, with the output concatenated to the inputs of the next layer—creating a rich 

network of feature reuse and preventing vanishing gradients. DenseNet-201 uses a growth rate 

(usually 32) to control how many new feature maps each layer contributes. Despite its depth, 

the dense connectivity pattern significantly reduces the number of parameters compared to 

traditional architectures like VGG or ResNet, and it promotes better feature propagation and 

regularization. In practice, DenseNet-201 is used for high-level vision tasks such as image 

classification and medical imaging, often pretrained on large datasets like ImageNet and fine- 

tuned for specific tasks. The combination of deep hierarchical features and efficient 

connections makes DenseNet-201 both powerful and computationally feasible for complex 

real-world applications. 
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Figure 11: DenseNet 201 Architecture 
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II.19. Load model 

 
In the context of deep learning, especially when using TensorFlow and Keras, the load_model 

function plays a crucial role in the deployment and reuse of trained models. This function, 

available via from tensorflow.keras.models import load_model, allows you to load a 

previously saved model, including its architecture, weights, optimizer configuration, and 

training state. The architecture of this function was designed to support reproducibility and 

portability of models across different environments and applications.Under the hood, 

load_model works by reading a file typically in the HDF5 (.h5) format or the TensorFlow 

SavedModel format that stores all components of the model. When invoked, it reconstructs 

the exact same model object used during training, enabling further training (fine-tuning), 

evaluation, or inference without redefining the architecture or reloading the weights manually. 

The modular architecture of load_model ensures compatibility with custom objects through 

the custom_objects argument, which is essential for models that use custom layers, loss 

functions, or metrics. This functionality is part of the broader architectural philosophy in 

TensorFlow/Keras to streamline the machine learning lifecycle, from model definition and 

training to saving and loading for production or experimentation. 

 

II.20. Sklearn 

 
Scikit-learn, commonly imported as sklearn, is a powerful and widely-used machine learning 

library in Python, designed with a clean and consistent architecture for building and evaluating 

ML models. Developed initially by David Cournapeau as part of the Google Summer of Code 

project, and later maintained by a large community of contributors, scikit-learn is built on top 

of foundational scientific libraries like NumPy, SciPy, and matplotlib. Its architecture is 

modular and object-oriented, which allows for easy experimentation and interchangeability of 

components such as classifiers, regressors, and preprocessing tools.At its core, scikit-learn 

provides a unified interface for supervised and unsupervised learning tasks such as 

classification, regression, clustering, dimensionality reduction, and model selection through 

simple and intuitive APIs.The central design pattern of fit(), predict(), and transform() 

methods ensures consistency across different models and transformers. 
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For example, whether you're using a Support Vector Machine (SVC), a Decision Tree 

(DecisionTreeClassifier), or a preprocessing scaler (StandardScaler), you can apply the same 

method calls, which simplifies the machine learning workflow.Scikit-learn also incorporates 

tools for model evaluation (e.g., cross-validation, confusion matrices, classification reports), 

hyperparameter tuning (e.g., GridSearchCV), and pipelines (Pipeline objects), allowing for 

efficient and reproducible end-to-end model development. Its architecture reflects a balance 

between simplicity and flexibility, making it ideal for both beginners and researchers who 

want robust, fast, and scalable ML implementations. [12] 

 

II.21. Confusion matrix 

The confusion_matrix function in scikit-learn is a vital evaluation tool used to measure the 

performance of classification models by comparing predicted and actual class labels. 

Architecturally, it is designed to provide a structured summary of prediction results in the 

form of a square matrix, where each row represents the instances of an actual class, and each 

column represents the instances of a predicted class. This function is accessed via from 

sklearn.metrics import confusion_matrix, and it accepts two primary arguments: the true 

labels (y_true) and the predicted labels (y_pred).Under the hood, confusion_matrix constructs 

the matrix by counting the number of correct and incorrect predictions for each class. In binary 

classification, it shows true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN), which are foundational for computing performance metrics such as accuracy, 

precision, recall, and F1-score. In multiclass problems, the matrix expands to reflect all 

possible pairwise comparisons between true and predicted classes, helping identify patterns 

like class imbalance or frequent misclassification.From an architectural perspective, 

confusion_matrix integrates seamlessly with other scikit-learn metrics and visualization tools, 

and can be customized with parameters such as labels to order or limit the output matrix, and 

normalize to return proportions instead of raw counts. 

