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Abstract

Interstitial lung diseases (ILDs) are a diverse group of pulmonary disorders that cause
progressive scarring and inflammation of the lung tissue. Accurate diagnosis is challenging
due to the heterogeneous radiological appearance of lesions and the high volume of HRCT
data requiring expert interpretation. This complexity underscores the need for automated
systems capable of reliable and efficient ILD analysis.

This Dissertation presents a modular 3D deep learning system for the automated detection
and classification of ILD-related lesions from high-resolution computed tomography (HRCT)
scans. The pipeline is composed of three main stages: initial lung segmentation using a 3D
U-Net model, binary lesion detection using a patch-based 3D CNN classifier (Simple3DCNN),
and a second classification stage that performs multi-class lesion categorization across the
most common lesions using a fine-tuned version of the same CNN architecture. To improve
interpretability and trustworthiness of the system’s predictions, 3D Grad-CAM (Gradient-
weighted Class Activation Mapping) was applied to highlight salient regions influencing the
model’s classification decisions.

The system was trained and validated on a carefully preprocessed dataset, with patch
sampling strategies, and class balancing techniques. The lung segmentation model achieved
excellent results (Dice coefficient: 0.99, Hausdorff distance: 3.17), while the binary lesion
detector reached high sensitivity (0.993) and accuracy (0.994). The multi-class classification
stage achieved an overall accuracy of 88.73% and macro F1-score of 83.7% across most com-
mon lesion types. To validate spatial reasoning, Grad-CAM heatmaps were overlaid on the
original HRCT patches, confirming the network’s attention to clinically relevant regions and
structures.

These results demonstrate the pipeline’s ability to accurately detect and differentiate ILD
lesions in 3D space, while also providing visual interpretability through Grad-CAM that
can enhance clinical confidence in automated decision-making. The system provides a solid
foundation for future integration into diagnostic workflows and further extension toward
real-time, explainable Al tools in pulmonary imaging.

Keywords: Interstitial Lung Diseases (ILD), 3D Medical Image Segmentation, Pulmonary
Lesion Classification, Deep Learning in Thoracic Imaging



Résumé

Les maladies pulmonaires interstitielles (ILD) sont un groupe hétérogeéne de troubles respiratoires chro-
niques qui posent d'importants défis en matiére de diagnostic en raison de similitudes radiologiques entre les
différentes formes. Ce mémoire propose un systéme intelligent en 3D pour la détection et la classification
automatiques des régions pulmonaires infectées a partir d’images TDM a haute résolution (HRCT).

Ce mémoire présente un systéeme modulaire d'apprentissage profond 3D pour la détection et la classifica-
tion automatisées des 1ésions liées aux maladies pulmonaires interstitielles (ILD) a partir de scanners thora-
ciques haute résolution (HRCT). Le pipeline se compose de trois étapes principales : une segmentation initiale
des poumons a I’aide d’un mod¢le 3D U-Net, une détection binaire des 1ésions a 1I’aide d’un classificateur 3D
CNN basé sur des patches (Simple3DCNN), et une deuxiéme étape de classification multi-classes identifiant
les 1ésions les plus courantes a 1’aide d’un modéle ayant subi un réglage fin de la méme architecture. Pour
renforcer I’interprétabilité et la fiabilité des prédictions, la méthode Grad-CAM 3D (Gradient-weighted Class
Activation Mapping) a été utilisée pour mettre en évidence les régions influencant les décisions du modé¢le.

Le systéme a été développé et évalué sur une base des données MedGIFT ILD, avec un échantillonnage
par patchs et des techniques d’équilibrage des classes. Le modéle de segmentation pulmonaire a atteint d’ex-
cellents résultats (coefficient de Dice : 0.99, distance de Hausdorff : 3.17), tandis que le détecteur binaire de
Iésions a atteint une sensibilité de 0.993 et une précision de 0.994. La classification multi-classes a atteint
une précision globale de 88.73% et un score F1 macro de 88.7% pour les types de 1ésions les plus courants.
Pour valider la cohérence spatiale, des cartes de chaleur Grad-CAM ont été superposées aux patches HRCT
d'origine, confirmant I’attention du réseau sur des zones pertinentes cliniquement.

Ces résultats démontrent la capacité du pipeline a détecter et différencier avec précision les Iésions ILD
dans un espace tridimensionnel. L’ajout de Grad-CAM permet une interprétabilité visuelle qui renforcer la
confiance clinique dans I’IA. Ce systéme constitue une base solide pour une future intégration dans les flux
cliniques et pour le développement d’outils de support décisionnel explicables en temps réel.

Mots-clés : Maladies pulmonaires interstitielles, Segmentation d'images médicales 3D, Classification des
lésions pulmonaires, Apprentissage profond en imagerie thoracique
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Acronyms

Abbreviation | Definition

3D U-Net Three-Dimensional U-Net Architecture

AUC Area Under the Receiver Operating Characteristic
Curve

CNN Convolutional Neural Network

Dice Serensen—Dice Coefficient

Dicom Digital Imaging and Communications in Medicine

FN False Negative

FP False Positive

F1 F1 Score (harmonic mean of precision and recall)

GGO Ground Glass Opacity

Grad-CAM Gradient-weighted Class Activation Mapping

HRCT High-Resolution Computed Tomography

HU Hounsfield Unit

ILD Interstitial Lung Disease

ROC Receiver Operating Characteristic

TN True Negative

TP True Positive

XAI Explainable Artificial Intelligence
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CHAPTER 1

INTRODUCTION

Interstitial lung diseases (ILDs) are a diverse group of chronic lung disorders, characterized
by inflammation and fibrosis of the lung interstitium. With absence of timely treatment,
some subtypes of ILD can cause progressive and permanent damage, resulting in severe
respiratory disfunction and quality of life [1]. Timely diagnosis is important, as some ILDs
may be amenable to treatment in their early stages, while advanced fibrotic changes are
generally irreversible [2].

For the latter indication HRCT has developed as an essential non-invasive method for
ILD, allowing detailed insight into the architecture of the lung [3]. Yet, accurate analysis of
HRCT scans remains a clinical dilemma. Many subtypes of ILD have overlapping radiological
features; subtle imaging findings including ground glass opacities and early fibrotic change can
be overlooked [4]. In addition, interpretation of hundreds of axial slices for volumetric scans
is very labor-intensive and is subject to inter-observer variability, particularly in ambiguous
or mix-pattern [5].

In such a situation, Al and deep learning techniques are promising resources for assisting
clinical decision-making [6], [7]. Recent developments of medical imaging reveal the enor-
mous potential of Convolutional Neural Networks (CNNs) to automatically recognize disease
patterns with high accuracy. Specifically, 3D CNNs are appropriate to deal with volume
data such as HRCT, as they can take advantage of spatial coherence across slices. Moreover,
incorporating interpretability techniques like Grad-CAM can contribute to improve trust and
transparency, by indicating which image regions drive the Al-derived result.

This increasing intersection of Al and radiology reveals new prospects for creating reliable,
interpretable, and clinically relevant tools for early ILD detection and classification lesions.

Although several previous studies [7]-[9] have employed 2D CNNs based on individual
slices, and despite their potential advantages, they may neglect the full anatomical and
pathological context. ILD lesions were usually across some slices and showed the complicated
3D structure. A 3D CNN would thus be more appropriate to capture these 3D patterns and
could potentially take advantage of enhancing the lesion localization, delineation, and the
classification performance.

High-Resolution Computed Tomography (HRCT) offers critical visual insights for the



diagnosis of interstitial lung diseases (ILDs). However, its interpretation relies heavily on
radiologist expertise and the manual review of hundreds of axial slices per patient. This
diagnostic process is time-intensive, subject to inter-observer variability, and may yield in-
consistent results particularly in early stage or mixed pattern ILDs where radiological features
are often subtle or ambiguous.

The heterogeneity of ILD manifestations, their radiological overlap with other pulmonary
conditions, and the absence of standardized diagnostic ground truths further complicate accu-
rate assessment. These challenges highlight the urgent need for automated, interpretable, and
scalable solutions capable of reducing diagnostic variability, improving workflow efficiency,
and supporting the reliable detection and classification of ILD lesions from volumetric HRCT
scans.

This dissertation seeks to build a 3D deep learning based pipeline for automatic detection
and classification of lesions related to ILD from HRCT scans. The specific objectives of the
work are:

e To develop a 3D U-Net model for precise segmentation of lung regions on volumetric

CT data.

e To build a lightweight binary classifier module to segmentation of healthy and patho-
logical regions.

o To design and evaluate a multi-class classification phase for detection of common ILD
patterns (ground-glass opacities, fibrosis, and reticulation).

o To incorporate Grad-CAM-based interpretability methods into the classification pipeline
to increase transparency and aid in clinical decision-making.

The remainder of this dissertation is structured as follows:
o Chapter 1 introduces the clinical and technical context and defines the dissertation
scope and objectives.

o Chapter 2 reviews the state of the art in lung and lesion segmentation, ILD classifi-
cation.

o Chapter 3 describes the proposed methodology, including dataset handling, prepro-
cessing, and model design.

o Chapter 4 outlines the experimental design, data partitioning strategy, and evaluation
setup.

o Chapter 5 presents the results of segmentation, binary detection, multi-class classifi-
cation, and Grad-CAM analysis.

o Chapter 6 summarizes the key findings and suggests directions for future research and
clinical integration.



CHAPTER 2

STATE OF THE ART

2.1 Introduction

In the past decade, the advancement of artificial intelligence (AI) has significantly changed
the scene of the medical image, providing a variety of promising utilities for disease detection,
segmentation and classification [10].

In the context of interstitial lung disease (ILD), a complex group of disorders with over-
lapping radiological and clinical manifestations, HRCT has become the gold standard for
non invasive diagnosis, but its interpretation is still subjective and greatly benefits from
multidisciplinary discussion (MDD) [11].

This chapter initially reviews the clinical and radiological background of ILD, and then
provides an overview of the current state of deep learning driven methods in lung segmenta-
tion and disease detection and classification.

2.2 Clinical background of interstitial lung diseases

To understand the clinical implications of interstitial lung diseases it is important to clarify
their definitions and the subtypes that fall under this broad category.

2.2.1 Definitions and types

More than 100 disorders with varying degrees of pulmonary interstitium inflammation and
fibrosis are collectively referred to as interstitial lung diseases (ILDs). The lung architecture
is disturbed by interstitial lung diseases, which also affects gas exchange and cause progressive
respiratory failure. ILDs appear radiologically as pattern on HRCT scans and clinically with
cough, breathlessness, and reduction in lung volumes [12].

According to the American Thoracic Society (ATS) and the European Respiratory Society
(ERS) [13], ILDs can be divided into a number of general types based on their etiology and
pathogen A brief categorization is shown in Table 2.1.



Category

Description

Key Examples

Idiopathic ILDs of unknown cause, Idiopathic Pulmonary

Interstitial categorized by histopathology and | Fibrosis (IPF), Non

Pneumonias clinical features. Specific Interstitial

(IIP) Pneumonia (NSIP), Acute
Interstitial Pneumonia
(AIP)

Autoimmune Occurs in association with Systemic sclerosis

related ILD

connective tissue diseases.

associated LD,
Rheumatoid arthritis
associated ILD

Exposure
related ILD

Caused by environmental or
occupational inhalants, or drug
induced injury.

Hypersensitivity
Pneumonitis, Asbestosis,
Chemotherapy induced
ILD

Cystic and
Airspace Filling
ILDs

Characterized by cyst formation
or alveolar filling abnormalities.

Lymphangioleiomyomatosis
(LAM), Pulmonary
Langerhans Cell
Histiocytosis

ILDs Related to

Secondary to systemic

Sarcoidosis, Vasculitis

Systemic inflammatory or granulomatous

Diseases diseases.

