République Algérienne Démocratique et Populaire

الجمهورية الجزائرية الديمقر اطية الشعبية

Ministère de l'enseignement supérieur et de la recherche scientifique

وزارة التعليم العالي و البحث العلمي Université Saad Dahleb de Blida

جامعة سعد دحلب-البليدة-

Faculté des sciences de l'ingénieur

كلية العلوم الهندسية Département de génie civil

دائرة الهندسة المدنية

MEMOIRE DE MASTER
POUR L'OBTENTION DU DIPLOMEDE
MASTER EN GENIE CIVIL

Option: MATERIAUX.

CONCEPTION D'UN BATIMENT MULTIFONCTIONNEL EN BETON ARME

(Rez-de-chaussée+8 étages+1Sous-sol)

Soutenu par:

Mme. Mounsi Lamia

Devant le jury composé de :

Mme .TADJER université Saab Dahleb Blida president

Mme .KERBOUA université Saab Dahleb Blida Examinateur

Mr .DERBAL ISMAIL université Saab Dahleb Blida Promoteur

ANNEE UNIVERSITAIRE: 2024-2025

Out d'abord, je tiens à remercier mon encadrant monsieur **Derbal Ismail** pour son encadrement, ses conseils avisés et sa patience tout au long de ce travail. Ses précieuses suggestions et son soutien constant ont été essentiels à la bonne conduite de ce projet.

Je remercie également l'ensemble des enseignants et des membres du corps professoral du département génie civil pour leur enseignement de qualité et leur disponibilité. Leurs connaissances et leur dévouement ont largement enrichi mon parcours académique

Avant tout, je tiens à exprimer ma profonde gratitude envers toutes les personnes qui m'ont soutenue tout au long de ce parcours académique et personnel.

Mes remerciements les plus sincères vont à mes parents, pour leur amour inconditionnel, leurs sacrifices et leur foi en moi depuis toujours. Leur soutien moral, affectif et parfois même matériel a été essentiel dans l'accomplissement de ce travail.

Je remercie également toute ma famille, pour leur présence bienveillante et leurs encouragements constants.

À mes amies, merci pour les moments de partage, de rire, d'écoute et de motivation. Vous avez su rendre cette aventure plus douce et plus riche.

Je n'oublie pas mon mari, qui m'a accompagnée avec patience, compréhension et soutien dans les moments de doute comme dans les moments de réussite.

Enfin, une pensée tendre et pleine d'émotion à mes deux petits anges, Iyad et Inès. Votre simple sourire est une source infinie d'inspiration et de force.

Je dédie ce mémoire à :

Mes chers parents, pour tout ce que vous êtes et tout ce que vous m'avez transmis.

Ma famille, pour leur amour et leur présence rassurante.

Mes amies fidèles, pour leur soutien constant.

Mon mari, pour sa patience, son amour et son appui indéfectible.

Et tout particulièrement à Iyad et Inès, mes précieux trésors, qui donnent un sens encore plus profond à mes efforts et à mes rêves.

ملخص

يهدف هذا المشروع إلى دراسة بناية متعددة الخدمات تتألف من طابق ارضي+ 8طوابق+طابق تحت ارضي، تم انجازها بولاية البليدة المصنفة ضمن المنطقة الزلزالية رقم VI حسب القواعد الجزائرية المضادة للزلازل (RPA2024).

Résumé

Ce projet vise à étudier un bâtiment multiservice composé d'un rez-de-chaussée + 8 étages+Sou-sol, qui a été achevé dans l'état de Blida, classé en zone sismique n°VI selon les règles antisismiques algériennes (RPA2024).

.

Abstract

This project aims to study a multi-service building consisting of a ground floor + 8 floors+ Basement, which was completed in the state of Blida, which is classified within seismic zone N. VI according to the Algerian anti-seismic rules (2024).

SOMMAIRE

CHAPITRE I : PRESENTATION DE L'OUVRAGE

I.1.INTRODUCTION:	1
I.2.PRESENTATION DE L'OUVRAGE :	1
I.3.CARACTERISTIQUES MECANIQUES DES MATERIAUX :	2
I.4.HYPOTHESES DE CALCUL :	7
CHAPITRE II : PRE DIMENSIONNEMENT DES ELEMENTS RISE	CTENS
II.1.INTRODUCTION :	8
II.2.PRE DIMENSIONNEMENT DES ELEMENTS RESISTANTS :	8
II.4.PRE-DIMENSIONNEMENT DES POUTRES :	11
II.5.PRE-DIMENSIONNEMENT DES POTEAUX :	13
II.6.PRE DIMENSIONNEMENT DES VOILES :	19
CHAPITRE III : FERRAILLAGE DES ELEMENTS SECONDAII	RES
III.1.INTRODUCTION:	20
III.2.L'ACROTERE:	20
III.3.L'ESCALIER:	22
III.4 DALLE PLEINE :	26
III.5 PLANCHER A CORPS CREUX :	30
CHAPITRE IV: ETUDE DYNAMIQUE EN ZONE SISMIQUE	Ξ
IV.1.INTRODUCTION:	44
IV.2.ETUDE DYNAMIQUE EN ZONE SISMIQUE :	44
IV.3.MODELISATION DE LA STRUCTURE :	46
IV.4.ETUDE SISMIQUE :	47
IV.5.RESULTATS DE L'ANALYSE SISMIQUE :	53

SOMMAIRE

CHAPITRE V: FERRAILLAGES DES ELEMENTS RESISTANTS

V.1.INTRODUCTION:	64
V.2.FERRAILLAGE DES POTEAUX :	64
V.3. FERRAILLAGE DES POUTRES :	72
V.4. FERRAILLAGE DES VOILES :	80
CHAPITRE IV: ETUDE DE L'INFRASTRUCTURE	
VI.1. INTRODUCTION :	90
VI.2.FONCTIONS ASSURÉES PAR LES FONDATIONS :	90
VI.3. CHOIX DU TYPE DE FONDATION :	90
VI.4.CLASSIFICATION DES FONDATIONS :	91
VI.5.CALCUL DES FONDATIONS :	91
VI.6. CHOIX DE TYPE DE SEMELLE:	91