This modular and interpretable design makes it a core component in diagnosing and improving 

classification models in real-world machine learning pipelines. 
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II.22. Conclusion 

In this chapter, we explored the integration of artificial intelligence and image processing in 

the context of citrus disease detection and management. We discussed the pressing 

challenges in the citrus industry due to diseases such as citrus greening, black spot, and 

canker, and how traditional detection methods are often insufficient for timely and large- 

scale interventions. The application of machine learning and deep learning—particularly 

Convolutional Neural Networks (CNNs)—was shown to offer powerful solutions for 

automating disease detection with high accuracy. We examined key technologies including 

transfer learning, object detection algorithms, and drone-based monitoring, as well as core 

tools and libraries like TensorFlow, Keras, NumPy, and Pandas that support this work. 

Finally, we reviewed architectural models like VGG, DenseNet, and MobileNet, which play 

a crucial role in enhancing classification performance. 

This technological foundation sets the stage for the next chapter, which will focus on the 

methodology and experimental setup used to implement and evaluate AI-based citrus disease 

detection systems in practice. 
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III.1. Introduction 

To address these challenges, the integration of Artificial Intelligence (AI) particularly Machine 

Learning (ML) and Deep Learning (DL) with image processing techniques is emerging as a 

powerful solution for automated disease detection. By leveraging large datasets of citrus 

images, AI models can be trained to identify subtle patterns in leaves, fruits, or branches that 

may be invisible to the human eye. Image processing methods such as color space 

transformation (e.g., RGB to HSV), segmentation, edge detection, and morphological filtering 

allow for preprocessing and feature extraction, improving the accuracy of classification. In this 

context, Convolutional Neural Networks (CNNs) have become the backbone of image-based 

plant disease classification. 

 

 

III.2. Platform used for implementation 

III.2.1. Software 

III.2.1.1. Python 3.11.3 

 
Python is an object-oriented, open-source programming language with dynamic semantics. Its 

syntax is simple and readable, making it easy to learn and maintain programs. The Python 

interpreter and its extensive standard library are freely available in source form for all major 

platforms. [9] 

 

 

 

III.2.1.2. Jupyter 6.5.4 

Jupyter Notebook was released in 2015 as an interactive environment for running code directly 

in the browser. It is a notebook-creation application developed under the Jupyter Project. 

Jupyter Notebook offers fast and interactive ways to prototype and explain code, as well as to 

explore and visualize data. It facilitates the integration of code, text, and images in a seamless 

and user-friendly manner. [10] 
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III.3. Working Principal 

It is a systematic process where a computer learns to identify different conditions of citrus fruits 

(healthy or diseased) by looking at many examples. 

III.3.1. Data Input (Gathering the Examples) 

III.3.1.1. Principle 

The algorithm begins by collecting a large collection of images of citrus fruits (oranges). These 

images are carefully labeled to indicate their condition: "fresh" (healthy), "canker," "black 

spot," or "greening." 

 

III.3.1.2. Purpose 

This labeled dataset serves as the "knowledge base" for the computer. It's like showing 

someone many examples of apples and oranges and telling them which is which, so they can 

learn to differentiate. 

 

III.3.2. Preprocessing (Getting Ready to Learn) 

III.3.2.1. Principle 

Raw images from cameras can vary widely in size, lighting, and orientation. This stage 

standardizes them so the computer can process them efficiently. 

 

III.3.2.2. Purpose 

Images are typically resized to a uniform dimension (e.g., 128x128 pixels), their colors might 

be normalized, and sometimes "augmented" (slightly rotated, zoomed, or flipped) to create even 

more variations from the existing images. This makes the learning process more robust and 

prevents the model from being too specific to the exact images it saw during training. 
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III.3.3. Model Training (The Learning Phase) 

III.3.3.1. Principle 

This is where the core "learning" happens, often using a type of Artificial Intelligence called a 

*Convolutional Neural Network (CNN)*. The preprocessed images and their labels are fed into 

this network. 

 

III.3.3.2. Process 

The CNN analyzes patterns and features within the images (e.g., the texture of a black spot, 

the color changes of greening, or the smooth surface of a fresh orange). Through many 

iterations, the network adjusts its internal parameters to best associate specific visual patterns 

with their corresponding disease labels. It continuously tries to minimize errors in its 

predictions. 