Other and Rare or overlapping ILDs that do | Chronic eosinophilic
Unclassifiable not fit existing classification pneumonia, ILD associated
ILDs criteria. with malignancy

Table 2.1: Major categories of interstitial lung diseases

This classification framework is not only essential for differential diagnosis, but also for
guiding treatment and prognosis [13]. For example, idiopathic pulmonary fibrosis (IPF) his-
torically has a progressive and irreversible course and is unresponsive to immunosuppression,
while ILDs in the context of autoimmune diseases may be responsive to corticosteroids or
biologics [1].

Grouping ILDs into etiologically homogeneous categories, the classification makes it easier
to develop targeted artificial intelligence (AI) models that can distinguish between disease
entities based on clinical and radiological data.

The distribution of ILD subtypes varies significantly across regions, influenced by genetic,
environmental, and clinical practice factors. A prospective cohort study conducted in Algeria
by Abdelbassat Ketfi et al. [14] analyzed 455 newly diagnosed ILD patients between 2015
and 2019. The study revealed that connective tissue disease-associated ILD (CTD-ILD) was
the most common subtype, accounting for 48.1% of cases, followed by idiopathic interstitial
pneumonias (ITPs) at 23.5%, sarcoidosis at 16.9%, interstitial pneumonia with autoimmune
features (IPAF) at 12.1%, and hypersensitivity pneumonitis (HP) at 2.4%. Notably, id-
iopathic pulmonary fibrosis (IPF)—a dominant subtype in Western datasets—represented
only 8.6% of cases. These findings underline the epidemiological heterogeneity of ILDs and
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support the need for region-specific diagnostic frameworks and datasets in both clinical and
Al-based research.

2.2.2 Clinical and radiological characteristics of ILDs

Interstitial Lung Diseases (ILDs) are related with critical horribleness and mortality. Com-
mon indications incorporate progressive dyspnea (shortness of breath), chronic cough, and
work out intolerance. As the disease progresses, pulmonary work ordinarily declines, driving
to prohibitive patterns characterized by decreased lung volumes and diffusing capacity. Early
detection and exact diagnosis are vital for compelling management and to moderate disease
progression. Notably, ILDs can result in aggravation and scarring of the lung tissue, driving
to disabled lung work and decreased quality of life [15].

High-Resolution Computed Tomography (HRCT) is considered as the best imaging modal-
ity for the diagnosis and follow-up of interstitial lung diseases (ILDs) as it depicts fine
parenchymal details and specific lung patterns. Different from normal CT scanning, HRCT
uses thin slice image (usually 1-1.5mm) with high resolution and low motion artifacts, which
facilitates to capture the subtle lesion in lung interstitium, like ground-glass opacity, retic-
ulation, and honeycombing [16]. These patterns have a tendency to identify specific ILD
subtypes and limit differential diagnoses [11].

Pattern Description Common Associations
Ground Glass Areas of hazy increased Non Specific Interstitial
Opacities attenuation with preserved Pneumonia (NSIP), Acute
(GGO) [17] bronchial and vascular structures. | Interstitial Pneumonia
(AIP), viral infections
Reticular A network of intersecting linear Idiopathic Pulmonary
Pattern [16] opacities due to interstitial Fibrosis (IPF), Connective
thickening. Tissue Disease associated
ILD
Honeycombing Subpleural clustered cystic IPF with a Usual

Interstitial Pneumonia
(UIP) pattern

UIP, NSIP, Chronic
Hypersensitivity

[18] airspaces with shared walls,
typically in basal zones.

Fibrosis [16] Irreversible scarring of the lung

parenchyma characterized by

architectural distortion, volume
loss, and often associated with
traction bronchiectasis.

Pneumonitis, Connective
Tissue Diseases

Consolidation Homogeneous increased density Organizing Pneumonia,

[19] that obscures vessels and bronchi. | Infection, Malignancy

Micronodules Tiny nodules (< 4 mm), either Sarcoidosis,

[20] perilymphatic, centrilobular, or Hypersensitivity
random in distribution. Pneumonitis

Table 2.2: Common HRCT Patterns Observed in ILDs



Figure 2.1: Representative HRCT patterns in ILD. A: Consolidation; B: Micronodules; C:
Ground glass opacities; D: Reticular pattern; E: Honeycombing; F: Fibrosis.

Figure 2.1 illustrates representative HRCT patterns observed in ILD patients, including
ground-glass opacities, reticulation, and fibrosis. These radiological patterns serve as key
inputs for automated Al-based analysis, providing spatial and texture-based cues that aid in
lesion classification and disease subtype differentiation.

2.2.3 Comparison with other pulmonary diseases

Accurate diagnosis of interstitial lung diseases (ILDs) is consistently difficult owing to the
overlapping clinical and radiological features with other lung conditions. Some of the most
commonly confused pathologies are COVID 19 pneumonia [21] and chronic obstructive pul-
monary disease (COPD) [22], both of which may present with ground glass opacities, dysp-
nea, and impaired lung function. These conditions, however, significantly differ in etiology,
radiological presentation, and disease course.

Table 2.3 compares ILDs, COVID 19 pneumonia, and COPD on various diagnostic fea-
tures, including cause, clinical presentation, radiological findings on HRCT, progression, and
treatment strategy.



Feature ILDs COVID 19 COPD
Pneumonia

Cause Often idiopathic, or Viral infection Chronic exposure to
associated with caused by SARS tobacco smoke or
autoimmune diseases | CoV 2. environmental
or environmental pollutants.
exposure.

Symptoms Progressive dyspnea, | Fever, dry or Chronic cough with
dry cough, fatigue. productive cough, sputum, exertional

acute dyspnea, dyspnea, wheezing,

myalgia. recurrent lower
respiratory infections (in
late stages).

HRCT Ground glass Bilateral, Emphysema, bronchial

Findings opacities, peripheral GGOs wall thickening, air
reticulations, traction | with or without trapping; absence of
bronchiectasis, and consolidation; fibrotic changes.
honeycombing in often lower lobe
subpleural and basal | predominant.
regions.

Progression | Chronic and usually Acute to subacute | Chronic and progressive
irreversible; variable course; may resolve | airflow limitation.
depending on or progress to post
subtype. COVID fibrosis.

Treatment Immunosuppressants, | Supportive care, Bronchodilators, inhaled
antifibrotics (e.g., corticosteroids, corticosteroids,
pirfenidone), oxygen antivirals, oxygen pulmonary
therapy, lung therapy (usually rehabilitation, long term
transplant in severe short term). oxygen therapy (LTOT)
cases. in severe cases.

Table 2.3: Comparative Clinical and HRCT Features of ILDs, COVID 19 Pneumonia, and

COPD

It is of the utmost importance for both radiologists and diagnostic algorithms based on
Al to be able to differentiate between these diseases. Misclassification, especially between
ILDs and COVID 19 pneumonia or COPD, can lead to inappropriate treatment or overlooked
diagnoses. As such, training datasets must be constructed to emphasize the subtle differ-
ences in both clinical and HRCT features in a bid to boost diagnostic accuracy and model

generalizability.




2.3 ILD datasets

The development and evaluation of automated systems for interstitial lung disease (ILD)
detection and classification require access to annotated datasets containing high-resolution
computed tomography (HRCT) scans. While data availability remains a limiting factor in
medical Al research, several publicly available datasets have been introduced in recent years
to facilitate progress in this field.

One of the most widely referenced datasets is the MedGIFT ILD Database, developed
by Depeursinge et al. It consists of HRCT scans from 113 patients diagnosed with various
ILD subtypes. The dataset includes voxel-level lesion annotations grouped into six radio-
logical patterns: consolidation, ground-glass opacity (GGO), reticulation, micronodules, and
fibrosis. Each volume is accompanied by both lung segmentation masks and lesion-specific
region of interest (ROI) masks, enabling training and evaluation of segmentation, detection,
and classification models.

Another relevant resource is the LTRC (Lung Tissue Research Consortium) dataset,
which provides HRCT scans from subjects with various lung diseases, including idiopathic
pulmonary fibrosis (IPF). However, the LTRC dataset lacks detailed lesion annotations, which
limits its use in supervised lesion-level classification tasks. Nonetheless, it can be employed for
weakly supervised or volumetric-level prediction studies, especially those focused on fibrosis
detection and lung function correlation.

Despite their importance, these datasets still present several limitations. Most suffer
from limited diversity in disease subtypes, and variability in scan resolution. Moreover,
publicly available ILD datasets often lack standardized diagnostic labels or ground truth
established through multidisciplinary consensus, which can affect reproducibility and cross-
study comparability.

Nevertheless, the availability of datasets like MedGIFT has catalyzed research in 3D seg-
mentation and classification of ILDs.

2.4 Deep learning for ILD analysis

Deep learning has revolutionized the analysis of pulmonary images, especially for the de-
tection and classification of Interstitial Lung Disease (ILD) patterns from High-Resolution
Computed Tomography (HRCT) images. Unlike traditional image processing methods, deep
learning models—particularly convolutional neural networks (CNNs)—provide a data-driven
approach capable of capturing complex spatial and textural features relevant for lung disease
assessment.

2.4.1 Lung segmentation studies

The development of CNN-based models has significantly improved the accuracy and robust-
ness of lung segmentation in chest CT and HRCT. Encoder-decoder architectures with skip
connections, such as U-Net and its variants, are commonly used to delineate lung boundaries,
even in the presence of pathological artifacts.



o Alom et al. [23] introduced the R2U-Net model, where both recurrent and residual
connections are integrated into the U-Net framework. The model enhances spatial fea-
ture learning and achieved a Dice coefficient of 0.981 on lung CT scans, outperforming
standard U-Net variants.

 Jinet al. [24] proposed a 2.5D CNN approach that incorporates axial slices with minimal
context from neighboring planes. Evaluated on the LIDC-IDRI dataset of over 1,000
patients, the model achieved a Dice score of 0.964, demonstrating the feasibility of
hybrid 2.5D techniques for large-scale clinical segmentation tasks.

« Park et al. [25] trained their fully automated 3D U-Net on 196 volumetric chest CT scans
from normal and mild-to-moderate COPD patients across three medical centers, and
validated performance on an additional 40 external scans, achieving mean Dice scores
of 0.97 £ 0.02 (internal) and 0.96 + 0.02 (external), demonstrating robust performance
and excellent generalization on both internal and external cohorts.

2.4.2 Binary ILD detection studies

Binary classification of HRCT images into healthy vs. pathological is a critical first step in
automated ILD diagnosis. These methods are particularly useful for triage and screening in
clinical workflows.

o Lu et al. [8] proposed a 2D patch-based CNN for ILD classification using a publicly
available dataset. They achieved 85.5% accuracy in binary detection. However, their
method lacked 3D context and used limited receptive fields, restricting its sensitivity
to spatial dependencies.

o Silva de Aratjo et al. [9] developed an ensemble model combining CNNs with radiomics-
based multilayer perceptrons (MLPs) trained on in-house CT data. The CNN achieved
87.0% accuracy, while the ensemble yielded a slight improvement to 87.4%. Perfor-
mance was affected by variability in acquisition protocols and disease manifestation.

2.4.3 Lesion segmentation studies

Lesion segmentation aims to isolate ILD-related patterns such as ground-glass opacities
(GGOs), honeycombing, fibrosis, and reticulation. Precise lesion-level segmentation supports
both quantitative analysis and targeted classification.

» Anthimopoulos et al. [7] used a 2D dilated CNN for patch-wise classification of ILD
patterns. Their method achieved 85.5% accuracy in distinguishing between common
ILD-associated features including GGOs and honeycombing.

o Wang et al. [26] proposed a cascaded dual U-Net framework, with the first network
performing lung segmentation and the second responsible for lesion segmentation. Us-
ing the MedGIFT ILD dataset, their method achieved a Dice score of 0.78, illustrating
the benefits of hierarchical localization.



« Zhang et al. [27] integrated attention gates into a 3D U-Net to enhance focus on lesion
regions. On a dataset of 150 ILD cases, the model achieved a Dice coefficient of 0.82
for GGOs, outperforming baseline 3D models.

o Park et al. [28] combined 3D segmentation with clinical metrics to quantify fibrotic
lesion volume. Their model achieved a Dice score of 0.89 across 40 patient scans,
highlighting the utility of integrating visual outputs with quantitative analysis.

