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Abstract

Recent advancements in modeling, combined with a significant increase in comput-
ing power, have enabled the development of simulators capable of replicating physi-
cal phenomena with unmatched precision. However, the complexity and time cost of
these simulators often make their direct use impractical. To overcome these challenges,
it is common to use computer experiment designs to create simpler surrogate functions
using approximation or interpolation methods.

This work focuses on the creation of computer experiment designs based on stochas-
tic processes. Traditional methods, although extensively studied, have limitations in
the context of computer simulations where the error primarily arises from the model.
Therefore, suitable plans are needed to optimize the coverage of the experimental do-
main and detect potential irregularities.

We propose new computer experiment designs using marked point processes and
area-interaction point processes. These approaches incorporate geometric knowledge
and prior information about the experimental points, allowing for a uniform distribu-
tion within the unit hypercube. Specifically, Strauss marked point processes with two
marks and area-interaction point processes are used to generate these plans. For this
purpose, we employ Monte Carlo Markov Chain (MCMC) techniques, including the
Metropolis-Hastings algorithm.

Keywords: Design of experiments, Computer experiments design, Point processes,
Marked point processes, Monte Carlo Markov chain method (MCMC), Metropolis—
Hastings algorithm.



Résumé

Les récentes avancées en modélisation, associées a I'augmentation significative de la
puissance de calcul, ont permis le développement de simulateurs capables de repro-
duire des phénomeénes physiques avec une précision inégalée. Cependant, la com-
plexité et le cotit en temps de ces simulateurs rendent leur utilisation directe souvent
impraticable. Pour surmonter ces défis, il est courant de recourir a des plans d’expé-
riences numériques afin de créer des fonctions de substitution plus simples, utilisant
des méthodes d’approximation ou d’interpolation.

Dans ce travail, nous nous intéressons a la création de plans d’expériences numé-
riques basés sur des processus stochastiques. Les méthodes traditionnelles, bien que
largement étudiées, présentent des limites dans le cadre des simulations numériques
ou l'erreur provient principalement du modele. Ainsi, des plans adaptés sont néces-
saires pour optimiser la couverture du domaine expérimental et détecter d’éventuelles
irrégularités.

Nous proposons dans cette thése de nouveaux plans d’expériences numériques uti-
lisant des processus ponctuels marqués et des processus ponctuels a interaction d’aire.
Ces approches integrent des connaissances géométriques et des informations a priori
sur les points expérimentaux, permettant une répartition uniforme dans 1’hypercube
unité. Les processus marqués de Strauss a deux marques et les processus ponctuels
a interaction d’aire sont spécifiquement utilisés pour générer ces plans. Pour cela,
nous employons les techniques de simulation de Monte Carlo par chaines de Markov
(MCMC), notamment l"algorithme de Métropolis-Hastings.

Mots Clée : Plans d’expériences, Plans d’expériences numériques, Processus Ponc-
tuels, Processus Ponctuels Marqués, Monté Carlo par Chaine de Markov (MCMC), Al-
gorithme de Metropolis—Hastings.
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General Introduction

Recent advances in modeling, combined with the increasing computational power of
modern computers, have led to the development of simulators with unprecedented
complexity and accuracy. These sophisticated tools now enable highly precise model-
ing of a wide range of physical phenomena and complex systems, including climate
dynamics, biological processes, and simulations of economic and industrial systems.
By using these simulators, it is possible to achieve more reliable predictions and gain
a deeper understanding of the underlying mechanisms of many natural and artifi-
cial phenomena. However, this growing sophistication comes with significant draw-
backs. The computational and data management requirements increase proportionally,
making these tools resource-intensive and challenging to deploy in practical contexts.
Modern simulators demand high-performance computing infrastructures to carry out
complex operations, presenting substantial challenges related to performance, mem-
ory management, and computation time. To address these challenges, a commonly
adopted approach is to use surrogate models, also known as reduced or approximate
models, to replace the original simulators when rapid solutions are required. These
approximate models are typically constructed using approximation or interpolation
methods based on meticulously designed computer experiment designs. Such designs,
often derived from advanced techniques like orthogonal array methods or adaptive
sampling strategies, capture the essential behavior of the simulated system while sig-
nificantly simplifying computations. The goal is to maintain acceptable accuracy while
substantially reducing the required resources. By adopting these strategies, not only
are computational and time costs reduced, but data management also becomes more
efficient, enabling broader and more accessible use of these advanced modeling tools.

Experiment designs have been extensively explored by researchers such as Fisher
[1], Kiefer [2], and Box [3], among others. Fisher, for instance, developed methods to
optimize the placement of experimental points to obtain reliable estimates of model
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parameters. Classical designs often prioritize placing points at the boundaries of the
study domain to better capture random variations and improve the reliability of results
in the presence of measurement errors. However, in the context of computer experi-
ments, errors are often more related to model specification than to the experimentation
itself. As a result, repeating classical experiments becomes less relevant, since the out-
comes do not vary with experimental conditions.

The literature offers a wide diversity of experiment designs due to the lack of a
universally optimal design that can simultaneously satisfy all optimality criteria. Each
design has specific advantages for certain criteria while presenting limitations for oth-
ers. For instance, some designs may provide better coverage of the experimental do-
main, while others may be more effective in detecting irregularities. Therefore, it is
essential to select an experiment design based on the specific objectives of each study,
considering the problem’s characteristics and precision requirements.

In this context, our primary objective is to develop new computer experiment de-
signs based on stochastic process theory. Specifically, we focus on applying marked
point processes [4] and area-interaction point processes [5]. These stochastic processes
offer a rigorous framework for modeling not only the spatial distribution of points
but also the complex relationships between them, incorporating geometric information
and prior knowledge specific to the n experimental points that constitute the computer
experiment design. By employing this methodology, we achieve a refined and nuanced
representation of the interactions between points, leading to improved coverage of the
experimental domain. This ultimately enhances the quality and precision of computer
experiments.

For the design of these experiment designs, we pay particular attention to two-mark
Strauss processes [6]. These processes are used to model specific interactions between
pairs of points, differentiating the types of interactions based on the characteristics of
the points themselves. Simultaneously, we utilize area-interaction point processes [7],
which incorporate interactions over defined regions, allowing for more precise mod-
eling of local phenomena within the experimental domain. The goal is to ensure an
optimal distribution of experimental points within the unit hypercube, providing a
uniform and exhaustive coverage of the study domain. To generate these proposed
designs, we implement advanced simulation techniques based on the Markov Chain
Monte Carlo (MCMC) method, with a particular emphasis on the Metropolis-Hastings
algorithm [8,9] combined with Voronoi tessellations [10]. These tessellations partition
the space into Voronoi cells derived from a set of generating points, where each cell
corresponds to the region closer to its generator than to any other. These stochastic
simulation techniques are essential for efficiently exploring the space of possible con-
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tigurations and identifying optimal arrangements of experimental points. They allow
us to account for both the structural constraints of the problem and the specific objec-
tives of each design, ensuring that the results are not only theoretically robust but also
applicable to real-world experimental scenarios.

This document is organized to comprehensively present the various aspects of com-
puter experiment designs and stochastic simulation. Chapter 1 introduces the fun-
damental principles of experimental design, explaining the basic concepts and sev-
eral classical methods employed in this field. Chapter 2 delves deeply into the the-
ory of point processes, covering essential mathematical aspects, finite point processes,
Markov point processes, and fundamental concepts of random tessellations, partic-
ularly Voronoi tessellations, which are crucial for spatial modeling. Chapter 3 ex-
plores the mathematical and computational foundations of simulation, focusing on
the Markov Chain Monte Carlo (MCMC) method, a powerful technique for sampling
and simulating complex distributions. Chapter 4 addresses the primary objective of
this research: the development of computer experiment designs based on two-marked
point processes, enabling improved modeling of interactions. Chapter 5 focuses on
the second objective of this thesis: designing new computer experiment designs us-
ing area-interaction point processes and developing an innovative simulation method
based on the Metropolis-Hastings algorithm and Voronoi tessellations, aimed at opti-
mizing simulation accuracy and efficiency. Finally, the work concludes with a sum-
mary and perspectives for future research. The appendix includes Python programs
developed to produce the numerical illustrations presented in Chapters 4 and 5.



Chapter 1

Overview of Experimental Designs

This chapter synthesizes and summarizes the various assumptions underlying the
use of experimental design methods. These methods are invaluable tools for any ex-
perimenter, whether conducting scientific research or industrial studies. They find
application across a wide range of disciplines, whenever the goal is to determine the
relationship between a variable of interest y and explanatory variables x; that may in-
fluence it. To achieve this objective, it is essential to adhere to strict mathematical rules
and adopt a rigorous approach. Such rigor ensures not only the validity of the results

obtained but also their reproducibility, a fundamental aspect of any scientific process.

1.1 Historical Background

The method of experimental designs has both ancient and modern origins [11]. In
the Middle Ages, Nicolas Oresme (1325-1382) mentioned this method in his writings.
Later, Francis Bacon (1561-1626) [12], who inspired Descartes and Leibniz, emerged
as a pioneer of the experimental method. A significant revival of this approach oc-
curred through the work of Ronald Fisher [1], who, in 1919, was recruited by an agri-
cultural research center near London. Faced with the impossibility of conducting all
the experiments needed to improve agricultural yields, Fisher proposed experimental
configurations based on rigorous statistical models, such as Latin squares.

Many statisticians, including Yates, Youden, Cochran, Plackett, and Burman, fol-
lowed Fisher’s contributions to promote and develop experimental planning tech-
niques across various fields beyond agronomy. In the 1950s, the work of Box [3] and
his collaborators, notably building on Yates” contributions, led to specific methods for
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constructing two-level fractional designs. However, it was the work of Taguchi and
Masuyama that enabled a broader dissemination of experimental designs. In 1959 and
1961, they published tables for constructing orthogonal experimental designs suited to
most industrial problems [13].

Many contemporary researchers continue to develop this branch of statistics in var-
ious directions: adapting experimental designs for mixtures [14], introducing block
effects [15], using nonlinear models [16], incorporating neighborhood effects, and ex-

tending experimental designs to computer experiments.

1.2 Significance of Experimental Design Methods

To study a phenomenon, the experimenter focuses on a specific metric, such as the
wheat yield of a field, the production cost of a chemical product, or the wear on an
engine part, among others. This metric depends on multiple variables. Studying the
phenomenon involves measuring this metric as a function of the various values taken

by these variables.

uncontrollable factors

inputs responses

controllable factors

Figure 1.1: System environment.

When trying to understand the dependence of an output variable y of a process
(Figure 1.1) or a property, several questions arise:

o What are the most influential factors?

e Are there interactions between the factors (correlations)?
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¢ Can the process (or property) be linearized as a function of these factors, and is

the resulting model predictive?

¢ How can the number of measurement points for the process (or property) be

minimized while maximizing the information obtained?
¢ Are there biases in the measurement results?

The experimental design method addresses these questions and applies to various
processes and properties, ranging from simple tests to evaluating complex quality pro-
cesses. Experimental designs allow for studying numerous factors while keeping the
number of trials manageable. One of their primary applications is identifying influen-
tial factors. Understanding this method relies on two essential concepts: the experi-
mental space and the mathematical modeling of the metrics studied [17].

1.3 What is an Experimental Design?

An experimental design (commonly called ‘Design of Experiments” or DOE) is an or-
dered sequence of trials in an experiment, each designed to acquire new knowledge
by controlling one or more input parameters to achieve results that validate a model
while minimizing resource use (i.e., reducing the number of trials).

Many processes and properties depend on a large number of external parameters
(factors) without pre-existing mathematical models.

1.3.1 Basic Vocabulary of Experimental Designs

The methodology of experimental designs uses specific terminology in experimental
research. While these terms are standard, their meanings may vary slightly across

different statistical fields. To clarify our presentation, let us review some key terms.

Objectives

The primary goal of this method can be summarized by the motto: "obtain maximum
information with a minimum number of experiments." This means producing the
highest quality outcomes at the lowest possible cost, a universal objective for all man-

ufacturers.
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Factors

Factors are the variables under study that are presumed to influence the system. The
value assigned to a factor for a given trial is called its "Level." A factor can be:

* A controllable factor: A manageable, adjustable, and modifiable variable.

* An uncontrollable factor: A variable not considered for the study, either because
it is deemed uninfluential and left at its usual value, or because it is an unknown
factor affecting the experiment.

* A quantitative factor: A measurable numerical quantity, such as speed, temper-

ature, or intensity.

¢ A qualitative factor: A factor not directly quantifiable, identifiable by its different
levels, such as a brand, process, method, or supplier.

When studying the influence of a factor, its variation is generally constrained be-
tween two bounds (lower bound: low level; upper bound: high level).

low level

— —\ Factor Domain High Level
S S
-1 +1 Factor axis

Figure 1.2: Range of factor variation.

Factor coding allows standardizing all factors to the same interval, removing their
units, enabling their comparison, and simplifying subsequent mathematical analysis.
Coding is performed so that the values £1 are consistently associated with the high
and low levels of operational values. This new variable is called the centered and re-
duced variable. The transformation between the original variables z and the centered

and reduced variables x, and vice versa, is given by the following formula:

220
~ step
where:
high level + low level high level — low level
Z0 = 5 and step = >
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The advantage of centered and reduced variables lies in their ability to present ex-
perimental designs uniformly, independent of study domains and factor units. This
approach lends great generality to the theory of experimental designs [18].

Experimental Domain

Consider a set of p quantitative factors used to best explain a phenomenon. The ith
factor (for 1 < i < p) typically takes values within an interval of the form [a;, b;|, where
a; is the low level and b; is the high level.

For p factors, an experiment is entirely defined by a vector in R? specifying the
levels of all factors. The experimental domain is any subset of R” where experiments
can be performed. To define such a domain, the ranges of variation for different factors
are combined (see Figure 1.3).

[a1,b1] X a2, bp) X ... x [ap,by)

Factor 1

Experimental space

.
.-

Factor 2

Figure 1.3: Experimental space.

The level x; of factor 1 and the level x; of factor 2 can be viewed as the coordinates
of a point in the experimental space (Figure 1.4).
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Factor? 4

xf-mmmm e .---

X; Factor 1

Figure 1.4: Factor levels defining experimental points in the experimental space.

An experiment is thus represented as a point within this coordinate system. An

experimental design is represented as a set of such experimental points.

Response

The response is the observed value for each conducted experiment. It is assumed to

always be numerical, with only one response observed at a time.

Study Domain and Response Surface

The grouping of factor domains defines what is known as the "study domain." By con-
sidering the definition of the p factors and their respective ranges of variation, it is
natural to define a p-dimensional space where each point represents a configuration
of the p factors. This space is referred to as the study domain or research space. Ex-

perimental points can lie either within or on the boundaries of the domain (see Figure
1.5).

A
Factor 2
+] -
i I
1 H »
-1 +1 Factor 1

Figure 1.5: Study domain for two factors.
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Each point in the study domain corresponds to a response. The collection of all
points in the study domain corresponds to a set of responses, which lie on a surface
called the response surface. There are two types of response surfaces:

o Real response surface: The real response surface of the process is the set of values
the response takes.

e Theoretical response surface: In cases where the variables are continuous, a the-
oretical response surface can be calculated. In practice, this surface is constructed
from a few experimental points chosen by the experimenter. Generally, the fun-
damental problem of experimental designs is to find a polynomial model that

provides a better approximation of the real response surface (see Figure 1.6).

Theoretical response surface
(Theoretical model)
Eesponse surface
Eeal (Continuous)

Fesponse y
.

N ——

Bup2 1 Factor 2

T _..ﬂ. e
l'".

- Figld of study o
& 4

1

1

1

[

1

[

1 -
1

1

1

1

1
H

N,

hlnl‘.l h‘supl

bing2

Factor 1

pree . q‘------ -

X1

Figure 1.6: Response surface.
1.3.2 Experimental Designs

Each point in the study domain represents possible operating conditions, meaning an
experiment that the operator can perform.

10
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Factor?2

+1 p==---

B

1 +1 Factorl

Figure 1.7: Experimental design theory shows that the best locations are the vertices A, B, C,
and D of the study domain.

The selection of the number and placement of experimental points is the funda-
mental problem of experimental designs. Sets of experimental points meeting specific
properties are referred to as classical experimental designs. These designs are well-
known and widely published. When the experimental points are arranged differently
from classical designs, they are called non-conventional designs. Their properties are
typically less optimal than those of classical designs. However, these designs are en-
countered because it is not always possible to adhere to the requirements of classical
designs [19].

1.3.3 Experiment Matrix

An experiment matrix is a mathematical object that represents the set of experiments
to be conducted in a coded or standardized form. It is a table consisting of n rows,
corresponding to the n experiments, and p columns, corresponding to the p variables
(factors) under study. The experiment matrix (Tableau. 1.1) defines the trials shown in
Figure 1.7. The ij-th element of the matrix corresponds to the level value of the j-th
variable in the i-th experiment. The experiment matrix thus defines the trials to be

carried out. The term “trial” is equivalent to “experimental point” [20].

11
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Tableau 1.1: Experiment Matrix

Trial N° | Factor 1 | Factor 2
1(A) -1 -1
2(B) +1 -1
3(C) -1 +1
4(D) +1 +1

1.4 Model and Mathematical Tools Used (Statistics)

1.4.1 Concept of Estimator

Consider a random phenomenon dependent on an unknown parameter § € R. After
performing n experiments, which are realizations of random variables y1,v2,...,Yn,
an estimator of B is any random variable y such that y = f(y1,y2,...,yn), where f is
a known function (in other words, f must not depend on the unknown parameter f).
The estimator of B is typically denoted as . Two classic properties of an estimator are:

Definition 1.1. We say that:
1. An estimator of B is unbiased if and only if: TE(B) = B

2. If By and By are two unbiased estimators of B, then i is more efficient than P, if and
only if Var(B1) < Var(B,)

A good estimator of B is both unbiased (i.e., "centered" on the target to be reached)
and as efficient as possible (i.e., the least dispersed around the target).

1.4.2 Statistical Model

Consider a random phenomenon dependent on p variables (factors in the case of ex-
perimental designs), and suppose that we seek to find the best mathematical model to
represent this phenomenon. The statistical approach consists of conducting n experi-
ments, wisely chosen in the case of experimental designs. Each of these is identified by
a point x € R (this is possible if the variables studied are quantitative; for qualitative
variables, a subset of IN? is used). Let y(x) denote the measured response such that:

12
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y(x) = f(x) +¢(x)

where f is the deterministic part of the model, and ¢ is the error part, generally
assumed to be a random variable under the following hypotheses:

Centered: E(e(x)) =0 Vx,
Independent: Cov(e(x),e(x')) =0 Vx # X/, (1.1)
Homoscedastic:  Var(e(x)) = ¢®  Va.

These three hypotheses aim to simplify the analysis of the models being studied.

The issue at hand is to estimate the unknown parameters of the model given by the
function f (assuming the number of parameters to estimate is p’).

It is essential to distinguish between linear models (i.e., linear with respect to the
unknown coefficients) and non-linear models. Mathematically, a model is linear with
respect to the parameters B; (i € {1,2,...,p'}) if and only if each of the partial deriva-

df (x)
9P

the function f is unknown or too complex, so it is common to approximate it using a

tives does not depend on B;. For a random phenomenon to explain, typically

class of standard functions, such as Taylor expansions, Fourier series, etc.

1.4.3 Linear Modeling

Consider a statistical model dependent on p factors with f as a function that is linear
with respect to p’ unknown parameters. If n experiments are performed, identified by

points (Zi)izl,--- ain IR?, we have:

Vi=1,-,nY(z)=f(zi) +&(z)

Since f is linear with respect to the unknown parameters, this model can be written

in matrix form as:

Y=XB+e
where:
e Y ¢ IR": vector of observations,
e ¢ ¢ R"™: vector of errors,

e B € R vector of unknown model parameters,

13
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e X € M(n,p'): model matrix.

The assumptions in (1.1) translate as:

E(e) =0 and V(e) =o?I, (1.2)

This implies:
E(Y) =E(XB+¢) = XB

and
V(Y) = V(XB +¢) = 0?I,,

indicating that X is the mean response given by the model.

1.4.4 Parameter Estimation Using the Least Squares Method

Once the model is established, the task is to determine an estimator 3 of § that satisfies
the conditions in Definition 1.1. The classical approach seeks j such that the vector of
observed responses Y and the vector of predicted mean responses Y = X3 are as close
as possible.

This leads to the least squares estimator of 8, defined as follows:

Definition 1.2. 3 is the least squares estimator of B if and only if it minimizes the function:

Q(B) = IlY — XB|%
where || - || is the Euclidean norm in R™.

The least squares estimator of f minimizes Q, and the minimum value of Q is given

by:

n

QB) =Y —XBIP =Y -T2 =Y (v;— ¥))*.

i=1
This shows that Q(f) represents the quadratic error between observed responses Y;

and predicted mean responses Y;.

Proposition 1.1. Let the statistical model be Y = X + ¢, where X is a full-rank matrix'. The
least squares estimator f is given by:

B=("XX)"1iXy.

LA matrix is full-rank if no column is linearly dependent on the others, i.e., the rank of the matrix
equals the number of columns.

14
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Proof. To find f that minimizes ||Y — XB|> = Y, (Y; — Y;)?, note that Y1, (Y; — Y;)?

can be expressed as:

A A A

Y-Y,Yy-Y)=4Hy-Y)(Y-Y),

where Y = Xp. Substituting this, we get:

Q(B) = "(Y = XB)(Y — XB)
= ('Y= 'BIX)(Y - XB)
= 'Yy — 'B!XY — 'YXB+ 'B'XXB.

Since 'YXB = '(!B!XY) = 'B!XY, we can rewrite:
Q(B) = vy —2'B!'XY + 'BIXXB.