LISTE DE TABLEAU

CHAPITRE I: PRESENTATION DE L'OUVRAGE

CHAPITRE II : PRE DIMENSIONNEMENT DES ELEMENTS RISECTENS Tableau II.1 : Composition de la terrasse (inaccessible) Tableau II.2 : Composition du plancher courant Tableau II.3 : Composition de la dalle pleine Tableau II.4 : Composition de la dalle pleine (terrasse) Tableau II.5 : Composition de mur extérieur Tableau II.6 : Composition de balcons Tableau II.7 : Charges d'exploitations Tableau II.8 : Pré-dimensionnement des poutres Tableau II.9 : Dégression des surcharges Tableau II.10 : La descente des charges permanentes (Poteau central) Tableau II.11 : La descente des charges verticales d'exploitation (Poteau central) Tableau II.13 : Choix final des poteaux centraux CHAPITRE III : FERRAILLAGE DES ELEMENTS SECONDAIRES Tableau III.1 : Les vérifications de l'ELS Tableau III.2 : Résultats d'évaluation des charges d'escalier Tableau III.5 : Vérification de compression du béton Tableau III.5 : Vérification de la fleche de l'escalier Tableau III.6 : Calcul des sollicitations de dalle pleine 2 Tableau III.7 : Ferraillage de la dalle pleine 2 Tableau III.8 : vérification des espacements 2 Tableau III.8 : vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS 2 Tableau III.9 : Vérification des contraintes à l'ELS	Tableau I.1 : Caractéristiques des Aciers	5
Tableau II.2 : Composition du plancher courant Tableau II.3: Composition de la dalle pleine Tableau II.4 : Composition de la dalle pleine (terrasse) Tableau II.5: Composition de mur extérieur Tableau II.6: Composition de balcons Tableau II.7: Charges d'exploitations Tableau II.8: Pré-dimensionnement des poutres Tableau II.9 : Dégression des surcharges Tableau II.10 : La descente des charges permanentes (Poteau central) Tableau II.11 : La descente des charges verticales d'exploitation (Poteau central) Tableau II.12 : choix final des poteaux centraux Tableau II.13 : Choix final de section de poteaux CHAPITRE III : FERRAILLAGE DES ELEMENTS SECONDAIRES Tableau III.2 : Résultats d'évaluation des charges d'escalier Tableau III.3 : Calcul des armatures Tableau III.4 : Vérification de compression du béton 2 Tableau III.5 : Vérification de la fleche de l'escalier Tableau III.6 : Calcul des sollicitations de dalle pleine. 2 Tableau III.7 : Ferraillage de la dalle pleine. 2 Tableau III.8 : vérification des espacements.	CHAPITRE II : PRE DIMENSIONNEMENT DES ELEMENTS RISECTENS	
Tableau II.4: Composition de la dalle pleine	Tableau II.1 : Composition de la terrasse (inaccessible)	9
Tableau II.4: Composition de la dalle pleine (terrasse)	Tableau II.2 : Composition du plancher courant	9
Tableau II.5: Composition de mur extérieur Tableau II.6: Composition de balcons Tableau II.7: Charges d'exploitations Tableau II.9: Dégression des surcharges Tableau II.10: La descente des charges permanentes (Poteau central). Tableau II.11: La descente des charges verticales d'exploitation (Poteau central). Tableau II.12: choix final des poteaux centraux. Tableau II.13: Choix final de section de poteaux CHAPITRE III: FERRAILLAGE DES ELEMENTS SECONDAIRES Tableau III.1: Les vérifications de l'ELS Tableau III.2: Résultats d'évaluation des charges d'escalier Tableau III.3: Calcul des armatures Tableau III.4: Vérification de compression du béton. 2 Tableau III.5: Vérification de la fleche de l'escalier Tableau III.6: Calcul des sollicitations de dalle pleine. 2 Tableau III.7: Ferraillage de la dalle pleine. 2 Tableau III.8: vérification des espacements.	Tableau II.3: Composition de la dalle pleine	9
Tableau II.6: Composition de balcons	Tableau II.4 : Composition de la dalle pleine (terrasse)	10
Tableau II.7: Charges d'exploitations	Tableau II.5: Composition de mur extérieur	10
Tableau II.8: Pré-dimensionnement des poutres	Tableau II.6: Composition de balcons	10
Tableau II.9: Dégression des surcharges	Tableau II.7: Charges d'exploitations.	11
Tableau II.10: La descente des charges permanentes (Poteau central)	Tableau II.8: Pré-dimensionnement des poutres	12
Tableau II.11: La descente des charges verticales d'exploitation (Poteau central)	Tableau II.9 : Dégression des surcharges.	16
Tableau II.12 : choix final des poteaux centraux	Tableau II.10 : La descente des charges permanentes (Poteau central).	17
Tableau II.13 : Choix final de section de poteaux	Tableau II.11: La descente des charges verticales d'exploitation (Poteau central)	18
CHAPITRE III : FERRAILLAGE DES ELEMENTS SECONDAIRES Tableau III.1 : Les vérifications de l'ELS	Tableau II.12 : choix final des poteaux centraux.	18
Tableau III.1 : Les vérifications de l'ELS	Tableau II.13 : Choix final de section de poteaux	19
Tableau III.2 : Résultats d'évaluation des charges d'escalier2Tableau III.3 : Calcul des armatures2Tableau III.4 : Vérification de compression du béton2Tableau III.5 : Vérification de la fleche de l'escalier2Tableau III.6 : Calcul des sollicitations de dalle pleine2Tableau III.7 : Ferraillage de la dalle pleine2Tableau III.8 : vérification des espacements2	CHAPITRE III : FERRAILLAGE DES ELEMENTS SECONDAIRES	
Tableau III.3 : Calcul des armatures	Tableau III.1 : Les vérifications de l'ELS	21
Tableau III.4 : Vérification de compression du béton.2Tableau III.5 : Vérification de la fleche de l'escalier2Tableau III.6 : Calcul des sollicitations de dalle pleine.2Tableau III.7 : Ferraillage de la dalle pleine.2Tableau III.8 : vérification des espacements.2	Tableau III.2 : Résultats d'évaluation des charges d'escalier	24
Tableau III.5 : Vérification de la fleche de l'escalier	Tableau III.3 : Calcul des armatures	24
Tableau III.6 : Calcul des sollicitations de dalle pleine. 2 Tableau III.7 : Ferraillage de la dalle pleine. 2 Tableau III.8 : vérification des espacements. 2	Tableau III.4 : Vérification de compression du béton.	25
Tableau III.7 : Ferraillage de la dalle pleine. 2 Tableau III.8 : vérification des espacements. 2	Tableau III.5 : Vérification de la fleche de l'escalier	25
Tableau III.8 : vérification des espacements.	Tableau III.6 : Calcul des sollicitations de dalle pleine.	26
	Tableau III.7 : Ferraillage de la dalle pleine.	27
Tableau III.9: Vérification des contraintes à l'ELS.	Tableau III.8 : vérification des espacements.	27
	Tableau III.9: Vérification des contraintes à l'ELS.	28