2.4.4 1ILD classification studies

Subtyping ILDs is critical for treatment planning and prognosis. Deep learning models have
increasingly been applied to multi-class classification of HRCT scans based on characteristic
imaging features.

o Mei et al. [29] proposed a multimodal fusion framework that combines CNNs with
Transformer-based models to classify ILD subtypes. Trained on a multicenter dataset
of over 500 patients, their approach achieved an accuracy of 90.2%, showcasing the
advantage of integrating local and global feature representations.

» Chassagnon et al. [10] trained a deep CNN on over 1,200 HRCT scans to classify ILD
patterns into usual interstitial pneumonia (UIP) and non-UIP categories. Their system
achieved 93% accuracy, performing comparably to expert radiologists.

« Walsh et al. [30] conducted one of the first large-scale comparisons between deep learn-
ing classifiers and radiologist agreement. The model yielded a Cohen’s kappa of 0.74,
comparable to the inter-observer variability among human experts, validating the po-
tential of Al-assisted ILD diagnosis.

2.4.5 Summary of the studies

The following table 2.4 provides a comprehensive overview of the key studies reviewed in
this chapter, summarizing their methodological approaches, datasets used, and performance
metrics achieved. This comparison highlights the current state of research across different
aspects of ILD analysis, from lung segmentation to ILD classification, and demonstrates the
evolution of techniques in this field.
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Study Category Method Dataset Performance
Alom et al. [23] | Lung Seg- | R2U-Net  (Recurrent | Lung CT scans | Dice: 0.981
mentation + Residual U-Net)
Jin et al. [24] Lung Seg- | 2.5D CNN (axial slices | LIDC-IDRI Dice: 0.964
mentation with context) (1,000+ pa-
tients)
Park et al. [25] | Lung  Seg- | 3D U-NET 196 CT scans | Dice: 0.97
mentation (internal), 40 ex- | (internal),
ternal scans 0.96 (exter-
nal)
Lu et al. [§] Binary Detec- | 2D patch-based CNN | Public ILD | Accuracy:
tion dataset 85.5%
Silva de Aratjo | Binary Detec- | CNN + Radiomics | In-house CT | Accuracy:
et al. [9] tion MLP ensemble data 87.0%, En-
semble:
87.4%
Anthimopoulos | Pattern Clas- | Dilated CNN (patch- | ILD patterns | Accuracy:
et al. [7] sification wise) dataset 85.5%
Wang et al. [26] | Lesion  Seg- | Two-stage cascaded | MedGIFT ILD | Dice: 0.78
mentation U-Net dataset
Mei et al. [29] Subtype Clas- | Multimodal CNN + | Multicenter Accuracy:
sification Transformer fusion (500+ patients) | 90.2%
Chassagnon et | Subtype Clas- | Deep CNN 1,200 HRCT im- | Accuracy:
al. [10] sification ages 93%
Walsh et al. [30] | Subtype Clas- | Deep CNN vs expert | Multicenter test | Cohen’s  k:
sification radiologists dataset 0.74

Table 2.4: Summary of studies in ILD Analysis

2.5 Methodological foundations in deep learning for
medical image analysis

This section outlines the core methodological principles and architectural choices that un-
derpin recent advancements in Al-based ILD analysis. The objective is to provide technical
justification for the models and strategies adopted in this dissertation, particularly in rela-
tion to network dimensionality, segmentation paradigms, pipeline design, and explainability
mechanisms.
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2.5.1 Comparative analysis of 2D and 3D CNNs in thoracic CT
imaging

Convolutional neural networks (CNNs) have been instrumental in medical image analysis,
with 2D CNNs historically dominating early research([31]. These networks process single axial
slices independently and offer lower computational overhead, making them suitable for classi-
fication tasks on slice-level annotations. However, 2D approaches suffer from key limitations
in ILD diagnosis, notably the inability to leverage the spatial continuity between slices[32],
[33]. Lesions such as ground-glass opacities or reticulations frequently span multiple adja-
cent planes, and processing them in isolation leads to inconsistent localization and decreased
diagnostic reliability.

To address these shortcomings, 3D CNNs have emerged as a compelling alternative.
These models operate on volumetric inputs, preserving contextual information along all three
anatomical axes. As a result, 3D CNNs demonstrate superior performance in segmenting ir-
regular lesions and capturing subtle inter-slice patterns. Studies such as Zhang et al. [27] and
Park et al. [28] affirm that 3D models not only enhance segmentation accuracy but also sup-
port volumetric quantification vital to clinical workflows. Despite increased computational
demand, their ability to model spatial dependencies makes them particularly suitable for ILD
analysis.

Recent studies have demonstrated that 3D convolutional neural networks (CNNs) signif-
icantly outperform their 2D counterparts in volumetric chest imaging tasks by capturing
richer spatial context across slices. For example, Alebiosu et al. [34] evaluated both 2D and
3D CNNs on the ImageCLEF 2021 dataset to classify high versus low tuberculosis severity
on chest CT scans. The 3D CNN achieved an outstanding classification accuracy of 99.29%
and an AUC of 0.9982, significantly surpassing the 2D model’s performance. These findings
underscore the advantage of 3D architectures in thoracic disease quantification and further
justify their application in ILD analysis.

The following Figure 2.2 Adapted from [35] represents a schematic workflow of the 2D
and 3D CNN models based on Xception. A: For 2D CNN, a single shoulder slide was the
input, while 2D convolution layers were utilized to extract image features. Finally, 2048
features were extracted and fed into a classifier, from which the output was the probabilities
of tear and normal. B: For the 3D CNN model, 3D shoulder image blocks were the input,
and 3D convolution layers were utilized to extract image features. Finally, 2048 features were
extracted and fed into a classifier, from which the output was the probabilities of tear and
normal. CNN, convolutional neural network.
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Figure 2.2: Comparison of 2D and 3D convolutional neural network pipelines for volumetric
medical image segmentation.

2.5.2 U-Net and its variants

The U-Net architecture [36] has emerged as the prevailing approach in biomedical image
segmentation due to its effectiveness in learning spatial features from limited annotated data.
The architecture features a symmetric encoder-decoder structure, with skip connections that
fuse coarse and fine feature maps, thereby enhancing localization precision.

Numerous adaptations of U-Net have been developed to improve its robustness and flex-
ibility. R2U-Net [23], for example, integrates residual and recurrent layers to enhance the
network’s ability to capture spatial dependencies and reduce vanishing gradients. Attention
U-Nets [37] incorporate gating mechanisms to focus on salient regions, thereby improving
sensitivity to lesion boundaries. These variants have shown promising results in both lung
and lesion segmentation tasks and are well-suited for complex, multi-label problems such as
ILD assessment.

2.5.3 Multi-stage AI pipelines

A multi-stage pipeline decomposes a complex diagnostic task into sequential, functionally
distinct modules commonly including lung segmentation, lesion detection, and multi-class
classification. This modularity offers several advantages. First, it allows for stage-wise train-
ing and evaluation, facilitating targeted error analysis and fine-tuning. Second, it enhances
the explainability and interpretability of model decisions by providing intermediate outputs
that are clinically meaningful.

For ILD analysis, such multi-stage designs have proven effective in both research and
clinical settings. Wang et al. [26] proposed a cascaded U-Net framework that sequentially
segments lung fields and lesions, improving focus on disease-relevant regions. Similarly,
our dissertation employs a modular architecture that first delineates anatomical structures
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before proceeding to pathology-specific analysis. This ensures that computational resources
and model attention are concentrated on actionable areas of the scan.

2.5.4 Explainable AI in medical imaging

The opacity of deep neural networks remains a barrier to clinical adoption, making ex-
plainability a critical requirement in medical imaging applications. Explainable Al (XAI)
methods aim to elucidate the decision-making process of neural networks by highlighting
input regions that influence specific outputs. Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) [38] is one of the most widely adopted techniques for CNN visualization. It
generates heatmaps that localize discriminative regions, offering intuitive insights into the
model’s reasoning.

In the context of ILD, XAI tools can help radiologists verify whether a model focuses on
pathologically relevant structures, such as fibrotic streaks or GGOs [33]. While some studies
question the alignment between saliency maps and expert judgment [39], Grad-CAM remains
a practical and interpretable method for post-hoc analysis [38]. In this dissertation, we inte-
grate Grad-CAM visualizations into the classification pipeline to enhance trust, auditability,
and clinical usability.

Together, these methodological foundations inform the architectural choices and evalua-
tion criteria in our proposed system for automated ILD detection and diagnosis.

2.6 Research gaps and our positioning

To motivate our methodology, we begin by outlining the main limitations in existing research
on ILD segmentation and classification.

2.6.1 Limitations in the literature

Despite notable progress, the reviewed literature reveals several critical limitations that
hinder the development of comprehensive ILD analysis systems:

e Limited 3D volumetric context: Many existing approaches rely on 2D slice-wise
or patch-based analysis, which fails to capture the full volumetric continuity of lung
structures and three-dimensional lesion patterns essential for accurate ILD characteri-
zation.

o Lack of multi-class lesion classification: Current research predominantly focuses
on binary classification (healthy vs. pathological) or ILD subtype classification, with
limited attention to detailed lesion-level pattern classification that distinguishes be-
tween different ILD manifestations such as ground-glass opacities, fibrosis, and reticu-
lation.

« Dataset and evaluation limitations: Publicly available ILD datasets are relatively
small, often class-imbalanced, and inconsistently labeled across studies, making it dif-
ficult to train robust, generalizable models and conduct meaningful performance com-
parisons.
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o Underrepresentation of modular pipelines: There is a lack of integrated sys-
tems that combine lung segmentation, lesion detection, and classification in a unified
framework, with most studies addressing individual components in isolation.

o Limited clinical explainability: Despite achieving high performance metrics, few
systems integrate visual explainability mechanisms necessary for clinical trust and adop-
tion in real-world medical settings.

2.6.2 Justification of our approach

To address these identified limitations, our work proposes a comprehensive modular 3D
pipeline designed to reflect clinical reasoning and practical constraints:

e Modular 3D architecture: We implement a three-stage pipeline comprising lung
segmentation, binary lesion detection, and multi-class lesion classification, enabling
systematic processing of volumetric HRCT data while maintaining clinical workflow
logic.

e Volumetric processing with 3D CNNs: Our approach utilizes 3D patch-based
processing and U-Net architectures, enabling the model to leverage full volumetric
spatial context while maintaining computational feasibility for clinical deployment.

» Integrated explainability: The system incorporates Grad-CAM-based visual inter-
pretability throughout the classification pipeline, providing clinicians with transparent
insights into model decision-making processes.

o Comprehensive evaluation framework: The system is evaluated on the standard-
ized MedGIFT ILD dataset using robust clinical metrics, with realistic data partition-
ing strategies designed to simulate clinical inference scenarios and ensure reproducible
results.

e Clinical workflow consideration: The modular design allows for flexible deploy-
ment, where individual components can be used independently or as part of the com-
plete pipeline, depending on clinical requirements and computational constraints.

This approach integrates segmentation, detection, and classification into a cohesive
framework that addresses multiple identified gaps while maintaining clinical relevance and
practical applicability.

2.6.3 Contribution Outline

Based on the gaps identified and the proposed solutions, our main contributions are sum-
marized as follows:

1. 3D lung segmentation module: A robust 3D U-Net-based pipeline for accurate
segmentation of lung regions from volumetric HRCT scans, providing the foundation
for subsequent lesion analysis.
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2. Binary ILD detection system: A lightweight binary classification module capable
of distinguishing between healthy and pathological lung scans, enabling efficient clinical
triage and pre-screening workflows.

3. Multi-class lesion classification framework: A comprehensive system for identify-
ing and classifying specific ILD lesion patterns (ground-glass opacities, fibrosis, reticula-
tion) within segmented lung regions, addressing the gap in detailed lesion-level analysis.

4. Explainable AI integration: Implementation of Grad-CAM-based visual inter-
pretability mechanisms throughout the classification pipeline, enhancing clinical trust
and providing actionable insights for radiological decision-making.