To minimize Q, compute the derivative with respect to B:

9Q t t

— = —2'XY +2'XXB.

9B XX
Setting this to zero gives:

—2/XY +2/XXp=0 = 'XXp='XY = p=('Xxx)7"'XY.

To verify that this solution is a minimum, compute the second derivative:

02Q
- =2'XX.
9p?
Since XX is positive definite, Q(B) has a unique minimum at . O

Proposition 1.2. If the assumptions in (1.2) about the residuals (errors) are satisfied, and if B
is the least-squares estimator of B, then:
1. B is an unbiased estimator of B.
1

2. B has a variance-covariance matrix given by V (B) = o? (! XX) .

Proof. 1. Letus calculate E (B):

E(B) = E (('XX) 'XY) = ('XX) 'XE(Y) = (‘XX) " 'XXB =B,

15



CHAPTER 1. OVERVIEW OF EXPERIMENTAL DESIGNS

2. Replacing by (‘XX)~MXY and Y by XB + ¢, we get:
B—B=(XX)MX(XB+e) - .
Expanding this expression gives:
B—B=(XX)"UXXB+ (IXX) 1 Xe - B.
By simplifying, we find:
B—pB=p+(XX)" Xe—p=('XX)"!'Xe.
Since the transpose of  — B is given by:
(B—p)' ="eX('XX)7,
we can write the variance-covariance matrix of j as:
V(B) =E[(B-B)(B-B)]
By substituting  — B = (XX)~! fXe, we obtain:
V() =E [(fXX)*1 sztsX(fXX)*l} .
Rearranging terms, we have:

V(B) = (1XX) M XE(ele) X (P XX) L.

Under the assumption that ¢ follows a normal distribution with zero mean and

covariance matrix 021, (where I, is the identity matrix of size ), we know that:

E(e'e) = 0?1,

Thus, substituting;:

V(B) = ((XX) " MX (1) X('XX) L.

16



CHAPTER 1. OVERVIEW OF EXPERIMENTAL DESIGNS

Since X1, X = XX, we get:
V(B) = (! XxxX)"Hxx('xx)"L.

By simplifying further:
V(B) = o2('XX) .

1.4.5 Prediction of the Mean Response

Once B is determined, the experimenter is often interested in using the model to predict
the mean response at any given point (where no experiment has been performed). This
is crucial when modeling aims, for example, to identify experimental conditions that
could maximize (or minimize) the response of interest. The prediction of the mean

response at the point x € R¥ is given by:

where f(x) € R” is a regression vector, constructed identically to the rows of the matrix
X. Knowing the value of the predicted mean response at the point x, the quality of this

prediction is quantified using the following result:

Proposition 1.3. The quality of the prediction Y (x) =* f(x)B at the point x € R* is measured
by:
V(Y (x)) = o?f ()" ((XX) 7 f(x).

It can be observed that this error on the calculated response (or predicted response) depends

on four factors:

* The experimental error on the measured responses,
* The position of the point x in the study domain,

* The set of points that were used to establish the model coefficients, i.e., the experimental

design itself,

* The postulated model chosen to interpret the results (through the coefficient calculation
matrix and the residual variance).

Proof. We have:

V(Y (x) = V(f(x)B) ="F()V(B)f(x) = o* 'f(x) (" XX) "' f(x)

17
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since V(B) = o2(*XX)~L. O

1.4.6 Prediction Variance Function

The error in the measured responses depends on the nature of the experimentation, the
precision of the technology used, the care, skill of the experimenter, and many other
factors for which the experimenter is responsible. These factors do not depend on the
theory of experimental designs but on practical experimentation [18]. To separate this
experimental component from the one that depends on the theory, we introduce the

prediction variance function d2(Y):

d*(Y) =" f(x)("XX) 7 f ().

By taking the square root of the variance function, we obtain the prediction error func-

tion:

d(¥) =/t F(x) (1XX) 1 (x).

1.5 Statistical Tests

1.5.1 The Multiple Correlation Coefficient R?

The multiple correlation coefficient R? is a measure of the quality of fit of a multiple
linear regression model to the data. It is calculated as follows:

SSR _, SSE _ yi(Vi—Y)?
Y)?

RZ2 — =" _
SST SST — Yy (Yi—

where:

e SSE (Sum of Squared Errors) is the sum of squared residuals of the model, defined
as:
n A
SSE=Y (Y;— Y2
i=1
e SST (Total Sum of Squares) is the sum of squared differences between the ob-

served values of the dependent variable, and it’s mean:

n
SST=Y (Y, - V)~
i=1

18
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e SSR (Sum of Squares due to Regression) is the sum of squared deviations due to

the regression:

n
SSR=Y (Y;-Y)~
i=1

1.5.2 Fisher’s F Statistic

The Fisher formula is defined as [21]:

9
2
=~

Hj
I
cn“c‘
Wi |
M| —

3
|
=

where:
e (p — 1) is the degree of freedom for SSR.
e (n — p) is the degree of freedom for SSE.

If the Fisher F value is high, the calculated responses are significantly larger than the
residual variance. To have significant coefficients, the Fisher F value must be high,

indicating a low probability.

1.6 Some Common Experiment Designs

In this section, we introduce the main types of experiment designs, which can be cate-

gorized into two groups:
e Factorial designs.
e Response surface designs.

These two categories correspond to different potential objectives for using experiment
design methods.

1.6.1 Factorial Designs

These designs aim to identify the most influential factors on a given response. The ob-
jective is not to establish precise relationships between factor variations and response
variations. Factorial designs are discrete and orthogonal, where factors are discretized

to take only a finite number of levels. Orthogonality is defined as follows:
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Definition 1.3. An experimental design is orthogonal if:

e For each level of a factor, all levels of any other factor appear the same number of times in
the design.

e Each level of every factor appears the same number of times.

In practice, factors in these designs typically take 2 to 5 levels. There are two types
of factorial designs: complete factorial designs and fractional factorial designs.

1.6.1.1 Complete Factorial Designs

Complete factorial designs are orthogonal designs where factors take 2 or 3 levels, and
all possible combinations of factor levels are evaluated. The design shown in Table 1.2
is a complete factorial design with three factors at 2, 2, and 3 levels, respectively. For k
factors with 2 levels, the complete design is denoted as 2¥. For 3 levels, it is denoted as
3k. If there are ky factors with 2 levels and k, factors with 3 levels, the design is denoted
as 2k13k2,

Tableau 1.2: Experiment Matrix 22 x 3!

N° A B C
1 1 1 1
2 1 1 2
3 1 1 3
4 1 2 1
5 1 2 2
6 1 2 3
7 2 1 1
8 2 1 2
9 2 1 3
10 2 2 1
11 2 2 2
12 2 2 3

1.6.1.2 Fractional Factorial Designs

In practice, complete factorial designs are rarely used due to the large number of ex-
periments required (Table 1.3). Instead, fractional factorial designs are often employed,
representing an orthogonal fraction of the complete design. This fraction retains only

20



CHAPTER 1. OVERVIEW OF EXPERIMENTAL DESIGNS

certain experiments from the complete design, while preserving the property of or-

thogonality. Among fractional factorial designs, we find [22]:

Tableau 1.3: Number of Trials in a Complete 2k Design

Number of Factors | Number of Trials
2 4
4 16
5 32
8 256

a. Complete Fractional Designs 2K~
The approach offered by fractional factorial designs is to use the effect matrices of
complete designs for k factors, such as 2k=12k=2 ... The advantage of fractional
factorial designs is evident, as the experimental workload is reduced by a factor
of 2", given that Dk—m — 22—,}; For example, if we want to study three factors while
performing only four trials, we ensure that the four trials are chosen such that the
matrix X remains orthogonal. The four selected points are arranged as shown in

Figure 1.8.

P

L

Figure 1.8: A complete factorial design 2° can be divided into two fractional factorial designs
2371, one in black and one in gray.

b. Plackett and Burman Designs:
Plackett and Burman designs are restrictive designs that do not account for inter-
actions. In these designs, factor effects are confounded with interactions. Inter-

ested readers can refer to [23] for more information on this type of design.

c. Taguchi Designs:
Taguchi [24] developed standard tables designed to solve most industrial prob-
lems. These standard tables take into account factor interactions, meaning the
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influence of one or more factors on others. Some second-order interactions, such
as interactions between two factors, can be considered, while others cannot. The
main orthogonal tables proposed by Taguchi include: Ly(2%), Lg(27), L15(2%),
L1p(2'), Lo(3%), Lo7(3'3), and L3;(33!). Using these standard tables, along with
their user-friendly and graphical presentation, it is easy to design custom exper-

iment plans and interpret them.

Among these seven tables, the simplest is the L4(2) table, where “4” indicates
that the table contains four rows, “2” corresponds to the two levels selected for
each variable, and “3” represents the three factors. For instance, the following Ly

table is shown:

Tableau 1.4: Orthogonal Table L4(23)

Factors
Trials

= WO N =

NN == =
N = DN =N
—= NN = W

1.6.2 Response Surface Designs

The objective of this category is not merely to prioritize the effects of different factors
but to describe as accurately as possible the behavior of the response as a function
of factor variations. The aim of this type of study is thus to achieve a modeling of
the studied phenomenon based on experimentation. These designs help determine
the values at which the input factors of a system should be adjusted to obtain one
or more desired responses. They rely on the use of polynomial models. Numerous
references on response surface designs exist [19,25-28]. There are several types of
such designs: full factorial designs with three levels, Box-Behnken designs, composite
designs, optimal designs, and space-filling designs (such as Latin hypercube designs,

Maximin designs, etc.).

1.6.2.1 Composite Designs

Composite designs allow for the calculation of a second-degree polynomial model, also
known as a quadratic model. These designs consist of an initial part, which is either a
fractional or full factorial design, one or more trials at the center of the study domain,
and additional trials required to calculate the quadratic model. For two factors, the
figure below illustrates the arrangement of experimental points for such a design:
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Figure 1.9: Composite design for the study of two factors

1.6.2.2 Box-Behnken Designs

Box and Behnken proposed these designs in 1960 [3] to establish second-degree mod-
els. All factors have three levels: -1, 0, and +1. These designs are easy to implement
and possess the property of sequentially with respect to factors. This means that the
study of the first k factors can be initiated while retaining the possibility of adding new
factors without losing the results of already conducted trials. This property is valu-
able when a quick exploration of two or three most relevant factors is desired, while

preserving the flexibility to study additional factors later.

1.6.2.3 D-Optimal Designs

D-optimal designs belong to a broader family known as alphabetic optimal designs
(named after the optimality criteria satisfied by the designs: A, D, E, etc.). These de-
signs are particularly well-suited for problems involving constraints, such as varia-
tion domain constraints (e.g., infeasible trials, reuse of previous trials, or previously
conducted trials not aligned with the experimental points recommended by design
theory), or constraints on the maximum number of trials. In such cases, the quality
of the design deteriorates, especially with the loss of orthogonality. This reduces the
precision of the estimators obtained. The challenge then becomes finding additional
experiments within the constrained domain to allow for optimized estimation of the
model, which is the objective of the D-optimal design [29].
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1.7 Space-Filling Designs

These designs, often used in numerical experiments to study complex and non-linear
models, employ various techniques to evenly fill the design space. Consequently, they
do not rely on the concept of levels, eliminate the need for discretized parameters, and
allow the experimenter to independently choose the sample size regardless of the num-
ber of parameters in the problem. Space-filling techniques are particularly suitable for
constructing response surfaces, as for a given sample size N, the likelihood of empty
regions far from any sample point—potentially causing inaccurate interpolation—is
low. However, since these techniques do not use levels, evaluating main effects and
interaction effects of parameters is less straightforward than in factorial experimental
designs.

The properties often sought in these designs [30] include fillness, which maxi-
mizes the distance between the two closest points in the design; independence, which
maximizes the determinant of the parameter matrix; and uniformity (discrepancy),
which minimizes the distance between points. Various types of space-filling designs
are adapted to meet these requirements.

Among space-filling designs, the following can be cited:

1.7.1 Latin Hypercube Designs

A Latin Hypercube Design (LHD) [31] with 7 trials is an experimental design where
each factor has the same number of levels 1, and each level is used exactly once per
factor. The levels are distributed in a balanced manner, such that each column of the
experimental design is a random sample without replacement from 1,2,...,n. For
illustration, a Latin Hypercube sampling in two dimensions divides the interval of
each variable into n = 5 subintervals of equal size. For each variable and subinterval,

a point is generated according to a uniform distribution, as shown in Figure 1.10.

24



CHAPTER 1. OVERVIEW OF EXPERIMENTAL DESIGNS

1.0

0.8 5--

0.6 1--

0.4 1--

0.2 +--

0.0 t t } }
0.0 0.2 0.4 0.6 0.8 10

X

Figure 1.10: Five points resulting from Latin Hypercube sampling in two dimensions.

1.7.2 Low-Discrepancy Sequences

In the previous section, we discussed designs with good projection distributions but
not necessarily optimal space-filling. Here, we present designs aimed at optimally fill-
ing the space and examine their projection properties. These sequences of points, used
in the Monte Carlo method under the name quasi-Monte Carlo methods, are deter-
ministically generated for uniform distribution in the experimental domain. Examples
include Halton sequences [32], Sobol sequences [33], and Faure sequences [34]. An
important concept underpinning the construction of most of these sequences is the
definition of the radical inverse function, detailed below.

Definition 1.4. Let b > 2 be an integer. Any integer i € IN can be uniquely decomposed in
base b:

m
i= Zasbs
s=0
where as € {0,1,...,b—1}.

Using this decomposition, the radical inverse function in base b is defined as:

: dp |, M am
go(i) =1+t +

1+ |log, ()], ifi#0

where m =
1, otherwise

The sequence C, = {x%,x',...,x"~ 1}, where x' = ¢,,(i), is called the Van der Corput

sequence in base b [35].
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1.7.2.1 Halton Sequences

Halton sequences are the d > 1-dimensional extension of Van Der Corput sequences,
which are their one-dimensional counterpart. The idea behind generating Halton se-

quences is to use a different base for each dimension.

0,x!,...,x" 1} in bases by, by, ..., by is

Definition 1.5. A Halton sequence Hy, 4, ., = {x
defined as:

x' = (o, (D), o, (), -, 9w, () € [0, 1)

where by, by, ..., by are positive integers that are pairwise coprime.
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Figure 1.11: The first 50, 250, and 500 points of a Halton sequence with bases 2 and 3.

1.7.2.2 Sobol Sequences

These sequences are designed to distribute points within the space while minimizing
the distance between each observation. Their construction is relatively complex and
relies on linear recurrences generated from primitive polynomials over the finite field
Zy = {0,1}. These sequences are described as quasi-random because the coordinates
of each successive point can be determined from the previous one, and so on.

Definition 1.6. A polynomial p(t) of degree s of the form t5 + uyt5=' + - - - + ug is said to
be primitive over the field Z, if it is irreducible over Z, and the smallest integer i such that it
divides t' — 1 (or t' + 1) equals 25 — 1.

The notion of irreducibility means verifying that the polynomial p(t) is not divisible
by any other polynomial of lower degree. The smallest positive integer i such that p(t)
divides #' — 1 is also known as the order of the polynomial.

A primitive polynomial of degree s must have the terms 1 and #°, as well as an odd

number of terms.
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Definition 1.7. A Sobol’ sequence S = {x°,x%,..
follows:

., x""1Y in one dimension is defined as

i1 (a
X = Z_m @ aklk
k=1

where (a1,ay, . ..,ay) is the binary representation of i and

1, otherwise

. {1+ [log, (i) ], ifi # j

The symbol @ denotes addition in Z, (modulo 2).
The Iy for k > s are obtained using the following recurrence relation:

I = 2urli_1 @ Pupli_p @ -+ D25 Mg lkg i D 25Ul

where the uy. are the coefficients of a primitive polynomial t 4+ uyt>~' + - - - 4+ us over Z5, and
the numbers Iy, . .., Is must be odd integers such that 1 < [} < Zkfor k=1,...,s.

To construct a Sobol” sequence in dimension d, one simply selects d distinct primi-
tive polynomials.
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Figure 1.12: The first 50, 250, and 500 points of a Sobol sequence in two dimensions.

1.7.2.3 Faure Sequences

The Faure sequences are defined based on the inverse radical function ¢, and a Pascal
generator matrix C = (cy), given by:

(-1
=i — oy kst

0 otherwise,

ar=Cl = VL k € N*.
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CHAPTER 1. OVERVIEW OF EXPERIMENTAL DESIGNS

Definition 1.8. Let b > d be a prime number. The Faure sequence F = {x°,x',...,x" 1} in
dimension d is defined as follows:

x; =¢p (C,]-;1>

where CI~1 = C;‘:ll (j — 1)!=% mod b is the generator matrix for the j*" dimension of a Faure
sequence in dimension d.

Note. It is recommended to choose the smallest prime number b greater than or

equal to d to achieve a uniform distribution.
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Figure 1.13: The first 50, 250, and 500 points of a Faure sequence in two dimensions.

Note that Faure sequences are considered superior to both Halton and Sobol se-
quences.

1.8 Optimality Criteria for Experimental Design Plans

Evaluating the quality of the structure of a set of points from a database or experi-
mental design plan requires using quantitative criteria. There are numerous criteria to
assess the quality of an experimental design. Generally, for response surface plans, we
aim to optimally place the experimental points to minimize the error in the predicted
responses. Among these criteria are orthogonality, quasi-orthogonality, D-criterion,
A-criterion, and others [12]. In contrast, for space-filling designs, we focus on the uni-
formity of point distribution using criteria such as discrepancy, distance, and coverage.
Our study specifically focuses on space-filling designs, which is why we define the fol-
lowing criteria:

e The Distance Criterion Mindist [36]: This criterion aims to maximize the min-

imum distance between two points in the design. The larger the value of this
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CHAPTER 1. OVERVIEW OF EXPERIMENTAL DESIGNS

criterion, the more distant the points are from each other.

Mindist = min mind(x;, x;)
i jAE

where d(x;, x;) is the Euclidean distance between the points x; and x;.

e The Coverage Criterion Cov [37]: This criterion measures the gap between the
points of the plan and those of a regular grid. It is zero for a regular grid. The

objective is to minimize coverage to approach a regular grid, ensuring the space

is filled.
1 /1 _
cov = E\/E i;(m -

where 0; = min;; d(xnx]) and o = } 7 Lie1 0

For a regular grid, 09 = 07 = - - - = 0y, so cov = 0.
In the same context, we can use the ratio R, defined by:

R — max of]

min 0;

For a regular grid, R = 1. Therefore, the closer R is to 1, the closer the points are
to those of a regular grid.

e The Discrepancy Criterion Disc [38]: Discrepancy measures the gap between the
empirical distribution function of the points and the uniform distribution law.
The lower the discrepancy, the more uniformly the points are distributed. There

are various discrepancy measures, and we consider the Ly-norm discrepancy:

n n

1 n n .
Disc:(%)p 2nPZH1— )2) %ZZH(l—max(xﬁ,xi))

i=1j=1 i=1k=1j=1

Conclusion

In summary, the method of experimental design is a set of complementary techniques
that help users determine the experiments to perform, as well as understand and ex-
ploit the results obtained. The tools used in this method are primarily based on sta-
tistical and algebraic foundations. The developments presented in this chapter have
outlined the principles, foundations, and analytical possibilities of experimental de-
sign methods. This analytical method is perfectly suited for studying systems thanks
to its multiple aspects.
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Chapter 2

Point Processes

Point processes are essential for analyzing spatial data where objects are scattered
across a region. Examples include forest data, microscopic analyses, scene images,
physical particles, or geological sketches, among others. These objects are often repre-
sented as point maps. This representation necessitates analyzing the distribution and
spatial patterns influenced by heterogeneity and interactions between points. For in-
stance, in sustainable agriculture, studying pesticide spot patterns in soil reveals clus-
ters and open spaces. Point processes thus enable a deeper understanding and inter-
pretation of these complex patterns across various fields.

This chapter aims to present some fundamental aspects of the theory of point pro-
cesses, accompanied by illustrative examples. For more detailed discussions, it is rec-
ommended to consult [5,39,40], which serve as the primary references for the elements

presented here.

2.1 Basic Definitions and Notations

2.1.1 Mathematical Context

We are interested in unordered sets of points within a given space X' C IR”.

Definition 2.1. A configuration is a countable, unordered set of points in X'

x={x1,x0,...,%n,...}.
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Figure 2.1: A set of points, or configuration, in X = [0, 1]>.

To study random configurations, constraints must be imposed on the space under
consideration. We work with a space X’ equipped with a metric d, such that (X,d) is
complete and separable. This metric defines a topology and a Borel c-algebra on X. In
practice, X is often a compact subset of IR” with the Euclidean distance.

Definition 2.2. A configuration x € X is said to be locally finite if, for every bounded Borel
set A C X, it contains a finite number of points, denoted Ny(A).
The set of all locally finite configurations is denoted by NY.

This leads to the definition of a point process:

Definition 2.3. A point process on X is a mapping X from a probability space (Q), A, P)
into N, such that for every Borel set A C X, N(A) = Nx(A) is a (finite) random variable.

This provides the following refinement:

Definition 2.4. If the space X is bounded or if Nx(X') is almost surely finite, then the point
process is called a finite point process.

The realizations of a point process X are random configurations of points such that,
for every Borel set A C X, the number of points in A is a random variable. This
implies that a point process is a random variable taking values in the measurable space
(N f N ), where N If is the smallest o-algebra for which the mapping x — Ny(A) is
measurable for every bounded Borel set A C X'. The probability measure induced on
N is called the law of X.
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2.1.2 Law of a Point Process

The law of a point process X should ideally be the push forward measure of P on
N'f via the mapping X. However, since N/ is defined based on the measurability
of mappings x — Ny(A) for Borel sets A C X, the probabilistic analog of the law
in the context of point processes is the collection of joint distributions of the vectors
(N(A1),...,N(Am)), where A; are bounded Borel sets.