LISTE DE TABLEAU

Tableau.III.12 : Récapitulation du calcul des sections d'armatures en travée	
Tableau.III.13: Récapitulation du calcul des sections d'armatures sur appuis	38
<u>.</u>	38
Tableau III.14: Vérification de la contrainte de béton	40
Tableau III.15 : Calcul de la flèche.	41
CHAPITRE IV: ETUDE DYNAMIQUE EN ZONE SISMIQUE	
Tableau IV.1: Facteur de qualité	51
Tableau IV.2 : Participation massique du modèle initial	54
Tableau IV.3 : Participation massique du modèle 1.	56
Tableau IV.4 : Vérification de l'effort normal pour les poteaux	57
Tableau IV.5 : nouveau section des poteaux	57
Tableau IV.6 : Participation massique du modèle final.	59
Tableau IV.7 : Vérification de l'effort normal pour les poteaux	60
Tableau IV.8 : Vérification des déplacements inter-étage du modèle final	61
Tableau IV.9 : Vérification de l'effort normal pour les Voiles.	61
Tableau IV.10 : Vérification l'effet P- Δ inter étages du modèle final	62
CHAPITRE V: FERRAILLAGES DES ELEMENTS RESISTANTS	
Tableau V.1: Ferraillages des poteaux situation accidentelle (N ^{max} ,M ^{corr})	65
The Archive the Ar	
Tableau V.2: Ferraillages des poteaux situation accidentelle (N ^{min} ,M ^{corr})	65
Tableau V.2: Ferraillages des poteaux situation accidentelle (N ^{max} , M ^{corr})	
	65
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	65
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	65 66
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	65 66 66
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	656666
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	65 66 66 66
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	6566666666
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	656666666767
Tableau V.3: Ferraillages des poteaux situation accidentelle (M ^{max} ,N ^{corr})	656666666767

LISTE DE TABLEAU

Tableau V. 9: Ferraillage des poutres porteuses (Situation Durable)73
Tableau V. 10: Ferraillage des poutres porteuses (Situation Accidentelle)73
Tableau V.16: Ferraillage des poutres non porteuses (Situation Durable)74
Tableau V.17: Ferraillage des poutres non porteuses (Situation Accidentelle)74
Tableau V.18 : Choix des armatures pour les poutres porteuses74
Tableau V.19: Choix des armatures pour les poutres non porteuses74
Tableau V. 20: Vérification de la condition de non fragilité
Tableau V.21: Vérification des poutres porteuse à l'ELS
Tableau V.22: Vérification des poutres non porteuses à l'ELS
Tableau V. 23: Vérification de la contrainte de cisaillement
Tableau V. 24: Calcul des armatures transversales
Tableau V.25: Tableau récapitulatif du calcul de la flèche
Tableau V.26: les moments max du voile
Tableau V.27: les moments max devl du voile
CHAPITRE IV: ETUDE DE L'INFRASTRUCTURE
Tableau VI.1 : Sections des semelles filantes
Tableau VI.2 : Les dimensions de la dalle des semelles filantes94
Tableau VI.3 : Les dimensions de la dalle des semelles filantes
Tableau VI.4 : Les dimensions de la dalle des semelles filantes
Tableau VI.5: Ferraillage des nervures.
Tableau VI.6: Vérification des contraintes à L'E.L.S.
Tableau VI.7: Ferraillage voile périphérique du
Tableau V I.8 : Vérification des Contraintes à l'ELS

LISTE DE FIGURE

CHAPITRE I : PRESENTATION DE L'OUVRAGE
Figure I.1: Diagramme contraintes-déformations à l'ELU4
Figure I.2: Diagramme contraintes-déformations à l'ELS
Figure I.3: Diagramme contraintes-déformations de l'acier à l'ELU6
CHAPITRE II : PRE DIMENSIONNEMENT DES ELEMENTS RISECTENS
Figure II.1 : schéma de l'acrotère.
Figure II.2 : schéma de Poteaux central.
CHAPITRE III : FERRAILLAGE DES ELEMENTS SECONDAIRES
Figure III.1 : Ferraillage de l'acrotère22
Figure III.2: Schéma statique de volée
Figure III.4 : Dimensions d'une dalle
Figure III.5 : Ferraillage de la dalle pleine.
Figure III.6: Corps Creux
Figure III.7: Schéma de poutrelle
Figure III.8 : Moment fléchissant, Effort tranchant de la poutrelle à 03 travées37
Figure. III.9: Ferraillage des poutrelles en Travée et en Appuis43
CHAPITRE IV: ETUDE DYNAMIQUE EN ZONE SISMIQUE
Figure IV.1 : Spectre de réponse
Figure IV.2 : Vue en 3D du modèle initial
Figure IV.3 : Vue en 2D du modèle initial
Figure IV.4 : Vue en 3D du modèle 1
Figure IV.5 : Vue en 2D du modèle 1
Figure IV.6 : Vue en 3D du modèle final
Figure IV.7 : Vue en 2D du modèle final

LISTE DE FIGURE

CHAPITRE V: FERRAILLAGES DES ELEMENTS RESISTANTS

Figure V.1: Schéma de ferraillages des poteaux71
Figure V.2: arrêts des barres
Figure V.3: Schéma de ferraillages des Poutres 30x5579
Figure V.4: Schéma de ferraillages des Poutres 30x50
Figure V.6: Eléments de rive pour les voiles
Figure V.7:Digramme de moment fléchissant
Figure V.8:Digramme de moment fléchissant de l'analyse
Figure V.9:Digramme de moment fléchissant Linaire :
Figure V.10: Schéma de ferraillages VOILES VY1
CHAPITRE IV: ETUDE DE L'INFRASTRUCTURE
Figure VI.1 : l'effet de cisaillement du sol
Figure VI.2: Schéma statique du bâtiment
Figure VI.3: Schéma de ferraillage des nervures
Figure VI.4: Evaluation des charges
Figure VI.5 : ferraillage du Voile Périphérique

LISTE DES SYMBOLES

- A : Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement.
- A_s : Aire d'une section d'acier.
- A_t : Section d'armatures transversales.
- *B* : Aire d'une section de béton.
- ϕ : Diamètre des armatures, mode propre.
- φ : Angle de frottement.
- *C* : Cohésion.
- \overline{q} : Capacité portante admissible.
- Q: Charge d'exploitation.
- σ_c : Contrainte de consolidation.
- C_c : Coefficient de compression.
- C_s : Coefficient de sur consolidation.
- K_t : Facteur de terrain.
- Z_0 : Paramètre de rugosité.
- Z_{min} : Hauteur minimale.
- C_r : Coefficient de rugosité.
- C_t : Coefficient de topographie.
- C_d : Coefficient dynamique.
- C_e : Coefficient d'exposition.
- C_{pe} : Coefficient de pression extérieure.
- C_{pi} : Coefficient de pression intérieure.
- C_p : Coefficient de pression nette.
- q_{dyn} : Pression dynamique.
- $q_{réf}$: Pression dynamique de référence.
- q_j : Pression dû au vent.
- F_{fr} : Force de frottement.
- \blacksquare *R* : Force résultante.
- γ_s : Coefficient de sécurité dans l'acier.

