RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Saad DAHLAB BLIDA 1 Faculté de Technologie

Département Génie des Procédés

En vue de l'obtention du diplôme de

MASTER EN GENIE DES PROCEDES

Spécialité : Génie de l'environnement

Intitulé du mémoire

Modélisation neuronal de l'adsorption d'un système mono et multi composants

Présentée par : Encadré par :

CHALBOUBA Hayat Dr. IBRIR Abdellah

TALEB Serine Cherifa

Promotion 2025

REMERCIMENT

Tout d'abord, nous remercions Dieu Tout-Puissant qui nous a accordé la force, la patience, le courage, la volonté et la santé, sans lesquels notre travail n'aurait jamais pu voir le jour.

Le travail de ce mémoire s'inscrit dans le cadre d'un projet de fin d'études réalisé à l'université SAAD DAHLAB, BLIDA.

Nous tenons à exprimer nos sincères remerciements à Monsieur IBRIR ABDELLAL, notre directeur de mémoire. Qu'il trouve ici l'expression de notre profonde gratitude et de notre respect pour ses conseils précieux, sa disponibilité constante et son accompagnement tout au long de ce travail. Sa confiance, ses encouragements et ses orientations ont été pour nous d'une aide inestimable.

Nous remercions également les membres du jury, Monsieur le Président ainsi que les examinateurs, pour le temps qu'ils ont consacré à évaluer notre travail et pour leurs remarques constructives.

Nos remerciements vont aussi à tout le personnel du département de génie des procédés : enseignants, ingénieurs et techniciens. Une mention particulière à Monsieur BOURAS et au Dr BADIS pour leur soutien et leur bienveillance.

Enfin, nous adressons nos remerciements les plus sincères à toutes les personnes, de près ou de loin, qui ont contribué à la réalisation de ce mémoire.

إهداء:

إلى أمي الحبيبة سليمة لا يمكن لأي إهداء، يا أمي الغالية، أن يفيكِ حقكِ أو يُعبّر عن عمق مشاعري تجاهكِ. كنتِ النور الذي أضاء دربي، و اليد الحنونة التي أمسكت بي في كل لحظة ضعف. دعواتكِ كانت سلاحي في وجه الصعاب، وابتسامتكِ كانت قوتي في مواصلة الطريق. شكرًا لأنكِ كنتِ دائمًا هناك، قلبًا يحتويني، وحضنًا يمنحنى الأمان.

إلى والدي الحبيب أحمد يا من علّمتني كيف أواجه الحياة بثقة وصبر، كيف أكون إنسانة قوية رغم العثرات. كنت دائمًا ذلك الجبل الذي أستند عليه، والداعم الأول لكل أحلامي. لن تكفي الكلمات لأقول لك شكرًا، لكنني أضع بين يدلك الجبل الذي أستند عليه ثمرة سنواتٍ من الكفاح، عربون حبٍ وامتنانٍ لا ينتهي.

إلى إخوتي الأحبّاء:

إلى عبد الرحمان يا سندي وظهري، يا من كنتَ دائمًا أول من يسمع، وأول من يمد يده إن احتجت شيئًا. لو لا دعمك النفسي والمعنوى، لما وقفتُ هنا اليوم. شكرًا لأنك لم تبخل على بحبك وثقتك.

إلى خليل يا بسمة المنزل، يا فرحنا الدائم، وروحنا المرحة. وجودك وحده يضيء المكان، وضحكتك كانت دائمًا شفاءً لقلبي في أشد اللحظات تعبًا. دمت لنا بهجة لا تنطفئ.

إلى صديقتي الغالية حياة أختي التي لم تلدها أمي، ورفيقة كل التفاصيل، وصوت الأمان حين تعصف بي الحياة. كنتِ النور في عز الظلمة، والدفء في كل بردٍ شعرت به. وجودك بجانبي كان نعمة، وصبرك عليّ كان حبًا خالصًا لا يُقدّر بثمن. أحبكِ أكثر مما تظنين، وأدين لك بالكثير.

إلى نجاة ربما كانت خطواتكِ بعيدة، لكن أثركِ قريب في القلب كنتِ الحضور الخفيف الذي يحمل دفنًا، والرفقة التي تبقى حقيقية وصادقة شكرًا الأنكِ كنتِ جزءًا من هذه الرحلة، ولأنكِ كنتِ دائمًا "نجاة" في وقت الحاجة إلى أرواح طلبة غزة الذين ارتقوا شهداء، إلى أولئك الذين تُسرت أقلامهم قبل أن تنضج أحلامهم، إلى العقول اليافعة التي كانت تحلم بالعلم والنور، فرحلوا تحت ركام الظلم والعدوان، سلامٌ عليكم في الخالدين لم تكن الحرب عادلة مع دفاتر هم، والا كانت الرحمة حاضرة حين تساقطت الأرواح التي عشقت مقاعد الدراسة، لكن ذكر اكم ياقية، تعمير في ضمائه نا أن طلب العلم مقاه مة، وأن الشهادة في سبيله أسم، ما يُعدى الوطن لكن ذكر اكم ياقية، تعمير في ضمائه نا أن طلب العلم مقاه مة، وأن الشهادة في سبيله أسم، ما يُعدى الوطن

لكن ذكر اكم باقية، تهمس في ضمائرنا أن طّلب العلم مقّاومة، وأن الشهادة في سبيله أسمى ما يُهدى للوطّن رحمكم الله، يا شهداء الحبر والدفتر، وألحقنا بكم على ثباتٍ وصدقٍ ونيّة طاهرة.

إليكِ أكتب هذه الكلمات لأنكِ وحدكِ تعلمين كم كان الطريق صعبًا، وكم مرة تظاهرْتِ بالقوة وأنتِ منهكة. منّي... إليّ :

أفتخر بكِ، لأنكِ لم تستسلمي، ولأنكِ كلما سقطتِ، قمتِ بطريقة أجمل أحبكِ لأنكِ تحاولين رغم التعب، وتُكملين رغم الخذلان، وتُضيئين رغم الظلمة اليكِ يا من حملتِ في قلبكِ الحلم، وفي عينيكِ الشغف، وفي خطواتكِ القوة رغم كل العثرات لا أحد يعلم كم مرة واصلتِ بصمت، وكم مرة جمعتِ شتات نفسكِ لتنهضي من جديد هذه اللحظة، هذه المرحلة، هي بداية فصل جديد تكتبينه بيديكِ، وتملئينه بنجاحات تليق بكِ تذكري دائمًا: أنتِ لا تشبهين أحدًا، وأنتِ كافية كما أنتِ.

طالب سرين شريفة

Dédicace

Louange à Dieu, Seigneur des mondes, Lui qui m'a appris ce que j'ignorais et m'a guidée avec patience et lumière.

Je dédie ce travail, fruit de mes efforts et de mes veilles, avec amour et gratitude :

À ma mère, qui m'a portée deux fois : une fois dans son ventre, et mille fois dans ses prières , Que Dieu te comble de santé et de sérénité.

À mon père, qui m'a tendu la main avant même que je la demande, et m'a légué sa confiance comme un précieux héritage. Que Dieu te protège.

À Monsieur Hussein Tobbine, mon enseignant de l'enfance, première lumière sur mon chemin. Merci pour la foi que vous avez placée en l'enfant que j'étais.

À Imane et Chaïma, mes sœurs de cœur, mes piliers dans le silence et le tumulte. Vous avez été là, même quand je ne savais plus avancer. Merci infiniment.

À mes petits frères et sœurs : Hiba El-Rahman, Kaouthar et Mohamed, lumières de mes jours, éclats de mes nuits. Que Dieu vous garde dans Sa douceur.

À mon oncle, souffle d'aventure et de curiosité, merci pour les horizons que tu as ouverts devant moi.

À Syrine, fidèle amie depuis les bancs du collège, voix silencieuse mais forte dans mes jours gris. Merci pour ta constance.

À Ndajat, compagne d'université, merci pour ta présence qui a allégé la rudesse du chemin.

Et à celui qui fut là, au détour d'un moment, laissant une empreinte silencieuse... À Nibrassi, commencement imprévu, qui m'a permis de me voir un instant hors des chaînes

النمذجة العصبية لامتصاص نظام مكون من مكون واحد ومكون متعدد

الملخص:

يهدف هذا العمل إلى نمذجة ظاهرة الامتزاز الأحادي والمتعدد المكونات. وتسعى هذه الدراسة إلى تطوير نموذج عصبي قادر على التنبؤ بالكميات الممتصة لمزيج ثلاثي يتكون من الأزرق الحمضي 92، الأخضر المباشر 6، والأحمر المباشر 31، على المادة الماصة المصنّعة بتقنية النانو البوليسرية الحوراء .(GPN) يعتمد النموذج المقترح على تطوير برنامج باستخدام «MATLAB».

تُظهر النتائج أن الشبكة العصبية الثابتة المحسنة (OSNN) تتميز ببنية مكونة من (3-4-11-9)، تتضمن 9 خلايا عصبية في طبقة الإدخال، _خلية عصبية في الطبقة المحفية الثانية، و 3 خلايا عصبية في طبقة الإخراج. وقد تمكن النموذج العصبي القائم عصبية في الطبقة المخفية الثانية، و 3 خلايا عصبية في طبقة الإخراج. وقد تمكن النموذج العصبي القائم على خوارزمية RNAO من إعادة إنتاج البيانات التجريبية المستخلصة من الأدبيات بدقة عالية، حيث بلغ متوسط مربع الخطأ (_)=(MSE) ومعامل الارتباط()= R².

تؤكد هذه النتائج فعالية النموذج العصبي المطوَّر في محاكاة سلوك الامتزاز بدقة عالية.

الكلمات المفتاحية: الامتزاز ؛ نموذج عصبي؛ النمذجة؛ برنامج ®MATLAB

Neural modeling of the adsorption of a single and multi-component system *Abstract* :

This work seeks to simulate the phenomenon of single and multi-component adsorption. The study endeavors to build a neural model capable of estimating the adsorbed amounts of a ternary dye mixture consisting of acid blue 92, direct green 6, and direct red 31 onto the adsorbent material synthesized using Gemini Polymeric Nanoarchitecture (GPN). The proposed model is based on the development of a program using the MATLAB® environment.

The results indicate that the Optimized Static Neural Network (OSNN) is characterized by an architecture of (--) comprising $_$ neurons in the input layer, $_$ neurons in the first hidden layer, $_$ neurons in the second hidden layer, and $_$ neurons in the output layer. The neural model based on the RNAO algorithm successfully reproduced the experimental data obtained from the literature with high precision, achieving a mean square error (MSE) = $_$ and a correlation coefficient $R^2 = _$.

These outcomes confirm the efficiency and reliability of the developed neural model in accurately simulating adsorption behavior.

Key words: Adsorption; Neural model; Modeling; MATLAB® program.

Modélisation neuronal de l'adsorption d'un système mono et multi composants. <u>Résumé :</u>

Ce travail vise à modéliser le phénomène d'adsorption mono- et multi-composants. L'étude s'attache à développer un modèle neuronal capable d'anticiper les quantités adsorbées d'un mélange ternaire composé du bleu acide 92, du vert direct 6 et du rouge direct 31, sur un matériau adsorbant élaboré par l'architecture nanopolymère Gemini (GPN). Le modèle proposé repose sur le développement d'un programme dans l'environnement MATLAB [®].

Les résultats révèlent que le Réseau Neuronal Statique Optimisé (OSNN) présente une architecture de (--) comprenant _ neurones dans la couche d'entrée, _ neurones dans la première couche cachée, _ *neurones* dans la deuxième couche cachée et _ neurone(s) dans la couche de sortie. Le modèle neuronal basé sur l'algorithme RNAO a réussi à reproduire fidèlement les données expérimentales issues de la littérature avec une grande exactitude, atteignant une erreur quadratique moyenne (MSE) de _ et un coefficient de corrélation $R^2 =$ _.

Ces résultats confirment la performance et la fiabilité du modèle neuronal développé pour simuler le comportement d'adsorption avec une grande précision.

Mots Clés: Adsorption; Modèle neuronale; Modélisation; Programme MATLAB.