Definition 2.5. The family of finite-dimensional distributions (fidis) of a point process X on a
complete and separable metric space (X, d) is the collection of joint distributions of the vectors
(N(A1),...,N(An)), for every finite vector (Ay,..., Am) of bounded Borel sets A; C X,
wherei =1,...,m forany m € IN.

The importance of this definition is justified by the following theorem of Daley and
Jones [4]:

Theorem 2.1. The law of a point process X on a complete and separable metric space (X, d) is
entirely determined by its finite-dimensional distributions (fidis).

Therefore, two-point processes with the same finite-dimensional distributions have

the same law.

2.1.2.1 Marked Point Processes

This type of point process was described by Daley [41].

Point processes are the simplest examples of stochastic geometry, but it is often
necessary to simulate processes involving more complex objects. To describe objects
instead of points, one can simply assign a "mark" to each point that characterizes the
object’s properties (e.g., size, orientation, shape, etc.). This results in what is called a
"marked point process" or "object process" [4].

Definition 2.6. Let (X,d) and (KC,d") be two complete and separable metric spaces. A
marked point process, with positions in X and marks in IC, is a point process on X x K
such that the unmarked process of points is itself a well-defined point process.
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Figure 2.2: Realization of a marked point process on X = [0,1]? and K = [0, 1].

2.1.3 Simple Point Processes

We now consider the potential multiplicity of points in a configuration. In practice,
it is rare to work with point processes where multiple points are located at the exact
same position. Let NIf denote the set of locally finite configurations x containing only
distinct points, i.e., Nx({y}) € {0,1} forally € x.

To verify that Nf is V'f-measurable, note that since £ is separable, it can be covered
by a countable union of open balls B(x;,27/) with arbitrarily small radii. Consequently,
N can be expressed as:

N = G {w € O : N(B(x;,277)) € {0,1}} c N,
j=1

Definition 2.7. A point process X is said to be **simple* if it takes values in Néf almost surely.

Simple point processes are advantageous because their law can be fully determined
by their void probabilities:

for a sufficiently large class of sets A C X.

Theorem 2.2. The law of a simple point process X on a complete and separable metric space
(X, d) is entirely determined by the void probabilities of bounded Borel sets A C X.

The proof can be found in [5].
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2.2 Finite Point Processes

Most point processes used in practice are observed within a bounded region. This
region may be determined by the application itself or chosen deliberately to limit the
size of the domain of interest. In any case, the realizations of the point process almost
surely contain a finite number of points.

An important theoretical reason for focusing on this class of point processes is that
the notion of density is challenging to establish for processes that are not finite.

2.2.1 Construction

To construct a finite point process, the following elements can be used:
1. A discrete probability distribution (py),en for the number of points.

2. A family of symmetric probability densities j,(x1,...,x,), for n € N, on the

configuration space X" for the positions of the points.

The second point assumes that X is equipped with a Borel measure v(+) so that the
densities j, can be defined with respect to the product measure v"(-).

We can construct a point process X as follows: Let N(X') be a random variable
with distribution (p,),enN, and condition on the events N(X') = n. For each case, let
(X1,...,Xy) € X" be a random vector with distribution j,(-,...,-). The symmetry
condition is necessary since a configuration does not depend on the order in which its
points are listed. Verifying whether we can legally transition between ordered vectors
and unordered configurations is important. This point will be useful in later proofs
where we move between configurations and n-tuples, and vice versa.

Let N/ denote the set of finite configurations. Define A’ as the smallest c-algebra
for which the mappings x — Ny(A) (for bounded Borel sets A) are measurable. Define
the following subsets of N/:

N, = {x € N/ : N,(X) = n},

and associate with each subset N, an c-algebra \; ,{ , which is the trace of N'f on N,,.
Now consider the functions f, : X" — N, that map n-tuples to configurations
of n points. The functions f,, are measurable with respect to the Borel o-algebra, and
due to their invariance under permutations, they are measurable with respect to the
symmetric Borel o-algebra Bs(X™) in X™. By assumption, for all n, j,(-,...,-) is a

permutation-invariant density and is thus Bs(X™)-measurable.
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Consider the function i, : N;, — R defined on configurations of n points by:
. 1 .
() = oy Dinlp(),

where the sum is over all permutations ¢ that map a configuration to one of its n-
tuples. Since there are n! distinct permutations, we have i, o f; = j.

To show that i,, is measurable:

Let A C X be a bounded Borel set. We must verify that:

i1(A) € Ni.
Since f; is surjective:
i (A) = fu (£ (1(A)) = fu (1 (1)) -

As j, is measurable with respect to the symmetric o-algebra, it suffices to show that
fa(B) € N forall B € By(X™M).
Define the c-algebra:

Ay = {B € Bs(X") : f(B) € NI 1.

The o-algebra A, contains all rectangles A,, where A is a bounded Borel set. Since
such rectangles generate B;(X™"), it follows that A, = Bs(X").
Thus, fu(B) € N forall B € B (X"), establishing a correspondence between func-

tions on the configuration space N, and symmetric functions on X".

2.2.2 Reference Point Processes
2.2.2.1 Binomial Point Process

Let X’ be a compact subset of R” with strictly positive volume p(X').

A binomial point process is defined as the union:
X=A{Xy,...,Xun},
of a fixed number n of independent and uniformly distributed points Xy, ..., X, in X.

Since, P(X; = X;) = 0 forall i # j, X is simple. Furthermore, as P(N(&X') = n) = 1,
the binomial process is finite with:
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0 ifm#n,
Pm =

1 ifm=n.

The points X; are uniformly distributed, so:

jn(xl,...,xn) — .
H(x)"
This shows that j,, are invariant under permutation.

The binomial process is named for the fact that, for any Borel set A C X:

follows a binomial distribution with parameters n and %.
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Figure 2.3: Realization of a binomial point process.

2.2.2.2 Poisson Point Process

Poisson point processes are among the most well-known and easy-to-use models for
representing spatial randomness, such as raindrops on asphalt. In practice, we first
test whether a point configuration is random or follows a certain pattern (dependence,
clustering, etc.). We will present the results leading to a rigorous definition of the Pois-

son point process, starting with binomial processes, and define both homogeneous and
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inhomogeneous Poisson processes. These processes are elementary as they illustrate
the concept of uniformity [42].

Definition 2.8. Let v(-) be a Borel measure on a complete and separable metric space (X, d)
such that v(X') > 0 and v(A) < oo for every bounded Borel set A C X. (Such a measure is
called locally finite.)

A point process X on X is called a **Poisson point process** with intensity measure v(-) if:

P1. N(A) follows a Poisson distribution with mean v(A) for every bounded Borel set A C
X.

P2. For k disjoint Borel sets A1, ..., Ay, the random variables N(A1), ..., N(Ay) are inde-
pendent.

If v(+) is nonatomic !, the Poisson process is simple. It is finite if v(X') < 0.

When X = RR¥, a Poisson process is called homogeneous if the intensity measure
is A, (-), where A is the Lebesgue measure and p > 0 is a positive parameter. This
parameter is referred to as the intensity of the process.

Property P2 can be interpreted as total spatial independence, indicating that the
occurrence of points in any given region is completely independent of what happens
outside that region. The following theorem illustrates this idea by stating that the
points of a Poisson process behave randomly without interacting with each other [4,5].

Let X be a Poisson point process on a complete and separable metric space (X, d)
with intensity measure v(-). Let A C X be a bounded Borel set. Then, conditional on
{N(A) = n}, the process X restricted to A follow the law of a binomial process of n
independent points uniformly distributed according to v on A.

The proof relies on the following result:

For a Borel set B C A, the void probability of B, given that there are n points in A,

is:

P(N(B) =0,N(A\ B) =n)
P(N(A) =n) '
Using property P2, we know that N(A) and N(A \ B) are independent. Addition-
ally, N(A), N(B), and N(A \ B) follow a Poisson distribution by property P1. Thus:

va(B) = P(N(B) = 0| N(A) =n) =

! A measure is nonatomic or diffuse if, for any measurable set A with v(A) > 0, there exists a measur-
able subset B C A such that 0 < v(B) < v(A). In other words, no single point has a positive measure.
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which matches the void probabilities of B for n independent points uniformly dis-
tributed with respect to v. Since B is arbitrary, the application of Theorem 2 completes
the proof.

0.0 0.2 0.4 0.6 0.8 10 0.0 0z 0.4 0.6 0.8 1.0

Figure 2.4: Left: A realization of a homogeneous Poisson point process with intensity A = 100.
Right: A realization of an inhomogeneous Poisson point process with A(x,y) = 600e~3¥ on
[0,1)2.

2.2.3 Finite Point Processes Defined by a Density

This section aims to construct point process models using their probability density
(Radon-Nikodym derivative) with respect to a reference Poisson process.

Non-Finite Point Processes

The following lemma demonstrates the difficulty of defining densities for non-finite

point processes.

Lemma 2.1. Let X, and X, be homogeneous Poisson processes on IRP, defined on the same
probability space (Q), A, P), with intensity measures A and p, respectively.
If A # p, then the law of X is not absolutely continuous with respect to the law of X,,.

Proof. Consider the family (By,), of closed balls centered at the origin, with radii chosen
such that the volume of B, equals n. For any v > 0, define:

£y = {wen: M@t | |

Fori e {1,2,...},1let L; = B; \ B;_1. The sets L; are disjoint, and by the definition of
Poisson processes, under the law of X, the random variables N(L;) are independent
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and follow a Poisson distribution with mean A. By the strong law of large numbers:

1

EN(Bn) = N(L;)) > A as.

S

n
i=1

Thus:
P(Xy€Ey) =1 7P(X,€E,) =1

This is a form of the spatial strong law of large numbers: as the balls grow, realiza-
tions of the point process X, increasingly conform to the constraint that the "average
number of points per unit volume" is v.

Since E, and E, are disjoint (because A # ), it follows that the law of X, is not

absolutely continuous with respect to the law of X,. O

Recall that the definition of a finite point process requires that the total number
of points in the space is almost surely finite. If we replace the above homogeneous
processes with finite point processes, the average number of points per unit volume
does not converge to the intensity as the region of interest grows, but rather to zero.
Therefore, the above proof does not apply in this case.

Finite Point Processes

In this section, let (X, d) be a complete and separable metric space, and let 77(-) de-
note the distribution of a Poisson process on X with a finite and nonatomic intensity
measure v(-).

Let p : Nf — [0, ) be a positive measurable function defined on the space of finite

point configurations such that:

/Nf p(x)dm(x) =1, (2.1)

then p(-) is a probability density and defines a point process X on X. Since the domi-
nant Poisson process is finite and simple, the process X is also finite and simple, repre-

sented as the union of the families N;, of configurations with n points:

N/ = [J Ny

n=0

The volume of N, is v(X')" /n!. The factor n! accounts for the fact that X" is ordered
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while N/ is not. Thus:

n

A= 1 U _ o),

From these considerations and the definition of the Poisson process, we deduce
that:

The law of the total number of points of a process, defined by its density p(-) is
given by the family (p,),en:

e~

v(X)
Pn = ! /X---/Xp({xl,...,xn})dv(xl)---dv(xn).

n

Conditional on {N(X) = n}, the n random points have a joint density with respect
to v (-):
p({x1,..., xn})
Sy JepUx, o xn)dv(xg) - - dv(xy)

Jn(x1,. .., xn) =

2.3 Markov Point Processes

The intuitive definition of Markov point processes is relatively simple: they are finite
point processes defined by a density where local knowledge depends only on a certain
neighborhood.

Markov point processes are widely used in various applications. In image process-
ing, their main advantage lies in their ease of computational implementation. Histori-
cally, they have also been extensively used in statistical physics, particularly under the
name of Gibbs point processes. The distinguishing feature of Gibbs processes is that
their densities are expressed in an energy form using interaction potentials between
the points of a realization of the process. For more details, see [39,43—-45].

We briefly present some definitions and properties of Markov point processes here.

Consider a symmetric and reflexive relation ~ on X. Two points ©# and v in X" are
said to be neighbors if u ~ v. For example, on X = IR¥, we can define the neighbor-
hood relation:

u~vifd(u,v) <R,

where d(u,v) is the distance between u and v, and R is a fixed distance threshold.

Definition 2.9. The neighborhood o(A) of a set A C X is defined as:
d(A) = {x € X : Ja € Asuch that x ~ a}.

Ripley and Kelly [46] give the following definition of a Markov point process:
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Definition 2.10. Let (X, d) be a complete and separable metric space, v(-) a finite nonatomic
Borel measure, and 7, (-) the law of a Poisson point process with intensity measure v (-).

Let X be a point process on X defined by its density p(-) with respect to 1, (-).

Then X is a Markov point process under the symmetric and reflexive relation ~ on X if,
forall x € N with p(x) > 0, the following conditions hold:

1. p(y) > Oforally C x.

2. Forallu € X, the ratio % depends only on u and on:

d{up)Nx={x; € x:u~x;}.

Condition (1) means that if a configuration can occur, then all its sub-configurations

can also occur.

The ratio Z (?L(Ji;l H , called the Papangelou conditional intensity [47], represents the
probability density that a point u is present, given that the configuration x is realized
elsewhere. This expresses a local Markov property: the behavior of a point u with
respect to the entire configuration depends only on its neighbors.

The following theorem expresses the density of a Markov process in a more practi-

cal form. First, we define:

Definition 2.11. Let ~ be a symmetric and reflexive neighborhood relation on X. A configu-

ration x € N/ is called a clique if all elements of x are neighbors, i.e.:
Yu,v € x, u ~ v.

By convention, the empty configuration is also a clique.

We can then state the following theorem by Ripley and Kelly, which is equivalent
to the Hammersley-Clifford theorem [46] for point processes:

Theorem 2.3. A point process density p : Nf — [0, 00) is Markovian under a neighborhood
relation ~ if and only if there exists a measurable function ¢ : N/ — [0, 00) such that:

p(x)=T1 ¢,

cliques yCx

forall x € NY.

An alternative formulation involves taking a product over all subsets of x, imposing

¢ = 1 for subsets that are not cliques.
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2.3.1 Examples

Consider the space X = R¥ and a bounded subset K C X equipped with the Lebesgue
measure A(-). Densities can be defined with respect to a Poisson point process on K
with intensity measure A(-). This process is both simple and finite, which is necessary

for defining point process densities.

Example 2.3.1 (Intensity Parameters). Consider processes with a density h(-) of the

form:

h(x) =«- /_%”(x),

where > 0, and n(x) represents the number of points in the configuration x. Such a
density is integrable, and « is the normalization constant. The parameter § adjusts the
intensity of the process, which is then BA(-).

It is noteworthy that B acts as a scaling parameter: one can change the bounded
subset of interest K by defining a new set K’ such that A(K') = B - A(K).

Example 2.3.2 (Strauss Process). Consider the density of the form:

p(x) =a-p') [Ts(xixj), withx = {x,..., %},

i<j
where the function g is defined as:

Y, if d(xi,x]-) <r,

g(xi, xj) =
v 1, ifd(xi,x]-)zr,

with 0 < < 1andr > 0. Such a process is called the Strauss process. It is a Markov
process under the neighborhood relation u ~ v <= d(u,v) <r.
Using the Hammersley-Clifford theorem extended to point processes, this density

can be simplified as:
p(x) = ap"y",

where s(x) represents the number of pairs of points in relation to the configuration x.
we examine the impact of Parameter +:

- For v = 1, the process reduces to a Poisson point process on the bounded Borel
set K with intensity BA(-).

- For ¢ € (0,1), the process exhibits repulsion between nearby points based on the

proximity relation.
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- For v = 0, the process becomes a Hard Core Process, where the density forbids

the presence of neighboring points in the configuration.

The case v > 1, which was of interest to Strauss [48], allows for attraction between
points in a realization. However, in this case, the density is not integrable unless mul-
tiplied by a factor such as 1y,(x)<y,) for some fixed integer y.

There are two perspectives to understand the non-integrality of this density:

1. Combinatorial Perspective (Van Lieshout and Baddeley [49]): Intuitively, as more
points are added in a small space, the density increases rapidly.

2. Exponential Families (Geyer [50]): This approach provides a formalism to study

the limiting behaviors of the process using exponential families.

2.4 Marked Markov Point Processes

Marked point processes are point processes where marks are attached to each event.
These are particularly useful in applications where measurements are taken at each ob-
servation, or where points are of different types. For example, In forestry, researchers
mapping a pattern of trees may record the height or trunk diameter of each tree, or
species labels if multiple species are present, In materials science or image analysis, a
pattern of objects may be modeled as a point process of kernels (e.g., center of gravity
or another characteristic point) marked by shape descriptors.

The definition of a Markov point process extends naturally to marked point pro-
cesses [6,46]. Let X and K be complete and separable metric spaces, and let m(-) be
a probability distribution on the Borel o-algebra of K. A suitable dominant Poisson
process in this context has locations following a Poisson process on X, independently
marked by labels distributed according to m.

Definition 2.12. Let (X,d) and (IC,d") be complete and separable metric spaces, v(-) a finite
nonatomic Borel measure on X, m(-) a probability distribution on the Borel o-algebra of I,
and 7ty xm(+) the distribution of a Poisson process on X x IC with intensity measure v X m.

Let Y be a marked point process with positions in X and marks in KC, specified by a den-
sity p(-) with respect to TTyxm(-). Then Y is a marked Markov point process under the
symmetric and reflexive relation ~ on X x K if for all y such that p(y) > 0:

a) p(z) > 0forallz Cy.
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b) Forall (u,l) € X x I, the ratio % depends only on (u,l) and:
H(w, )}y = (k) cy: (ul)~ (x,k)}

The Hammersley-Clifford theorem also applies to marked point processes [6, 46].
Thus, a probability density function p(-) defines a marked Markov point process with
respect to the relation ~ on X x K if and only if it can be factorized as:

ry)= I ¢,

cliques zCy

for all y € N/, where the product is restricted to ~-cliques z C y, and ¢ : N/ — [0, o)
is the interaction function.

24.1 Examples

Example 2.4.1. Let X be a compact subset of IR?, and consider the pair interaction
process with a finite number of marks on X' x {1,...,K} defined by [6]

p()=a [T B TI u(lu—ol)

(wkiey  (wk),(vl)ecy
for some « > 0, intensity parameters B, > 0, and measurable interaction functions
Yk : [0,00[ — [0, 00[. The reference distribution is that of a Poisson process with unit
rate, with locations marked by a uniformly distributed label.
Without loss of generality, assume that ¢(r) = 1 for v > 0 for some range pa-
rameters yjx = 1. The process is then Markovian with respect to the brand-dependent

relation

(k) ~ (o) if [lu—of <ry

2.5 Random Tessellations

Tessellations, or mosaics, are partitions of the plane or space into polygons and poly-
hedra. Among the various tessellations, Voronoi tessellations hold a special place due
to their significance and wide range of applications. These geometric structures divide

a space into regions based on proximity to a set of reference points.
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This section focuses exclusively on Voronoi tessellations, a class of random tessel-
lations where each region, or Voronoi cell, is defined as the set of points in the plane
or space that are closest to a particular point among a given set of points. Voronoi tes-
sellations appear in many natural and applied fields, including crystalline structures,
crack patterns, and foam arrangements.

We will explore some geometric properties of Voronoi tessellations, presenting pre-
cise mathematical definitions for both planar and spatial cases. Generalizations to

higher dimensions will also be discussed [51,52].

2.5.1 Voronoi Tessellations on IR?

Let us consider the affine plane IR?. Let x be a finite set of n points in the plane, and
the elements {x;},_;.., of x are called centers, sites, or seeds. The Voronoi region or
Voronoi cell associated with a seed x; from S is the set of points that are closer to x;
than to any other point in x:

Oc (i) = {s e R” | Vg € x,[|s — x| < Is —q]I}

where ||s — x;|| denotes the distance between the point s and the seed x;.
Let H(x;,q) denote the half-plane containing p delimited by the perpendicular bi-
sector of the segment [x;q], we then have:

H(xi ) = {s € R* | s — x| < [ls—qll}

Thus, we can write:

O (xi) = (] H(xi,q)
gex\{x;}

In two dimensions, it is easy to plot these partitions. We base this on the fact that
the boundary between the Voronoi cells of two distinct seeds lies on the perpendicular
bisector that separates these two seeds. Indeed, points on this bisector are equidistant
from the two seeds, so it cannot be claimed that they lie in one or the other Voronoi
cell. For a set of seeds, the Voronoi diagram is thus constructed by determining the
perpendicular bisectors of each pair of seeds. A point on a bisector belongs to a Voronoi
boundary if it is equidistant from at least two seeds and there is no shorter distance to
another seed from the set.

Figure 2.5 shows examples of Voronoi tessellations for 10 and 20 points on [0, 1]2.
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Figure 2.5: Example of Voronoi tessellations generated for 10 and 20 points on [0, 1]2.

We can generalize the notion to an Euclidean space E equipped with the Euclidean

distance d. Let x be a finite set of n points in E. The definition becomes:

O (x;) ={s € E|Vgexd(sx)<d(sq)}

For two points a and b in x, the set I1(a, b) of points equidistant from a and b is an
affine hyperplane (a subspace of affine dimension 1). This hyperplane is the boundary
between the set of points closer to a than to b and the set of points closer to b than to a:

I1(a,b) ={s € E|d(s,a) =d(s,b)}

We denote by H(a, b) the half-space bounded by this hyperplane containing a. It
contains all points closer to a than to b. The Voronoi region associated with a is then

the intersection of H(a, b) where b ranges over S \ {a}:

H(a,b) ={s € E|d(x,a) <d(x,b)}

ﬂ H(a,b)

bes\{a}

Uy (a) =

2.5.2 Generalization of the Voronoi Diagram

To solve certain problems, Shamos [53] introduced the concept of the Voronoi diagram

of a set of points A (a subset of x), denoted V(A), defined by:
V(A)={s€E|Vx;e AVgex\Ad(s,x;)<d(sq)}
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Thus, V(A) is the set of points that are closer to each point in A than to any point
notin A.

