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Abstract

This research explores the integration of data mining techniques with metaheuristic algorithms

to address hard combinatorial problems, with a particular focus on the Boolean Satisfiability Prob­

lem (SAT). The core metaheuristic employed is Elephant Herding Optimization (EHO), a swarm­

based algorithm inspired by the social behavior of elephants, known for its balance between explo­

ration and exploitation.

To align EHO with the discrete nature of the SAT problem, a first adaptation phase was carried out.

During this stage, stagnation emerged as a significant limitation, affecting the algorithm’s ability to

maintain progress toward better solutions. To mitigate this, three strategies were proposed: muta­

tion, re­division, and a combination of both. These simple improvements led to a notable reduction

in stagnation and significantly increased the satisfiability rate, particularly with the mutation strat­

egy, which also offered the shortest execution time in most test cases.

The second phase consisted of selecting suitable data mining techniques to hybridize with EHO,

aiming to further enhance performance. K­Means and DBSCAN clustering methods were chosen

due to their alignment with EHO's internal mechanisms, such as clan division and worst­solution

handling. K­Means was integrated by replacing random clan division with similarity­based group­

ing. DBSCAN, on the other hand, was adapted both to replace the random clan division using a

density­based similarity approach and, in addition, to detect and manage outliers by improving the

considered worst individuals through guided reintegration. These hybridizations resulted in sub­

stantial performance gains, with the DBSCAN­based approach achieving the best balance of high

satisfiability and low execution time. These findings confirm that combining data­driven clustering

with swarm­based metaheuristics offers a promising direction for solving complex discrete prob­

lems.

Keywords: Metaheuristic, Swarm intelligence, EHO, Data Mining, Clustering, Problem Solving,

SAT, Stagnation, Hybridization.
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Résumé

Cette recherche exploite l’intégration des techniques de fouilles de données aux métaheuris­

tiques pour résoudre des problèmes combinatoires complexes, en particulier le problème de satisfia­

bilité booléenne (SAT). La métaheuristique utilisée est l’Elephant Herding Optimization (EHO), un

algorithme basé sur l’intelligence en essaim, inspiré du comportement social des éléphants, connu

pour son équilibre entre exploration et exploitation.

Pour adapter EHO à la nature discrète du problème SAT, une première phase d’adaptation a été réal­

isée. Durant cette étape, la stagnation s'est avérée être une limite importante, réduisant la capacité

de l’algorithme à progresser vers de meilleures solutions. Pour y remédier, trois stratégies ont été

proposées : la mutation, la redivision et une combinaison des deux. Ces améliorations simples ont

permis de réduire la stagnation et d’augmenter considérablement le taux de satisfiabilité, en par­

ticulier avec la stratégie de mutation, qui a aussi offert le temps d’exécution le plus court dans la

plupart des cas.

La deuxième phase a consisté à sélectionner des techniques de fouilles de données pour hybrider

EHO, afin d’améliorer davantage ses performances. Les méthodes de clustering K­Means et DB­

SCANont été choisies en raison de leur compatibilité avec les mécanismes internes de EHO, comme

la division en clans ou la gestion des mauvaises solutions. K­Means a remplacé la division aléatoire

des clans par un regroupement basé sur la similarité. DBSCAN a été utilisé à la fois pour remplacer

cette division par une approche basée sur la densité et pour détecter et corriger les solutions de mau­

vaise qualité. Ces hybridations ont permis d’obtenir des performances nettement meilleures, avec

DBSCAN atteignant le meilleur équilibre entre taux de satisfiabilité élevé et temps d’exécution ré­

duit. Ces résultats montrent que combiner des techniques de clustering avec des métaheuristiques

de type intelligence en essaim est une voie prometteuse pour résoudre des problèmes discrets com­

plexes.

Mots­clés: Métaheuristique, intelligence en essaim, EHO, Fouille de données, Regroupement (Clus­

tering), Résolution de problèmes, SAT, Stagnation, Hybridation.
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صخلم

ةيقفاوتلالكاشملالحلةيفاشكتسالاتايمزراوخلاعمتانايبلايفبيقنتلاتاينقتجمدةساردلاهذهفشكتست

"لايفألاعيطقنيسحت"يهةمدختسملاةيساسألاةيمزراوخلا.TASةلأسمىلعصاخلكشبزيكرتلاعم،ةدقعملا

(OHE)،لالغتسالاوفاشكتسالانيبنزاوتلابزيمتتو،لايفألليعامتجالاءاكذلانمةاحوتسمةيمزراوخيهو.

ترهظ،ةلحرملاهذهلالخ.ةيلوأفييكتةلحرمذيفنتمت،TASةلكشمللصفنملاعباطلاعمOHEفييكتل

مت،كلذىلعبلغتللو.لضفألولحوحنمدقتلاىلعةيمزراوخلاةردقىلعرثأامم،يسيئرقئاعكدوكرلاةلكشم

ليلقتىلإةطيسبلاتانيسحتلاهذهتدأدقو.امهنيبعمجلاو،ميسقتلاةداعإو،ةرفطلا:تايجيتارتساثالثحارتقا

تقورصقأاضًيأترهظأيتلا،ةرفطلاةيجيتارتسامادختسابةصاخ،ءاضرإلالدعمةدايزوظوحلملكشبدوكرلا

.تالاحلامظعميفذيفنت

ءادألازيزعتفدهب،OHEةيمزراوخعماهجمدلتانايبلابيقنتنمةبسانمتاينقترايتخايفتلثمتةيناثلاةلحرملا

ميسقتلثم،OHEلمعتايلآعمامهقفاوتلًارظنsnaeMKNACSBDعيمجتلايتقيرطرايتخامت.ربكألكشب

.هباشتلاىلعدمتعيعيمجتبيئاوشعلارئاشعلاميسقتلادبتسالالخنمsnaeMKجمدمت.لولحلاأوسأةجلاعمورئاشعلا

،ةفاثكلاىلعمئاقهباشتجهنمادختسابرئاشعلليئاوشعلاميسقتلالادبتساباضًيأموقيلهفييكتمتدقفNACSBDامأ

دقو.ةهجومجامدإةداعإلالخنمأوسألادارفألانيسحتربعاهعملماعتلاوةذاشلاميقلافاشتكاىلإةفاضإلاب

لدعمنيبنزاوتلضفأNACSBDجهنققحثيح،ءادألايفةريبكتانيسحتقيقحتىلإتاجامدالاهذهتدأ

ةيفاشكتسالاتايمزراوخلاوعيمجتلاتاينقتنيبعمجلانأجئاتنلاهذهرهظُت.ضفخنملاذيفنتلانمزويلاعلاعابشإلا

.ةدقعملاوةلصفنملاتالكشملالحلاًدعاواًراسمدعُييعامجلاءاكذلاىلعةمئاقلا

لح،عيمجتلا،تانايبلايفبيقنتلا،EHO،يعامجلاءاكذلا،ةيفاشكتسالاتايمزراوخلا:ةيحاتفملاتاملكلا

.جمدلا،دوكرلا،SAT،تالكشملا
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GENERAL INTRODUCTION

Solving complex real­world problems often requires addressing large­scale optimization tasks.

Many such problems like scheduling, resource allocation, and strategic planning belong to the class

of NP­complete problems. These are known for their computational complexity, as no algorithm

can solve them exactly in polynomial time for all cases. Among these, the Boolean Satisfiability

Problem (SAT) is a fundamental and widely studied example, with applications ranging from arti­

ficial intelligence and hardware verification to cybersecurity and cryptography.

To handle such problems, exact methods often fall short as the solution space grows exponentially

with problem size. This limitation has led to increasing reliance on heuristic and metaheuristic ap­

proaches. Heuristics provide fast, approximate solutions based on problem­specific rules, while

metaheuristics offer more general frameworks inspired by nature or mathematical processes. These

methods, especially metaheuristics, strike a practical balance between solution quality and compu­

tational efficiency, making them particularly suitable for hard combinatorial problems like SAT.

Among the families of metaheuristics, swarm­based algorithms have gained significant attention

due to their distributed nature, simplicity, and robust performance across diverse applications. Of

the recently developed algorithms, Elephant Herding Optimization (EHO), inspired by the herding

behavior of elephants, stands out as a promising approach whose adaptation to solving SAT prob­

lems offers interesting potential. In addition to metaheuristics, data mining techniques also provide

valuable tools for extracting structure from complex datasets. This synergy is particularly relevant

in the context of hybrid approaches, where combining metaheuristics like EHO with clustering

methods from data mining can help overcome specific challenges and enhance solution quality.

This work aims to investigate and enhance the EHO algorithm to efficiently solve SAT problems.

The manuscript follows a structured methodology that progresses in several stages:

• First, a theoretical foundation is established through a state­of­the­art study (Part II), which

presents essential concepts of data mining (Chapter 1), introduces metaheuristic algorithms

with a focus on Elephant Herding Optimization (Chapter 2), and discusses the SAT problem

and its variants along with existing solving strategies (Chapter 3). This background provides

the conceptual support required for the proposed algorithmic contributions.

• Throughout third part (Part III),The EHO algorithm is first adapted and implemented to solve

the SAT problem, followed by initial testing to assess its behavior and address observed lim­

itations (chapitre 04). Subsequently, hybridization with selected data mining techniques is
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introduced to further enhance performance (Chapter 05),followed by a comprehensive ex­

perimental evaluation to validate the effectiveness of the proposed improvements (Chapter

6).

• Finally, a general conclusion is presented, summarizing the main outcomes of the study, along

with some perspectives and potential directions for future research.
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Part II

State of the Art
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CHAPTER 1
DATAMINING TECHNIQUES

1.1 Introduction

With the exponential growth of data and the diversity of its sources, extracting valuable knowl­

edge has become increasingly challenging. This led to the emergence of Data Mining, a powerful

solution that leverages artificial intelligence, machine learning, and statistical techniques to uncover

hidden patterns and relationships within massive amounts of information.

This chapter is dedicated to Data Mining by exploring its essential methodologies and applications.

Key techniques like clustering and classification for pattern extraction are first, discussed. Prepro­

cessing techniques such as cleaning and transformation to enhance data quality are then discussed.

Finally, post­processing, which includes evaluation and visualization is covered.

1.2 Understanding Data

Before applying data mining techniques, it is essential to understand the nature of data, its dif­

ferent forms, and the challenges it presents. The quality of data directly impacts the effectiveness

of analyses and the results obtained.

Data analysis begins with identifying and collecting relevant datasets from various sources. It

is crucial to document their properties, such as format, number of records, and attributes. A deeper

exploration through queries and visualizations helps uncover relationships, patterns, or inconsisten­

cies. Finally, verifying data quality is essential to detect errors and missing values, ensuring optimal

processing [1].

Data is generally classified into two main categories [2, 3]: qualitative and quantitative.

ã Qualitative data (categorical) includes:

– Nominal attributes (unordered categories, e.g., color, product type).

– Binary attributes (two possible states, e.g., true/false).

– Ordinal attributes (ordered categories without measurable differences, e.g., education

level).
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ã Quantitative data (numerical) includes:

– Interval­scaled attributes (meaningful differences but no true zero, e.g., temperature).

– Ratio­scaled attributes (with a true zero, allowing ratio comparisons, e.g., weight, in­

come).

The type of data directly influences how it is cleaned, transformed, and analyzed, making this step

crucial before processing.

1.3 Data Mining: fundamental concepts

Data mining refers to extracting or “mining” knowledge from large amounts of data.

Also referred to as Knowledge Discovery in Databases (KDD), it is the process of uncovering in­

teresting patterns, models, and other valuable insights from massive datasets. It involves more than

just collecting data, be focuses on analyzing and extracting meaningful knowledge that can drive

decision­making [3].

A data mining process integrates concepts from statistics; such as sampling, estimation, and hy­

pothesis testing, as well as from artificial intelligence, pattern recognition, and machine learning,

including search algorithms, modeling techniques, and learning theories. It also draws on fields

such as optimization, evolutionary computing, information theory, signal processing, visualization,

and information retrieval [2]. The illustrated diagram (1.1) exhibits the relationship between data

mining and other fields.

Figure 1.1: Data Mining as the Integration of Multiple Disciplines

The data mining process is a structured sequence of steps aimed at transforming raw input data

into actionable knowledge, as illustrated in Figure 1.2. This process begins with data preprocessing,

where the raw data is cleaned, transformed, and prepared for analysis. Next, the data mining phase

applies algorithms and techniques to extract meaningful patterns and insights from the processed

data. Finally, a post­processing stage evaluates and refines the extracted patterns, ensuring that the

discovered knowledge is both accurate and interpretable [3][2].
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Figure 1.2: Main Phases of a Data Mining process

The following subsections will delve deeper into each main step preprocessing, mining, and post­

processing highlighting their specific roles and techniques.

1.3.1 Data preprocessing

Today's real­world databases often contain noisy, incomplete , and inconsistent data due to their

large size and heterogeneous sources. such low­quality data can significantly impact the quality of

data mining process and lead to poor mining results. The quality of data plays a crucial role in a data

mining process. To ensure data quality and enhance the effectiveness of data mining techniques, a

data preprocessing step is essential.

It involves several key techniques:

1. Data Cleaning ensures data reliability by handling missing values through imputation meth­

ods (e.g., mean or median replacement) and reducing noise using techniques like binning,

clustering, and regression [3, 4]

2. Data Integration combines data from multiple sources, resolving redundancies and incon­

sistencies using object identification and correlation analysis [3, 4].
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3. Data Transformation and Discretization convert data into suitable formats for analysis,

including smoothing (reducing noise), aggregation (summarizing data), generalization (ab­

stracting details), normalization (scaling data), and discretization (categorizing continuous

attributes) [4].

4. Data Reduction optimizes storage and processing by reducing dataset size while preserving

essential patterns through dimensionality reduction, numerosity reduction, and sampling [4].

Note: Data preprocessing does not require executing all stages for every dataset; it depends on

the nature of the data and the specific problem. Typically, the process starts with data cleaning to

remove missing values and noise, followed by data integration if multiple sources are involved.

Then, data transformation is applied through normalization or discretization, and finally, data

reduction is performed if the dataset is too large. These steps are not always mandatory, and only

the necessary ones are selected based on the analysis requirements.

1.3.2 Data mining techniques

Data mining techniques can be categorized into three main types: descriptive, predictive, and

optimization [5] ( Figure 1.3).

1. Descriptive techniques (unsupervised) uncover hidden structureswithin data usingmethods

such as clustering and frequent patterns mining.

2. Predictive techniques (supervised) aim to forecast outcomes based on existing data through

classification and regression.

3. Optimization techniques enhance model performance by refining parameters, utilizing ap­

proaches like genetic algorithms and metaheuristics.

Figure 1.3: Main Data Mining Taskes

1.4 Clustering

Clustering is a data mining technique that aims to group similar data points into clusters (Figure

1.4), identifying patterns and relationships without prior knowledge of the data structure or classi­

fication. This unsupervised learning method helps uncover hidden insights within datasets. And is

widely applied in various fields, including marketing segmentation, image processing, and anomaly

detection, making it a valuable tool for data analysis and pattern recognition.
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Figure 1.4: Illustration of Clustering Algorithm Process

To be effective, clustering algorithms must meet several requirements [3]:

• Ability to handle diverse data types, including numerical, categorical, textual, and image

data.

• Scalability to process large datasets without compromising accuracy.

• Detection of clusters with various shapes, beyond Euclidean or Manhattan­based distances.

• Flexibility in parameter selection or assistance for users in defining parameters.

• Robustness to noisy data, handling missing or incorrect values effectively.

• Support for incremental updates without requiring full re­clustering.

• Insensitivity to data input order to ensure consistency.

• Effective handling of high­dimensional data, with subspace clustering as a viable approach.

A plethore of clustering algorithms exist and often share overlapping features making their classi­

fication difficult. Nonetheless, they can be broadly categorized based on their main characteristics

to provide a clearer understanding of their underlying approaches.

Figure 1.5 exhibits this categorization [3] .

Figure 1.5: Types of Clustering Techniques
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1.4.1 Partitioning Methods

Based on distance or similarity between data points, partitioning methods aim to divide a

dataset into a predefined number of clusters,denoted as k. Each data point is assigned to one clus­
ter, ensuring that all groups contain at least one object. Data objects within the same cluster should

be as similar as possible, while objects in different clusters should be as dissimilar or distant as

possible.

Figure 1.6: The Process of K­means Algorithm

One of the mostly studied and used partitioning algorithm is the k­means. It starts, after selecting

the number of clusters (k), by randomly initializing k centroids. Then, each data point is assigned

to the nearest centroid, and new centroids are computed as the mean of the assigned points. This

iterative process continues until the centroids no longer change significantly or a predefined number

of iterations is reached.

Figure 1.6 illustrates this entire process, from initial random centroids to the final stable clusters.

1.4.2 Density­Based Methods

Contrarily to partitioning clustering which are distance­based methods, density­based methods

rely on the concept of data density while identifying clusters.

In such methods, density refers to the number of data points within a given region of space. A region

is said to be dense if its number of data points exceeds a certain threshold.

These methods identify clusters by grouping data points that are densely packed together while

filtering out noise. A cluster continues to grow as long as the number of points in its neighborhood

exceeds a specified density threshold.
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Unlike partitioning methods, these approaches can detect clusters of arbitrary shapes, making them

suitable for complex real­world data.

Density­Based Spatial Clustering of Applications with Noise ­DBSCAN­ is a well­known density­

based algorithm. It groups data points based on density, making it suitable for datasets with irregular

cluster shapes.

This figure (1.7) illustrates the DBSCAN clustering process:

Figure 1.7: Exemple of DBSCANAlgorithm Process

The algorithm requires two key parameters:

• ε (radius): Defines the neighborhood of a point.

• MinPts: The minimum number of points required to form a dense region.

Based on these parameters, DBSCAN classifies points into three categories:

• Core points : Have at least MinPts neighbors within ε.

• Border points : Are within ε of a core point but do not have enough neighbors to be core
points.

• Outliers: Do not belong to any cluster due to insufficient density.
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The figure shows the process step by step. First, all points are unclassified. The algorithm then ex­

amines each point, determining whether it is a core, border, or outlier. Once all points are classified,

DBSCAN connects nearby core points to form clusters, while border points remain at the edges, and

outliers are left ungrouped. The final result highlights how DBSCAN effectively identifies clusters

of arbitrary shapes while detecting noise points.

1.4.3 Hierarchical Methods

Hierarchical methods build a hierarchical decomposition of data points, either through an ag­

glomerative (bottom­up) or divisive (top­down) approach.

Agglomerative clustering starts with individual points as separate clusters and iteratively merges

them. Contrarily, divisive clustering begins with a single cluster and progressively splits it.

Unlike partitioning methods, hierarchical clustering does not require specifying k in advance. How­
ever, once a merge or split occurs, it cannot be undone, which may lead to suboptimal clustering.