Sommaire:

Sommaire	
Liste d'abriviasion	
Manage datases	
Nomenclature	
Liste des figures	
Liste des tableaux	
Introduction générale	1
CHAPITRE I : PRINCIPES GENERAUX SUR L'ADSORPTION I	TIEC
COLORANTS	or LES
I.1. Introduction	2
III Indoddolloii	2
I.2. Définition de l'adsorption :	2
I.3. Types d'adsorption	3
I.3.1. Adsorption physique	3
I.3.2. Adsorption chimique	3
I.4. Mécanismes d'adsorption	4
I.5. Facteurs influençant le phénomène d'adsorption	4
I.6. Les type d'adsorbants	5
I.6.1. Charbon actif	5
I.6.2. Gels de silice	6
I.6.3. Les polymères	6
I.6.4. Adsorbant organique	6
I.6.5. Adsorbants minéraux	7
I.7. Les isothermes d'adsorption (modèles d'adsorption)	7
I.7.1. Classification des isothermes d'adsorption	7
I.8. Modélisation des isothermes d'adsorption	8
I.8.1. L'isotherme de Langmuir	8

I.8.2. Le modèle de Freundlich	9
I.8.8. Isotherme BET	9
I.9. Cinétique d'adsorption	10
I.9.1.Modèle de la cinétique du pseudo premier ordre	10
I.9.2. Modèle du cinétique pseudo-deuxième ordre	10
I.10. Systèmes d'adsorption	10
I.10.1. Adsorption statique monocompsant	10
I.10.2. Adsorption statique multicomposants	11
I.11. Les colorants	11
I.11.1. Classification des colorants	11
I.11.1.1. Classification technologique	1
I.11.1.2. Classification technique	12
I.11.1.3. Classification chimique	12
I.11.1.4. Classification tinctoriale	12
I.11.2. L'utilisation des colorants	13
I.11.3. La toxicité des colorants	13
I.11.4. Colorants textiles, Environnement et santé	14
CHAPITRE 2 : METHODOLOGIE ET RESULTATS DE LA MODEL	ISATION
NEURONALE DE L'ADSORPTION MONO ET MULTI COMPOS	SANTE
II.1 – Modélisation de l'adsorption des colorants à l'aide des réseaux de	15
neurones artificiels (RNA)	
II.1.1. Base de données	15
II.1.2. Choix des entrées et des sorties	16
II.1.3. Préparation de la base de données	16
II.1.4. Résultats et sensibilité	17
II.1.5. Normalisation des données	17
II.1.6. Dé-normalisation des données	17

II.2. Etude statistiques des paramètres influençant des concentrations des	21
colorants	
II.2.1 Choix des paramètres de RNA	22
II.2.2 Concept du réseau de neurones de type feedforward (MLP)	22
II.3 – Résultats et discussion	29
II.3.2 Interprétation des résultats	30
Conclusion	37
Partie bibiographique	
Annex	

ABREVIATIONS

AC	charbons activés
ADN	Acide Désoxyribonucléique
ARN	Acide Ribonucléique
C.I	l'index des couleurs
рН	Potentiel Hydrogène
BET	Brunauer–Emmett–Teller
d	fonction du diamètre des pores
-ОН	Groupe hydroxyle
-NH ₂ ,	Groupe amine (ou amino)
-СООН	Groupe carboxyle
Н	Hydrogène
О	Oxygène
CO ₂ ,	Dioxyde de carbone
ZnCl ₂	Chlorure de zinc
HCl	Acide chlorhydrique
-OH	Groupe hydroxyle
GPN	La Nano Architecture De Polymère Gemini
RNA	Le Réseau De Neurone Artificiel
λ_{maxi}	Les Longueurs D'ondes Constantes Pour Chaque Composé.
M	La Masse Moléculaire De Sel Utilisé.
[Colorant]	La Concentration Des Colorants.
m	La Masse D'adsorbant.
t	Le Temps D'adsorption.
q _e	Quantité Adsorbée De Premier Colorant
STD	L'écart Type Ou Bien Standard Déviation
FFNN	Le Réseau De Neurones De Type Feedforward
RN	Le Réseau De Neurone
MLP	Concept Du Réseau De Neurones De Type Feedforward
MSE	L'erreur Quadratique Moyenne
RMSE	La Racine De L'Erreur Quadratique Moyenne
NRMSE	L'Erreur Quadratique Moyenne Normalisée
MAE	L'Erreur Moyenne Absolue
MAPE	L'Erreur Moyenne Absolue En Pourcentage

ERA	L'Erreur Relative Absolue
R	Le Coefficient De Corrélation
\mathbb{R}^2	Le Coefficient De Détermination
RNAo	Résultats Des Paramètres Statistiques Du Modèle

Nomenclature

Burn-off	Perte de masse lors de l'activation	(%)
masse	La masse initial.	(g)
masse	La masse final.	(g)
final		
Q	quantité d'adsorbat par unité de masse de l'adsorbant à l'équilibre	(mg/g).
Qm	capacité d'adsorption maximale	(mg/g).
Ce	concentration à l'équilibre	(mg/1).
В	constante relative à l'énergie d'adsorption.	(-)
Qe	la quantité de soluté adsorbée à l'équilibre	(mg/g ou mol/g).
Ce	la concentration du soluté en solution à l'équilibre	(mg/L mol/l).
K	la constante indicative de la capacité d'adsorption.	(-)
q _e	quantité d'ions métalliques adsorbés	(mg/g).
Ce	concentration du soluté à l'équilibre	(mg/L).
Rg	constante universelle des gaz parfaits	$(J \cdot mol^{-1} \cdot K^{-1}).$
T	température absolue	(K).
b _T	constante liée à l'énergie d'adsorption	$(J \cdot mol^{-1} \cdot g \cdot mg^{-1}).$
K _T	constante d'équilibre	$(L \cdot mg^{-1}).$
ε	le potentiel de Polanyi	(-)
R		(-)
α	représente le taux initial d'adsorption	mg.g-1.min ⁻¹
β	une constante liée à l'énergie d'adsorption	(mol²/kJ²)
q _e	quantité adsorbée à l'équilibre	(mg/g)

q _{max}	capacité maximale d'adsorption	(mg/g)
Ce	concentration à l'équilibre	(mg/L)
K	constante d'équilibre	(L/mg)
t	paramètre d'hétérogénéité de la surface	(-)
Qe	la quantité adsorbée à l'équilibre	(en mg/g)
Qm	la quantité adsorbée à saturation (capacité d'une monocouche)	(en mg/g)
Ce	la concentration du soluté à l'équilibre	(en mg/L)
Q(t)	la quantité de soluté adsorbée au temps t,	(-)
k	la constante cinétique	(-)
n	la constante qui tient compte de l'intensité d'adsorption	

LISTE DES TABLEAUX

Tableaux	Page
Tableau I.1: Comparaison entre l'adsorption physique et l'adsorbtion chimique	4
Tableau II.1. Répartition de la base de données d'entrée.	15
Tableau II.2. Répartition de la base de données de sortie.	15
Tableau II.3 : Description statistique de l'ensemble des données.	18
Tableau II.4 : Structure du RNA optimisé	21
Tableau II.5 : Modèle de réseau de neurones établi {(Couche entrée – couche cachée)}	23
Tableau II.6 : Modèle de réseau de neurones établi {(Couche cachée 1 – couche cachée 2)}	24
Tableau II.7 : Modèle de réseau de neurones établi {[Couche cachée 2 – couche sortie]}.	26
Tableau II.8 : Résultats des paramètres statistiques du modèle 1 RNAo développé dans ce travail.	31
Tableau II.9 : Résultats des paramètres statistiques du modèle 2 RNAo développé dans ce	
travail.	32
Tableau II.10: Résultats des paramètres statistiques du modèle 3 RNAo développé dans ce	
travail.	33

LISTE DES FIGURES

Figures	Page
Figure I.1: Représentation du phénomène d'adsorption.	3
Figure I.2: Représentation schématique de l'adsorption physique et chimique.	3
Figure I.3 : Classes des isothemes d'après Gilles et Coll.	8
Figure II.1 : Répartition des impacts relatifs des variables d'entrée dans le modèle neuronal.	16
Figure II.2 : Organigramme de la méthodologie de calcul du RNA.	17
Figure II.3 : Analyse de corrélation des données d'entrée pour les modèles prédictifs.	20
Figure II.4: la différence en termes d'erreur pour les nombres de neurones dans chaque couche cachée.	22
Figure II.5 : Schéma du Réseau de neurones artificiels optimise.	23
Figure II.6 : Courbe de régression linéaire de la quantité adsorbée 1 calculée par le RNA optimisé avec la quantité adsorbée 1 expérimentale pour la phase globale.	27
Figure II.7 : Courbe de régression linéaire de la quantité adsorbée 2 calculée par le RNA optimisé avec la quantité adsorbée 2 expérimentale pour la phase globale.	28
Figure II.8 : Courbe de régression linéaire de la quantité adsorbée 3 calculée par le RNA optimisé avec la quantité adsorbée 3 expérimentale pour la phase globale.	29
Figure II.9: L'interface graphique du modèle RNAo.	33

INTRODUCTION GENERAL

L'adsorption est un phénomène physique et chimique fondamental qui joue un rôle crucial dans de nombreux processus industriels et environnementaux, tels que le traitement des eaux usées, la catalyse hétérogène et la purification des substances chimiques. Ce phénomène implique l'accumulation de molécules, d'atomes ou d'ions à la surface d'un matériau solide, souvent appelé adsorbant. L'adsorption peut être influencée par plusieurs facteurs, notamment la température, la pression, la nature chimique des adsorbants et des adsorbats, ainsi que la structure de la surface de l'adsorbant.[1]

Dans les systèmes complexes, notamment ceux composés de plusieurs composants, l'adsorption devient encore plus complexe. L'étude de l'adsorption dans des systèmes mono-composants (où une seule espèce est adsorbée) et multi-composants (où plusieurs espèces coexistent et interagissent) est cruciale pour la modélisation et l'optimisation des processus industriels. L'un des défis majeurs dans ces systèmes multi-composants réside dans la compétition entre les différentes molécules ou ions pour les sites d'adsorption, ce qui peut modifier les performances globales du processus d'adsorption.

L'intelligence artificielle (IA) a émergé comme un outil puissant pour modéliser ces phénomènes complexes, en permettant la prédiction des comportements d'adsorption dans des systèmes mono et multi-composants. Grâce à des techniques telles que les réseaux neurone artificiel, l'apprentissage supervisé et non supervisé, et les algorithmes évolutionnaires, l'IA peut aider à optimiser les conditions opératoires d'adsorption et à comprendre les mécanismes fondamentaux dans des systèmes complexes. [2]

Le manuscrit comporte deux grands chapitres principaux :

- ➤ Le premier chapitre décrit une généralité sur l'adsorption et ces modèles d'adsorption et les colorants.
- ➤ Le deuxième chapitre comporte la méthodologie de travail pour la modélisation du taux d'adsorption ainsi que les résultats numériques du modèle mathématique.

CHAPITRE I: PRINCIPES GENERAUX SUR L'ADSORPTION ET LES COLORANTS

I.1 Introduction:

L'adsorption constitue l'un des procédés fondamentaux en génie des procédés, en raison de son efficacité dans l'élimination des polluants présents dans les phases gazeuses et liquides. Parmi ces polluants, les colorants organiques se distinguent par leur structure complexe et leur forte stabilité chimique, ce qui rend leur traitement particulièrement difficile par les méthodes conventionnelles. En effet, leur capacité à interagir avec les sites actifs des adsorbants peut entraver les performances du processus, en réduisant le taux de rétention ou en saturant prématurément la surface active du matériau.

La compréhension des mécanismes d'adsorption devient encore plus cruciale lorsque le système étudié comporte plusieurs solutés. Dans les systèmes multi composants, une compétition s'installe entre les différentes espèces pour accéder aux mêmes sites d'adsorption, ce qui modifie considérablement la cinétique et l'équilibre du processus par rapport à un système mono composant. Cette complexité accrue nécessite une approche expérimentale et théorique approfondie afin d'optimiser les performances des adsorbants et de concevoir des procédés de traitement plus efficaces et adaptés aux conditions opérationnelles réelles.

