REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SAAD DAHLEB BLIDA FACULTE DE TECHNOLOGIE DEPARTEMENT DE GENIE MECANIQUE LABORATOIRE DE TRAITEMENT DE SURFACE & MATERIAUX

PROJET DE FIN D'ETUDES

Pour l'obtention du diplôme de MASTER en génie mécanique

Option : Ingénierie des Matériaux et des Surfaces

Thème:

Dopage d'un acier outil avec des carbures

Promoteur : Réalisé par :

Pr.Bacha Nacer Said Oussama

Belkhir Mohamed Aymen

Année universitaire 2024/2025

Remerciements

Nous remercions en premier lieu ALLAH qui nous a donné le courage, la patience, et la force pour achever ce travail.

Nos vifs remerciements sont destinés à notre promoteur **Pr. Nacer BACHA** pour son aide, ces critiques constructives, ses explications et suggestions pertinentes et pour la qualité de ses orientations tout au long de ce travail et pour avoir apporté tant de soins à la réalisation de ce mémoire.

Nous remercions également les membres de jury qui nous font honneur en acceptant d'examiner et de juger notre travail.

Nous remercions nos familles et nos parents qui nous ont accompagnés tout au long de notre parcours jusqu'à ce que nous atteignions cette étape.

Nous n'oublions pas de remercier tous les enseignants qui nous ont encadrés durant notre parcours universitaire en particulier ceux de la spécialité Ingénierie des matériaux et des surfaces.

Dédicace

Je dédie ce travail à mes parents, pour leur amour, leur soutien inconditionnel et leurs sacrifices tout au long de mon parcours.

À mes sœurs, pour leur présence et leurs encouragements constants.

À mes amis, pour leur aide précieuse et les moments partagés.

À Mes Enseignants, pour leur expertise, leur patience et leurs précieux conseils qui m'ont permis de progresser et de m'épanouir dans mes recherches.

Dédicaces

Je dédie ce travail à ma chère famille, source de ma force et de mon inspiration.

À mes enseignants, pour leur encadrement et leurs conseils tout au long de mon cursus.

À tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail, je vous remercie du fond du cœur.

RESUME

Dans cette étude, nous proposons d'étudier l'impact du dopage d'une poudre d'un acier outil sous forme de poudre, destinée initialement pour la fabrication d'outils par frittage à chaud, avec des carbures de tungstène ou de chrome sur leur résistance à l'usure et à la corrosion. La projection thermique à flamme sera choisie pour bâtir les revêtements composites avec différentes poudres de renforts et différents mélanges.

La microscopie optique et la microscopie électronique à balayage muni d'une sonde EDS ont été utilisées pour caractériser les poudres alliées et les microstructures des revêtements déposés. Les essais de dureté, d'usure et de corrosion ont été effectués sur les revêtements composites. Les résultats ont montré que La sélection de la distribution granulométrique de la poudre de l'acier outil est primordiale pour l'obtention de bons revêtements projetés par la torche à flamme. En l'absence d'une refusion en surface, la qualité des revêtements composites est substantiellement diminuée. Il y a une concurrence entre la dureté et la consolidation du revêtement composite. Il semble que c'est la consolidation du revêtement composite qui donne les meilleures au revêtement composite.

Abstract

In this study, we propose to investigate the impact of doping a tool steel powder—originally intended for tool manufacturing by hot sintering—with tungsten or chromium carbides on its wear and corrosion resistance. Flame thermal spraying was selected to build composite coatings using various reinforcement powders and mixtures.

Optical microscopy and scanning electron microscopy (SEM) equipped with an EDS probe were used to characterize the alloyed powders and the microstructures of the deposited coatings. Hardness, wear, and corrosion tests were performed on the composite coatings.

The results showed that selecting the particle size distribution of the tool steel powder is crucial to obtaining good coatings sprayed by flame torch. In the absence of surface remelting, the quality of the composite coatings significantly decreases. There is a trade-off between hardness and the consolidation of the composite coating. It appears that the consolidation of the coating is what leads to the best performance in composite coatings.

الملخص

في هذه الدراسة، نقترح دراسة تأثير تطعيم مسحوق فولاذ الأدوات، المُعد أساساً لتصنيع الأدوات عبر التلبيد الساخن، بكربيدات التنجستن أو الكروم على مقاومته للتآكل والتآكل الكيميائي. تم اختيار تقنية الرش الحراري باللهب لبناء الطبقات المركبة باستخدام مساحيق تدعيم ومزيج مختلفة.

لتوصيف المساحيق السبائكية والميكروبُني EDS تم استخدام المجهر البصري والمجهر الإلكتروني الماسح المزود بمسبار للطبقات المترسبة. وقد أُجريت اختبارات الصلادة، والتآكل، والتآكل الكيميائي على الطبقات المركبة.

أظهرت النتائج أن اختيار توزيع الحبيبات لمسحوق فولاذ الأدوات يعدّ عاملاً حاسماً للحصول على طبقات جيدة باستخدام الشعلة اللهبية. في غياب عملية إعادة الانصهار السطحي، تتخفض جودة الطبقات المركبة بشكل ملحوظ. وهناك تنافس بين الصلادة وتماسك الطبقة المركبة، ويبدو أن التماسك هو العامل الذي يمنح أفضل أداء للطبقة المركبة.

Table des matières

Liste des figures

Liste des Tableaux

INTRODUCTION	
CHAPITRE 01: SYNTHESE BIBLIOGRAPHIQUE	2
1.1 Introduction	2
1.2 Matériaux composites	2
1.2.1Définition	2
1.2.2 Historique et Développement	2
1.2.3.1 Composites à matrice céramique (CMC)	3
1.2.3.2 Composite à matrice polymère (PMC)	3
1.2.3.3 Les composites à matrice métallique MMC	3
1.2.4 Eléments Constituants d'un matériau composites	4
1.2.4.1 Matrice :	4
1.2.4.2 Renfort	6
1.3 Les composites à matrice métallique (MMC)	8
1.3.1 Introduction	8
1.3.2 Historique et Développement	8
1.3.3 Types de composites à matrice métallique	g
1.3.3.1Composite à matrice métallique continue ou à fi	bres longues9
1.3.3.2 Composite à matrice métallique discontinue ou	à fibres courtes10
1.3.3.3 MMC particulaire	11
1.3.4 Microstructure et propriétés des MMC	12
1.3.4.1 Carbures de tungstène	12
1.3.4.2 Carbure de titane	13
1.3.4.2 Carbure de chrome	13
1.4 Technologies de fabrication des composites à matrices n	nétalliques13
1.4.1 procédés à l'état liquide	13
1.4.1.1 Coulée sous agitation "Stir casting"	13
1.4.1.2 Moulage sous pression "Pressure Die casting"	14
1.4.1.3 Moulage Centrifuge "Centrifugat casting"	15
1.4.1.4 Le Moulage sous vide"vacuum casting"	16
1.4.2 procédés à l'état liquide	18
1.4.2.1 Métallurgie des Poudres "Powder Processing".	
1.4.2.2 Collage par diffusion "Diffusion bonding of toil	s"19

1.4.2.3 Formage par pulvérisation de MMC particulaires "Spray Forming of Particulate MMC"	
1.5 Propriétés du MMC comparées à celles d'autres matériaux composites	
1.5.1 Rigidité et résistance	
1.5.2 Ténacité et résistance à la rupture	
1.5.3 Fatigue	
1.5.4 Propriétés tribologiques	22
1.5.5 Propriétés à haute température	23
1.5.6 Propriétés thermiques	23
1.5.7 Facteurs influençant les caractéristiques des composites à matrice métallique	24
1.6 Domaines d'application des MMC	24
1.7 Projection Thermique	26
1.7.1Introduction	26
1.7.2 Définition et Principe	26
1.7.3 Les différents procédés de projection thermique	27
1.7.3.1 La projection à la flamme	28
1.7.3.2 La projection hypersonique (HVOF)	29
1.7.3.3 Projection à l'arc électrique	30
1.7.3.4 La projection plasma	30
1.7.3.5 Canon à détonation	31
1.7.3.6 La projection thermique à froid (cold spray)	32
1.7.4 Formation et caractéristiques des dépôts	33
1.7.4.1 Structure du dépôt	33
1.7.4.2 L'adhérence	33
1.7.4.3 La dureté	34
1.7.4.4 La densité	34
CHAPITRE 2	35
METHODOLOGIES EXPERIMENTALES	35
2.1 Introduction	35
2.2 Poudres	35
2.2.1 Poudre S290	35
2.2.2 Poudre 3203	36
2.2.3 Poudre 19999	37
2.3 Pesée	38
2.4 Préparation de la surface	39
2.5 La Projection Thermique	39

2.6 Compactage des poudres	40
2.7 Traitement Thermique	41
2.8 Préparation métallographique	42
2.9 Microscopie	43
2.10 Essais de dureté	44
2.11 Essais de corrosion	44
2.12 Essai d'usure	45
CHAPITRE 3	46
RESULTATS ET DISCUSSIONS	46
3.1 Introduction	46
3.2 Fabrication des revêtements	46
3.2.1 Mélange des poudres	48
3.2.2 Microstructure des dépôts	48
3.3 Essai de dureté	51
3.4 Essai d`usure	52
3.5 Traitement Thermique	56
3.5.1 Traitements thermiques des revêtements	56
3.6 Compactage des poudres	59
3.7 Essais de corrosion	60
CONCLUSION	63
Références bibliographiques	64

Liste des figures :

Figure 1.1: Matériaux composites. (a) composite à matrice métallique, (b) composite à ma	atrice
céramique et (c) composite à matrice polymère	5
Figure 1.2: Matériaux composites	5
Figure 1.3 : Classification des matrices	6
Figure 1.4: Types de renfort.	7
Figure 1.5 : Schéma de MMC continu ou renforcé de fibres longues	10
Figure 1.6 : Schéma de MMC discontinus ou à fibres courtes avec (a) des fibres courtes or	ientées
aléatoirement et (b) alignées	
Figure 1.7: Schematic of a particulate MMC	12
Figure 1.8 : (a) Coulée sous agitation de MMC et (b) différents types de pales de mélanger	ır15
Figure 1.9: Moulage sous pression "Pressure Die casting"	16
Figure 1.10: Moulage Centrifuge "Centrifugat casting"	17
Figure 1.11: Le Moulage sous vide"vacuum casting"	17
Figure 1.12 : Schéma du processus d'infiltration par compression : (a) infiltration pa	r pression
et (b) infiltration spontanée	18
Figure 1.13 : Un schéma du procédé de métallurgie des poudres	19
Figure 1.14 : Schéma de la liaison par diffusion des feuilles	20
Figure 1.15 : Schéma montrant la formation de particules de MMC par pulvérisation	21
Figure 1.16 : Modèle solide conçu par Veston spécifiquement pour les disques de frein Al	MMC (a)
et (b) les rotors de frein	25
Figure 1.17 : Guides d'ondes/perches d'antenne à gain élevé P100/6061 Al pour le F	IST (a)
avant intégration dans le HST et (b) avant intégration dans le HST; déployé en orbit	e terrestre
basse depuis la navette spatiale	25
Figure 1.18: Jambe de force d'avion en Al MMC	25
Figure 1.19 : MMC en aluminium renforcé de manière discontinue pour applications de	
conditionnement électronique : composants composites graphite-aluminium coulés	26
Figure 1.20 : Principe fondamental de projection thermique	27
Figure 1.21 : Les systèmes de projection thermique.	28
Figure 1.22 : Système du procédé projection flamme	29
Figure 1.23 : Principe de fonctionnement d'un pistolet hypersonique	29
Figure 1.24 : Principe de la projection à arc électrique	30
Figure 1.25 : Schéma du principe de la projection plasma	31
Figure 1.26 : Schéma de principe d'un canon à détonation	32
Figure 1.27: Structure d'un dépôt obtenu par projection plasma	33
Figure 2.1 : Poudre alliée pour acier outil S290	35
Figure 2.2 : Analyse EDS de la poudre S290	36
Figure 2.3 : Poudre 3203	
Figure 2.4: Analyse EDS de la Poudre 3203.	37
Figure 2.5 : Poudre 19999	37
Figure 2.6: Diagramme EDS de la poudre 19999	38

Figure 2.7 : Balance électronique	
Figure 2.8 : Appareil de sablage	
Figure 2.9 : Torche à flamme CastoDyn DS 8000	.40
Figure 2.10 : Appareille de compactage "50-ton hydraulic shop press"	.41
Figure 2.11 : Four à moufle	
Figure 2.12 : Cycle de traitement thermique.	.42
Figure 2.13 : Polisseuse métallographique.	.43
Figure 2.14: microscope optique	44
Figure 2.15 : Microscopie Électronique à Balayage (MEB).	.44
Figure 2.16 : L'échantillon lors de l'essai de la dureté.	.44
Figure 2.17 : Appareil d'essai de corrosion	.45
Figure 2.18 : (a) Machine de test de pin-on-disque	.45
Figure 3.1 : Organigramme du protocole d'essais des revêtements	. 46
Figure 3.2 : Revêtement S290, lot 2 déposé à la torche à flamme DS8000	. 47
Figure 3.3 : Coupe transversale d'un revêtement déposé à partir d'un mélange A	. 49
Figure 3.4 : Coupe transversale d'un revêtement déposé à partir d'un mélange B	. 49
Figure 3.5 : Coupe transversale d'un revêtement déposé à partir d'un mélange C	. 50
Figure 3.6 : Coupe transversale d'un revêtement déposé à partir d'un mélange E	. 50
Figure 3.7 : Coupe transversale d'un revêtement déposé à partir d'un mélange D	. 50
Figure 3.8 : Coupe transversale d'un revêtement déposé à partir d'un mélange F	. 50
Figure 3.9 : Courbes d'usure des revêtements A, B et C sous une charge de 22.54 N	53
Figure 3.9 : Courbes d'usure des revêtements E, D et F sous une charge de 22.54 N	.54
Figure 3.11: Histogramme des pertes de masse des revêtements A, B, C, D, E, F pour un temps de	e
150 secondes et une charge normale de 22.54 N	.55
Figure 3.12 : Aspects des revêtements traités thermiquement à leur sortie du four à moufle	56
Figure 3.13: Histogramme des duretés des revêtements A, B, C, D, E et F après traitement thermi	que
à 1020 °C durant 10 heures	57
Figure 3.14 : Usure des revêtements C, D et F avec et sans TT sous une charge de 22.54 N	
et un temps de 150 secondes	.58
Figure 3.15 : Pastilles C, F et B compactées et traitées au four à 1020 °C durant 10 heures	.59
Figure 3.16 : Courbes Tafel des mélanges A, B et C dans 1 N HCl	.60
Figure 3.16 : Courbes Tafel des mélanges E, D et F dans 1 N HCl	.61

Liste des Tableaux

Tableau 1.1 : Quelques propriétés des principaux métaux utilisés pour la fabrication des MMC.	24
Tableau 1.2: Principales caractéristiques des différents procédés de projection thermique	33
Tableau 2.1 : Composition chimique de la poudre S290	36
Tableau 2.2 : Composition chimique de la poudre 19999	38
Tableau 2.3 : Paramètres opératoires de projection thermique	40
Tableau 3.1 : Résultats de l'essai de dureté Rockwell superficielleHR15N des revêtement	ts.51
Tableau 3.2 : Résultats de l'essai de dureté Rockwell superficielle HR15N des Dépôts ap	rès
le traitement thermique	57
Tableau 3.3 : Paramètres de corrosion des courbes de Tafel	62

INTRODUCTION

La projection thermique est une technique de modification de surface très efficace dans le domaine de l'ingénierie des surfaces. Les principales techniques de projection thermique appliquées aux aciers alliés sont la projection de plasma et la projection HVOF et la projection à flamme. Les trois procédés de projection thermique reposent sur le même principe : chauffer rapidement le matériau de revêtement dans un milieu gazeux chaud et le projeter sur la surface à grande vitesse pour créer un revêtement. Des études menées pour la fabrication d'un revêtement composite composé d'un alliage de Co et de WC ont démontré une liaison métallurgique complète entre les revêtements et l'interface du substrat. D'autres recherches ont préparé des revêtements WC-17Co sur la surface de un acier allié en utilisant le processus d'ingénierie de surface de la pulvérisation d'oxygène à grande vitesse. L'impact du traitement thermique sur les revêtements a été étudié sur une plage de températures allant de 500 à 1100 °C. Les résultats ont démontré une réduction de l'intensité de la phase W2C car le Co amorphe a subi une recristallisation, accompagnée par la formation de nouvelles phases telles que Co3W3C et Co6W6C lors du traitement thermique. La distribution de la porosité a présenté une tendance non linéaire, augmentant initialement avant de diminuer à des températures plus élevées. Divers films d'oxyde discontinus en forme de plaques sont apparus à la surface des revêtements après le traitement thermique, soulignant l'influence significative de la structure du liant sur la résistance à la corrosion.