Despite this limitation, hierarchical methods are useful for capturing nested structures in data and

can be extended to subspace clustering.

1.4.4 Grid­Based Methods

Grid­based methods divide the data space into a finite grid structure, where clustering opera­

tions are performed on individual cells rather than directly on data points. This significantly reduces

computational complexity, making it highly efficient for large datasets. Dense cells, containing a

sufficient number of data points, are identified and combined to form clusters. The processing time

of grid­based methods depends on the number of grid cells rather than the number of data points,

making them ideal for high­dimensional data and spatial clustering tasks. Additionally, these meth­

ods can be integrated with hierarchical or density­based techniques for improved performance.

1.5 Classification

Classification is a supervised learning approach and is widely used for predicting categorical

outcomes. It involves the assignment of input data to predefined categories based on learned pat­

terns.

This technique is extensively applied in various fields, including healthcare, finance, andmarketing,

where accurate predictions are crucial [6].

The classification process consists of twomain phases: training and testing (Figure 1.8). In the train­

ing phase, the algorithm learns patterns from a labeled dataset, where both the predictor attributes

and their corresponding class labels are known. This step helps the model identify relationships

between features and class outcomes.

Once trained, the model undergoes the testing phase, where it is evaluated on unseen data to assess

its accuracy and generalizability. The algorithm predicts class labels without prior knowledge of

their actual values, ensuring an objective evaluation.

The performance of a classification model is typically measured using metrics such as accuracy,

precision, recall, and F1­score [6, 7].
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Figure 1.8: Classification Process

Classification has two primary categories [6, 7]: eager learners and lazy learners.

1.5.1 Eager Learners

Eager learners construct a model during the training phase and then use it to classify new in­

stances. These algorithms depend not only on the data, but also on parameters such as weights,

rules, support vectors, and probabilities, to make predictions.

As a result, eager learners require high computational effort during training but enable fast classifi­

cation since predictions are made using a pre­built model.

Some well­known eager learners include Decision Trees, Naïve Bayes, and Support Vector Ma­

chines (SVM).

For example, figure (1.9) illustrates a Decision Tree used for classification, where data points are

split based on feature values to assign them to different categories. Decision Trees aim to create

a hierarchical structure of decisions that efficiently classify data by following simple rules at each

node.

Figure 1.9: Example of Decision Trees Process
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1.5.2 Lazy Learners

Lazy learners do not construct an explicit model during training. Instead, they store training

instances and classify new data based on similarity measures.

Unlike eager learners, lazy learners depend only on data and do not rely on parameters such as

weights or probability distributions. Because they do not build a model beforehand, they have low

training time but high computational cost during prediction, as they must compare new instances

against all stored data. Common examples include k­Nearest Neighbors (KNN) and Case­Based

Reasoning (CBR).

For example, figure (1.10) illustrates the KNN classification process. A new sample needs to be

classified based on its K = 4 nearest neighbors. Among them, three belong to Category A and one

to Category B . Since the majority class is Category A, the new sample is assigned to this category.

Figure 1.10: Example of K­Nearest Neighbors Process

Note: The choice of K influences the classification, balancing sensitivity to noise and decision

boundary smoothness.

1.6 Optimization

Optimization in data mining plays a crucial role in enhancing the efficiency and accuracy of

analytical models by maximizing useful factors and minimizing errors. It enables effective process­

ing of large datasets, reducing computational costs and increasing the speed of pattern extraction.

Additionally, it is essential in data preprocessing, where it helps clean noisy data, remove outliers,

and improve overall data quality before analysis. By optimizing data mining processes, researchers

can achieve more accurate and reliable insights from complex datasets [5].

One of the most widely used optimization techniques in data mining is genetic algorithms (GA),

which are inspired by natural selection to find the best solutions for complex problems [8]. These

algorithms start with a randomly generated set of possible solutions, then iteratively refine them

through selection, crossover, and mutation, ensuring that only the most optimal solutions survive

each generation [8]. Compared to traditional methods, genetic algorithms are more effective at

handling large and complex datasets, as they do not rely on gradient information and can efficiently

exploremultiple solutions in parallel [5]. They are particularly useful in feature selection, clustering,

and rule generation , where they help improve model accuracy and efficiency by optimizing data

representation and decision­making processes [5, 8, 9].
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1.7 Post­Preprocessing Data

Post­processing is a key step in the Knowledge Discovery in Databases (KDD) process. It

aims to refine, interpret, and integrate extracted knowledge, making it more useful for practical

applications [10].

• One of the main goals of post­processing is to filter and simplify models by removing unnec­

essary or overly specific rules. Techniques such as decision tree pruning and rule set reduction

help improve model generalization while reducing complexity [11].

• Post­processing also includes model evaluation, which involves measuring accuracy, stabil­

ity, and performance on new data. This step is essential to ensure the reliability and applica­

bility of the extracted knowledge [10].

• Another important aspect of post­processing is knowledge interpretation and visualization.

Converting models into understandable formats, documenting results, and using visualization

tools help make insights accessible to end users [11].

• Finally, post­processing enables knowledge integration by combining multiple models from

different methods. This approach enhances the robustness of decision­support systems and

improves the relevance of results [10].

Although often overlooked, post­processing is a crucial step in data mining. It ensures that extracted

knowledge is not only accurate but also comprehensible and applicable in real­world scenarios [11].

1.8 Conclusion

In this chapter, we explored the fundamental aspects of data mining, from understanding differ­

ent data types to preprocessing techniques that enhance data quality. We examined the knowledge

discovery process and highlighted essential data mining techniques, such as clustering, classifica­

tion. These methods, driven by statistical and machine learning principles, enable the extraction of

meaningful patterns from large datasets. Finally, we discussed the importance of post­processing,

where the extracted knowledge is refined, evaluated, and presented in a meaningful way to support

informed decision­making.
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CHAPTER 2
METAHEURISTICS AND ELEPHANT HERDING

OPTIMIZATIONALGORITHM

2.1 Introduction

Metaheuristic algorithms have gained increasing attention as powerful tools for solving com­

plex and large­scale optimization problems that are difficult to address using exact methods. Their

ability to provide near­optimal solutions within reasonable computational times has made them

suitable for a wide range of applications, particularly in combinatorial and continuous optimiza­

tion. Among these techniques, nature­inspired algorithms stand out due to their adaptive behavior

and robust search capabilities, leading to the development of several novel strategies, including the

Elephant Herding Optimization algorithm.

In this chapter, metaheuristics are introduced as a powerful class of optimization methods, followed

by a detailed focus on the EHO algorithm, its inspiration, and fundamental mechanisms.Several en­

hanced versions of EHO proposed in the literature are then examined to understand how they tackle

existing limitations and boost the algorithm’s performance.

2.2 Problem Solving

Problem solving refers to the process of identifying, analyzing, and designing effective ap­

proaches to find solutions to complex tasks or problems. It often requires algorithms that operate

efficiently under a set of given constraints. In this context, NP­complete represents a major chal­

lenge in problem solving.

To solve such problems, several methods are used, including exact methods that aim to find the

solution to the problem by exploring the whole search space. These methods guarantee to find the

solution to the problem or prove that the problem cannot have a solution. This whole exploration

of the search space is computationally expensive, often leading to excessive processing time and

a combinatorial explosion in the number of possible solutions especially for large­scale or highly

constrained problems, making them impractical for many problems.

In such case, approximate methods offer a viable alternative. Heuristics are problem­specific strate­

gies that leverage domain knowledge to find good­quality solutions efficiently, thoughwithout guar­

anteeing optimality. These methods try to find a compromise between the quality of the solution

and consuming time.They are particularly useful for large or combinatorial problems where speed

and simplicity are essential [12].
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Figure 2.1: Optimisation techniques

The Figure 2.1 illustrates the main categories of optimization techniques specifically within

combinatorial discrete optimization, divided into two branches "exact" and "approximative"

methods.

2.3 Metaheuristics

Metaheuristics are high­level optimization strategies designed to guide the search for optimal or

near­optimal solutions, especially in complex and large­scale problems. Unlike traditional heuris­

tics, which are typically problem­specific, metaheuristics offer a more abstract and general­purpose

framework. This adaptability allows them to be applied to a wide range of optimization problems

with minimal customization, earning them the label of generalist heuristics [12].

These algorithms are often inspired by natural phenomena such as genetic evolution, swarm behav­

ior, or physical processes such as annealing (Figure 2.2). They are particularly effective in navi­

gating large and complex search spaces. One of their main advantages is that they do not require

prior knowledge of a good initial solution, making them suitable for problems that are difficult to

model or where the search space is poorly understood. Their flexibility and exploratory capabili­

ties help avoid the common issue of getting stuck in local optima, which often hampers traditional

optimization methods [13].

Despite their strengths, metaheuristics have some limitations. Most are based on stochastic pro­

cesses, which means that there is no guarantee of finding the global optimum. Additionally, their

effectiveness often depends on careful tuning of parameters, and the computational cost can be

significant especially for very large problems [13].

Nevertheless, metaheuristic algorithms remain powerful tools in modern optimization. They strike

a balance between exploration and exploitation, and their ability to generalize across diverse prob­

lems makes them indispensable in practice provided their limitations are properly understood and

managed [13].

2.3.1 Metaheuristic Algorithms Classifications

Metaheuristics can be classified within have different classes, each defined by distinct charac­

teristics and behaviors. However, before exploring these classes, it is important to understand the
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criteria used to classify metaheuristic algorithms. These criteria provide a structured way to group

algorithms based on their inspiration, search strategies, memory usage, and other relevant aspects.

This classification criteria is represented in the following key dimensions [13]:

• Nature­inspired vs. Non­nature­inspired: Metaheuristics can be classified based onwhether

they are inspired by natural processes or not. Nature­inspired metaheuristics include algo­

rithms such as Genetic Algorithms (GA), which are inspired by the process of natural selec­

tion. Non­nature­inspired metaheuristics include algorithms such as Simulated Annealing,

inspired by the process of metal cooling.

• Deterministic vs. Stochastic: Metaheuristics can be classified based on whether they use

deterministic or stochastic processes. Deterministic metaheuristics use predefined processes

to generate new solutions, ensuring that the same input always produce the same result. Ex­

amples include Hill Climbing and Deterministic Annealing, where the search follows a fixed

pattern. Stochastic metaheuristics, on the other hand, introduce randomness into the solution

search. Examples include Genetic Algorithms, where crossover and mutation operators are

random.

• Trajectory­based vs. Population­based: Metaheuristics can also be classified based on

whether they focus on finding a single solution or multiple solutions. Trajectory­based meta­

heuristics focus on refining a single solution over time through iterative improvement. Exam­

ples include Hill Climbing and SimulatedAnnealing, which both start with an initial solution

and attempt to improve it iteratively. Population­based metaheuristics, such as Genetic Al­

gorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO),

operate on a set of candidate solutions (a population) and explore the search space more

broadly by evolving or updating the entire population simultaneously.

• Local search­based vs. Global search­based: Metaheuristics can be classified based on

whether they focus on exploring the local search space or the global search space. Local

search­based metaheuristics focus on improving the current solution by exploring its neigh­

borhood. Hill Climbing and Tabu Search are examples of local search methods, where the

algorithm looks for better solutions in the immediate vicinity of the current solution. Global

search­based metaheuristics focus on exploring the broader search space. Genetic Algo­

rithms, Ant Colony Optimization, and Particle Swarm Optimization are examples, as they

explore the entire search space by employing strategies such as crossover, pheromone trails,

or particle movement, respectively.

Figure 2.2: Metaheuristics Classification
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The existence of multiple classifications arises because each classification considers one or

more criteria to categorize metaheuristic algorithms. One of the existing classifications shows that

metaheuristics can be nature­inspired or non­nature­inspired. As illustrated in the following figure

2.2, nature­inspired metaheuristic algorithms can be grouped into several categories, one of which

is the Swarm­Based Algorithms [14].

2.3.1.1 Swarm­Based Algorithms

Swarm intelligence methods are one of the most well­known paradigms in metaheuristic meth­

ods which have been widely used in various applications. The inspiration of the swarm intelligence

algorithms, originates from the collective behaviour of animals [15].

Swarm intelligence algorithms are typically based on the following principles [13]:

3 Decentralization: There is no centralized control over the system. Instead, each agent fol­

lows simple rules that are based on local information and interaction with its neighbors.

3 Self­organization: The agents interact with each other and with their environment to form a

pattern or structure that emerges from the collective behavior of the system.

3 Adaptation: The system is capable of adapting to changes in its environment, either through

the individual behavior of the agents or through the emergence of new collective patterns.

Swarm intelligence algorithms, drawing inspiration from various natural phenomena, have emerged

as powerful tools for solving complex optimization problems across diverse fields such as engineer­

ing, finance, biology, and computer science.

Two of the most widely used swarm intelligence algorithms are Particle SwarmOptimization (PSO)

and Ant Colony Optimization (ACO). While the idea of PSO originated from the social behavior

of bird flocking while searching for food. ACO is inspired by ants, which are well capable of

keeping the past paths in mind by pheromone. Inspired by this phenomenon, the ACO algorithm

was proposed by Dorigo et al [15].

Another swarm­based algorithm, Elephant Herding Optimization (EHO), was inspired by the social

behavior of elephants, where the herd's movement is influenced by the collective decision­making

process to search for food and adapt to environmental conditions. This behavior has been translated

into an optimization algorithm for solving complex problems.

2.4 Elephent Herding Optimisation Algorithm

Elephant Herding Optimization (EHO) is a nature­inspired metaheuristic algorithm that mimics

the herding behavior of elephant groups. Thismethod draws from the social structure andmovement

patterns of elephant clans, using these biological principles to guide a population­based search for

optimal solutions in complex problem spaces.

In this section, the core components of the EHO algorithm are detailed, including its biological

inspiration, the roles of clans and matriarchs, and the two main operators that drive the search

process clan updating and separation. A step­by­step explanation of the algorithm’s workflow is

also provided to clarify its practical implementation in optimization contexts.
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2.4.1 Elephant Herding Optimization Research Studies

Nature­inspired metaheuristics have attracted significant attention in recent years due to their

ability to deliver high­quality solutions for complex optimization problems. Their robustness, flex­

ibility, and efficiency in balancing exploration and exploitation have made them a focal point in

optimization research. In this context, the Elephant Herding Optimization (EHO) algorithm was

introduced in 2015 by Gai­Ge Wang et al [16]. This metaheuristic, inspired by the social behavior

of elephant herds, simulates clan­based movement through two key mechanisms: clan updating and

separating operations.

Figure 2.3: Evolution of Articles & Citations for 'Elephant Herding Optimization' (2015–2024)

The evolution of publications and citations related to EHO between 2015 and 2024 clearly illus­

trates this growing interest. As shown in the figure (2.3), the number of research papers has in­

creased steadily: from 291 publications in 2015–2016, to 499 in 2017–2018, then reaching 934

in 2019–2020, and peaking at 2210 publications in 2023–2024. This exponential growth reflects

not only the academic acceptance of the algorithm but also its application across various fields and

problem domains.

Through an extensive review and exploration of the existing research articles on EHO, two main di­

rections are identified in which the majority of studies have evolved. The first involves algorithmic

enhancement, where researchers have aimed to improve the original algorithm by modifying update

equations, integrating advanced solution generation strategies, or dynamically adjusting parameters

to improve convergence and solution quality. The second direction focuses on hybridization, where

a metaheuristics algorithm are combined with other metaheuristics, or machine learning techniques,

data mining techniques. These hybrid approaches aim to capitalize on the strengths of each com­

ponent method.
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Figure 2.4: Classification of EHO Variants

Based on these two directions, the existing variants of EHO can be broadly categorized into two

main classes: the Simple Class and the Hybrid Class, as illustrated in the figure (2.4). The Simple

Class includes variants that make internal improvements to the core algorithm, while the Hybrid

Class encompasses those that integrate EHO with other optimization or intelligent techniques to

enhance performance and adaptability.

NB: All the statistics, classifications, and observations presented in this section were derived

from a thorough investigation of research articles available on Google Scholar. This process

involved the use of a variety of carefully formulated search queries to ensure comprehensive

coverage of the literature on Elephant Herding Optimization (EHO). Among the queries used

were: "Elephant Herding Optimization", "Elephant Herding OptimizationAlgorithm", "elephant

herding optimization hybrid","improved elephant herding optimization" . These queries enabled

us to retrieve a significant number of relevant publications from 2015 to May 2025, offering

valuable insights into the development, categorization, and applications of the EHO algorithm.

2.4.2 Herding behavior of Elephants

Elephants are the largest terrestrial mammals. The African and Asian elephants are the two

traditionally recognized species. They exhibit complex social structures, where female elephants

serving as matriarchs lead clans composed of related females and their calves (Figure 2.5). Male

elephants, on the other hand, prefer solitude and typically leave their family groups upon reaching

maturity. Despite living independently, they maintain contact with their clan through low­frequency

vocalizations ( Figure 2.6). Elephants also possess a remarkable trunk, which serves multiple pur­

poses such as breathing, grasping objects, and liftingwater ( Figure 2.7). This unique social behavior

has inspired research in global optimization, where elephant herding is modeled through specific

algorithmic operators [16][17].
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Figure 2.5: social structure of elephants herd

Figure 2.6: Structure of Elephant Figure 2.7: Life Cycle of EHOAlgorithm

The Figure 2.6 illustrates the anatomical features of an elephant, highlighting its trunk, ears,

tusks, feet, and tail, each serving distinct functions crucial for the elephant's survival and

behavior.

The Figure 2.7 illustrates the life cycle of elephants, starting with reproduction and progress­

ing through stages of baby, child, and adult elephants, with adults living up to around 70

years, contributing significantly to their herds and ecosystems.

2.4.3 Elephant Herding Optimization Algorithm

The Elephant Herding Optimization (EHO) algorithm stands as a groundbreaking swarm­based

approach, tailored to address a wide array of optimization challenges. Inspired by the intricate

dynamics observed within elephant herds, EHOmimics the coordinated behaviors of these majestic

creatures.
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Within the algorithm, elephants are organized into clans, each overseen by a matriarch, mirroring

the hierarchical structure prevalent in nature. Notably, as male elephants mature, they embark on

solitary journeys away from their family groups, a behavior integral to the algorithm's design. This

division into clans and the departure of mature males give rise to two fundamental operators within

EHO: the clan updating operator and the separating operator, each contributing to the algorithm's

efficacy in navigating complex optimization landscapes[18].

To enable the application of elephant herding behavior to address diverse global optimization chal­

lenges, it has been distilled it into the following streamlined rules:

i) Elephant Population is composed of some Clans and each clan contains a fixed number of

Elephants

Figure 2.8: Elephant herd population

ii) The individual clan consists of a group of elephants that are under the command of a Matri­

arch.