 

III.3.3.3. Outcome 

After training, the model becomes capable of recognizing these visual patterns and making 

predictions based on them. 

 

III.3.4. Output Prediction (Identifying New Cases) 

III.3.4.1. Principle 

Once the model is trained, it's ready to be used on *new*, unseen orange images to predict their 

condition. 

 

III.3.4.2. Process 

You provide a new orange image (e.g., from a farm or a market). This image goes through the 

same preprocessing steps as the training data. The preprocessed image is then fed into the now- 

trained CNN. The CNN analyzes the image and outputs a probability for each possible 

condition (canker, black spot, greening, fresh). 
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III.3.4.3. Result 

The condition with the highest probability is given as the model's prediction, telling us whether 

the orange is fresh or affected by a specific disease. 

 

In essence, the algorithm learns from a vast collection of examples to become an expert at 

visually diagnosing orange fruit diseases, allowing for quick and automated inspection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Functioning Diagrammed of the Machine (Model) 
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III.4. The LOSS and ACCURACY of the validation and the training 

during the training 

III.4.1. Validation 

Validation is the phase where the model is tested during training on new data it hasn’t seen 

before to check how well it performs. 

III.4.2. Train 

Training is the phase where your model learns from labeled data. 
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III.4.2.1. Loss During Training 

III.4.2.1.1. Train Loss (blue) 

The training loss demonstrates a consistent downward trend across epochs, suggesting that the 

model is effectively learning the underlying patterns and structures within the training data. This 

progressive reduction in loss reflects the model's increasing ability to minimize prediction errors 

through weight adjustments during backpropagation. The absence of significant fluctuations or 

spikes in the training loss further indicates a stable learning process and convergence, implying that 

the learning rate is well-tuned and that the model is not experiencing instability during optimization. 

Moreover, the steady decline suggests that the model is not underfitting the data, as it is successfully 

capturing the complexity of the input without struggling to reduce the error. This behavior is 

characteristic of a model that is appropriately expressive and is benefiting from sufficient training 

data and well-calibrated hyperparameters. 

III.4.2.1.2. Validation Loss (orange) 

The validation loss initially decreases during the first few epochs (notably between epochs 0 and 1), 

indicating that the model begins to generalize effectively to unseen data early in the training process. 

After this initial drop, the loss remains relatively stable across subsequent epochs, with minimal 

fluctuations. This suggests that the model maintains a consistent level of performance on the 

validation set, neither improving significantly nor deteriorating. Such a plateau may reflect that the 

model has reached a point where additional training offers diminishing returns in terms of 

generalization. It also indicates that the model is not underfitting, as it was able to reduce validation 

loss initially, and is not showing signs of instability or erratic behavior during training. 

III.4.2.2. Accuracy During Training 

III.4.2.2.1. Train Accuracy (blue) 

The training accuracy exhibits a smooth and continuous upward trajectory across the training epochs, 

ultimately reaching approximately 98%. This steady improvement indicates that the model is progressively 

enhancing its ability to correctly classify the training samples. The absence of abrupt jumps or volatility 

suggests that the optimization process is stable and that the learning rate is appropriately configured. 

Achieving high training accuracy reflects the model’s strong capacity to capture and represent the 

underlying features of the training data, further supporting the observation that the model is not 

underfitting. Such performance may be attributed to an effective architecture, sufficient training data, and 

appropriate hyperparameter selection, all contributing to successful pattern recognition and classification 

within the training set. 



Chapter III Simulation and Results 
 

 

 

 

III.4.2.2.2. Validation Accuracy (orange) 

The validation accuracy starts at a relatively high level, approximately 94%, and remains 

consistently strong throughout the training process. This indicates that the model is capable of 

generalizing well to unseen data from the early stages of training. The sustained high performance 

on the validation set suggests that the learned features are not merely specific to the training data 

but are also representative of the broader data distribution. The lack of significant drops or instability 

in validation accuracy further implies that the model maintains its generalization capacity over time. 

This behavior reflects a well-balanced training process, where the model avoids both underfitting 

and severe overfitting during the observed epochs. 