Ainsi, l'étude des phénomènes d'adsorption, en particulier dans les systèmes multi composants, s'inscrit comme un enjeu majeur dans le développement de solutions durables pour le traitement des effluents industriels, notamment ceux chargés en colorants[3][4][5].

I.2. <u>Définition de l'adsorption :</u>

L'adsorption est un phénomène physico-chimique par lequel des molécules issues d'une phase gazeuse ou liquide (appelées adsorbats) se fixent à la surface d'un solide (appelé adsorbant), sous l'effet de forces d'attraction. Ce processus peut se produire sur la surface externe des matériaux non poreux, ou sur l'ensemble des surfaces externes et internes des matériaux poreux.

Les adsorbants efficaces possèdent une grande surface spécifique, facilitant l'adhésion des molécules. L'efficacité de l'adsorption dépend de plusieurs facteurs : la nature du solide, les caractéristiques de l'adsorbat (taille, polarité), ainsi que les conditions environnementales comme la température, la pression et la concentration.

L'adsorption joue un rôle clé dans le traitement de l'eau, la purification de l'air, et l'élimination des polluants organiques ou inorganiques présents dans divers milieux. Elle repose sur un transfert

de matière vers la surface du solide, sans pénétration dans son volume, et est généralement réversible [1], La figure I.1 ci-dessous illustre ce phénomène.

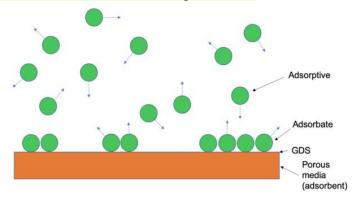


Figure I.1: Représentation du phénomène d'adsorption.

I.3. Types d'adsorption :

Selon les catégories des forces attractives, l'énergie et la nature des liaisons mises en jeu, on peut distinguer deux types d'adsorption : l'adsorption physique et l'adsorption chimique [6].

I.3.1. Adsorption physique:

C'est une adsorption de type physique, qui se produit lorsque les forces qui fixent l'adsorbat dans une couche à la surface de l'adsorbant sont du même ordre que les forces de Van der Waals [7].

I.3.2. Adsorption chimique:

C'est une adsorption de type chimique, qui résulte des forces de liaison de nature chimique (nettement supérieures aux forces de Van der Waals) avec mise en commun ou transfert d'électrons; il y a donc des ruptures et des créations de liaisons chimiques en surface entre le réactif et les sites actifs de l'adsorbant [7], La figure 1.2 ci-dessous illustre schématiquement les deux types d'adsorption, tandis que le tableau I.1 présente une comparaison détaillée entre l'adsorption physique et l'adsorption chimique.

Figure I.2: Représentation schématique de l'adsorption physique et chimique.

Tableau I.1: Comparaison entre l'adsorption physique et l'adsorption chimique [1] [8].

Critère	Adsorption physique	Adsorption chimique
Types de liaison	Liaison de Van der Waals	Liaison chimique
Température du	Relativement faible comparée	Plus élevée que la T
Processus	à T d'ébullition de l'adsorbât	d'ébullition de l'adsorbât
Individualité des	L'individualité des molécules	Destruction de l'individualité
Molécules	est conservée	des molécules
Désorption	Facile	Difficile
Chaleur d'adsorption	Inférieur à 10 kcal/mole	Supérieur à 10 kcal/mole
Énergie mise enjeu	Faible	Élevée
Type de formation	Formation en multicouches	Formation en monocouche

I.4. Mécanismes d'adsorption :

L'adsorption est un phénomène de surface où les molécules (adsorbats) se fixent sur des matériaux solides (adsorbants) via différents types d'interactions physico-chimiques.

Les principaux mécanismes sont :

- Liaison ionique / Échange d'ions : Interaction électrostatique entre les ions en solution et les sites chargés de l'adsorbant. Très efficace pour éliminer les métaux lourds et les colorants ioniques.
- Liaisons d'hydrogène : Interaction non covalente entre des groupes fonctionnels polaires (–
 OH, –NH₂, –COOH) de l'adsorbat et ceux de l'adsorbant. Ce mécanisme dépend fortement du
 pH, de la température et de la nature chimique des surfaces.
- Forces de Van der Waals: Interactions faibles et non spécifiques entre dipôles instantanés ou induits. Favorisées à basse température et impliquées dans l'adsorption physique en multicouches.
- Rétention hydrophobe : Attraction entre molécules non polaires et surfaces non polaires, favorisant Rleur accumulation loin de l'eau [9][10].

I.5. Facteurs influençant le phénomène d'adsorption :

L'efficacité du processus d'adsorption dépend de plusieurs paramètres essentiels :

- **Température du milieu :** L'adsorption physique, phénomène exothermique, est favorisée à basse température, tandis que l'adsorption chimique, endothermique, requiert des températures plus élevées [11].
- **pH de la solution :** Il influence à la fois la structure chimique de l'adsorbant et celle de l'adsorbat, modifiant le mécanisme d'interaction[12][13].
- Masse de l'adsorbant : Déterminer la masse optimale permet d'atteindre une adsorption efficace à moindre coût [8].
- Concentration initiale de l'adsorbat : Elle conditionne la capacité d'adsorption et la cinétique du processus [15].
- **Temps d'équilibre :** C'est un facteur clé pour l'optimisation des systèmes de traitement, tant sur le plan technique qu'économique [12].
- Caractéristiques de l'adsorbat : L'énergie de liaison, la taille moléculaire (diffusivité) et la solubilité influencent la rétention [[18].

I.6. Les type d'adsorbants :

Les matériaux adsorbants sont généralement des solides poreux, d'origine organique (végétale ou animale) ou minérale. Leur structure à haute porosité leur confère une surface spécifique très élevée, essentielle pour les processus d'adsorption. Ils peuvent être utilisés à l'état naturel ou après activation pour augmenter leur porosité. En fonction du diamètre des pores (d), on distingue trois types : les micropores (d < nm), les mésopores ($2 \le d \le 50 nm$) et les macropores (d > 5 nm) [14].

I.6.1. Charbon actif:

La fabrication des charbons activés (AC) repose sur des méthodes conventionnelles (activation physique, chimique ou combinée) et des techniques avancées (carbonisation hydrothermale, irradiation micro-ondes) [19] [20].

> Pyrolyse:

La pyrolyse est une décomposition thermique du matériau organique sous atmosphère inerte (ou sous vide), à des températures de 400 à 1000 °C. Elle élimine les hétéroatomes (H, O), enrichissant le matériau en carbone et formant des structures aromatiques planes désorganisées, responsables d'une porosité primaire. Cependant, le charbon pyrolysé seul possède une faible surface spécifique et nécessite une activation pour devenir un adsorbant efficace [21].

> Activation :

L'activation vise à développer la porosité et les fonctions de surface. Elle peut être :

- Physique : réalisée à haute température (800–1000 °C) avec des gaz oxydants doux (vapeur, CO₂, air), elle élargit les pores existants et en crée de nouveaux
- Chimique : implique l'imprégnation du précurseur par un agent chimique (ZnCl₂, HCl, etc.), suivie d'une pyrolyse (400–800 °C) sans air. Ce procédé permet d'obtenir le charbon actif en une seule étape[17] [22].

Le degré d'activation est évalué par le taux de burn-off, défini comme suit :

$$Burn - off = \frac{masse_{initiale} - masse_{final}}{masse_{initiale}}$$
 I.1

Le taux de bur-off augmente avec la durée de la réaction d'activation [23].

I.6.2. Gel de silice :

Le gel de silice se présente sous la forme de grains durs et poreux avec une surface spécifique de 600 à 800 m^2 , dont la taille des pores varie de 20 à 50 Å. Il s'obtient par action de l'acide chlorhydrique sur une solution de silicate de sodium. Le gel de silice est employé essentiellement à la déshydratation des gaz et liquides et également au fractionnement des hydrocarbures [24][25].

I.6.3. Les polymères :

Les polymères, constitués de chaînes de monomères liées par des liaisons covalentes, présentent un fort potentiel en adsorption grâce à leur diversité chimique et leur capacité de fonctionnalisation. Ils peuvent être naturels (cellulose, chitine) ou synthétiques (résines échangeuses d'ions, hydrogels).

Les résines fonctionnalisées sont efficaces pour l'élimination des ions métalliques et des composés organiques. Les hydrogels permettent l'adsorption de colorants et de molécules organiques, tandis que la cellulose et ses dérivés sont largement utilisés pour capter les métaux lourds.

Leur principal avantage réside dans la possibilité d'ajuster leur structure chimique afin d'améliorer leur sélectivité et leur capacité d'adsorption, ce qui en fait des matériaux de choix dans les procédés de traitement de l'eau et de dépollution[26].

I.6.4. Adsorbants organiques:

Les adsorbants organiques, d'origine naturelle ou synthétique, sont principalement à base de carbone ou de polymères. Grâce à leur structure poreuse, leur surface spécifique élevée et la présence de groupes fonctionnels, ils sont capables d'interagir efficacement avec divers contaminants en phase aqueuse ou gazeuse.

Parmi les plus utilisés :

- Le charbon actif : efficace pour l'adsorption des composés organiques volatils et des métaux lourds.
- La biomasse modifiée (résidus agricoles, chitine, cellulose fonctionnalisée).
- Les polymères fonctionnalisés : tels que les résines échangeuses d'ions et les hydrogels

Ces adsorbants sont appréciés pour leur accessibilité, leur faible coût et leur adaptabilité chimique qui permet d'en améliorer les performances [27][28].

I.6.5. Adsorbants minéraux :

Les adsorbants minéraux sont des matériaux inorganiques d'origine naturelle, principalement composés de silicates, d'oxydes métalliques ou d'argiles. Leur grande surface spécifique en fait de bons piégeurs de contaminants tels que les métaux lourds, les colorants et certains composés organiques.

Parmi les plus utilisés :

- Les argiles (kaolinite, bentonite) : pour l'adsorption des métaux lourds et de substances organiques.
- Les oxydes métalliques (fer, aluminium), efficaces contre les ions métalliques.
- Les zéolites : aluminosilicates microporeux adaptés à l'adsorption des gaz et des ions.

Leur abondance, leur coût réduit et leur stabilité chimique sont des atouts majeurs, bien que leur capacité d'adsorption soit parfois inférieure à celle des adsorbants organiques[29].

I.7. Les isothermes d'adsorption :

Les systèmes constitués d'un couple adsorbant/adsorbat ne présentent pas tous un comportement identique face aux phénomènes d'adsorption. Ces derniers sont généralement analysés à travers leur comportement isotherme, qui permet de décrire, à température constante, la relation d'équilibre entre la quantité de soluté adsorbée et sa concentration en solution dans un solvant donné [30].

I.7.1. Classification des isothermes d'adsorption :

La forme de la courbe isotherme dépend fortement de la nature du couple adsorbant/adsorbat étudié. Pour les solutés présentant une solubilité limitée, les isothermes d'adsorption ont été classées en quatre catégories principales [31][32], comme illustré dans la figure I.2 :

• Isothermes de type S (sigmoïde) : Ce type de courbe apparaît lorsque les molécules du soluté ne peuvent se fixer sur la surface du solide qu'en présence préalable d'un groupement facilitateur, suggérant une coopération entre les sites d'adsorption.

- Isothermes de type L (Langmuir): Il s'agit des isothermes les plus couramment observées.
 Elles traduisent une adsorption modérée, dans laquelle les molécules de l'adsorbat adoptent une orientation parallèle à la surface de l'adsorbant, avec une saturation progressive des sites disponibles.
- Isothermes de type H (haute affinité): Elles reflètent une forte interaction entre le soluté et l'adsorbant, souvent associée à une chimisorption impliquant des liaisons chimiques spécifiques.
- Isothermes de type C (partition constante) : Caractérisées par une droite, ces courbes indiquent un partage constant du soluté entre le solvant et la surface de l'adsorbant. Elles surviennent typiquement lorsqu'il y a compétition directe entre le solvant et le soluté pour l'occupation des sites d'adsorption [33].