Figure 2.9: The leader of each clan in the herd

iii) A fixed number of male elephants will leave their family group and live solitarily far away

from the main elephant group at the start of each generation.
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Figure 2.10: The male adult separating process

Building upon the previously outlined natural rules that govern elephant herding behavior, it

becomes essential to translate these biologically inspired concepts into their algorithmic equivalents

to enable practical implementation. The following table (2.1) serves this purpose by mapping each

element of the natural system such as elephants, clans, and matriarchs to corresponding components

in the optimization process. This conceptual bridge not only facilitatces a clearer understanding of

the EHO algorithm's structure but also highlights how the dynamics observed in nature are harnessed

to guide the search for optimal solutions in complex problem domains.

In nature In problem solving (algorithm)

Elephant Decision variable (solution)

Clan of elephants Recommended solutions

Matriarch Best solution

Male which leaves the clan Worst solution removed by separation operator

Elephant position How well the solution is? (update operator)

Table 2.1: Elephant Herding Behaviour VS Elephant Herding Optimization Algorithm

The EHO algorithm relies on two main operators along with an elitism strategy, to guide the popu­

lation dynamics.

2.4.3.1 Clan updating operators

Elephants live in clans of equal size, where elephants live together under the leadership of a

matriarch (Figure 2.9). It is presumed that each clan is made up of an equivalent, unchangeable

number of elephants for modeling purposes (Figure 2.8).

The positions of elephants within a clan are updated according to on their relationship with the

matriarch. By analogy Clan Updating operator is used for this behaviour in EHO algorithm [17,

16] .

The next position of an elephant in clan ci, is influenced by the matriarch of the same clan. The
position of the elephant jin clan ci, is updated as follows:
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Xnew,ci,j = Xci,j + α · (Xbest,ci −Xci,j) · r (2.1)

where ;

• xnew,ci,j and xci,j are newly updated and old position for elephant j in clan ci, respectively.

• α ∈ [0, 1]: is a scale factor that determines the influence of matriarch ci on xci,j .

• Xbest,ci, represents matriarch ci, which is the fittest elephant individual in clan ci.

• r ∈ [0, 1]: a random value generated from a uniform distribution, introducing randomness

into the position update to maintain exploration ability.

As for the rest of elephants, the position of the matriarch (the fittest elephant within a clan) is

updated. Its update is influenced by the statistical central elephant calculated as the average position

of the clan members as follows:

Xnew,ci,j = β ·Xcenter,ci (2.2)

where ;

• β ∈ [0, 1] is a factor that determines the influence of xcenter,ci on xnew,ci,j .

• xcenter,ci, the center of clan ci, which is calculated for the d­th dimension using this equation
(2.3).

Xcenter,ci,d =
1

nci

nci∑
j=1

Xci,j,d (2.3)

where ;

• 1 ≤ d ≤ D indicates the d­th dimension, and D is its total dimension.

• nci is the number of elephants in clan ci.

• xci,j,d is the d­th dimension of the elephant individual xci,j .

Based on the description above, the clan updating operator can be formulated as shown inAlgorithm

1 [15].

Algorithm 1: Clan updating operator

1 Begin;

2 for ci = 1 to total number of clans in elephant population do
3 for j = 1 to nci (number of elephants in clan ci) do
4 Update xci,j and generate xnew,ci,j according to equation (2.1);
5 if xci,j = xbest,ci then
6 Update xci,j and generate xnew,ci,j according to equation (2.2);

7 End;
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2.4.3.2 Separating operator

Within an elephant group, male elephants leave their family group and live alone when they

reach puberty Figure 2.10. By analogy, this separating process can be modeled into separating op­

erator when solving optimization problems [16].

In order to further improve the search ability of EHO method, let's assume that the elephant indi­

viduals with the worst fitness are considered for separating operator at each generation. Equation

(2.4) exhibits this separating operator.

Xworst,ci = Xmin + (Xmax −Xmin + 1) · rand (2.4)

where ;

• Xmax and Xmin are respectively the upper and lower bounds of the position of the elephant

individual.

• Xworst,ci is the worst elephant individual in clan ci.

• rand ∈ [0, 1] is a kind of stochastic distribution and uniform distribution in the range [0, 1].

Accordingly, the separating operator can be formed as shown in Algorithm 2 [15].

Algorithm 2: Separating Operator

1 Begin;

2 for ci = 1 to total number of clans in elephant population do
3 Replace the worst elephant individual in clan ci by equation (2.4);

4 End;

2.4.3.3 Elitism Strategy

The elitism strategy is a key enhancement in metaheuristic algorithms, introduced to preserve

the best individuals during the evolutionary process and prevent the degradation of solution quality.

In the context of the EHO algorithm, this concept was first integrated by Gai­GeWang in 2016 [15].

Wang proposed saving the best elephant individuals at the beginning of the process and reintroduc­

ing them at the end of the clan updating and separating strategy, ensuring that the final population

retains high­quality solutions.

The elitism strategy was later adopted into the basic version of the EHO algorithm [19], where a

specific number of top­performing elephants are preserved at each generation and used to replace

the worst­performing ones. This integration not only safeguards the best solutions but also helps

maintain or improve the overall quality of the population, reinforcing the algorithm’s ability to

converge toward optimal solutions.

2.4.4 Procedure and Pseudocode of the EHOAlgorithm

The Elephant Herding Optimization algorithm operates through a structured sequence of steps

aimed at iteratively improving a population of solutions.

This process can be divided into three main steps:
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Step 1: Initialization

This step prepares the algorithm's components and population:

• Parameter setup: Initialize all necessary parameters of the algorithm.

• Random population generation: Generate an initial population ofN elephants with ran­

dom positions within the search space.

• Fitness evaluation: Compute the fitness of each individual.

• Sorting: Sort the elephants based on their fitness to identify the best individuals.

• Clan division: Partition the population into c clans of S solutions.

Step 2: Process Execution

This step forms the core iterative procedure of EHO, repeated until finding the optimal solution or

reaching the maximum generation :

• Clan update operator: The elephants of each clan except the matriarch update their po­

sitions under the influence of the clan matriarch, while the matriarch updates her position

by moving toward the center of the clan (Algorithm 1).

• Separation operator: The worst elephant of each clan is replaced to promote diversity

(Algorithm 2).

• Elitism strategy: The topm elephants saved at initialization replace them worst individ­

uals. This ensures the preservation of high­quality solutions.

Step 3: Output

Once the stopping condition is reached (the optimal solution is found or the algorithm has reached

the maximum number of generations):

• The best solution xbest, identified across all generations, is returned as the final output of
the algorithm.

All these steps are summarized in the pseudocode presented below [20], which captures the overall

structure of the EHO algorithm.

Algorithm 3: Elephant Herding Optimization (EHO)

Input: Maximum generation tmax; Population size N ; Number of clans c;
Output: Best solution xbest

1 Initialize population and parameters α, β, r;
2 Calculate and sort fitness of all individuals;

3 Save the bestm elephants (elitism);

4 Divide the population into c clans;
5 while t < tmax do

6 for ci = 1 to c do
7 Apply Clan Update Operator to clan ci ; // See Algorithm 1

8 for ci = 1 to c do
9 Apply Separation Operator on worst elephant in ci ; // See Algorithm 2

10 Recalculate and update fitness values;

11 Sort entire population;

12 Replace worstm individuals with saved bestm (elitism);

13 t = t+ 1;

14 return xbest
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2.5 Existing Variants of the EHOAlgorithm

Since the introduction of the Elephant Herding Optimization algorithm in 2015 [16], an in­

creasing number of studies have explored its development and improvement. These studies can

be grouped into two primary categories (2.4.1): those that focus on algorithmic enhancements and

those that pursue hybridization with other optimization techniques or intelligent systems. Based

on this classification [21], this section synthesizes the principal EHO variants proposed in recent

years, highlighting the specific mechanisms they modify or the techniques with which EHO has

been hybridized.

2.5.1 Simple Variants of the EHOAlgorithm

The simple variants comprises approaches that modify specific components within the orig­

inal EHO process without incorporating external algorithms or techniques. These methods aim

to improve performance by refining internal operators such as clan updating, separation, or posi­

tion adjustment. By directly altering the structural behavior of the algorithm, these enhancements

address known limitations such as premature convergence, stagnation, or lack of exploitation effi­

ciency.

Table 2.2 presents a selection of existing EHO variants classified under the simple category.

Variant Title Brief Description Targeted Limitation Improved

Component

Ref.

Updated Clan

Leader Position

Update each leader based on

the average position of other

clan leaders.

Clans become isolated

and search in small local

areas.

Update opera­

tor

[22]

Use Cauchy Mu­

tation

Separated individuals un­

dergo Cauchy mutation to

explore farther regions of the

solution space.

Algorithm stays focused

in one area, limiting ex­

ploration.

Separator op­

erator

[22]

Alpha­Tuning Dynamically compute α
using a decreasing function

from αmax to αmin.

Fixed α causes over­

exploration or early con­

vergence.

Alpha parame­

ter

[23]

Separation Strat­

egy

Replace worst elephant only

if diversity improves or con­

dition exceeds a threshold.

Blind replacement re­

duces solution quality

and wastes evaluations.

Separator op­

erator

[24]

EHO Adaptive

(ADEHO)

Replaces random variables

with adaptive probabilities

that decrease over time.

Sharp exploration­to­

exploitation shift causes

instability.

Random vari­

ables

[25]

Table 2.2: Summary of Selected Simple EHO Variants

2.5.2 Hybrid Variants of the EHOAlgorithm

Hybrid variants of the Elephant Herding Optimization algorithm aim to overcome its inher­

ent limitations by integrating complementary techniques from other metaheuristics or data­driven

methods. These approaches enhance EHO’s search capabilities, convergence behavior, and robust­

ness by modifying or extending specific components such as update mechanisms, clan division

strategies, or solution replacement criteria.
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The table 2.3 summarizes notable hybrid EHO variants, highlighting their motivations, structural

changes, and benefits.

Hybridiza

­tion

Technique

Brief Description

Integrated

Component

Problem

Addressed
Benefit Ref.

EHO +PSO

Particle SwarmOptimization (PSO)

is a population­based metaheuris­

tic inspired by social behaviors like

bird flocking and fish schooling. It

is widely used for its simplicity and

effectiveness in global exploration.

In this hybridization, the velocity­

based update mechanism of PSO

is incorporated into EHO to im­

prove the update of the worst solu­

tions, maintaining better connectiv­

ity within clans and preventing pre­

mature convergence.

Position

Update

Mechanism

EHO lacks

global

guidance

in the ex­

ploitation

phase and

struggles

with poor

conver­

gence

and local

optima en­

trapment.

Improved

conver­

gence

speed,

enhanced

explo­

ration,

and better

ability to

escape lo­

cal optima.

[26]

EHO + GA A genetic algorithm is an infer­

ence algorithm inspired by the pro­

cess of natural selection, operat­

ing through selection, genetic ex­

change, and mutation. In this ap­

proach, Integrates genetic crossover

andmutation after the EHO clan up­

dating phase.

Update op­

erator

Standard

EHO may

lack global

diversity

and get

trapped

in local

optima.

Helps es­

cape local

optima and

improves

diversity.

[27]

EHO +

ABC

Artificial Bee Colony metaheuristic

inspired by the foraging behavior of

honey bee swarms. It integrates for­

aging behavior into EHO, using so­

lution improvement checks and res­

idence tracking to decide whether to

keep or replace a solution.

After

update

operator

Premature

conver­

gence

and no

mechanism

to track

solution

stagnation.

Adds a

memory­

based

mechanism

to detect

and replace

stagnant

solutions.

[28]

EHO + K­

Means

K­means clustering algorithm Re­

places fixed­size clan division with

dynamic clustering using K­Means,

based on similarity of elephant po­

sitions.

Clan divid­

ing

Standard

EHO may

group

dissimilar

solutions

in the

same clan,

harming

coopera­

tion.

Produces

more co­

herent clans

of similar

solutions,

enhances

local ex­

ploitation.

[29]
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EHO +

GWO

Grey Wolf Optimizer inspired by

the social hierarchy and hunting be­

havior of grey wolves in nature,

it is guides worst solutions toward

the best ones using GWO’s leader­

following strategy.

Update op­

erator

Premature

conver­

gence due

to limited

explo­

ration.

Robust

search

behavior

across

diverse and

complex

landscapes.

[30]

Table 2.3: Summary of Selected Hybrid EHO Variants

2.6 Conclusion

Throughout this chapter, the foundational understanding of the EHO algorithm has been estab­

lished within the broader context of metaheuristic optimization. By analyzing its original structure,

behavior, and key mechanisms, along with reviewing existing improvements and hybridizations,

the chapter has highlighted both the strengths and limitations of the method. This exploration un­

derscores the ongoing interest in enhancing EHO and sets the stage for the development of more

effective EHO­based approaches.
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CHAPTER 3
THE BOOLEAN SATISFIABILITY PROBLEM

3.1 Introduction

Satisfiability is a fundamental problem in mathematical logic that aims to determine whether

a formula admits an interpretation or assignment that makes it true. Despite its simple definition,

the Boolean Satisfiability (SAT) problem plays a central and crucial role in artificial intelligence

and computational complexity due to its significant theoretical and practical implications. SAT is

considered a fundamental reference point, as it was the first problem proven to be N­complete[31].

It involves determining whether a Boolean Conjunctive Normal Form (CNF) formula has an as­

signment of truth values to its variables that satisfies it.

Due to its theoretical significance and practical applications SAT has gained significant attention,

especially in artificial intelligence and problem­solving domains, leading to the development of

many efficient solvers for diverse SAT instances.

This chapter introduces the foundational concepts of the Boolean Satisfiability Problem (SAT) and

its role in computational complexity, particularly its classification as NP­complete. Then it explores

various forms and real­world applications of SAT. The chapter concludes by outlining important

problem­solving strategies, including both the complete methods like the DPLL and CDCL algo­

rithms and the incomplete methods discussed in the previous chapter.

3.2 The Boolean Satisfiability Problem (SAT): Definition and

variants

Before formally introducing the SAT problem, some key concepts from propositional logical

are remained:

• Literal: A literal is either a propositional variable (atom) or its negation.

• Clause: A clause is a finite disjunction of literals.

• Conjunctive Normal Form (CNF): A formula is in CNF if it is expressed as a conjunction

of clauses that is, a conjunction of disjunctions of literals.
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3.2.1 SAT problem presentation

The Boolean Satisfiability problem (SAT) is defined over conjunctive normal form (CNF), and

aims to determine whether there is a truth­value assignment to its variables that satisfies the entire

formula. The formula is satisfiable if all clauses are satisfied. A clause formula is satisfiable if

there exists at least one assignment of truth values that makes all clauses true (its value is 1) and an

unsatisfiable clause where all literals are false under every possible assignment (their value is 0).

Defined formally by the following couple of Instance Question:

• Instance: m clauses Ci formed from n variables.

• Question: Is there an assignment of truth values to φ = C1 ∨C2 ∨ · · · ∨Cm that satisfies the

entire formula?

Example 1.1: Assume the following SAT instance with variables V = {x1, x2, x3} and clauses
C = {C1, C2, C3}:

C1 = (x1 ∨ x2 ∨ x3)

C2 = (¬x1 ∨ x2)

C3 = (x1 ∨ ¬x2 ∨ ¬x3)

• Question: Is the formula C = {C1, C2, C3} satisfiable? Is there an interpretation for which
the formula is true?

• Solution: A potential solution to this instance is:

3.2.2 SAT problem and NP­completeness

SAT is the first problem proven to be NP­complete, a result established by Stephen Cook in

1971 Cook­Levin Theorem. [31]

To prove that a problem π is NP­complete, the following two conditions must be satisfied:

• π belongs to the class NP.

• For a problem π′ known to be NP­complete, there exists a polynomial­time reduction from

π′ to π.

1. Belongs in the NPClass:

A problem is considered NP if it can be determined in polynomial time and using a non­

deterministic algorithm whether an instantiation of the problem is a solution to it or not. A

polynomial verification time does not imply a polynomial solving time.

A non­deterministic algorithm generally consists of two phases:

• A guess phase that generates a candidate solution.

• A check phase that verifies whether the guessed solution satisfies the problem con­

straints.

2. Polynomial Reduction:

The polynomial reduction associates each instance of a problem π1 with an equivalent in­

stance of another problem π2, such that solving π2 allows us to solve π1.

Formally, a polynomial transformation is a function:

f : Dπ1 → Dπ2
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where Dπ1 and Dπ2 are the domains of π1 and π2, respectively. The function f must satisfy

the following two conditions:

• f is computable in polynomial time.

• For every instance I ∈ Yπ1 , we have:

I ∈ Yπ1 ⇐⇒ f(I) ∈ Yπ2

where Yπ1 and Yπ2 are the sets of instances for which the answer to π1 and π2 is "Yes",

respectively.

3.2.3 Variants of the SAT Problem

The Boolean Satisfiability Problem (SAT) has several important variants that extend its com­

plexity and applicability. These variants modify the structure of the SAT problem or introduce

additional constraints, making them useful for different real­world applications.

â k­SAT:

In k­SAT, each clause in the CNF formula contains k literals. The complexity of the problem
depends on k:

– 2­SAT: (each clause has 2 literals) is solvable in polynomial time.

Example:

C1 = (x1 ∨ x2)

C2 = (x1 ∨ ¬x2)

C3 = (x1 ∨ x3)

Solution: A potential solution to this instance is: {x1 = 1; x2 = 1; x3 = 1}.

– 3­SAT: (each clause has 3 literals) is NP­complete, meaning it is computationally hard.

Example:

C1 = (x1 ∨ x2 ∨ x3)

C2 = (x1 ∨ ¬x2 ∨ ¬x3)

C3 = (¬x1 ∨ x2 ∨ x3)

Solution: A potential solution to this instance is: {x1 = 1; x2 = 1; x3 = 1}.

For all k ≥ 3, the k­SAT problem remains NP­complete.

â Max­SAT:

Max­SAT is an optimization problem, where instead of determining whether a formula is fully

satisfiable, the goal is to find an assignment that satisfies the maximum number of clauses.

The problem is defined as follows:

– Instance: A set ofm clauses Ci formed from n variables and an integer k.

– Question: Given the formula φ = C1, C2, . . . , Cm, is there an interpretation that satis­

fies a maximum number of clauses?

â Max­w­SAT:

Max­w­SAT is a variant of Max­SAT in which each clause Ci is assigned a strictly positive

weight pi. The objective is to maximize the total weight of satisfied clauses.

33



3.2.4 Real­World Applications of Boolean Satisfiability (SAT)

The Boolean Satisfiability Problem (SAT) is not just a theoretical concept but has extensive

applications in real­world computational problems like:

• Hardware and Software Verification:

SAT solvers are widely used in verifying digital circuits and detecting errors in software

programs. By encoding circuit logic as Boolean formulas, engineers can check whether a

design meets specifications.

• Scheduling Problems:

Efficient scheduling is crucial in universities, airlines, and project management. SAT solvers

can help optimise resource allocation by ensuring constraints are met.