Dans cette étude, nous proposons d'étudier l'impact du dopage d'une poudre d'un acier outil sous forme de poudre, destinée initialement pour la fabrication d'outils par frittage à chaud, avec des carbures de tungstène ou de chrome sur leur résistance à l'usure et à la corrosion. La projection thermique à flamme sera choisie pour bâtir les revêtements composites avec différentes poudres de renforts et différents mélanges.

Ce travail sera divisé en trois parties. Une première partie qui sera consacrée à la recherche bibliographique sur les matériaux composites à matrice métallique. La seconde partie sera dédiée aux méthodes expérimentales qui seront utilisées pour mener ce travail à bien. En fin, dans la troisième partie de ce travail, les résultats de la projection thermique des revêtements ainsi de leur caractérisation microstructurale et mécaniques qui y seront effectuées. Enfin, nous terminerons ce travail par une conclusion.

CHAPITRE 1

SYNTHESE BIBLIOGRAPHIQUE

1.1 Introduction

Dans ce chapitre, nous présentons d'abord les matériaux composites, leurs classifications et leur Eléments Constituants nous focalisons sur les composites à matrice métallique en s'adressant leur types et microstructure et propriétés ainsi que les méthodes de fabrication et domaine d'application, Ensuite, nous évoquons la notion de la projection thermique et les différentes techniques utilisées pour l'élaboration des revêtements.

1.2 Matériaux composites

1.2.1Définition

Un composite est une combinaison de deux ou plusieurs matériaux non miscibles mais ayant une forte capacité de pénétration. Ces matériaux sont souvent de nature différente, qui se complètent et qui permettent d'aboutir à un matériau dont l'ensemble des propriétés est supérieur à celui des composants pris séparément [1].

Un matériau composite est constitué d'une ou plusieurs phases continue ou discontinues appelées renfort répartis dans une phase continue notée matrice. Le renfort se trouve sous forme particulaire notamment pour l'amélioration des propriétés spécifiques telles que la conductivité électrique, ou encore fibreuse essentiellement pour l'amélioration de la tenue mécanique [2].

1.2.2 Historique et Développement

Les matériaux composites ont été développés à partir des années 1960 où cette période s'est produite l'utilisation expérimentale de fibres de bore, de carbure de silicium (SiC) et d'alumine dans des matrices comme l'aluminium et le magnésium afin de bénéficier des propriétés des métaux (ductilité, conductivité, tenue à feu).

Depuis les années 1970, les matériaux composites ont connu un développement rapide. D'abord utilisés dans l'aéronautique, ils ont bénéficié d'améliorations des procédés de fabrication (frittage, infiltration, métallurgie des poudres). Les composites à fibres discontinues, particulaires et à moustaches de SiC sont apparus, renforçant la résistance mécanique.

Dans les années 1980–1990, de nouvelles matrices métalliques (titane, cuivre) ont été adoptées, et les composites ont commencé à être testés dans l'automobile malgré des coûts élevés.

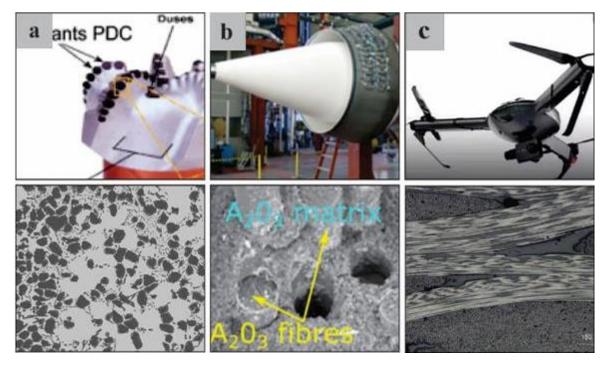
Depuis les années 2000, l'intégration de nanoparticules, de nanotubes de carbone et le développement de composites hybrides ont permis des applications avancées dans l'aérospatial, le médical, et les sports de haute performance.

1.2.3 Classification des matériaux composites

Il existe un grand nombre de matériaux composites que l'on classe en trois familles en fonction de la nature de la matrice :

- Les composites à matrice organique OMC
- Les composites à matrice céramique CMC
- Les composites à matrice métallique MMC

1.2.3.1 Composites à matrice céramique (CMC)


Les composites à matrice céramique sont principalement développés pour améliorer la dureté, ils résistent à la fois à des sollicitations mécaniques sévères et à des températures très élevées. En effet, les céramiques présentent une réfractaire et une rigidité suffisamment importante pour des applications à très hautes températures et des propriétés mécaniques supérieures aux métaux. Les CMC sont renforcés par des particules et des fibres continues ou discontinues [3].

1.2.3.2 Composite à matrice polymère (PMC)

Les composites à matrice polymère sont les composites les plus utilisés dans l'industrie en raison de leur faible coût, leur haute résistance ainsi que la simplicité de leurs techniques de fabrication. Ces composites sont constitués d'un polymère renforcé par des fibres.

1.2.3.3 Les composites à matrice métallique MMC

Les composites à matrice métallique (MMC) sont des combinaisons techniques de deux ou plusieurs matériaux (dont l'un est un métal) l'autre peut être un métal, une céramique, un intermétallique, un carbure, un nitrure, un oxyde ou un composé organique. Dont les propriétés sur mesure sont obtenues par des combinaisons systématiques de différents constituants.

Figure 1.1: Matériaux composites. (a) composite à matrice métallique, (b) composite à matrice céramique et (c) composite à matrice polymère [34].

1.2.4 Eléments Constituants d'un matériau composites

Un matériau composite est formé d'une matrice (généralement une résine) et d'un renfort constitué de fibres. La matrice transmet les efforts mécaniques aux fibres et les protège des agressions extérieures, tandis que le renfort apporte la résistance mécanique. Ensemble, ils forment un matériau performant et homogène.

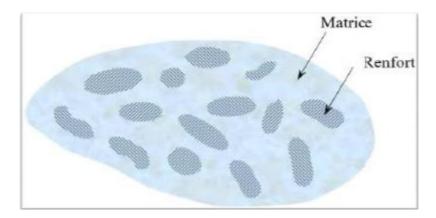


Figure 1.2 : Matériaux composites.

1.2.4.1 Matrice:

Elle est utilisée comme une enveloppe autours du renfort, elle protège le renfort du milieu extérieur agressif (corrosion, oxydation, humidité...), et donne sa forme au matériau. Lors

des sollicitations, la matrice transmet au renfort les efforts et les repartit d'une manière uniforme.

Il existe trois catégories de matrices pour les composites **PMC** à savoir :

• Les matrices thermodurcissables (TD)

Elles ont une structure amorphe et sont constituées de chaînes linéaires réticulées entreelles qui sont liées dans l'espace par des liaisons fortes de type covalent ce qui leur confère une meilleure résistance au fluage, une grande stabilité thermique et résistance chimique. Leur polymérisation est irréversible et peut être engendrée par une montée en température, l'action de radiations, ou de produits chimiques, cependant, elles sont sensibles aux très hautes températures ainsi qu'à l'impact.

• Les matrices thermoplastiques (TP)

Elles sont soit amorphes ou semi-cristallines, leur structure se présente sous forme de chaînes linéaires polymériques, elles sont transformées sans réaction chimique et de manière réversible. Elles présentent une bonne tenue à l'impact.

• Les matrices élastomères

Elles désignent les substances macromoléculaires, naturelles ou synthétiques, possédant une super- élasticité (caoutchoutière). Présents depuis plusieurs années dans le domaine automobile, les matériaux composites à matrice élastomère ont récemment fait leur apparition dans le domaine aquatique, pour des barrages gonflables et d'autres applications innovantes. Ces matériaux composites sont généralement constitués d'une matrice caoutchouc et d'un renfort en fibres synthétiques [4].

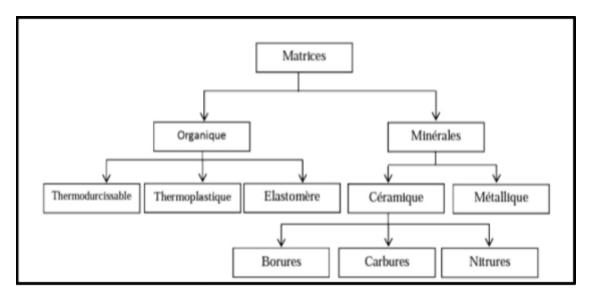


Figure 1.3 : Classification des matrices.

1.2.4.2 Renfort

Le renfort est le squelette ou l'armateur du matériau composite, il contribue à améliorer la résistance mécanique à la traction, la rigidité des matériaux et se présente sous forme filamentaire. Une classification des renforts peut être faite en fonction de leur géométrie :

- Les renforts particulaires : la matrice est renforcée par une phase dispersée de particules.
 Il s'agit généralement d'inclusions granulaires, lamellaires ou aciculaires. Les composites à renfort particulaire sont utilisés pour des applications spécifiques ou des produits de grande consommation.
- Les renforts à fibres discontinues : la matrice est renforcée par une phase dispersée de fibres courtes de longueurs inférieures à 100 fois leurs diamètres. Elles sont assemblées en nappes appelées mât et représentent un apport volumique en fibre de l'ordre de 30%. Le composite obtenu est un polymère renforcé.
- Les renforts à fibres continues : la matrice est renforcée par une phase dispersée de fibres longues. Dans ce type de renfort, la matrice n'est présente que pour assurer la cohésion de l'ensemble et apporter une résistance aux efforts appliqués dans des directions différentes de celles des fibres [5].

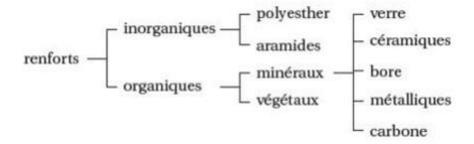


Figure 1.4: Types de renfort.

> Fibres

Les fibres sont produites par un processus de filage/ étirage sous forme de filaments continus, elles sont ensuite revêtues d'un produit chimique de collage approprié, qui protège la surface des filaments lors de tout traitement et manipulation ultérieurs, et assure une bonne liaison d'interface avec la matrice. Les filaments sont regroupés en mèches (pour la fibre de verre) ou en câbles (pour la fibre de carbone). On peut distinguer 5 classes de fibres :

- Les fibres de carbone : sont des matériaux anisotropes. Elles se composent de fibres extrêmement fines, d'environ cinq à dix micromètres de diamètre, elles présentent des propriétés mécaniques très élevées (haut module de Young, haute résistance, faible dilatation thermique) et sont utilisées pour les applications industrielles de haute performance. Leur coût de fabrication est très élevé.
- Les fibres de verre: sont des matériaux isotropes, constituées essentiellement de silicate, et présentent des propriétés mécaniques plus faibles mais intéressantes, elles sont produites par extrusion de verre fondu à 1200°C, suivit d'un étirage. Leur coût est généralement inférieur à celui d'autres fibres.
- Les fibres d'aramide (kevlar) : sont produites par filage à l'état fondu à partir d'une solution. Elles présentent une très bonne résistance aux chocs, bonnes propriétés en traction et une excellente résistance à l'abrasion. Le diamètre d'une fibre d'aramide est du même ordre de grandeur que celui d'une fibre de verre.
- Les fibres céramiques : sont des matériaux anisotropes, elles comprennent les fibres d'alumine (Al2O3), de carbure de silicium(SiC) et de nitrure (nitrure de bore ou nitrure de silicium). Elles présentent une bonne stabilité des propriétés à haute température (de 500°C à 1600°C) et sont principalement utilisées dans les CMM et CMC. Le diamètre de ces fibres est important (100 μm). Leur coût de fabrication est très élevé.

• Les fibres naturelles : sont d'origine animale (soie, laine), végétale (coton, kénaf, chanvre, lin) ou minérale (amiante, laine de verre, basalte). Ces matériaux sont utilisés dans l'industrie automobile ou le génie civil pour des applications présentant un fort aspect écologique [6].

1.3 Les composites à matrice métallique (MMC)

1.3.1 Introduction

Les composites à matrice métallique comportent une phase continue et une ou plusieurs phases supplémentaires, telles que des renforts céramiques. La combinaison de différents matériaux permet d'obtenir un ensemble unique et avantageux de propriétés, adaptables aux exigences spécifiques de l'application en fonction de la proportion de renfort, de sa taille et de sa forme, ainsi que de la méthode de production. Les composites à matrice métallique offrent des propriétés recherchées, notamment une résistance spécifique accrue, une rigidité accrue, une résistance à l'usure, une performance à haute température, une résistance à la corrosion, une résistance à la fatigue thermique et mécanique, et une résistance au fluage [32].

1.3.2 Historique et Développement

En 1957, lors de la rentrée du satellite soviétique Spoutnik dans l'atmosphère terrestre, la température atteinte par sa périphérie a dépassé 1 500 °C, dépassant ainsi la limite de durabilité de tout matériau composite ou monolithique connu à l'époque. Le besoin d'un matériau adapté s'est alors fait sentir et les scientifiques ont commencé à expérimenter les composites à matrice métallique (MMC) pour trouver une solution.

Pour intégrer la réfractaire aux métaux légers et minimiser leur coefficient de dilatation thermique, l'utilisation de fibres inorganiques, de fibres céramiques ou de phases particulaires est fortement recommandée. Le développement des fibres de carbone et de bore, en remplacement des fibres de cuivre, connaît un essor croissant grâce à la course à l'espace entre les différents pays développés et en développement.

Au milieu des années 1970, de nouvelles fibres, comme le carbure de silicium (SiC), ont vu le jour, et des revêtements en carbone et en bore ont permis leur interaction avec les matrices métalliques.

Dans les années 1980, les trichites de SiC sont devenues un sujet d'actualité en raison de leur fonctionnalité exceptionnelle et de leur faible coût.

Dans les années 1990, l'hétérogénéité prévalait dans le domaine des MMC pour les applications spatiales. Dans la chambre de combustion des fusées, on a utilisé du cuivre renforcé au carbone ; pour les tuyères, du cuivre renforcé au SiC ; de l'aluminium (Al) renforcé à l'alumine (Al2O3) utilisé dans le fuselage a été utilisé pour les ailes et les pales ; de l'aluminium renforcé au SiC et un composite graphite-Al ont été utilisés pour la perche d'antenne du télescope spatial Hubble (HST) [8].

1.3.3 Types de composites à matrice métallique

Tous les MMC ont un métal ou un alliage métallique comme matrice. Le renfort peut être métallique ou céramique. Dans un cas inhabituel, le renfort se présente sous la forme d'un PMC renforcé de fibres (une feuille d'époxy renforcé de fibres de verre ou d'époxy renforcé de fibres d'aramide). Il existe principalement trois catégories de MMC selon le type de renforcement utilisé :

- MMC à fibres continues ou longues.
- MMC à fibres discontinues ou courtes.
- MMC renforcé de particule.