- γ_b : Coefficient de sécurité dans le béton.
- σ_s : Contrainte de traction de l'acier.
- σ_{bc} : Contrainte de compression du béton.
- $\overline{\sigma}_s$: Contrainte de traction admissible de l'acier.
- $\overline{\sigma}_{bc}$: Contrainte de compression admissible du béton.
- τ_u : Contrainte ultime de cisaillement.
- τ : Contrainte tangentielle.
- β : Coefficient de pondération.
- σ_{sol} : Contrainte du sol.
- σ_m : Contrainte moyenne.
- G: Charge permanente.
- ξ : Déformation relative.
- V_0 : Effort tranchant a la base.
- E.L.U: Etat limite ultime.
- *E.L.S* : Etat limite service.
- N_{ser} : Effort normal pondéré aux états limites de service.
- N_u : Effort normal pondéré aux états limites ultime.
- T_u : Effort tranchant ultime.
- T: Effort tranchant, Période.
- S_t : Espacement.
- λ : Elancement.
- *e* : Epaisseur, Indice des vides.
- N_a, N_{γ}, N_c : Facteurs de portance.
- F: Force concentrée.
- *f* : Flèche.
- \bar{f} : Flèche admissible.
- *D* : Fiche d'ancrage.
- L : Longueur ou portée.
- L_f : Longueur de flambement.
- I_p : Indice de plasticité.
- I_c : Indice de consistance.

- W: Teneur en eau, Poids total de la structure.
- S_r : Degré de saturation.
- γ_d : Poids volumique sèche.
- γ_h : Poids volumique humide.
- γ_{sat} : Poids volumique saturé.
- W_{sat} : Teneur en eau saturé.
- W_L : Limite de liquidité.
- W_p : Limite de plasticité.
- *d* : Hauteur utile.
- F_e : Limite d'élasticité de l'acier.
- M_u : Moment à l'état limite ultime.
- M_{ser} : Moment à l'état limite de service.
- M_t : Moment en travée.
- M_a : Moment sur appuis.
- M_0 : Moment en travée d'une poutre reposant sur deux appuis libres, Moment a la base.
- *I* : Moment d'inertie.
- f_i : Flèche due aux charges instantanées.
- f_v : Flèche due aux charges de longue durée.
- *I_{fi}*: Moment d'inertie fictif pour les déformations instantanées.
- I_{fv} : Moment d'inertie fictif pour les déformations différées.
- *M* : Moment, Masse.
- E_{ij} : Module d'élasticité instantané.
- E_{vi} : Module d'élasticité différé.
- E_s : Module d'élasticité de l'acier.
- \blacksquare P: Rayon moyen.
- f_{c28} : Résistance caractéristique à la compression du béton à 28 jours d'age.
- f_{t28} : Résistance caractéristique à la traction du béton à 28 jours d'age.
- F_{cj} : Résistance caractéristique à la compression du béton à j jours d'age.
- *K* : Coefficient de raideur de sol.
- S_c : Tassement oedométrique.
- S_c^T : Tassement total.
- S_c^{adm} : Tassement admissible.
- δ : Rapport de l'aire d'acier à l'aire de béton.

- *Y* : Position de l'axe neutre.
- I_0 : Moment d'inertie de la section totale homogène

INTRODUCTION GENERALE

L'Algérie est parmi les pays qui sont soumis a une grande activité et risque sismique.

La conception d'une structure doit être fondée sur des exigences esthétiques et sécuritaires imposées par les règlements selon l'importance du projet, sans oublier l'aspect économique lié aux coûts des matériaux de construction, qui ont tendance à augmenter.

De ce fait, pour bien faire l'étude d'une structure, l'objectif principal pour un ingénieur n'est pas simplement d'appliquer les règlements mais de comprendre le comportement de la structure vis-à-vis des phénomènes accidentels afin de la stabilisé, et de protéger les personnes et de leur bien.

Dans le cadre de ce présent projet de fin d'étude, nous proposons de faire une étude complète pour un bâtiment multifonctionnel à 8 étages, basée sur les règles et les méthodes des règlements suivants : **BAEL91 modifié 99, RPA 2024, CBA99** ce travail sera mené selon les étapes suivantes :

Le contenu de notre mémoire consiste, en premier lieu, à exposer la description générale de l'ouvrage et les caractéristiques des matériaux utilisés.

Nous avons consacré le 2^{eme} chapitre au pré dimensionnement des éléments résistants (poteaux, poutres, voiles).

Dans le 3^{eme} chapitre nous nous intéressons à l'étude des éléments secondaires qui comporte notre bâtiment. Nous citons (l'acrotère, les escaliers, les planchers).

Le 4^{eme} chapitre consiste à modéliser la structure et déterminer les modes de vibration ainsi que le comportement de la structure jusqu'à la vérification des justifications imposées par les règles parasismiques.

L'étude dynamique du bâtiment sera faite par l'analyse d'éléments finis de la structure en trois dimensions (3D) à l'aide du logiciel de calcul **ETABS V16**.

Le ferraillage des poteaux, poutres et des voiles se fera avec les résultats finaux de l'étude dynamique tout en vérifiant les critères imposés par le **RPA2024** et le **BAEL91 modifié 99**, est présenté dans le 5^{eme} chapitre.

Enfin, nous avons effectué une étude de fondation suivie d'une conclusion générale.

CHAPITRE I
PRESONTAION DE L'OUVRAGE

I.1.Introduction:

L'objectif de ce chapitre est de présenter la liste des données du bâtiment analysé, concernant le type de structure, les éléments, la géométrie et les propriétés des matériaux.

I.2. Présentation De L'ouvrage :

L'ouvrage faisant l'objet de cette présente étude est un bâtiment à usage multiple,

Il est implanté dans la wilaya de **BLIDA**, selon le règlement parasismique algérien (**RPA 2024**) il est classé comme étant une zone de forte sismicité (**zone VI**).

Notre étude sera conforme aux exigences des règles de conception et de calcul des ouvrages en béton armé CBA93, BAEL91, et aux règles parasismiques RPA 2024.

I.2.1. Caractéristiques de l'ouvrage :

L'ouvrage en question à une forme irrégulière, il se compose de RDC+8 étages+ sous sol. L'objet de notre projet est l'étude des éléments résistants d'un bâtiment constitué d'un seul bloc. Cette structure se compose de :

- 1 sous sol à usage de parking
- Réez de chaussée à usage de commerce.
- 1^{er} étage à usage de service.
- 2^{eme} a 8^{eme} étages à usage d'habitation
- Terrasse inaccessible.