• Artificial Intelligence and Machine Learning:

A robot navigating a maze can use a SAT solver to determine the optimal path. Each possible

movement is modelled as a Boolean variable, with constraints ensuring valid moves. The

solver finds a sequence of steps leading to the goal without breaking any rules.

• Cryptanalysis:

SAT can be applied in cryptography by representing encryption algorithms as SAT instances.

This approach helps identify vulnerabilities or recover cryptographic keys, particularly in

analysing weakened encryption schemes.

• Puzzle Solving:

SAT solvers can be used to encode puzzle constraints, allowing for automated puzzle gener­

ation and solution verification in games like Sudoku or logic puzzles.

3.3 SAT Solvers

Being the first problem to be proven NP­complete, SAT became the reference for NP­complete

class problems. A solution to SAT would have major implications for all the problems in this class.

Since 1960, an important number of SAT solvers have been developed to contribute to the resolution

of various complex problems. This solvers are divided into two main categories depending on

whether they rely on complete or incomplete methods. Complete methods aim to determine an

exact and effective solution. As the explore the entire search space, these solvers are capable of

either finding a correct solution or proving that the instance has no solution. In contrast, incomplete

methods cannot always find a correct solution or prove the existence of one. They often generate

approximate solutions

3.3.1 Complete Methods

Complete solvers use exact algorithms to find a solution that completely satisfies the problem.

They systematically explore the set of possibilities by building a tree structure connecting the el­

ements of the solution, thus guaranteeing a correct result or proving the unsatisfactoriness of the

problem.

3.3.1.1 The Davis­Putnam­Logemann­Loveland algorithm (DPLL)

The DPLL (Davis­Putnam­Logemann­Loveland) algorithm, introduced in 1962, is an improve­

ment of the Davis­Putnam (DP) [32] and is one of the most widely used complete SAT solvers. It
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explores a search tree where each node represents a recursive call and each leaf corresponds to a sat­

isfiable solution or a contradiction. Based on chronological backtracking, it detects conflicts via the

presence of empty clauses and goes back up the tree until a valid alternative is found. Two essential

procedures characterize it: unit propagation, which assigns a value to literals in unit clauses to avoid

inconsistencies, and pure literal elimination, which directly assigns a value to variables appearing

under a single polarity. These simplifications optimize the resolution by reducing the search space

and improving the efficiency of the process Logemann [32]. Three essential procedures characterize

the process:

• DPLLAlgorithm: A recursive approach that assigns values to variables and systematically

explores possible solutions. When a contradiction arises, it backtracks to try different assign­

ments.

Algorithm 4: DPLL (Davis­Putnam­Logemann­Loveland) Algorithm

Input: A formula φ in CNF
Output: sat if φ is satisfiable; unsat otherwise

1 if φ = ∅ then
2 return sat

3 φ← UnitPropagation(φ);
4 if φ contains an empty clause then
5 return unsat

6 Select a variable ι in φ using a heuristic;
7 if DPLL(φ ∧ ι) returns sat then

8 return sat

9 if DPLL(φ ∧ ¬ι) returns sat then

10 return sat

11 return unsat

• Unit Propagation: If a clause contains only one unassigned literal, that literal must be true

for the formula to remain satisfiable. This step ensures that necessary assignments are made,

simplifying the formula.

Algorithm 5: UnitPropagation Algorithm

Input: A formula φ in CNF
Output: Simplified formula φ

1 while there is no empty clause and a unit clause C ∈ φ exists do
2 Consider C a unit clause and ι its unaffected literal;
3 φ← Simplify(φ, ι);

4 return φ

• Simplify: This step removes pure literals (literals that appear only as positive or only as

negative in the formula). Assigning these literals their natural values reduces the number of

clauses, making the problem easier to solve.
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Algorithm 6: Simplify Algorithm

Input: A formula φ in CNF, a literal ι
Output: Simplified formula φ

1 foreach clause C ∈ φ do

2 if ι ∈ C then

3 φ← φ \ {C};
4 else if ῑ ∈ C then

5 C ← C \ {ῑ};

6 return φ

Many improvements and variants of the DPLL algorithm have been proposed. Among them, ap­

proaches based on clause learning from conflicts (CDCL)

3.3.1.2 Conflict­Driven Clause Learning algorithm(CDCL))

The CDCL procedure was introduced by Marques­Silva and Sakallah [33] and improved by

Moskewicz et al. [34]. It is an extension of the DPLL procedure. This method attempts to take

advantage of conflict analysis to learn new clauses and perform non­chronological backtracking.

The CDCL algorithm has two major advantages over the DPLL algorithm: (i) Backjumping allows

to eliminate a section of the search tree that has no solution and (ii) clause learning helps to avoid

examining sub­search trees, which have been shown to be unsolvable in a previous conflict analysis.

Algorithm 7: CDCL­Based Simplify Algorithm

Input: A formula φ in CNF
Output: CDCL(φ) result: True (SAT) or False (UNSAT)

1 Vaff ← ∅;
2 depth← 0;
3 while true do

4 foreach ι ∈ Vaff do

5 φ← φ \ {ι};
6 if there exists an empty clause in φ then

7 if depth = 0 then
8 return False;

9 C ← conflict clause inferred;

10 ι← literal ∈ C affecting conflict depth;

11 depth← max
(
depth(v)

)
∀v ∈ C \ {ι};

12 Vaff ← Vaff \ {v | depth(v) > depth};
13 Vaff ← Vaff ∪ {ι};
14 φ← φ ∪ {C};
15 else

16 if Vaff = V then

17 return True;

18 Choose a literal ι from an unassigned variable;

19 Vaff ← Vaff ∪ {ι};
20 depth← depth+ 1;
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Nowadays, a plethora of modern SAT solvers are fundamentally based on the DPLL and its exten­

sion CDCL.

3.3.2 Incomplete Methods

When problem instances grow larger and more complex, complete approaches are no longer

able to handle them, leading to combinatorial explosion and large computational time overruns.

Because of this, researchers have created new methods for looking for partial solutions that try

to strike a balance between computational time and the quality of the final solution (effectiveness

vs efficiency). These algorithms are stochastic and heuristic­driven, looking for the best solution

rather than searching the whole search space.These solvers are typically based on metaheuristic

algorithms high level strategies that guide underlying heuristics using randomness and problem­

specific knowledge to efficiently explore the solution space. Metaheuristics such as evolutionary

algorithms, swarm intelligence, and local search are discussed in detail in the previous chapter,

which lays the foundation for their application to SAT solving.

3.4 Conclusion

This chapter explores the SAT problem, a fundamental challenge in computational complexity

and the first decision problem proven to be NP­complete. Due to its significance, extensive research

has been conducted to develop efficient solutions, given the potential impact of solving SAT on all

NP­complete problems.

The most commonly used SAT solvers fall into two main categories. Complete algorithms, such as

DPLL, are designed to guarantee finding an exact solution if one exists or prove that the problem is

unsatisfiable. On the other hand, incomplete algorithms, often based on metaheuristic approaches,

aim to quickly find approximate solutions without guaranteeing optimality or proving the inexis­

tence of a solution.

The aim of this work is to contribute to the resolution of NP­complete problems, and particularly

the SAT problem, through the exploration of hybrid strategies integrating metaheuristic algorithms

and data mining methods.
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Part III

Contribution and Implementation
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CHAPTER 4
ADAPTINGAND ENHANCING EHOALGORITHM

4.1 Introduction

The Boolean Satisfiability Problem is one of the most critical and fundamental problems in

computer science. As solving it enables the resolution of a wide range of real­world challenges.

Indeed, many complex computational tasks can be transformed into SAT instances, making SAT

solving a powerful and universal approach.

As a result, numerous solvers and especiallymetaheuristic algorithms have been proposed to address

this problem.

In this context, we chose to explore and adapt the Elephant Herding Optimization algorithm for

solving SAT effectively.

In this chapter, an adapted version, to the binary nature of the SAT problem, of the Elephant Herding

Optimiztion algorithm is proposed. The limitations of this basic version are then presented and an

improved version is introduced.

4.2 Implementation of Sat Solver Using Basic EHO

In this section, the implementation process of the proposed SAT solver based on the Elephant

Herding Optimization algorithm is presented. The objective is to adapt the basic EHO, originally

designed for continuous optimization problems, to handle the binary problems specifically to the

SAT problem.

This implementation is structured around two main components:

• The representation and preprocessing of CNF formulas.

• The adaptation of the EHO algorithm for binary problem­solving.

The integration of both parts is illustrated in the global architecture below (Figure 4.1).
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Figure 4.1: Global Architecture of the EHO­based SAT Solver

4.2.1 Binary Representation and CNF Preprocessing

The first stage in developing the proposed system or any computational system is preparing the

dataset. Once an appropriate benchmark dataset is selected, it is essential to analyze its structure

and identify potential issues that could affect performance.

In this work, Conjunctive Normal Form (CNF) files that define SAT instances are considered.

To better understand the structure, content and variability of these benchmarks, scrolling through a

wide range of SAT benchmarks of different size is essential. This exploration helps determine the

most suitable data structure for representing CNF formulas efficiently.

The adopted data structure, in this work, is a list­of­lists because of the significant difference in the

number of variables and clauses from one instance to another. This flexible and dynamic repre­

sentation ensures that the representation remains adaptable across different instances and supports

efficient clause manipulation during preprocessing and optimization.

Figure 4.2: Parsing and Representing Clauses from a CNF File

Figure 4.2 illustrates the transformation of raw CNF input into a structured list­of­lists format

through the parsing process
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After structuring the CNF clauses, the preprocessing phase is performed. This stage aims to

refine the dataset by removing redundant or unnecessary information to ensure the optimization

process operates on a clean and efficient clauses base.

While in general, SAT benchmarks do not require extensive preprocessing since they consist of

simple numeric literals with no complex numerical data. The observations of the benchmarks used

in our project motivated applying a lightweight but meaningful preprocessing step, including:

• Remove tautological clauses:

Atautological clause contains both a literal and its negation, for example [X1, ¬X1, X3]. Such

clauses are always true and only add unnecessary complexity to the benchmark. Removing

them helps speed up optimization by focusing on meaningful constraints only.

• Remove duplicate clauses:

Duplicate clauses are repeated copies of the same clause, such as having [X2, ¬X3, X4]

multiple times. These clauses add no new information but increase the problem size and

processing time.

Removing duplicates reduces redundancy and makes the optimization more efficient without

losing any constraints.

• Remove included clauses:

When a clause fully contains another smaller clause, the larger one can be removed without

affecting satisfiability.

Consider,for example, the clauses [X1 , X2] and [X1], satisfying the second clause guarantees

the satisfaction of the first one. The clause [X1 , X2] can then be removed because [X1] is

more restrictive.

Keeping the smaller clause preserves or strengthens the constraints, simplifying the problem

for the solver.

4.2.2 Adapting Elephant Herding Optimization Algorithm for Solving SAT

Problem

In this section, an adapted version of the EHO algorithm is proposed. The original EHO is

modified in order to operate in a binary search space and incorporates SAT­specific components

such as clause­based fitness evaluation and Update operation.

The workflow of the proposed method is described below (The Figure 4.3), outlining each step of

the adaptation of EHO to efficiently solve the SAT problem.

1. Population Initialization and Clan Division

This first step involves generating a diverse initial population of elephants randomly,

where each elephant represents a potential solution to the SAT problem.

In this representation, the length of a solution, represented by a binary vector corresponds

to the number of Boolean variables in the CNF formula. Each bit in the vector is initialized

randomly with either 0 (false) or 1 (true), indicating a truth assignment to a variable.

Example 4.1. Let us consider a SAT instance with 6 variables: x1, x2, . . . , x6. An example

of an elephant (solution) could be:

E1 = [1, 0, 1, 1, 0, 0]
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Figure 4.3: Implementation Workflow of the EHOAlgorithm
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Once the population is generated, the entire population of elephants is divided into a pre­

defined number of clans using sequential partitioning, where each clan receives a contiguous

segment of the population. Each clan is composed of a fixed number of individuals (ele­

phants). This division allows the algorithm to explore multiple regions of the search space

simultaneously, enhancing both the diversity and the convergence capabilities of the algo­

rithm.

Example 4.2. Let's consider a population of 12 elephants and devided into 3 clans. Using

sequential partitioning, the resulting clans are as follows:

• Clan 1 receives elephants at indices 0 to 3→ [e0, e1, e2, e3]

• Clan 2 receives elephants at indices 4 to 7→ [e4, e5, e6, e7]

• Clan 3 receives elephants at indices 8 to 11→ [e8, e9, e10, e11]

This method ensures that all elephants are distributed equally among the clans. Each clan

evolves independently in the following steps of the algorithm.

2. Fitness Evaluation

The fitness evaluation function plays a critical role in guiding the optimization process

of any metaheuristic algorithm. It serves as the objective metric by which the quality of

candidate solutions is measured and compared. This function varies depending on the nature

of the problem being addressed.

In the case of the MAX­SAT problem, the fitness function is designed to reflect how well

a solution satisfies the given Boolean formula. Specifically, the number of satisfied clauses

is to be maximized. Each solution (elephant) is evaluated based on the number of clauses it

satisfies. The more satisfied clauses, the higher the fitness score.

Formally, the fitness of a solution S is given by:

Fitness(S) =
m∑
i=1

sat(Ci, S) (4.1)

where:

• S is a candidate solution ,

• Ci is the i
th clause in the CNF formula,

• m is the total number of clauses,

• sat(Ci, S) is a function that returns 1 if clause Ci is satisfied by solution S, and 0 other­
wise.

Example 4.3. Let's consider the following CNF formula with 3 variables and 4 clauses:

F = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

Let a candidate solution be S = [1, 0, 1]

The fitness of solution S is calculated by checking how many clauses are satisfied under this
assignment, as represented in the Figure 4.4.
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Figure 4.4: Example of Fitness Evaluation in MAX­SAT

3. Clan Update Operator

The clan update operator is a crucial mechanism in the Elephant Herding Optimization

algorithm. It ensures a balance between exploitation of good solutions and exploration of new

areas in the solution space, thus helping to maintain population diversity and avoid premature

convergence.

Each clan is composed of multiple elephants (candidate solutions), and the evolution of each

individual depends on two major influences:

• The matriarch, which is the best fitness within a clan. It represents the most promising

solution discovered by the group and influences the update process of the non­matriarch

elephants.

• The clan center, which is the average position (bitwise) of all elephants in the clan. It

reflects the overall search direction and general behavior of the clan and influences the

update of the matriarch.

Figure 4.5 illustrate the updating position of the elephant within a clan. This update depends

on the nature of the elephant, that is, whether it is a matriarch or not.

Figure 4.5: Illustration of the Conceptual Influence in Update Operator
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In the SAT context, the clan center is computed by averaging each bit position across all

elephants in the clan and rounding the result to 0 or 1 to maintain the binary format (Example

4.4). This process produces a representative binary vector that captures the dominant traits

of the clan. The center is then used to influence the matriarch’s update.

Example 4.4. Let’s consider a simple example of a clan composed of 3 elephants:

E =

1 0 1 0 1

1 1 0 1 0

0 1 1 0 1


We calculate the center of this clan as shown in Figure 4.6:

Figure 4.6: Illustration of the clan calculation process

The update process is carried out as follows;

é For the matriarch, the position is updated by moving toward the clan center, guided

by a control parameter β, which determines the degree of influence from the center.

For each bit in the binary solution, a weighted combination of the current bit and the

corresponding bit in the clan center is computed. This value is then compared to a

random threshold to introduce stochasticity and preserve diversity.

The update rule is defined as:

new_bit =

{
1, if (1− β) · elephant[i] + β · center[i] > random()

0, otherwise
(4.2)

This update allows the matriarch to slightly adjust her position in the direction of the

general trend of the clan, without drastically altering her high­quality solution.
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é For the other elephants in the clan, the update process is guided by the matriarch and

controlled by a parameter α, which determines the extent to which an elephant follows
the best individual in the clan. For each bit in the solution, a weighted combination

of the current elephant's bit and the corresponding bit of the matriarch is computed. A

random threshold is then used to decide the new bit value.

The update rule is given by:

new_bit =

{
1, if (1− α) · elephant[i] + α ·matriarch[i] > random()

0, otherwise
(4.3)

This mechanism allows the clan members to progressively align with the strongest so­

lution, while maintaining variation necessary for exploration.

4. Clan Separating Operator

In the context of SAT problem, the separating operator identifies, for each clan, the worst

elephant,(the individual with the lowest fitness value). This elephant is then replaced by a new

randomly generated solution.

This operation helps introduce diversity into the population and prevents premature conver­

gence by encouraging the exploration of new areas in the search space.

5. Apply Elitism Strategy

To further enhance the quality of solutions over generations, an elitism strategy is ap­

plied.

In each generation, the top­k best individuals are preserved before any updates. After ap­

plying the update and separating operators to all clans, the k worst individuals in the new

population are identified and replaced by the previously saved elite solutions. This ensures

that the best found solutions are not lost due to the stochastic nature of the algorithm.

Reinserting the elites ensures the maintain of high­quality candidates in the search space,

helps preserve progress across generations, and promotes faster convergence toward optimal

or near­optimal solutions.

These steps, except the population initialization step, represent one iteration of the EHO process.

The best solution of all the population is considered as best solution. This solution is returned if

it satisfies the problem, otherwise the process of updating­separating continue until reaching the

maximum number of iteration. In such case, the best solution across all generations is returned.

All these steps are summarized in the following pseudo­code (8);
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Algorithm 8: Adaptive Elephant Herding Optimization for SAT

Input : CNF clauses, population size N , number of clans c, max generations tmax,
learning rates α, β, elitism count k

Output: Best solution xbest
1 Initialize population of N elephants (binary vectors of length n)
2 Divide population into c clans of size N/c randomly; Evaluate fitness of all elephants

(using Formula 4.1)

3 Sort population by descending fitness

4 Save top­k elephants as elites
5 while t < tmax do
6 for each clan clani from 1 to c do

/* Applying Update Operator */
7 Identify matriarchM with best fitness in clani

8 Compute clan center C = mean of elephants in clani (rounded to binary)

9 for each elephant ej in clani do

10 if ej is matriarch then
11 Update ej using Formula 4.2
12 else

13 Update ej using Formula 4.3

/* Applying Separation Operator */
14 Replace worst elephant in clani with new random binary vector

/* Applying Elitism Strategy */
15 Replace worst k elephants with saved k elites
16 t← t+ 1

17 return xbest

Complexity: In the worst­case scenario, the algorithm evaluates and updates all N elephants in

each of the tmax generations. For each elephant, operations such as fitness evaluation and binary
vector updates are performed, which have a cost proportional to the vector length n. Sorting the
population and computing clan centers are also involved, but their cost is dominated by the per­

generation processing of the full population.