5. Comprehensive evaluation and validation: Systematic evaluation of each compo-
nent using standardized metrics, providing benchmarks for future research and demon-
strating clinical applicability.

2.7 Conclusion

The review indicates that there has been substantial progress in using Al for ILD detection
and segmentation, but there are still some issues where this type of advancement has not
been completed. The majority of the available works are 2D based and non-transferable
across datasets or do not handle class imbalance well. Moreover, many pipelines do not
make full use of the 3D spatial information contained in lung volumes. These shortcomings
motivate the construction of a modular, 3D deep learning pipeline that is presented in this
dissertation.
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CHAPTER 3

MATERIALS AND METHODOLOGY

3.1 Introduction

This chapter introduces a brief methodology of the proposed system. It describes the
pipeline developed for automated detection and classification of ILD based on HRCT scans.
The strategy consists of pre-processing, data loading, lung segmentation with 3D U-Net, and
two stage lesion analysis pipeline with 3D CNN and Grad-CAM [40], [41].

The models were designed for volumetric data and compensated for the class unbalance
with advanced sampling and training procedures.

3.2 Dataset description

In this dissertation, the database used is the publicly available Interstitial Lung Disease
(ILD) database that was put together by Professor Adrien Depeursinge and his team in HES
SO, Valais, Switzerland. It’s also known as MedGIFT ILD dataset [42], and is one of
the largest public datasets for analyzing lung disease patterns on high resolution computed
tomography (HRCT) images. The dataset consists of anonymized scans for a total of 113
patients, each annotated by expert radiologists using both lung segmentation masks and
voxel wise lesion labels.

The dataset was officially obtained on May 6, 2025, following permission for academic
use and in accordance with the agreement established with the CDTA research center.

3.2.1 MedGIFT ILD dataset overview

Each patient scan is provided in the DICOM format. The imaging data was acquired using
standardized HRCT protocols, with an in plane resolution of 512 x 512 pixels and variable
numbers of axial, sagittal and coronal slices, depending on patient anatomy.

The following Figure 3.1 illustrates a representative HRCT scan from the ILD__ DB dataset,
highlighting the multiplanar views used for visual analysis and segmentation of interstitial
lung disease patterns
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Figure 3.1: Example of an HRCT scan from the ILD DB dataset showing axial, sagittal, and
coronal views with evident interstitial lung abnormalities, visualized using 3D Slicer.

3.2.2 Annotation types

There are three major classes of annotations in the MedGIFT dataset:

o Lung masks:

Binary masks isolating the left and right lung fields were included in the
ILD DB lungMasks directory. The masks are ground truth for the training of lung
segmentation networks.

¢ Lesion annotations:

Multiclass voxel level annotations are available in the ILD DB wolumeROIs folder.
Annotations for each annotated volume represent up to 17 pathological classes fre-
quently found in ILD, including ground glass opacities, fibrosis, emphysema, and mi-
cronodules. The complete list of class indices and corresponding conditions is as follows:

— 1 = Healthy — 10 = Cysts

— 2 = Emphysema — 11 = Peripheral micronodules
— 3 = Ground glass — 12 = Bronchiectasis

— 4 = Fibrosis — 13 = Air trapping

— 5 = Micronodules — 14 = Early fibrosis

— 6 = Consolidation — 15 = Increased attenuation

— 7 = Bronchial wall thickening — 16 = Tuberculosis

— 8 = Reticulation 17 = Pneumocystis pneumonia

— 9 = Macronodules (PCP)
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¢ Text based ROI labels:

In the ILD DB_ txtROIs folder, the region of interest labels are available as label
coordinate triplets. MATLAB and Java parsers come along with the dataset to facilitate
easy integration into custom workflows.

3.2.3 Clinical metadata

Along with the segmentation and imaging data, the dataset also contains an Excel spread-
sheet with relevant clinical information on all patients. These variables consist of age, sex,
smoking history, existing comorbidities, and treatment plans. The availability of this ex-
tra information is useful when designing future studies involving multimodal Al systems or
patient specific disease modeling.

3.2.4 Dataset summary analysis

To further understand the nature of the dataset, we conducted an in depth dataset analysis,
as presented in Figure 3.2. This informed key pre-processing steps, model architecture, and
evaluation strategies.

Dataset Summary Analysis
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Figure 3.2: Dataset Summary Analysis: Top left: Class presence heatmap across patients;

Top right: Distribution of volume shapes; Bottom left: Ratio of labeled pixels per patient;
Bottom right: Log scaled class imbalance ratios.
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Main findings:

1. Class distribution: The heatmap of class occurrence shows an imbalanced distri-
bution where classes like healthy, ground _glass, fibrosis, and micronodules dominate.
Rare classes like tuberculosis and PCP are either absent or represented showing an
extreme class imbalance.

2. Volume shape variability: The variability in volume size calls for shape standard-
ization as a pre-processing procedure. The majority of the volumes are concentrated
around the (51,512, 512) shape with major outliers.

3. Sparse lesion annotations: As can be seen from the labeled pixel percentage his-
togram, lesions usually account for less than 1% of the lung region. This sparsity
motivates the application of patch based and attention mechanisms for training mod-
els.

4. Imbalance ratios: The imbalance ratio (in log scale) ranges from about 3:1 to 300:1.
This skew requires the use of robust methods such as weighted loss functions, oversam-
pling, and data augmentation.

3.3 Understanding and pre-processing 3D medical im-
age data

The application of deep learning to 3D medical imaging, and thoracic radiology in par-
ticular, requires from the input data not only quality but also a stable, well structured
pre-processing pipeline. HRCT scans are, by definition, inhomogeneous in their spatial reso-
lution, acquisition protocol, and format. For consistency and improved model performance,
the Geneva HRCT dataset has undergone a series of pre-processing steps to unify its struc-
ture without compromising clinically relevant information [43]. This section outlines both
the imaging modalities and the pre-processing pipeline used in this study.

3.3.1 Understanding 3D imaging modalities

DICOM (Digital Imaging and Communications in Medicine)[44] is the clinical radiology
standard format. All CT scans are saved as a series of axial, sagittal and coronal slices
with metadata that specify voxel spacing, orientation, slice thickness, and others. Although
DICOM is suitable for clinical viewing and storage, it is not ideal for machine learning
pipelines.

For this purpose, all DICOM series were transformed into the NIfTT format (.nii.gz)[45],
a format that retains 3D or 4D volumes within one file and also keeps spatial metadata
like affine transformations. Conversion was carried out with SimpleITK, with anatomical
correctness in all three axes.
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3.3.2 Pre-processing pipeline

The pre-processing pipeline involved several steps to normalize the spatial resolution, the
intensity distributions, and to enable thedata to work with the 3D convolutional networks.
These steps are elaborated upon below.

3.3.2.1 Pixel value transformation

An important pre-processing step involved transforming the pixel intensity values to
Hounsfield Units (HU) a standardized scale for quantifying radiodensity in CT imaging.

This Figure 3.3 shows that the unit of measurement in CT imaging is the Hounsfield
Unit (HU), which is a measure of radiodensity. The CT scanner is carefully calibrated to
accurately measure this. From Wikipedia:

Substance HU
Air -1000
Lung -500
Fat -100 to -50
Water 0
CSF 15
Kidney 30
Blood +30 to +45
Muscle +10 fo +40
Grey matter +37 to +45
White matter +20 to +30
Liver +40 to +60

Soft Tissue, Contrast | +100 to +300

Bone +700 (cancellous bone) to +3000 (cortical bone)

Figure 3.3: The unit of measurement in CT scans is the Hounsfield Unit (HU)

This figure 3.4 presents the plot on HU scale, and image data of that particular CT
slice. The left panel shows a histogram of the voxel values in Hounsfield Units (HU), with
annotated important tissue ranges such as air, soft tissue, and bone. Right: Preview of the
axial C'T slice, where normal thoracic anatomy is seen and lung parenchyma and surrounding
structures have a good contrast.
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Figure 3.4: Pixel intensity distribution (left) and corresponding CT slice preview (right) from
a DICOM scan. The histogram reveals typical lung and soft tissue contrast in Hounsfield
Units (HU).

Raw pixel values were transformed using the DICOM metadata (Rescale Slope and Rescale
Intercept), based on the formula:

HU = (PixelValue x RescaleSlope) + Rescalelntercept (3.1)

The conversion from raw pixel values to Hounsfield Units (HU) are computed from two
DICOM metadata inputs as parameters: the Rescale Slope and the Rescale Intercept.
These are used in the linear transformation in Equation (3.1).

o PixelValue: the gray level raw intensity of the CT scan, which usually lies between 0
and 4095 (12 bits).

» Rescale Slope: a scaling factor to rescale pixel value magnitude (typically 1)

o Rescale Intercept: a bias added to the scaled value, generally negative, in order to
position the scaled value within the Hounsfield range.

o HU: the standardized value used for representing the density of tissue in CT slices.

After conversion, voxel intensities were windowed into [-1000, 400] HU in order to
emphasize the lung regions and diminish the signal from unrelatively high density anatomies
such as bones. To ensure numerical stability when training the neural network, the intensities
were normalized to [0, 1].

3.3.2.2 Inconsistent pixel spacing and slice area

In the dataset, one of the main issues was that pixel spacing and slice area were not
consistent between different CT images. 71 Spacing of voxels covered approximately 0.4 to
0.9 mm,and slice sizes varied between 0.17 mm? and 0.87 mm?2. Such inconsistency can lead
to distortions in feature learning, as the same anatomical features may appear at different
scales.
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Figure 3.6: Distribution of pixel area (in mm?) across the CT scans in the dataset.

In order to ensure this, all CT volumes and the respective paired lung and lesion masks
were resampled to a common isotropic voxel size of 1.0 mm x 1.0 mm x 1.0 mm using
trilinear interpolation on image data, and nearest neighbour interpolation on masks. This
ensured evenly distributed spatial resolution, which is essential for effective and unbiased 3D
CNN processing.

3.3.2.3 Varying in plane dimensions

Additionally, beside voxel spacing variation, the dataset was also variable in the in plane
size of axial slices. The vast majority (approximately 97%)of scans were at 512x512 pixels
and a minority (3%) were slightly larger at 768 x768 pixels.
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All the 768x768 scans were down sampled to 512x512 using bilinear interpolation in
order to ensure uniformity and to make them compatible with the input requirements of
deep learning. It then preserved the anatomical integrity of the constructions and removed
size based variability.

3.3.2.4 Variable scan depth (Z Dimension)

The depth of the Geneva HRCT scans were also inconsistent and the number of axial slices
per scan varied significantly between patients. Scan depths per organ varied approximately
between 5 mm and 25 mm such that emerged volumes showed strongly different Z dimensions.
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Figure 3.8: Patch based volume extraction strategy.
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Patch based training was used instead of aggressive resizing of entire volumes (which might
cause the loss of anatomical or pathological information). In particular, fixed size 32x320x20
voxel 3D patch were extracted from all the resampled volumes. This ensured you got both
standardized input sizes and maintenance of clinically important spatial relationships.

3.3.2.5 Data augmentation

In order to add more strength and less overfits, data augmentation was performed during
training by utilizing the TorchIO library. All transformations were applied in a spatially
consistent fashion to both images and their masks. The augmentations were:

Random flippings about sagittal and axial planes

Minor rotations (£10 degrees)

Elastic deformations

Gaussian noise and intensity scaling

These augmentation mimicked scanner noise and anatomical variability, promoting model
learning of more generalized features.