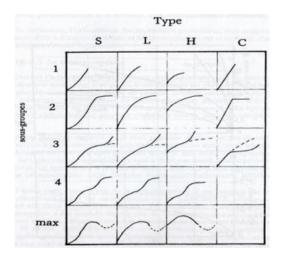


Figure I.2 : Classes des isothermes d'après Gilles et Coll.

I.8. Modélisation des isothermes d'adsorption :

I.8.1. <u>Isotherme de Langmuir</u>:

Constitue un modèle théorique décrivant l'adsorption en monocouche. Il repose sur les hypothèses suivantes :

- -L'adsorption s'effectue sur des sites bien définis à la surface de l'adsorbant ;
- -Chaque site ne peut accueillir qu'une seule molécule d'adsorbat (adsorption monomoléculaire).
- -Tous les sites d'adsorption sont identiques et possèdent la même énergie.
- -Il n'existe aucune interaction entre les molécules adsorbées sur des sites voisins.

Le modèle de Langmuir est exprimé par l'équation (Eq.I.2) suivante :

$$Q = \frac{Q_m.B.C_e}{1+B.C_e}$$
 I.2

Avec:

Q : quantité d'adsorbat par unité de masse de l'adsorbant à l'équilibre (mg/g),

Q_m: capacité d'adsorption maximale (mg/g),

Ce : concentration à l'équilibre (mg/1),

B : constante relative à l'énergie d'adsorption.

La linéarisation (Eq.I.3) de l'équation de Langmuir permet de déduire la capacité ultime Q et la constante de distribution KD =1/B [17][30][35].

$$\frac{C_e}{Q_e} = \frac{1}{Q_m B} + \frac{C_e}{Q_m}$$
 I.3

I.8.2. Le modèle de Freundlich :

L'isotherme de Freundlich est un modèle empirique d'adsorption. Contrairement à l'isotherme de Langmuir, elle prend en compte l'hétérogénéité des sites d'adsorption, notamment la variation de leur énergie d'interaction avec les molécules adsorbées. Elle est particulièrement adaptée aux surfaces irrégulières et poreuses [36][37]. L'expression mathématique de l'isotherme de Freundlich est donnée par l'équation (Eq.I.4) suivante :

$$Q_e = K. C_e^{1/n}$$
 I.4

Avec:

Qe : est la quantité de soluté adsorbée à l'équilibre (mg/g ou mol/g),

Ce : est la concentration du soluté en solution à l'équilibre (mg/L mol/l),

K : est la constante indicative de la capacité d'adsorption,

1/n: est un facteur lié à l'intensité ou à la favorable de l'adsorption (0 < 1/n < 1).

La linéarisation de cette équation permet de déterminer les constances citées précédemment [38].

$$\ln Q_e = \ln K + \left(\frac{1}{n}\right) \cdot \ln C_e$$
I.5

I.8.8. <u>Isotherme BET</u>:

Le modèle BET (Eq.I.6) décrit la formation de multicouches d'adsorbat avec une distribution homogène des sites à la surface de l'adsorbant. Il prend en compte l'énergie d'adsorption qui retient la première couche de molécules adsorbées et une deuxième énergie pour les couches suivantes. Le modèle rend compte du phénomène de saturation et de la solubilité du soluté dans son solvant.

$$\frac{c}{(c_{e-C}).\left(\frac{x}{m}\right)} = \frac{1}{\left(\frac{x}{m}\right)_{max}} - \frac{1}{\left(\frac{x}{m}\right)_{max}} \cdot \frac{c}{c_e}$$
I.6

 $O\dot{u}$: (x/m): est la quantité adsorbée (en mg/g)

- (x/m)_{max}: est la capacité maximale d'adsorption (en mg/g)
- C : est la concentration de la solution (en mg/L)

- C_e: est la concentration de saturation (en mg/L) [37].

I.9. Cinétique d'adsorption:

Dans la littérature, différents modèles cinétiques ont été utilisés pour évaluer le processus d'adsorption. Deux modèles, pseudo-premier o²rdre et pseudo-deuxième ordre, sont les plus étudiés à fin de modéliser la cinétique d'adsorption et de déterminer certains paramètres cinétiques comme la constante de vitesse et la quantité adsorbée à l'équilibre [40] [41].

I.9.1. Modèle de la cinétique du pseudo premier ordre :

Le modèle cinétique le plus ancien, proposé par LAGERGREN en 1898, est encore largement utilisé aujourd'hui. En considérant que l'adsorption est limitée par la formation de la liaison entre le soluté et le site actif, la vitesse peut être exprimée par [25]:

$$\frac{dQ(t)}{dt} = K_1. (Q_{eq} - Q(t))$$
 I.7

Où Q(t) est la quantité de soluté adsorbée au temps t, et k_1 est la constante cinétique. Après intégration, on obtient l'équation I.15 :

$$\ln(Q_{eq} - Q(t)) = \ln(Q_{eq}) - \frac{\kappa_1}{2.303}.t$$
 I.8

I.9.2. Modèle du cinétique pseudo-deuxième ordre :

Développé par Y.S. Ho et G. McKay pour décrire l'existence d'un équilibre entre les espèces en solution et les espèces adsorbées, le modèle pseudo-ordre 2 suit l'équation I.16 [25].

$$\frac{dQ(t)}{dt} = K_2 \cdot (Q_{eq} - Q(t))^2$$
 I.9

Où k₂ est la constante cinétique. Après intégration, on obtient l'équation :

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
 I.10

I.10. Systèmes d'adsorption :

I.10.1. Adsorption statique monocompsant :

L'adsorption statique monocompsant fait référence à un processus dans lequel une seule espèce adsorbable interagit avec la surface d'un adsorbant solide dans un système fermé et sans agitation continue. Cette configuration permet d'étudier avec précision les mécanismes fondamentaux de l'adsorption, tels que les interactions physico-chimiques entre l'adsorbant et l'adsorbat, ainsi que les paramètres influents tels que le pH, la température, la concentration initiale et la nature de la surface.

Ce type d'étude permet également d'établir les isothermes d'adsorption pour mieux comprendre

la capacité maximale d'adsorption et la nature des forces impliquées (physiques ou chimiques). Le système étant simple, il est largement utilisé pour tester l'efficacité d'un matériau donné dans des conditions bien contrôlées, notamment pour des applications de dépollution ou de traitement des eaux [41].

I.10.2. Adsorption statique multi composants :

Dans les conditions réelles, les effluents à traiter contiennent souvent plusieurs polluants simultanément. L'adsorption statique multi composant prend en compte l'adsorption simultanée de plusieurs espèces chimiques sur un même adsorbant. Dans ce cas, des phénomènes d'interaction compétitive entre les différents adsorbats peuvent se produire, influençant la capacité d'adsorption globale et la sélectivité du matériau utilisé.

La complexité de ce système réside dans la compétition pour les sites actifs, où les molécules ayant une plus grande affinité ou une taille moléculaire plus importante peuvent supplanter celles moins favorisées. Ce phénomène est connu sous le nom d'élution préférentielle. La compréhension de ces interactions est cruciale pour concevoir des procédés d'adsorption efficaces en milieu industriel, où les mélanges de contaminants sont fréquents[2].

I.11. Les colorants :

Les colorants sont des substances chimiques colorées capables de transmettent ses colorations a d'autres corps qui sont des composés organiques insaturés et aromatiques. Actuellement presque la totalité des matières colorantes employées sont des dérivées des hydrocarbures contenus dans le goudron de houille[42].

I.11.1. Classification des colorants :

Les colorants, en particulier ceux de synthèse, font l'objet d'une classification rigoureuse fondée à la fois sur leur structure chimique intrinsèque et sur leur mode d'application spécifique à divers substrats tels que les fibres textiles, le papier, le cuir ou encore les matériaux polymères [1]. Cette double classification permet une sélection optimale des colorants en fonction des exigences techniques et des propriétés physico-chimiques des supports à teinter[43].

I.11.1.1. Classification technologique:

Depuis la découverte de la « mauvéine » par Perkin en 1856, de très nombreux colorants ont été élaborés. On dénombre aujourd'hui plus de 10 000 en production industrielle et il a été nécessaire d'avoir un système de classification. Celui-ci constitue l'index des couleurs (C.I.), qui répertorie la majorité des colorants mis sur le marché. La classification technologique permet à l'utilisateur de connaître le mode d'application du colorant, et donc ses domaines d'utilisation, ses propriétés (solubilité, affinité pour tel type de fibres ou matériaux, nature de la fixation ...). Il est souvent difficile de connaître la composition chimique des colorants car la confidentialité sur la

composition chimique est généralement préservée.

Cette classification comprend trois éléments :

- La teinte principale associée au colorant.
- Le nom générique désignant la classe d'application du colorant.
- Le numéro d'ordre chronologique attribué lors de son enregistrement dans le «Colore Index» [44].

I.11.1.2. Classification technique:

Dans l'industrie textile, la majorité des colorants utilisés possèdent des groupes fonctionnels sulfoniques, leur conférant une hydrosolubilité élevée, Ces groupes permettent également l'établissement de liaisons ioniques entre la molécule colorante et les sites chargés présents au sein du réseau polymérique des fibres textiles, favorisant ainsi une fixation efficace du colorant. Sur la base de leur origine synthétique, les colorants organiques peuvent être regroupés en deux

Sur la base de leur origine synthétique, les colorants organiques peuvent être regroupés en deux grandes catégories :

- Les colorants naturels.
- Les colorants synthétiques

Les colorants naturels :

Ils sont très répandus, surtout dans les plantes (bois, racines, graines, fleurs et fruits) et même dans les micro-organismes et le corps des animaux. Ils restent, en revanche très utilisés dans les produits alimentaires, cosmétiques t pharmaceutiques soumis à des réglementaires plus strictes [44].

> Les colorants synthétiques :

Les colorants synthétiques dominent aujourd'hui le marché surtout que leurs propriétés peuvent être précisément adaptées à leur utilisation. Tous ces colorants sont synthétisés principalement à partir des produits pétroliers, notamment du benzène et de ses dérivés (toluène, naphtalène, xylène et anthracène) [44].

I.11.1.3. Classification chimique:

Le classement des colorants selon leur structure chimique repose sur la nature du groupement chromophore. Les classes chimiques les plus utilisées dans les colorants textiles sont principalement les colorants azoïques puis les colorants anthraquinoniques et les phtalocyanines[44].

I.11.1.4. Classification tinctoriale:

Alors que la classification chimique intéresse principalement les fabricants de matières colorantes, les professionnels de la teinture privilégient une approche fondée sur les domaines d'application,

connue sous le nom de classification tinctoriale. La classification tinctoriale des colorants repose sur la nature du groupe auxochrome, qui détermine le type de la liaison colorant-substrat[45][46] [47].

I.11.2. L'utilisation des colorants :

Les colorants jouent un rôle crucial dans de nombreuses industries grâce à leur capacité à modifier l'apparence visuelle des matériaux et produits. Ils sont utilisés pour des raisons esthétiques, fonctionnelles ou techniques dans divers secteurs, parmi lesquels :

Industrie des matières plastiques : utilisation de pigments pour colorer les polymères et les plastiques destinés à des usages industriels ou domestiques.

Imprimerie et papeterie : incorporation d'encres colorées dans le papier, les emballages et les produits graphiques.

Industrie agroalimentaire : ajout de colorants alimentaires pour améliorer ou restaurer l'apparence visuelle des produits consommables.

Industrie du bâtiment : usage de pigments dans les peintures, les revêtements muraux, les matériaux de construction et les céramiques pour des fins décoratives et techniques.

Cosmétologie : développement de colorants capillaires et de maquillage offrant des teintes variées, stables et sûres pour la peau et les cheveux.

Industrie pharmaceutique : emploi de colorants pour l'identification, la conservation et l'esthétique des médicaments.

Secteurs automobile et énergétique : coloration des carburants, huiles et lubrifiants pour en assurer le suivi, la différenciation et parfois la sécurité.

Textile : coloration de fibres naturelles et synthétiques à des fins vestimentaires, décoratives, médicales ou techniques, incluant les textiles pour le transport et la construction [48][49].

I.11.3. La toxicité des colorants :

La toxicité des colorants vient de l'ignorance des chercheurs ou des utilisateurs de leurs structures chimiques qui différent d'un type à un autre. Ainsi que du mode de l'emploi lors de l'utilisation.