Let H(i, j) denote the half-plane delimited by the perpendicular bisector of the seg-
ment [ij] and containing i, then we have:

V(A)= (1 H(j)
icA,jex\A
The generalized Voronoi regions are therefore convex, but they may be empty.
Shamos later defined Voronoi diagrams of order k (1 < k < card(x)) as the union

of the generalized Voronoi cells formed by all subsets of k points:

Vie)= U V(4
ACx,card(A)=k

The regions V(A) form a partition of Vi(x).

Shamos also defined the "Voronoi diagram of the farthest points" (farthest-point
Voronoi diagram). This diagram is constructed by reversing the direction of the in-
equality:

Oy (xj)) ={s€E|Vg€xd(sx;)>d(sq)}

The point x; is obviously not in the cell 8, (x;), but is opposite relative to the "center"
of the set: x; is the point in x furthest from 8, (x;).

The diagram of the farthest points is entirely determined by the convex hull of x. It
does not contain a closed cell.

Thus, the set of points furthest from a point x; is the set of points that are closer to

other points in x:

)= U 0@
q€C:({p})

Thus, the diagram of the farthest points is identical to V,,_1(x),
where n = card(x).

2.5.3 Properties

Voronoi regions are convex polytopes as intersections of half-spaces. The set of such
polygons partitions E, and is the Voronoi partition corresponding to the set x.

Theorem 2.4. Let v be a point in the plane. It is a vertex of a Voronoi polygon if and only if
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it is the center of a circle passing through three seeds, and containing no other seed within its

surface.

Proof. The point v lies at the intersection of the cells 9 (q), 9y (r), and 9y (s). It is thus
equidistant from the points g, r, and s. Therefore, v is the center of the circumcircle of
the triangle formed by g, r, and s.

If another seed were inside the circumdisk of the triangle grs, then v would be closer
to this point than to ¢, r, and s. Consequently, v would not lie in the cells ¢, (g), 0 (7),
and 9y (s) as it would not be at a shorter distance from the points g, r, and s compared

to this new seed. O

2.6 Conclusion

Point processes are the simplest examples of stochastic geometry, but it is often nec-
essary to model processes involving more complex objects, hence the interest in in-
troducing the concept of marked point processes. These can model many common
situations with ease. Markovian point processes, in particular, allow for the consider-
ation of the environment and possible dependencies between the various points in the
experiment. We have provided the necessary definitions and propositions to model
and more precisely describe these point distributions.

However, simulating these processes remains crucial for practical applications and
in-depth analyses. We will explore in detail the methods for simulating these processes
in Chapter 3.
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Chapter 3

Monte Carlo Method by Markov Chain
(MCMO)

Since their emergence in the mid-20th century, Monte Carlo methods have revolu-
tionized the numerical solution of complex problems. Initially introduced to address
differential equations in physics by Metropolis and Ulam in 1949 [54], these techniques
quickly found broader applications as a general method for numerical integration. The
proposal in 1953 by Metropolis et al. [55] of a sequential version of this method, further
developed by Hastings in 1970 [9] to form the Markov Chain Monte Carlo (MCMC)
methods, marked a pivotal turning point. The theoretical advances of the 1990s, com-
bined with the increase in computing power, solidified MCMC as an essential tools in
science.

The simulation of a probability distribution or a random variable has become an
essential numerical solution in the absence of analytical solutions, whether combina-
torial or continuous. This need led to the development of several sophisticated sim-
ulation algorithms, including the Metropolis-Hastings algorithm, which has several
variants [56] distinguished by their efficiency and reliability. This chapter focuses on
the fundamental principles of MCMC methods, particularly the Metropolis-Hastings
algorithm, to explore their specific application in the simulation of point processes,

providing an in-depth understanding of these techniques.
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3.1 Monte Carlo Approach

In statistics, several situations require the computation of expectations of the form:

n(f) = [ fG)m(d),

where 7T is a probability measure on the state space X and f : X — R is a function
measurable with respect to 77. In some cases, the analytical calculation of this expecta-
tion may be difficult or even impossible. In such situations, it is necessary to explore
alternative methods to estimate 7(f) or at least obtain an approximation.

Since expectations are simply integrals with a particular form, it is possible to use
numerical integration methods to approximate 7r(f). Typically, these methods involve
dividing the space X into rectangles and approximating the function using simpler
functions (e.g., constant or linear functions) over these rectangles. However, this ap-
proach faces challenges when the dimension of X is high: the number of rectangles re-
quired to achieve a given level of precision in the approximation grows exponentially
with the dimension. Furthermore, when the integration domain X" is unbounded, this
method may also encounter difficulties.

Monte Carlo methods, which are specifically designed to handle expectations, are
generally less affected by these problems. They are particularly suitable for situations

where traditional numerical integration methods encounter limitations.

3.1.1 The principle of the Monte Carlo method

The fundamental principle behind Monte Carlo methods relies on the law of large
numbers. A law of large numbers is any result of the form:

1 N

~ Y. fxn) = 7(f), N — o,

n=1

which means that the average of the function f taken over a sample {x, }\_; converges,
under certain conditions, to the expectation of this function taken under the distribu-
tion 7t for a mode of convergence ¢ € {P,p.s.}. This sample average can, in turn, be

viewed as the following expectation:

1 Y . .
N L f) = [ f@) AN (dx) = A (), 3.1)
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where 7y is the empirical mass function of the Monte Carlo sample {x,}_; given by

1 N
ﬁN(x) = ﬁ ;fsxn(x)/

and where ¢, (-) denotes the Dirac delta function at y. This means that the empirical
measure 7Ty is used in place of 77 in the expectation. It becomes evident that the prop-
erties of the sample {x, })_, required for the Monte Carlo estimator 7 (f) to satisfy a
law of large numbers are such that the empirical measure 7ty provides a good approx-
imation of the distribution 7r. The different Monte Carlo methods typically differ only
in how the sample is produced.

A second property often sought in an estimator is a central limit theorem. This
type of result shows that the asymptotic distribution of the estimator is a Gaussian
distribution:

1 . D ’
o) BN, n e
where 2 denotes convergence in distribution and where (7}% is the asymptotic variance
of the estimator. When a central limit theorem is satisfied, it is possible to attach a
Monte Carlo standard error to the point estimate 7ty (f) given by 65/ VN, where [7]% is

an estimate of 0%, such that the sample variance is

1 N

2= Y () = An ()

=1

Thus, it is possible to provide an assessment of the quality of the Monte Carlo es-
timate when such a result holds. Note that most of the terms used in Monte Carlo
methods are also used more generally in statistics (estimator, standard error, sample,
etc.). To distinguish the two concepts, the term "Monte Carlo" is often added after these
terms. This distinction is especially relevant when the expectation 7t( f) itself depends
on a real sample from an experiment; the Monte Carlo sample is a collection of points
in X and not the set of units in the experiment. Similarly, the Monte Carlo standard
error does not correspond to the standard error of the sample mean.

3.1.2 Monte Carlo Algorithms

The simplest versions of the law of large numbers require that each element of the
sample be a realization of independent and identically distributed random variables
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according to the target distribution 71, which is denoted by Xni'ixd 7t. The empirical
distribution will therefore be well-representative of the target distribution since the
sample is generated directly from 7r. This type of sampling, called ii.d. sampling
and described in Algorithm 2.1, is the standard Monte Carlo method. However, two

problems often prevent the use of i.i.d. sampling.

Algorithm 1: Standard i.i.d. Monte Carlo Algorithm
Data: Target distribution 7t and Monte Carlo sample size N.

Procedure
L forn =1to N do

t Sample X, iid TT;

Result: The sample x;.y and the Monte Carlo estimate (3.1).

First, it may happen that sampling directly from 7 is impossible. Sampling must be
done by computer, where only uniform random numbers are typically available. The
probability integral transform method allows one to transform a uniform distribution
into a more complex distribution, but this transformation is not always known or pos-
sible. The important sampling method allows for bypassing this problem. We consider
a second distribution g such that its support contains the support of 7r and from which

it is possible to obtain an i.i.d. sample. Then, by observing the following identity,
mt(x) ( 71)

x)dx = — 1,
2(x) 10X =a {f

we see that a Monte Carlo estimator of 77(f) can be obtained by the sample average of

n(f) = [ f@r(xdx = [ )

the function f71/q over a sample from the distribution g(-):

N
() =aw (74) = X fxo)

n

w(xn) T(xn) ,
= ! Flon) 5 ),

where dn(-) = & XN 0y, (+) is the empirical distribution of the sample generated from
g. This expression can also be interpreted as a weighted empirical distribution of 7:

1N
n(x) = & ;w(xn)&cn(@, w(x) = (32)

The ratio w = 71/ is called the likelihood ratio or the importance weight. In addition
to not having to sample directly from 7, this method has the advantage of potentially
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reducing the asymptotic variance of the Monte Carlo estimator compared to i.i.d. sam-
pling. Although this is theoretically true, it is not always the practice case, as variance
reduction requires knowledge of 7(|f|), which is typically unknown because we are
already trying to estimate 71(f). However, preferential sampling requires the explicit
calculation of 77(x) in the importance weights, which necessitates the exact expression
of 1. A second common issue in both i.i.d. and preferential sampling is that the distri-
bution 7r may not be fully known. Indeed, certain situations arise where an expectation
is sought for a distribution that is known only up to a proportionality constant.

For example, the context of Bayesian statistics often produces estimators given by

a posterior expectation of the form:

B(x) = E{0|X = x} = /fm(eyx) o,

where the aim is to estimate a parameter 0 using x and where 7 is the posterior
distribution of 6 given x:

p(x]6)710(6)
N FEnEOr &)
where 719 (-) is the prior distribution on 6 and p is the distribution of X given 6. The
integral in the denominator of (3.3) is often difficult to evaluate, so the expression for
71(0]x) is not fully known.
More generally, this leads to the following situation: 77(x) o 77(x). In this case,
preferential sampling can be adapted to produce a valid Monte Carlo estimator. The

importance weights are then known only up to a proportionality constant:

ft(x)  7(x)
q(x) — q(x)

In this case, the empirical measure 4 Y1 ; @(x4)dx, (x) is no longer a probability

w(x) =

measure, since it does not integrate to 1 over X with respect to r. Therefore, this

measure needs to be normalized in order to obtain the correct importance weights:

1 N
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Thus, the calculation of 77 is no longer necessary when the importance weights are
normalized; Algorithm 2.2 details the procedure. Note that having @ = w (i.e., 7T = )

reduces to regular preferential sampling, as we then have:

/XZT)(x)q(x)dx:/Xw(x)q(x)dx:/ t(x)dx = 1.

X

Algorithm 2: Monte Carlo Algorithm with Weighted Sampling
Data: Target distribution 7t « 7, Monte Carlo sample size N, and instrumental

density g with support including the support of 7.
Procedure
forn =1to N do
L (a) Sampling: Generate X, ~ g independently of X;.,_1;

7t(xn) .
q(xn)’

(b) Weights: Compute the importance weight @(x,) =

2. Normalize the importance weights:;

_ @) 1N
w(xn)—ZnN:1w(xn) n=1---N;

Result: The sample x;.y and the Monte Carlo estimate (3.2).

Another type of sampling avoids the problem of the target density being known
only up to a proportionality constant. We again consider 7 « 7 and an instrumental
density g. Rejection sampling assumes that there exists a constant M < oo such that
7t < Mg, meaning that a multiple of g completely envelops 7. A candidate X ~ ¢
is included in the Monte Carlo sample with probability 77(x)/Mgq(x). The procedure
(Algorithm 3) is repeated until the sample contains the required number of points.
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Each of the accepted points in the sample will be distributed according to 7r; indeed,
for a measurable set B € B(X), we have

P(X € B, accepted) J5 ~,;8)q(x) dx
P (accepted) I A;I”fszcx)q(x) dx

_ fp(x)dx B

= —fX A0 dx /Bn(x) dx = 71t(B).

Note that the efficiency of rejection sampling heavily depends on the choice of g.

P(X € B | accepted) =

Indeed, the probability of accepting a candidate is given by

IP(accepted) = /X%q(x) dx = % /Xﬁ(x) dx = %

Algorithm 3: Monte Carlo Algorithm with Rejection Sampling

Data: Target distribution 7t o 7t, Monte Carlo sample size N, and instrumental
density g such that 77 < Mg for some M < co.
Procedure
forn =1to N do

L Sampling. Generate X ~ g and U ~ Uniform|0, 1];
#(X)

Acceptance. If U < Mq(X)

,acceptx, = Xandsetn =n+1;

Result: The sample x1.;y and the Monte Carlo estimate (3.1).

Thus, on average, fj; candidates will be needed to produce a new point in the
sample. When fy; is large, several iterations of the algorithm will be wasted. It is
possible to recycle rejections using the Casella et al. [57] method, which can improve
efficiency by reducing the variance of the estimates.

The Metropolis-Hastings algorithm, described in 3.4.1, also uses the acceptance /re-
jection concept to produce a Monte Carlo sample. The restrictions on the instrumental
density in this algorithm are less severe, which helps avoid the previously mentioned
problem. However, the Metropolis-Hastings algorithm requires the use of Markov
chains. The next section will introduce these concepts, which are essential for under-
standing algorithms like Metropolis-Hastings.
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3.2 Markov Chain

To discuss simulation using the MCMC (Markov Chain Monte Carlo) method, it is
essential to understand the underlying principles that make these methods effective
for generating realizations. MCMC methods exploit the properties of Markov chains
to produce simulations that, after a sufficient number of iterations, provide a reliable
approximation of the target distribution 7t(.).

Markov chains are stochastic processes where the probability of transitioning from
one state to another depends only on the current state, not on how the state was
reached. The MCMC method relies on this property to construct a sequence of val-
ues that converge to the desired distribution.

Before diving into the application of MCMC methods, it is crucial to understand
these properties of Markov chains, as well as the theories that underlie their function-
ing. This section provides a review of the necessary theory to analyze these methods,
drawing on important works [58,59].

3.2.1 Basic Concepts

In this section, we consider a probability space ((}, A, P) and a space X equipped with
its Borel sigma-algebra B(X'), with random variables taking values in (X, B(X)). Let’s

start with a few definitions:

Definition 3.1. A transition kernel is a function K defined on X x B(X') such that:
1. Forall x € X, K(x,-) is a probability measure on B(X),
2. Forall A € B(X), K(-, A) is a measurable function.
This definition allows us to give another one:

Definition 3.2. A Markov chain is a sequence of random variables (X)) e taking values in
X such that, for all integers k € N and all A € B(X),

P(Xk+1 cA ‘ Xo,...,Xk) = P(Xk—H cA | Xk)

or equivalently,

P(Xpn €A | Xor. ., Xp) = /K(xk,dx)
A
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In general, Markov chains are restricted to homogeneous Markov chains, meaning
chains where the law of (X;,, ..., Xy, ) given x is the same as the law of (X¢, ¢, ..., Xt,—,)
given xq for all k and for any (k + 1)-tuple tg < t; < --- < f;.

Some reminders are provided below to understand the use of the kernel K, as well

as to introduce common notations:

Py (X1 € A1) = K(x, Ay)

Po(X) € A, Xo € Ay) = /K(y, As) K (x, dy)

Ay
Pr((X1,...,Xn) €A1 X -+ X Ay) = /---/K(yn1,An)K(yn_2,dyn1) - K(x,dy)
A An

The following notations are related to transitions in n steps:
K'(x,A) = K(x, A)
K'(x,A) = [ K"y, A)K(x,dy)
To complete this section of notations, the following explanations are provided:
* P denotes the law of the chain (X},), with Xy = x,
* Pu(-) denotes the law of the chain with an initial distribution Xo ~ u,

e E,[-] denotes the expectation associated with the law P,,.

Basic Properties of Markov Chains

Here, we will discuss some common properties of Markov chains, such as the Chapman-
Kolmogorov equations, the weak Markov property, and the strong Markov property.
These properties are generally intuitive and well-established, and for more details, one
can refer to [59]. In this text, Robert and Casella also introduce the concept of a resolv-
ing kernel, a theoretical tool important for the proofs of the following propositions and
theorems.

Invariant Measures (Stationarity)

Invariant measures are fundamental objects associated with Markov chains. We place

them here in the context of recurrence notions.
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Definition 3.3. An invariant measure 7t on B(X) for the transition kernel K(-,-) is defined

as:
77(B) = /X K(x,B)(dx) VB € B(X).
When the invariant measure is also a probability measure, it is called a stationary
measure.
Reversibility

A Markov chain is said to be reversible with respect to 7t if the transition kernel K
satisfies the following condition:

/A K(x, B)7t(dx) = /B K(x, A)t(dx) VA,B e A.
This condition implies that 77 is an invariant measure for P, and means that under the
stationary distribution 7, the probability of transitioning from A to B is the same as
the probability of transitioning from B to A. Most simulation algorithms are designed
to generate reversible Markov chains.

Green [60] proposed an alternative formulation of reversibility for a transition ker-
nel K. This condition is given by:

Vx € A,Vy € B: /A/Brt(clx)K(x,dy) = /B/Ar((dy)K(y,dx)

Stopping Rules and Associated Quantities

Definition 3.4. A stopping rule is any function ¢(x1,...,Xn,...) that takes values in IN
such that the events {¢ = n} are measurable with respect to the sigma-algebra generated by
(XO, . ,Xn).

An important example of a stopping rule is as follows: foraset A C X, the stopping

time at A is defined as the first time n when the chain visits this set:
T4 =inf{n > 1| X, € A}.

By convention, T4 = oo if the chain never visits A. It is clear that the event {t4 = n}
depends only on the random variables (X, ..., X,).
In the same spirit, another random variable, the number of visits to A, is defined

as:

Ha = i 14(Xn).

n=1
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These random variables are of paramount importance in the study of Markov chains.

In particular, the following associated quantities are crucial:

* [E,[N4|, which represents the average number of visits to A for the Markov chain

starting from state x,
* Py(t4 < o), which represents the probability of reaching set A in finite time
starting from state x.
Irreducibility

Throughout this section, ¢ represents a measure on X.

Definition 3.5. Consider a Markov chain (X,) with transition kernel K. This chain is called
@-irreducible if, for any set A C X such that ¢(A) > 0, the following two (equivalent)
properties hold:

e Forevery x € X, there exists n such that K" (x, A) > 0.
e Foreveryx € X, Px(Ta < 0) >0,
where Ty is the hitting time of the set A.

Intuitively, a chain is irreducible if every set that is non-negligible in the sense of ¢

is reachable in finite time with a positive probability.

Proposition 3.1. The Markov chain (X,,) is ¢-irreducible if and only if, for every x € X and
every A C X such that ¢(A) > 0, we have:

Ex[n7a] >0

An interesting property of irreducible chains, which we will not develop here, con-
cerns the existence of a measure for which the chain is irreducible and which dominates
(in the sense of absolute continuity) any measure for which the chain is also irreducible.
This measure allows for a form of the converse of irreducibility: a negligible set in the
sense of this measure is never reached in finite time, except possibly starting from a set

of points that is itself negligible.

Atoms and Small Sets

This section provides tools for working with "continuous" Markov chains in a manner

similar to discrete chains.
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Definition 3.6. A Markov chain (X,,) has an atom « € B(X) if there exists a measure v(-) >
0 such that:
K(x,A) =v(A) Vxea VAeB(X).

If (X,,) is ¢-irreducible when ¢(a) > 0, the atom is said to be accessible.

This notion of atom is interesting because ideally, we would like to work with
"piecewise constant" kernels. However, such constancy is rarely encountered in prac-
tice. Therefore, the following minimization condition is often preferred, which leads

to the notion of small sets:

Definition 3.7. A set C is small if there exists m € IN* and a measure vy, such that, for all
x € Candall A € X, we have:

K"(x, A) > vp(A) > 0 (3.4)

Atoms are thus a special case of small sets. Note that there are two different but
similar concepts: sets can be "small" in English or "petite" in French. Fortunately, these
notions coincide when the chain is aperiodic. Here, we call small sets those that are
"small" in English. The following theorem, proved in [58], holds:

Theorem 3.1. Let (X,) be an @-irreducible Markov chain. For any set A C X such that
@(A) > 0, there exists a small set C C A.
Furthermore, X can be partitioned into a countable number of small sets.

It appears that atoms are often more interesting than small sets, as the kernel is

constant. Using renewal time theory, one can show that if:
¢ the chain satisfies condition (3.4) for a set C,
e and furthermore Py(1c < o0) = 1forallx € X,

then it is possible to construct a companion chain X, that has an atom using the

concept of renewal time:

Definition 3.8. A renewal time is a stopping rule T such that (X, X¢41,...) is independent
Of(Xffl, XT_2, .. )

To construct this companion chain, consider a small set C that satisfies (3.4) and
such that Py(tc < o0) = 1 for all x. Then, the chain is modified by artificially intro-
ducing a renewal time: when the chain enters C, X, is simulated using a measure

(Xni')—w(')
—€

v(-) with probability €, and using = with probability 1 — e. This is allowed
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because C is small (a pair (v(+), €) can be found), and it allows for the same marginal
law given X, (Bernoulli’s law is used). The sequence of renewal times is then de-
fined as 7; = inf {n > T | X, € Cand X, 1 ~ 1/}. The companion chain is then
Xy = (Xy, wy) with w, = 1 when X, € C and X,, 1 is generated according to v(-).
The set @ = C x {1} is then an atom of the chain X,;, whose sub-chain (X,,) is always a
Markov chain with the transition kernel K(x,, -).