1.3.3.1Composite à matrice métallique continue ou à fibres longues

Dans ce type de MMC, un métal ou un alliage sert de matrice, et les matériaux renforcés sont des fibres continues ou longues. De nombreuses recherches ont été menées sur la transformation des fibres longues pour la fabrication de MMC dans diverses applications. Cependant, la principale limitation liée à leur transformation réside dans le maintien de l'équilibre entre divers paramètres, tels que la ductilité, la résistance, la ténacité, etc., ce qui a entravé le développement des MMC et limité leurs applications. Les fibres de diamètre relativement plus petit (~5–30 μm), suffisamment souples pour être traitées en câbles ou en faisceaux, sont appelées multifilaments. Les matériaux utilisés sont le carbone, le SiC et divers oxydes, qui peuvent être tissés, tressés, enroulés filamentairement, etc. Les fibres de grand diamètre (~100–150 μm) sont appelées « monofilaments » et sont généralement traitées par dépôt chimique en phase vapeur (CVD) de SiC ou de B avec un cœur en fibre de carbone ou en fil de tungstène (W). Elles sont beaucoup moins flexibles que les multifilaments et sont donc traitées comme des fibres individuelles plutôt que comme des

faisceaux. Les dommages sont causés par l'incorporation d'une courbure prononcée lors de la manipulation ; des précautions méticuleuses sont donc nécessaires [9].

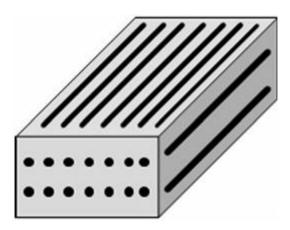
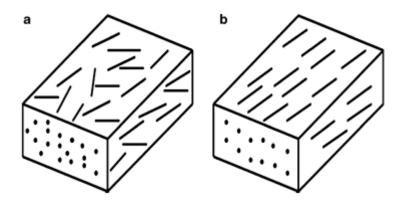



Figure 1.5 : Schéma de MMC continu ou renforcé de fibres longues [13].

1.3.3.2 Composite à matrice métallique discontinue ou à fibres courtes

Dans ce type de composite, la matrice est un métal ou un alliage, et les matériaux renforcés sont des fibres discontinues ou courtes. La résistance à la rupture de ce composite est très complexe en raison de la morphologie complexe des fibres courtes. Les composites multimembranes à fibres courtes peuvent être divisés en deux types : (i) orientés aléatoirement et (ii) alignés. Ces types sont représentés schématiquement sur la figure 11.3.

Les fibres courtes ont un diamètre de l'ordre de quelques microns. Elles sont d'abord produites en longueurs de plusieurs centaines de micromètres, avec une microstructure polycristalline à grains fins. Pour la production de fibres courtes, on utilise un procédé d'infiltration en fusion. Le degré de réaction lors du traitement détermine en partie les propriétés interraciales, lesquelles sont influencées par les capacités de la fibre liées à sa chimie de surface. De meilleures propriétés mécaniques peuvent être obtenues en utilisant un monocristal plutôt qu'un polycristal à grains fins. On parle alors de « whiskers », généralement de diamètre 1 µm et d'un rapport d'aspect de plusieurs centaines, ce qui augmente considérablement leur résistance à la traction. La tendance de ces fibres extrêmement fines à former des particules sphériques induites par la ténacité pose des problèmes de manipulation et rend difficile la gestion de leur orientation de manière contrôlée. Mais surtout, elle est perçue comme dangereuse pour la santé ; par exemple, leurs fragments de taille submicronique peuvent être facilement emportés par l'air et atteindre et endommager les poumons [9].

Figure 1.6 : Schéma de MMC discontinus ou à fibres courtes avec (a) des fibres courtes orientées aléatoirement et (b) alignées [13].

1.3.3.3 MMC particulaire

Dans ce type de matériaux, les renforts présentent une géométrie équiaxiale rugueuse avec un rapport d'aspect inférieur à 5. Les particules s'adaptent à diverses formes (sphériques, angulaires ou en plaque), possèdent des microstructures monocristallines et polycristallines, et ont généralement un diamètre supérieur à 1 µm. Les MMC particulaires conviennent à une large gamme d'applications industrielles, celles à matrice d'alliage d'aluminium étant très populaires. Par ailleurs, des matériaux à base de Ti, Fe et Mg sont actuellement testés pour leur spécificité et leur fonctionnalité. Les particules composées de SiC ou d'Al2O3 sont les matériaux les plus intéressants. Des matériaux tels que W, WC, B4C, BN, TiB2, TiC, SiO2, ZrO2, etc. sont à l'étude. Lors du traitement, une réaction chimique peut se produire dans certains cas, et le SiC peut créer des obstacles dans les MMC à base d'aluminium et de titane. Les procédés de fabrication courants pour les MMC particulaires sont l'incorporation en fusion, le moulage, le mélange de poudres et la consolidation. Les procédés réactifs constituent des procédés alternatifs pour leur fabrication [9].

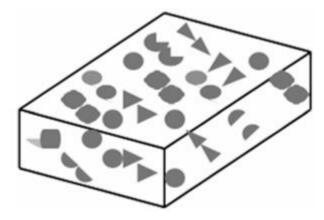


Figure 1.7: Schematic of a particulate MMC [13].

> Interface

Une région bidimensionnelle où un ou plusieurs paramètres du matériau sont modifiés est appelée interface. Il s'agit d'une frontière qui reconnaît la discontinuité des différentes propriétés du matériau, et un volume est toujours associé à un changement progressif des paramètres du matériau [13]. L'interface est importante dans un composite car :

- elle constitue une très grande partie des composites.
- le système formé par le renfort et la matrice n'est pas en équilibre thermodynamique.

Nature cristallographique de l'interface

La nature cristallographique des interfaces céramique-métal-matrice dans les composites est cohérente et possède une énergie élevée, ce qui peut constituer des puits de lacunes très crédibles et servir de source de voies de diffusion rapide [10]. Ces interfaces sont également la destination de divers sites de ségrégation, de précipitation hétérogène et de sites sans précipitation. Sur les surfaces de fracture des MMC Al-diamant, les meilleures propriétés ont été observées en raison de l'adhésion préférentielle entre la matrice d'aluminium et le diamant qui se produit sur les faces (1 0 0) du diamant [10].

1.3.4 Microstructure et propriétés des MMC

Les composites à matrice métallique (MMC) sont des matériaux résistants à l'abrasion très courants. Leur structure de base comprend une matrice relativement souple et une phase plus dure offrant une résistance élevée à l'abrasion [31].

1.3.4.1 Carbures de tungstène

Les carbures de tungstène se dissolvent assez facilement dans les matériaux de matrice. Cependant, leur dissolution varie considérablement d'une matrice à l'autre. Une matrice à base de nickel permet des temps de séjour dans le bain de fusion 5 fois plus longs sans dissolution que les matrices riches en fer [30]. En revanche, les points de fusion des différents matériaux de matrice présentaient d'importantes différences, notamment entre l'alliage NiCrBSi à bas point de fusion (environ 1025 °C) et l'acier à outils (environ 1426 °C). Ces deux facteurs ont permis aux carbures de tungstène de mieux résister dans la matrice NiCrBSi que dans la matrice de l'acier à outils [31].

WC dans une matrice NiCrBSi 40 avec une dissolution plutôt faible, bien que l'on puisse observer des points plus clairs entre les carbures d'origine, indiquant la présence de tungstène dissous sur l'image de rétrodiffusion.

Une indication de répartition inégale des carbures a été constatée, en particulier à 50 % vol. L'enfoncement des particules lourdes de WC était minime lorsque les paramètres de traitement étaient bons [31].

1.3.4.2 Carbure de titane

L'aptitude à la mise en œuvre des carbures de titane est bien meilleure que celle des WC. La dissolution est plus faible, bien que des carbures secondaires se soient formés. En général, l'aptitude à la mise en œuvre est bien meilleure que celle des WC grâce à leur point de fusion élevé. Quelques fissures sont visibles à l'intérieur des carbures, mais leur contribution aux résultats de résistance à l'abrasion est inconnue [31].

1.3.4.2 Carbure de chrome

Les carbures de chrome sont connus pour leur dissolution facile et sont donc rarement utilisés dans les revêtements, car il reste très peu de carbures d'origine dans la matrice. En revanche, la matrice contient une grande quantité de carbures reformés. La microstructure est très similaire à celle des consommables de soudage et des pièces moulées en chromefer. Les matériaux chrome-fer, comme la fonte blanche, sont réputés pour leurs excellentes propriétés d'usure [31].

1.4 Technologies de fabrication des composites à matrices métalliques

Les technologies de fabrication des composites à matrices métalliques sont en général plus complexes parce qu'il est important d'assurer une bonne adhérence à l'interface matrice/renfort, sans dégrader le renfort. Parmi les matrices métalliques utilisées, l'aluminium suscite un intérêt grandissant particulièrement dans le transport et les pièces en mouvement suite à sa propriété de légèreté [4].

Il existe différentes méthodes de fabrication des MMC. Parmi celles-ci, les procédés à l'état liquide et à l'état solide ont acquis une importance considérable, le procédé à l'état liquide est le plus économique pour la production de matériaux en grandes quantités.

1.4.1 procédés à l'état liquide

1.4.1.1 Coulée sous agitation "Stir casting"

La coulée sous agitation, l'une des techniques de métallurgie liquide les plus courantes, est récemment utilisée pour produire des MMC [14]. Elle implique la filtration de particules ou de faisceaux de fibres par des métaux ou alliages liquides. Dans un premier temps, les matériaux renforcés par des solides sont agités dans la matrice métallique fondue, puis le mélange est laissé à se solidifier dans un moule ou un lingot spécifique [15]. Ce résultat est obtenu grâce à l'utilisation de machines de traitement conventionnelles, sur un fond continu ou semi-continu, présentant une bonne mouillabilité des particules. L'homogénéité des MMC dépend de la vitesse et du temps d'agitation. Pour les MMC à base d'Al–SiC, il a été constaté que l'augmentation de la vitesse d'agitation permet d'obtenir des MMC plus homogènes dans la direction du dépôt. Un bon mouillage du métal en fusion dépend également du degré de mélange, qui peut être contrôlé par différentes formes de pales de mélangeur [16].

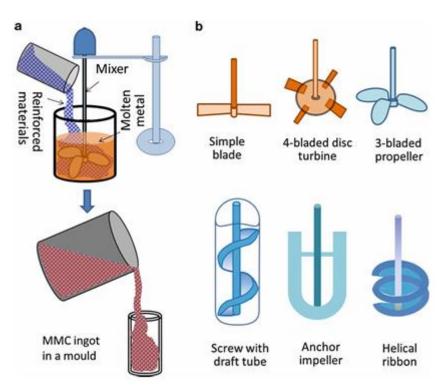


Figure 1.8 : (a) Coulée sous agitation de MMC et (b) différents types de pales de mélangeur [13].

1.4.1.2 Moulage sous pression "Pressure Die casting"

Le moulage sous pression de composites permet de produire rapidement des composants de plus grande taille et de formes plus complexes à des pressions relativement basses (> 15 MPa). Un gaz sous pression et un vérin hydraulique dans une machine de moulage sous pression ont été utilisés pour synthétiser des composites de fibres et de particules exempts de porosité. Il a été rapporté que des pressions élevées, des voies d'infiltration courtes et

une solidification en colonne vers le seuil réduisent les pièces moulées composites exemptes de vides. Les composites à particules moulés sous pression présentent des porosités volumique et inter-diaciales plus faibles, une distribution plus uniforme des particules et une agglomération moindre des particules. Des concentrations élevées (60 % en poids ou plus) de particules de zircon (ZrSiO4) peuvent être obtenues dans les alliages Al-Si-Mg moulés sous pression. Les moulages sous pression d'alliages Al-Si contenant 7 % en poids de graphite et de composites de particules d'aluminium (Al-(4-12 %) Si-(0,5-10 %) ont montré une amélioration considérable de la distribution des particules et de l'élimination des porosités.

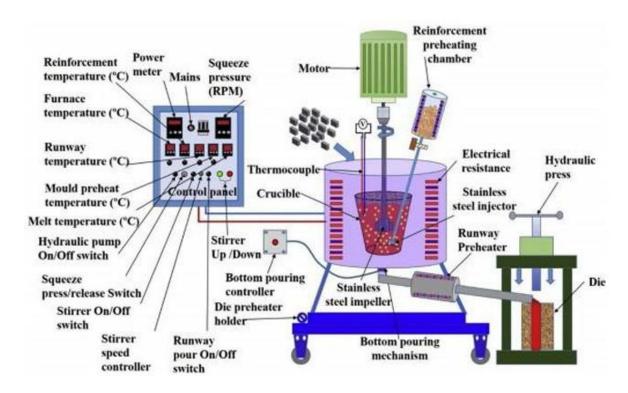


Figure 1.9: Moulage sous pression "Pressure Die casting"

1.4.1.3 Moulage Centrifuge "Centrifugat casting"

Le moulage centrifuge est une technique de fabrication qui consiste à couler du métal en fusion dans un moule tournant à grande vitesse. Ce procédé, à la fois économique et efficace, utilise la force centrifuge pour projeter le métal liquide contre les parois du moule, générant une forte pression. On distingue généralement deux types de fonderie centrifuge : à axe horizontal et à axe vertical.

Adelakin et Suárez ont analysé l'impact des paramètres de ce procédé sur les composites Al-B-Mg. Leur méthode reposait sur une machine dans laquelle un bras articulé tournait

autour d'un axe vertical pour projeter le métal. Cette technique a permis un remplissage optimal des moules, un bon contrôle de la microstructure et de très bonnes performances mécaniques.

Wang et ses collaborateurs se sont intéressés au transfert de matière dans les composites SiC/Al fabriqués par cette méthode. Leur étude a révélé que les particules de SiC ont tendance à se concentrer vers la périphérie des pièces à cause de la force centrifuge, provoquant une répartition inégale. Cependant, lorsque les paramètres de fabrication sont bien contrôlés, les pièces produites, comme les pistons, montrent une excellente résistance à l'usure.

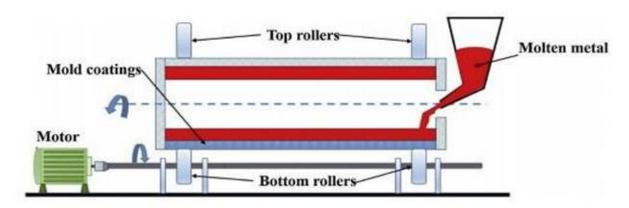
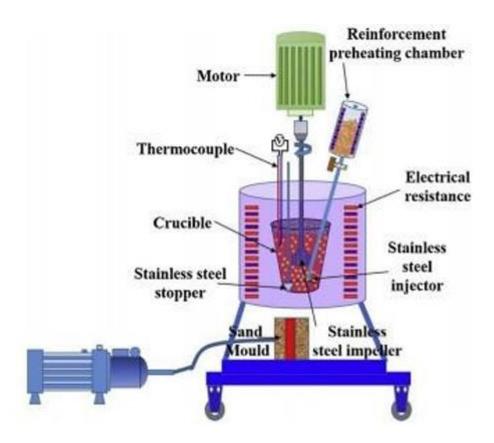
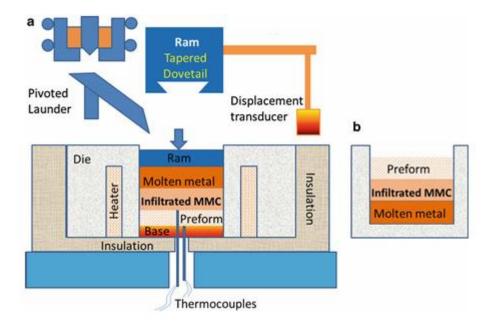


Figure 1.10: Moulage Centrifuge "Centrifugat casting"

1.4.1.4 Le Moulage sous vide"vacuum casting"

Le moulage sous vide est une technique de fabrication utilisée pour produire des composites à matrice métallique (MMC) de haute qualité. Cette méthode consiste à infiltrer un métal fondu dans un préforme de renfort (fibres, particules ou structures poreuses) à l'aide d'une pression négative (vide), ce qui améliore la pénétration du métal dans le renfort et réduit les défauts.