Beaucoup d'études ont montré les effets toxiques et/ou canrcinogéniques des colorants azoïques, ce qui signifie que les effluents contenant ces colorants doivent être traités avant d'être rejetés en milieu naturel. Leur toxicité est en fait due à la teneur en groupements cancérigènes tels que les groupements aromatiques, phtalogènes, cyanurés, sel de barium et de plomb. Ces groupements cancérigènes (sous forme électrophile ou radicalaire) attaquent les bases pyrimidiques de l'ADN et de l'ARN et causent par conséquent, une altération du code génétique avec mutation et risque de cancer!

L'allergie respiratoire aux colorants réactifs a été rapportée pour la première fois en 1978 par Alanko chez des sujets employés à la pesée et au mélange de ces colorants en poudre depuis deux ans et présentant un asthme et / ou rhinite d'origine professionnelle[44].

I.11.4. Colorants textiles, Environnement et santé :

Le principal problème environnemental qui se pose dans l'industrie textile est celui des quantités d'eau rejetées et de leur charge chimique. Les autres questions importantes sont la consommation énergétique, les émissions dans l'atmosphère, les déchets solides et les odeurs qui peuvent représenter des nuisances significatives dans certains traitements.

Les émissions dans l'atmosphère sont habituellement captées à la source. Comme elles sont contrôlées depuis longtemps dans différents pays. On dispose de bonnes données historiques sur les rejets atmosphériques pour chaque procédé spécifique. Ce n'est pas le cas pour les émissions dans l'eau[47].

CHAPITRE 2 : METHODOLOGIE ET RESULTATS DE LA MODELISATION NEURONALE DE L'ADSORPTION MONO ET MULTI COMPOSANTE

Ce chapitre présent les différentes méthodologies adoptées pour mesurer et prédire les concentrations des colorants adsorbés par la nano architecture de polymère Gemini (GPN). Les résultats numérique sont basés sur des mesures expérimentales obtenus directement par la littérature (Mahmoodi et al., 2013).

II.1 – <u>Modélisation de l'adsorption des colorants à l'aide des réseaux de neurones artificiels (RNA) :</u>

Dans cette contribution nous présentons les résultats de la modélisation neuronale de l'adsorption d'un système mono et multi composants.

La connaissance expérimentale de l'adsorption est souvent représentée par des grandeurs mesurables telles que la température et le temps d'équilibre ainsi que la concentration initial de composée a adsorbés, les longueurs d'ondes et la masse. Bien que les RNA font partie des modèles de boites noires qui représentent une relation empirique entre des ensembles d'entrées et de sorties, le choix de variables d'entrées et de sorties est décisif pour que le modèle neuronal se rapproche des modèles déterministes.

Le choix des variables d'entrées et de sorties et le prétraitement des données constituent la première étape de la modélisation neuronale. L'étape suivante concerne le choix des paramètres du réseau de neurones qui vont permettre au réseau d'apprendre la relation entre les entrées et les sorties choisies à partir des données sélectionnées. La troisième étape est consacrée à l'apprentissage / validation et le test du réseau choisi. Enfin la performance du réseau peut être, éventuellement comparée avec celles des autres types de modélisation.

II.1.1. Base de données :

La base de données constituent des paramètres suivants (λ_{max}, Masse moléculaire, Concentration initial, masse de l'adsorbant, temps, quantité adsorbée) est constituée des données expérimentales à différentes masse d'adsorbant (0.025g, 0.05g, 0.075g, 0.1g, 0.125g) ensuite à différentes concentration initial des colorants (300 mg/l, 400 mg/l, 500 mg/l, 600 mg/l) et à différents type de sels utilisés (NaHCO₃, Na₂CO₃, Na₂SO₄) pour deux systèmes monocomposant et multi-composants. Cette base est tiré directement à partir de l'article (Mahmoodi et al., 2013).

II.1.2. Choix des entrées et des sorties :

Afin de rassembles les deux systèmes mono-composant et multi-composants, on a choisi comme :

- **Entrées** $(\lambda_{max1}, \lambda_{max2}, \lambda_{max3}, M, [Colorant_1], [Colorant_2], [Colorant_3], m, t)$ tel que :
- λ_{maxi} : Les longueurs d'ondes constantes pour chaque composé.
- M : La masse moléculaire de sel utilisé.
- [Colorant_i]: La concentration des colorants = (300 mg/l, 400 mg/l, 500 mg/l, 600 mg/l).
- m : La masse d'adsorbant = (0.025g, 0.05g, 0.075g, 0.1g, 0.125g).
- t: Le temps d'adsorption (1.866 min -60 min).

Ce qui donne une matrice de 9 colonnes et 470 lignes.

- \triangleright **Sorties** (qe₁, qe₂, qe₃) tel que :
- (q_{e1}), quantité adsorbée de premier colorant varie de 0 et 100%.
- (q_{e2}), quantité adsorbée de deuxième colorant varie de 0 et 100%.
- (q_{e3}), quantité adsorbée de troisième colorant varie de 0 et 100%.

Ce qui donne une matrice de 3 colonnes et 470 lignes (expériences).

II.1.3. Préparation de la base de données :

La base de données d'entrée est réalisée par une matrice rectangulaire de dimension (9, 470), répartie de la façon suivante (tableau II.1) :

Tableau II.1. Répartition de la base de données d'entrée.

0 - 150	Système mono-composant avec la variation de la masse
151 - 190	Système multi-composant avec la variation de la masse.
191 - 310	Système mono-composant avec la variation de la concentration initiale des colorants.
311 - 350	Système multi-composant avec la variation de la concentration initiale des colorants.
351 - 440	Système mono-composant avec addition des sels.
441- 470	Système multi-composant avec addition des sels.

La base de sortie est réalisée par un vecteur de dimension (3, 470) répartie de la façon suivante (tableau II.2) :

Tableau II.2. Répartition de la base de données de sortie.

0 - 150	Système mono-composant avec la variation de la masse.
151 - 190	Système multi-composant avec la variation de la masse.
191 - 310	Système mono-composant avec la variation de la concentration initiale des colorants.
311 - 350	Système multi-composant avec la variation de la concentration initiale des colorants.
351 - 440	Système mono-composant avec l'addition des sels.
441 - 470	Système multi-composant avec l'addition des sels.

La base de donnée ainsi constituée est divisée en deux sous - bases :

- Une base d'apprentissage qui permet l'optimisation de l'architecture de RN
- ➤ Une base de test/validation utilisée pour déterminer les performances prédictives du RNo.

II.1.4. Résultats de sensibilité :

Afin d'évaluer l'impact des différentes variables d'entrée sur le modèle, une analyse de sensibilité a été réalisée. La figure II.1 suivante présente les valeurs relatives de chaque variable.

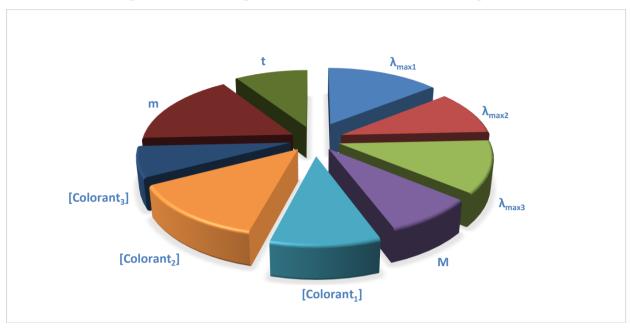


Figure II.1: Répartition des impacts relatifs des variables d'entrée dans le modèle neuronal.

D'après la figure ci-dessus on remarque que toutes les entrées ont des pourcentages similaires sur les sorties désirées.

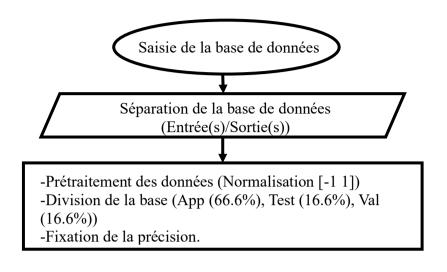
I.1.5. Normalisation des données :

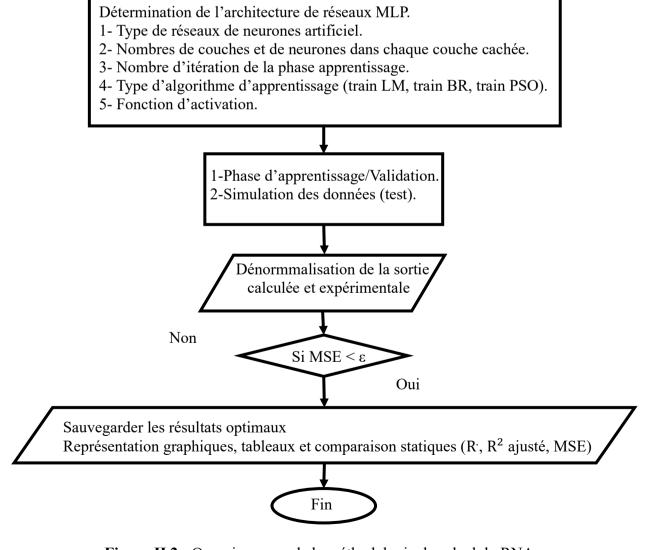
Les données sont réparties en douze lignes, correspondant respectivement aux : $\{\lambda_{max 1}, \lambda_{max 2}, \lambda_{max 3}, M, [Colorant 1], [Colorant 2], [Colorant 3], m, t, qe1, qe2, qe3\}.$

Les valeurs numériques ont été normalisées afin d'améliorer l'optimisation. La normalisation se fait par ligne, chaque paramètre des entrées et de sorties (x_i) est normalisé (x_{inor}) par l'expression suivante :

$$x_{in} = 2 \frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)} - 1$$
 (II.1)

II.1.6. Dé-normalisation des données :


Les valeurs numériques seront tous de-normalisées afin de les représentées à son état réelle, chaque paramètre d'entrée et de sorties (x_{in}) est transformé (xi) par l'expression suivant :


$$X_i = 0.5(X_i + 1)(\max(X_i) - \min(X_i)) + \min(X_i)$$
 (II.2)

L'apprentissage supervisé est retenue dans cette étude, il consiste à fournir au réseau des jeux de données d'entrées (λ_{max} 1, λ_{max} 2, λ_{max} 3, M, [Colorant 1], [Colorant 2], [Colorant 3], m, t) pour lesquels on connaît les réponses souhaitées (q_{e1} , q_{e2} , q_{e3}).

On construit alors un critère d'erreur en comparant la réponse du RNA à celle attendue $\{(q_{e1}, q_{e2}, q_{e3}) \text{ expérimentale}\}.$

La figure II.2 représente un résumé sur la méthodologie d'élaboration de calcule par le RNA.

Figure II.2 : Organigramme de la méthodologie de calcul du RNA.

II.2. Etude statistiques des paramètres influençant des concentrations des colorants :

Les statistiques descriptives servent à décrire quantitativement ou à synthétiser les caractéristiques des données, afin d'en clarifier la signification. Les valeurs extrêmes (maximales et minimales) et les variations statistiques des données relatives aux concentrations des colorants sont résumées dans le tableau II.3. La moyenne est un terme statistique introduit pour expliquer la tendance moyenne des données. Le maximum et minimum montrent l'amplitude de la série temporelle. La variance est la moyenne des différences au carré par rapport à la moyenne (Eq. II.3). Pour déterminer la variance, on a calculé d'abord la différence entre chaque point et la moyenne ; ensuite, on met au carré et on divise la somme par N-1. L'écart type ou bien Standard Déviation (STD) est une mesure pour quantifier la quantité de variation ou de dispersion des valeurs de données (Eq. II.4), c'est aussi, une statistique qui examine à quelle distance de la moyenne se trouve un groupe de nombres, en utilisant la racine carrée de la variance. Un STD élevé montre que les points de données sont répartis sur une plage de valeurs plus large, Un STD faible indique que les points de données ont tendance à être proches de la moyenne de l'ensemble de données (Wang et al. 2017).

$$Variance = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{N-1}$$
 (II.3)

$$STD = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{N - 1}}$$
 (II.4)

Ou x_i est les valeurs expérimentales, \bar{x} est la moyenne des données expérimentales et N représente la taille des données expérimentale.