Hence, the overall time complexity of the adapted EHO algorithm is:

O(tmax ·N · n)

4.3 Improved Basic EHO

Acrucial criterion while evaluating the effectiveness of a metaheuristic is its ability to maintain

an equilibrium between exploration and exploitation. Nevertheless, applying the basic adapted

version of EHO indicates a major issue. In fact, the fitness value remained nearly constant over

many iterations. This stagnation, or in some cases near­stagnation, indicates that the algorithm

was struggling to escape local optima. Observations suggest that the population lacks sufficient

diversity, and that the standard update mechanisms were not effective enough in driving the search

towards better regions of the solution space.

To cope with the stagnation, two enhancement strategies were proposed and implemented. The

first proposition is a mutation mechanism that deals with stagnation and is incorporated to inject

diversity when the best fitness remains unchanged over several iterations. The second proposed
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improvement is a redivision strategy to restructure clans during near­stagnation phases were the

best fitness improves very slowly over iterations.

4.3.1 Integration of a mutation operator (IEHO­M)

To solve the stagnation problem and enhance the exploration capabilities of the population, a

mutation strategy is integrated to the EHO algorithm. This strategy prevent premature convergence

during the optimization process.

The integrated mutation process is structured as follows:

• The mutation is applied only when the algorithm detects stagnation ( based to the stagnation

threshold), meaning the best solution hasn't improved over a predefined number of gener­

ations. This suggests the population may be stuck in a local optimum. Mutation is then

triggered to introduce diversity and help the search escape this situation.

• Once stagnation is detected, the mutation process is activated to counter premature conver­

gence. It proceeds by examining each variable (bit) in a solution and applying a probabilistic

rule defined by the mutation rate to decide whether that variable should be altered. This con­

trolled randomness increases the chances of escaping local optima and allows the algorithm

to explore previously unreached areas of the search space.

• The mutation process is applied to all individuals in the population except the top k best ones.

This helps keep good solutions safe while letting the rest explore new possibilities.

Example 4.5. Let's consider a population composed of 3 individuals represented by binary vectors

of dimension 5:

• Individual 0: [1, 1, 1, 1, 1] (Elite)

• Individual 1: [0, 1, 0, 0, 1] (Mutated individual 1)

• Individual 2: [1, 0, 1, 0, 0] (Mutated individual 2)

Assuming a high mutation rate for this example = 0.5 ( meaning each variable has a 50% chance

of being modified) .

The mutation process is illustrated in the following figure (4.7):

Figure 4.7: Illustration of the mutation process
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All the procces of this variant are summarized in the following pseudocode (9);

Algorithm 9: Improved Elephant Herding Optimization with Conditional Mutation

Input : CNF clauses, population size N , number of clans c, max generations tmax,
learning rates α, β, elitism count k, mutation ratem, stagnation threshold s

Output: Best solution xbest
1 Initialize population of N elephants (binary vectors of length n)
2 Divide population into c clans of size N/c randomly
3 Evaluate fitness of all elephants (using Formula 4.1)

4 Sort population by descending fitness

5 Save top­k elephants as elites
6 while t < tmax do
7 for each clan clani from 1 to c do

/* Apply Clan Update Operator to clani

*/
/* Apply Separation Operator to clani

*/

/* Applying Elitism Strategy to replace worst k elephants with
saved elites */

/* Detecting Stagnation */
8 if no improvement then

9 Increment stagnation_counter

10 else

11 Reset stagnation_counter← 0

/* Apply Mutation if Stagnation Persists */
12 if stagnation_counter ≥ s then
13 for each non­elite elephant ej do
14 for each bit xi in ej do
15 Flip xi with probabilitym

16 Reset stagnation_counter← 0

17 t← t+ 1

18 n return xbest

Complexity: In the worst­case scenario, the algorithm performs update and separation operations

for all N elephants across tmax generations. If stagnation occurs for s consecutive generations, mu­
tation is applied to each bit of every non­elite elephant, costing O(N · n). Since this may happen
multiple times, it adds additional overhead compared to the standard EHO.

Nevertheless, the dominant cost remains the per­generation processing of the population and po­

tential mutation.

Thus, the overall time complexity is:

O(tmax ·N · n)

4.3.2 Integration of Re­division Strategy (IEHO­RD)

As another way to address the stagnation problem besides using mutation, a re­division strat­

egy is applied. This approach modifies the population structure to promote diversity and renew

exploration potential.
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The process works as follows:

• The re­division strategy is activated when stagnation detected over a predefined number of

generations . This signals that the current population structure may be limiting exploration.

• After the strategy is activated, the entire population is randomly shuffled and then reparti­

tioned into new clans. This breaks the existing clan structures, allowing new interactions

between individuals that were not previously in the same group.

This restructuring encourages new group dynamics and exploration of different regions in the search

space, increasing the chance of finding better solutions while avoiding repetitive patterns and restor­

ing effective search behavior.

NB:The re­division process follows the same method used in the initial clan formation. The key

difference is that it occurs dynamically during the search, only when no improvement is observed

for several consecutive generations.

All the procces of this variant are summarized in the following pseudocode (10);

Algorithm 10: Improved Elephant Herding Optimization with Redivision Strategy

Input : CNF clauses, population size N , number of clans c, max generations tmax,
learning rates α, β, elitism count k, mutation ratem, stagnation threshold s

Output: Best solution xbest
1 Initialize population of N elephants (binary vectors of length n)
2 Divide population into c clans of size N/c randomly
3 Evaluate fitness of all elephants (using Formula 4.1)

4 Sort population by descending fitness

5 Save top­k elephants as elites
6 while t < tmax do
7 for each clan clani from 1 to c do

/* Apply Clan Update Operator to clani

*/
/* Apply Separation Operator to clani

*/

/* Applying Elitism Strategy to replace worst k elephants with
saved elites */

/* Detecting Stagnation */
8 if no improvement then

9 Increment stagnation_counter

10 else

11 Reset stagnation_counter← 0

/* Apply Re-division if Stagnation Persists */
12 if stagnation_counter ≥ s then
13 Shuffle population randomly

14 Re­divide into new clans of size N/c randomly; Reset stagnation_counter← 0

15 t← t+ 1

16 return xbest
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Complexity: In the worst­case scenario, the algorithm processes allN elephants at each generation

for both the update and separation operations, repeated over tmax generations. When stagnation is

detected, the population is shuffled and re­divided into clans, which costs O(N).

Since shuffling and re­clustering are linear in N , their impact remains negligible compared to the

per­generation operations, which dominate the complexity. Even if this re­division were applied

in every generation, the total cost would become O(tmax · N · n + tmax · N), which simplifies to
O(tmax ·N · (n+ 1)), and asymptotically remains:

O(tmax ·N · n)

4.3.3 Combined Strategy: Mutation and Re­division (IEHO­MRD)

In population­based metaheuristics, stagnation can frequently occur during the search process..

When applying the adapted EHO algorithm, it appeared in two forms:

• Full stagnation, when the best solution does not improve at all for several consecutive gener­

ations.

• Near­stagnation, when the improvement is very slight or too slow, indicating possible con­

vergence to a local optimum.

In the previously proposed strategy, we addressed full stagnation by using mutation and redivision

operators independently. However, we now choose to combine these two operators to tackle both

forms of stagnation full and near stagnation within a unified mechanism.

v Mutation to resolve full stagnation: Mutation introduces randomness and diversity into the

population, helping escape from flat regions or repeated solutions where no progress is made

across generations. This disrupts premature convergence and encourages exploration.

v Redivision to resolve near­stagnation: Redividing the population reorganizes individuals

into new clans or groups, allowing for better information sharing and fresh dynamics. This

stimulates gradual improvements when progress slows down, helping the algorithm escape

local optima.

By applying this combined strategy, both full stagnation and near­stagnation are effectively miti­

gated through enhanced exploration and diversity.

All the procces of this variant are summarized in the following pseudocode (11);
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Algorithm 11: Improved Elephant Herding Optimization with Combined Mutation and

Re­division Strategy

Input : CNF clauses, population size N , number of clans c, max generations tmax,
learning rates α, β, elitism count k, mutation ratem, stagnation threshold s,
window size w,slow progress threshold δmin

Output: Best solution xbest
1 Initialize population of N elephants (binary vectors of length n)
2 Divide population into c clans of size N/c randomly
3 Evaluate fitness of all elephants (using Formula 4.1)

4 Sort population by descending fitness

5 Save top­k elephants as elites
6 while t < tmax do
7 for each clan clani from 1 to c do

/* Apply Clan Update Operator to clani

*/
/* Apply Separation Operator to clani

*/

/* Applying Elitism Strategy to replace worst k elephants with
saved elites */

/* Detect Full Stagnation */
8 if best fitness did not improve then

9 Increment stagnation_counter
10 else

11 Reset stagnation_counter ← 0

/* Apply Mutation (Full Stagnation) */
12 if stagnation_counter ≥ s then
13 for each non­elite elephant ej do
14 for each bit xi in ej do
15 Flip xi with probabilitym

16 Reset stagnation_counter ← 0

/* Detect Near-Stagnation (Slow Progress) */
17 if t mod w == 0 and t ≥ w then

18 ∆← fitness_trace[t] − fitness_trace[t− w + 1]

/* Apply Re-division (Near-Stagnation) */
19 if ∆ < δmin then

20 Shuffle population randomly

21 Re­divide into new clans of size N/c randomly

22 t← t+ 1

23 return xbest

Complexity: In the worst­case scenario, the algorithm processes allN elephants at each generation

for both the update and separation operations, repeated over tmax generations. When full stagnation

is detected, mutation is applied to all non­elite elephants, each with n bits, costing O(N · n). Ad­
ditionally, when near­stagnation is detected, the population is shuffled and re­divided into clans,

which costs O(N).

Since both mutation and re­clustering are linear or linearithmic in nature, their impact remains
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negligible compared to the dominant per­generation operations. Even if mutation and re­division

were applied in every generation, the total cost would become O(tmax · N · n + tmax · N), which
simplifies to O(tmax ·N · (n+ 1)), and asymptotically remains:

O(tmax ·N · n)

4.4 Conclusion

Throughout this chapter, we presented the adaptation of Elephant Herding Optimization for

solving the SAT problem by making it compatible with binary CNF clauses. We did not stop just at

adapting the algorithm but also addressed its challenges by introducing mutation and population re­

division to enhance diversity and performance. These improvements significantly boosted EHO’s

effectiveness on SAT problems. They also lay the foundation for a hybrid with other techniques,

which will be explored in the next chapter.
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CHAPTER 5
HYBRIDIZATION OF EHOWITH DATAMINING

TECHNIQUES

5.1 Introduction

The Elephant Herding Optimization algorithm is a nature­inspired metaheuristic that mimics

the social behavior of elephant herds. It organizes the population into clans led by matriarchs and

employs strategies to balance exploration and exploitation of the search space. While effective, its

standard version has elements that can be further refined to enhance performance.

To improve the overall performance of EHO, an hybridizing with data mining clustering tech­

niques is proposed, specifically K­Means and DBSCAN. Throughout this chapter, the motivation

behind this hybridization is presented. Followed by a description of both k­means and DBSCAN

approaches

5.2 K­Means­Based EHO (EHO­Kmeans)

In the standard EHO algorithm, clans are formed through random partitioning of the popula­

tion, without accounting for individual similarity or fitness. This uninformed division often results

in weak intra­clan collaboration, inefficient local search behavior, and limited exploration of the

solution space.

To address these limitations, the integration of the K­means clustering algorithm into the EHO

framework is proposed. Instead of random division, individuals are grouped into clans based on

their solution similarity. This clustering mechanism enhances the search dynamics of EHO by form­

ing semantically meaningful groups, which promotes efficient local exploitation within each clan

and encourages global diversity across clans.

As expecting result, the algorithm should becomemore effective at avoiding premature convergence

and explore the search space more thoroughly.

5.2.1 Methodology of the Hybrid EHO­K­means Approach

The hybrid EHO­K­means approach consists on embedding K­means clustering into the clan

division step. This integration replaces the original random division with a structured, similarity­

based partitioning of the population. Figure 5.1 exhibits the hybridization process which involves
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several key steps from cluster initialization to iterative refinement ensuring that individuals are

assigned to the most appropriate clans.

Figure 5.1: Implementation Workflow of K­Means­Based EHO

The process of dividing the population using k­means follows these steps:

1. Clan Centroid Initialization

The process begins by selecting k initial centroids, where k is the desired number of clans.

These centroids act as the initial leaders around whom the rest of the population will group.

Example 5.1. Let's consider a population of 7 individuals

{10101, 01100, 11101, 00010, 10111, 01010, 11001}

The number of clans (clusters) is set to k = 2.

Initial centroids are randomly selected:

• Centroid 1: Individual 1→ [1, 0, 1, 0, 1]
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• Centroid 2: Individual 4→ [0, 0, 0, 1, 0]

2. Assigning Individuals to Closest Clans

Centroids being set, each member of the population is paired with the closest centroid to

create the first clans. This assignment determines the degree of similarity between two solu­

tions binary vectors based on the Hamming distance, that quantifies the positions at which the

binary vectors representations of these solutions diverge. counts the number of bit positions

where they differ ( Equation 5.1). The lower the Hamming distance, the more similar the two

solutions vectors are.

After calculating the distance to each centroid, each individual is paired with the centroid that

has the smallest distance, forming k initial clusters.

Hamming Distance(A,B) =
n∑

i=1

[Ai 6= Bi] (5.1)

Example 5.2. Consider two binary solutions:

A = 10101 and B = 11001

The Hamming distance between A and B is computed as we illustrated in following Fig­

ure 5.2.

Figure 5.2: Illustration of Hamming Distance Computation

NB: The choice of using the Hamming distance in the SAT problem context is influenced

by its binary nature. It represents a natural and efficient way to measure the structural

similarity between binary solutions.

3. Recalculate the centroid and Refinement

After assigning individuals to the closest clans, the centroid of each clan is recalculated

as the mean value of the cluster, to better represent its current members. This step follows

the same process as the initial calculation of the clan center within the EHO algorithm (Fig­

ure 4.6).
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4. Convergence of Clan Structures

The process of calculating distance, assigning solutions to the closest cluster or clan and

recalculating the centroids is repeated until individuals or solutions stabilization, that is, con­

vergence of clustering.

All these steps are summarized in the following pseudo­code (12).

Algorithm 12: Elephant Herding Optimization with K­Means Clustering for SAT

Input : CNF clauses, population size N , number of clans c, max generations tmax,
learning rates α, β, elitism count k, max K­Means iterationsmax_kmeans_iter

Output: Best solution xbest
1 Initialize population of N elephants (binary vectors of length n)
2 Evaluate fitness of all elephants (using Formula 4.1)

3 Apply K­Means clustering to divide population into c clans
4 Sort population by descending fitness

5 Save top­k elephants as elites
6 t← 0
7 while t < tmax do
8 for each clan clani from 1 to c do

/* Applying Clan Update Operator to clani */
/* Applying Separation Operator to clani */

/* Rebuild Clans Using K-Means */
9 Merge all elephants into a new population

10 Randomly select c elephants as initial centroids
11 for iter = 1 tomax_kmeans_iter do
12 foreach elephant ej in population do
13 foreach centroid Ci do

14 Compute Hamming distance d(ej, Ci) using Formula 5.1

15 Assign ej to cluster with nearest centroid

16 foreach cluster clusteri do
17 for k = 1 to n do

18 Count number of 1s in bit position k
19 if majority is 1 then

20 Ci[k]← 1
21 else

22 Ci[k]← 0

23 if centroids unchanged then

24 break

/* Applying Elitism Strategy to replace worst k elephants with
saved elites */

25 t← t+ 1

26 return xbest

Complexity: In this variant, the algorithm processes allN elephants at each generation through the

clan update and separation operators, resulting in a cost ofO(N ·n) per generation. However, unlike
the standard variant, this version re­applies K­Means clustering at every generation to reassign

elephants to c clans.
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Each K­Means iteration involves computing the Hamming distance between every elephant and all

c centroids, costing O(N · c · n). Updating centroids requires O(N · n) operations (to compute
the majority bit per dimension across clusters). If we run the clustering for max_kmeans_iter
iterations, the total cost of K­Means becomes O(max_kmeans_iter ·N · c · n) per generation.
Therefore, the total time complexity over all generations is:

O (tmax · [N · n+max_kmeans_iter ·N · c · n]) = O (tmax ·N · n · [1 +max_kmeans_iter · c])

Asymptotically, the complexity remains polynomial in population size N and chromosome length

n, with an additional multiplicative factor frommax_kmeans_iter and number of clans c.

5.2.2 Illustrative Example of Kmeans­Based EHO

To better understand the hybridization of the Kmeans­Based EHO algorithm, consider the fol­

lowing example representing a population of elephants

{000, 100, 110, 011, 101, 111}

with k = 2.
The steps of this clustering process are illustrated in the figure below 5.3:

Figure 5.3: Illustrative Example of Kmeans­Based EHO

Note: In this example, the ``Recalculate the centroid'' step is not included; we assume that the

clustering process is performed only once.
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5.3 DBSCAN­Based EHO (EHO­DBSCAN)

The Elephant Herding Optimization (EHO) algorithm is inspired by the natural social behavior

of elephant herds. In this metaheuristic, the population of solutions (elephants) is divided into sev­

eral clans. Each clan evolves independently under the guidance of a leader (often the matriarch),

while some elephants are periodically separated from their clans and replaced to maintain diversity.

On the other hand, DBSCAN is a powerful clustering algorithm that groups data points based on

local density. rather than predefined cluster numbers. It identifies core points that have a dense

neighborhood, border points on the edges of clusters, and outliers that do not belong to any cluster

due to their sparse surroundings. This method is especially effective in detecting arbitrarily shaped

clusters and handling noise within datasets.

This conceptual similarity between clan­based division of EHO and density­based clustering in

DBSCAN inspired our hybridization approach. Moreover, the randomly or uniformly division of

clans within the tradition method of EHO overlooks the underlying structure of the solution space

and may not effectively utilize outlier solutions. These limitations led us to propose the integration

of DBSCAN into the EHO framework to guide a more adaptive and informed division of clans,

along with the effective handling and exploitation of outliers, thereby enhancing performance in

solving the SAT problem.

5.3.1 Methodology of the Hybrid EHO­DBSCANApproach

Since both the EHO and DBSCAN algorithms share a common principle of dividing the pop­

ulation into clans or clusters and handling outliers, careful consideration is given to effectively

integrate their strengths. Obervation is that DBSCAN performs cluster division and removes out­

liers at the beginning before exploiting each cluster independently. Therefore, there is no need to

modify or replace the update and separating operators in EHO, as the clustering is now more accu­

rate and adaptive from the start.

The Elitism Strategy in EHO, which replaces the worst individuals in the entire population with

the top­performing ones, is replaced with an outliers handling mechanism that better utilizes those

isolated solutions, since both strategies share the goal of maintaining solution quality and diversity.