Figure 1.11: Le Moulage sous vide"vacuum casting"

➤ Infiltration par compression "Squeeze infiltration"

Le processus d'infiltration par compression est schématiquement représenté sur la figure 1.14. Il peut être réalisé principalement de deux manières :

- l'infiltration sous pression, lorsqu'une pression externe est requise.
- l'infiltration spontanée, lorsqu'aucune pression externe n'est requise.

Dans ce processus, une préforme est adaptée à une forme appropriée. Une « préforme » n'est rien d'autre qu'un amas de fibres courtes (contenant généralement des interstices) qui pourraient servir de sites d'infiltration pour le métal liquide afin de former une partie articulée du produit final [17]. La sédimentation des fibres courtes à partir de la suspension liquide est à l'origine de la fabrication des préformes. Les MMC particulaires sont également produits par ce procédé. Des liants sont utilisés pour conserver la forme et l'intégrité des préformes.

Figure 1.12: Schéma du processus d'infiltration par compression : (a) infiltration par pression et (b) infiltration spontanée [13].

1.4.1 procédés à l'état liquide

1.4.2.1 Métallurgie des Poudres "Powder Processing"

Cela inclut le pressage à froid et le pressage à chaud pour la fabrication des MMC. Lors du mélange, la matière première pressée à froid atteint une densité d'environ 80 %, ce qui facilite sa manipulation. Les poudres mélangées sont mises en boîte et pressées de manière uniaxiale ou isostatique afin de produire des MMC plus denses. Lors des procédés de formage à chaud, le HIP ne produit aucune contrainte déviatorique, ce qui minimise les défauts microstructuraux ou macroscopiques.

Récemment, des matériaux carbonés tels que le graphite, les nanotubes de carbone, etc., ont été utilisés pour améliorer les propriétés mécaniques, la conductivité thermique et électrique, ainsi que pour réduire le coefficient de dilatation thermique (CTE) et le coefficient de frottement, dans de nombreux MMC par la technique de la métallurgie des poudres [22].

Les techniques de métallurgie des poudres offrent les trois avantages suivants par rapport aux techniques de métallurgie liquide pour la fabrication des MMC :

 Des températures plus basses peuvent être utilisées lors de la préparation d'un composite à base de MDP que lors de la préparation d'un composite à base de métallurgie liquide. Il en résulte une interaction moindre entre la matrice et le renfort lors de l'utilisation de la technique MDP En minimisant les réactions interraciales indésirables, on obtient de meilleures propriétés mécaniques.

- (b) Dans certains cas, les techniques MDP permettent la préparation de composites impossibles à préparer par métallurgie liquide. Par exemple, les fibres ou les particules de carbure de silicium se dissolvent dans les masses fondues de plusieurs métaux comme le titane, et ces composites sont difficiles à préparer par les techniques de métallurgie liquide.
- (c) Cependant, les techniques MDP restent coûteuses par rapport aux techniques de métallurgie liquide pour les composites tels que les composites à particules AI-SiC. De plus, seules des formes petites et simples peuvent être produites par les techniques MDP.

Un schéma d'un procédé de métallurgie des poudres, comprenant le mélange de poudres brutes, le compactage à une forme souhaitée et le frittage, est représenté sur la Figure

Figure 1.13 : Un schéma du procédé de métallurgie des poudres [13].

1.4.2.2 Collage par diffusion "Diffusion bonding of toils"

Collage par diffusion est une méthode courante à l'état solide utilisée pour assembler des métaux similaires. Elle est notamment employée pour fabriquer des CMM renforcés par monofilaments, selon des configurations telles que feuille—fibre—feuille ou feuille—particules—feuille.

Ce procédé consiste à appliquer une pression et/ou une température élevée, ce qui permet la disruption de la feuille de matrice et la formation d'une fine couche de diffusion au niveau de l'interface. Cela entraîne une liaison métallurgique solide entre le renfort (fibre ou particule) et la matrice par diffusion des grains à l'état solide.

Cependant, la discontinuité des renforts (fibres ou particules) peut créer une barrière, rendant le processus plus difficile. Pour y remédier, on peut recourir à une diffusion avec

phase liquide de transition, en insérant une feuille métallique intermédiaire entre les surfaces à assembler.

Dans le cas des fibres longues (comme le titane renforcé), le procédé industriel habituel consiste à placer les fibres entre des feuilles métalliques fines, puis à appliquer un pressage à chaud (souvent avec un enroulement de filaments). Ce processus élimine la couche d'oxyde en surface à haute température, favorisant la liaison par diffusion. Ce procédé est aussi utilisé pour produire des laminés métal/céramique en couches alternées.

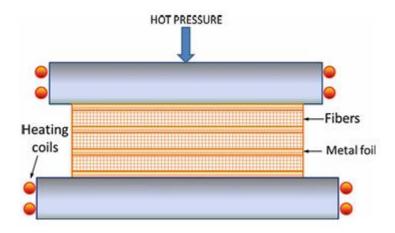


Figure 1.14 : Schéma de la liaison par diffusion des feuilles [13].

1.4.2.3 Formage par pulvérisation de MMC particulaires "Spray Forming of Particulate MMC"

Dans ce procédé, pour la fabrication de produits MMC renforcés par des particules, un pistolet de pulvérisation est utilisé pour atomiser le métal en fusion ou la matrice d'alliage. Un exemple est l'alliage d'aluminium dans lequel des particules chauffées (par exemple, du SiC) sont injectées. L'avantage de ce procédé réside dans sa modularité pour la fabrication de différents types de composites. D'autres procédés ont également été développés récemment.

Un schéma de formage par pulvérisation de MMC particulaires est illustré à la figure 1.18.

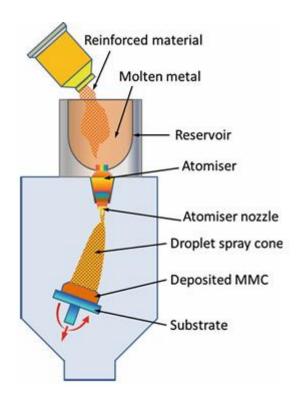


Figure 1.15 : Schéma montrant la formation de particules de MMC par pulvérisation [13].

1.5 Propriétés du MMC comparées à celles d'autres matériaux composites

1.5.1 Rigidité et résistance

La rigidité et la résistance des composites à matrice métallique renforcés par des particules sont nettement supérieures à celles de la matrice en aluminium. Par exemple, avec une fraction volumique de 40 % de renfort particulaire en carbure de silicium, la résistance est environ 65 % supérieure à celle de la matrice en aluminium 6061, et la rigidité est doublée [33].

Les composites à matrice métallique renforcés par des particules, qui sont des matériaux isotropes, ont une résistance inférieure à la résistance axiale (parallèle à la direction du renfort en fibres continues) des composites à matrice polymère avancée (PMC), Cependant, leur résistance est bien supérieure à la résistance transversale (perpendiculaire à la direction du renfort en fibres continues) des PMC. La rigidité des composites à matrice métallique renforcés par des particules peut être considérée comme étant à peu près équivalente à celle des PMC [33].

1.5.2 Ténacité et résistance à la rupture

Il existe une grande variation de ténacité à la rupture entre les MMC, bien qu'elle soit généralement inférieure à celle du métal monolithique. La ténacité à la rupture peut varier entre 65 et 100 % de celle de l'alliage métallique monolithique [10].

Une ténacité plus faible est un compromis entre une résistance et une rigidité supérieures. Les MMC renforcés par des particules présentent une contrainte de traction ultime inférieure à celle des métaux non renforcés, ce qui peut être important dans certaines applications. Cette fragilité peut compliquer le processus de conception et rendre l'assemblage plus difficile. La comparaison avec les PMC est difficile, car la ténacité de ces derniers dépend fortement de la température.

Pour un matériau composite laminé donné, la ténacité dépend principalement de :

- la composition et la microstructure de l'alliage de la matrice
- le type de renfort,
- la taille et l'orientation [18].

1.5.3 Fatigue

La fatigue peut être définie comme un endommagement structurel progressif et localisé, dû à des charges cycliques. Il s'agit d'un phénomène crucial pour les composites métalliques multicouches, car de nombreuses applications haute fréquence impliquent des conditions de charge répétées, comme dans les composants automobiles. Ce phénomène est analysé minutieusement afin d'identifier les cas importants de défaillances dans les métaux, non détectés par les fibres cassantes à haute résistance, telles que le carbone ou le bore. Pour les composites renforcés par des fibres, continues et réparties uniaxialement, les essais sont effectués dans le sens des fibres, ce qui permet d'obtenir un gain maximal en termes de résistance et de ténacité. Les composites contenants des fibres de carbone ou de bore à forte fraction volumique et alignées selon l'axe des contraintes présentent une résistance à la fatigue élevée. Les particules présentes sur les fibres courtes peuvent facilement servir de sites d'amorçage de fissures.

1.5.4 Propriétés tribologiques

• Usure

L'usure est définie comme l'érosion d'un matériau d'une surface solide par l'action d'un autre solide. Les renforts intermétalliques durs (par exemple, Ni3Al, MoSi2) et céramiques

(par exemple, SiC) agissent comme des sites résistants à l'usure dans les MMC. Ils sont plus tolérants à l'usure que la matrice métallique, qui a pour rôle de maintenir l'armature intacte et de transférer la charge appliquée à celle-ci [19].

La résistance à l'usure des MMC est excellente par rapport à celle des métaux monolithiques et des PMC, grâce à la présence de renforts en céramique dure.

Érosion

L'érosion est définie comme l'endommagement des surfaces des matériaux par l'impact de particules à très grande vitesse. Les MMC à base d'aluminium avec différentes orientations de renfort en fibres d'Al2O3 présentent une meilleure résistance à l'érosion que les matrices en alliage d'aluminium non renforcées.

1.5.5 Propriétés à haute température

Les MMC offrent une résistance et un module à haute température améliorés par rapport aux PMC et aux métaux. Les renforts permettent d'étendre la plage de températures d'utilisation des métaux de faible densité tels que l'aluminium, dont la résistance à haute température est limitée Les MMC présentent généralement une résistance et une rigidité supérieures à celles des PMC entre 200 et 300 °C (342 et 5720 °F), bien que le développement de résines à plus haute température puisse éroder cet avantage. Cependant, aucun autre matériau de structure ne peut concurrencer la céramique à très haute température [33].

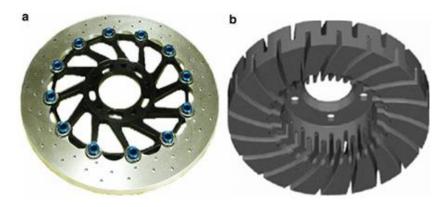
1.5.6 Propriétés thermiques

L'introduction de particules de carbure de silicium dans l'aluminium permet d'obtenir des matériaux présentant des coefficients de dilatation thermique plus faibles, une propriété souhaitable pour certains types d'applications. En choisissant une composition appropriée, le coefficient de dilatation thermique peut être proche de zéro dans certains composites à matrice métallique. Ces composites ont également tendance à être de bons conducteurs thermiques. L'utilisation de fibres de graphite à haute conductivité thermique, de composites à matrice aluminium ou cuivre, permet d'obtenir une conductivité thermique très élevée par rapport à d'autres types de composites [33].

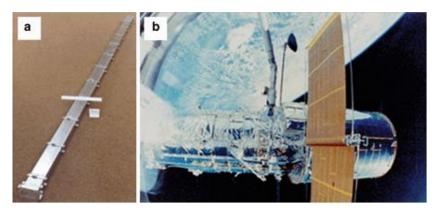
Tableau 1.1 : Quelques propriétés des principaux métaux utilisés pour la fabrication des MMC [12].

Matrice	ρ (g/cm³)	T _{fusion} (°C)	E (GPa)	σ _{Max} (MPa)	CDT (10 ⁻⁶ /K)	λ (W/mK)	κ (10 ⁶ S/m)
Ag	10,5	961	70	150	19,1	420	62,1
Al	2,7	660	72	90	23,5	237	36,9
Be	1,9	1 287	295	450	12	201	31,3
Co	8,9	1 495	160	-	12,5	100	17,2
Cu	8,9	1 083	120	221-455	17	401	58,5
Fe	7,9	1 528	200	180-210	12,1	80	10,1
Mg	1,74	650	46,5	185-232	26	156	22,6
Мо	10,2	2 623	325	485-690	4,8	138	18,7
Ni	8,9	1 455	210	560	13,3	91	14,3
ті	4,5	1 668	106-114	897-1 205	8,9	21	7,2
TiAI	3,9	1 460	176	600	10	-	-
NiAl	5,9	1 638	297	300	15,1	80	-
E : Module d'Young o _{Max} : Contrainte maximale (UTS)							

CDT: Coefficient de dilatation thermique


1.5.7 Facteurs influençant les caractéristiques des composites à matrice métallique

- Fraction volumique de la charge de renfort
- Propriétés de la charge de renfort
- Forme et disposition géométrique de la charge
- Propriétés de l'interface fibre-matrice
- Effet de porosité
- Contraintes résiduelles
- Réactions chimiques à haute température entraînant une possible dégradation du renforcement
- Damages mécaniques lors du traitement, des chocs, etc.


1.6 Domaines d'application des MMC

Les composites à matrice métallique deviennent des matériaux hautes performances importants pour l'aérospatiale, l'automobile et la défense, grâce à leurs propriétés physiques améliorées, notamment leurs excellentes performances spécifiques.

Les composites à matrice métallique sont utilisés dans les structures de satellites, les hélicoptères, les turbopompes, les aubes de compresseur, les réacteurs, les composantes hautes températures, les disques de frein, les pistons, les chemises de cylindre, les composants structurels automobiles, les composants de machines, les applications de défense, les équipements de loisirs tels que les clubs de golf et les vélos, et bien d'autres encore. Pour nombre de ces applications, les avantages significatifs des composites à matrice métallique peuvent se traduire directement par des gains de performances tels que des économies d'énergie et une durée de vie accrue des composants.

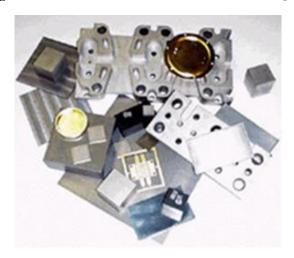
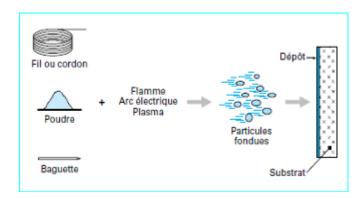

Figure 1.16: Modèle solide conçu par Veston spécifiquement pour les disques de frein Al MMC (a) et (b) les rotors de frein [20]

Figure 1.17: Guides d'ondes/perches d'antenne à gain élevé P100/6061 Al pour le HST (a) avant intégration dans le HST et (b) avant intégration dans le HST; déployé en orbite terrestre basse depuis la navette spatiale [8].

Figure 1.18: Jambe de force d'avion en Al MMC [21].

Figure 1.19 : MMC en aluminium renforcé de manière discontinue pour applications de conditionnement électronique : composants composites graphite-aluminium coulés [8]

1.7 Projection Thermique


1.7.1Introduction

Le revêtement par projection thermique est apparu pour la première fois en 1909 par l'ingénieur Suisse Max Ulrich Schoop qui a décrit le processus de réalisation des dépôts de cuivre, d'argent, d'étain, de zinc, d'aluminium et d'autres alliages sur pratiquement tous types de substrats, il a été utilisé dans la seconde guerre mondiale en 1914 pour la projection d'étain sur la face arrière des obus ainsi contre la corrosion. Le développement de l'industrie a suscité l'accroissement des domaines d'application de la projection thermique et la recherche d'amélioration des propriétés des surfaces des pièces spécifiques dont les conditions d'emploi sont de plus en plus sévères y compris dans le domaine d'aéronautique. La projection thermique confère au matériau les propriétés de surface nécessaires à son fonctionnement [23].