I.2.2. Caractéristiques géométriques :

a) Dimensions en élévation :

- ➤ Hauteur du Sous sol 3,06m.
- ➤ Hauteur du RDC 3.42 m.
- ➤ Hauteur des étages 1 ers à 8 ème 3.24 m.
- Hauteur totale du bâtiment 29.34 m.

b) Dimensions en plan:

➤ Longueur : 42,31m.

➤ Largeur : 21,33 m.

I.2.3.Ossature:

Le bâtiment est constitué par des portiques auto stables en béton armé et des voiles suivant les deux sens. Le système de contreventement du bâtiment est donc un système de contreventement mixte équivalent a voiles ».

I.2.4.Les Planchers:

Les planchers sont des aires planes horizontales séparant deux niveaux d'une construction, les planchers dans notre cas sont mixtes (des dalles pleines et des dalles a corps creux).

I.2.5. Escaliers:

Servent à relier les niveaux successifs et à faciliter les déplacements inter étages, réalisés en béton armé coulés sur place. Notre structure comporte un seul type d'escalier :

Escalier à trois volées et deux paliers intermédiaires.

I.2.6.Terrasse:

Il existe un seul type de terrasse :

> Terrasse inaccessible.

I.2.7.Acrotère:

On appel mur acrotère, un muret situé en bordure de toitures terrasse pour permettre le relevé d'étanchéité, la hauteur de l'acrotère est de 60cm.

I.2.8.Murs extérieurs :

Ils seront constitués d'une double cloison de 30 cm d'épaisseur.

I.2.9.Murs intérieurs :

Ils seront constitués d'une cloison de 10 cm d'épaisseur.

I.2.10.Ascenseurs:

La structure comporte une cage d'ascenseur du RDC jusqu'au 8ème étage.

I.2.11.Infrastructure:

- Réalisée en béton armé.
- La contrainte admissible du sol est de **2,5 bars**.
- La catégorie de site **S3**.

I.3. Caractéristiques Mécaniques Des Matériaux :

L'objectif de cette partie est de présenter les caractéristiques principales des matériaux utilisés en Béton Armé.

Les caractéristiques mécaniques des matériaux utilisés dans le calcul du bâtiment doivent être conformes aux règles techniques de construction et de calcul des ouvrages en béton armé (BAEL91) et à la réglementation en vigueur en Algérie (RPA2024, CBA93).

I.3.1.BETON:

Le béton est un matériau composé de granulat (sable + gravier), (Ciment) et d'eau, selon des proportions bien déterminées. Le béton résiste bien à la compression, tandis que sa résistance à la traction est faible.

a) Résistance à la compression :

Le béton est défini par la valeur de sa résistance à la compression à l'âge de 28 jours, dite valeur caractéristiques requise (spécifiée) notée f_{C28} elle est mesurée par compression axiale de cylindres droits de révolution de diamètre 16 cm (section 200 cm²) et de hauteur 32cm.

Pour: $j < 28 \text{ jours}: f_{cj} = 0.658 \times f_{C28} \times \text{Log}_{10} (j + 1)$ $j > 28 \text{ jours}: f_{cj} = f_{C28}$ $j >> 28 \text{ jours}: f_{cj} = 1.1 \times f_{C28}$

Pour le cas de notre structure f_{C28} est prise égale à : 30MPa.

b) Résistance à la traction :

La résistance caractéristique à la traction du béton à j jours notée par f_{ij} est conventionnellement définie par la relation suivante :

$$f_{tj} = 0.6 + 0.06.f_{cj}$$
 (MPa)

Pour le cas de notre structure f_{ti} est prise égale à : 2,4 MPa.

c) Déformation longitudinale du béton :

Ce module est défini selon l'action des contraintes normales d'une longue durée ou courte durée.

c-1) Déformation instantanée « E_{ij} »: Sous des contraintes normales d'une durée d'application inférieure à 24 heures, on admet, à défaut de mesures qu'à l'âge de i jours, le module de déformation longitudinale instantanée de béton :

$$E_{ij} = 11000 \times \sqrt[3]{f_{ci}}$$
 (Mpa)
D'ou : $E_{i28} = 34179.56$ MPa.

c-2) Déformation différée « E_{vj} » : les déformations différées comprennent le retrait et le fluage, à défaut de mesures, on admet que sur contraintes de longue durée d'application le module de déformation différée du béton est :

$$E_{vj} = \frac{E_{ij}}{3}$$
 (Mpa)

 $D'ou : E_{v28} = 11393.19 \text{ MPa}$

d) Coefficient de Poisson:

Le coefficient de Poisson exprime le rapport entre la déformation transversale et la déformation longitudinale.

Dans les calculs, le coefficient de poisson est pris égale à :

e) Poids volumique :

On adopte la valeur ρ =25 kN/m³.

f) Les contraintes limites de calcul:

1) États Limites Ultime (ELU) :

L'état limite ultime est défini généralement par la limite de résistance mécanique au-delà de laquelle il y a ruine de l'ouvrage.

La contrainte ultime de béton en compression σ_{bc} est donnée par la relation suivante :

$$\sigma bc = \frac{0.85 fc28}{\theta \gamma b}$$

Avec:

- γ_b: Coefficient de sécurité pour le Béton, il est pris égal à :

$$\gamma_b = \left\{ \begin{array}{c} 1,5 \ \\ \\ 1,15 \ \\ \end{array} \right. \ Situation \ durable.$$
 Situation accidentelle.

- f_{c28} : Résistance caractéristique du béton à la compression à 28 jours.
- 0,85 : Coefficient de minoration qui à pour objet de couvrir l'erreur faite en négligeant le fluage du béton.

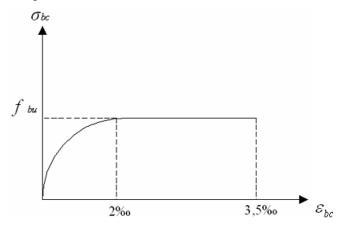


Figure I.1: Diagramme contraintes-déformations à l'ELU.

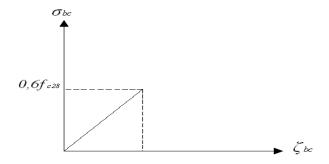


Figure I.2: Diagramme contraintes-déformations à l'ELS.

2) États Limites de Service (ELS) :

L'état limite de service est un état de chargement au-delà du quel la construction ne peut plus assurer le confort et la durabilité pour lesquels elle a été conçue ; on distingue :

- → L'état limite de service vis-à-vis de la compression de béton
- → L'état limite de service d'ouverture des fissures.
- → L'état limite de service de déformation.

La contrainte limite du

Béton à l'état limite de service est :

$$\sigma_{bc} = 0.6 \times f_{c28}$$

I.3.2.L'ACIER:

Afin de remédier au problème de faible résistance du béton à la traction on intègre dans les pièces du béton des armatures pour reprendre ces efforts de traction.