3.3.2.6 Export to NIfTI format

The pre-processed CT volumes and their corresponding lung and lesion masks were saved
as the . nii. gz (compressed NIfTI) files. It is an appropriate format for volumetric
medical images as it maintains important metadata (eg, voxel spacing, image orientation,
affine transformations). Moreover, NIfTT files are well known format and they are largely
supported by 3D medical imaging toolkits such as MONAT [46], TorchIO [47] and other deep
learning frameworks, thus can be easily integrated into Al pipelines.
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DICOM Metadata:
——>  Voxel Spacing, Slice
Thickness, Orientation

Raw HRCT Scans (DICOM)
+ Lung / Lesion Masks
v
Convert to NIfTI
Format (.nii.gz)

v

Resample to Isotropic Voxel
Size (1.0 x 1.0 x 1.0 mm)

v

Resize All Axial Slices
to 512 x 512 Pixels

|

Extract Patches of
Size 64 x 128 x 128
v
Convert Pixel Values to HU = (PixelValue X
Hounsfield Units (HU) Slope) + Intercept

v
Window to [-1000, 400]
and Normalize to [0, 1]
v
Apply Data Augmentation
(Flip, Rotate, Noise)

v

Export Processed Vol-
umes and Masks as .nii.gz

Tools:
— > MONAI, Tor-
chlO, SimplelTK

Figure 3.9: Overview of the pre processing pipeline applied to HRCT scans.

3.4 Model Architecture and Design

In this section, we describe the deep learning architectures used for lung segmentation, binary
lesion detection, multi-class classifier and interpretability.

3.4.1 Lung segmentation model

Precise segmentation of the lung field is an important step in our pipeline. It guarantees
that later processes, like lesion detection and classification, only operate within anatomically
meaningful areas. This lowers the risk of extraneous false positives outside the lung regions
and enhances overall model focus and efficiency.
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e Method overview

The 3D U-Net [32] is an encoder—decoder architecture where the encoder successively
encodes the higher level features and the decoder is employed to regain the spatial
resolution.

Every encoding level features two 3 x 3 x 3 convolutions with ReLLU activation, and a
2 X 2 X 2 max pooling.

The decoder pathway is symmetrical with skip connections, transposed convolutions,
and ReLU activations.

Batch normalization is used prior to every activation function to enhance training
stability.

A final 1 x 1 x 1 convolutional layer projects features onto the desired number of output
channels.

3 3264 641128 64643
|
¥ 64 128 128_+25i 12i
¥ 128 256 2564512 256
ﬁ»ﬁj . B B concat
I E— p conv(+BN)+Rel.u
§ max pool up-conv - conv

Figure 3.10: The 3D U Net Architecture. Adapted from [32].

This architecture allows for memory efficient compact voxel wise predictions, which is
an extremely good fit for our 3D medical image problem.
« Implementation in our pipeline

Our 3D U-Net is composed of:

1. Input: pre-processed and masked HRCT lung volumes or patches (128 x 128 x
128).

2. Encoder: 3D convolutional blocks with ReLLU, followed by max pooling.
3. Bottleneck: Deep convolutional layers extracting semantic abstraction.

4. Decoder: Upsampling through transposed convolutions and skip connections to
restore spatial details.

5. Output: A 1 x 1 x 1 convolution with softmax or sigmoid depending on the
problem (multi class or binary).
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The lung segmentation module follows the same standard 3D U-Net common archi-
tecture, ending with sigmoid activation to produce binary lung masks. The masks crop
or mask the HRCT volumes and act as spatial filters for subsequent modules like lesion
detection and classification.

3.4.2 Binary lesion detection model

The objective of the first stage in the pipeline is to determine whether an HRCT volume
exhibits pathological signs related to interstitial lung disease (ILD). This task is framed as
a binary classification problem, where each volume is classified as either Healthy (0) or
Pathological (1).

Input format:

The model processes 3D patches of size 32 x 32 x 32 voxels, extracted from segmented
lung regions. Patches are normalized to the range [0,1] and resampled to isotropic voxel
spacing of 1 mm?®. All lesion types are grouped under a single “pathological” class for binary
classification against the healthy class.

Architecture:

The feature extraction component of the Simple3DCNN [41] is composed of three hierar-
chical convolutional blocks.

The first block applies two 3D convolutional layers with channel dimensions increasing
from 1 — 32, each followed by batch normalization and ReLLU activation. A max pooling
operation reduces the spatial dimensions, resulting in a feature map of shape [32, 16, 16, 16].

The second block continues this progression, employing two 3D convolutions to expand
the feature depth from 32 — 64, again followed by normalization, activation, and spatial
down sampling, yielding an output of shape [64,8, 8, §].

A third block increases the depth from 64 — 128, maintaining the same processing pattern,
and produces a final feature representation of shape [128, 4,4, 4].

For classification, the network incorporates an adaptive average pooling layer that com-
presses the feature map to a compact [128, 1,1, 1] tensor. This tensor is flattened and passed
through a fully connected layer of size 128 — 64 with ReLLU activation, followed by a dropout
layer (rate = 0.5) for regularization. A final dense layer maps the 64-dimensional latent space
to 2 output neurons, corresponding to the binary prediction logits.
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Figure 3.11: Structured view of the Simple3DCNN architecture.

The model contains approximately 867,682 trainable parameters and is well-suited
for patch-wise binary classification with limited GPU resources.

3.4.3 Multi-Class lesion classifier

This stage extends the pipeline to classify pathological lesion patches into three distinct ILD
types: Ground Glass Opacity (GGO), Fibrosis, and Reticulation. It operates only on scans
previously classified as pathological in Stage 1.
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o Dataset preparation:
From the full ILD dataset, patches with the following labels were extracted:

— Label 3: Ground Glass Opacity (GGO) have 2030 patches
— Label 4: Fibrosis have 7431 patches
— Label 8: Reticulation have 5091 patches

After filtering invalid patches, each class was balanced to 2030 samples, yielding a total
of 6090 patches for training.

e Model architecture:
The architecture is a modified version of the Simple3DCNN used in Stage 1. The final
classification head was adapted for three class prediction by:

— Changing the final fully connected layer to output 3 logits
— Replacing sigmoid with softmax activation

— Retaining transfer-learned weights from Stage 1

¢ Load binary model
2 def create_multiclass_model_from_binary(binary_checkpoint_path: str):
# Load binary model
4 model = Simple3DCNN{in_channels=1, num_classes=2)
checkpoint = torch.load(binary_checkpoint_path)
model.load_state_dict(checkpoint| "‘model_state_dict"])

# Replace final layer for 3 classes
model.classifier[-1] = nn.Linear(6&4, 3)

# Freeze early layers ( helps retain learned features
for param in model.features.parameters():

param.requires_grad = False

return model

Figure 3.12: Modifying a pre trained binary classification model to support multi-class clas-
sification by updating the final layer and freezing early feature extraction layers for transfer
learning.

e Input format:
All inputs are 3D patches of size 32 x 32 x 32, normalized to [0, 1], and resampled to
isotropic 1 mm? resolution.

o Training strategy:
Training was conducted using the same infrastructure as Stage 1 with minor adjust-
ments:
— Loss: Multi-class cross-entropy
— Balanced class sampling

— Validation split to monitor performance
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. Class

3 class_names = {(B: 'GGO°, 1: 'Fibrosis', 2: 'Reticulation’

# 2. Weighted loss for class imbalance (if needed

& class_weights = torch.tensor([1.8, 1.2, 1.5]) # Adjust based on difficulty
criterion = nn.CrossEntropylLoss{weight=class_weights)
# 3. Per-class metrics

8 def compute_per_class_metrics(all_preds, all_labels):
from sklearn.metrics import classification_report
report = classification_report

all_labels, all_preds

4 target_names=['GG0D', 'Fibrosis', 'Reticulation

output_dict=True

return report

Figure 3.13: Implementing class-specific evaluation using weighted loss to address class im-
balance and computing per-class performance metrics.

This stage provides detailed classification at the lesion level, enhancing clinical inter-
pretability and supporting downstream visualization or triage modules.

3.4.4 Interpretability

To enhance interpretability of the ILD classification model and enable visual inspection
of learned spatial features, we integrated a volumetric extension of Gradient-weighted
Class Activation Mapping (Grad-CAM) into our pipeline. The 3D Grad-CAM [3§]
technique highlights class-discriminative regions within input CT volumes, allowing clin-
icians and researchers to understand model focus in the context of ILD subtype classification.

e Method overview

Grad-CAM works by computing the gradient of the class score with respect to feature maps
in the last convolutional layer of a trained 3D CNN. For a given class ¢, the class activation
map L, q.can 1S computed as:

k

where A* is the k-th feature map of the final convolutional layer, and af is the global
average of the gradients of the score for class ¢ with respect to A*:

1 oy°
==Y Y 3.3
T Z AR (3:3)
Here, Z denotes the total number of voxels in the feature map. The resulting 3D

activation map is upsampled to the input resolution and overlaid on the original CT patch
for visualization.
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o Implementation details

We implemented 3D Grad-CAM in PyTorch by:

o Registering a forward hook on the final convolutional layer to capture feature maps.

o Registering a backward hook to capture the gradients of the output class score with
respect to these feature maps.

o Computing the voxel-wise attention maps as weighted combinations of channels, fol-
lowed by a ReLU non-linearity.

o Upsampling the 3D Grad-CAM volume to the input size using trilinear interpolation
for overlay visualization.

The internal flow of the 3D Grad-CAM module is illustrated in Figure 3.14. It shows
how the trained 3D CNN processes an input CT volume to produce class scores, and how
gradients are propagated back to compute the class-specific attention map. The resulting
activation map is then overlaid on the C'T volume across orthogonal planes to assist in visual
interpretation of model focus during inference.

Axial View Sagittal View | | Coronal View
\ A /
Input Overlay on CT
D Grad-CAM M '—»
£3D cT Vqume} £3 e P { Volume }

A

Y
3D CNN Class Score
Feature Extractor Output

Figure 3.14: Pipeline of the 3D Grad CAM module.

To support spatial inspection, we extracted and visualized the Grad-CAM overlays in
all three anatomical planes (axial, sagittal, and coronal). Additionally, for misclassified
or ambiguous cases, we generated Grad-CAM montages to better understand the model’s
confusion and to identify potential lesion localization failures or data ambiguity.

This volumetric interpretability module is a critical component of our pipeline, offering
transparency in model behavior and aiding in clinical validation of classification outcomes.
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3.5 Conclusion

The architecture of the system is designed to be modular, efficient, and clinically mean-
ingful. By segmenting lungs before lesion detection, the pipeline ensures that analysis is
restricted to relevant anatomical regions, thereby reducing background noise. A two-stage
classification strategy starting with binary lesion detection followed by multi-class lesion cat-
egorization allows computational resources to be focused on informative subregions. The
use of 3D U-Net for segmentation and 3D CNNs for classification provides robust feature
extraction and volumetric context modeling, which are critical in analyzing HRCT scans. To
enhance interpretability, the system incorporates Gradient-weighted Class Activation Map-
ping (Grad-CAM), which generates 3D heatmaps that visualize the regions most influential
in the model’s decision-making process.

This methodological foundation supports both quantitative performance evaluation and
qualitative clinical insights, establishing the framework for validating each component under
realistic diagnostic scenarios.
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CHAPTER 4

EXPERIMENTAL DESIGN

4.1 Introduction

This chapter describes the experimental setup and evaluation protocol for the training and
testing of the proposed models. Its content includes hardware/software setup, data splitting
details, and testing methodology for each stages lung segmentation, Stage 1 ILD binary
Detection and Stage 2 multi-class classification. The hope is that reproducibility, fairness in
scoring, and the robustness of the performance of subsequent assessments against multiple
patient cohorts can be achieved.

The overarching objective of this experimental framework is to ensure a rigorous, unbiased
quantitative assessment of the proposed models.

4.2 Data partitioning strategy

To ensure robust model evaluation and prevent data leakage, the dataset was carefully par-
titioned at the patient level, followed by patch-wise extraction and balancing techniques
tailored to the classification and segmentation tasks.

4.2.1 Dataset split methodology

Acceptable model generalization will come only by imposing rigorous standards of evaluation.
Dataset splits were performed on patient level stratified splits, where no slices of the same
patient appeared in different dataset splits.

The cohort of 107 patients was split into three groups:

o 70% Training set: To determine the optimal model weights
o 15% Validation set: for estimation of early stopping and performance tuning.
o 15% Test set: Entirely held-out to assess generalization

The stratified random splitting ensures balanced representation of lesion types across all
sets while maintaining the constraint that all patches from a single patient remain within the
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same split. This patient-level separation is crucial for evaluating the model’s generalization
capability to unseen patients.