1.7.2 Définition et Principe

La projection est l'un des procédés de traitement de surface, il permet de déposer de la matière par voie sèche et réaliser un revêtement avec une grande gamme de matériaux.

Le principe de cette méthode consiste à utiliser une source d'énergie thermique et cinétique pour fondre un matériau qui est sous forme de fil, poudre ou baguette et le pulvériser grâce à un gaz vecteur vers un substrat. Le rôle de la source d'énergie est l'augmentation de la température des particules à projeter. La surface à revêtir doit être nettoyée préalablement, ensuite elle subit un sablage pour augmenter sa rugosité afin d'assurer une bonne adhésion des particules déposées et leur permettre de s'ancrer dans les irrégularités du substrat.

Figure 1.20: Principe fondamental de projection thermique [23].

Le revêtement obtenu peut contenir des contraintes résiduelles, des porosités et des inclusions telles que des oxydes ou encore d'autres matériaux provenant des chalumeaux eux-mêmes. Afin d'assurer une bonne adhésion entre le dépôt et le substrat, des sous-couches d'accrochage sont utilisées [23].

Ce procédé est très utilisé pour fabriquer des revêtements avec des propriétés de résistance à l'usure, de résistance à l'oxydation, de résistance à la corrosion ainsi qu'élaborer des barrières thermiques.

1.7.3 Les différents procédés de projection thermique

Il existe de nombreux procédés de projection thermique qui sont différenciés principalement par la source d'énergie mise en œuvre (combustion, décharge électrique). Les trois principaux sont la projection par flamme, par arc électrique et par plasma.

Le choix du procédé est directement lié aux conditions en service de la pièce traitée (l'environnement de travail et les sollicitations qu'elle subit), la forme de la pièce, la nature du matériau de base (alliage métalliques, composite, polymère ou céramique) ainsi à la nature du matériau d'apport, généralement un matériau métallique [23].

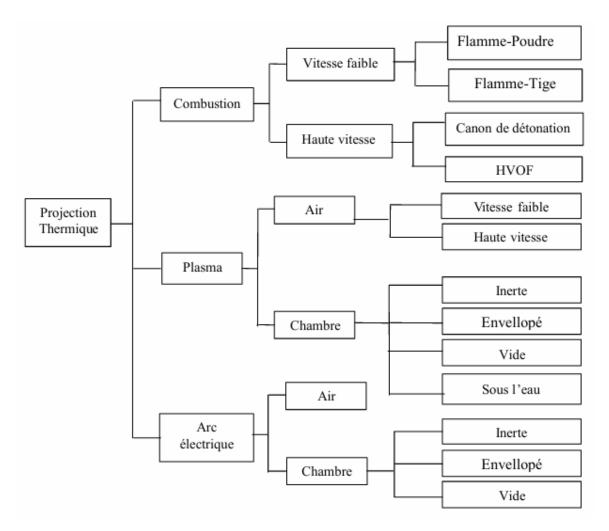


Figure 1.21 : Les systèmes de projection thermique.

1.7.3.1 La projection à la flamme

La projection à la flamme est la plus ancienne des procédés de projection thermique, de nombreux matériaux peuvent être déposés en tant que revêtement à l'aide de ce processus. Elle utilise la chaleur produite par la combustion d'un carburant gazeux (généralement de l'acétylène ou du propane avec de l'oxygène) pour fondre le matériau de revêtement, La flamme peut atteindre des températures qui varient de 2400°C à 3200°C [23].

Il est possible de projeter indifféremment le matériau sous forme de poudre ou de fil.

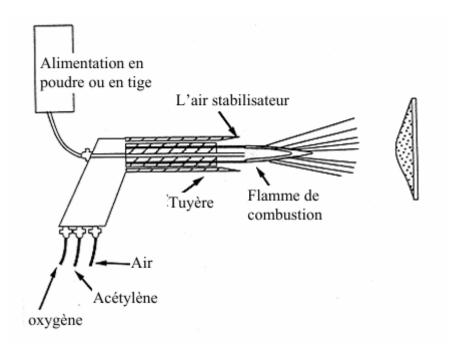


Figure 1.22 : Système du procédé projection flamme.

1.7.3.2 La projection hypersonique (HVOF)

La projection hypersonique est une variante des procédés à la flamme classiques qui consiste à projeter le matériau d'apport à très grande vitesse sur le substrat. On distingue notamment, parmi ces procédés, le HVOF (High Velocity Oxy-Fuel) et le HVAF (High Velocity Air Fuel) dont la différence réside dans le type de gaz utilisé. Le principe est basé sur une réaction de combustion à haute pression dans une chambre prévue à cet effet. Il en résulte une flamme caractérisée par une température comprise entre 2500 et 3200 °C et des écoulements gazeux très énergétiques et extrêmement rapides. L'énergie cinétique acquise par la poudre permet la réalisation de dépôts d'excellente qualité : faible porosité (< 2 %), bonne adhérence (70 à 100 MPa) et faible rugosité de surface. L'épaisseur du dépôt est typiquement de l'ordre de 100 à 300 μm [24].

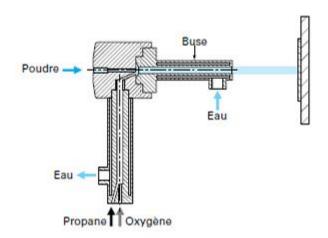


Figure 1.23 : Principe de fonctionnement d'un pistolet hypersonique [10].

1.7.3.3 Projection à l'arc électrique

Le principe de la projection par arc électrique consiste à faire jaillir un arc électrique entre deux fils consommables, ce qui permet de fondre le matériau. Un jet d'air comprimé pulvérise le métal fondu et le projette sur le substrat. La température et l'énergie cinétique élevée acquise par les particules grâce au jet d'air comprimé permettent d'obtenir des dépôts avec de faibles porosités et une bonne adhérence dans des épaisseurs comprises entre 0.2 et 3 mm. Les limitations de ce procédé résident dans la nature des matériaux à projeter, qui doivent être conducteurs (essentiellement des métaux), dans la structure grossière des dépôts et dans leur taux d'oxydation relativement élevé en raison du transport des particules par de l'air comprimé. Ce procédé est très simple à mettre en œuvre, et particulièrement bien adapté aux impératifs de fiabilité et de reproductibilité imposés par la production en moyennes et grandes séries [24].

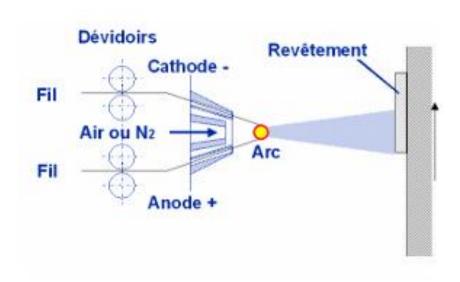


Figure 1.24 : Principe de la projection à arc électrique [25].

1.7.3.4 La projection plasma

Un plasma est un gaz ionisé constitué de molécules, d'atomes, d'ions et d'électrons, l'ensemble étant électriquement neutre. Les plasmas utilisés en projection sont des plasmas thermiques ou intermédiaires avec un milieu faiblement ionisé (20 % maximum) et suffisamment denses pour que toutes les espèces présentes aient la même température (environ 12 000 °C). Le procédé de projection plasma est constitué de trois parties : la torche plasma dans laquelle est généré le jet plasma, l'écoulement plasma dans lequel les particules sont injectées et traitées et le substrat, sur lequel est construit le dépôt. Ce procédé est très utilisé dans l'industrie en particulier pour le dépôt de films céramique épais (d'une

centaine de microns à quelques millimètres d'épaisseur). La porosité des dépôts est, en général, inférieure à 10 % selon la nature du matériau et les conditions de projection [24].

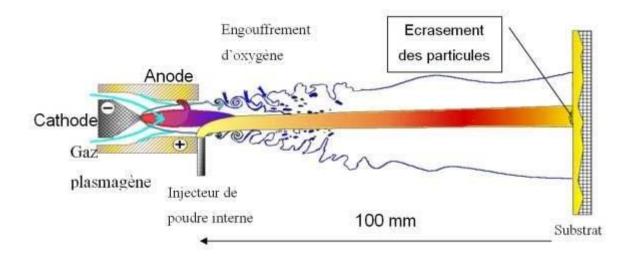


Figure 1.25 : Schéma du principe de la projection plasma.

1.7.3.5 Canon à détonation

Cette technique de projection consiste à introduire le matériau d'apport sous forme de poudre, dans un tube fermé à une extrémité, en même temps que les gaz de combustion (généralement oxygène et acétylène). Ce mélange détoure grâce à une étincelle, les gaz brûlés sont balayés par de l'azote et les gaz explosifs frais réinjectés à la fréquence de 6 à 60 allumages par seconde. La poudre est chauffée et éjectée à très grande vitesse (950m/s) par l'onde de choc qui se propage dans le tube avec une surpression de l'ordre de 2 MPa. Le régime de projection est discontinu. Les particules impactent dans un état plastique donc avec une oxydation très faible (moins de 0,1 % en poids). La densification du dépôt est excellente compte tenu de la vitesse d'impact [29].

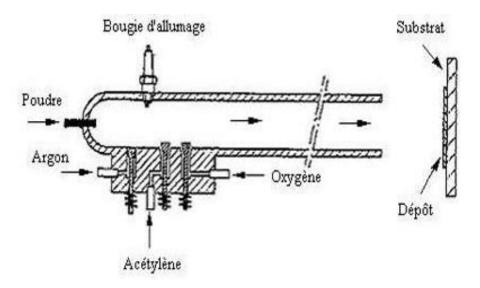


Figure 1.26 : Schéma de principe d'un canon à détonation [29].

1.7.3.6 La projection thermique à froid (cold spray)

Cette technique, communément appelée «cold spray», consiste à accélérer le matériau sous forme de poudre à une vitesse supersonique pour obtenir une déformation suffisante à l'impact sur le substrat afin de permettre la formation d'un revêtement. Sa particularité réside dans la faible température des gaz porteurs, inférieure dans certains cas à 600 °C, ce qui permet au matériau de rester à l'état solide. Ce procédé permet d'éliminer ou de minimiser les effets néfastes communs aux techniques traditionnelles de projection thermique, tels que l'oxydation à haute température, l'évaporation, la recristallisation, les contraintes résiduelles... Les dépôts réalisés peuvent avoir des épaisseurs comprises entre 10 μm et 10 mm. Cette technique permet de conserver la structure initiale de la poudre et d'obtenir des dépôts denses avec très peu d'impuretés. La déformation à grande vitesse des particules au moment de l'impact permet d'obtenir des dépôts de grande compacité. De plus, les poudres résiduelles peuvent être réutilisées. Cette technique de dépôt se limite aux métaux et alliages ductiles comme Zn, Sn, Ag, Cu, Al, Ti, NiCr, CuAl... ainsi qu'aux polymères ou mélanges supérieurs à 50 % de matériaux ductiles et de métaux cassants ou céramiques. Les substrats doivent être suffisamment résistants pour supporter la projection de particules solides à haute vitesse sans subir de déformations excessives [24].

Tableau 1.2: Principales caractéristiques des différents procédés de projection thermique [23].

Tableau 2 – Principales caractéristiques des différents procédés de projection thermique						
Caractéristiques	Projection flamme-poudre	Projection flamme-fil	Arc électrique	Plasma	HVOF	Canon à détonation
Source de chaleur	flamme oxyacétylénique	flamme oxyacétylénique	arc électrique	plasma	flamme oxyacétylénique	flamme oxyacétylénique
Température de flamme(°C)	3 000	3 000	6 000	12 000	3 000	3 000
Transport des particules	gaz flamme	air comprimé	air comprimé	gaz plasma (Ar/H)	gaz flamme	gaz flamme
Vitesse des particules (m/s)	40	150	250	200	700	950
Forme du produit d'apport	poudre	fil-cordon	fil	poudre	poudre	poudre
Taux horaire de dépôt(kg/h)	1 à 3	1 à 20	5 à 30	1 à 4	3 à 5	3 à 5
Rendement moyen (1)(%)	50	70	80	70	70	70
Force d'adhérence(MPa)	20 à 40	20 à 40	40	30 à 70	50 à 80	50 à 80
Taux de porosité(%)	10 à 20	10 à 20	8 à 15	1 à 10	0,5 à 2	0,5 à 2
Épaisseur déposée(mm)	0,1 à 1,5	0,1 à 1,5	0,2 à 3	0,05 à 1,5	0,05 à 1	0,05 à 1
Exemples de matériaux d'apport	– métaux – céramiques – carbures dans matrice métallique	- métaux - céramiques - carbures dans matrice métallique	– métaux	– métaux – céramiques – carbures	– métaux – carbures	– carbures – céramiques

1.7.4 Formation et caractéristiques des dépôts

Les revêtements sont caractérisés par plusieurs facteurs dont les plus significatifs sont :

1.7.4.1 Structure du dépôt

Les dépôts obtenus par projection thermique possèdent une structure lamellaire et une porosité comprise entre 1 % et 25 % suivant les procédés et matériaux utilisés. La porosité provient soit de microcavités dues à un empilage imparfait des gouttelettes, soit de gaz emprisonnés lors de la solidification du revête ment [24].

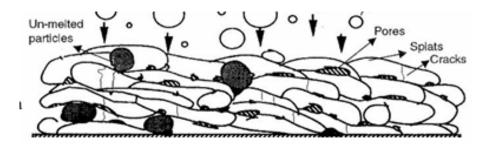


Figure 1.27: Structure d'un dépôt obtenu par projection plasma [26].

1.7.4.2 L'adhérence

De manière générale, le comportement d'un revêtement dépend largement de la qualité de la liaison entre le substrat et la couche préalablement déposée. Cette adhérence est de nature mécanique : sous l'effet de la pression lors de l'impact. Le matériau dans son état plastique est projeté dans les creux de la surface, établissant des points d'ancrage. Cette adhérence est fonction du matériau de projection et des paramètres de projection. L'adhérence des

dépôts de projection thermique est l'un des points à traiter pour obtenir des résultats fiables dans des conditions de service sévères

- Le substrat doit être très propre et le dépôt doit s'effectuer dans les 20 minutes qui suivent le sablage.
- La surface doit être rugueuse afin de faciliter l'adhérence mécanique et d'augmenter la surface du contact. Les contraintes résiduelles entre le dépôt et le substrat peuvent entrainer le décollement du dépôt au refroidissement [27].

1.7.4.3 La dureté

Les particules sont soumises à un martèlement dû à l'influence des particules suivantes, ce qui conduit à un phénomène de trempe, qui est lié à leur trajectoire et à la température du support. La température de l'acier chute rapidement de 1500 °C à 100 °C en très peu de temps, La température maximale de la pièce traitée. La dureté est un attribut important car elle indique la résistance à l'usure. Il est affecté par la teneur en oxyde et la porosité des dépôts. Une teneur en oxyde plus élevée entraîne une dureté plus élevée. L'augmentation de la porosité entraîne également une diminution de la dureté moyenne du dépôt [28].

1.7.4.4 La densité

Les dépôts projetés thermiquement dans l'air sont poreux. Selon le mode de projection utilisé, cette porosité est plus ou moins importante. La taille des particules et leur vitesse ont un effet

Significatif sur la densité du revêtement. Pour les revêtements métalliques, celle-ci est également en fonction de la vitesse de formation d'oxydes lors de la projection [27].

CHAPITRE 2

METHODOLOGIES EXPERIMENTALES

2.1 Introduction

Dans ce chapitre, nous présentons les dispositifs expérimentaux et les différentes méthodes mis en œuvre dans le cadre de cette étude. Au début, nous présentons les matériaux employés et nous présentions la torche à flamme que nous avons utilisée pour la projection thermique des revêtements. Nous citons par la suite quelques techniques de caractérisation des dépôts projetés qui permettent de contrôler ces revêtements et déterminer leurs propriétés microstructurales et mécaniques.