Les armatures pour le béton armé sont constituées d'aciers qui se distinguent par leur nuance et leurs états de surface (barres lisses à haute adhérence).

a) Limite d'élasticité:

La caractéristique la plus importante des aciers est la limite d'élasticité (f_e) , cette valeur est donnée selon le **BAEL91** dans le tableau suivant :

Tableau I.1 : Caractéristiques des Aciers

Туре	Désignation	Limite élastique (Mpa)
Rond Lisse	FeE22	215
Rollu Lisse	FeE24	235
Barre à haute adhérence	FeE500	500
Fils très filés lisse	Ø>6mm	500

b) Module d'élasticité

c) longitudinale:

La valeur du module d'élasticité longitudinal de l'acier est prise égale à :

$$Es = 2,1.10^5 MPa.$$

d) État Limite Ultime (ELU) :

Le diagramme (Contrainte – Déformation) est conventionnellement défini ci après :



Figure I.3: Diagramme contraintes-déformations de l'acier à l'ELU.

Avec:

- σ_S : Contrainte de l'Acier.

La contrainte limite de l'acier adopté est la suivante : $\sigma_s = \frac{f_e}{\gamma_s}$

- γ_S : Coefficient de sécurité de l'acier, il a pour valeur :

$$\gamma_s = \begin{cases} 1,15..... & \text{Situation durable.} \\ 1,00.... & \text{Situation accidentelle.} \end{cases}$$

- E_S: Module d'élasticité longitudinal de l'acier, il est pris égal à :

$$\left\{ \text{ Es=2.10}^{5}\,\mathbf{MPa} \right\}$$

- ε_S : Allongement relatif de l'acier :

$$\epsilon_{\rm s} = \frac{\Delta L}{L}$$

e) État Limite de Service (ELS) :

C'est l'état ou on fait des vérifications des contraintes par rapport aux cas appropriées :

Fissuration peu nuisible : pas de vérification.

Fissuration préjudiciable : σ_{st} =Min(2/3. f_e ;max(0,5 f_e ,110 $\sqrt{\eta$. f_{tj}))

Fissuration très préjudiciable : σ_{st} =0,8Min(2/3. f_e ;max(0,5 f_e 110 $\sqrt{\eta$. f_{tj})).

Avec:

η: Coefficient de fissuration, il a pour valeur

$$\begin{cases} \eta = 1,0.....$$
 Acier rond lisse.
$$\eta = 1,6....$$
 Acier à haute adhérence.

I.4. Hypothèses De Calcul:

Le calcul en béton armé est basé sur les hypothèses suivantes :

I.4.1 État limite ultime (ELU) :

- Les sections planes restent planes après déformation (Hypothèse de BERNOUILLI).
- Il n'y a pas de glissement entre le béton et les armatures.
- Le béton tendu est négligé dans le calcul de la résistance, à cause de sa faible résistance en traction.
- Le raccourcissement unitaire du béton est limité à 3,5 ‰ en flexion simple ou composée et à 2 ‰ dans le cas de compression simple.
- L'allongement unitaire dans les aciers est limité à 10 ‰.

I.4.2.État limite de service (ELS):

A l'état limite de service, les calculs sont faits en cas de fissuration préjudiciable ou très préjudiciable, les hypothèses sont les suivantes :

- Conservation des sections planes.
- Par convention, le coefficient d'équivalence est :

$$n = \frac{Es}{Eb} = 15$$

- La résistance du béton à la traction est négligeable.
- pas de glissement relatif entre les armatures et le béton.

CHAPITRE II
PREDIMENSIONNEMENT

II.1.Introduction:

Le but du pré dimensionnement est de définir les dimensions des éléments résistants de la structure et de déterminer les différentes charges et surcharges agissant sur la stabilité et la résistance de l'ouvrage. Ces dimensions sont choisies selon les formules du [BAEL, 91] [DTR CBA.93 C 2-41] [RPA2024].

Les résultats obtenus peuvent être modifiés après les vérifications dans la phase du dimensionnement.

II.2. Pré dimensionnement des éléments résistants :

II.2.1.Pré dimensionnement des planchers :

Dans notre structure, on utilise deux types de planchers :

a) Plancher à corps creux :

Selon le BAEL 91, on doit dimensionner le plancher suivant la condition suivante :

$$\frac{L}{25} \le h_t \le \frac{L}{20}$$

ht: L'épaisseur totale du plancher.

L : la portée de la poutrelle mesurée entre nus des appuis.

$$L = 6.40 - 0.30 = 6.10 \text{ m}$$
 $24.4 \le ht \le 30.5$

Donc on adoptera des planchers à corps creux avec une hauteur de (20+5)=25cm.

Avec: 20 cm: hauteur du corps creux.

5 cm: hauteur de la dalle de compression.

b) Dalle pleine:

• Résistance à la flexion

Les conditions qui doivent être vérifiées selon le nombre des appuis sont les suivantes :

Dalle reposant sur trois ou quatre appuis $\frac{Lx}{50} \le e \le \frac{Lx}{40}$

$$6.10/50 \le e \le 6.10/40$$

12.2 cm
$$\leq$$
 e \leq 15.25 cm alors **e= 15 cm**

• Résistance au feu

e= 7 cm pour une heure de coupe-feu.

• Isolation phonique

Selon le règlement algérien CBA 93 e >13cm pour avoir une bonne isolation phonique.

On optera pour une dalle d'épaisseur : e = 20 cm

• Conclusion :

Pour le pré dimensionnement des planchers, nous adopterons :

Pour les planchers à corps creux e = (20+5) cm. Ce qui nous donne un plancher constitue de corps creux de 20 cm et une dalle de compression de 5 cm (20+5)

Pour les dalles pleines et balcons nous adopterons une épaisseur de 20 cm

II.3. Evaluation des charges permanentes et surcharges d'exploitation :

Cette étape consiste à déterminer les charges et les surcharges qui influent sur la résistance et la stabilité de l'ouvrage, selon le DTR B.C.2.2.