Building on these observations, the core of the proposed hybridization lies in enhancing the clan

division step, which is now driven by a DBSCAN­inspired clustering strategy. As shown in Figure

5.4, this integration focuses on two essential and complementary components DBSCAN­based clan

division and outliers handling which together improve population structuring and preserve diversity

from the outset.

The inspired DBSCAN clan division is presented along with an effective approach to outlier han­

dling.
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Figure 5.4: Hybridization of Clan Division in EHO Using DBSCAN and Outlier Handling

5.3.1.1 Clan Division Based on DBSCAN­Inspired Strategy

The first key component of the hybrid EHO­DBSCAN approach is the DBSCAN­based clan

division, which replaces the conventional random or KMeans­based clustering methods used in

EHO. This step ensures that individuals in the initial population are grouped into meaningful clans

based on similarity and density in their structure—measured using the Hamming distance.

Figure 5.5: Clan Division based­DBSCAN Steps
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Figure 5.5 illustrates the division process unfolds in three major steps:

1. Initialization of Core Points

Core points are randomly selected from the population and serve as provisional clan cen­

ters. The number of core points is a tunable parameter that controls the number of formed

clans, helping to flexibly structure the population, preserve diversity, and reduce the risk of

premature convergence.

2. Computation of Hamming Distances

Each individual in the population is then compared to the initialized core points using Ham­

ming distance, a metric well­suited to binary representations like our problem (SAT). The

Hamming distance between two binary vectors is the count of positions at which the bits

differ.

3. Clan Assignment

Instead of assigning individuals to the closest core point like in k­means, our approach uses

a fixed distance threshold (ε) to determine if an individual is close enough to a core point

to join its clan. This ε­based assignment creates more flexible and natural groupings, where

individuals are clustered only if they share a sufficient level of similarity, enhancing intra­clan

cohesion and supporting more focused exploration.

To clarify how the Hamming distance is computed and used for clan assignment in our DBSCAN­

based strategy, consider the following example 5.3:

Example 5.3. Consider two binary solutions:

• A = [1, 0, 1, 1, 0]

• B = [1, 1, 0, 1, 0]

=> The Hamming distance (H) In this case:

H(A,B) = 2 (positions 2 and 3 differ)

=>To enable comparison with the ε threshold, a normalization of this distance is applied by the
dimensionality of the solution (here number of variables = 5):

Normalized H(A,B) =
2

5
= 0.4

If ε = 0.5 => H(A,B)= 0.4 < 0.5, meaning the second solution is considered sufficiently close to
the first (core point) and can be assigned to the same clan.

5.3.1.2 Outliers Handling and Integration

During the clan division process, outlier individuals are identified. Instead of discarding them,

a mutation was applied to these outliers to enhance their potential and then redistribute them across

clans. This ensures that all individuals remain active in the optimization process.

Figure 5.6 resumes the followed steps of outliers handling process.
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Figure 5.6: Outliers Handling Steps

The process follows three main steps:

1. Identification of Outliers

After assigning solutions to clans based on similarity, each individual is evaluated to deter­

mine whether it is close enough to at least one core solution. This is done using a predefined

threshold that measures how similar two solutions are. If a solution does not meet this thresh­

old with any of the cores, it is considered an outlier and added to a separate list for special

handling.

2. Mutation of Outliers

After identifying outliers, slight random mutations is applied to their structure to increase di­

versity while preserving their core characteristics. This enhances their chances of integrating

into existing clans or exploring new promising areas in the solution space.

3. Redistribution of Mutated Outliers

After mutation, outliers are redistributed intelligently to maintain balance among clans. Fill­

ing smaller clans those with fewer than a minimum number of individuals by assigning them

mutated outliers is prioritized. This helps ensure that all clans meet a baseline size for effec­

tive exploration. the remaining outliers are distributed randomly across the clans to preserve

diversity.

The following example is proposed to simplify the understanding of the outliers handling process.:

Example 5.4. Let's consider the following initial population of solutions:

{101010, 001110, 111000, 110011, 000111, 111111, 010101, 100100}

and the initial parameters include:

Number of core points = 2, MinPts (minimum clan size) = 4
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Selected core points:

{101010, 000111}

The resulting clan division :
Clan 1 : {101010, 100100}
Clan 2 : {000111, 001110}
Outliers : {111000, 110011, 010101, 111111}

After mutation of outliers:

{111001, 110111, 010100, 111110}

Redistribution: {
Clan 1 (size < MinPts)→ {111001, 110111}
Clan 2 (size < MinPts)→ {010100, 111110}

5.3.2 Illustrative Example of DBSCAN­Based EHO

To illustrate the DBSCAN­Based EHO algorithm, consider a population of 9 binary solutions

of length 6:

S = {S1=101010, S2=101110, S3=100010, S4=000111, S5=001111, S6=000011,

S7=111000, S8=110000, S9=111100}

The initial parameters are set as follows:

• number of core points = 2

• ε = 0.33 (normalized Hamming distance (H) )

• minPts = 4

All the process of clan division, outlier detection, mutation, and redistribution is illustrated in Figure

(5.7).
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Figure 5.7: Illustrative Example of DBSCAN­Based EHO Process

The following pseudocode outlines the main steps of the hybrid EHO­DBSCAN algorithm (13);
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Algorithm 13: Elephant Herding Optimization with DBSCAN­Based Clustering for SAT

Input : CNF clauses, population size N , max generations tmax, learning rates α, β,
DBSCAN parameters ε, minPts, number of core points cp

Output: Best solution xbest
1 Initialize population of N elephants (binary vectors of length n)
2 Evaluate fitness of all elephants (using Formula 1)

3 Apply DBSCAN­based mechanism in clan divison step

4 Sort population by descending fitness

5 Save top­k elephants as elites
6 t← 0
7 while t < tmax do
8 for each clan clani do

9 Apply Clan Update Operator to clani

10 Apply Separation Operator to clani

11 Merge all elephants into a new population

/* Clan division using DBSCAN mechanism */
12 Copy the population: Pcopy ← P
13 Randomly select cp core points from Pcopy:

14 Initialize empty clans: clans← {[], [], . . . , []} (one for each core)
15 Initialize empty list of outliers: outliers← {}
16 foreach individual x ∈ P do

17 assigned← false
18 foreach core point corej ∈ C do

19 if HammingDistance(x, corej) ≤ ε then
20 Add x to clans[j]
21 assigned← true
22 break

23 if not assigned then
24 Add x to outliers

25 Sort clans by descending size
/* Outlier handling */

26 Mutate outliers with small bit flip probability (outliersmutated)

27 idx← 0; num← size of outliersmutated

28 foreach clan clank in clans do
29 while length(clank) < minPts and idx < num do

30 Add outliersmutated[idx] to clank

31 idx← idx+ 1

32 if idx < num then

33 for i← idx to num− 1 do
34 Randomly select clan clanr and add outliersmutated[i] to it

35 Return clans
36 t← t+ 1

37 return xbest
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Complexity: In this variant, the algorithm processes all N elephants at each generation using both

the clan update and separation operators, which together requireO(N ·n) operations per generation,
where n is the chromosome length.

The distinctive feature of this variant is the DBSCAN­inspired clan division. At each generation:

• cp core points are selected randomly from the population: O(cp)

• Each of the N individuals is compared to all cp core points using Hamming distance: O(N ·
cp · n)

• Sorting clans by size: O(cp · log cp)

• Outlier handling and mutation (with constant probability bit flips): O(N · n)

• Redistributing outliers among clans: O(N)

Combining these, the total cost per generation becomes:

O (N · n+N · cp · n+ cp · log cp +N) = O(N · cp · n)

since N · cp · n dominates for large N and n.

Over all tmax generations, the total time complexity is:

O(tmax ·N · cp · n)

5.4 Conclusion

Throughout this chapter, the limitations of the Elephant Herding Optimization algorithm were

identified and addressed through the proposition of a hybridization with data mining and especially

clustering techniques.

The K­means clustering, was first proposed for hybridization, with the aim of forming semantically

meaningful clans facilitating efficient local exploitation within the clans while promoting global

diversity across them.

As second proposition, DBSCAN algorithm is proposed for both clan division and outlier detection.

On one hand, the clans division is carried out using DBSCAN inspired approach. On the other hand,

outliers are identified and slightly mutated to intelligently enhance population diversity.

The following chapter is dedicated to experimental validation of the proposed approaches.
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CHAPTER 6
EXPERIMENTSAND RESULTS

6.1 Introduction

This chapter presents a comprehensive experimental evaluation of the proposed EHO­based

SAT solver variants.

After describing the test environment, selecting benchmarks, and introducing evaluation metrics,

the performance of the base EHO and its improved versions are assessed. All the proposed improve­

ment strategies of EHO, which aim to reduce stagnation and enhance search efficiency including

the mutation operator, re­division strategy, and their combination, are first experimentally validated.

The second stage of experimental process focuses on examining hybrid approaches that integrate

data mining techniques K­Means and DBSCAN clustering into the base EHO model to achieve

better exploration and exploitation of the solution space.

6.2 Experimental Setup

To achieve and validate this project, a precise experimental setup is required, including the test

environment, benchmark datasets, and evaluation metrics. This section presents these components

to ensure a thorough and objective performance analysis.

6.2.1 Test Environment

To ensure a comprehensive evaluation of the proposed methods, the experiments were con­

ducted on two different computing environments which configuration are resumed in Table 6.1.

First Machine Second Machine

• Processor: AMD Ryzen 5 4500U with

Radeon Graphics @ 2.38 GHz

• RAM: 32 GB

• Disk: 512 GB SSD

• Operating System: Windows 11 Pro

• Processor: AMD Ryzen 5 PRO 5650U

with Radeon Graphics @ 2.30 GHz

• RAM: 16 GB

• Disk: 286 GB SSD

• Operating System: Windows 11 Pro

Table 6.1: Hardware Configuration of Used Machines
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For the software environment, on a set of essential tools and platforms was relied upon :

• Programming Language

The chosen programming language is Python due to its simplicity, readability, and the richness

of its scientific ecosystem. These characteristics made it particularly suitable for implementing

our custom metaheuristic algorithms from scratch.

• Core Libraries

The implementation was based on core Python libraries such as random, numpy, collections,
and time. These libraries support key operations including stochastic behavior, numerical com­
putations, data structure management, and runtime tracking.

• Development Environment

Development and debugging were conducted using Visual Studio Code, while Google Colab

provided a convenient cloud­based platform for rapid testing and experimentation.

• Data Analysis and Tabulation:

Microsoft Excel was used for organizing experimental results, performing tabular analysis, and

creating summary charts to support interpretation and reporting.

• Redaction and Documentation

Overleaf (LATEX) was employed for typesetting and writing the thesis, ensuring a high­quality

academic format. Additionally, Notion was used to organize research notes and manage project

planning in a collaborative and structured manner.

• Diagrams and Illustrations

Figma was chosen for designing workflow diagrams and creating visual representations of the

methodology, which significantly aided in clarifying and communicating complex processes

throughout the project.

6.2.2 Benchmark Description

To evaluate the performance and robustness of the proposed EHO­based SAT solver and its

improvements, two types of SAT benchmarks were considered:

ä Small benchmark:

To examine the behavior of all the proposed improvement and approaches on small­scale

problems generated within a constrained search space, multiple tests were conducted on the

Uniform Random­3­SAT benchmark specifically the "uf200­860". Although this benchmark,

originally constructed for decision problems, however, it can be used within an optimization

context such as Max­SAT.

ä Medium and Large benchmark:

A set of instances from the Bounded Model Checking BMC, which includes complex SAT

encoding derived from hardware verification were selected as medium and large benchmarks.
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The set of benchmarks contain 13 instances which description is presented in Table 6.2.

Due to high computational cost, only three representative instances (bmc­ibm­1 ,bmc­ibm­

2,bmc­ibm­7) were tested.

File name Number of variables Number of clauses

bmc­ibm­1.cnf 9686 55870

bmc­ibm­2.cnf 2810 11683

bmc­ibm­3.cnf 14930 72106

bmc­ibm­4.cnf 28161 139716

bmc­ibm­5.cnf 9396 41207

bmc­ibm­6.cnf 51639 368352

bmc­ibm­7.cnf 8710 39774

bmc­ibm­10.cnf 59056 323700

bmc­ibm­11.cnf 32109 150027

bmc­ibm­12.cnf 39598 194778

bmc­ibm­13.cnf 13215 65728

bmc­galileo­8.cnf 58074 294821

bmc­galileo­9.cnf 63624 326999

Table 6.2: SATLIB benchmark instance characteristics

As discussed in Section 4.2.1, a lightweight preprocessing step were applied to the selected

SAT benchmarks to reduce redundancy and enhance solving efficiency. Although SAT instances

are generally simple, our benchmarks contained some tautological, duplicate, or included clauses.

Table 6.3 summarizes the impact of this preprocessing on the three selected BMC instances by

showing the reduction in clauses count, including the number of tautologies, duplicate clauses, and

subsumed clauses.

Instance
Clauses

Before

Clauses

After

Removed

Clauses
Tautologies

Duplicate

clauses

Removed

clauses

bmc­ibm­1 55870 54682 1188 15 193 980

bmc­ibm­2 11683 10561 1122 16 301 805

bmc­ibm­7 39774 37388 2386 28 170 2188

Table 6.3: Impact of preprocessing on BMC benchmark instances

To validate the preprocessing step, a random solution was generated and evaluated on both the orig­

inal and preprocessed versions of an instance.

Figures 6.1 and 6.2 present a comparative study of the satisfiability rate and execution time before

and after preprocessing, averaged over 10 independent runs.
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Figure 6.1: Satisfiability rate before and after

preprocessing over 10 runs

Figure 6.2: Execution time before and after pre­

processing over 10 runs

From the figures [6.1, 6.2], satisfiability rates appear slightly higher before preprocessing, which is

explained by the removal of included clauses.

For instance, removing a clause like [X1∨X2]when [X1] exists reduces redundancy but also lowers
the chance of satisfying all clauses with random solutions.

However, execution time is clearly lower after preprocessing, making the solving process faster and

more efficient.

This confirms that the preprocessing step is valuable, especially for large benchmark instances

where time is a key factor.

6.2.3 Evaluation Metrics

According to the context of metaheuristics, the main four performance metrics adapted to the

EHO algorithm to solve SAT problems are presented as follows:

3 Exploration and Exploitation

This reflects the algorithm's ability to balance between discovering new areas in the search

space (exploration) and refining existing good solutions (exploitation). Population diversity

and solution variations across generations Were monitored.

3 Effectiveness

Represents the ability of the algorithm to find valid or optimal solutions. It is estimated via

the success rate (percentage of satisfiable results) and the best fitness achieved.

3 Efficiency

Evaluates the computational cost of the algorithm to reach a solution. It is estimated based

on execution time and the number of generations required to converge.

3 Stagnation

In SAT problems, stagnation happens when the algorithm stops improving over several gen­

erations—the best fitness value stays the same for multiple iterations. This usually means the

search is stuck in a local optimum or has lost its ability to explore.
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To measure this, the Stagnation Rate is proposed and is, based on observed patterns in the

sequence of best fitness values: (1) many values remain unchanged across iterations, and (2)

some values repeat frequently.

Stagnation Rate (SR) =
max_rep+ rep_value_count

total_gen
(6.1)

Where:

• max_rep is the maximum number of times a single fitness value occurs,

• rep_value_count is the number of fitness values that occur more than once,

• total_gen is the total number of generations.

This formula 6.1 provides a simple yet informative measure of how much the algorithm stag­

nates during its run.

Note: These metrics were either directly computed or inferred through observations, given their

interdependence.

6.3 Results and Analysis

This section presents a detailed evaluation of the adapted EHO­based SAT solver and its vari­

ous improved versions.

The performance analysis is first conducted on the basic adapted EHO and its improvement includ­

ing mutation, re­division, and their combinations , followed by that of the proposed hybrid models

using K­Means and DBSCAN clustering. The results provide insights into the effectiveness and

improvements achieved across different benchmarks.

6.3.1 Performance of the Adapted EHO­Based SAT Solver

To evaluate the efficiency of adapted EHO­based solver for the SATproblem, the process began

with testing its baseline behavior and identifying potential limitations.

The EHO algorithm involves several key parameters that govern its search dynamics. In this initial

phase, the focus is, first, placed on two core parameters: α and β, which are used in the update

operator to control the position updates of elephants.

From the results presented in Table 6.3, observations show that the tuning of α and β significantly

influences the performance of the solver. No single combination consistently outperforms others

across all benchmark instances, underscoring the sensitivity of the algorithm to these parameters.

Lower values generally promote more stable convergence by maintaining a balance between ex­

ploration and exploitation, whereas higher values tend to increase stagnation and reduce reliability.

Overall, a well­balanced setting of α and β leads to more effective performance by allowing the

algorithm to explore the solution space efficiently while avoiding premature convergence.
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Figure 6.3: Impact of α and β Parameter Tuning on Solver Performance

The analysis in Table 6.3 was conducted with fixed parameters: number of clans = 20, pop­

ulation size = 300, max generations = 100, and elitism k = 5, while varying α and β.

After analyzing the individual impact of the parameters α and β in Table 6.3, the attention is now

directed toward two additional key parameters which are the population size and the clan number.

Table 6.4 exhibits the influence of dynamic configurations of population size and number of clans,

while maintaining adaptive (dynamic) settings for α and β. The aim is to understand how varying

the core structural components of the EHO algorithm affects its performance across several bench­

mark instances, including small­scale SAT problems (UF200) and medium­scale instances (BMC).

The Key observations and findings from Table 6.4:

• Smaller number of clans leads to improved performance, as it strengthens intra­clan coop­

eration and enhances convergence toward optimal solutions.

• Larger population size consistently improve the Satisfiability Rate , although it comes with

a noticeable increase in computational time.

• The best overall performance is achieved with a large population (300) and a small number

of clans (5), indicating an effective balance between exploration and exploitation.

• As population size increases, execution time increases as well. This highlights a clear tradeoff

between solution quality and time complexity.

• While α and β showed inconsistent effects in static tuning (Table 6.3), their dynamic adjust­

ment in this phase improves stability and search efficiency, especially when paired with larger

populations. This confirms their complementary role in refining performance.

From this analysis,it is concluded that carefully controlling the core parameters of the EHO

algorithm such as: population size, number of clans, and the dynamic adjustment of α and β has a

substantial impact on its ability to reach optimal solutions efficiently.

The experimental results clearly show that larger population sizes combined with fewer clans lead

to superior performance, while adaptive tuning of α and β further supports convergence. These

insights highlight the necessity of parameter sensitivity analysis when applying EHO to complex

combinatorial problems such as SAT.
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Figure 6.4: General Turing Parameters Result Table

The analysis in Table 6.4 was conductedwith fixed parameters: max generations=100, elitism

size =5 (Top­k elitism)
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Recommended Parameter Setting: The most effective configuration observed includes a pop­

ulation size of 300, 5–10 clans, α ≈ 0.1, and β between 0.1 and 0.5. This setup will be used in

subsequent tests. However, results remain context­dependent, as no single combination guaran­

tees optimal performance across all instances.