4.2.2 Patch extraction and balancing

To support both binary and multi-class lesion classification tasks, 3D image patches were
extracted from the segmented lung volumes using a standardized patch-wise sampling strat-
egy. All patches had a fixed spatial size of 32 x 32 x 32 voxels and were generated using
a sliding window approach with a stride of 16 voxels in all directions. This dense sampling
ensured comprehensive coverage of the lung fields and minimized the likelihood of missing
small or peripheral lesions.

Binary classification sampling:

For the binary lesion detection task, patches were labeled based on voxel-wise annotations
within each 323 region. Two criteria were used for assigning class labels:

o Healthy Patches: Required at least 95% of voxels labeled as healthy lung
parenchyma.

o Lesion Patches: Contained at least 50 voxels belonging to one or more lesion
classes—Ground Glass Opacity (GGO), Fibrosis, or Reticulation.

To ensure the quality and relevance of patches, further filtering was applied:
o Minimum lung coverage: 70% of the patch must intersect the segmented lung mask.
« Minimum tissue heterogeneity: Standard deviation in Hounsfield Units (HU) > 50.

« Intensity range normalization: HU values clipped to [—1000, 1000] to remove outliers
and harmonize inputs.

After filtering, the process yielded approximately 30,000 high-quality binary classification
patches.

Multiclass classification balancing:

To mitigate class imbalance and improve classifier generalization, we restricted our multi-
class patch-based classification task to the three most prevalent and well-separated ILD lesion
types: Ground Glass Opacities (GGO), Fibrosis, and Reticulation. This decision was based
on an analysis of lesion occurrence, patch availability, and HU characteristics, as summarized
in Table 4.1.
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Class Patients | Avg Size (voxels) | HU Mean
3-GGO (Ground Glass Opacity) 31 33,257 ~404
4-Fibrosis 30 39,310 ~449
5-Micronodules 18 136,113 ~118
8-Reticulation 10 49,048 ~409
Others (Types 2, 6-17) <8 <10K or rare mixed

Table 4.1: Class-wise summary of ILD lesions in the dataset.

Despite the large average size of micronodules, they exhibited considerable heterogene-
ity and poor HU separability from surrounding parenchyma. Additionally, they were often
distributed diffusely across lung fields, making patch-level isolation challenging. Similarly,
the "Others" category (including rare or ambiguous ILD patterns such as consolidation, hon-
eycombing, and cysts) lacked sufficient annotated samples and were highly inconsistent in
shape and texture.

For these reasons, both Micronodules and Others were excluded from training. The final
patch-based classifier was trained on three well-defined classes: GGO, Fibrosis, and Reticu-
lation.

After filtering, a balanced dataset was curated containing 2,030 patches per lesion class:
« Ground Glass Opacity (GGO) — Label 3

o Fibrosis — Label 4

e Reticulation — Label 8

This resulted in a final multiclass training set of 6,090 patches.

4.2.3 Data augmentation strategy

To improve model generalization and reduce overfitting due to the limited dataset size,
online data augmentation techniques were applied during training. These augmentations
introduce controlled variability while preserving anatomical and radiological consistency.

Spatial transformations:

« Random 90° Rotations: Performed independently along the axial, sagittal, and
coronal planes with a probability of p = 0.5.

« Random Flipping: Random left-right, anterior-posterior, and superior-inferior flips
applied with p = 0.5 per axis.

36



Intensity transformations:

o« Gaussian Noise Addition: Zero-mean Gaussian noise with standard deviation o €
[0.01,0.03] added with probability p = 0.3.

o Intensity Shifting: Global shift of voxel intensities by £5% of the normalized range
applied randomly (p = 0.3).

These augmentations were selected to simulate real-world imaging variability while pre-
serving the diagnostic integrity of the HRCT volumes. They were implemented online during
training using efficient augmentation pipelines integrated into the PyTorch data loader frame-
work.

4.3 Hardware and software environment

Experimental evaluation took place in a hybrid computing scenario. Most training and eval-
uation were performed on Kaggle Notebooks [48] using GPU acceleration. pre-processing,
patch extraction and rendering were partially performed on a local workstation. This had to
be done to work around memory and session-time limits imposed by cloud platforms.

4.3.1 Computational infrastructure

o Cloud platform: Kaggle Notebooks

— Equipped with dual NVIDIA Telsa T4 GPUs (16 GB VRAM)
— CUDA version 11.7, cuDNN enabled

— RAM: 30 GB, max run-time: 9 hours per session
e Local workstation:

— Windows 64 bit, Intel Core i5, 16 GB RAM

4.3.2 Software stack

The use of these software tools ensures the systems modularity and reproducibility:

o« PyTorch 2.0: Deep learning library for setting up, training, and evaluating models
[49].

o MONAI: Medical Al library on the PyTorch framework for 3D segmentation, training
loops, and metrics [46].

o TorchIO: Augmentation and patch based pre-processing for 3D volumes [47].

« SimpleITK, Nibabel: To load and save DICOM/NIfTI images along with spatial
consistency [50], [51].
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« scikit learn, seaborn, matplotlib: Used for computing metrics, and statistical eval-
uation, and for visual analytics [52]-[54] .

Figure 4.1 offers a visual overview of the software infrastructure employed.

Toolé R i Libraries

O PyTorch  MONAI
ﬁ kaggle 4

r Captum,TorchCAM
pgthon O  scikit-learn, seaborn,

matplotlib

Figure 4.1: Overview of the software environment used in the study.

4.4 Performance evaluation metrics

Each metric employed in this work is selected to assess a different facet of performance ranging
from segmentation accuracy and boundary precision to the effectiveness of classification [55].

4.4.1 Segmentation evaluation metrics

1. Dice Similarity Coefficient (DSC):

Dice coefficient is a measure of overlap between the ground truth G and the predicted
segmentation P. It is particularly well suited to handle imbalanced datasets.

2-|PNG]
DSC= ———
P+ 1G]

Where:

e P: Predicted segmentation voxels
e G: Ground truth segmentation voxels
e |-|: Cardinality (number of voxels)

e M: Intersection of predicted and ground truth voxels
DSC values range from 0 (no overlap) to 1 (perfect agreement).

2. Jaccard Index (Intersection over Union, IoU):

The Jaccard Index calculates the intersecting over combined voxels ratio.

P NG

IoU =
© P UG
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Where:
e U: Union of predicted and ground truth voxels

IoU is stricter than DSC and penalizes more over segmentation.

3. Precision:

Precision calculates the ratio of true positive predictions to all predicted positives.

Precisi TP

ecision = ————

SO = PP TP

Where:
o TP: True Positives o FP: False Positives
e TN: True Negatives o FN: False Negatives

4. Recall (Sensitivity):

Recall calculates the model’s ability in distinguishing true positives from all real posi-
tives.

TP

Recall = — -
T TP EN

5. F1 Score:

The F1 score is the harmonic mean of precision and recall.

2 - Precision - Recall

F18S =
core Precision + Recall

6. Volumetric Overlap Error (VOE):

Relative error in the volume of predicted and ground truth segmentations.

4.4.2 Patch-Level classification metrics

Patch-level predictions were assessed on the held-out test set using standard classification
metrics:

e Accuracy: Overall correctness of classification across all patches.
TP+TN
TP+TN+ FP+ FN

Accuracy =

o Confusion matrix: Displays the distribution of predictions versus actual classes to
identify patterns of misclassification.
e Area Under the ROC Curve (AUC): Evaluates the model’s ability to distinguish

between classes, especially for binary confidence-based classification.
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4.4.3 Patient-Level evaluation metrics

To better reflect clinical applicability, patch-level predictions were aggregated to obtain
patient-level outcomes.

Aggregation strategies:
e« Mean Probability: Average softmax probability across all patches from a patient.

o Majority Voting: The class with the highest number of patch-level predictions is
chosen.

o Confidence-Weighted Aggregation: Patches are weighted by prediction confidence
or patch quality.

Single-Label metrics:
o Accuracy, precision, recall, and F1-score computed per patient.

o Patient-level confusion matrix.

Multi-Label metrics: (for overlapping or mixed lesions)

e« Multi-label Precision:

. Y. TP
Precisionui = —x
i=1 (TR + FR)
e Multi-label Recall: N
TP
Recall i = =1

z]\il(TPi + FN;)

e Hamming Loss:

1 N L
Hamming Loss = NI 0 Wy # i)

=1 j=1
Where:

— N: Number of patients
— L: Number of possible labels
— ¥i;;: True label indicator

— ¥ij: Predicted label indicator

4.5 Experimental workflow overview

The experimental pipeline was aimed to investigate how the proposed multi stage system
performs for detecting and classifying ILD using HRCT studies. The workflow is modular
and corresponds to real world clinical diagnostic procedure: segment lung volume, detect
abnormality, and categorize lesion type. Each step was implemented, validated and tested
separately to ensure for robust performance and traceability.
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4.5.1 Evaluation of lung segmentation

Before any lesion detection, the lung regions were segmented using a customized three-
dimensional (3D) U-Net model. This and the following pre processing phase ensure that:

o Analysis on lung parenchymas only is considered
o Non-pulmonary structures, such as ribs or diaphragm, are not considered
« Patch acquisition and lesion categorization are spatially constrained

The output of this step is a set of lung-masked CT volumes, which are then used in Stage
1 for binary classification and Stage 2 for lesion-specific patch filtering and training.

4.5.2 Binary classification experiment

The first experiment in the evaluation pipeline aims to establish a baseline for binary
classification, focusing on distinguishing between healthy lung tissue and regions exhibiting
interstitial lung disease (ILD) pathology. This binary decision step represents a critical
component of the diagnostic workflow, enabling the model to screen scans prior to multi-
class lesion classification.

Experimental protocol:

o The Simple3DCNN architecture is trained to perform binary classification (healthy vs.
pathological).

o The training procedure uses the Adam optimizer with a learning rate of 0.001 and a
weight decay of 1 x 107 to prevent overfitting.

« Early stopping is implemented with a patience value of 10, based on the validation loss
curve.

e The model is evaluated on the held-out test set using standard patch-level metrics,
including accuracy, precision, recall, F1-score, and area under the ROC curve (AUC).

This experiment provides insight into the model’s sensitivity to early disease features
and its robustness against false positives, serving as a foundation for subsequent multi-class
classification tasks. Let me know if you’d like the LaTeX for a results table or confusion
matrix associated with this experiment, or if you want to mention patient-level aggregation
here as well.

This evaluation protocol enabled clinically interpretable patient-level decisions, balancing
sensitivity to disease detection with robustness against false positives.
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4.5.3 Multi-class classification experiment

This stage was evaluated using balanced data for the three lesion types. The testing strategy
ensured that the model was validated in a clinically meaningful and fair setting.

e Data handling:
The dataset was split into training and validation sets from the 6090 patches (2030 per
class).

o Patch-Based classification:
All predictions were made on 3D patches of size 32x 32 x 32, extracted from pathological
lung volumes. Each patch was processed independently, and the model predicted one
of the three lesion classes.

e Model inference:
The model output a softmax probability distribution over the three classes. The pre-
dicted class was the one with maximum probability.

e Training dynamics:
Training converged after approximately 7 epochs. No signs of overfitting were observed.
Transfer learning enabled fast initial improvements.

This evaluation framework confirms the robustness of the multi-class classifier and its
ability to distinguish between visually overlapping ILD lesion types using 3D information.

4.5.4 Model interpretability experiment

The final experiment focuses on interpreting the inner workings of the trained model and
evaluating its decision-making transparency. Given the critical importance of explainabil-
ity in clinical applications, this stage leverages Gradient-weighted Class Activation Mapping
(Grad-CAM) to visualize the spatial regions that most strongly influence the network’s pre-
dictions.

Experimental rotocol:

o Generate 3D Grad-CAM activation maps from the final convolutional layers of the
trained model.

« Visualize activation regions for correctly classified samples from each lesion type
(Ground Glass Opacity, Fibrosis, Reticulation).

o Aggregate individual Grad-CAM maps to construct average class-specific attention
patterns.