• Terrasse inaccessible :

Tableau II.1 : Composition de la terrasse (inaccessible)

Désignations	$\rho (kN/m^3)$	eps (m)	$G(kN/m^2)$
Protection en gravillons	18	0.05	0.9
Étanchéité multicouche	-	-	0.12
Forme de pente (emoy =25cm)	22	0.125	2.75
Isolation thermique (liège)	4	0.04	0.16
Dalle à corps creux (20+5)	-	-	2.95
Enduit au plâtre	10	0.02	0.2
\sum	/	/	7.08

• Etage courant:

Tableau II.2: Composition du plancher courant

Désignations	$\rho (kN/m^3)$	eps (m)	$G(kN/m^2)$
Revêtement en carrelage	20	0.02	0.4
Mortier de pose	20	0.02	0.4
Lit de sable	18	0.03	0.54
Dalle à corps creux (20+5)	-	-	2.95
Enduit en plâtre	10	0.02	0.2
Cloisons de repartition	-	-	1
\sum	/	/	5.49

• Dalle pleine :

Tableau II.3: Composition de la dalle pleine

Désignations	ρ (kN/m ³)	eps (m)	G (kN/m ²)
Revêtement en carrelage	20	0.02	0.4
Mortier de pose	20	0.02	0.4
Lit de sable	18	0.02	0.36
Dalle en béton armé	25	0.20	5
Enduit en plâtre	12	0.02	0.24
Σ	/	/	6.40

• Dalle pleine terrasse :

Tableau II.4 : Composition de la dalle pleine (terrasse)

Désignations	$\rho (kN/m^3)$	eps (m)	$G(kN/m^2)$
Revêtement en carrelage	20	0.02	0.4
Mortier de pose	20	0.02	0.4
Lit de sable	18	0.02	0.36
Dalle en béton armé	25	0.20	5
Enduit en plâtre	12	0.02	0.24
Cloison légères	/	/	1
Σ	/	/	7.40

• Mur extérieur (double cloisons)

Tableau II.5: Composition de mur extérieur

Désignations	ρ (kN/m ³)	eps (m)	$G(kN/m^2)$
Enduit intérieur en plâtre	10	0.02	0.20
Brique creuses	9	0.10	0.90
Lame d'aire	0	0.05	0
Brique creuses	9	0.15	1.35
Enduit extérieur en ciment	18	0.02	0.36
Σ	/	/	2.81

• Balcons:

Tableau II.6: Composition de balcons

Désignations	$\rho (kN/m^3)$	eps (m)	$G(kN/m^2)$
Revêtement en carrelage	20	0.02	0.40
Mortier de pose	20	0.02	0.40
Lit de sable	18	0.02	0.36
Dalle en béton armé	25	0.20	5
Enduit en plâtre	12	0.02	0.24
Σ	/	/	7.40

• L'acrotère:

Le poids propre de l'acrotère pour 1 ml est de G1=p x S

 ρ : Le poids volumique du béton tel que $\rho = 25 \text{ kN/m3}$

S: La surface transversale totale = $0.5\times0.1+0.1\times0.1+(0.1\times0.02)$ /2+0.08x0.1= 0.07 m2

D'où le poids propre de l'acrotère :

 $G1 = 25 \times 0.07 = 1,73 \text{ KN/m}.$

Le poids des enduits au ciment (e=2cm) :

 $G2 = \rho \times e \times P = 18 \times 0.02 \times (0.6 + 0.1 + 0.5 + 0.1 + 0.1 + 0.08 + 0.08) = 0.56 \text{ KN/m}.$

Le poids total de l'acrotère : G1 + G2= 2,29 kN/m.

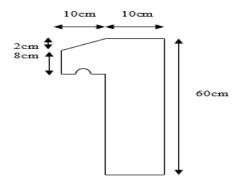


Figure II.1 : schéma de l'acrotère.

• Charges d'exploitations :

Tableau II.7: Charges d'exploitations.

N° de l'étage	Usage	Charge d'exploitation (KN)
Du 2 ^{ème} au 8 ^{ème}	Habitation	1.5
1 ^{er} étage	Service	2.5
RDC	Commerce	5
Sous sol	parking	2.5
/	Terrasse inaccessible	1
1	Balcon	3.5

II.4.Pré-dimensionnement des poutres :

Les poutres sont des éléments porteurs horizontaux en béton armé et ont pour but de transmettre aux poteaux les efforts dus aux charges transmis par les planchers.

Leur pré-dimensionnement se base sur les étapes suivantes :

- Détermination des dimensions (h, b) à partir des formules données par le BAEL91 modifié 99.
- Vérification des dimensions (h, b) par le Règlement Parasismique Algérien RPA2024
- Selon le BAEL91 modifié 99 : [1]

- La hauteur **h** de la poutre doit être : $\frac{L}{15} \le h \le \frac{L}{10}$

- La largeur **b** de la poutre doit être : $0.3h \le b \le 0.7h$

Avec:

L : Portée de la poutre de la plus grande travée considérée entre nu.

h: Hauteur de la poutre.

b : Largeur de la poutre.

• Selon le RPA2024:

- La hauteur **h** de la poutre doit être : $h \ge 30cm$
- La largeur ${\bf b}$ de la poutre doit être : $b \ge 25~cm$.
- Le rapport hauteur largeur doit être :

$$\frac{h}{b} \leq 4$$

- On 'a:

1-Poutre principale (porteuse) : L=6.70-0.3=6.40 m.

2- Poutre secondaire (non porteuse) :L = 6.40-0.3 = 6.10 m.

Tableau II.8: Pré-dimensionnement des poutres

Selon le BA	AEL91 (pré -dimensionnement)[1]			
	Poutre principale	Poutre secondaire		
	L = 6.40 m	L=6.10 m		
L/15 ≤ h≤ L/10	$42,66 \le h \le 64.0 \text{ (cm)}$	$40.66 \le h \le 61 \text{ (cm)}$		
	h=55cm	h=50cm		
0.3h ≤b≤ 0.7h	16.5≤b≤38.5 (cm)	15≤b≤35 (cm)		
0.311 202 0.711	b= 30cm	b= 30cm		
Selon	le RPA2024 (vérification)[2]			
• h≥30cm	h=55≥30 (cm)	h=50≥30 (cm)		
• b≥25cm b=30≥25 (cm)		b=30≥25 (cm)		
• h/b≥4	55/30=1.83≤4	50/30=1.67≤4		

Conclusion:

- Poutres principales, on prend : $b \times h = 30 \times 55 \text{ cm}^2$

- Poutres secondaires, on prend : $b \times h = 30 \times 50 \text{ cm}^2$

II.5. Pré-dimensionnement des poteaux :

Les poteaux sont pré-dimensionnés en compression simple en choisissant les poteaux les plus sollicités de la structure. C'est-à-dire, un poteau central, un poteau de rive et un poteau d'angle.

Chaque type de poteau est affecté de la surface de plancher chargé lui revenant et on utilisera un calcul basé sur la descente de charge, on appliquera la loi de dégression des charges d'exploitations.

II.5.1.Procédure de pré-dimensionnement :

Le Pré dimensionnement des poteaux s'effectue de la manière suivante :

- Calcul de la surface reprise par chaque poteau.
- Évaluation de l'effort normal ultime de la compression à chaque niveau.
- La section du poteau est alors calculée aux états limite ultime (ELU) vis-à-vis de la compression simple du poteau.
- La section du poteau obtenue doit vérifier les conditions minimales imposées par le « RPA2024 ».