After several tests of the base EHO algorithm, a recurring issue of stagnation or near­stagnation

were observed (Table 6.3). As a remainder, stagnation refers to situations where the fitness value

remains unchanged or progresses extremely slowly over a large number of generations.

To illustrate this phenomenon, Figure 6.5 presents the fitness progression on a given benchmark

instance, where prolonged phases of stagnation can be clearly identified.

Figure 6.5: Fitness progression showing stagnation behavior

As observed, previously, in Table 6.3, the choice of parameters particularly α and β plays a

crucial role in stagnation behavior: their valuesdetermine whether they exacerbate or reduce stag­

nation.

By measuring the stagnation rate across small and medium benchmark instances, it was further

observed (figure 6.6) that stagnation or near stagnation tends to decrease as the benchmark size

increases likely due to greater diversity and a broader search space.

Figure 6.6: Comparison of satisfiability and stagnation rates in small and medium benchmarks
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Finally, to better illustrate the efficiency of the adapted EHO­based SAT solver, additional ex­

periments were conducted with 200 iterations. Table 6.4presents a summary of the solver’s perfor­

mance across various benchmark instances.

Benchmark

Size
Instances

Attempts

Number

Highest

Fitness

Average

Satisfiability

Rate

Average

Stagnation

Rate

Average

Execution

Time

Small

uf20­02.cnf 5 823 95.37% 67.26% 125.28 s

uf20­050.cnf 5 924 95.42% 69.95% 135.64 s

uf20­095.cnf 5 820 95.02% 68.06% 123.74 s

Medium

bmc­ibm­2.cnf 1 9037 85.57% 36.82% 1701.8054 s

bmc­ibm­7.cnf 1 31023 82.98% 29.85% 5116.6968 s

bmc­ibm­1.cnf 1 45138 82.55% 24.38% 8706.0522 s

Table 6.4: Performance metrics of benchmark instances

6.3.2 Evaluation of the Improved Base EHOModel

This section evaluates the improvements made to the base EHO model through various strate­

gies such as mutation, re­division, and their combination. This analysis explores how the proposed

enhancements address issues like stagnation and improve overall performance on SAT benchmarks.

6.3.2.1 Evaluation of EHO with Mutation Operator

As previously discussed, the mutation operator was introduced into the EHO algorithm to en­

hance diversity and escape stagnation. This operator randomly perturbs certain elephant positions

during the iteration process, thereby increasing exploration in the search space.

Here, the impact of the mutation rate introduced as a new parameter on the algorithm’s behavior is

analyzed. And specifically, the influence of the variation of this rate on satisfiability, stagnation, and

execution time across benchmark instances. Table 6.5 summarizes the results obtained by applying

different mutation rates on selected SAT problems under fixed initial parameters.

Instance
Mutation

Rate

Satisfiability

Rate (%)

Stagnation

Rate (%)

Execution

Time (s)

uf200-050.cnf

0.01 96.05 ↓ 31.68 ↑ 123.7624

0.05 94.65 ↓ 38.61 ↑ 127.9361

0.1 93.84 ↓ 48.5 ↑ 127.6842

0.2 93.02 ↓ 80.39 ↑ 127.5776

0.3 92.79 ↓ 92.08 ↑ 128.8517

0.5 92.09 ↓ 97.03 ↑ 129.7167

bmc-ibm2.cnf

0.01 85.76 ↓ 27.72 ↑ 1219.5584

0.05 84.88 ↓ 51.49 ↑ 956.8103

0.1 84.17 ↓ 62.38 ↑ 1012.9934

0.2 83.97 ↓ 72.28 ↑ 1296.1470

0.3 82.91 ↓ 87.13 ↑ 1526.7370

0.5 82.37 ↓ 88.37 ↑ 1533.6174

Table 6.5: Impact of Mutation Rate on Satisfiability, Stagnation, and Execution Time
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The Evaluation in Table 6.5 conducted over 100 iterations with n_clans=10, popula­

tion_size=300, α=0.1, β=0.3, elitism_k=4.

It is observed, from the analysis of Table 6.5, that a mutation rate of 0.01 yields the best balance,

achieving high satisfiability and low stagnation. This rate, meaning only 1% of elephant positions

are perturbed per iteration, ensures sufficient diversity without disrupting convergence. Higher rates

degrade performance by introducing excessive randomness.

After selecting the optimal parameter combination and the best mutation rate from the previous

section, the conducted evaluation of performance of the improved algorithm over 200 iterations is

summarized in Table 6.6.

Benchmark

Size
Instances

Attempts

Number

Highest

Fitness

Average

Satisfiability

Rate

Average

Stagnation

Rate

Average

Execution

Time

Small

uf20­02.cnf 5 836 96.99% 27.56% 244.33 s

uf20­050.cnf 5 838 97.05% 30.75% 124.39 s

uf20­095.cnf 5 836 96.91% 30.15% 116.32 s

Medium

bmc­ibm­2.cnf 1 9206 87.15% 25.37% 1398.1492 s

bmc­ibm­7.cnf 1 31490 84.22% 25.87% 4943.6126 s

bmc­ibm­1.cnf 1 45714 83.60% 32.34% 7626.3785 s

Table 6.6: Performance Evaluation of the Improved EHO with Mutation

The Evaluation in Table 6.6 conducted over 200 iterations with n_clans=10, pop­

ulation_size=300, alpha=0.1, beta=0.3, elitism_k=4, stagnation_threshold=3, muta­

tion_rate=0.01.

Note: The stagnation threshold refers to the number of consecutive iterations during which the

fitness value does not improve. It is used to detect when the search process is no longer mak­

ing progress. The value of this threshold is chosen according to the benchmark size: for large

benchmarks, stagnation tends to occur less frequently, a smaller threshold value is then used to

detect stagnation earlier and maintain search efficiency.

6.3.2.2 Evaluation of EHO with Re­Division Strategy

Although the mutation operator is effective in many situations adding variation and helping

the search escape local optima, it can sometimes fall short. In such cases, despite multiple changes,

the algorithm remains trapped in the same region of the search space, unable to discover better

solutions.

To better address stagnation, an alternative approach, namely re­division strategy is proposed.and

is executed when a predefined stagnation threshold (X Stagnation) is exceeded. At that point, the

algorithm triggers a full re­division of the population into new clans. This process redistributes

candidate solutions across the search space, encouraging exploration of fresh and unexplored areas.

It effectively resets the search and boosts the chances of finding improved results.

The table (6.7) shows the performance of EHO using the Re­Division strategy.
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Benchmark

Size
Instances

Attempts

Number

Highest

Fitness

Average

Satisfiability

Rate

Average

Stagnation

Rate

Average

Execution

Time

Small

uf20­02.cnf 5 841 97.79% 49.75% 287.7 s

uf20­050.cnf 5 837 97.33% 56.72% 289.11 s

uf20­095.cnf 5 839 97.56% 43.28% 349.02 s

Medium

bmc­ibm­2.cnf 1 9393 88.94% 27.86% 1677.93 s

bmc­ibm­7.cnf 1 32113 85.89% 25.37% 7388.0961 s

bmc­ibm­1.cnf 1 46925 85.81% 27.36% 8867.4629 s

Table 6.7: Performance Evaluation of the Improved EHO with Re­Division

Tests were run over 200 iterations with parameters: n_clans=10, population_size=300, α=0.1,

β=0.3, elitism_k=4, and stagnation_threshold=3. These settings match those used in earlier

and upcoming experiments for consistency.

6.3.2.3 Evaluation of Combined Mutation and Re­Division

As explained in section (4.3.3), mutation is applied when strict stagnation occurs. Additionally,

re­division of clans is triggered when the fitness improvement over a window of X generations is

below a threshold K, indicating slow progress. This combined strategy helps maintain diversity and

escape local optima. The test results of this combined algorithm are summarized in Table 6.8.

Benchmark

Size
Instances

Attempts

Number

Highest

Fitness

Average

Satisfiability

Rate

Average

Stagnation

Rate

Average

Execution

Time

Small

uf20­02.cnf 5 839 97.56% 20.89% 305.06 s

uf20­050.cnf 5 840 97.67% 10.94% 307.93 s

uf20­095.cnf 5 842 97.91% 12.94% 303.75 s

Medium

bmc­ibm­2.cnf 1 9370 88.72% 8.46% 2273.524 s

bmc­ibm­7.cnf 1 32181 86.07% 10.07% 4963.8787 s

bmc­ibm­1.cnf 1 46799 85.58% 10.45% 10006.7322 s

Table 6.8: Performance Evaluation of the Improved EHOwith Combinedmutation and Re­Division

6.3.2.4 Comparative Analysis of Improved Variants

In this section, a comparative analysis of the base EHO algorithm and its proposed improve­

ments designed to mitigate the stagnation problem is performed, to observe whether these enhance­

ments lead to better performance and effectively resolve the stagnation issue.

Figure (6.7) illustrates the evolution of the best fitness over 200 iterations for the base EHO and its

improved variants tested on the medium benchmark. This curve allows us to visually assess how

each variant progresses toward optimal solutions.
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Figure 6.7: Fitness Convergence Comparison of EHO Variants

Based on Tables [6.4 , 6.6 , 6.7 , 6.8], which summarize the performance evaluation of the

base EHO and its improved variants, a comparative study focusing on key performance metrics

is conducted. Specifically, Figures (6.8) and (6.9) present the satisfiability instances, allowing us

to observe how effectively each variant solves the SAT instances. To assess the ability of each

approach to overcome stagnation, Figure (6.10) shows the stagnation rates across instances. Finally,

execution time is compared to evaluate the computational cost introduced by the proposed (figure

6.11).

Figure 6.8: Comparison of satisfiability rates on

small benchmark instances

Figure 6.9: Comparison of satisfiability rates on

medium benchmark instances
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Figure 6.10: Average stagnation rate per instance across EHO algorithm variants

Figure 6.11: Average execution time for each EHO variant across all instances tested

By observing the results from Figures 6.7 to 6.11, as well as Tables [6.4, 6.6, 6.7, 6.8], it is

evident that the improved variants of the EHO algorithm exhibit contrasting performances depend­

ing on the metrics considered. The base algorithm shows relatively slow convergence with a high

stagnation rate, indicating difficulty in escaping local optima. The addition of the mutation oper­

ator yields a slight improvement in the satisfiability rate, but its effect remains limited in the face

of persistent stagnation. On the other hand, the re­division strategy alone significantly improves

the satisfiability rate while maintaining a reasonable execution time, suggesting better exploration

of the search space. The combination of both approaches mutation and re­division proves to be

the most effective in breaking stagnation, as shown by the significant reduction in stagnation rate

in Figure 6.10. Regarding execution time (Figure 6.11), it is observed that the combined version

results in the highest time across several tested instances, whereas the mutation only variant is gen­

erally the fastest. This difference is explained by the increased complexity of the combined version,

which integrates two diversification mechanisms, while mutation alone applies a simple, low­cost

modification.
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6.3.3 Evaluation of the Hybridization with K­Means Clustering

As presented previously, the implementation of hybridizing EHO with K­Means, the core idea

is to group the population into structurally similar clans using K­Means clustering based on Ham­

ming distance. This allows the EHO algorithm to operate on more coherent subgroups, improving

both exploration and exploitation.

At each generation, the population is reclustered through multiple max_iters steps. This iterative
reclustering helps stabilize clan formation and adapt the search process. This motivated us to ex­

periment with different values of max_iters to evaluate whether this step plays a significant role
in solving the SAT problem effectively. Table (6.9) exhibits the results of this experiments. This is

what is shown in the following table :

Instance
max_iters

Value

Satisfiability

Rate (%)

Stagnation

Rate (%)

Execution

Time (s)

Score

(SR/ET)

uf200­02.cnf

1 98.49 29.85 135.0488 0.7293

3 97.91 27.36 174.3747 0.5615

5 98.37 11.44 161.9254 0.6073

10 97.67 22.89 170.743 0.5722

15 97.26 16.42 170.9746 0.569

bmc­ibm­2.cnf

1 90.29 3.48 1530.0687 0.059

3 89.56 2.99 1777.839 0.0504

5 89.33 6.47 1880.8006 0.0475

10 90.01 3.48 1947.07775 0.0462

15 89.28 2.49 1946.3381 0.0459

Table 6.9: Evaluating the Impact of max_iters in the EHO­KMeans Algorithm

From Table 6.9, it is observed we observe that performing the clustering step only once per

generation in the EHO­KMeans algorithm is sufficient, since repeating the clustering multiple times

does not significantly improve the satisfiability rate. However, doing so increases the execution time

considerably, as we illustrated in these two figures (6.12 and 6.13).

Figure 6.12: Effect of max_iters on Satisfiability

Rate in EHO­KMeans Algorithm

Figure 6.13: Effect of max_iters on Execution

Time in EHO­KMeans Algorithm
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After analyzing the impact of different max_iters values, evaluation considers now we evaluate

the performance of the EHO­KMeans algorithm over 200 iterations, as summarized in Table 6.10.

Benchmark

Size
Instances

Attempts

Number

Highest

Fitness

Average

Satisfiability

Rate

Average

Stagnation

Rate

Average

Execution

Time

Small uf20­02.cnf 5 845 98.00% 21.39% 173.95 s

uf20­050.cnf 5 847 97.70% 27.06% 171.18 s

uf20­095.cnf 5 845 97.49% 22.99% 170.49 s

Medium bmc­ibm­2.cnf 1 9506 90.01% 3.48% 1947.08 s

bmc­ibm­7.cnf 1 32380 86.61% 3.48% 6667.13 s

bmc­ibm­1.cnf 1 47407 86.70% 3.48% 9425.12 s

Table 6.10: Performance Evaluation for the EHO­KMeans algorithm

6.3.4 Evaluation of the Hybridization with DBSCAN Clustering

As we discussed previously in the implementation of hybridizing EHO with DBSCAN, As

observed previously, the clustering process plays a crucial role in how the population is structured

and evolves. One key addition introduced by this hybridization is the notion of outliers, which are

individuals that are not assigned to any cluster and handled separately.

In DBSCAN clustering, the division of clans is primarily based on the spatial proximity of indi­

viduals, which is controlled by the parameter epsilon (ε). This parameter defines the maximum

distance between two points for one to be considered as in the neighborhood of the other. Thus,

epsilon critically influences the number and size of clusters formed, the number of outliers detected,

and consequently the behavior of the entire algorithm. This motivated us to conduct tests on the

algorithm’s performance with different epsilon values in population of 300 solutions, the results of

these experiments are presented in Table (6.11).

Benchmark

Type
Epsilon

Attempts

Number

Satisfiability

Rate

Average

Outliers Number

Stagnation

Rate

Execution

Time

Small 0.1 3 97.52% 189 ↓ 44.78% 90.99 s

0.2 3 97.83% 137 ↓ 52.07% 107.65 s

0.3 3 97.56% 106 ↓ 65.51% 105.28 s

0.4 3 97.29% 61 ↓ 57.38% 99.27 s

Medium 0.1 1 88.52% 179 ↓ 17.91% 1066.79 s

0.2 1 90.85% 136 ↓ 15.92% 1060.86 s

0.3 1 90.44% 97 ↓ 17.41% 1165.70 s

0.4 1 90.38% 70 ↓ 13.93% 1219.01 s

Table 6.11: Performance results for different epsilon values in the hybrid EHO­DBSCAN algorithm.

As shown in Table 6.11, varying epsilon does not significantly affect satisfiability rate or execu­

tion time, which remain stable. However, epsilon clearly influences the number of outliers, affecting

how individuals are grouped into clans. This impacts on the population structure and optimization

dynamics. To better understand this behavior, Figure 6.14 illustrates how the number of outliers

evolves during the iterations, providing insight into the clustering dynamics over time.
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Figure 6.14: Variation of Outliers Count Across Generations

The results shown in Figure (6.14) were obtained using the following parameter settings:

population size = 300, maximum generations = 200, α = 0.1, β = 0.3, ε = 0.25, core points

count = 15, and MinPts = 2.

Figure 6.14 shows a gradual decrease in the number of outliers throughout the iterations, which in­

dicates the effectiveness of the clan division and outlier detection process in the hybrid EHO+DB­

SCAN algorithm. This decrease also reflects how outliers are efficiently exploited to inject new

diversity into the clans, contributing to maintaining exploration capability during the optimization

process.

Finally, to better illustrate the performance of the hybrid EHO­DBSCAN algorithm, we tested it

over 200 iterations, with the results summarized in Table X.

Benchmark

Size
Instance

Attempts

Number

Highest

Fitness

Average

Satisfiability

Rate

Average

Stagnation

Rate

Average

Execution

Time

Small

uf20­02.cnf 5 846 97.67% 66.07% 89.68 s

uf20­050.cnf 5 844 97.79% 63.28% 73.61 s

uf20­095.cnf 5 848 97.77% 65.07% 75.55 s

Medium

bmc­ibm­2.cnf 1 9638 91.26% 11.44% 1078.26 s

bmc­ibm­7.cnf 1 33699 90.13% 10.95% 3809.94 s

bmc­ibm­1.cnf 1 47631 87.11% 5.47% 5482.95 s

Table 6.12: Performance Evaluation of the Hybrid EHO­DBSCANAlgorithm

6.4 Global Evaluation of the Built EHO­Based Variants

After testing all the implementation variants across several parameters and evaluating them on

multiple small and medium SAT benchmarks, we present a global comparison of the EHO­based
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methods is presented and illustrated . This evaluation is illustrated using three curves showing

the comparison of satisfiability (Figure 6.17), stagnation (Figure 6.16), and execution time (Figure

6.16) across all EHO variants on SAT benchmarks.

Figure 6.15: Comparison ofAverage Satisfiability RatesAcross EHOVariants on SATBenchmarks

Figure 6.16: Comparison of Average Execution time Across EHO Variants on SAT Benchmarks

Figure 6.17: Comparison of Average Stagnation Rates Across EHO Variants on SAT Benchmarks
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It is observed that the base EHO variant provides an acceptable level of satisfiability but exhibits

high stagnation, particularly in small benchmarks. This is due to the limited number of potential so­

lutions in smaller instances, which increases the likelihood of early stagnation. In contrast, medium

or larger benchmarks offer more solution diversity, allowing for continuous exploration.

To address the stagnation issue, improved variants based on mutation, redivision, and a combined

approach are introduced. These enhancements significantly reduce stagnation and improve satis­

fiability. Among them, the combined strategy achieves the most balanced performance across all

criteria.