 

• Results 
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III.5. Test 

III.5.1. Test Loss 

The model achieves a low-test loss of 0.1063, indicating a minimal error when making predictions on 

completely unseen data. This low value demonstrates that the model has successfully generalized 

beyond the training and validation datasets and is capable of maintaining strong performance in a real- 

world inference context. A small test loss, when accompanied by high accuracy, as observed here 

(96.97%), suggests that the model is neither overfitting nor underfitting, but rather has achieved an 

optimal balance between learning the training data and generalizing to new samples. The consistency 

between training, validation, and test metrics further reinforces the robustness and reliability of the 

model's predictive capability. 

III.5.2. Test Accuracy 

The model achieves a high-test accuracy of 96.97%, which is indicative of excellent 

generalization to previously unseen data. This performance reflects the model’s ability to 

accurately classify new examples that were not part of the training or validation sets, suggesting 

that the learned features are robust and transferable. Such a high level of accuracy on the test 

set implies that the model is well-suited for deployment in practical, real-world scenarios where 

reliability and consistency are critical. The alignment between test accuracy and both training 

and validation accuracy further confirms that the model maintains strong predictive 

performance across all phases of evaluation without exhibiting signs of overfitting. 

 

Table 2: Classification Report 

 

 

Class 

 

Precision 

 

Recall 

 

F1-score 

 

Support 

 

0 (e.g. Fresh) 

 

1.00 

 

0.91 

 

0.95 

 

22 

 

1 (e.g. Blackspot) 

 

0.88 

 

1.00 

 

0.94 

 

22 

 

2 (e.g. Canker) 

 

1.00 

 

0.97 

 

0.98 

 

33 

 

3 (e.g. Greening) 

 

1.00 

 

1.00 

 

1.00 

 

22 
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III.5.3. Interpretation 

III.5.3.1. Precision 

Precision reflects the proportion of correct positive predictions among all instances predicted 

as positive. In this context, the model demonstrates consistently high precision across all 

classes, with values ranging from 0.88 to 1.00. Such results indicate that the majority of the 

predicted cases for each disease class are accurate, minimizing false positives. Notably, 

classes such as 'Fresh,' 'Canker,' and 'Greening' exhibit perfect precision (1.00), meaning the 

model made no incorrect positive predictions for these categories. The slightly lower precision 

for 'Blackspot' (0.88) still represents strong performance, though it suggests a few instances 

of misclassification. Overall, the high precision scores across all classes confirm the model’s 

reliability in making confident and accurate predictions, which is essential in practical 

applications such as disease detection in agriculture, where false alarms could lead to 

unnecessary interventions. 

 

III.5.3.2. Recall 

Recall measures the proportion of actual positive cases that were correctly identified by the 

model, reflecting its ability to capture relevant instances. The recall scores in this evaluation 

are consistently high across all classes, ranging from 0.91 to 1.00, indicating that the model is 

highly effective in detecting true positives. Of particular note is Class 1 (e.g., Blackspot), 

which achieved a perfect recall of 1.00, signifying that all actual instances of this disease were 

successfully identified without any false negatives. Similarly, Classes 2 (Canker) and 3 

(Greening) also show excellent recall (0.97 and 1.00, respectively), suggesting robust 

detection capability. While Class 0 (Fresh) exhibits a slightly lower recall of 0.91, it remains 

strong and suggests only a small number of misclassifications. Overall, these results confirm 

the model’s high sensitivity, especially crucial in agricultural disease detection, where failing 

to identify diseased samples can lead to significant economic and ecological consequences. 
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III.5.3.3. F1-score 

The F1-score, defined as the harmonic mean of precision and recall, provides a comprehensive 

measure of a model’s performance by balancing its ability to avoid both false positives and 

false negatives. In the presented results, all F1-scores are remarkably high, with values 

exceeding 0.94 across all classes. This indicates that the model consistently maintains strong 

precision and recall simultaneously, reflecting its robustness in classifying each disease 

category. Notably, Class 3 (e.g., Greening) achieves a perfect F1-score of 1.00, while other 

classes such as Canker (0.98), Fresh (0.95), and Blackspot (0.94) also demonstrate excellent 

performance. These consistently high F1-scores confirm the model’s reliability and suitability 

for tasks requiring both accurate detection and minimal misclassification, such as early 

identification of plant diseases in agricultural settings. 