Tableau II.3: Description statistique de l'ensemble des données.

Catégorie des variables	Variables	Unité	Plages des variables (min - max)	Moyenne	STD	Variances
Les entrées	λmax de AB92	m ⁻¹	0 - 595	297.5	298.74	89250
	λmax de DG6	m ⁻¹	0 - 634	310.2	317.26	101333
	λmax de DR31	m ⁻¹	0 - 527	257.8	263.72	70015
	Masse moleculaire des sels	(g/mol)	0 - 142	28.25	49.79	2479
	$[Colorant_1]_o$	(mg/L)	0 - 600	172.34	188.92	35693
	[Colorant ₂] _o	(mg/L)	0 - 600	172.34	188.92	35693
	[Colorant ₃] _o	(mg/L)	0 - 600	172.34	188.92	35693
	masse de GPN	(g)	0,025 - 0,125	0.044	0.031	0,001
	temps	(min)	1,866 – 60	23.93	19.14	366
La sortie	Colorant Blue acide 92	%	0 - 100	39.93	43.38	1881
	Colorant vert direct 6	%	0 - 84,382	30.41	32.49	1055
	Colorant rouge direct 31	%	0 - 100	36.55	41.58	1729

Dans cette modélisation, la méthode d'analyse de corrélation, terme désignant les significations d'une relation entre deux ou plusieurs variables, est appliquée pour définir la structure d'entrée (Liu et al. 2014). Les résultats de l'analyse de corrélation des variables d'entrée sont présentés dans la figure II.3. Il montre que toutes les variables ont une faible corrélation mutuelle.

II.2.1 Choix des paramètres de RNA:

Le réseau de neurones de type feedforward (FFNN) est le type de RN par défaut du programme de langage de calcul scientifique MATLAB®.

Nous avons programmé le RNA avec une couche cachée et deux couches cachées, après une comparaison entre les erreurs on a choisi de travail avec deux couches cachées et la fonction **newff**, qui correspond au RN de type FFNN, sont choisies avec l'algorithme d'apprentissage de Levenberg- Marquardt (la fonction **trainlm** de MATLAB®). La procédure commence par la fonction de transfert sigmoïde logarithmique (fonction **logsig** de MATLAB®), ensuite la fonction sigmoïde tangente hyperbolique (fonction **tansig** de MATLAB®) pour les couches cachées, et la fonction linéaire (fonction **purelin** de MATLAB®) pour la couche de sortie.

II.2.2 Concept du réseau de neurones de type feedforward (MLP):

Dans un tel RNA de type feedforward un neurone, dans une couche cachée ou une couche de sortie, à deux tâches :

Il additionne le biais aux entrées pondérés de plusieurs connexions et applique ensuite une fonction d'activation (dite aussi fonction de transfert) à cette somme comme donnée par l'équation (II.5)

$$z_{j} = f[\sum_{i=1}^{n} w_{i,i}. x_{i} + b_{j}], j = 1,2,, m$$
 (II.5)

➤ Il propage la valeur résultante par les connexions partantes aux neurones de la couche suivante où elle subit le même processus tel que donné par l'équation (II.6) (par exemple les sorties de la couche cachée alimentée au neurone k de la couche de sortie donnent la sortie) :

$$v_k = f[\sum_{j=1}^m w_{k,j} \cdot z_j + b_k], k = 1,2,....,l$$
 (II.6)

En combinant des équations II.5 et II.6 on obtient la relation entre la sortie v_k et les entrées du RN :

$$v_{k} = f\left[\sum_{j=1}^{m} w_{k,j} \cdot f\left[\sum_{i=1}^{n} w_{j,i} \cdot x_{i} + b_{j}\right] + b_{k}\right]$$
(II.7)

Enfin. Il propage la valeur résultante par les connexions partantes aux neurones de la couche suivante où elle subit le même processus de calcul donné par l'équation II.11 :

$$u_p = f[\sum_{k=1}^{l} w_{p,k} \cdot v_k + b_p], p = 1,2,...,h$$
 (II.8)

En combinant des équations II.7 et II.8 on obtient la relation entre la sortie u_p et les entrées du RN (Eq. II.9) :

$$u_{p} = f\left[\sum_{k=1}^{l} w_{p,k}, f\left[\sum_{j=1}^{m} w_{k,j}, f\left[\sum_{i=1}^{n} w_{j,i}, x_{i} + b_{j}\right] + b_{k}\right] + b_{p}\right]$$
(II.9)

Le nombre de neurones dans la couche d'entrée et la couche de sortie est fixé par le nombre de variables indépendantes et dépendantes respectivement. Il n'y a pas de règles générales qui fixent le nombre de couches cachées d'un MLP pour un problème donné. Par conséquent la stratégie d'essai et erreur est la plus raisonnable. Le nombre de neurones dans chaque couche cachée est fixé par le modélisateur à partir d'un programme MATLAB par rapport à l'erreur qu'on a fixé, chaque architecture a été répéter 5000 fois.

La méthodologie consiste à faire varie le nombre de neurones dans chaque couche cachée, le tableau (annexe A1.1) représente les erreurs pour (chaque structure) chaque nombre de neurone dans les couches cachées.

Le schéma du RNA de type "MLP" à rétro-propagation utilisé pour modéliser la concentration des colorants est représentée sur la Figure II.5.

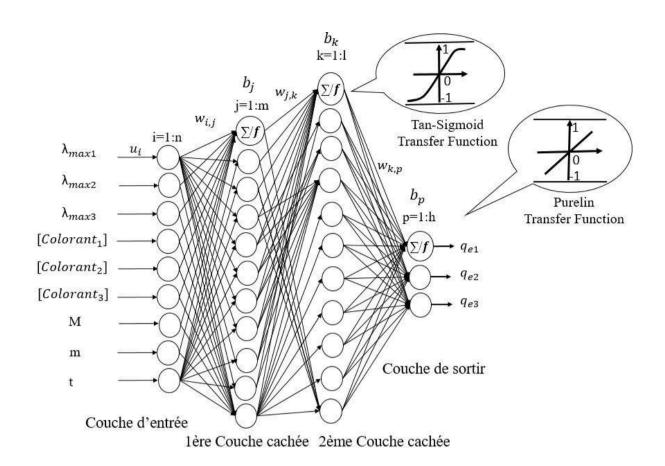


Figure II.5 : Schéma du Réseau de neurones artificiels optimisé.

Les tableaux de II.5 à II.7 récapitulent les poids et les biais des deux couches cachées et de la couche de sortie du réseau de neurones optimisée.

Tableau II.5 : Modèle de réseau de neurones établi {(Couche d'entrée – couche cachée 1)}

	Connexion [couche entrée – 1 ^{ére} couche cachée]									
	Matrice des poids									
Wi, 1	$W_{i, 2}$	W _i , 3	W _{i, 4}	W i, 5	Wi, 6	W i, 7	W _{i, 8}	Wi, 9	bj	
0.2340	0.3040	-0.2013	0.4684	0.3112	0.0435	-0.0419	-3.2958	-0.0943	-2.9720	
0.6967	-1.1397	-0.8058	0.8439	0.7934	0.0632	0.3864	0.2280	0.6777	-1.7634	
0.3306	-0.6915	-0.3229	0.4591	0.6094	0.5447	1.2330	0.0781	-1.3023	-1.3258	
-0.9730	0.6892	0.2519	-0.5966	-1.1676	-0.1701	-0.7445	1.6928	-0.1554	1.8008	
-0.0409	1.0655	-0.9666	-0.4418	-0.8111	0.7782	1.6521	0.2938	-0.0455	-0.9160	
0.5970	-0.6086	0.8771	-0.2950	-0.4535	0.3686	0.3209	-1.3599	-0.3181	-1.3517	

Chapitre 2 : Méthodologie et résultats de la modélisation neuronale de l'adsorption mono et multi composante.

-1.3008	0.4796	-0.0545	-0.7132	-0.4073	-0.1278	0.0998	-2.2333	0.0904	0.3498
-0.7100	-0.5588	-1.2053	-0.4398	-0.9349	-0.1979	0.1949	1.8049	-0.0288	0.6951
-1.4028	0.0290	0.8357	-0.5120	0.6567	-0.4828	0.6372	-0.1542	0.0678	0.0309
0.6795	0.1335	-1.1944	1.2300	0.5544	-0.5639	-0.6139	-0.9117	-0.3365	-0.0323
1.2722	0.1115	0.7540	-0.3237	-1.1427	-0.9034	0.5621	0.3240	-0.0531	-0.2701
-0.3898	1.2622	0.6158	0.5599	1.1563	0.2525	0.6353	-0.1367	0.1981	-0.4364
1.0967	1.0540	0.0467	-1.6072	0.4420	0.0500	0.1908	-0.6121	0.4806	0.9751
-0.9411	0.9399	-0.1422	1.3709	-0.0272	-1.0987	0.0314	-0.7036	0.3575	0.0999
-0.3150	-0.7513	-0.3794	1.5131	-0.3356	-0.8872	-0.1424	0.4710	-0.3919	-0.7962
-1.5790	-0.1475	-0.5808	-0.1586	0.3363	-0.4257	0.4864	0.0445	0.8217	-1.1964
0.1244	1.2940	0.3024	-1.0826	0.3404	0.7239	-0.4583	-0.8364	-0.5410	1.3316
-0.1546	-0.6656	0.7605	-0.4454	-1.9153	-0.4897	-0.4932	-0.1762	0.3662	-1.0835
0.9913	0.9049	-0.1068	-0.5736	0.2502	0.6042	-0.8447	-1.7117	0.2112	1.6101
-1.0200	1.1767	-0.0235	-0.7527	-0.0703	-0.0224	0.6376	0.7318	0.0436	-1.9428

Tableau II.6: Modèle de réseau de neurones établi {(Couche cachée 1 – couche cachée 2)}

	Connexion [Couche cachée 1 – Couche cachée 2]									
	Matrice des poids									
W i, 1	$W_{i, 2}$	W i, 3	W _{i, 4}	W i, 5	W _{i, 6}	W i, 7	W i, 8	W i, 9	Wi, 10	
0.4230	-0.2733	-0.1333	0.3286	-0.1784	0.2725	-0.2243	-0.7888	1.0133	-0.5545	
0.4069	-0.2377	-0.4540	0.0811	-0.3627	-0.5729	-0.1908	-0.4594	-0.6367	-0.0245	
0.8673	0.4462	-0.6065	-0.7166	0.2345	-0.2915	0.0897	0.0147	0.0663	0.1365	
1.2081	-0.4643	-0.8491	-0.1035	-0.5270	0.1731	-0.5106	-0.2255	0.7377	-0.7183	
-0.0304	0.0319	0.4465	-1.0341	0.1381	0.0586	0.1467	0.2809	-0.1463	-0.4178	
-0.3468	0.7299	0.2483	0.1389	-0.1600	-0.2357	-0.1584	0.5594	0.5781	0.5092	
-0.1092	0.1789	0.5839	-0.2864	-0.0982	0.7776	-0.2471	0.6397	0.3302	0.4818	
0.7171	-0.1985	-0.1376	-0.9106	1.1728	0.3067	0.0235	0.3099	-0.4967	0.6070	
0.5238	0.2991	0.2960	-0.1806	-0.3063	-0.6585	0.2017	-0.2752	-0.6557	0.1760	

Chapitre 2 : Méthodologie et résultats de la modélisation neuronale de l'adsorption mono et multi composante.