2.2 Poudres

2.2.1 Poudre S290

Les matériaux utilisés dans ce projet sont sous forme de poudres alliées. La première constitue la base de cette étude : c'est une poudre alliée que nous allons dénommée S290. L'observation de la poudre au microscope électronique à balayage est montrée à la figure 2.1. Cette poudre est utilisée pour la fabrication d'outils destinés au travail à froid. Outre sa dureté à chaud et sa bonne résistance à l'usure, sa résistance à la compression est l'une des propriétés les plus importantes de cette classe d'acier rapide issu de la métallurgie des poudres. Etant destinée au frittage, sa distribution granulométrique est très fine. Les diamètres des particules varient entre 2 à 18 µm.

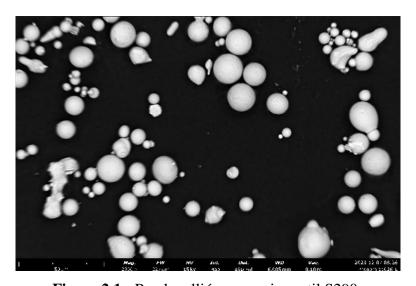
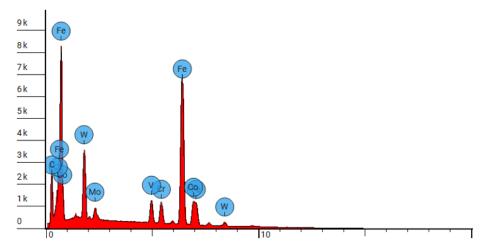


Figure 2.1 : Poudre alliée pour acier outil S290.

L'analyse de la composition chimique de la poudre à la diffraction aux rayons du MEB (ED) est donnée à la figure 2.2. La composition chimique de la poudre est donnée au tableau 2.1.



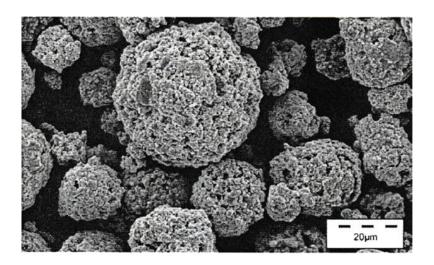

Figure 2.2: Analyse EDS de la poudre S290.

Tableau 2.1: Composition chimique de la poudre S290.

Elément	С	Cr	V	Mo	Co	W	Fe
% wt	2	4.4	5	2.1	12.4	12.2	Bal.

2.2.2 Poudre 3203

Ces produits sont des poudres sphéroïdales, agglomérées et frittées préparés pour la projection thermique, contenant environ 83 % de carbure de tungstène comme matériau dur. La poudre 3203 est montrée à la figure 2.3.

Figure 2.3 : Poudre 3203

Ces produits sont particulièrement adaptés aux applications exigeant à la fois une résistance à l'usure et à. la corrosion. Le chrome présent dans la matrice améliore la résistance à la corrosion, tandis que les grains fins de carbure confèrent les propriétés abrasives, érosives et anti-usure de contact d'un matériau à base de carbure de tungstène-cobalt.

L'analyse de la composition chimique de la poudre à la diffraction aux rayons du MEB (ED) est donnée à la figure 2.4. Elle est composée d'environ de plus de 80 % de carbures de tungstène.

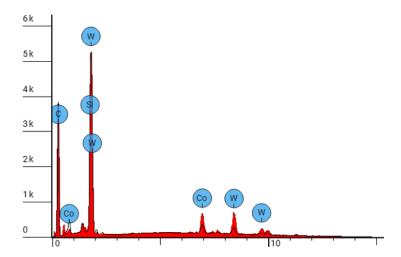
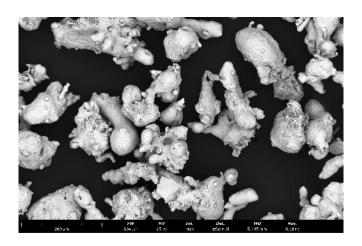



Figure 2.4: Analyse EDS de la Poudre 3203

Cette poudre a été choisi comme renfort à la poudre S290 et parce qu'elle a une distribution granulométrique serrée moyenne dont les diamètres de la poudre sont compris entre $20~\mu m$ à $45~\mu m$.

2.2.3 Poudre 19999

C'est une poudre qui contient une quantité importante de carbures de tungstène lui conférant une très bonne résistance à l'abrasion et au frottement. (Voir figure 2.5)

Figure 2.5: Poudre 19999

La composition chimique de la poudre 19999 est donnée au tableau 2.2.

Tableau 2.2: Composition chimique de la poudre 19999.

Elément	С	Cr	Si	Fe	Ni	WC
% wt	< 0.25	16.8	1.5	7.8	Bal.	50

L'analyse de la composition chimique de la poudre à la diffraction aux rayons du MEB (ED) est donnée à la figure 2.6. Cette analyse concerne essentiellement la matrice qui renfermera les carbures.

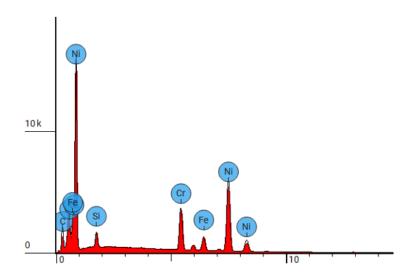


Figure 2.6 : Diagramme EDS de la poudre 19999.

2.3 Pesée

Une balance électronique de précision 0.1 mg (figure 2.7) a été utilisée afin de mesurer la masse des échantillons de chaque poudre avant et après les essais que nous avons faits. Cette étape est essentielle pour assurer la quantification précise de la matière engagée, évaluer les pertes potentielles liées au les essais, et garantir la reproductibilité des essais.

Figure 2.7 : Balance électronique.

2.4 Préparation de la surface

Avant d'appliquer le revêtement par la projection thermique il est important de préparer correctement la surface du matériau pour assurer l'adhérence du revêtement.

Le sablage a été utilisé dans cette étape afin de nettoyer la surface et éliminer toutes les impuretés (oxydes, calamine, rouille...etc.) et garantir une surface propre pour éviter les défauts d'adhérence ou de cohésion du revêtement projeté. Le sablage permet aussi de créer une rugosité adéquate favorise l'ancrage mécanique du revêtement projeté. La photo de la figure 2.8 montre la grenailleuse.

Figure 2.8 : Appareil de sablage.

2.5 La Projection Thermique

Après la préparation des surfaces, comme nous l'avons mentionné précédemment, nous avons utilisé la projection thermique à la flamme oxyacétylénique pour déposer les revêtements métalliques sur des substrats en acier au carbone. Une sous couche d'accrochage est appliquée pour améliorer l'adhérence du dépôt au substrat et assurer une liaison intermédiaire entre le substrat et le revêtement final. Les de projection sont donnée dans le tableau 2.3. La torche à flamme utilisée est la torche DS8000 de Castolin Eutectic montrée à la figure 2.9.

Tableau 2.3: Paramètres opératoires de projection thermique.

Paramètres	Valeur
Pression d`oxygène	2.5 bars
Pression d`acétylène	0.7 bar
Distance de projection	90-120 mm
Distance de Préchauffage	20-40 mm
Angle de Projection	90°

Figure 2.9: Torche à flamme CastoDyn DS 8000.

2.6 Compactage des poudres

Après la réalisation des revêtements nous avons pesé les poudres des mélanges A, B, C, D, E et F, ont été compacté par pressage uni-axiale à froid en utilisant une presse hydraulique (Figure 2.10).

Cette opération consiste à appliquer une force de compression axiale environ 40 tonnes sur une poudre enfermée dans un moule cylindrique pour obtenir des pastilles compactées, les pastilles ensuite traitée thermiquement à 1020 °C pendant 10 heures pour obtenir des pastilles frittés présentant une cohésion et une densité accrues.

Figure 2.10: Appareille de compactage "50-ton hydraulic shop press".

2.7 Traitement Thermique

Après la projection thermique les échantillons subiront un traitement thermique au niveau de laboratoire LSTM dans un four à moufle électrique de marque Nabertherm montré à la figure 2.11.

Figure 2.11 : Four à moufle.

La courbe représentée sur la **figure 2.12** représente le programme que nous avons adopté (température en fonction du temps) dans ce traitement pour la montée de la température.

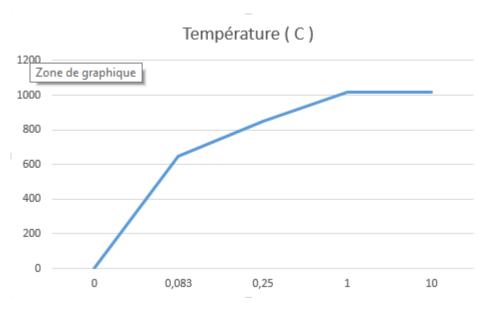


Figure 2.12 : Cycle de traitement thermique.

2.8 Préparation métallographique

La préparation métallographique permet de révéler la microstructure du matériau, ce qui peut être utilisé pour évaluer des propriétés comme la taille des grains, la distribution des phases et les défauts internes. Le polissage est une étape essentielle pour obtenir une surface métallique lisse et homogène. Ce qui permet une observation précise de sa structure microscopique. Il doit se faire par étapes, en commençant par des abrasifs plus grossiers et en progressant vers des abrasifs plus fins. Les équipements pour cette étape incluent les polisseuses qui utilisent les papiers abrasifs pour le polissage grossier (figure 2.13) et celles utilisant le feutre qui utilisent l'alumine de 1 µm et 0.05 µm.

Figure 2.13: Polisseuse métallographique.

Après le polissage,

2.9 Microscopie

Une fois que l'échantillon a été poli, il est souvent nécessaire de traiter la surface de l'échantillon avec un attaque chimique pour révéler la microstructure d'un matériau .Elle consiste à appliquer un réactif chimique sur la surface du métal pour créer des contrastes visibles entre les différentes phases ou zones du matériau. Permet de révéler la structure du métal, notamment la taille des grains, la distribution des phases, et les défauts comme les inclusions ou les porosités, et mettre en évidence des détails de la microstructure qui ne sont pas visibles après le simple polissage. Il peut être observé sous un microscope optique ou électronique pour analyser la microstructure. Cela permettra de visualiser les détails à l'échelle microscopique, comme la taille des grains, la distribution des phases et toute autre caractéristique importante. La photo du microscope optique est montrée à la figure 2.14. La photo du microscope électronique à balayage (MEB) est montrée à la figure 2.15.

Figure 2.14: Microscope optique.

Figure 2.15 MEB

2.10 Essais de dureté

La dureté peut être définie comme une mesure de la résistance à la déformation qu'un matériau oppose à la pénétration d'un corps dur. Dans cette étude, nous avons utilisé le duromètre Rockwell. Il consiste à imprimer, dans la couche superficielle de l'échantillon un pénétrateur de diamant et à mesurer l'accroissement rémanent de la profondeur de pénétration. L'essai de dureté a été réalisé avec une charge de 15kgf (HR15N). La photo de la machine est montrée à la figure 2.16.

Figure 2.16 : L'échantillon lors de l'essai de la dureté.

2.11 Essais de corrosion

Pour étudier le comportement de corrosion des revêtements, nous avons les courbes de Tafel à l'aide d'un potenstiostat/galvanostat dont la photo est montrée à la figure 2.17. Les

courbes de Tafel sont obtenues en traçant la densité de courant (i) en fonction du potentiel (E). L'électrolyte à 1 N HCl a été utilisé pour effectuer les tests électrochimiques.

Figure 2.17 : Appareil d'essai de corrosion.

2.12 Essai d'usure

L'essai pion-disque est une technique standard utilisée pour analyser le comportement tribologique des matériaux. Il consiste à soumettre un matériau à un contact glissant avec un pion, sous une charge déterminée.

L'échantillon à tester est placé sur un support en rotation, tandis que le pion reste immobile, fixé à un bras stationnaire. Au cours de l'essai, une force normale est appliquée entre les deux éléments, et un mouvement relatif est généré pour reproduire des conditions d'usure similaires à celles rencontrées en service. Les principaux paramètres évalués sont la perte de masse de l'échantillon en fonction de la charge appliquée et le temps d'essai. La figure 2.18 montre un schéma d'un système d'usure pion sur disque.

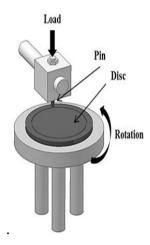


Figure 2.18 : Machine de test pion sur disque.

CHAPITRE 3

RESULTATS ET DISCUSSIONS

3.1 Introduction

Ce chapitre présente et analyse les principaux résultats obtenus au cours de ce travail. L'objectif est d'évaluer la résistance mécanique et chimique d'une poudre alliée destinée au frittage à chaud des outils de coupe déposée par projection thermique à la flamme. La poudre alliée a été dopée par deux autres poudres alliées dans lesquelles une grande proportion de carbures y est présente. Le traitement thermique a été ensuite appliqué aux revêtements obtenus pour en évaluer la qualité des dépôts.

3.2 Fabrication des revêtements

La fabrication des revêtements composites s'est faite en plusieurs étages. Le protocole de fabrication et de caractérisation s'est fait selon le diagramme donné à la figure 3.1.

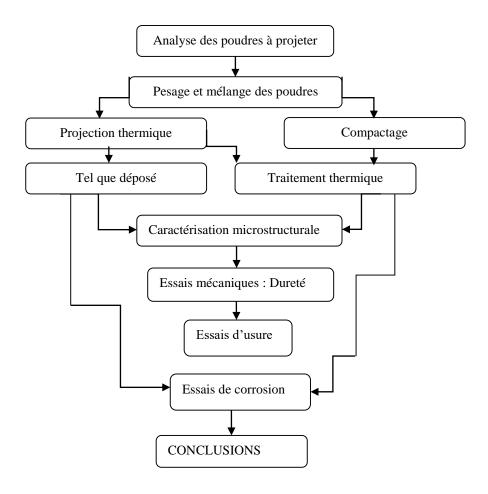


Figure 3.1 : Organigramme du protocole d'essais des revêtements

La première étape dans la fabrication des revêtements était de vérifier si la poudre alliée (acier outil) S290 pouvait être projetée par la torche à flamme DS8000. La poudre de départ a été tamisée en trois lots distincts. Le premier lot (lot 1) comportant une poudre S290 dont le diamètre était inférieur à 25 μ m. Le deuxième lot (lot 2) de la poudre S290, les diamètres retenus étaient compris entre : 25 μ m < d < 105 μ m et enfin le dernier lot (lot 3) renfermait la poudre S290 avec un diamètre > 105 μ m.

Nous avons au départ projeté la poudre S290 appartenant au deuxième lot car cette distribution granulométrique convenait bien pour la torche à flamme DS8000. La figure 3.2 montre une coupe transversale du revêtement fracturé à la main et étudié au microscope électronique à balayage.

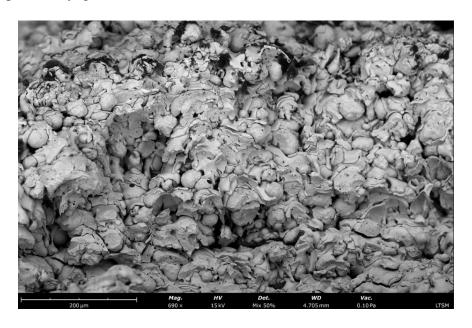


Figure 3.2: Revêtement S290, lot 2 déposé à la torche à flamme DS8000.

La poudre a été projetée avec un porte module 3 et une ouverture de l'opercule à 4. La distance de projection était fixée à 150 mm. Un air comprimé (1 bar) était soufflé sur le substrat durant la déposition. Bien que le revêtement soit dense, la présence de nombreux pores sont visibles dans le revêtement. Ce qui indique que la distribution granulométrique était vraisemblablement assez dispersée. Il y a aussi présence de particules non fondues. Mais globalement, nous pouvons dire que le revêtement était de bonne qualité et nous a encouragé à poursuivre cette étude en dopant la poudre S290 avec des carbures pour voir l'évolution des revêtements composites en terme de qualité de dépôt et de propriétés mécaniques.