The proposed We also designed hybrid EHO variants using KMeans and DBSCAN . These are

built on the base EHO and are capable of detecting stagnation during the search process. When

stagnation is identified, the system switches directly to one of the improved EHO variants to main­

tain solution quality. As shown in the figures ( 6.15, 6.16, 6.17), EHO + DBSCAN emerges as the

most effective variant, offering high satisfiability, very low stagnation, and efficient execution time

across both small and medium benchmarks. We observe that Data mining techniques provide strong

performance when hybridized with EHO, as they enhance both exploration and exploitation during

the search process.

6.5 Conclusion

Throughout this chapter, a detailed experimental evaluation was carried out to assess the per­

formance of the adapted EHO algorithm and its various improved versions across a series of SAT

benchmark instances. The study began by testing the basic EHO adaptation for binary SAT prob­

lems, which, despite demonstrating promising overall performance, revealed a major limitation: the

tendency toward stagnation during the search process.

To address this issue, three improvement strategies were explored mutation, re­division, and a com­

bination of both. Each variant showed noticeable improvement over the base EHO model. Among

them, the mutation­enhanced version achieved faster execution times, while the re­division and

combined approaches delivered higher satisfiability rates and better overall exploration.

To further strengthen the proposed approach, hybridization with clustering­based data mining tech­

niques was introduced. The K­Means hybrid significantly improved solution quality by enabling

more coherent clan formations, though at the cost of higher execution time. In contrast, theDBSCAN­

based variant not only achieved the highest satisfiability rate but also demonstrated efficient exe­

cution time, making it the most effective and balanced EHO variant among those tested. These

results confirm the effectiveness and potential of combining metaheuristic search with data­driven

strategies in efficiently solving complex combinatorial problems.
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Part IV

Conclusion and Perspectives
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GENERAL CONCLUSION

This manuscript presented a comprehensive study on adapting and enhancing the Elephant

Herding Optimization algorithm to effectively solve the Boolean Satisfiability Problem (SAT), a

challenging and well­known NP­complete problem. The core objective was to build an intelligent

metaheuristic­based solver that balances exploration and exploitation while addressing the specific

constraints of SAT. The work began with the adaptation of the standard EHO to a binary context,

enabling it to operate effectively on CNF­encoded Boolean instances by introducing suitable solu­

tion representation and fitness evaluation based on satisfied clauses.

During initial evaluations, it became clear that the adapted EHO suffered from stagnation where

the population converged prematurely and failed to explore new regions of the solution space. To

mitigate this, a series of targeted improvements including the integration of a mutation operator

and a re­division strategy were proposed. These enhancements significantly reduced stagnation

rates and improved satisfiability scores across benchmark instances, confirming the effectiveness

of lightweight structural modifications before exploring more advanced hybrid approaches.

Building on the solid foundation of an adapted and improved EHO, the research advanced toward

hybridization with clustering techniques from data mining, namely K­Means and DBSCAN. These

techniques were selected due to their relevance to the EHO structure, particularly in replacing EHO's

random clan division mechanism with more meaningful, similarity­based clustering.

The K­Means hybridization was implemented by integrating its clustering mechanism into the clan

division step of EHO. Before integrating K­Means into EHO, its mechanism was adapted to suit

the SAT problem. One of the most essential adjustments crucial for similarity­based clustering

was replacing the standard Euclidean distance, which is unsuitable for binary representations, with

Hamming distance to better reflect differences between binary solutions. This change ensured that

similarity between binary solutions was accurately measured. As a result, the modified clustering

produced more coherent clans, enhancing intra­clan collaboration and enabling more effective local

exploration, which ultimately led to improved results and more optimal solutions compared to the

original and simply improved EHO variants.

The DBSCAN­based hybridization extended the enhancement by addressing both clustering struc­

ture and outlier treatment. Inspired by DBSCAN’s capacity to detect dense regions and separate

outliers commonly discarded in traditional clustering, the approach to preserve and utilize these out­

lier solutions within the EHO framework was adapted. Before integration, DBSCAN was tailored

for SAT by substituting the standard Euclidean distance with Hamming distance and retaining its
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core parameters to suit the binary nature of the problem. For handling outliers, the original elitism

strategy of EHO (which replaces the worst individual with the best) wasmodified to instead improve

the identified outliers through mutation and reintroduce them into the population. This approach

preserved potentially valuable solutions, reinforced diversity, and maintained exploration. As a re­

sult, this proposed solution yielded the best performance among all tested variants, combining high

effectiveness with reduced execution time.

These findings confirm the strong potential of the EHO algorithm for solving complex combina­

torial problems like SAT, especially when enhanced through data­driven hybridization. This work

shows that carefully designed adaptations and smart integrations can significantly improve meta­

heuristic performance. The improved EHO variants represent a promising foundation for develop­

ing more robust and adaptive solvers. They pave the way for building more efficient and scalable

tools capable of addressing increasingly complex optimization challenges.

Perspectives

Through this work, the results have shown that enhancing the EHO algorithm whether by

improving its internal structure or combining it with other techniques significantly boosted its per­

formance in solving the SAT problem. These improvements led to better solution quality and faster

convergence, while effectively reducing stagnation and achieving a more balanced search between

exploration and exploitation. Based on these promising outcomes, future work will aim to explore

the integration of EHO with other search algorithms or to design more intelligent hybrid versions,

including nature­inspired methods and learning­based strategies. The idea of combining EHO with

quantum computing also appears to be a promising path for speeding up and improving optimization

performance.

Since the SAT problem is a fundamental model for many types of combinatorial optimization prob­

lems, generalizing the enhanced algorithm and applying it to other problem domains would be a

logical next step toward building robust and adaptable optimization solutions across various appli­

cation contexts.

87



Part V

Bibliography

88



BIBLIOGRAPHY

[1] Joyce Jackson. ``Data mining; a conceptual overview.'' In: Communications of the Associa­

tion for Information Systems 8.1 (2002), p. 19.

[2] Pang­Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Harlow,

Essex, England: Pearson Education Limited, 2014. isbn: 978­1­292­02615­2.

[3] J. Han, J. Pei, and M. Kamber. Data mining: Concepts and techniques. Woltham: Elsevier,

2011.

[4] Coderbyte. Introduction toData Preprocessing inDataMining.Accessed: 2025­02­22. 2025.

url: https://medium.com/coderbyte/introduction-to-data-preprocessing-in-
data-mining-87f5134ef923.

[5] Sherin Moussa, Dina Fawzy, and Nagwa Badr. ``The Evolution of Data Mining Techniques

to Big Data Analytics: An Extensive Study with Application to Renewable Energy Data An­

alytics.'' In: Asian Journal of Applied Sciences 4 (June 2016).

[6] Dipti N Punjani and Kishor Atkotiya. ``A Comprehensive Study of Various Classification

Techniques in Medical Application using Data Mining.'' In: (2018).

[7] Archika Jain et al. ``A Review: Data Mining Classification Techniques.'' In: Apr. 2022. doi:

10.1109/ICIEM54221.2022.9853036.

[8] Tan Jun­shan, HeWei, andQingYan. ``Application of GeneticAlgorithm inDataMining.'' In:

2009 First International Workshop on Education Technology and Computer Science. Vol. 2.

2009, pp. 353–356. doi: 10.1109/ETCS.2009.340.

[9] Samia Mandour et al. ``Data Mining Problems Optimization by using Metaheuristic Algo­

rithms: A Survey.'' In: Multicriteria Algorithms with Applications 4 (2024), pp. 28–52.

[10] Ivan Bruha. ``Pre­and post­processing in machine learning and data mining.'' In: Advanced

course on artificial intelligence. Springer, 1999, pp. 258–266.

[11] Ivan Bruha and A Famili. ``Postprocessing in machine learning and data mining.'' In: ACM

SIGKDD Explorations Newsletter 2.2 (2000), pp. 110–114.

[12] Complex Systems AI. Combinatorial Optimization. Accessed: 2025­05­02. n.d. url: https:
//complex-systems-ai.com/en/combinatorial-optimization-2/.

[13] Saman Almufti et al. ``Overview of Metaheuristic Algorithms.'' In: Polaris Global Jour­

nal of Scholarly Research and Trends 2 (Apr. 2023), pp. 10–32. doi: 10.58429/pgjsrt.
v2n2a144.

[14] Trinav Bhattacharyya et al. ``Mayfly in Harmony:ANewHybrid Meta­Heuristic Feature Se­

lection Algorithm.'' In: IEEE Access 8 (Nov. 2020). doi: 10.1109/ACCESS.2020.3031718.

89

https://medium.com/coderbyte/introduction-to-data-preprocessing-in-data-mining-87f5134ef923
https://medium.com/coderbyte/introduction-to-data-preprocessing-in-data-mining-87f5134ef923
https://doi.org/10.1109/ICIEM54221.2022.9853036
https://doi.org/10.1109/ETCS.2009.340
https://complex-systems-ai.com/en/combinatorial-optimization-2/
https://complex-systems-ai.com/en/combinatorial-optimization-2/
https://doi.org/10.58429/pgjsrt.v2n2a144
https://doi.org/10.58429/pgjsrt.v2n2a144
https://doi.org/10.1109/ACCESS.2020.3031718


[15] Gai­Ge Wang et al. ``A new metaheuristic optimisation algorithm motivated by elephant

herding behaviour.'' In: International Journal of Bio­InspiredComputation 8.6 (2016), pp. 394–

409.

[16] Gai­Ge Wang, Suash Deb, and Leandro dos S Coelho. ``Elephant herding optimization.''

In: 2015 3rd international symposium on computational and business intelligence (ISCBI).

IEEE. 2015, pp. 1–5.

[17] PhDAssistance. Algorithm Tips: EHO for Complex Problems ­ PhD Assistance ­­­ phdassis­

tance.com. https://shorturl.at/aBGNP. [Accessed 26­03­2024]. November 19, 2019.

[18] Monalisa Nayak et al. ``Elephant herding optimization technique based neural network for

cancer prediction.'' In: Informatics in Medicine Unlocked 21 (2020), p. 100445. issn: 2352­

9148. doi: https://doi.org/10.1016/j.imu.2020.100445. url: https://www.
sciencedirect.com/science/article/pii/S2352914820305955.

[19] Huseyin Hakli. ``BinEHO: a new binary variant based on elephant herding optimization al­

gorithm.'' In: Neural Computing and Applications 32.22 (2020), pp. 16971–16991.

[20] Yuxian Duan et al. ``Gradient­based elephant herding optimization for cluster analysis.'' In:

Applied Intelligence 52.10 (2022), pp. 11606–11637.

[21] Mohammed Sannef, EL­Hachemi Guerrout, and Ramdane Mahiou. ``État de l’art sur les

méthodes d’optimisation de l’élevage d’éléphants.'' PhD thesis. Nov. 2021. doi: 10.13140/
RG.2.2.22824.49924.

[22] Wei Li and Gai­GeWang. ``Improved elephant herding optimization using opposition­based

learning and K­means clustering to solve numerical optimization problems.'' In: Journal of

Ambient Intelligence and Humanized Computing 14.3 (2023), pp. 1753–1784.

[23] MostafaA Elhosseini et al. ``On the performance improvement of elephant herding optimiza­

tion algorithm.'' In: Knowledge­Based Systems 166 (2019), pp. 58–70.

[24] Wei Li, Gai­Ge Wang, and Amir H Alavi. ``Learning­based elephant herding optimization

algorithm for solving numerical optimization problems.'' In: Knowledge­Based Systems 195

(2020), p. 105675.

[25] K Shankar et al. ``An efficient image encryption scheme based on signcryption technique

with adaptive elephant herding optimization.'' In: Cybersecurity and Secure Information Sys­

tems: Challenges and Solutions in Smart Environments (2019), pp. 31–42.

[26] Pushpendra Singh et al. ``Hybrid elephant herding and particle swarm optimizations for op­

timal DG integration in distribution networks.'' In: Electric power components and systems

48.6­7 (2020), pp. 727–741.

[27] Rasool Bukhsh et al. ``Appliances scheduling using hybrid scheme of genetic algorithm and

elephant herd optimization for residential demand response.'' In: 2018 32nd International

Conference on Advanced Information Networking and Applications Workshops (WAINA).

IEEE. 2018, pp. 210–217.

[28] Tansel Dokeroglu et al. ``A survey on new generation metaheuristic algorithms.'' In: Com­

puters & Industrial Engineering 137 (2019), p. 106040.

[29] Wei Li and Gai­GeWang. ``Improved elephant herding optimization using opposition­based

learning and K­means clustering to solve numerical optimization problems.'' In: Journal of

Ambient Intelligence and Humanized Computing 14.3 (2023), pp. 1753–1784.

[30] Zeynab Hoseini et al. ``A new enhanced hybrid grey wolf optimizer (GWO) combined with

elephant herding optimization (EHO) algorithm for engineering optimization.'' In: Journal

of Soft Computing in Civil Engineering 6.4 (2022), pp. 1–42.

90

https://shorturl.at/aBGNP
https://doi.org/https://doi.org/10.1016/j.imu.2020.100445
https://www.sciencedirect.com/science/article/pii/S2352914820305955
https://www.sciencedirect.com/science/article/pii/S2352914820305955
https://doi.org/10.13140/RG.2.2.22824.49924
https://doi.org/10.13140/RG.2.2.22824.49924


[31] Stephen A. Cook. ``The complexity of theorem­proving procedures.'' In: Proceedings of the

third annual ACM symposium on Theory of computing. ACM. 1971, pp. 151–158. doi: 10.
1145/800157.805047.

[32] Martin Davis, George Logemann, and Donald Loveland. ``Amachine program for theorem­

proving.'' In: Communications of the ACM 5.7 (1962), pp. 394–397.

[33] Joao Marques­Silva and Karem Sakallah. ``Conflict analysis in search algorithms for satis­

fiability.'' In: (1996).

[34] Lintao Zhang et al. ``Efficient conflict driven learning in a boolean satisfiability solver.'' In:

IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM

Digest of Technical Papers (Cat. No. 01CH37281). IEEE. 2001, pp. 279–285.

[35] Inês Lynce and Joël Ouaknine. ``Sudoku as a SAT Problem.'' In: AI&M. Citeseer. 2006.

[36] Fred Glover. ``Future paths for integer programming and links to artificial intelligence.'' In:

Computers & operations research 13.5 (1986), pp. 533–549.

[37] Kenneth Sörensen and Fred Glover. ``Metaheuristics.'' In: Encyclopedia of operations re­

search and management science 62 (2013), pp. 960–970.

[38] Holger HHoos and Thomas Stützle. ``Propositional satisfiability and constraint satisfaction.''

In: Stochastic local search: Foundations and applications. Elsevier (2004).

[39] Olivier Goudet et al. ``Emergence of new local search algorithms with neuro­evolution.'' In:

European Conference on Evolutionary Computation in Combinatorial Optimization (Part of

EvoStar). Springer. 2024, pp. 33–48.

[40] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive systems.

University of Michigan, 1975.

[41] Davis Lawrence. ``Handbook of genetic algorithms.'' In: Van Nostrand Reinhold (1991).

[42] Stephen Cook. ``The p versus np problem. themillennium prize problems, 87­104.'' In:Amer­

ican Mathematical Society (2006).

[43] Celina MH De Figueiredo. ``The P versus NP­­complete dichotomy of some challenging

problems in graph theory.'' In: Discrete Applied Mathematics 160.18 (2012), pp. 2681–2693.

[44] Michael R. Garey andDavid S. Johnson.Computers and Intractability: AGuide to the Theory

of NP­Completeness. Vol. 29. New York: W. H. Freeman and Company, 2002.

[45] Evelyne Lutton. ``Darwinisme artificiel: une vue d’ensemble.'' In: Traitement du signal 22.4

(2004).

91

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047

	Acknowledgement
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	I Introduction
	II State of the Art
	Data Mining Techniques
	Introduction
	Understanding Data
	Data Mining: fundamental concepts
	Data preprocessing
	Data mining techniques

	Clustering 
	 Partitioning Methods
	Density-Based Methods
	Hierarchical Methods
	Grid-Based Methods

	Classification
	Eager Learners
	 Lazy Learners

	Optimization 
	Post-Preprocessing Data 
	Conclusion

	Metaheuristics and Elephant Herding Optimization algorithm
	Introduction
	Problem Solving
	Metaheuristics
	Metaheuristic Algorithms Classifications
	Swarm-Based Algorithms


	Elephent Herding Optimisation Algorithm
	Elephant Herding Optimization Research Studies
	Herding behavior of Elephants
	Elephant Herding Optimization Algorithm
	Clan updating operators
	Separating operator
	Elitism Strategy

	Procedure and Pseudocode of the EHO Algorithm

	Existing Variants of the EHO Algorithm
	Simple Variants of the EHO Algorithm
	Hybrid Variants of the EHO Algorithm

	Conclusion

	The Boolean Satisfiability Problem
	Introduction
	The Boolean Satisfiability Problem (SAT): Definition and variants
	SAT problem presentation
	SAT problem and NP-completeness 
	Variants of the SAT Problem
	Real-World Applications of Boolean Satisfiability (SAT)

	SAT Solvers
	Complete Methods
	The Davis-Putnam-Logemann-Loveland algorithm (DPLL)
	Conflict-Driven Clause Learning algorithm(CDCL))

	Incomplete Methods

	Conclusion


	III Contribution and Implementation
	Adapting and Enhancing EHO Algorithm 
	Introduction
	Implementation of Sat Solver Using Basic EHO
	Binary Representation and CNF Preprocessing
	Adapting Elephant Herding Optimization Algorithm for Solving SAT Problem

	Improved Basic EHO
	Integration of a mutation operator (IEHO-M)
	Integration of Re-division Strategy (IEHO-RD)
	Combined Strategy: Mutation and Re-division (IEHO-MRD)

	Conclusion

	Hybridization of EHO with Data Mining Techniques
	Introduction
	K-Means-Based EHO (EHO-Kmeans)
	Methodology of the Hybrid EHO-K-means Approach
	Illustrative Example of Kmeans-Based EHO

	DBSCAN-Based EHO (EHO-DBSCAN)
	Methodology of the Hybrid EHO-DBSCAN Approach
	Clan Division Based on DBSCAN-Inspired Strategy
	Outliers Handling and Integration

	Illustrative Example of DBSCAN-Based EHO

	Conclusion

	Experiments and Results
	Introduction
	Experimental Setup
	Test Environment
	Benchmark Description
	Evaluation Metrics

	Results and Analysis
	Performance of the Adapted EHO-Based SAT Solver
	Evaluation of the Improved Base EHO Model
	Evaluation of EHO with Mutation Operator
	Evaluation of EHO with Re-Division Strategy
	Evaluation of Combined Mutation and Re-Division
	Comparative Analysis of Improved Variants

	Evaluation of the Hybridization with K-Means Clustering
	Evaluation of the Hybridization with DBSCAN Clustering

	Global Evaluation of the Built EHO-Based Variants
	Conclusion


	IV Conclusion and Perspectives
	V Bibliography