Cycles and Aperiodicity

These concepts are defined for ¢-irreducible Markov chains (Xj,,). Here is an initial,

rather intuitive definition:

Definition 3.9. The sets Ay, ..., Ay of B(X') form an m-cycle of the chain (X,,) if:

(

P(x,Ay) =1 forxe Ay

: : m ¢
' ' and ¢ (U Ai> =0;
P(x,Am) =1 forx e Ay i=1

\P(x,Al) =1 forxe Ap

From this, we deduce the notion of aperiodicity:
Definition 3.10. A ¢-irreducible chain is aperiodic if it possesses a cycle of length m = 1.
Here is a more mathematical definition of a cycle:

Definition 3.11. A ¢-irreducible chain (X, ) has a cycle of length h if there exists a small set
C, an associated integer k, and a probability measure vy, (see the definition of a small set) such
that h is the ged (greatest common divisor) of the values:

{m | 36, such that C is small for vy, > SV}

It should be noted that, in these definitions, small sets are used as substitutes for

states when the state space is finite.

Proposition 3.2. Let K be a transition kernel that is @-irreducible. The period of a state B(X)
does not depend on x; we then say that it is the period of the Markov chain, denoted h(K) or
simply h.

Lemma 3.1. If a state x has period h(x), then there exists k(x) > 0 such that the set of loop
lengths R(x) = {n > 0| K"(x,x) > 0} contains all multiples kh(x) for k > k(x).
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The proofs of proposition 3.2 and lemma 3.1 are available in [61].

It is worth noting that, in these definitions, small sets are used in place of states
when the state space is infinite.
Transience and Recurrence

In the following definitions, we consider ¢-irreducible Markov chains (X}, ):

Definition 3.12. A set A C X is called recurrent if, for all x € X, we have Ex[n4] = oo,
where 1 4 represents the first return time to A. The set A C X is called uniformly transient if
there exists a constant M such that Ex[na] < M forall x € X. The set A is called transient if

it can be decomposed into a countable union of uniformly transient sets B;:

The following theorem is particularly interesting because it illustrates the impor-
tance of the existence of an atom for an irreducible chain. Indeed, it shows that for an
irreducible chain, the property of having an atom can be generalized to the entire state

space:
Theorem 3.2. Let (X,,) be an @-irreducible Markov chain with an accessible atom w:
(i) If w is recurrent, then every set A C X such that ¢(A) > 0 is recurrent.
(ii) If w is transient, then X is transient.

Consequently, we can extend the notions of transience and recurrence to Markov

chains as follows:
Definition 3.13. A Markov chain (Xy,) is recurrent if:
(i) There exists a measure ¢ such that (X,) is @-irreducible.
(ii) For every set A C X such that ¢(A) > 0, we have Ex[n4] = oo for all x € A.
The chain is transient if:
(i) It is g-irreducible.
(ii) X is transient.
To conclude this section, we provide the classification theorem for irreducible chains:

Theorem 3.3. A ¢-irreducible Markov chain is either transient or recurrent.
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However, there remains a question: how can we distinguish a transient chain from

a recurrent chain? The following proposition answers this question.

Proposition 3.3. If a set C with ¢(C) > 0 satisfies the following condition:
Pe(tc <o0)=1 VxeC

then the @-irreducible chain is recurrent.

Remark:
The transition kernel K is called primitive (or regular) if and only if there exists an
integer t > 1 such that all entries of K are strictly positive.

If a Markov chain (Xj,) is ¢-irreducible and possesses a stationary measure, it is

said to be positive.
Proposition 3.4. If the chain (Xy,) is positive, then it is recurrent.

The following theorem provides a kind of converse to this proposition. It guaran-
tees the existence and uniqueness of an invariant measure for recurrent chains. How-
ever, it does not guarantee that the obtained measure is integrable, and thus it does not

ensure that the chain is positive.

Theorem 3.4. If (X,,) is a recurrent chain, then there exists a finite measure on B(X') that is

invariant, unique up to a multiplicative factor.

A final, crucial theorem for our application framework is as follows. It is proven
in [58].

Theorem 3.5. If a Markov chain (X, ) is ¢-irreducible for a nonzero measure ¢(-) on B(X),
and if it has a stationary distribution 7t(-), then the chain is also rt-irreducible.

3.3 Ergodicity and Convergence

We now address the concepts that interest us most, particularly ergodicity [62]:

Definition 3.14. For a positive Markov chain with an invariant probability measure 7t(-), an

atom « is said to be ergodic if:

lim ||[K™(«,a) — 7t(a)]| = 0.

n—oo
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This definition of ergodicity concerns the convergence of one measure to another.
Indeed, this part aims to study the eventual convergence of the distribution of a Markov
chain to its stationary distribution. To do this, it is first necessary to define the relevant

norm on the space of measures. We consider the total variation norm:

|11 — p2llyr = sup [p1(A) — pa(A)|
|Al<1

The important theorem is the following:
Theorem 3.6. If the Markov chain (X,,) is aperiodic and positive, then:

lim /K’” (x,)0(dx) — ()| =0
X

n—oo
vT

for any initial distribution v.

This theorem also applies to initial distributions that are Dirac’s. In particular, it
guarantees that, regardless of the initial state of the chain, convergence to the station-
ary distribution is ensured. This is the theorem that gives practical importance to re-
currence.

However, it is important to note that these convergence results are given in terms

of K™(-, ), the transition kernel of the chain.

3.3.1 Control of Convergence

Controlling the convergence of ||[K"(x,-) — || to 0 is a central and complex issue. This
control is crucial because it ensures that 77 is correctly simulated by K™ for sufficiently
large m. Many theoretical results address this question. Some results use lower bounds
for K on reduced sets of X'. In particular, the contraction coefficient in a finite state

space is a useful tool for controlling this convergence [58].

3.3.2 Geometric and Uniform Ergodicity
Geometric ergodicity is characterized by:

IP"(x,-) = 7l} < M(x)A™,

where M(x) is mr-integrable and A < 1. Ergodicity is said to be uniform if M can be
chosen as a finite constant, independent of x.
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Contraction Coefficient
In finite state space, the contraction coefficient for a transition kernel K is given

by [63]:

1
C(P) = 5 max, IK(x,-) = Ky, )|l 7y

Lemma 3.2. [64] Let v and y be two distributions, and P and Q be two transition kernels.
Then:
4P = vP[[ry < [ = vllzy - C(P),

and

C(PQ) <C(P)-C(Q).

In particular,
|pP —vP| < [l —v] and |[uP—vP|| <2C(P).

Furthermore, if K is primitive, then C(P) < 1. From this result, if we choose y = 7, the

invariant distribution of K, we obtain:
|vP™ — P™|| = ||[vP™ — || < 2C(P™) < 2C(P)™.

Thus, as m — oo, the chain is uniformly ergodic if K is primitive.

3.4 Monte Carlo by Markov Chains

In section 3.2, we studied the properties of Markov chains and observed that certain
conditions on the transition kernel K allow us to guarantee convergence results. Thus,
a Markov chain can be used in a Monte Carlo simulation to estimate an expectation
7t(-). Throughout the following, we will denote the Markov kernel by P.

Unlike the Monte Carlo methods described in section 3.1, where the values gener-
ated in the simulation were independent, Markov Chain Monte Carlo (MCMC) meth-
ods produce values sequentially using a Markov chain, thus introducing a sequential

dependence between the simulation outcomes. The general procedure is described in
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Algorithm 4.

Algorithm 4: General MCMC Algorithm
Data: Target distribution 7r, Markov transition P, and the number of Monte

Carlo simulations N.
Procedure
1. Initialization: Initial value of the chain xy;

fori=0to N —1do
Generate the new state of the chain

Xiy1 | Xi = x0 ~ P(- | xi);

Result: XN-

Markov Chain Monte Carlo (MCMC) algorithms include several methods for sim-
ulating complex distributions. Among these methods, the Metropolis-Hastings algo-
rithm stands out for its efficiency in generating simulations that are representative of
a target distribution using an accept-reject mechanism. In our work, we will focus on

this approach to efficiently explore and simulate spatial distributions.

3.4.1 Metropolis-Hastings Algorithm

The Metropolis algorithm, introduced by Metropolis et al. in 1953 [55] and generalized
by Hastings in 1970 [9], was adapted to spatial processes by Geyer and Moller in 1994
[65]. This algorithm relies on the principle of accepting/rejecting candidates, similar
to rejection sampling (see Algorithm 3), and uses a Markov chain to generate samples.
The main idea is to propose a new state by perturbing the current state and either
accept or reject this proposal. The acceptance rate R(x,y) represents the probability
of transitioning from the current state x to the state y. Geyer and Meller’s algorithm
constructs a Markov chain that explores all possible configurations of the space (2, with
perturbations such as adding or removing an element from the current configuration.
In general, the algorithm uses a transition P that is 7t-reversible and 7r-invariant. The

construction of P takes place in two steps:
e Proposal transition: Propose a change x — y with probability Q(x, dy).

e Acceptance probability of the change: Accept this change with probability a(x,y),
where a : QO x O — |0, 1]. If the change is rejected, the state remains x.
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The two parameters of the algorithm are Q, the proposal transition, and g, the prob-
ability of accepting the change. If dx(dy) is the Dirac measure at x, the Metropolis-
Hastings transition P is expressed as follows:

P(x,dy) = o(x,y)Qx,dy) + 8s(dy) |1~ [ alx,2)Q(x )]

The condition for P to be 7t-reversible imposes a constraint on Q and the acceptance
probability a. Note that v(dx, dy) = u(dx,dy) + u(dy,dx), where p(dx,dy) = Q(x,dy)(dx),
and y has a density h(x, y) relative to v. The Metropolis-Hastings ratio r is defined as:

" =y

for (x,y) € R={(x,y) | h(x,y) > 0and h(y, x) > 0}.
The transition P is rt-reversible if and only if the acceptance probability a satisfies
[66]:
a(x,y)r(x,y) = aly, x).
If Q and 7 are respectively of density g and 7, and if g(x,y) > 0 implies g(x,y) > 0,
then the 7r-reversibility of P is written as:

Va,y € Q:m(x) x q(x,y) xa(x,y) = n(y) x q(y,x) x a(y, x).

Finally, if Q is symmetric, the algorithm simplifies as follows:

Algorithm 5: Metropolis-Hastings Algorithm

Data: Initial state xy = x, proposal kernel Q

Procedure

1. Initialization: Choose a state y according to Q(x, -);
2. Choose a proposal kernel Q,, with probability p,,;
3. Generate y ~ Q(x, -);

4. Compute the acceptance ratio a(x,y) =

5. Accept the state y with probability 2 = min(1,a(x,v));

6. Repeat with the current state;

Result: Markov chain X0:N

The Metropolis-Hastings algorithm, while a fundamental method in Markov Chain
Monte Carlo (MCMC) algorithms, has several variants adapted to specific contexts.
Among these variants are the Metropolis-Hastings random walk algorithm and the
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Gibbs sampler, as well as improved versions like the Hastings algorithm and adapta-
tions using more sophisticated proposals to refine performance. Each variant modifies
the acceptance mechanism or the choice of proposals to optimize the efficiency and
accuracy of simulations. For a detailed exploration of these variants and their applica-

tions, we refer the reader to the reference [56].

3.4.2 Metropolis-Hastings Random Walk Algorithm

A particular case of the Metropolis-Hastings algorithm is the random walk case. In this
scenario, the proposal is generated by perturbing the current state x, that is, by adding
a step € drawn from a density g independent of the current state. We can then write

Yy = x + €, where € ~ g, and the distribution of y given x takes the following form:

q(y,x) =q(e) = q(y — x)

The new state, chosen between y and x according to the Metropolis-Hastings accep-
tance probability, follows the density:

P, ) = aly = X)aly ) + 1= [ alx,2)Q0x2)] o)

thus defining a homogeneous random walk.

Definition 3.15 (Metropolis-Hastings Random Walk Kernel). Let P be a Metropolis-Hastings
kernel with instrumental density q. If the instrumental density is a random walk, i.e., q(y, x) =
q(y — x), then the algorithm is said to be of the random walk type.

3.4.3 Gibbs Sampler

The Gibbs sampler [67] is a particular case of the Metropolis-Hastings algorithm. The
main difference between the two algorithms lies in the way new states are generated.
While the Metropolis-Hastings algorithm generates new states according to an auxil-
iary density that is uniform over the set of states, the Gibbs sampler accepts all new
states, generating them directly according to the target density towards which we wish
to converge. The Gibbs algorithm randomly selects a site i and modifies the value x;
by proposing y; according to a transition density g;(x,y;). The acceptance probability
for the Metropolis dynamics is then given by:

a; = min n(y) .qi(y, xj)
i(x,y) <1’ 7T(x) 'qi(x/yi)> .
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And the transition kernel is given by:
P(x,B) =Y [ ailx,v)aixdy) + {Z | n—axylaitay) - qux,m} bt
i i i

3.5 Conclusion

In conclusion, Markov Chain Monte Carlo (MCMC) methods are powerful tools for
complex simulations. The Metropolis-Hastings algorithm excels in generating samples
from intricate target distributions through a Markov chain and an acceptance/rejection
mechanism.

In the following chapters, we will apply MCMC methods to simulate point pro-
cesses, a critical step for creating optimized Computer experiment designs. Leverag-
ing the Metropolis-Hastings algorithm will enable tailored and precise analyses across

diverse scenarios.
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Chapter 4

Construction of Computer Experiment

Design from Marked Point Processes

This work constitutes an extension of the study described in [68, 69], with a spe-
cific focus on two-marked point processes. We explored the use of marked point pro-
cesses to simulate the experiments that make up the proposed experiment designs.
Unlike classical point processes, two-marked point processes allow the incorporation
of geometric and prior knowledge about the points. In particular, Strauss marked pro-
cesses [6], which account for interactions between pairs of points, are used for this
simulation.

To generate these experimental designs, we apply Monte Carlo simulation tech-
niques via Markov chains, more specifically the Metropolis-Hastings algorithm [8, 9].
The experimental points must be optimally distributed within the experimental do-
main to identify potential irregularities. We also aim to obtain a design where the
points are as uniformly distributed as possible within the unit hypercube. The chapter
presents a detailed demonstration of the convergence of the Markov chain and pro-
vides a comparison of our approach with other existing digital designs, conducted
using a program developed in Python, as outlined in the appendix.

All the results presented in this chapter are based on studies conducted in [70, 71]
and [72,73].
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4.1 Computer Experiment Design Using Marked Marko-

vian Strauss Point Processes

The main idea is to consider each experiment x; as a point or particle defined within
[0,1]7, and each configuration x as a matrix of experiments. Each point in this config-
uration is characterized by two marks m; and m’ defined in the mark space M. The
point and its marks form an object defined as (x;, m;, m}). Therefore, we equate the
objects (experiment design) to realizations of the two-marked point process X. The
marked process implies the possibility of interaction. These interactions correspond
to neighborhood properties defined in the Ripley-Kelly [46] Markov field. The most
commonly used interaction potential is the interaction between pairs of objects. These
object processes are crucial for modeling repulsive phenomena. The probability den-
sity of a two-marked point process for a configuration x of points is given by:

( ) — 06[3 ),),’171111( ),YTzlz( )7;1222( x) (4.1)

Where,

« is the normalization constant,

0 <9y <1,wherek € {1,2} and | € {1,2} are interaction coefficients,

Bk, where k € {1,2}, is the intensity of the process,

e my(x) is the number of points with mark k in x,

my;(x) is the number of pairs of ~y-neighbors of type (k,1) or (I,k) in x (both
marked as k and [ simultaneously).

4.1.1 Mark Selection

In this study, we characterize the points using two marks: the first one will be the value

of the prediction error 7, at the point x;. Recall that this value is defined as [68, 69]:

var (9y,) = 'f (x;) (' XX) "~ lf(xi)
Where,

o X ="[f(x1),f(x2),..., f(xy)] is the computation matrix, which depends on the
chosen experimental points and the assumed model,
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o ('XX) ! is the dispersion matrix,
* f(x;) is the modeled vector for point x;.
In this case, we define 1 (x) for a configuration x as follows:
n
ml(x) - 21 1var(yxi)§£
=
As a second mark, we will take the average of the normal density distances between
the point x; and the other points in the configuration x. This mark will be given by:

ma(x) = Z 1y(xl-)2r

n
i=1

n )
Where y (x;) = 15 Y 6 (x;, xj) with é (x;, xj) = [ ¢(t)dt, where is the usual distance
i=1 0
j#i
between points x; and x;. ¢ represents the density of the normal distribution where ¢

and r are fixed values.

4.2 Simulation of Point Processes using the MCMC Method
and the Metropolis-Hastings Algorithm

This method involves constructing a chain { Xy, Xj, ..., Xy} that converges to the de-
sired distribution 7. In fact, the Metropolis-Hastings (MH) algorithm can perform this
construction using the 7-reversible transition kernel. Recall that the algorithm goes
through two steps.

* We propose a state change from x to y according to the probability distribution

Q(x,-),

e We accept y with probability a(x,y), otherwise, we stay in the state x (Where
a:QxQ—[0,1]).

Let q(x,y) be the density of Q (x, -), the MH transition is written as [8]:

Pun (x,y) = @ (1) (x,) + !1 - [a(x2)q(x2) dz] éx(v)
Q
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With 4, (.) representing the point mass at x. To simplify calculations, we use the Dirac
measure at x (Jx (y) = 1if x = y and 0 otherwise).
The choice of (Q, a) will ensure the rt-reversibility of Pysy if the following equilib-

rium equation is satisfied:

Vx,ye Q: m(x)xq(x, y) xa(x, y) = w(y)xq(y, x)xa(y, x)

The choice of the acceptance probability a(x, y) is more constrained: it is essentially
dictated by the goal of (asymptotically) simulating a given probability distribution 7.
This is the case in the usual choice, where:

(v)

ale ) = 5 (y, x)
¥) =21

X q
xq(x, y)

Two important points to note. Firstly, the calculation of a (x, y) does not require any
knowledge of the normalization constant in (4.1). Secondly, in this work, we consider
the case where two configurations x and y differ in exactly one point. This is referred
to as the “spin flop dynamics,” and thus, the density g is symmetric: q (y,x) = g (x,y)
In this case, the acceptance probability reduces to:

ll(x y) _ N(y) _ Tl(y) rznz(y)7?1111(]/)’)’;”212(”’)’12”222(}/)
/ 7(x) my(x) pma(x)  mai(x), mip(x), man(x)
! 2 711 ’)/12 Y20

4.2.1 The algorithm for constructing the proposed experiment design

The computer experiment design proposed in this work (referred to as the two-type

marked experiment design) is generated using the following algorithm 6:
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Algorithm 6: Proposed Design Construction Algorithm

¢ Initialization Step: Choose an initial configuration (experimental design)
<X0 =xorx = (x9,x,...,%;) and x € [0, 1]k) according to a given probability
distribution, for example, the uniform distribution.

¢ Iteration Step:

for N =1,2,..., Nycymce do

for For each state x do
Sample y using the spin-flip dynamics.

o Randomly choose a spin s uniformly from {1, -- -, n}.

o Simulate an experiment y; according to the uniform distribution on [0, 1].

Then take the new configuration as: y = (x1, X2, Xs—1, Yj, Xs+1 -+ , Xn).

end

e Calculate the acceptance probability:

a(x,y) = min <1;,BT1(y)7m1(x) ’2”2(.’/)*”12(9(),),?1111(y)*mn(x)

,)/'111212 (]/)—mlz(x),yzmzzz(y)—mzz(x)>
y with probability a
e Choose x = .
x with probability 1 — a
Repeat the last two steps n times for each iteration N.
Take Xy = x
end

For N = 1000, Figure 4.1 shows the convergence towards a configuration that char-
acterizes the realization of a two-marked Strauss point process starting from an initial

configuration of 35 points uniformly chosen in [0,1]:
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Figure 4.1: On the left, an initial configuration of 35 points, and on the right, a final
configuration for 11 = 0.01, 12 = 0.01, y22 = 0.05, 1 = 0.9, fo = 1.5,and r = 0.1.

The interactions between the experiments will be represented in Figure 1 by draw-
ing circles with a radius of " /5. When two circles intersect, it indicates a specific inter-
action between those experiments. If the radius r is too small, the distribution shows
no interactions. Conversely, if the radius is too large, the distribution exhibits clusters.

Therefore, it is important to choose an appropriate radius to avoid such issues.

4.3 Convergence study

For each iteration N of the construction algorithm described above, we perform 7 basic
transformations. Therefore, the chain of experimental designs (Xy )y~ generated in
this way is the realization of a Markov chain with the transition kernel:

P(x,y) = Py (x,y)

At this point, the fundamental question is whether the chain converges to the dis-
tribution 77(x) defined in (4.1). The chain converges to the invariant distribution 7
if:

P'(x,A) — 7 (A)

t—ro0

Where A is a Borel set from A, and P! (x,A) = p(X; = A/Xp = x) is a transition
kernel at time f. Let’s state the main result of interest here:

Proposition 4.1. On a finite space, the transition kernel P of the Markov chain (Xy)ys
obtained from the construction algorithm is positive recurrent, rt-stationary, aperiodic, and

primitive (primitive kernel).