Pour les deux autres lots de poudre, intermédiaires à celle du lot 2, nous n'avons pas les quantités nécessaires pour mener à bien toute la panoplie d'essais que nous voulions faire. Nous avons donc mélangé les trois lots de poudre \$290 pour la suite de notre étude.

3.2.1 Mélange des poudres

Les poudres S290, 3203 et 19999 ont été mélangées de la façon suivante :

Mélange 1 : S290 + 20 % 3203 dénommé dans le texte par poudre composite A

Mélange 2 : S290 + 50 % 3203 dénommé dans le texte par poudre composite B

Mélange 3 : S290 + 80 % 3203 dénommé dans le texte par poudre composite C

Mélange 4 : S290 + 40 % 19999 dénommé dans le texte par poudre composite E

Mélange 5 : S290 + 50 % 19999 dénommé dans le texte par poudre composite D

Mélange 6 : S290 + 80 % 19999 dénommé dans le texte par poudre composite F

Au cours de l'étiquetage des poudres préparées, le mélange 4 a été dénommé par erreur E au lieu de D.

L'opération de mélange des poudres s'est déroulé de la façon suivante : pour chaque mélange, nous pesons nécessaire pour avoir les proportions fixées dans notre programme à l'aide de la balance de précision 0.01 g. Le mélange des poudres a été ensuite placé dans un bocal pour homogénéiser les particules convenablement.

Pour chaque mélange ainsi obtenu, il a été versé dans le pot de la torche à flamme DS8000 et projeté sur un substrat dont la surface a été préalablement nettoyée et grenaillée juste avant la déposition.

3.2.2 Microstructure des dépôts

Les photos des figures 3.3, 3.4 et 3.5 montrent respectivement les coupes transversales des revêtements A (issu du mélange A), B (mélange B) et C (mélange C).

Nous remarquons que quand la proportion des carbures dans la poudre alliée S290, la qualité du revêtement s'améliore. Il y a moins de porosité et le revêtement semble plus dense. L'interface aussi est plus nette et sans discontinuité.

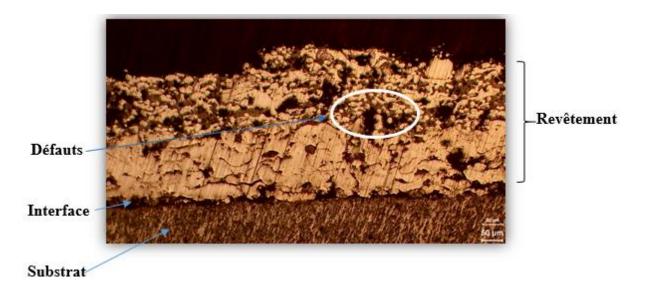


Figure 3.3 : Coupe transversale d'un revêtement déposé à partir d'un mélange A

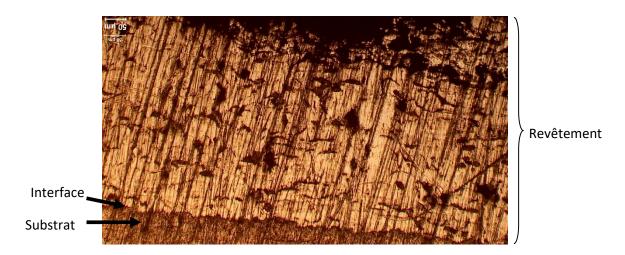


Figure 3.4 : Coupe transversale d'un revêtement déposé à partir d'un mélange B

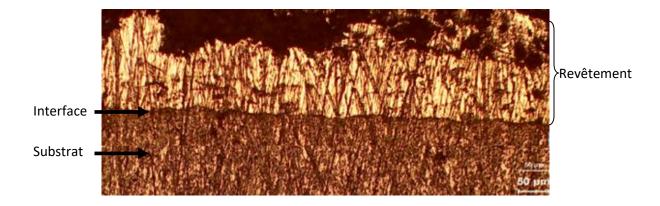


Figure 3.5 : Coupe transversale d'un revêtement déposé à partir d'un mélange C

Pour les mélanges D, E et F, les revêtements issus de ces poudres par projection thermique à la flamme ont été aussi déposés dans les mêmes conditions de préparation et de déposition que les précédents mélanges. Les photos des figures 3.6, 3.7 et 3.8 montrent respectivement les coupes transversales des revêtements E (issu du mélange E), D (mélange D) et F (mélange F).

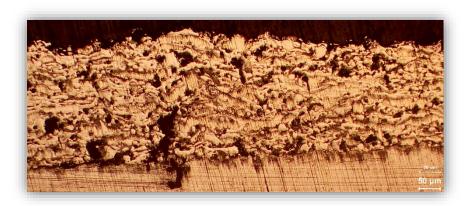


Figure 3.6 : Coupe transversale d'un revêtement déposé à partir d'un mélange E

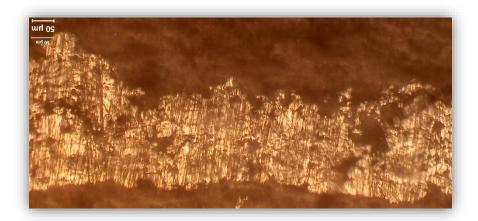


Figure 3.7 : Coupe transversale d'un revêtement déposé à partir d'un mélange D

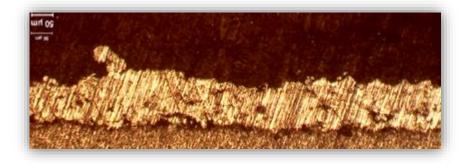


Figure 3.8 : Coupe transversale d'un revêtement déposé à partir d'un mélange F

Nous remarquons que quand la proportion de la poudre alliée S290 diminue au dépend de la poudre 19999, la qualité du revêtement s'améliore. Il y a moins de porosité et le revêtement semble plus dense. Curieusement, lorsque la proportion de la poudre 19999 augmente le taux déposition diminue puisque l'épaisseur des revêtements semble diminuée avec l'augmentation de la proportion du renfort. Il est clair que la distribution granulométrique de la poudre S290 est très large, elle favorise un revêtement poreux. Nous le constatons dans le revêtement E. Il est donc important que cette poudre S290 soit mieux sélectionnée pour la projection thermique. Un diamètre moyen autour 60 μ m à 75 μ m serait mieux appropriée pour sa projection à la flamme. La poudre initiale étant très fine, elle était préparée pour un frittage à chaud.

3.3 Essai de dureté

Dans cette étude, nous avons utilisé la méthode de dureté Rockwell HR15N superficielle, où nous avons appliqué sur la surface des revêtements une charge de 15Kgf. Nous avons pris trois mesures dans trois endroits différents et déterminé ensuite la valeur moyenne. Les valeurs des duretés sont données au tableau 3.1.

Tableau 3.1 : Résultats de l'essai de dureté Rockwell superficielle HR15N des revêtements.

Revêtement	Essai 01	Essai 02	Essai 03	Valeur Moyenne
A)	82.8	88.1	84.5	85.1
B)	78.8	76.3	74.8	76.63
C)	67.6	60.8	72.5	66.9
E)	82.1	69.1	71.8	73.6
D)	83.1	80.3	79.1	80.83
F)	62.1	58.3	64.2	61.5

Les duretés semblent diminuer avec la diminution de la poudre de l'acier outil S290. L'augmentation des carbures dans les mélanges A, B et C ne semble pas contribuer à l'augmentation de la dureté. Par contre, elle améliore la qualité du revêtement déposé par la projection à flamme. La dureté la plus haute obtenue ici (mélange A) est bien au-dessous d'une poudre de l'acier outil S290 fabriqué à partir d'un frittage à chaud.

Dans le cas des mélanges réalisés à partir de la poudre S290 avec la 19999, la valeur de la dureté la plus élevée est obtenue pour le mélange D et non pas celui de F. Il est probable ici que la qualité du revêtement obtenu à partir de la projection à flamme a joué un rôle dans l'augmentation de cette valeur. Nous avançons cette hypothèse avec prudence car cela été dit précédemment, l'augmentation de la poudre 19999 dans les mélanges améliore la qualité des revêtements et par conséquent nous aurions du enregistrer une valeur plus élevée pour le mélange F que le mélange D. Il y a plusieurs raisons à cette constatation : la dextérité des opérateurs, le mélange des poudres ne s'est pas correctement avant la projection, ou bien lorsque la proportion de la poudre 19999 est prépondérante, la dureté du revêtement composite chute.

3.4 Essai d'usure

Le but de cet essai est pour analyser le comportement tribologique des revêtements et fondamentalement déterminer la résistance à l'usure de chaque revêtement. L'essai d'usure est réalisé sur une machine de type pion sur disque. Une charge L'échantillon à tester est placé sur un support en rotation, tandis que le pion reste immobile, fixé à un bras stationnaire. Au cours de l'essai, une force normale de 22.54 N s'exerce sur le pion fait en acier outil, ayant une dureté de 70 HRC, contre le disque représenté par nos échantillons qui portent les revêtements. La masse des éprouvettes est mesurée avant et après l'essai à l'aide d'une balance de précision de 0.1 mg.

Les courbes de perte de masse en fonction de temps de chaque revêtement sont données par dans la figure 3.9 pour les revêtements des mélanges A, B et C.

L'usure augmente de façon quasi monotone pour les mélanges A, B et C avec le temps d'essai. Pour les mélanges A et B, le taux d'usure est similaire aux deux types de revêtements bien que leurs duretés sont différentes (celle de A est plus grande de 9 % comparativement à celle de B). En fait, les revêtements issus des mélanges A jusqu'à F devaient être refusionnés en surface pour densifier leur structure et ancrer solidement les carbures en surface. Cette opération n'a pas été faite car la bouteille d'oxygène s'est vidée et toute la réserve d'oxygène a été consommée. Il est possible, qu'en absence d'une consolidation des carbures en surface, il y a eu effritement de ces carbures et le comportement en usure des deux revêtements sont semblables.

Pour le revêtement issu du mélange C, nous remarquons que l'usure est faible, comparativement aux revêtements A et B, mais qu'elle augmente rapidement avec le temps. Cette augmentation est de 64 % plus importante que celle des revêtements A et B.

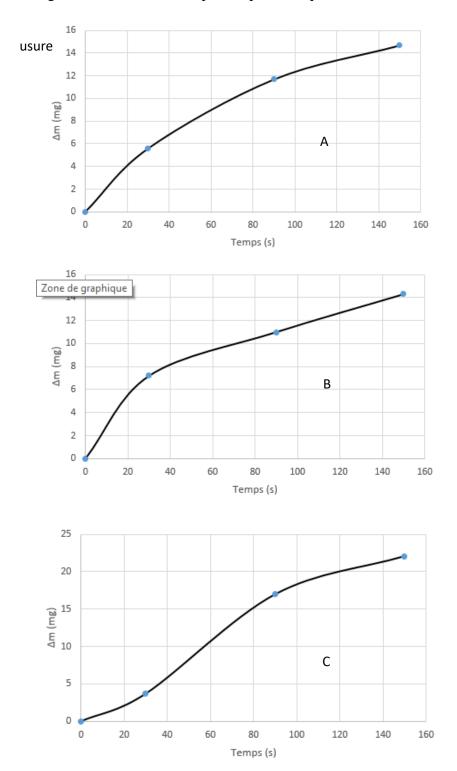


Figure 3.9 : Courbes d'usure des revêtements A, B et C sous une charge de 22.54 N.

Il est possible ici qu'une diminution de la poudre de l'acier outil S290 fragilise le revêtement, diminue sa dureté et par conséquent a une répercussion négative sur la résistance à l'usure. Les courbes d'usure des revêtements E, D et F sont montrées dans la figure 3.10.

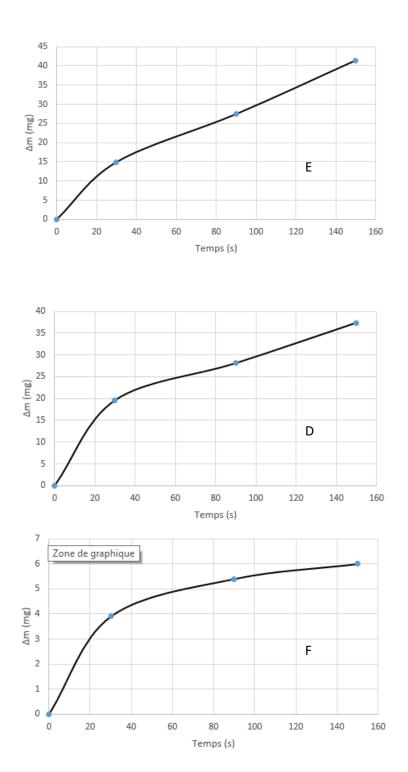
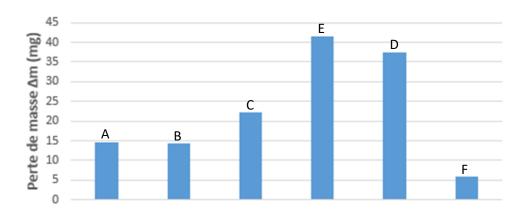



Figure 3.10 : Courbes d'usure des revêtements E, D et F sous une charge de 22.54 N.

Les courbes de la figure 3.10 seront mieux explicitées dans l'histogramme des taux d'usure des revêtements A, B, C, D, E et F réalisés sous une charge de 22.54 N et un temps d'essai de 150 secondes montrées à la figure 3.11.

Figure 3.11: Histogramme des pertes de masse des revêtements A, B, C, D, E, F pour un temps de 150 secondes et une charge normale de 22.54 N.

De la figure 3.11, nous pouvons dire que le taux d'usure augmente régulièrement pour les revêtements des mélanges A, B et C, c'est-à-dire que la résistance à l'usure des revêtements composites fabriqués à partir de la poudre 3203 augmente avec la proportion des carbures. Cela semble contradictoire mais en l'absence d'une refusion en surface pour maintenir solidement les carbures en place, ces derniers dégradent la qualité et l'intégrité du revêtement et par conséquent diminue ses performances en usure.

Pour les revêtements composites fabriqués à partir des mélanges D, E et F, c'est la situation inverse qui prévaut. La résistance à l'usure diminue avec l'augmentation de la charge de la poudre 1999. Avec une charge de poudre 1999 de 80 %, le revêtement composite F possède la meilleure tenue à l'usure. Bien que sa dureté soit respectivement inférieure de plus de 16 % par rapport à celle de A et de 24 % inférieure à celle de B, son comportement en usure est meilleur. Il est évident que la qualité et la densité du revêtement a joué un rôle primordiale dans ces comportements.

Nous pouvons conclure qu'un revêtement composite n'est efficace que si la qualité et la densité du revêtement sont au maximum.

3.5 Traitement Thermique

3.5.1 Traitements thermiques des revêtements

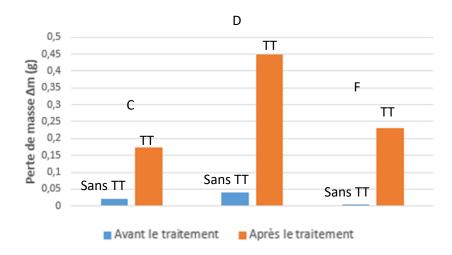
En l'absence d'une refusion à la torche à flamme des revêtements déposés, nous avons appliqué un traitement thermique dans un four à moufle à 1020 °C durant 10 heures. La figue 3.12 montre une photo des revêtements A, B, C, D, E et F une fois sortie du four et laissés refroidir d'abord dans le four ensuite à l'air ambiant. Le choix de cette température de traitement thermique a été conditionné par la composition de la poudre S290 qui normalement subit une chauffe à 1220 °C lors du frittage à chaud. Le four dont nous disposons ne peut aller à des températures aussi, nous avons essayé de compenser ce manque de température par l'augmentation du temps du traitement thermique fixé à 10 heures.

Figure 3.12 : Aspects des revêtements traités thermiquement à leur sortie du four à moufle.