 

III.5.3.4. Macro Avg and Weighted Avg 

Both the macro average and weighted average are reported at 0.97, indicating that the model 

maintains consistently high performance across all classes, even in the presence of slight class 

imbalance. This demonstrates that the model is not only accurate on the dominant classes but 

also performs well on less represented categories, reflecting balanced and robust classification 

behavior. 
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III.5.4. Confusion Matrix  

 
[20 2 0 0] 

 [ 0 22 0 0] 
 [ 0 1 32 0] 

[ 0 0 0 22] 

 
III.5.4.1. Interpretation 

• Diagonal values (20, 22, 32, 22) are correct predictions. 

• Only 3 misclassifications total: 

o 2 samples from class 0 misclassified (possibly predicted as class 1). 

o 1 sample from class 2 misclassified (possibly as class 1). 

• No confusion between completely unrelated classes. 

 

 

III.5.5. Model Prediction Output 

We have downloaded one image of the desired fruit (Orange), a fresh one and uploaded it to the 

model and we have let it decide whether it is a good orange or a bad one : 

 

 

 

The model accurately identified the fruit as 'Fresh,' demonstrating its ability to correctly 

distinguish between healthy and diseased samples. This successful prediction provides practical 

evidence of the model’s effectiveness and reliability in recognizing the health status of citrus fruits. 

It also reinforces the model’s generalization capability beyond the training dataset, indicating its 

potential for deployment in real agricultural settings where automated fruit quality assessment is 

required. 
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III.6. Conclusion 

This chapter presented a comprehensive overview of the advanced methodologies and deep 

learning techniques employed for the recognition of citrus diseases. The core of the proposed work 

involved the development and optimization of a Convolutional Neural Network (CNN) model 

tailored to accurately detect and classify various citrus leaf conditions, including healthy samples 

and multiple disease types. In addition to describing the model architecture and enhancements, we 

also provided an in-depth explanation of the tools, libraries, and computational frameworks used 

throughout the implementation. The chapter further outlined the characteristics and preparation of 

the dataset, including preprocessing strategies and data augmentation techniques to improve model 

robustness. A clear, step-by-step description of the training, validation, and testing pipeline was 

provided to ensure reproducibility and transparency. The results obtained confirm the effectiveness 

of the proposed model in distinguishing between citrus diseases with high accuracy, underscoring 

the potential of deep learning as a reliable solution in precision agriculture and automated plant 

health monitoring. 
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General conclusion 

The conclusion represents the final and most significant part of this research, drawing together 

the major theoretical insights and practical achievements established throughout the study. This 

work focused on the application of advanced deep learning techniques—particularly 

Convolutional Neural Networks (CNNs)—to the task of automated citrus disease detection. 

From the initial literature review to the development and deployment of the model, each phase 

of the project contributed to building a robust and intelligent system capable of accurately 

identifying multiple citrus leaf conditions. 

 

The implemented model demonstrated excellent performance in terms of accuracy, precision, 

recall, and F1-score across all classes, thereby validating the effectiveness of the chosen 

architecture and training strategy. The successful classification of real-world test samples 

further reinforced the model’s generalization capabilities and its potential utility in practical 

agricultural settings. 

 

Moreover, this research emphasized the importance of integrating technology with agriculture, 

presenting a scalable and data-driven solution that could assist farmers and agricultural experts 

in early disease detection and crop health monitoring. Such an approach can significantly 

reduce economic losses, minimize unnecessary pesticide use, and improve yield quality by 

enabling timely interventions. 

 

Looking forward, several avenues exist for future work. These include expanding the dataset 

with more diverse samples under varying environmental conditions, incorporating additional 

citrus diseases, and exploring other deep learning architectures such as EfficientNet or Vision 

Transformers (ViTs). Further, the system could be enhanced with real-time mobile or drone- 

based deployment for in-field diagnostics. Integrating Internet of Things (IoT) devices and 

cloud computing could also contribute to building a fully automated, intelligent crop 

monitoring platform. 

 

In summary, this research demonstrates the potential of combining artificial intelligence with 

agricultural science, offering a powerful tool for modern precision farming. It lays a solid 

foundation for future innovations aimed at achieving sustainable and efficient agricultural 

practices through the adoption of smart, technology-driven solutions. 
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