Proof. First, we demonstrate three important properties for the kernel Pyp: 7r-reversibility,
m-stationarity, and rr-irreducibility.
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¢ m-reversibility: By definition, the transition Pyp is rt-reversible if:

Vx,y € Q : 7 (x)Pun(x, y) = 7 (y) Pmu (v, x)

Let x € Q and B € A, we have:

/ (a0 (%) Patr (359) d = [ Tp(ey () (x,9) 0 (x,) d
Q

—|—/1B<x,y)7r(x) [1 — /a(x,z)q(x,z) dz] Ox (v) dx

(@)

N / Lp(xy) (x) 2 (x,y) q (x,y) dx
Q)

+ /1B(x,y)5x (y) 7t (x) [1 —/a(x,z)q(x,z) dz} dx

Q

/1B xy y)q(x/y)dx

—|—/1 [ /a (x,z dz] dx
Q
And since:
m(x)a(xy)q(xy) = lX‘BTl(x mao(x ),),Tln( ),),?1212( ),),’2"222( x)

% min (1;ﬁTl(y)_ml(x)ﬁ;M(y)_mz( ),yTn( y)—mu(x ),),;7112( y)—mp(x )731222( y)— mzz(x)> q(x,v)

_ amin( Tl(x) ma (x ),)/Tln( ),),;'1212( ),yglzzz( x) Tl(]/) ma(y ),ylmln( ),),Tzlz( ),Ygizzz( )) q(x,y)

_ txﬁ ),.)/;'1111( )7;'1212( ),)/;1222( )
% min( Tl(x)*ml(y)ﬁgh(x)*mz( ),)/Tlll( x)—myq(y ),){”212( x)— mlz(y),ygézz(x)*mzz(y);1> % Q(x,]/)
= 72(y) min <1;5T1(x)—m1(y) 2"12( Y=y (y ),yTlu( V—my1(y ),Ylmzlz( )— mlz(y),ygizzz(x)—mzz(y)> q(x,y)
= 7t(y)a(y, x)q(x, y)
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And since g (x,y) = q (y, x), then:

mt(x)a(x, y)q(xy)=mn(y)a(yx)q(y x)

, We obtain:

So 7 (x) Py (x, v) = 7 (y) Pyp (v, x), and therefore, the chain is 7r-reversible.

¢ r-stationarity: The transition Pyy is 7t-stationary if:

Vx,y e ;A Be A: /1B(x,y)7r(x) Pyp (x, A)dx = /1B(x,y)7r(x) dx
0

Let x € Q) and B € A. We then have:

/ (g7 () Patr (%,9) dx = [ ey () [ [ty dy] dx

0 0
+ [ gy 1—a( xz)q(xz)dz]éx(y)dx
[0
= [ [nen @0 (ey)q (ey)dydx+ [ 1 (x) dx—
Q0 0

// (x,z) xz)dzdx—/lex 7T (x) dx

So the chain admits 7t as a stationary distribution.

¢ r-irreducibility: The transition Pyp is rt-irreducible if:

VA€ A, m(A)>0 = 3t, Piy(x,A)>0
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Let A be a Borel set from A, and for t = 1 we have:

/1B(x,A)PMH (x, A) dx = /1B(x,A)ﬂ(x,A)q(x,A)dx
0 9}

+/1B(x,A) [1 —/a(x,z)q(x,z) dz] Oy (A)dx
Q

Q

Q Q

= /1B(X/A)a(x,A)q(x,A)dx—i—/lB(x’x) ll/a(x,z)q(x,z) dz] dx
Q

:/1B<x,A)a(x,A)q(x,A)dx+1—//a(x,z)q(x,z) dzdx
0 Q0

Since:

a(x, A) = min (1,,‘871111(A)*ml(x)ﬁ;ﬂz(A)*mz(x),Yﬁn(A)*mn(x)7;'1212(14)*mlz(x),ygﬂzzz(f‘)*mzz(x)

and

2 1 T12 V22

a(x,z) = min 1.132”1(2)*"11(?0 ma(z)—ma(x), mii(z)—m1(x)  miz(z)—mia(x) mzz(z)*mzz(x)>
Then we have four possible cases:

oifa(x,A) =1and

a(x,z) = 71711(Z)—ml(x)ﬁgiz(z)—mz(x),)/Tln(Z)—mn(x),yﬁlz(z)—mlz(x)731222(2)—"122(95)

then:

/1B(x,A)PMH (x,A)dx = /1B(x,A)q (x,A)dx +1
o) 0

_//‘371”1(Z)—ml(x)ﬁ?z(z)—mz(x),yﬁn(Z)—m11(x),)/;'1212(2)—m12(x)X
Q0

,)/;ﬂzzz(z)—my(x)q (x,z)dzdx = / 1p(x,4)q (x, A)dx +1
Q

_ﬁTlm(Z)*ml(x)ﬁgﬂz(z)*mz(x),),ﬁll(Z)*mn(x),Y;’;lz(z)*m12(x),),2m222(2)*m12(x) >0
o ifa(x,z) = Tl(A)—ml(x) giz(A)—mz(x),),;71111(A)—mu(x),yTzlz(A)—m12(x),)/31222(14)—m22(x)

and
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a(x,z) =1 then:

/1B(x,A)PMH (x,A)dx
QO
:/1B(xA) Tlnl(A)—ml(x) Tzﬂz(A)—mz( ),Y;”lll( )=y (x ),)/;;1212(14)—14112(;()><

Q

,Y;nzzz(A)*mzz(x)q(x’A) dx +1 —//q(x,z) dzdx
— B4 () gz (A) = () i (A) s () o (A) =iz (3), o () =maa(3) o

/1B(x,A)q (x,A)dx >0

m1(A)fm1(x)‘ngz(A) my(x), m1(A)—ma(x)  mip(A)—mip(x), map(A)—ma(x)

o ifa(x,z) = B 1 T12 722
and
a(x,z) = Tl(z)—ml(x)ﬁgz(z)—mz( ),)/11111( )—m(x )'71mu( )— mlz(x),YZTzzz(Z)—mzz(x) then:
/ 1B(x,A)PMH (X,A) dx

e /1B(XA) Tl(A)fml(x) ?Z(A)*mZ( ),Yﬁll(A)*mn( ),)/711’1212(14)*1’7112(3(),)/

Q

31222(/!) Mz (% (x A)dx

+1_//ﬁ71”1(2)—m1(x) 7;2(2)—1112( ),)/?1111() mqp (x )')’Tzlz() mip(x)
(O]

Moy (z) —ma(x)

XY q(x,z)dzdx

mi(A)—mq(x) ,my(A)—m mi1(A)—mq1(x) mip(A)—m mop(A)—mop(x
_ 11( )—m(x) 22( )—ma(x ),),1111( )—m ( )71212( )—mp(x )72222( )=mn(x) o

/ 1p(x,4)9 (x, A)dx+1— 11711(2)—m1(x) 212(2)_"12(3‘),),21111(Z)_mll(x) v

g E) () i (2) MZl//qxzdmx

_ Tl(A)—ml(x)ﬁglz(A)—mz(x),Y?ﬁn(A)—mn(x),ylmzlz(A)—mlz( )737222(1‘\)—”122(96) 5

/ 1p(x,4)q (x,A)dx+1
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_ﬁT1(Z)—ml(x)ﬁgiz(z)—mz(x) myy(z)—may(x)  mia(z)—mia(x)  ma(z)—ma(x) ~ 0

T 712 Y22
So fQ 1B(X/A)PMHt (x,A)dx >0 Vt >0, then Pyyest m-irreducible.

Since 7t is the invariant distribution of Pyy, it is also an invariant distribution for P.

Indeed, mPyy = 7, and by induction on the integer, TPy = 7, we obtain:
nPyy = MPyy = MPyy = ... = TPy =7t

So, mP = 7. By construction of P = Py, the m-irreducibility of Pyy implies the
rt-irreducibility of P. If P is rr-irreducible and has an invariant distribution 7, then P
is positive recurrent, and 7 is the unique invariant distribution of P. By construction
of P = Py, we have P = . If P is rr-irreducible and has an invariant distribution
7, then P is positive recurrent, and 7t is the unique invariant distribution of P [62] (see
proposition 1).

Furthermore, the chain created by the construction algorithm will also be aperiodic
as long as there exists at least one pair of configurations (x,y) such thata (x,y) < 1,
because then we have P (x,x) > 0. Itis quickly evident that the chain is aperiodic, as
the event X ,1) = X(n) is possible practically at any time. Indeed, each state can be
visited in two consecutive iterations, so P! (x,x) > 0, making their period 1.

Since the chain generated by the algorithm is irreducible and aperiodic, its transi-
tion kernel P is primitive (a characterization of a primitive Markov Kernel more com-

mon in probability theory is to say that it is irreducible and aperiodic). O

Theorem 4.1. The Markov chain (Xy)y - (o obtained from the proposed construction algo-
rithm is geometrically ergodic, and its kernel P simulates a marked point process with two
types of density:

7T (x) = tXﬁTl(x) ?z(x),)/lﬂln(x),yTzu(x),)/;;zz(x)

In other words, vP™ converges to 7t as m tends to infinity, where v is the initial distribution,
and we have:

lim |[oP" — || =0
m—o0

Proof. Let v be an initial distribution, for any integer m and for all x € N'/ , we have:
[oP" (x,.) — 7| = [[oP" — 7P"| < 2C (P") < 2(C (P))"
Where C (P) is the Dobrushin contraction coefficient of P [63].
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Where C (P) is the Dobrushin contraction coefficient of P [64]. According to Propo-
sition 4.1, the kernel P is primitive, thus 0 < C(P) < 1 (see Lemma 3.2). Hence, as
m tends to infinity, |[oP™ — 7| =0 Therefore, the chain is uniformly ergodic and
converges to the distribution defined in (4.1).

O]

4.4 Numerical Results and Quality of the Proposed De-
signs

The evaluation of the quality of the proposed Computer experiment design relies on
the use of common criteria aimed at ensuring an optimal filling of the experimental
space and a uniform distribution of points. This evaluation is crucial in the experiment
design process, as a well-designed plan maximizes the efficiency of experiments and
provides meaningful and reliable results.

In our evaluation of the Computer experiment designs, we use three types of crite-

ria:

¢ Distance criterion: aims to maximize the minimum distance between two points
in the design. A high value of this criterion indicates a maximal dispersion of

points.

* Coverage criterion: evaluates the deviation between the points of the design and
those of a regular grid, with a zero value for a regular grid. Minimizing coverage
brings the design closer to a regular distribution and ensures adequate filling of

the space.

¢ Discrepancy criterion: measures the deviation between the empirical distribu-
tion function of the points in the design and that of the uniform distribution. A
low discrepancy, particularly in the L, norm, indicates a more uniform distribu-

tion of points.

Table 1 provides a comparison based on the discrepancy criterion between the de-
signs proposed in this study, referred to as TMD (Two Mark Designs), and low dis-
crepancy sequences such as the Halton sequence [32], Sobol sequence [33], and Faure
sequence [34]. It is noteworthy that the proposed designs exhibit low discrepancy,
comparable to that of the mentioned low discrepancy sequences. This observation

highlights the quality of the proposed experiment designs, demonstrating their ability
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to provide a uniform distribution of points in the experimental space, while competing

with well-established methods of generating low discrepancy sequences.

Tableau 4.1: Discrepancy values for the proposed designs (TMD), the Halton sequence, Sobol

In this chapter, a comparison is made between the constructed designs and the
stochastic designs commonly used in Computer experiments, excluding low discrep-

ancy sequences. To give appropriate meaning to the results obtained, the criteria were

sequence, and Faure sequence for 4, 7, and 10 factors.

Number of | Number of Halton Sobol Faure
TMD
Factors Points Sequence | Sequence | Sequence
4 32 0.00176 | 0.001779 | [0X000848] | 0.001641
7 64 1010000207 | 0.00048 | 0.000224 | 0.000480
10 128 10:00000696] | 0.000109 | 0.0000605 | 0.000109

calculated on a set of 100 designs. The designs compared in this section include:

e Random designs (RD)

Figures 4.2 and 4.3 present the results of the various criteria in the form of box plots for

Latin Hypercubes (LHS) [31]

Maximin LHS designs (mLHS) [74]

Strauss designs (SD) [75]

Maximal entropy designs (Dmax) [76]

Marked Strauss designs [68, 69]

Connected component model designs (CCD) [77]

Proposed designs (TMD).

5 and 7 dimensions.
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Figure 4.2: Box plots of the quality criteria calculated on 100 designs with 30 points in 5

dimensions.
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Figure 4.3: Box plots of quality criteria calculated for 80 designs with 50 points in 7
dimensions.

A few remarks about the figures above are worth noting. The maximal entropy
designs, Latin Hypercubes, maximin LHS designs, connected component models, and
two-mark designs all performed well with respect to the discrepancy criterion. It is
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interesting to note that the two-mark designs are among the aforementioned designs

that also achieved very good results according to the R criterion.

4,5 Conclusion

In this chapter, we have presented our theoretical contribution to the methodology of
experimental research, with a focus on the innovative application of the Markov Chain
Monte Carlo (MCMC) method. Specifically, we explored the integration of Strauss
marked point processes to design new computer experiment plans, a methodology that
stands out for its ability to incorporate geometric knowledge and prior information
into experiment design.

This approach proves to be an interesting alternative to traditional statistical meth-
ods, opening up new perspectives for more precise research that is tailored to com-
plex experiment contexts. By comparing our method with other computer approaches
using various evaluation criteria, we found that our proposal not only delivers satis-
factory results but also shows promise for creating experiment designs in demanding,
multifactorial environments.

Thus, this work contributes to enriching the methodological tools available to re-
searchers by offering an innovative solution that addresses the contemporary chal-

lenges of experimental research.
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Chapter 5

New Computer Experiment Designs
Using Point Processes with Area

Interaction

This chapter presents an innovative method for constructing computer experiment
designs based on the theory of point processes with area interaction [7]. This method is
essential for understanding the interactions between different elements within a mod-
eled system, offering a more flexible and adaptable approach compared to traditional
mathematical models. Unlike conventional approximate models that rely on simplified
equations, our method uses the Markov Chain Monte Carlo (MCMC) method and the
Metropolis-Hastings algorithm combined with Voronoi tessellations. It employs a new
dynamic called homogeneous birth-and-death dynamics of a set of points to generate
the designs. This approach does not require the development of specific mathematical
models for each system studied, making it universally applicable while achieving com-
parable results. Additionally, we provide an in-depth analysis of the Markov chain’s
convergence properties to ensure the generated designs’ reliability. Our approach and
other existing computer experiment designs are also compared.

This chapter presents results from investigations carried out in [78,79] and [80, 81].
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5.1 Computer Experiments Designs Using Markovian Area-

Interaction Point Processes

Each experiment x; is considered as a point or particle defined on [0,1])", and each
configuration x is regarded as a computer experiment design. Hence, the n experi-
ments can be seen as realizations of an area-interaction point process [7]. This inter-
action corresponds to neighborhood properties, as defined by a Markov field in the
sense of Ripley—Kelly [46]. This process is essential for modeling repulsive phenom-
ena. The density of the area-interaction point process is defined by the following:

7T (x) — [Xlgn(x)r)/_m(uT(x)) (51)

where & > 0 is the normalization constant that makes 7r a density, 7(x) is the number
of points in the configuration x, B > 0 is a scale parameter, v > 0 is a repulsion
parameter, m(-) is the Lebesgue measure, r > 0 is the radius of the ball B (x;,7) is

defined by B (x;,7) = {a € [0,1)", ||x; —a|| < r}, and U,(x) = LnJ B (x;,7) is the union
of balls centered at x; with radius r [7,82,83]. =

The area of the union of discs may be expressed as the decomposition of the union
of grains, U,(x) = Lnj B (x,7), in an inclusion—exclusion style [5, 83,84]. This is ex-
pressed concisely aslf:olllows:

n(x)
m (U, (x)) = 2 m (B (x;,1)) — Zm (B(x;,r)NB (x]-,r)) +

=1 i<j

~

n(x)
H(=1)" D | () B (x,7)
i=1

Figure 5.1 illustrates an example of U,(x) on the square [0,1]2. The red points x;
and the blue disks of the center x; and radius r are shown. The blue shaded area in this

figure represents U, (x), and m(U,(x)) denotes the area of this region.
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Figure 5.1: Example of U, (x) for 20 points in the unit square [0, 1]%.
Simulation of Point Processes Using the Markov Chain Monte Carlo
(MCMC) Method and the Metropolis-Hastings Algorithm
This method involves constructing a chain { Xy, X, - - - , Xy} that converges to the de-

sired distribution 7. In fact, the Metropolis—Hastings algorithm achieves this construc-

tion by using a 7r-reversible transition kernel. The algorithm goes through two steps:

¢ We make a proposal for a state change: from x to y, according to a probability
law Q (x,.) with density g, (x,y), called the instrumental density.

* We accept y with probability a,, (x,y); otherwise, we stay in state x (where a,, :
QxQ —[0,1)).

The transition kernel is given by [60]:

P(x,B) =¥ [ aw (t,y) u (x,y)dy + {2/ 1=t (%,9)] 4o (x,9) dy = Y <x,a>}axeB

In our case, we take g, (x, y) = q(x, y) and a, (x, y) = a(x, y) (i.e., a homoge-
neous Markov chain). From this, we can deduce the Metropolis—-Hastings transition

matrix Py, which is given by [8]:

Pun (x,y) = a(x,y) q(x,y) + Sx ()

/1 —a(x,z)q(x,z)dz
Q
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where J, () represents the mass at point x; for simplification, we use the Dirac measure
at x (0x (y) = 1if x =y, and 0 otherwise).
The choice of (Q, a) will ensure the rt-reversibility of Pysy if the following equilib-

rium equation is satisfied:

Vy,y € Q: m(x) xq(x,y) xa(x,y)=mn(y)xqy x)xayx)

The choice of the acceptance probability 4 is more limited and essentially dictated
by the objective of simulating (asymptotically) a given probability distribution 7. This
is the case for the usual choice, where:

(v)

_ () xq(y, x)
") = S

(x,y)

It is important to note certain points. Firstly, the calculation of a(x,y) does not re-
quire knowing the normalization constant of (5.1). Secondly, in this work, we consider
the case where both configurations, x and y, differ at multiple points, which is called
the homogeneous birth and death dynamics of a set of points. As a result, the cho-
sen density g is usually symmetric to make the process computationally manageable:
g (x,y) = q(y,x). Thus, the acceptance probability is reduced to the following:

m(

Ur(y))
m (U (x))

7T (y) _ ﬁ”(y)r)/_m(ur(]/))

a(x, y)= 7(x) ﬁn(x)r),*m(ur(x))

= r)/_
-

5.2 Algorithm for Constructing Computer Experiments
Designs Using Markovian Area-Interaction Point Pro-

cesses

The computer experiment designs proposed in this work were generated using
Algorithm 7, which is essentially a version of the Metropolis-Hastings algorithm with
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the use of Voronoi tessellations.

Algorithm 7: Metropolis—-Hastings Algorithm with Voronoi Tessellations.

¢ Initialization Step: Choose an initial configuration (an experimental design)
Xp = x according to a given probability distribution, for example, the uniform
distribution.

¢ Iteration Step:

fori=1,2,.. -rNMCMC do
for each configuration x do

Subdivide the configuration x into neighborhood zones @ (xy) for
each point xy, k € {1,2,- - -, n} using Voronoi-Dirichlet tessellations.

For each neighborhood ¢(xy), simulate an experiment y; according to
the proposal distribution g ~ Uy,

Takey = x; U{y1, Y2, - ,yn}-

Choose a pair of points {u,v} from the configuration y randomly, then
choose either u or v with a probability of 1/2 and remove it from y

_ y/ {u} if u is chosen,
(ie,y=

y/ {v} if v is chosen.
Repeat this step 7 times.

The new configuration is then taken as .

end

Compute the acceptance probability a(x,y) = min <1, ,),m(llr(x))—m(ur(y))> :
Update x as follows:

y with probability a,
X =
x with probability 1 — a.

end
Result: Return Xy = x

For N = 1000, Figures 4.1 and 5.3 show the convergence towards a configuration

that characterizes the realization of an area-interaction point process starting from an
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initial configuration of 25 points, chosen uniformly in [0,1]% and [0, 1]°, respectively.

Initial Configuration Final Configuration

101

0.8 4

0.6 4

0.4 4

0.2 4

0.0 1

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

Figure 5.2: On the left, an initial configuration of 25 points with m (U,(x)) = 0.5408, and on
the right, a final configuration for v = 3 and r = 0.1 with m (U,(x)) = 0.7594.

Initial Configuration Final Configuration

0.8 “h 2 0.8
0.6 l/'[ ,if""- & 0.6
[y 1 y
0.4 g - ) 0.4
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0.0 ' » 0.0
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0.0
3 0.4 vy
0.6

0.8
10 00

Figure 5.3: On the left, an initial configuration of 25 points with m (U,(x)) = 0.1040, and on
the right, a final configuration for v = 3 and r = 0.1 with m (U, (x)) = 0.1047.

Influence of Parameters

Figure 5.4 shows the impact of the parameter r on the final distribution of points. It
is crucial to choose the radius r wisely, as a too-small radius results in a distribution
without interaction but with numerous gaps. On the other hand, a too-large radius

leads to a distribution with excessive interaction.
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Figure 5.4: On the left, an initial configuration of 25 points with m (U,(x)) = 0.5408, and on
the right, a final configuration for v = 3 and r = 0.1 with m (U, (x)) = 0.7594.

The interaction radius is the most sensitive parameter to adjust, and its value must
be carefully selected. For a given criterion, the best solution would likely be to tabulate
this value according to the number of points and the dimension of the problem.

Final Configuration Final Configuration
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Figure 5.5: On the left, a configuration of 25 points with ¢y = 3 and r = 0.05 with
m (Ur(x)) = 0.1960, and on the right, a configuration of 25 points with v = 3 and r = 0.3 with
m (Ur(x)) = 1.7691.