Le traitement thermique a entrainé des modifications de teinte, ce qui est typique des phénomènes d'oxydation superficielle à haut température, des fissures superficielles ont été observées sur certains revêtements dues probablement à des contraintes internes générées par la différence de dilatation thermique entre les carbures et la matrice métallique. La mesure de dureté Rockwell sur les différents types de revêtements est

donnée au tableau 3.2. Ces valeurs de dureté sont résumées dans l'histogramme de la figure 3.13.

Tableau 3.2 : Résultats de l'essai de dureté Rockwell superficielle HR15N des Dépôts après le traitement thermique.


Revêtement	Essai 1	Essai 2	Essai 3	Valeur Moyenne
A	75.2	70.5	71.2	72.3
В	66.5	69.9	68.7	68.3
С	58.1	62.4	61.9	60.8
D	66.1	68.2	69.7	68
Е	62.5	66	61.6	63.3
F	52.1	54.3	50.9	52.4

90 80 70 60 50 40 30 20 10 0 Α В C D Ε F Avant le traitement Après le traitement

Figure 3.13: Histogramme des duretés des revêtements A, B, C, D, E et F après traitement thermique à 1020 °C durant 10 heures.

Nous remarquons la dureté pour les deux types de revêtements composites, les premiers (A, B et C) dopés aux carbures de tungstène et les seconds dopés aux carbures de chrome, diminue avec l'augmentation de la proportion du matériau de renfort. Autrement dit, plus la proportion de la poudre de l'acier outil est importante plus la dureté du revêtement composite est élevée. La poudre de l'acier allié s'apprête mieux aux traitements thermiques que les carbures.

Nous avons réalisé des essais d'usure pion sur disque sur les échantillons des revêtements composites C, D et F après traitement thermique. Les revêtements A, B et E ont été déclassés car soit il avait une surface trop gondolée soit ils étaient devenus trop fragiles pour subir un essai d'usure pion sur disque sous une charge importante de 22.54 N. La fissuration de ces revêtements aurait faussé les résultats. Les résultats sont présentés à la figure 3.14 qui donne l'usure des revêtements C, D et F sous une charge de 22.54 N pour un temps d'essai de 150 secondes.

Figure 3.14: Usure des revêtements C, D et F avec et sans TT sous une charge de 22.54 N et un temps de 150 secondes.

Il est évident que dans tous les cas, les revêtements composites sans traitement thermique sont de loin meilleurs à la tenue à l'usure que ceux qui ont subit un traitement thermique. Le cas le plus remarquable est le revêtement composite F qui surclasse tous les autres types de mélanges. Tenant compte des résultats précédents concernant la dureté, où nous avons trouvé que plus la proportion de la poudre de l'acier outil est importante plus la dureté du revêtement composite est élevée (voir la figure 3.13), nous pouvons dire qu'en parti les résultats de la figure 3.14 sont logiques. Pour rappel, pour le premier groupe de mélange réalisé avec la 3203, la dureté diminuait avec l'augmentation du renfort mais leur fragilité augmentait la diminution de ces derniers lorsqu'ils subissaient un traitement thermique. Pour le second groupe de mélange avec la 19999, la dureté diminuait avec les renforts mais leur consolidation se renforçait avec l'augmentation du renfort. Il y a une concurrence entre

la dureté et la consolidation du revêtement composite. Il semble que c'est la consolidation du revêtement composite qui donne les meilleures au revêtement composite.

3.6 Compactage des poudres

Dans cette partie du travail, nous avons voulu savoir si un compactage des poudres et un frittage dans le four ne donnerait pas de meilleurs résultats que la projection thermique des poudres à la flamme. Pour ce faire, nous avons pesé les poudres des mélanges A, B, C, D, E et F, mélangé et compacté sous forme de pastilles. Les pastilles à vert avaient une forme irrégulière que l'on voit d'ailleurs dans celles traitées thermiquement dans le four à la figure 3.15. Les pastilles compactées à vert des mélanges A, D et E ne sont pas incluses dans la figure 3.15 car elles se sont effritées rapidement. Nous les avons donc écartées.

Cette irrégularité géométrique, typique des matériaux renforcés par des carbures, confirme l'influence des conditions de compactage et de la composition des mélanges des poudres sur la qualité finale du revêtement.

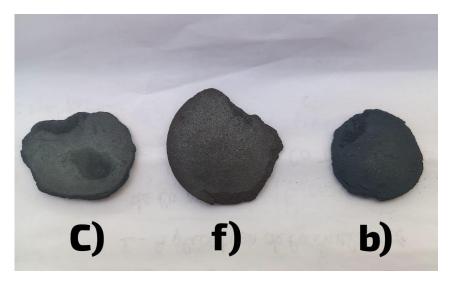


Figure 3.15: Pastilles C, F et B compactées et traitées au four à 1020 °C durant 10 heures.

Malheureusement toutes les pastilles qui ont été introduites au four se sont déformées à cause de la céramique sur laquelle elles ont été posées. La céramique qui servait de support dans le four s'est déformé et à son tour déformer les pastilles composites. Nous ne pouvons plus les caractériser correctement. Elles ont été abandonnées.

3.7 Essais de corrosion

Souvent, la résistance à la corrosion est exigée même dans les situations ou l'usure est le phénomène de dégradation dominant. C'est pourquoi nous avons exploré la résistance à la corrosion des revêtements composites dans un électrolyte d'acide chlorhydrique à 1 N. Pour tous les revêtements des mélanges A, B, C, D, E et F, nous avons tracé la courbe de Tafel afin d'évaluer sommairement leur résistance à la corrosion. Tous les revêtements ont été testés sans aucun traitement thermique. Les informations utiles de ces courbes Tafel ont été extraites. Les courbes de Tafel des mélanges A, B et C sont regroupées dans la figure 3.16.

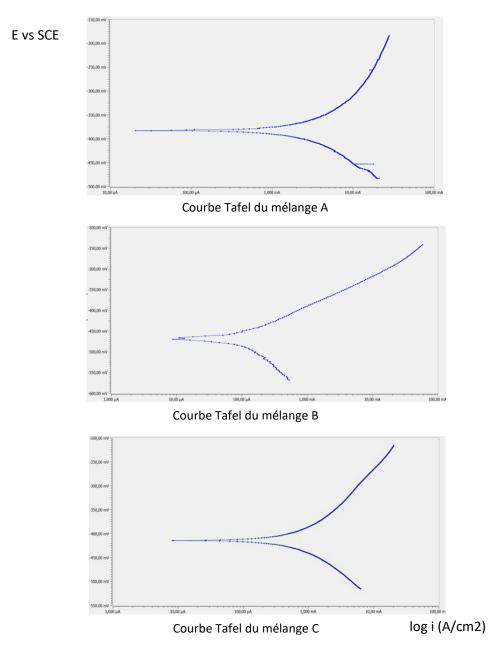


Figure 3.16: Courbes Tafel des mélanges A, B et C dans 1 N HCl.

Les courbes de Tafel des mélanges D, E et F sont regroupées dans la figure 3.17.

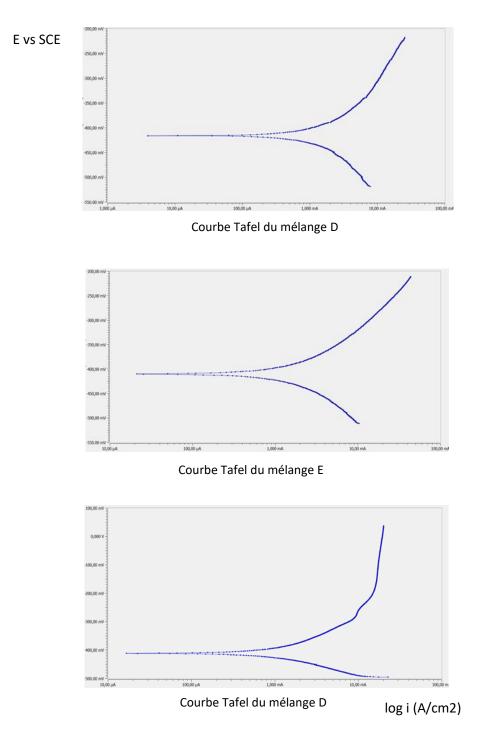


Figure 3.17 : Courbes Tafel des mélanges A, B et C dans 1 N HCl.

Les valeurs de icorr et Ecorr des courbes de Tafel des figures 3.1et 3.17 sont résumées au tableau 3.3.

Tableau 3.3 : Paramètres de corrosion des courbes de Tafel

Revêtements	I_{corr}	E _{corr}
A	98.1μA/cm2	-468.60 mV
В	2.231 mA/cm2	-382.90 mV
С	858.10 μA/cm2	-416.10 mV
E	2.029 mA/cm2	-410.20 mV
D	1.693 mA/cm2	-414.40 mV
F	2.205 mA/cm2	-411.80 mV

Il est difficile de tirer des conclusions à partir de ces courbes de corrosion représentant les revêtements des différents mélanges. Par exemple, bien que le revêtement (A) a un courant de corrosion très bas, son potentiel de corrosion est le plus élevé comparativement aux revêtements B et C. Pour le revêtement B, il a le courant de courant le plus élevé mais son potentiel de corrosion est le plus faible. La même constatation est faite pour les revêtements E et F.

Il est donc prudent de dire que les résultats de corrosion dépendent de la qualité des revêtements que nous avons produit et du milieu dans lequel les échantillons ont été testés. Il faut d'abord optimiser les paramètres de fabrication des revêtements composites et les tester dans un milieu plus approprié que le HCl.

CONCLUSION

L'objectif est d'évaluer la résistance mécanique et chimique d'une poudre alliée destinée au frittage à chaud des outils de coupe déposée par projection thermique à la flamme. La poudre alliée, d'un acier outil à haute performance, a été dopée par deux autres poudres alliées dans lesquelles une grande proportion de carbures y est présente. Le traitement thermique a été ensuite appliqué aux revêtements obtenus pour en évaluer la qualité des dépôts.

- La sélection de la distribution granulométrique de la poudre de l'acier outil est primordiale pour l'obtention de bons revêtements projetés par la torche à flamme. Elle conditionne le taux de porosité et la densité des revêtements finaux obtenus. Une granulométrie serrée et d'un diamètre moyen de 75 µm conviendrait mieux pour ce type d'application.
- En l'absence d'une refusion en surface, la qualité des revêtements composites est substantiellement diminuée. Elle a une répercussion sur leur comportement mécanique et sur leur résistance à l'usure.
- Un revêtement composite n'est efficace que si la qualité et la densité du revêtement sont optimales. Ces conditions optimales sont atteintes par des traitements thermiques supplémentaires qui consolident les carbures en surface.
- Dans les traitements thermiques appliqués aux revêtements composites, plus la proportion de la poudre de l'acier outil est importante plus la dureté du revêtement composite est élevée. La poudre de l'acier allié s'apprête mieux aux traitements thermiques que les carbures.
- Il y a une concurrence entre la dureté et la consolidation du revêtement composite. Il semble que c'est la consolidation du revêtement composite qui donne les meilleures au revêtement composite.

Références bibliographiques

- [1] **Berthelot, J.-M**., Comportement mécanique et analyse des structures. Edition Masson, 2005.
- [2] **Laurin, F**. Introduction générale sur les matériaux composites. In Colloque Aussois MECAMAT, Aussois. 2011.
- [3] **Liégaut**, **C**., Élaboration de composites à matrice céramique ultra-réfractaire résistants aux très hautes températures sous flux gazeux, 2018, Bordeaux.
- [4] **Silvain, J.-F., J.-M. Heintz, and A**. Veillere, Matériaux composites à matrices métalliques. 2018.
- [5] **Mathieu, S.,** Modélisation du comportement mécanique lors du procédé de mise en forme et pyrolyse des interlocks CMC, 2014, Lyon, INSA.
- [6] **Mustafa**, A., An introduction to polymer-matrix composites, 2015, bookboom.com.
- [7] METAL MATRIX COMPOSITES THEIR PROPERTIES AND APPLICATIONS A. **Chennakesava Reddy Professor**, Department of Mechanical Engineering JNTUH College of Engineering, Kukatpally, Hyderabad, December 2018
- [8] **Rawal SP** (2001) Metal-matrix composites for space applications. J Mater 53:14–17
- [9] **Clyne T** (2001) Composites: MMC, CMC, PMC. In: Mortensen A (ed) Encyclopaedia of materials: science and technology. Elsevier, USA
- [10] **Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ** (2006) Selective interfacial bonding in Al (Si)— diamond composites and its effect on thermal conductivity. Compos Sci Technol 66:2677–2685
- [11] Metal-matrix Composites Pradeep Composites and Solidification Laboratories, **K. Rohatgi** Materials Engineering Department, College of Engineering and Applied Science, The University of Wisconsin-Milwaukee Milwaukee, WI 53211, USA, Defence Science Journal, Vol 43, No 4, October 1993, pp 323-349.
- [12] **Paul B** (1959) Prediction of elastic constants of multi-phase materials. In: Technical report no. 3. Brown University. Available via. http://www.osti.gov/scitech/biblio/4273941
- [13] **Kamal K.Kar** Editor, Composite Materials Processing, Applications, Characterizations MATERIALS.SPRINGER.COM
- [14] **Umanath K, Palanikumar K, Selvamani** ST (2013) Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Compos Part B: Eng 53:159–168
- [15] **Hashim J, Looney L, Hashmi** M (2002) Particle distribution in cast metal matrix composites Part I. J Mater Process Technol 123:251–257

- [16] **Hashim J, Looney L, Hashmi** MSJ (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92–93:1–7
- [17] **Clyne TW, Mason JF** (1987) The squeeze infiltration process for fabrication of metal-matrix composites. Metallurg Trans A 18:1519–1530
- [18] McLelland A, Atkinson H, Anderson P (1999) Thix of orming of a novel layered metal matrix composite. Mater Sci Technol Ser 15:939–945
- [19] **Legzdins C, Samarasekera I, Meech J** (1997) MMCX– an expert system for metal matrix composite selection and design. Can Metallurg Q 36:177–202
- [20] **Garfinkel GA, Myers DC, Gianaris NJ, Hashmi** SAA (2003) Vented disc brake rotor. US Patent 6,536,564
- [21] www.amc-mmc.co.uk
- [22] Li S, Sun B, Imai H, Kondoh K (2013) Powder metallurgy Ti–TiC metal matrix composites prepared by in-situ reactive processing of Ti-VGCFs system. Carbon 61:216–228
- [23] Proner, A., Revêtements par projection thermique 1999: Ed. Techniques Ingénieur.
- [24] La projection thermique, MAG'MAT | N°22 / AVRIL JUIN 2007.
- [25] http://www.wear-management.ch
- [26] Journal of American Ceramic Society, 2001 Vol 84 n°4
- [27] **G.Zambelli, L.Vincent,** Matériaux et Contacts— une approche tribologique, Presses Polytechniques et Universitaires Romandes
- [28] Sassoulas (H.).— Guide de choix des traitements thermiques des aciers inoxydables. M 1 160, traité Matériaux métalliques (1997).
- [29] **S. NOUROUZI**; Contribution à l'étude du procédé arc-fil pour la réalisation des dépôts métalliques durs résistants à l'usure abrasive (Thèse pour obtenir le grade de Docteur de l'université de LIMOGES) (Thèse N° 49, Année 2004)
- [30] Martukanitz RP. Modeling and characterization of hard particle retention during laser surface alloying: Appl. Research Lab., State College, PA,
- [31] Int. Journal of Refractory Metals & Hard Materials, Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding, **Janne Nurminena**, **Jonne Näkkia**, **Petri Vuoristoa,b.** Received 30 September 2008, Accepted 2 October 2008.
- [32] `Understanding Metal Matrix Composites` from www.elementum3d.com , March 2018.
- [33] Carl Zweben, "Metal Matrix Composites," contractor report for OTA, January 1987.
- [34] **KARED Liticia** et **MAHFI Celina** Mémoire de projet de fin d'études "Caractérisation des dépôts projetés thermiquement à froid (Cold Spray) sur composites à matrice polymère"