« Examine misclassified patches to identify potential failure cases and confounding image
characteristics.

This interpretability experiment enables qualitative assessment of model behavior and
assists in identifying clinically relevant activation zones. Moreover, it provides valuable in-
sights into the anatomical features contributing to each decision and highlights limitations
in model generalization across ambiguous or overlapping lesion appearances.
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4.5.5 Patient-Level inference experiment

In order to evaluate the clinical applicability of the proposed pipeline, this experiment
investigates the diagnostic performance at the patient level by aggregating patch-wise pre-
dictions. While previous stages focused on localized classification of 3D patches, the goal
here is to simulate a real-world scenario in which clinical decisions are made based on the
analysis of entire CT scans.

Experimental protocol:

o Each patient scan in the test set is fully processed through the trained multiclass
classifier to generate patch-wise softmax outputs.

e The entire CT volume is divided into overlapping 3D patches. Only patches passing
quality and anatomical relevance thresholds are included.

o Three aggregation strategies are applied to produce a single prediction per patient:
1. Mean Probability Aggregation: Computes the average softmax probability

across all patches and selects the class with the highest average.

2. Maximum Confidence Aggregation: Identifies the patch with the maximum
class probability and uses its predicted label.

3. Majority Voting: Determines the most frequently predicted class label among
all patches.

o Final predictions are compared with ground truth patient-level labels derived from
metadata.

 Special attention is given to ambiguous and mixed-pattern cases (e.g., co-occurrence of
fibrosis and ground-glass opacity), which are qualitatively analyzed to assess robustness.

This experiment provides a realistic framework for translating patch-level outputs into
clinically actionable patient-level predictions. By comparing aggregation strategies, the study
aims to determine which method yields the most consistent and reliable performance in the
presence of inter-lesion variability, potential class imbalance, and image heterogeneity.

43



4.5.6 Overview of the system workflow

Figure 4.2 shows a high level of the system’s workflow, from CT data pre processing to final

output.

1. CT Scan Input
— DICOM import

— Axial volumes

— sagittal volumes

— coronal volumes

Y

2. Preprocessing
— HU normalization
— NIfTT conversion
— Resampling 1mm?
— 512x512 resize

3. Lung Segmentation

|- 3D U-Net
”| — Sigmoid output

— Mask lungs only

Y

5. Binary Classification
— Simple3aDCNN

— Healthy vs Pathological
— Sigmoid output

— If Pathological —

4. Patch Extraction
— Patch size 323

— Stride = 16

— HU std > 50

— Lung % > 70

7. Grad-CAM

— 3D feature maps

— Axial/sagittal /coronal
views

— Lesion focus

6. Multi-class Classifi-
cation

— GGO / Fibrosis / Reticu-
lation

— Softmax

— Balanced input

9. Final Output

8. Aggregation
— Mean probability
— Max confidence
— Majority voting

Figure 4.2: a complete pipeline diagram from input CT to final decision with Grad-CAM.

4.6 Implementation details

To ensure experimental rigor and reproducibility, this section outlines the specific training
configuration used across all models, along with the measures taken to guarantee consistent

and traceable results.

4.6.1 Training configuration

The experiments were conducted using a standardized training pipeline to ensure repro-
ducibility and computational efficiency. The configuration is summarized as follows:
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« Batch size: 32 (applied for both binary and multiclass classification tasks)
o Number of epochs: 50, with early stopping based on validation loss (patience = 10)

o Learning rate strategy: ReduceLROnPlateau scheduler (reduction factor = 0.5,
patience = 5)

e Optimizer: Adam optimizer with default parameters

4.6.2 Reproducibility measures

To enhance reproducibility of experimental results, the following practices were adopted:

« Random seed control: Fixed seeds across all random number generators in NumPy,
PyTorch, and CUDA

o Deterministic behavior: Enforced deterministic computation in PyTorch where fea-
sible

o Configuration logging: Full experimental configuration saved alongside each model
checkpoint

o Environment management: Experiments encapsulated in a Docker container repli-
cating the exact runtime environment

4.7 Conclusion

This chapter has presented a comprehensive overview of the experimental design underpin-
ning the ILD diagnosis pipeline. From standardized preprocessing and lung segmentation to
the modular two-stage classification framework and Grad-CAM-based interpretability, each
component was selected and configured to reflect both technical soundness and clinical appli-
cability. Particular attention was given to balanced data handling, patient-level evaluation,
and reproducibility to ensure robust performance under real-world conditions. The next
chapter will detail the results obtained from this pipeline and analyze the effectiveness of
each stage in achieving accurate and interpretable ILD classification.
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CHAPTER b

RESULTS AND ANALYSIS

5.1 Introduction

This chapter presents the experimental results obtained from the proposed 3D deep learning
pipeline for ILD analysis. The evaluation focuses on three main components: lung segmen-
tation, binary lesion detection (Stage 1), and multi-class ILD lesion classification (Stage
2). Each section provides quantitative performance metrics, training behavior analysis, and
qualitative visualizations to illustrate the effectiveness of the system.

5.2 Lung segmentation results

In this section, we present the quantitative and qualitative results of the lung segmentation
task.

5.2.1 Training and validation performance

In addition, Dice coefficient and segmentation loss were displayed over epochs to observe the
learning process of the segmentation model.

e The right plot in Figure 5.1 shows the Dice coefficient curves for both training and
validation sets. The metric steadily increases over epochs and plateaus near 0.99,
reflecting excellent spatial overlap with the ground truth masks. This plateau suggests
that the model generalizes well without overfitting.

These visual trends are supported by the quantitative metrics reported in Table 5.1,
where the Dice coefficient reaches a mean of 0.9926 + 0.0054 across 17 test patients.
The accompanying Hausdorff distance of 3.17 4+ 0.51 further confirms the spatial accu-
racy of the model, while high sensitivity (0.9965) and precision (0.9956) demonstrate
its ability to segment lung structures completely and correctly.

o The intermediate and right plots in Figure 5.1 present the segmentation loss for training
and validation. Both losses decrease smoothly and converge to low final values, with
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no significant divergence between them. This convergence indicates training stability
and validates that the model is not overfitting to the training data.

Together, these observations confirm that the segmentation model achieves high performance,
robustness, and consistency, making it a reliable pre-processing component for the down-
stream classification pipeline.

Training Loss Over Time validaticn Loss Over Time Dice Score Over Time

—Thaining Loss ; — Validation Lass

Figure 5.1: Segmentation training and validation progress

Table 5.1 summarizes the evaluation metrics obtained for the lung segmentation model on
the test cohort consisting of 17 patients. The results indicate high precision and reliability
of the segmentation output, as detailed below:

Metric Mean | Standard Deviation
Dice Coefficient 0.9926 + 0.0054
Hausdorff Distance (voxels) | 3.17 + 0.51
Sensitivity 0.9965 -
Specificity 0.9994 -

Precision 0.9956 -

Table 5.1: Performance of the lung segmentation model on the test set (n = 17 patients).

Together, these metrics confirm that the 3D U-Net segmentation model performs with
near-perfect accuracy, both in overlap and boundary precision, and is well suited as a pre-
processing step for downstream lesion classification tasks.

Figure 5.2 shows a qualitative example from the test set, displaying the ground truth
mask, the model’s predicted segmentation, as well as a color coded error map showing true
positives (green), false positives (red) and false negatives (yellow).
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Error Anahysis
Ground Truth Prediction [Green=TP, Red=FP, vellowsFH)

(212

Figure 5.2: Lung segmentation visualization. Left: ground truth, Center: model prediction,
Right: error map with TP (green), FP (red), FN (yellow).

We utilized a dedicated lung segmentation model to limit the analysis of lesions to the
pulmonary area and to minimize the contamination of non lung tissue. The binary lung mask
was then cropped and masked the HRCT volumes for further processing.

To illustrate the output of the lung segmentation model, Figure 5.3 presents an example
case from the dataset. The left panel shows the original axial CT slice. The center panel
displays the predicted lung mask overlaid on the same slice, highlighting the precise isolation
of lung parenchyma. Finally, the right panel demonstrates the masked CT volume where only
lung regions are preserved—this filtered volume serves as the input for subsequent lesion patch
extraction and classification tasks. This visual confirms the anatomical relevance and spatial
accuracy of the segmentation step.

Figure 5.3: Example of lung segmentation: (Left) original CT slice, (Center) segmented lung
mask applied, (Right) masked lung volume ready for lesion detectlon.
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5.3 Results and analysis: binary lesion detection
o Training and evaluation metrics

Figure 5.4 illustrates the training dynamics of the binary classifier over 50 epochs, high-
lighting both loss and accuracy for training and validation datasets.

The left plot demonstrates a smooth and consistent decline in both training and validation
loss curves, converging to near-zero values, which indicates that the model successfully mini-
mized the objective function without overfitting. Similarly, the right plot shows a progressive
increase in accuracy, with training accuracy reaching approximately 98.9% and validation ac-
curacy nearing 99.4%.

This convergence and minimal gap between training and validation curves suggest excellent
generalization capability. Moreover, the absence of oscillations or divergence in the loss curves
is indicative of stable learning behavior.

Model Loss Model Accuracy

100
035 \ —— Train —— Train

validation validation f———

0.30 *® ,_/_/_,.,—f
96 1

92 4

o.l1 0 RJ\ N /

—— 86 -

Loss
o o o
= )
n & w
Accuracy (%)
£
\‘
N

Epoch Epoch
Figure 5.4: Collection of training and evaluation metrics for Stage 1.

Figure 5.5 presents the confusion matrix for the binary classification task distinguish-
ing between healthy and lesion-containing samples. The classifier demonstrates exceptional
performance, with 2,238 true negatives (correctly classified healthy samples) and 2,236 true
positives (correctly classified lesion samples). Only 12 healthy samples were misclassified as
lesions (false positives), and 14 lesion samples were incorrectly predicted as healthy (false
negatives).
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Figure 5.5: Confusion Matrix of Stage 1.

Table 5.2 summarizes the evaluation metrics obtained for the binary classification task.
The results demonstrate high classification performance, highlighting the model’s ability to
effectively distinguish between healthy and pathological patches.

Metric Value
Accuracy 0.9947
Balanced Accuracy 0.9944
Precision (Lesion) 0.9946
Recall / Sensitivity (Lesion) | 0.9938
F1 Score (Lesion) 0.9942

Table 5.2: Evaluation metrics for binary lesion detection (patch-level inference).

These results show strong generalization and clinical usefulness in a high-recall context.
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5.4 Results and analysis: Multi class lesion classifica-
tion

After training and validation, the proposed multi-class ILD lesion classifier demonstrated
strong generalization performance across all target classes.

o« Confusion matrix

The confusion matrix (Figure 5.6) illustrates the model’s performance across the three
pathological lung patterns: Ground Glass Opacity (GGO), Fibrosis, and Reticulation.

High correct classification rates were achieved for all classes, with the most significant
confusion observed between GGO and Fibrosis (45 cases), likely due to their overlapping
radiological features and clinical progression in interstitial lung diseases.

A moderate level of confusion occurred between Fibrosis and Reticulation (32 cases),
reflecting similarities in structural lung alterations. The least confusion was found between
GGO and Reticulation (26 cases), suggesting these patterns are more visually distinct to
the model.

The model exhibited rapid convergence by epoch 7, with training and validation curves
closely aligned, indicating no overfitting. The application of transfer learning significantly
accelerated training, improving accuracy from an initial 50% to a final test accuracy of

88.73%.

Multiclass Confusion Matrix
Test Accuracy. 88.73%

250

GGO

- 200

True Label
Fibrosis

- 100

Reticulation
|

i i
GGO Fbrosis Reticulation
Predicted Label

Figure 5.6: Confusion matrix for ILD lesion classification.
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e Training and evaluation metrics

To

evaluate the learning behavior and generalization capacity of the model, we examine

the training and validation curves over 30 epochs for three core metrics: loss, accuracy, and
F1 score (Figure 5.7).