5.3 Convergence of the Proposed Algorithm

For each iteration N of the algorithm described above, the chain of computer experi-
ments designs (Xy )y~ generated is a realization of a Markov chain with the transi-
tion kernel: B

P (x,y) = Pun (%,y)

The essential question that arises is whether the chain converges to the distribution
7 (x) defined in (5.1).
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Definition 5.1. The chain is convergent to the invariant distribution 7t if:

lim P" (x,A) = (A)

n—oo

where A is a Borel set in A, P" (Xo, A) = P (X,, € A|Xo) with:
P (Xp, A) = P (Xns1 € AlXo, X1, ..., Xn) and 7w(A) = /n(dx)P(x,A)

Proposition 5.1. On a finite space, the transition kernel P of the Markov chain (Xx)yq 0b-
tained from the construction algorithm is recurrent positive, rt-stationary, aperiodic, and prim-
itive (primitive kernel).

Proof. Firstly, we show three important properties for the kernel Pyy: 7t-reversibility,

rt-stationarity, and 7r-irreducibility.

* rm-reversibility
The transition Py is 7t-reversible if, for any sets A and B, the probability of tran-
sitioning from a state in A to a state in B is equal to the probability of transitioning
from a state in B to a state in A (A, B C Q):

Vx e A Vy e B: // x) Py (x,y)dxdy = // y) Pmu (y, x)dydx

Letxc Aandy € B

Pym (x,B) = /a (xy)q(x,y)dy +

/1_g(x,z)q(x,z) dz] ox ()
(@)

B
- / (%) (x,dy) + ()65 (1)

Withs(x) = [q1—a(x,z)q(x,z)dz

For any Borel sets A and B in (), we have:

// x) Pypy (x,y)dxdy = // (x,y)dydx + / 1y—x7t (x)s(x)dx

ANB
=// (%, y)q(x, y)dydx + / Ly—x7t (y) s(y)dy
A B ANB
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And as:
7 (x) a(x, y)q(x,y) = ap"®y=mU ) min (1,5n(y)*n(xl*)7M(Ur(xz-))*7n(ur(y))) q(x,y)
= wmin "Wy ), gl —m(U) g(x, )
= "W U) i (70U M), 1) g(x,y)

e D"Bn(y)ry*m(uf(y)) mln (]_, ﬁn(x)fn(y)/')/m(UV(]/))fm(UV(x))> q(x’ y)

And as q(x,y) = q(y,x) so 7 (y) a(y, x)q(y, x) = 7 (x) a(x, y)q(x, y)
Using the Fubini’s theorem, we obtain:

// a(x,y)q xydydx—// y, x)dxdy

Finally, we have:

// x) Pyp (x,y)dxdy = // ,x)dxdy + / Ly=x7t (v) s(y)dy

ANB

://71 ) Py (y, x)dydx

Hence, Py;y is t-reversible.

¢ r-stationarity

A distribution 7t is said to be stationary for the transition kernel Pyp if:

/ mt(y)a(x,y)q(x,y)dy+ / / ox (y) m(y)dzdy — / / t(y)a(x,z) q(x,z) ox (y) dzdy
QO O 0O

- / mt(y)a(x,y)q(x,y)dy + / ox (y) m(y)dy — / / Li=ymt(y)a (x,z) q (x,z) dzdy
Q O 0O
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—/ (xy)q(xy dy+/5 (y)dy—/ﬂ(y)a(y,Z)q(y,Z)dz

(@)
_/5 (y)dy = 7 (x)

So the chain admits 77 as a stationary distribution.

¢ r-irreducibility
The transition Pyy is 7t-irreducible if:

VA€ A,m(A)>0= 3t Py (x,A) >0

For any Borel set A in A and for t = 1, we obtain:

/1B(x,A)PMH (x,A)dx = /1B<x’A)a(x,A)q(x,A)dx

+ / 1B(x,A)

Q

1 —/a(x,z)q(x,z) dz] Ox (A) dx
0

— /1B<x,A)a(x,A)q(x,A) dx+/1B(x,x) [1 —/a(x,z)q(x,z) dz] dx
0 0

Q

= [ 1pxaa(x,A)q(x, A)dx+1— a(x,z)q(x,z)dzdx
s /]

Asa(x, A) = min (1’,ym(ur(x))—m(u,(A))> and a(x,z) = min (1’,Ym(u,(x))—m(u,(z))>,

so there are four possible cases:

~Ifa(x,A) =1and a(x,z) = o"Ur@)=m(U:(2) g0
/1B(x,A)PMH (x,A)dx = /1B(x,A)q (x,A)dx+1—
o)
//7 (Ur () =m(Ur(2) g (x, 2) dzdx
- / L) (3, A) dx + 1 — 4 (U -m(Ur2) 5 g

— ifa(x, A) = o) =mU(A)and q (x,z) = 1 so:
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/1B(x,A)PMH (x, A) dx = /1B(x’A),Ym(Ur(x))m(U,(A))q (x, A) dx +1

O O
—//q(x,z) dzdx
Q0

_ ,)/m(Ur(X))—m(Ur(A))/1B(X,A)q (x,A)dx > 0
QO

- If a(x, A) = ,)/m(ur(x))—m(ur(A)) and g(xlz) = ,Ym(Ur(x))—m(Ur(z)) SO:

/1B(xlA)PMH (x,A)dx = /1B(x,A)’Ym(ur(x))_m(uy(A))El(XIA) dx +1
o o

_//,Ym(ur(x))m(ur(z))q (X,Z) dzdx
Q0

_ ,Ym(ur(x))fm(llr(A)) /1B(x,A)q (x,A)dx+1—
@)

,ym(ur(x))—m(ur(z))//q(x,z) dzdx
a0

(U () —m(Ur(4)) / g (%, A) dx +1 = oL =mU(2) 5 o
Q)

So [ 1B(X,A)PMHt (x,A)dx >0 Vt >0, hence, Pyp is 7t-irreducible.
o)

By construction of P = Py, we have P = 7. If P is rr-irreducible and possesses a
r-invariant distribution, then P is positive recurrent and 7 is the unique invariant
distribution of P [62] (see Proposition 1).

On the other hand, the chain created by the construction algorithm will also be
aperiodic as long as at least one pair of configurations (x, y) exist, such thata (x,y) < 1,
because then we will have P (x,x) > 0. We can quickly see that the chain is aperiodic
as the event Xy, 1) = X(y) is possible practically at any time. Indeed, each state can

be visited at two consecutive iterations, so P! (x,x) > 0, making the period equal to
1. O

Theorem 5.1. The Markov chain (X)) obtained from the proposed construction algorithm
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is geometrically ergodic, and its kernel P realizes the simulation of the area-interaction point
processes with density  (x) = af" ¥y~ U(X) " n other words, vP" converges to 7T as n

approaches infinity, where v is an initial distribution, and we have:

. . _
lim [[oP" — 7|7y, = 0

Here, ||-|| 7 denotes the total variation norm defined by:

[ull7y = sup [u(f)]

IfI<1

Proof. Let v be an initial distribution. For any integer n and ¥ x € N'f , we have:
[oP" = gy = [0P" = 7P|y < Ilo — ][ P"]| < 2¢ (P")

And we know that ¢(P") < [c (P)]" [64] (see Lemma 4.2.2 page 71), so |[vP" — 7t|| 11, <

2[c (P)]". And ¢ (P) is the Dobrushin contraction coefficient [63] defined by the follow-
ing:
1
c(P)=5sup [P (x,.) = P(y,.)llry
XY

According to Proposition 5.1, the kernel P is primitive, so 0 < ¢ (P) < 1 [64] (see
Lemma 3.2). Therefore, as n tends to infinity, ||[vP" — 7|, tends to zero. Hence,

the chain is geometrically ergodic and converges to the distribution 7z (x) = ap"(*)y=m(Ur(x)),
O

5.4 Convergence Speed of the Proposed Algorithm

The objective of this section is to study an approach to estimate the speed at which the
Markov kernel P = Py, which is 7-reversible, converges to the distribution 7.

Definition 5.2. A Markov kernel K on Q) is a mapping from Q) to Borel measures on ()
such that:

* Forevery x € Q, K(x,dy) is a probability measure.

e Forany A, K(x,A) = [ K(x,dy) is a measurable function.
A

e For f € L® (Q)), the Markov operator K (f) is defined as follows:

K() (x) = [ F0)K (x,dy)

Q
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(Here, we denote L™ (Q)) as the space of bounded functions on Q), equipped with the norm

1 flleo = sup [ f(x)]).
xeQ)

Definition 5.3. Let 7 be a probability measure and a Markov operator, we say that is -
reversible, if and only if it is self-adjoint on, which means that:

(lg)e = [ K(Fgdm = [ fK(g)dm = (3If) ¥f.g 7 € L™ (Q)

Theorem 5.2. The Markov chain (X,,), o associated with P in the proposed algorithm sat-
isfies the following properties for all n: P is irreducible and admits a reversible measure 7.

Therefore, the eigenvalues Ay > Ay - - - > Ay of P satisfy Ay = 1. Additionally, for any initial
distribution 110, we have:

_ . 1 1

where p = min (1 — |Ay|, 1 — |AN]|) is the spectral gap of P, and 1t, = moP" represents the
marginal distribution of (X, ), e, and P is exponentially ergodic and converges exponentially
fast towards the target distribution 7t.

Proof. According to Proposition 5.1, P is m-irreducible, rt-reversible, and primitive.
By the Perron-Frobenius theorem [85], P has a strictly positive real eigenvalue Aq,

and A; > Ay--- > An. We need to show that these eigenvalues are contained in
the interval [—1,1].

Let 1 be an eigenvector of A, then we have the following:

‘//u P (x,y) dXdy '// & ”—y)P(x,y)dxdy

%//mw(“i%) i 3 [ (%fwmy
g%/ ()( )dx+2/ ( )dy /(#(x))znd(i)zwm

2 2
And as p is an eigenvector of A, we have (HP‘HL> > A (Hl/‘”l> , which implies
1 > |A|]. Therefore, we have:

P‘WP 1=

IN

1>2M>A--> Ay 2> —1
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If A =1, then:
@) ply) 1)\ LW\ px)  py)
n@ﬁrw‘é(nuﬂ +2wa>:¢nu>‘n@>

That is, u = c7t, with ¢ being a constant.
Reciprocally, from the definition of an invariant measure, 7t indeed satisfies 7 =

ntP. Thus, we have established that the eigenvalue 1 is a simple eigenvalue, which we
denote as A = 1.

Now, let us show that —1 is not an eigenvalue of P. We assume by contradiction
that there exists an eigenvector f for the eigenvalue —1. Let x be a state in the state
space (), such that f(x) > 0 and f(x) = max |f(y)| (we can take —f instead of f

ye

if necessary). As P is aperiodic according to Proposition 5.1, for sufficiently large n,
P"(x,x) > 0 (see Lemma 3.1). We have:

—F(x) =P () (x) = [ P (x,) fy)dy

This implies that —f(x) > —f(x). It is a contradiction.
Finally, let us show that ||7r, — 7|, < Ce P". Using the properties of the total
variation norm [86] , we have the following:

2|ty — 7|y = |7t — 7|y < |7t — 7],

_ (/ (7::((3 _1)27T(x) dx>% < (/(nn (x) — 7T (x))znd&)f = |l = 7l 21

As P is a symmetric operator for its right action on £? <Q,% , there exists an or-

thonormal basis (1, p2, - - - , N ) of this space corresponding to the eigenvalues (1, A4, - - -

The orthonormal eigenvector y; for the eigenvalue 1 is simply the invariant measure
7. Let us write the decomposition of the initial distribution 77 in the eigenbasis of P:
N
Ty = T+ Y Cili
i=2

For certain real coefficients ¢ and ¢;, i € [2, N], with ¢; = (7o|p;) 1, applying P" to
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the formula above yields:

N
Ty = CTT + Zci()\i)”yi
i=2

N
As [Aj] < 1fori € [2,N], then lim 7, = cr + lim ), ci(A)"u; = cm, which
n—oo

implies that ¢ = 1. Therefore:

and

2 il 2 2n al 2 2n 2 —2n
(I =7ll2)" = Y )™ < Y1 =)™ < (llmo =71 ) e
i=2 i=2

2
With p = min (1 — |A3],1 — |An|) To conclude, we need to bound the value <||7T0 - 7T||l> ,
which we denote as F (7).

2 dx
7 (x)

Fro) = (o= nl) = [ (o () = ()

The function F is quadratic and, therefore, convex over a convex part of RN. Hence,
it reaches its maximum at an extreme point of the convex set formed by probability
measures. The extreme points of this convex set are precisely the Dirac measures Jy,

(convex combination of Dirac measures). Thus,

2 2
max <||n0—n||l) =max<||5x0—7'c||l)
71y probability on (2 0 xp€Q) T

For fixed xp, we have the following:

(1= l)" = T2 4 [ 73
QO
~ (1—m(x0)) 1+ (7 (x0))* — 27 (x0) + 7 (x0) — (77 (x0))?
B 7r(xo)O (1= (x)) = : n?xo) 0 :
_ 1 — 7 (x0) _ 1 1
7 (x0) 7 (X0)
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1 1
We conclude that ||77, — 7|y < Ce P withC = -y /max | —— — 1. O
2\ xeq \ 7 (x)

5.5 Numerical Results and Quality of the Proposed De-
signs

To evaluate the quality of the proposed numerical experiment design, the same proce-
dure as in section 4.4 is used.

Table 1 presents a comparison based on the discrepancy criterion between the de-
signs proposed in this work (denoted AID: Area Interaction Design) and low discrep-
ancy sequences (Halton sequence, Sobol sequence, and Faure sequence). It is interest-
ing to observe that the proposed designs exhibit low discrepancy, comparable to that

of low discrepancy sequences.

Tableau 5.1: Discrepancy value for the proposed designs (AID), Halton sequences, Sobol
sequences, and Faure sequences for 2 and 3 factors.

Number of | Number of Halton Sobol Faure
AID

Factors Points Sequence | Sequence | Sequence

2 50 0.0005215 | 0.001076 | [0X000496] | 0.001076

3 100 0.0009192 | 0.000178 | [0%000T2] | 0.000127

The constructed designs are also compared with commonly used designs in numer-
ical experiments, excluding low discrepancy sequences. To give meaning to the results,
the criteria were calculated for 100 designs. The designs compared in this section are

as follows:

e Random Designs (RD)

Strauss Designs (SD)

Latin Hypercube Designs (LHS)

Maximin LHS Designs (mLHS)

e Maximum Entropy Designs (Dmax)

Marked Strauss Designs
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e Connected Components Interaction Model Designs (CCD)
e Proposed Designs (TMD)

The figures below represent the results of the different criteria in the form of box plots

for two and three dimensions.
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Figure 5.6: Box plots of the quality criteria calculated for 100 designs with 30 points in 5
dimensions.

According to the results presented in the box plots above, in two dimensions, the
proposed designs show significant improvements both in terms of the ratio and the
minimum distance criterion. This indicates that the points in the proposed designs are
well separated from each other, ensuring good coverage of the experimental space, al-
though there is no optimal overlap according to the distance criterion. Examining the
discrepancy criterion, it can be confirmed that the proposed designs generate points
that are more uniformly distributed within the unit cube compared to designs in the
same category, such as Strauss designs, marked Strauss designs, and Connected Com-
ponents Interaction designs. The proposed designs are also better than conventional
Latin Hypercube Designs (LHD) and Maximin Latin Hypercube Designs in terms of
distance criteria. In two dimensions, they appear to be a good compromise between a

set of well-spread points in space and its projection on the margins.
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Figure 5.7: Box plots of quality criteria calculated for 80 designs with 50 points in 7
dimensions.

In three dimensions, the proposed designs and the Latin Hypercube Designs are
better than the other designs in terms of distance criteria. In three dimensions, they
visibly achieve a point distribution closer to a regular grid, ensuring good space cov-
erage. It is surprising that the proposed designs do not perform as well in terms of
discrepancy in three dimensions, especially compared to their performance in two di-
mensions. This may be explained by an inappropriate choice of interaction radii, which
is compensated by potential power, avoiding points close to each other according to
the usual distance. Thus, in three dimensions, the proposed designs generally have

the worst discrepancy, but they stand out as the best in terms of distance criteria.

5.6 Conclusion

The use of point processes with area interaction, the MCMC method, and the Metropolis-
Hastings algorithm with Voronoi tessellations allows for the construction of new nu-
merical designs specific to this process. This approach offers great flexibility, as one can
easily manipulate the distribution of the process via its representation to impose prop-
erties, such as optimal space filling and uniform distribution of points. Moreover, the
experimental design method, combined with the use of point processes with area inter-
action and the MCMC methodology, provides an interesting alternative to the classical
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statistical approach of working with independent realizations from the same distribu-
tion. The designs constructed in this work have been compared with those commonly
used in numerical experiments, and the results obtained are very satisfactory.

Finally, several perspectives can be envisaged, for example, it would be relevant to
identify the issues related to points inside the infinite regions of Voronoi tessellations
in a closed hypercube [87]. It would also be useful to find efficient numerical methods

for calculating hypervolume for the union of fixed-radius hyperspheres.
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General Conclusion

This thesis has thoroughly explored the application of stochastic processes to Com-
puter Experiment Design plans, with a particular focus on the use of marked point
processes and area-interaction point processes. In response to the challenges posed by
the increasing complexity of modern simulators, our research has proposed innova-
tive approaches to enhance the efficiency and accuracy of these experimental designs.
By combining mathematical rigor with simulation innovations, we have opened new
perspectives in the optimization of numerical simulations.

We demonstrated that integrating marked point processes with two marks, as well
as area-interaction point processes, offers significant advantages for optimizing the
distribution of points in the unit hypercube. These methods enable a better under-
standing of the complex interactions between experimental points, ensuring a more
homogeneous and comprehensive coverage of the experimental domain. The use of
the Metropolis-Hastings algorithm within the framework of Monte Carlo simulations
via Markov chains (MCMC) has been pivotal in generating optimal configurations of
experimental points. This allowed us to maximize the efficiency of numerical exper-
imental designs while minimizing model-related errors, thus ensuring reliable and
robust results that meet the requirements of contemporary simulations. The results
obtained indicate that the new digital experimental designs proposed in this thesis
meet the precision and reliability demands of complex simulators. In particular, de-
signs based on area-interaction point processes demonstrated an enhanced ability to
detect and manage irregularities, thereby providing more comprehensive and relevant
insights for analyzing the modeled physical phenomena.

This research represents a significant extension of previous work on numerical ex-
perimental designs, particularly through the innovative application of two-marked
point processes and area-interaction point processes. The contributions of this the-
sis provide valuable tools and methods for simulating complex processes, enabling a

104



GENERAL CONCLUSION

deeper understanding of the underlying dynamics of these systems. These method-
ological advances pave the way for new possibilities in various fields, including natu-
ral sciences, engineering, and economic and social studies, where precise and efficient
simulations are crucial for decision-making and innovation.

Future work could focus on exploring other types of stochastic processes, including
the development of a new type of point process [88] and the study of adding a third
mark to create a three-marked experimental design [89]. This approach would offer
a new dimension of marking, further enriching digital experimental designs and en-
abling better coverage of the experimental domain. Additionally, this new dimension
could refine the management of interactions between experimental points, thereby in-
creasing the accuracy of the obtained results. Another promising avenue would be to
apply these digital experimental designs to hyperparameter optimization in machine
learning models, a field where simulation efficiency and optimal resource manage-
ment are critical. Moreover, integrating these methods into more powerful computing
environments and validating their performance in practical scenarios could open new
perspectives for the evolution of numerical experimental designs, providing even more
robust solutions tailored to current challenges.