-0.9386	-0.3064	0.0925	-0.4685	0.6372	0.0866	0.5756	0.5944	0.4067	-0.0533
-0.4512	-0.2906	-0.2660	-0.2619	0.6392	0.6074	-0.1618	-0.4802	0.0563	0.2246
-1.4427	0.0321	0.9336	0.5344	0.1107	-0.1679	0.7915	-1.0506	0.3500	0.2735
-0.5867	0.0533	0.5073	0.7047	-0.6453	0.3786	1.2566	0.5022	0.0012	0.0956
-0.2284	0.3393	-0.0368	0.0265	-0.7787	-0.0509	-0.8262	-0.1741	0.2818	0.0931
1.0740	-0.0401	0.8348	0.6902	-0.2310	-0.2570	0.7241	-0.2901	0.2581	0.3981

			Connexio	on [Couche ca	nchée 1 – Co	uche cachée 2	2]			
Matrice des poids									Vecteur des biais	
W _i , 11	Wi, 12	Wi, 13	Wi, 14	Wi,15	Wi, 16	Wi, 17	Wi, 18	Wi, 19	Wi, 20	bj
-0.5655	-0.7354	-0.6243	0.0837	-0.8246	-0.3785	-0.4131	0.1136	-0.0123	0.0030	-1.4574
-0.0989	-0.2586	0.3949	0.3536	-0.6713	-0.2317	0.4454	0.3121	0.0412	-0.3905	-1.4472
0.6315	-0.3722	-0.2318	0.1659	-0.3348	0.0342	0.8367	0.3263	-0.0380	0.3135	-1.4013
-0.5523	0.2747	-0.4762	0.3120	-0.8622	0.0190	-0.2512	0.0492	-0.6200	-0.2907	-0.4039
-0.2930	0.8000	-0.1963	0.4884	0.3055	-0.2929	0.1625	0.5582	-0.4928	-0.2114	-0.8945
-0.2718	0.4532	0.2053	0.2003	-0.4235	0.2950	0.5644	-0.4544	0.4339	0.0120	0.4582
-0.3346	0.2600	0.1922	-0.5042	0.4162	0.0185	-0.2758	0.2742	0.7176	-0.3504	0.6077
0.7388	0.0099	-0.3068	-0.4561	0.1444	0.2973	0.3071	0.2473	0.5923	0.2463	-0.0688
-0.7425	0.1589	0.1929	0.2474	-0.1300	-0.1605	0.2770	0.0482	-0.7568	-0.4843	0.0048
0.0735	-0.4341	-0.6521	-0.1339	0.2104	0.1059	-0.5892	-0.1477	-0.1586	-0.6631	-0.3422
-0.2472	-0.1064	0.1330	-0.8358	0.5736	0.3512	-0.5513	0.1771	0.1824	-0.9979	0.6671
0.5600	-0.0952	-0.0071	0.2548	0.2693	0.3188	-0.6844	-0.6066	-0.1176	-0.1046	0.5957
0.1116	-0.6634	0.2500	0.0244	0.5553	0.3302	0.2633	-0.3830	-0.7175	0.6200	-0.6720
-0.2497	-0.4829	0.4567	0.5108	-0.3886	-0.3135	0.3850	0.1051	-0.1711	-0.2509	-1.7598
-0.5027	-0.0412	-0.2636	0.3691	0.2145	0.3225	0.3214	0.0298	-0.3496	-0.5811	1.8849

Tableau II. 7 : Modèle de réseau de neurones établi {[Couche cachée 2 – couche sortie]}.

Chapitre 2 : Méthodologie et résultats de la modélisation neuronale de l'adsorption mono et multi composante.

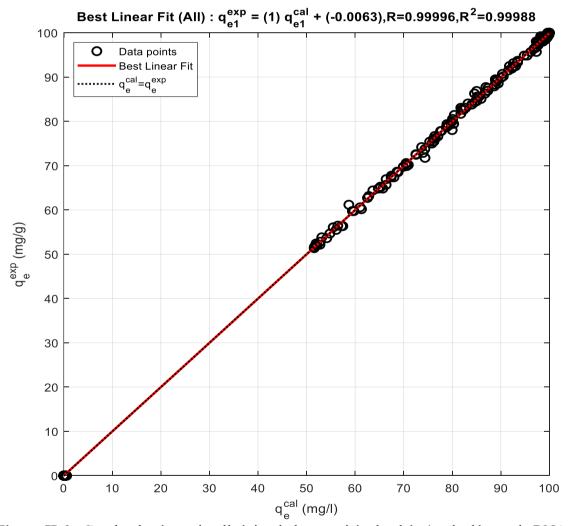
poids	1	2	3	4	5	6	7	8
W _{m,1}	-0.8214	0.7742	0.8716	0.2093	-0.4294	-0.7951	0.6351	0.1501
W _{m, 2}	0.1041	-0.1153	0.2458	0.3761	0.6171	0.2380	0.2353	-0.6888
W _m , 3	1.3764	0.8414	-0.1515	0.4507	-0.4719	-0.3864	-0.7597	1.1428

poids	9	10	11	12	13	14	15	Vecteur des biais (b _p)
W _{m, 1}	-0.5888	0.0777	-0.2653	0.5290	-0.5672	-0.1253	-0.3861	-0.1735
W _m , 2	-0.0385	-1.2674	-0.8298	-0.0302	0.1665	-1.3230	-0.3988	-0.1360
W _m , 3	0.1855	-0.2026	-0.2473	1.0266	0.2951	0.8980	-0.6375	1.3609

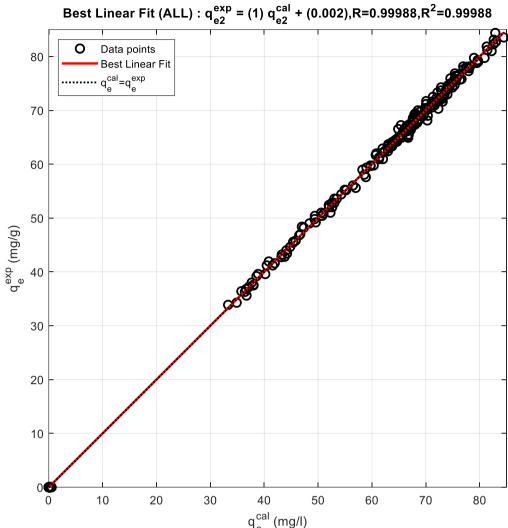
II.3 - Résultats et discussion :

Dans notre travail on exploite la technique de RNA, en utilisant le logiciel MATLAB.19 afin de prédire la quantité adsorbée.

L'optimisation de l'architecture du RNA consiste à la détermination :


- du nombre des neurones dans la couche cachée.
- ➤ de la fonction d'activation des couches cachées et la couche de sortie.
- ➤ de l'algorithme d'apprentissage, par comparaison des performances des RN sur la base d'apprentissage, test et validation en termes d'erreur quadratique moyenne MSE (Eq.II.10).

Avec:
$$MSE = \frac{1}{N} \sum (y_i^{exp} - y_i^{cal})^2$$
 (II.10)


N : Le nombre des points des quantités adsorbées (nombres d'expériences).

II.3.1 <u>Interprétation des résultats</u>:

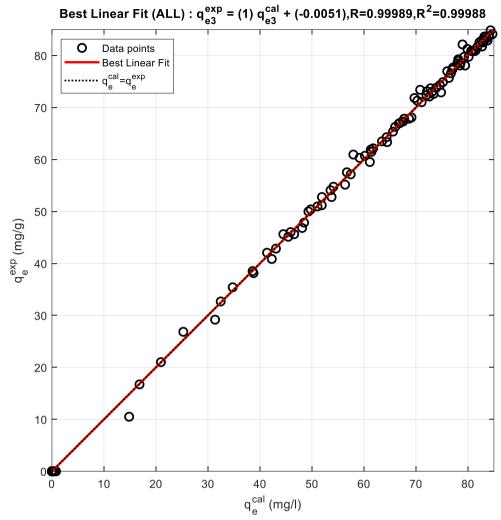

Les résultats de performances du modèle du réseau de neurones établies pour la phase globale pour la quantité adsorbée 1,2 et 3 sont présentes sur les figure II.6 a II.8 montre bien que tous les points sont situés sur la première bissectrice avec un coefficient de régression approchant l'idéal $[\alpha \text{ (pente)}, \beta \text{ (ordonnée à l'origine)}, R^2 \text{ (coefficient de détermination)}] = [1, -0.0063, 0.99992]$ pour la quantité adsorbée 1. La figure II.7 montre la courbe de régression linéaire de la quantité adsorbée 2 calculée par le RNA avec la quantité adsorbée 2 expérimentale montre que tous les points sont situés sur la première bissectrice avec un coefficient de régression parfait [1, 0.002, 0.99976]. La figure II. 8 montre la régression linéaire pour la troisième sortie (la quantité adsorbée 3) avec un vecteur de régression linéaire égal à [1, -0.0051, 0.99988]. Ce qui confirme la robustesse du RNA.

Figure II.6 : Courbe de régression linéaire de la quantité adsorbée 1 calculée par le RNA optimisé avec la quantité adsorbée 1 expérimentale pour la phase globale.

q^{cal} (mg/l) **Figure II.7 :** Courbe de régression linéaire de la quantité adsorbée 2 calculée par le RNA optimisé avec la quantité adsorbée 2 expérimentale pour la phase globale.

Figure II.8 : Courbe de régression linéaire de la quantité adsorbée 3 calculée par le RNA optimisé avec la quantité adsorbée 3 expérimentale pour la phase globale.

II.3.2. Critères de performances statistiques (Analyse et évaluation d'un modèle)

Pour analyser plus précisément les performances des modèles du RNA, l'ensemble des erreurs sont calculée pour les valeurs prédîtes des concentrations des colorants adsorbées. Les indices d'évaluation couramment utilisés comprennent l'erreur quadratique moyenne (MSE), la racine de l'erreur quadratique moyenne (RMSE), l'erreur quadratique moyenne normalisée (NRMSE), l'erreur moyenne absolue (MAE), l'erreur moyenne absolue en pourcentage (MAPE), l'erreur relative absolue (ERA), le coefficient de corrélation (R) et le coefficient de détermination (R²), sont donnés par les équations (II.14) à (II.21) :

$$MSE = \frac{1}{n} * \sum_{i=1}^{n} (Y - Y_{cal})^2$$
 (II.14)

$$RMSE = \sqrt{\frac{1}{n} * \sum_{i=1}^{n} (Y_{cal} - Y)^2}$$
 (II.15)

$$NRMSE = \sqrt{\frac{n \sum_{i=1}^{n} (Y - Y_{cal})^{2}}{(\sum_{i=1}^{n} Y)^{2}}}$$
 (II.16)

$$MAE = \frac{1}{n} * \sum_{i=1}^{n} |Y_{cal} - Y|$$
 (II.17)

$$MAPE = \frac{1}{n} * \sum_{i=1}^{n} \left(\frac{|Y - Y_{cal}|}{Y} \right) * 100$$
 (II.18)

$$ERA = \left| \sum_{i=1}^{n} \frac{Y - Y_{cal}}{|Y|} \right| \tag{II.19}$$

$$R = \frac{\sum_{i=1}^{n} ((Y - \bar{Y}) * (Y_{cal} - \bar{Y}_{cal}))}{\sqrt{\sum_{i=1}^{n} (Y - \bar{Y})^{2} * \sum_{i=1}^{n} (Y_{cal} - \bar{Y}_{cal})^{2}}}$$
(II.20)

$$R^{2} = 1 - \left(\frac{\sum_{i=1}^{n} ((Y - Y_{cal})^{2})}{\sum_{i=1}^{n} ((Y - \bar{Y})^{2})}\right)$$
(II.21)

Où Y sont les données observées, \overline{Y} est la moyenne arithmétique des données observées données par l'équation (II.22), Y_{cal} sont les valeurs calculées, \overline{Y}_{cal} est la moyenne arithmétique des données prédites données par l'équation (II.23) et "n" est le nombre des données.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y \tag{II.22}$$

$$\bar{Y}_{cal} = \frac{1}{n} \sum_{i=1}^{n} Y_{cal}$$
 (II.23)

Les résultats de calcul sont indiqués dans les tableaux de II.8 à II.10. Le RNA montre d'une part la prédiction de calcul des concentrations des colorants adsorbées et d'autre part la robustesse du modèle neuronal.

Tableau II.8: Résultats des paramètres statistiques du modèle 1 RNAo développé dans ce travail.