03

Loss curve:

The loss curve exhibits a steady and consistent decrease in both training and validation
loss across epochs. Importantly, the validation loss remains consistently below the train-
ing loss, suggesting good generalization and a lack of overfitting. The most significant
reduction in loss occurs during the initial epochs (0-7), indicating rapid convergence.
After this phase, the loss continues to decline gradually, reflecting a fine-tuning stage

with diminishing updates.

Accuracy curve:

The accuracy curve demonstrates rapid improvement in both training and validation
accuracy during the first few epochs, particularly from epoch 0 to 7. Training accuracy
increases from approximately 50% to over 80%, while validation accuracy stabilizes
around 88%. Beyond epoch 7, the improvements become marginal, and both curves
exhibit a plateau. The alignment between the two curves suggests that the model is

learning in a stable and generalizable manner.

F1 score curve:

The F1 score curve closely follows the trend observed in accuracy, with sharp early
improvements and subsequent stabilization. The validation F1 score reaches approxi-
mately 0.88 and remains consistent thereafter, reflecting balanced performance in terms
of both precision and recall. This is particularly important in imbalanced or multi-class
classification tasks, where F1 score provides a more nuanced assessment than accuracy

alone.

Model Loss Model Accuracy Model F1 Score
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\ Validation
\

S e

Accuracy (%)
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Validation

I — Train | 5
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|
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Figure 5.7: Training and validation curves for loss (left), accuracy (middle), and F1 score

(right) over 30 epochs.
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5.5 Grad-CAM visualizations and interpretation

This section presents qualitative results using Gradient-weighted Class Activation Mapping
(Grad-CAM) to gain insight into the learned spatial attention of the multi-class lesion classi-
fier. Grad-CAM overlays highlight which areas of the CT patch most influenced the model’s
decision.

5.5.1 Per-Class prediction and activation maps

Figures 5.8, 5.9, and 5.10 show representative Grad-CAM outputs for three common ILD
lesion types: Reticulation, Fibrosis, and Ground Glass Opacity (GGO). Each figure displays
a predicted patch alongside its heatmap overlay, with activation intensities indicating the
most relevant regions for classification; areas highlighted in red correspond to the Regions
of Interest (ROIs) where the model focuses its attention, while blue regions indicate low or
no contribution to the prediction.

» Reticulation (Figure 5.8): The model focused on thin, linear structures consistent
with fibrotic reticulation. The predicted probability exceeded 91%.
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Figure 5.8: Grad-CAM overlay for a patch predicted as Reticulation. Confidence: 91
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« Fibrosis (Figure 5.9): Activation was distributed over irregular, dense textures hall-
marks of fibrosis. The model predicted this class with 89% confidence.
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Figure 5.9: Grad-CAM overlay for a patch predicted as Fibrosis. Confidence: 89.

e Ground Glass Opacity (GGO) (Figure 5.10): The heatmap emphasized hazy
areas of low intensity within the lungs, typical of GGO, with prediction confidence
reaching 94%.
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Figure 5.10: Grad-CAM overlay for a patch predicted as Ground Glass Opacity (GGO).
Confidence: 94.

The table 5.3 summarizes key evaluation metrics.

Class Precision (%) | Recall (%) | F1-Score
Ground Glass Opacity (GGO) 84.0 94.7 0.891
Fibrosis 90.1 83.9 0.869
Reticulation 93.0 87.5 0.902
Overall Accuracy 88.73%

Weighted F1 Score 0.887

Table 5.3: Per-Class Performance Metrics on the Test Set

5.5.2 Average class activation summary

To provide a global perspective of model attention, we aggregated Grad-CAM maps across
multiple samples per class. The resulting heatmaps (Figure 5.11) illustrate common spatial
activation patterns across correctly predicted samples for each ILD lesion.



« Ground Glass Opacity (GGO): Average accuracy of 85%. Activations were diffuse
and located in mid-lung regions with hazy textures.

o Reticulation: Highest accuracy at 95%. Attention focused on structured, net-like
fibrotic regions.

o Fibrosis: Lowest accuracy at 70%. Heatmaps were more dispersed, reflecting the
variable and complex nature of fibrotic lesions.

Awverage Class Activation Patterns
GGO - Axlal GGO - Sagittal GGO - Caronal

Fibrosis - Axial Fibrasis - Sagittal Fibrosis - Carcnal
: I

Reticulation - Sagittal Reticulation - Coronal

Figure 5.11: Average Grad-CAM maps across multiple correctly predicted samples for each
ILD lesion type.

The Grad-CAM overlays confirm that the model learned clinically meaningful features

and focused on relevant regions when predicting ILD subtypes. This interpretability supports
model reliability and offers transparency that may improve trust in real-world deployment.
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5.6 Patient-Level inference results

To assess the clinical viability of the proposed system, patch-level predictions were ag-
gregated into patient-level diagnoses using confidence-based averaging. The patient-level
evaluation was performed on a subset of ten test patients, covering all three ILD lesion

types.

As shown in Figure 5.12, patients labeled with ground-glass opacity (GGO) tend to have
sharply peaked softmax probabilities, reflecting consistent agreement across patch predic-
tions. In contrast, patients with fibrosis exhibit a more diffuse confidence distribution,
occasionally overlapping with GGO or reticulation, highlighting the inherent challenge in
distinguishing early fibrotic changes.
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Figure 5.12: Patient-level class probability distributions across test patients.
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Figure 5.13 illustrates the confusion matrix based on final patient-level predictions. GGO
was correctly identified in most cases, achieving the highest classification accuracy. Reticu-
lation was also consistently recognized with minimal confusion. However, fibrosis cases were
frequently misclassified as GGO, underscoring the visual and radiological overlap between
these two ILD patterns.

Patient-Level Confusion Matrix
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Figure 5.13: Patient-level confusion matrix using averaged softmax probabilities.

Class Patients (Total) | Correctly Classified | Recall
Ground-Glass Opacity (GGO) 5 5 100%
Fibrosis 4 1 25%
Reticulation 1 1 100%
Overall 10 7 70%

Table 5.4: Patient-Level Classification Performance.

e Overall accuracy:

The system achieved a patient-level classification accuracy of 70%, correctly identifying
7 out of 10 patients. This is notably lower than the patch-level accuracy (88.73%),
highlighting the complexity introduced by patch aggregation and patient heterogeneity.

o Class-Wise performance:
— Ground-Glass Opacity (GGO): Achieved 100% recall (5/5), consistently pro-
ducing high-confidence predictions > 0.8.

— Fibrosis: Demonstrated poor recall (25%), with only 1 out of 4 patients correctly
classified. Most misclassifications were in favor of the GGO class.

— Reticulation: Achieved 100% accuracy (1/1), with very high confidence 0.882
for Patient 128.
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o Misclassification patterns:
All three misclassified fibrosis cases (Patients 82, 56, 168) were incorrectly labeled as
GGO. These errors were associated with:
— High but ambiguous GGO probabilities 0.705-0.896
— Limited patch count per patient (7-20 patches), leading to less stable aggregation

« Noteworthy cases:

— Patient 118 (GGO): Despite having a minor mix of fibrosis patches (2/38), was
correctly classified as GGO with moderate confidence (0.606).

— Patient 76 (Fibrosis): Correctly predicted despite only three patches, suggest-
ing robustness in certain low-data scenarios.

— Patient 128 (Reticulation): Exceptionally reliable prediction supported by a
large number of consistent patches (1,822).

These results emphasize both the promise and the limitations of patient-level diagnosis
based on patch-wise CNN classification. They also reveal that class imbalance, limited patch
coverage, and overlapping lesion appearances remain key challenges for real-world deploy-
ment.

5.7 Conclusion

The proposed pipeline showed strong performance in lung segmentation and binary lesion
detection, achieving high Dice scores and sensitivity. While the multi-class classification
results were promising, validation revealed challenges due to class imbalance and a potential
risk of overfitting, indicating areas for further improvement in future work.
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CHAPTER 6

CONCLUSION

This dissertation presented the design and development of a modular 3D deep-learning
pipeline for automatic detection and classification interstitial lung diseases (ILD) lesions in
high-resolution computed tomography (HRCT). In light of the diagnostic challenges and
clinical burden of ILDs, we proposed a scalable approach, that combines anatomical lung
segmentation, binary detection of pathology, and lesion level classification.

The pipeline follows a multi-stage structure. To begin, a 3D U-Net segments the lung
focusing analysis on relevant anatomical structures. Then, a lightweight binary classifier
(Simple3DCNN) performs patch-level classification to distinguish between healthy and patho-
logical scans. For those scans predicted as pathological, a second stage performs multi-class
classification of ILD lesions using a fine-tuned 3D CNN on balanced patch samples.

The testing was conducted using a preprocessed and filtered dataset of the MedGIFT ILD
database. Strong performance was observed across all stages, including high Dice scores in
segmentation, over 99% accuracy in binary detection, and approximately 88.7% macro F1
score for the 3-class lesion classification .

To enhance model interpretability, a 3D Grad-CAM method was integrated into the final
classification stage. This visualization tool highlights the spatial regions that most influence
the model’s decision, providing initial steps toward clinical transparency and trust. These
class activation maps were generated for selected patients and evaluated qualitatively to
verify the model’s attention on meaningful lesion regions.

In addition to patch-wise evaluation, patient-level classification was performed by aggre-
gating predictions across volumetric patches. This strategy showed promising results, with
high per-class precision and recall, demonstrating the model’s ability to generalize diagnostic
decisions at the patient scale.
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Summary of Contributions

The main contributions of this dissertation are summarized as follows:

e 3D Lung Segmentation Module: We developed a robust 3D U-Net-based pipeline
for volumetric lung segmentation from HRCT scans. The system achieved a mean Dice
coefficient of 0.9926, demonstrating high accuracy across patient scans.

o Binary ILD Detection System: A lightweight 3D classification module was imple-
mented to distinguish healthy from pathological lungs, supporting automated triage
and early screening.

o Multi-Class Lesion Classification: The system identifies and classifies lesion sub-
types (ground-glass opacities, fibrosis, and reticulation) using a 3D CNN trained on
segmented lesion patches, addressing the clinical need for pattern-specific ILD diagno-
Sis.

o« Grad-CAM-Based Explainability: Grad-CAM visualizations were integrated to
highlight class-relevant lesion areas, improving model transparency and allowing radi-
ologists to interpret decisions in clinically meaningful terms.

o Lesion Volume Quantification: Patient-level lesion volumes and lesion-to-lung ra-
tios were computed to provide objective biomarkers for disease burden and potential
severity scoring.

o Modular AT Pipeline Design: The architecture was structured into sequential mod-
ules, allowing stage-wise evaluation and adaptation for real-world clinical workflows.

Limitations

The limitations of this work are:

o Limited Data and Class Imbalance: The dataset is not only relatively small,
but also unbalanced, with some ILD patterns underrepresented. This affects model
generalization and robustness.

e No End-to-End Volumetric Segmentation: The system classifies individual
patches but does not generate full-volume lesion maps, limiting lesion burden esti-
mation and 3D visualization quality.

« Absence of Clinical Metadata Integration: The model is based purely on imaging
without incorporating clinical characteristics such as age or pulmonary function tests
(PFTs), which could improve diagnostic accuracy.

o Limited External Validation: All experiments were conducted using the MedGIFT
dataset only. The generalizability of the model to other datasets, scanners, or clinical
settings remains unverified.
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Future Work:

We plan to follow up with several future directions to improve the system:

1. Dataset Augmentation: Expanding the dataset, especially for less common ILD
patterns, to improve generalization and robustness.

2. Advanced Learning Techniques: Exploring semi-supervised learning, self-training,
or transformer-based architectures to enhance classification performance in data-scarce
conditions.

3. Deployment Readiness: Validating the system in real-world clinical settings through
external testing and expert radiologist feedback.

In summary, this dissertation presents a novel 3D Al framework for ILD detection and
pattern classification using HRCT data. While further development is required for clini-
cal integration, the modular and interpretable system introduced in this work lays a solid
foundation for future research into accurate and trustworthy computer-aided diagnosis of
ILD.
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