In conclusion, this thesis has not only deepened our understanding of stochastic
processes in the context of digital experimental designs but also laid the groundwork
for new perspectives in the optimization and management of complex simulators. The
approaches developed here establish a solid foundation for future research and poten-
tial applications in various scientific and industrial domains. These works thus pave
the way for innovations that could transform current practices in numerical simula-

tion, with significant impacts across a wide range of sectors.
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Appendix A

Python Code for the Results Presented
in Chapter 4

Optimality Criteria

Distance Criterion

def mindist (x):
n = x.shape[0] # Nombre de points dans x

w = x.shape[1] # Dimension de x
M = np.zeros ((n, n))
for i in range(m - 1):

for k in range(i + 1, n):
s =0
for j in range(w):
s += (x[i, j1 - x[k, jl) *x 2
M[i, k] = np.sqrt(s)
M[k, i] = np.sqrt(s)

for i in range(n):
M[i, i] = np.inf
y = np.min(np.min(M))

return y

Discrepancy Criterion

\
‘def dsc(x):

‘ n = x.shape[0] # Nombre de points dans x
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w = x.shape[1] # Dimension de x
sl =0
for i in range(n):
pl =1
for j in range(w):
pl *= (1 - x[i, j1) = (1 + x[i, jI)
sl += pl
s2 = 0
for i in range(n):
for j in range(n):
p2 =1
for k in range(w):
m = max(x[i, k], x[j, k1)
p2 *= (1 - m)
s2 += p2
y = (3 ** (-w)) + (1 / (n **x 2)) * 82 - (1 / (n * 2 **x (w
si

return y

1)) =

Coverage Criterion

def mdist (x):

n = x.shape[0] # Nombre de points dans x
w = x.shape[1] # Dimension de x

M = np.zeros((n, n))

for i in range(n - 1):

for k in range(i + 1, n):
s =0
for j in range (w):
s += (x[i, j1 - x[k, jl) *x 2
M[i, k] = np.sqrt(s)
M[k, i] = np.sqrt(s)
for i in range(mn):
M[i, il = np.inf
t = np.zeros(n)
for i in range(n):
t[i] = np.min(M[i, :1)
q = np.sum(t)
1l = q/ =n
lamda = 0
for i in range(n):

lamda += (t[i] - ql) =*x* 2
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| y = (1 / q1) * ((1 / n) x lamda) *x 0.5

‘ return y

R Criterion

def rap(X):

n = X.shape[0]

w = X.shape[1]

M = np.zeros((n, n))
for i in range(n - 1):

for k in range(i + 1, n):
s =0
for j in range (w):
s += (X[i, j1 - X[k, jl) *x 2

M[i, k] = np.sqrt(s)

M[k, i] = np.sqrt(s)
np.fill_diagonal (M, np.inf)
t = np.min(M, axis=1)
y = np.ptp(t) / np.min(t)

return y

Metropolis-Hasting Algorithm and exporting the Distri-

butions

import numpy as np
from scipy.integrate import quad

import pandas as pd

w=10 # dimention
r=0.05 # rayon d’interaction

# Definition des parametres du modele

n = 128 # nombre de points

eps = 0.07

R = 0.1 # rayon de la gaussienne de proposition

gll =0.01

gl2 = 0.01 # coefficient d’interaction pour les paires de

marque (1,2)
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g22 = 0.05 # coefficient d’interaction pour les paires de

marque (2,2)

bl = 0.9 #itensite du processus pour la marque 1
b2 = 1.5 #itensite du processus pour la marque 1
NMC = 1000
#marquesl
def mi1(X):

n = X.shape[0]

m = np.zeros(n)

XTX_inv = np.linalg.inv(np.matmul(X.T, X))
for i in range(n):
m[i] = np.matmul (np.matmul (X[i, :], XTX_inv), X[i, :]1.T)
return m
#marques?2
def distance(xl, x2):
return np.linalg.norm(xl-x2)
def density(x):
return np.exp(-(x)*x2/2) / (np.sqrt(2*np.pi))

def m2(X):
n = X.shape[0]
mus = np.zeros (n)

for i in range(n):
sum_distances = 0
for j in range(n):
if i 1= j:
dist = distance(X[i], X[j1)
integral, _ = quad(lambda t: density(t), 0, dist)
sum_distances += integral
mus [i] = sum_distances / (n-1)
return mus
def m11(X, ml,r, eps):
n = X.shape[0]
count = 0
for i in range(mn):
for j in range(i+l, n):
if np.linalg.norm(X[i] - X[j]) <= r and mi[i] <= eps and
mi[j] <= eps:
count += 1
return count
def m22(X, ml, eps,r):
n = X.shape[0]
count = 0

for i in range(n):

for j in range(i+l, n):
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if np.linalg.norm(X[i] - X[j]) <= r and mi[i] >= R and mi[
jl  >= R:
count += 1
return count
def m12(X, mi, m2, eps,r, R):
n = X.shape [0]
count = 0
for i in range(n):
for j in range(i+l, n):
if mi[i] <= eps and ml[j] <= eps and m2[i] >= R and m2[j
1 >=R:
dist = np.linalg.norm(X[i] - X[j1)
if dist <= r:
count += 1
return count
# Generation d’une configuration initiale de points aleatoires dans un
carre unite
# Create empty DataFrames to store values
df _a = pd.DataFrame (columns=[’Valeur’])
df_b = pd.DataFrame (columns=[’Valeur’])
df _c¢ = pd.DataFrame(columns=[’Valeur’])
df _d = pd.DataFrame (columns=[’Valeur’])
# Execute the code 20 times
# Simulation de NMC etapes
for _ in range(1):
X = np.random.rand(n, w)
for N in range (NMC):
print("Itera", _ + 1,N+1)
# choix d’un point au hasard
k = np.random.randint (n)

# creation d’une nouvelle configuration Y

y = np.random.rand(1l, w)
Y = np.copy(X)
Y[k] =y

# Calcul des valeurs de ml, m2, mll, m22 et ml2 pour la
configuration actuelle
ml_vals = mi1(X)

num_points_ml = len(np.where(ml_vals <= eps) [0])
m2_vals = m2(X)
num_points_m2 = len(np.where(m2_vals >= eps) [0])

mll_vals = m11(X, ml_vals, r,eps)
m22 (X, m2_vals, r,R)

ml12 (X, ml_vals, m2_vals,eps,r, R)

1

m22_vals

ml2_vals
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# Calcul des valeurs de ml, m2, mll, m22 et ml2 pour la nouvelle

configuration

ml_vals_new = ml(Y)
num_points_ml_new = len(np.where(ml_vals_new <= eps) [0])
m2_vals_new = m2(Y)
num_points_m2_new = len(np.where(m2_vals_new >= eps) [0])

mll_vals_new = ml11(Y, mi_vals, R,eps)
m22(Y, m2_vals_new,r, R)

m12(Y, ml_vals_new, m2_vals_new,eps,r, R)

m22_vals_new

ml2_vals_new
# calcul de la probabilite d’acceptation
by = bl**num_points_ml_new *b2**num_points_m2_new*xgllx*x*
mll_vals_new*gl2**ml12_vals_new*g22**m22_vals_new
bx = bl**num_points_ml*b2**num_points_m2*gll**mll_vals*xgl2x*x*
ml2_vals*g22**m22_vals
a = min(1, by / bx)

#print (a)
#mise a jour de la configuration
if a ==
X[k] =y

# Calcul de la valeur de a et b
a = mdist (X)
b = mindist (X)
c = dsc(X)
d=rap (X)
print (c)
# Store the results in DataFrames
# df_a = pd.concat([df_a, pd.DataFrame({’Valeur’: [al})],
ignore_index=True)
# df_b = pd.concat([df_b, pd.DataFrame({’Valeur’: [b]})],
ignore_index=True)
# df_c = pd.concat([df_c, pd.DataFrame({’Valeur’: [c]})],
ignore_index=True)
# df_d = pd.concat([df_d, pd.DataFrame ({’Valeur’: [d]l})],
ignore_index=True)
# Save the DataFrames to a single Excel file

#with pd.ExcelWriter (’output50_7d.xlsx’) as writer:

# df _a.to_excel(writer, sheet_name=’mdist’, index=False)
df _b.to_excel(writer, sheet_name=’mindist’, index=False)
df _c.to_excel(writer, sheet_name=’dsc’, index=False)
df _d.to_excel (writer, sheet_name=’R’, index=False)
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Python Code for the Results Presented
in Chapter 5

Results in 2 Dimensions

Libraries

import numpy as np

import matplotlib.pyplot as plt

from scipy.spatial import Voronoi, voronoi_plot_2d
import random

from matplotlib.patches import Polygon

import math

from matplotlib.path import Path

from matplotlib.patches import Circle

from shapely.geometry import Point

from shapely.ops import cascaded_union, unary_union

from matplotlib.path import Path

Voronoi Functions

def voronoi_finite_polygons_2d(vor, radius=None):
# Function implementation goes here
if vor.points.shape[1] != 2:

raise ValueError ("Requires 2D input")

new_regions = []

new_vertices = vor.vertices.tolist ()
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center = vor.points.mean(axis=0)
if radius is None:

radius = vor.points.ptp() .max() * 2

# Construct a map containing all ridges for a given point

all_ridges = {}

):
all_ridges.setdefault(pl, []).append((p2, vi, v2))
all_ridges.setdefault (p2, []).append((pl, vi, v2))

# Reconstruct infinite regions
for pl, region in enumerate(vor.point_region):

vertices = vor.regions[region]

if all(v >= 0 for v in vertices):
# finite region
new_regions.append(vertices)

continue

# reconstruct a non-finite region
ridges = all_ridges|[pl]

new_region = [v for v in vertices if v >= 0]

for p2, vl, v2 in ridges:
if v2 < 0:
vli, v2 = v2, vl
if v1 >= O:
# finite ridge: already in the region

continue

Compute the missing endpoint of an infinite ridge

vor .points[p2] - vor.points[pl] # tangent

~

= np.linalg.norm(t)
np.array ([-t[1], t[0]]) # normal

B o o
]

midpoint = vor.points[[pl, p2]].mean(axis=0)
direction = np.sign(np.dot(midpoint - center, n)) * n

far_point = vor.vertices[v2] + direction * radius

new_region.append(len(new_vertices))

new_vertices.append(far_point.tolist ())

# sort region counterclockwise

113

for (p1l, p2), (vl, v2) in zip(vor.ridge_points, vor.ridge_vertices




APPENDIX B. PYTHON CODE FOR THE RESULTS PRESENTED IN CHAPTER 5

vs = np.asarray([new_vertices[v] for v in new_region])
¢ = vs.mean(axis=0)
angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0])

new_region = np.array(new_region) [np.argsort(angles)]

# finish

new_regions.append(new_region.tolist ())

return new_regions, np.asarray(new_vertices)

def voronoi_function(X):
# Create Voronoi tessellation and plot it

vor = Voronoi (X)

# Apply the voronoi_finite_polygons_2d function
new_regions, new_vertices = voronoi_finite_polygons_2d(vor)
# Iterate over each region and add a point
new_points = []
for region in new_regions:
polygon = [new_vertices[i] for i in region]
path = Path(polygon)
while True:
random_point = np.random.uniform(0, 1, 2)
if path.contains_point (random_point):
new_points.append(random_point.tolist())
break
# Convert the new points to a NumPy array
new_points = np.array(new_points)
# Add the new points to the original set of points
X = np.vstack ((X, new_points))

# Randomly select and remove one of two given points with 50%

probability
while len(X) > n:
indices = np.arange(len (X))
chosen_points = set ()
i = np.random.choice(indices)

if i in chosen_points:
continue

chosen_points.add (i)

if i >= len(X):
continue

distances = np.linalg.norm(X - X[i], axis=1)

distances [i] = np.inf
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min_distance_index = np.argmin(distances)
indices = np.delete(indices, min_distance_index)

X = np.delete(X, min_distance_index, axis=0)

return X

Area Interaction Functions

def calculate_overlap(points , radius):
circles = [Point(point) .buffer(radius) for point in points]
union = unary_union(circles)
total_area = union.area

return total_area

Metropolis-Hasting Algorithm and plot of the Initial and Final configurations

n = 25 #Number of points
N = 10000 #Number of iterations of MH
r = 0.095 #Radius

gamma =1.5
X = np.random.uniform(size=(n, 2))
X_intial = X.copy ()
X_final = X.copy ()
# Plot the initial configuration
figl, axl = plt.subplots()
axl.scatter (X[:, 0], X[:, 1], color=’blue’, label=’Initial
Configuration?’)
# Draw circles on the initial points
for point in X:
circle = Circle((point[0], point[1]), r, color=’red’, fill=False)
axl.add_patch(circle)
axl.set_aspect(’equal’)
axl.set_title(’Initial Configuration?’)
# Set x and y limits
axl.set_x1im([-0.01, 1.01])
axl.set_ylim([-0.01, 1.01])
# Calculate and print the initial area
area = calculate_overlap(X, r)
print ("The initial area is:", area)
for iteration in range(N):
X_intial = X
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area = calculate_overlap(X, r)
#print ("Iteration:", iteration + 1)
# Perform the voronoi_function

X = voronoi_function (X)

# Calculate and print the final area
areal = calculate_overlap (X, r)

if gamma >1:

# Acceptance probability

a = min(1l, gamma ** (areal - area))
# print ("The probability of acceptance is:", a)
else:
a = min(1, gamma ** (area - areal))
if a == 1:

#print ("We accept the final Configuration")
X_final = X
# print ("the accepeted area is:",areal)
else:
#print ("Playing Daft Punk: ONE MORE TIME")
X_final = X_intial

# print ("the accepeted area is :",area)
#print (’al=’,areal,’al0=’,area)
X = X_final
area_final = calculate_overlap(X,r)
print ("The final area is:", area_final)

# Plot the final configuration

fig2, ax2 = plt.subplots ()

ax2.scatter (X[:, 0], X[:, 1], color=’blue’, label=’Final Configuration
)

# Draw circles on the final points

for point in X:
circle = Circle((point[0], point[1]), r, color=’red’, fill=False)
ax2.add_patch(circle)

ax2.set_aspect(’equal’)

ax2.set_title(’Final Configuration?’)

# Set x and y limits

ax2.set_x1lim([-0.01, 1.01])

ax2.set_ylim([-0.01, 1.01])

plt.show ()

B.0.0.1 Box plot of mdist

import pandas as pd
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import matplotlib.pyplot as plt
# List of paths for the Excel files to import
file_paths = [r’C:\Users\StarTech\Desktop\mdist2dim_25p.xlsx’,
r>C:\Users\StarTech\Desktop\mdist2dim_50p.xlsx’,
r’C:\Users\StarTech\Desktop\mdist2dim_100p.x1lsx’]
# Create a list to store the data from the Excel files
data = []
# Import the Excel data into the ’data’ list
for path in file_paths:
data.append(pd.read_excel (path))
# Create a figure and an axis for the box plot
fig, ax = plt.subplots ()
# Plot a box plot for each dataset
for i, dataset in enumerate (data):
ax.boxplot (dataset.values, positions=[i+1])
# Set the x-axis labels
ax.set_xticks(range(l, len(file_paths)+1))
ax.set_xticklabels ([’25 points’, ’50 points’, 2100 points’], rotation
=45)
# Add a title to the graph
plt.title(’Mdist’)
# Display the graph
plt.show ()

General functions of the 3D Algorithm

Libraries

import numpy as np

import matplotlib.pyplot as plt
from scipy.spatial import Voronoi
import random

import pandas as pd

Voronoi Function

def voronoi_function(points):
vor = Voronoi(points)
infinite_regions = [region for region in vor.regions if -1 in

region]

bounded_regions = []
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for region in infinite_regions:

region_points = vor.vertices[region]
min_bound = np.min(region_points, axis=0)
max_bound = np.max(region_points, axis=0)

bounded_regions.append ((min_bound, max_bound))
new_points = []
for bounds in bounded_regions:
min_bound, max_bound = bounds
random_point = np.random.uniform(low=min_bound,
)

new_points.append(random_point)

-1 not in region]
for region in finite_regions:
region_points = vor.vertices[region]
min_bound = np.min(region_points, axis=0)
max_bound = np.max(region_points, axis=0)
random_point = np.random.uniform(low=min_bound,
)
new_points.append (random_point)
all_points = np.vstack((points, new_points))
X = np.clip(all_points, 0, 1)
while len(X) > n:

indices = np.arange(len (X))
chosen_points = set ()
i = np.random.choice(indices)

if i in chosen_points:

continue
chosen_points.add (i)
if i >= len(X):

continue
distances = np.linalg.norm(X - X[i], axis=1)
distances [i] = np.inf
min_distance_index = np.argmin(distances)
indices = np.delete(indices, min_distance_index)
X = np.delete(X, min_distance_index, axis=0)

return X

high=max_bound

finite_regions = [region for region in vor.regions if region and

high=max_bound

Calculating Volume Interaction

‘def calculate_union_volume (points, radius, num_samples=1000000) :

‘ min_point = np.min(points, axis=0) - radius
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max_point = np.max(points, axis=0) + radius

random_points = np.random.uniform(min_point, max_point, size=(
num_samples, 3))

distances = np.linalg.norm(random_points[:, np.newaxis] - points,
axis=-1)

total_volume = np.sum(np.any(distances <= radius, axis=-1))

bounding_box_volume = np.prod(max_point - min_point)

volume_fraction = total_volume / num_samples

total_volume = volume_fraction * bounding_box_volume

return total_volume

Metropolis-Hasting Algorithm and exporting the Distributions

n = 25
N = 1000
r = 0.1

gamma =2

# Create empty DataFrames to store values
df _a pd.DataFrame (columns=[’Value’])
df_b = pd.DataFrame(columns=[’Value’])

1

df _c¢ = pd.DataFrame (columns=[’Value’])
# Execute the code 20 times
’?oresults_a = []
results_b = []
results_c= []’?’
for _ in range (100):
#Generating initial configuration in the unit cube
X = np.random.uniform(size=(n, 3))
X_initial = X.copy ()
X_final = X.copy ()
area_intial = calculate_union_volume (X, r)
print ("The initial area is:", area_intial)
# Simulation of NMC steps
for iteration in range (N):
X_intial = X
area = calculate_union_volume(X, r)
print("Iteration:", iteration + 1)
# Perform the voronoi_function
X = voronoi_function (X)
# Calculate and print the final area

areal = calculate_union_volume (X, r)

if gamma >1:

119




APPENDIX B. PYTHON CODE FOR THE RESULTS PRESENTED IN CHAPTER 5

# Acceptance probability

a = min(1l, gamma ** (areal - area))
# print ("The probability of acceptance is:", a)
else:

a = min(1, gamma ** (area - areal))
if a == 1:

#print ("We accept the final Configuration")
X_final = X
area = areal
# print ("the accepeted area is:",areal)
else:
#print ("Playing Daft Punk: ONE MORE TIME")
X_final = X_intial

:",area)

# print ("the accepeted area is
#print (’al=’,areal,’al0=’,area)

X = X_final
area_final = calculate_union_volume(X,r)
print ("The final area is:", area_final)

# Calculate the values of a,b and c

a = mdist (X)
b = mindist (X)
¢ = dsc(X)

df _a = pd.concat([df_a, pd.DataFrame({’Value’: [al})],
ignore_index=True)
df _b = pd.concat([df_b, pd.DataFrame ({’Value’: [b]l})],
ignore_index=True)
df _c¢ = pd.concat([df_c, pd.DataFrame({’Value’: [cI})],
ignore_index=True)
# Export the DataFrames to the same Excel file
’mdist3dim_25p.xlsx’

file_name_a

file_name_b = ’mindist3dim_25p.xlsx’

file_name_c ’disc3dim_25p.x1sx’
df _a.to_excel(file_name_a, index=False)
df _b.to_excel(file_name_b, index=False)
df _c.to_excel(file_name_c, index=False)
print (f ’Result of "a" Exported to {file_name_al}’)
print (f ’Result of "b" Exported to {file_name_b}’)
print (f ’Result of "c" Exported to {file_name_c}’)
results_a.append(a)
results_b.append (b)
results_c.append(c)

#Creat a DataFrame for each result

df _a = pd.DataFrame ({’Value’: results_a})

df _b = pd.DataFrame ({’Value’: results_bl})
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df _c¢ = pd.DataFrame ({’Value’: results_c})
# Export DataFrames to separated Excel files
file_name_a = ’mdist7dim_35p.xlsx’

file_name_b = ’mindist7dim_35p.xlsx’

file_name_c ’disc7dim_35p .xlsx’

df _a.to_excel(file_name_a, index=False)
df _b.to_excel(file_name_b, index=False)
df _b.to_excel(file_name_c, index=False)

print (f ’Result of "a" Exported to {file_name_al}’)
print (f ’Result of "b" Exported to {file_name_bl}’)

print (f’Result of "b" Exported to {file_name_c}’)
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List of Symbols and Abbreviations

A : A sigma-algebra on X'.

AA; : Borel sets.

a(.,.) : Probability of acceptance of change.

o : Normalization constant.

B : Vector of unknown coefficients, the intensity of the process.
B : Vector of estimated coefficients.

B : Borel set.

B (xi,Z_j) : Open ball.

B, : Ball centered at the origin.

B(n,p) : Binomial distribution with parameters n and p.
Coo(.,.) : Mathematical covariance.

Cov : Coverage.

C(.),c() : Contraction coefficient.

Cr : Combination of n points chosen from m points.
5(.,.) : Normal density distance.

Oy (1) : Dirac measure at x.

o? : Variance of residuals.

4% (Y) : Variance function of prediction.
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d (Y)
d

d/

(ImX)*

jn (xlerI te lxi’l)

: Prediction error function.

: Metric on the configuration space.

: Metric on the mark space.

: Neighborhood.

: Partial derivatives.

: Discrepancy.

: Residual vector.

: Mathematical expectation.

: Family of locally finite configurations.
: The response law at x.

: Fisher value.

: Tabulated value.

: Interaction coefficients.

: Interaction potentials.

: Inverse radical function.

: Identity matrix.

: Vector subspace spanned by the columns of X.
: Orthogonal subspace.

: Family of discrete distributions.

: Mark index.

: Mark space.

: Markov transition kernel.

: Markov operator.

: Intensity of a homogeneous Poisson process.
: Papangelou conditional intensity.

: Mean sum of squares.
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Mindist : Distance criterion.

u(.) : Mean of normal density distances.

m : Lebesgue measure.

my : Number of points with mark k.

Mg : Number of point pairs of type (I, k) or (k,1).

n : Number of experiments or number of points in a configuration.
un : Number of visits to A.

IN? : k-dimensional natural number space.

N : Family of all locally finite configurations.

N : Set of locally finite configurations with simple points.

NS : Sigma-algebra.

Nx (A) : Number of points in A as a discrete random variable.

n(x) : Number of points in the configuration x.

Q) : Universe.

P(X,.) : Probability measure.

Py : Metropolis-Hastings transition kernel.

P(x,y) : Transition kernel of the algorithm.

T : Law of a random process.

7 (f) The expected value of the function f under the distribution pi.
Q : Proposal transition kernel.

: Coverage ratio.

R¥ : k-dimensional Euclidean space.

r : Radius.

r(x,y) : Metropolis-Hastings ratio.

SST : Total sum of squares.

SSR : Sum of squares due to regression.
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20

(Q, A P)

: Sum of squares due to error.

: Number of related point pairs in the configuration x.
: Hitting time of set A.

: Union of balls centered at x; with radius r.

: Borel measure.

: Mathematical variance.

: Variable or factor.

: Configuration or design matrix.

: Dispersion matrix.

: Set of countable configurations with 7 points.
: Sequence of discrete random variables.

: Response or quantity of interest.

: Prediction error at point x;.

: Origin variable.

: Mean of high and low levels.

: Probabilistic space.

: Binary neighborhood relation.
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