Туре	Phase	Phase	Phase	Phase
d'erreur	(App)	(Test)	(Val)	(All)
MSE	1.3857e-04	0.0183	0.9107	0.2065
RMSE	0.0118	0.1352	0.9543	0.0118
NRMSE	2.8217e-04	0.0034	0.0233	0.0110
MAE	0.2148	0.3359	0.3066	0.2148
MAPE	5.1989	5.3957	5.2444	5.2393
ERA	0.0050	0.0078	0.0072	0.0058
α	1	1	1	1
β	-0.0015	0.037	-0.069	-0.0063
R	0.99997	0.99992	0.99994	0.99996
\mathbb{R}^2	0.99994	0.99984	0.99988	0.99992

Tableau II.9: Résultats des paramètres statistiques du modèle 2 RNAo développé dans ce travail.

Type	Phase	Phase	Phase	Phase
d'erreur	(App)	(Test)	(Val)	(All)
MSE	2.0961. 10 ⁻⁷	0.0465	1.5722.10 ⁻⁵	0.0075
RMSE	4.5783e-04	0.2157	0.0040	$4.5783.10^{-4}$
NRMSE	1.4898e-05	0.0070	1.3012e-04	3.5900. 10-4
MAE	0.3203	0.3687	0.3957	0.2503
MAPE	5.2219	5.2658	5.2697	5.2372
ERA	0.0101	0.0124	0.0124	0.0107
α	1	1	1	1
β	-0.00065	-0.0099	0.025	0.002
R	0.99989	0.99987	0.99983	0.99988
\mathbb{R}^2	0.99978	0.99974	0.99966	0.99976

Tableau II.10: Résultats des paramètres statistiques du modèle 3 RNAo développé dans ce travail.

Type	Phase	Phase	Phase	Phase
d'erreur	(App)	(Test)	(Val)	(All)
MSE	1.9799. 10-4	2.1094. 10-5	0.0311	0.0073
RMSE	0.0141	0.0046	0.1764	0.0141
NRMSE	3.5871	1.1564. 10-4	0.0044	3.5900. 10 ⁻⁴
MAE	0.3014	0.5279	0.5145	0.5145
MAPE	5.1766	5.1420	5.0187	5.1446
ERA	0.0074	0.0129	0.0127	0.0092
α	1	1	1	1
β	0.00079	-0.0016	-0.033	-0.0051
R	0.99994	0.9998	0.9997	0.99989
\mathbb{R}^2	0.99988	0.99960	0.9994	0.99988

Conclusions

Cette étude a permis de développer un modèle MLP pour modéliser l'adsorption des colorants sur le GPN. Le modèle a obtenu une erreur quadratique moyenne (RMSE) de 0,4544 et un coefficient de corrélation (R) de 0,9998 sur l'ensemble des données, ainsi qu'un R de 0,99 lors de la phase de validation.

Ces résultats démontrent la robustesse et la précision du modèle pour prédire efficacement la quantité de colorant adsorbée. Ils confirment également l'intérêt d'intégrer les réseaux de neurones artificiels dans les procédés de traitement des eaux usées afin d'améliorer leur efficacité.

Pour l'avenir, il serait pertinent d'étendre cette approche à d'autres systèmes adsorbant/adsorbat et d'explorer d'autres techniques d'intelligence artificielle pour optimiser les performances.

Partie bibliographique

- [1] C.MANOLE, "d'élimination de polluants organiques non biodégradables, par adsorption puis oxydation catalytique," p. 2007, 2007.
- [2] N. Ettlili, "Procé dé d'adsorption avec régénération électrique pour la capture du dioxyde de carbone en post-combustion," Institut National Polytechnique de Lorraine, France., 2008.
- [3] A. namane, "adsorption biodégradation du phénol par psodomonas aeruginosa immobilisée sur du charbon actif en grain," ENP, 2006.
- [4] L. Robel, "Opération unitaire (Adsorption). Technique d'ingénieur," 1989.
- [5] A. Bembnowska, R. Pelech, and E. Milchert, "Adsorption from aqueous solutions of chlorinated organic compounds onto activated carbons," p. 2003, 2003.
- [6] Y. Nouara, "Étude de l'adsorption des composes phénoliques des margines d'olive sur carbonate de calcium, hydroxyapatite et charbon actif," Universite Mouloud Mammeri de Tizi ouzou, 2012.
- [7] N. SEDIRA, "Etude de l'adsorption des métaux lourds sur un charbon actif issu de noyaux de dattes. Mémoire de magister en chimie physique et analytique, option environnement et traitement des eaux .," .université de Souk Ahras, 2013.
- [8] OUSLIMANI N, "Adsorption des colorants acides des effluents manufacturiers par des montmorillonites. Thèse de doctorat en sciences et génie des matériaux, option chimie de la matière et de l'environnement," université de BOUMERDES, 2012.
- [9] K. NOLL, E. GOUNARIS, and W. HOU Shin., "Adsorption theory in: Adsorption technology for air and water pollution control.," p. 1992, 1992.
- [10] J. RICHARDS, "Control of Gaseous Emissions: Student Manual: Apti Course 415.," Université of North Carolina state, 1995.
- [11] Y. YAHIAOUI, "Etude de l'adsorption des c omposés phénoliques des margines d'olive sur carbonate de calcium, hydroxypatite et charbon actif," université de TIZI OUZOU, 2012.
- [12] C. Imane, "Etude de 1 'adsorption compétitive en mode dynamique sur lit de CAG," 2014.
- [13] I. GANI, Hichem Mohamed Cherif KHELIFI, "Etude de 1 ' adsorption en mode dynamique sur des adsorbants a base d '(oxy) hydroxydes de fer," UNIVERSITE BLIDA 1, 2021.
- [14] N. NAIT MERZOUG, "Application des tiges de dattes dans l'adsorption de polluants organiques," 2014.
- [15] M. AARFANE A, SALHI A, EL KRATI M, TAHIRI S, "Etude cinétique et thermodynamique de l'adsorption des colorants Red195 et bleu de méthylène en milieu

- aqueux sur les cendres volantes et les mâchefers.," vol. 5, p. 2014, 2014.
- [16] T. S. A. A. FAYOUD N, ALAMI YOUNSSI S, "FAYOUD N, ALAMI YOUNSSI S, TAHIRI S ALBIZANE A," vol. 6, p. 3306, 2015.
- [17] Dr SELAIMIA Radia, "Dr SELAIMIA Radia.ETUDE DE L'ELIMINATION DES POLLUANTS METALLIQUES PAR ADSORPTION," Université de Guelma, 2023.
- [18] H. BOULKRAH, "Etude comparative de l'adsorption des ions plomb sur différents adsorbants. Mémoire de magister en chimie, option pollution chimique et environnement," université de SKIKDA, 2008.
- [19] et a G. M. G. Siregar, R. F. Syahputra, R. Farma, "Koh activation with microwave irradiation and its effect on the physical properties of orange peel activated carbon," vol. 2049, p. 12025, 2021.
- [20] M. Hillel, "MODELISATION DES CINETIQUES D'ADSORPTION DANS LE CAS DU PHENOL ETDU BLEU DE METHYLE SUR LE CHARBON ACTIF EN GRAIN," ECOLE NATIONALE SUPERIEUR POLYTECHNIQUE, 2009.
- [21] M. A. Slasli, "Modélisation de l'adsorption par les charbons microporeux : Approches théorique et expérimentale.," PhD thesis, 2002.
- [22] I. Bounou, "Modélisation des isothermes d'adsorption dans le cas de : phénol et de bleu de méthyle sur le charbon actif en grain," école nationale supérieure polytechnique.
- [23] H. Le Pape, "Etude des propriétés germicides de fibres de carbone activé : Application à la décontamination de l'air en cabine d'avion.," p. 2003, 2003.
- [24] L. Bettou and Ch. Mohammedi, "Synthèse et caractérisation des nanoparticules de silice fonctionnelles à partir de fluide de coupe par méthode sol-gel," UNIVERSITE de BLIDA 1, 2020.
- [25] El-Hadi BENYOUSSEF, "Adsorption d'un polluant pharmaceutique (Amoxicilline) sur charbon actif," Ecole Nationale Polytechnique LAVALEF, 2020.
- [26] N. K. Amin, "Polymers as Adsorbents in Environmental Treatment," vol. 44, p. 2009, 2009.
- [27] B. Cao, L., & Gao, "Organic Adsorbents in Wastewater Treatment. Environmental Science & Technology," vol. 48, p. 5486, 2014.
- [28] B. H. Foo, K. Y., & Hameed, "Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal," vol. 156, p. 2010, 2010.
- [29] M.R.KRBACHI, "Etude de traitment et de caractérisation des adsorbants naturels et essais de rétention des polluant organique et inorganique.," Université Baumerdas, 2016.
- [30] B. Chafia, "ETUDE DE L' ADSORPTION DES METAUX Hg2+, Cu2+, Zn2+, Fe3+, Cr6+ SUR CHARBON ACTIF EN GRAIN. MODELISATION," UNIVERSITE BADJI MOKHTAR ANNABA -, 2003.
- [31] G. O. G.E. Schubert, E. Sinner, "Resistanze des Nierengewebes gegen Dichromatschäden nach folsäureinjektion.," p. 1997, 1997.
- [32] E. Otabbong, : "Chemistry of Cr in somme swedish soils: transformation and changes in

- pH and cation exchange capacity in two soils incubated with potassium chromate," vol. 21, p. 1990, 1990.
- [33] N. HAFIANE, "Préparation et Caractérisation d'un charbon actifà partir des tiges des roseaux par voie chimique," UNIVERSITÉ KASDI MERBAH OUARGLA, 2020.
- [34] AKSAS H, "Etude cinétique et thermodynamique de l'adsorption des métaux lourds par l'utilisation des adsorbants naturels," université de BOUMERDES, 2013.
- [35] M. Academique, "Etude bibliographique sur l'adsorption de quelques colorants par des bio-adsorbant.," 2020.
- [36] R. CHERRAYE, "Préparation par voie chimique d'un charbon actif à partir des déchets de café (Effet de taux d'adjuvant)," p. 2012, 2012.
- [37] H. Aggoune, Bouaicha Chayma, "VALORISATION DES FEUILLES D'OLIVES POUR L'ELIMINATION DU Zn," Université de Guelma, 2022.
- [38] N. Sedira, "Etude de l'adsorption des métaux lou rds sur un charbon actif issu de noyaux de dattes.," Université Mohamed Chérif Massaadia de Souk-Ahras, 2013.
- [39] M. ROUSTAN and D. TONDEUR, "Contribution à la modélisation dynamique simplifiée d'un procédé d'adsorption modulée en pression (P.S.A.)," Universitée Claude Bernard Lyon 1, 2005.
- [40] K. Djamel and S. Kacha, "Étude cinétique et thermodynamique de 1 'adsorption d'un colorant basique sur la sciure de bois Study of the kinetics and thermodynamics of the adsorption of a basic dye on sawdust éTUDE CINÉTIQUE ET THERMODYNAMIQUE DE L'ADSORPTION D'UN COLORANT BA," J. Water Sci., 2025.
- [41] B. Oussama, "Etude bibliographique sur l'adsorption de quelques colorants par des bio-adsorbant," University Ouargla, 2020.
- [42] J. P. R.PERRIN, chimie industrielle.
- [43] Mme A.MERAKCHI M, "Valorisation des déchets des épluchures de pomme de terre pour l'élimination de bleu de méthylène," p. 80, 2007.
- [44] Mme A .BAKALEM, "Traitement des effluents textiles et de l'eau de mer par Electrocoagulation .," Ecole Nationale Polytechnique, 2016.
- [45] N. Bouchrit, Traitement des colorants textiles par procédés de couplage.
- [46] M AOUDJIT Fari, "Adsorption d'un colorant organique par les matériaux types Hydroxydes Doubles lamellaires.".
- [47] M. A. Aguado and M. A. Anderson, "Degradation of formic acid over semiconducting membranes supported on glass: effects of structure and electronic doping," *Sol. Energy Mater. Sol. Cells*, vol. 28, no. 4, pp. 345–361, 1993, doi: 10.1016/0927-0248(93)90122-J.
- [48] S. ARAR, "ADSORPTION DU COLORANT JAUNE D'ALIZARINE SUR DIFFERENTS BIOMATERIAUX," Université Larbi Ben M'hidi Oum el bouaghi, 2016.
- [49] M. Kebaili, "Elaboration d'un biofiltre pour la dépollution des eaux contaminées par des colorants," Université Ouargla, 2020.