❖ D'après l'article B.8.4.1 du BAEL91 :

La section du poteau est déterminée en supposant que les poteaux sont soumis à la compression simple par la formule suivante :

$$N_u = \alpha \left[\frac{Br.f_{c28}}{0.9\gamma_b} + \frac{A_s fe}{\gamma_s} \right]$$
 BAEL91

Avec:

 \triangleright Nu : Effort normal ultime (compression) =1,35G+1,5Q.

 $\triangleright \alpha$: Coefficient réducteur tenant compte de la stabilité $(\alpha = f(\lambda))$.

 $> \lambda$: Elancement d'EULER : $\lambda = \frac{L_f}{i}$

 $ightharpoonup L_f$: Longueur de flambement : $l_f = kl_0$

ightharpoonup i: Rayon de giration : $i = \sqrt{\frac{I}{B}}$

➤ I: Moment d'inertie de la section : $I = \frac{b \cdot a^3}{12}$

B : Surface de la section du béton : a x b

 $\triangleright \gamma_b$: Coefficient de sécurité pour le béton ($\gamma_b = 1,50$).....situation durable.

 $\triangleright \gamma_s$: Coefficient de sécurité pour l'acier ($\gamma_s = 1,15$)..... situation durable.

➤ fe : Limite élastique de l'acier (fe = 500 MPa).

 \triangleright fc₂₈: Contrainte caractéristique du béton à 28 jours (fc₂₈ = 30 MPa).

- > As': Section d'acier comprimée.
- ➤ Br : Section réduite d'un poteau, obtenue en réduisant de sa section réelle 1cm d'épaisseur sur toute sa périphérie [Br = (a-0,02) (b-0,02)] m².

$$ightharpoonup \left(a = \frac{l_f}{10}\right)$$

Selon le BAEL 91 modifié 99 : [1]

On cherche à dimensionner le poteau de telle sorte que : $\frac{A_s'}{B} = 1\%$

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \quad si \quad \lambda \ge 50$$

$$\alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 \quad si \quad 50 < \lambda < 70$$

Selon BAEL, on prend comme hypothèse $\lambda = 35 \rightarrow \alpha = 0.708$

La section réduite du poteau est donnée par l'équation suivante :

$$B_r \ge \frac{N_u}{\alpha \left[\frac{f_{c28}}{0.9 \gamma_h} + \frac{A_s}{B} \frac{f_e}{\gamma_s} \right]}$$

En faisant l'application numérique B_r sera égale à : $B_r \ge 0.0532$. N_u

Le minimum requis par le "RPA 2024" [2]

Pour une zone sismique VI, on doit avoir au minimum

Poteaux carres

$$\begin{cases} * Min(a; b) \ge 30cm \\ * Min(a; b) > \frac{l_{cl}}{20} \\ * \frac{1}{4} < \frac{a}{b} < 4 \end{cases}$$

Avec:

(a;b): Dimensions de la section.

l_{cl}: Hauteur d'étage.

On opte pour des poteaux de section carrée (a=b)

❖ Vérification à l'ELS:

Vérifier la section à l'ELS, selon la formule :

$$\sigma_{ser} = \frac{N_{ser}}{B + \eta A_{ser}} \le 0.6f_{c28}...(2)$$

Avec:

- N_{ser} : effort normal à l'ELS ($N_{ser}=N_G+N_Q$).
- B : section de béton du poteau.
- A_s : section des armatures ($A_s=1\%B$), selon **BAEL91**
- $n : coefficient d'équivalence \left(n = \frac{E_s}{E_b} = 15 \right)$.
- σ_{ser} : contrainte de compression à l'ELS.
- En remplaçant dans l'équation (2) les différents termes par leurs valeurs, on obtient :

$$\sigma ser = \frac{Nser}{B+\eta \text{ As}} < 0.6 fc28 = 18 \text{MPa}$$

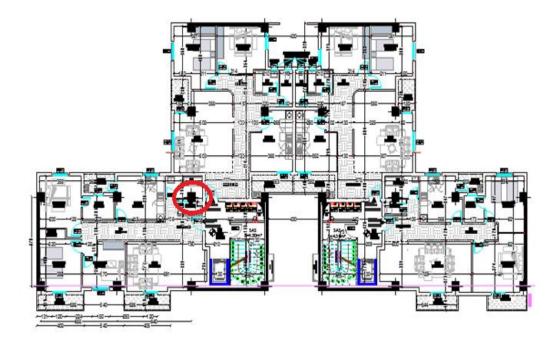


Figure II.2 : schéma de Poteaux central.

II.5.2. Evaluation de l'effort normal ultime :

• Loi de dégression :

Soit Q0 la charge d'exploitation sur le toit ou la terrasse couvrant le bâtiment, Q1, Q2, Q3, ..., Qn, les charges d'exploitation respectives des planchers des étages 1, 2, 3, ..., n, numérotés à partir du sommet du bâtiment.

La charge d'exploitation est variable la loi de dégression ci-dessus étant applicable en respectant l'ordre des niveaux permet de réduire de 5% par étage.

$$Q_0 + \frac{3+n}{2n}(Q_1 + Q_2 + \dots + Q_n)$$
....(6.3) [4]

Le coefficient $\frac{3+n}{2n}$ étant valable pour $n \ge 5$

Avec:

- n : nombre d'étage.
- Q0 : la structure d'exploitation sur la terrasse.
- Q1, Q2, ..., Qn : les surcharges d'exploitation des planchers respectifs.

Tableau II.9: Dégression des surcharges.

Niveau des plancher	Surcharge	∑ Surcharge	∑ Surcharge (kN/m²)
Terrasse	Q0	$\Sigma 0 = Q0$	1
P8	Q1	$\sum 1 = Q0 + Q1$	2,5
P7	Q2	$\sum 2 = Q_0 + 0.95 (Q_1 + Q_2)$	3,85
P6	Q3	$\Sigma 3 = Q_0 + 0.9 (Q_1 + Q_2 + Q_3)$	5,05
P5	Q4	$\Sigma 4 = Q0 + 0.85 (Q1 + Q2 + Q3 + Q4)$	6,1
P4	Q5	$\Sigma 5 = Q0 + 0.8 (Q1 + Q2 + Q3 + Q4 + Q5)$	7
P3	Q6	$\Sigma_{6} = Q_0 + 0.75 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6)$	7,75
P2	Q7	Σ 7= Q0 +0.714 (Q1 + Q2+ Q3 + Q4+ Q5+ Q6+ Q7)	8,497
P1	Q8	Σ 8= Q0 +0.69 (Q1 + Q2+ Q3 + Q4+ Q5+ Q6+ Q7+ Q7)	9,97
RDC	Q9	Σ 9= Q0 +0.67 (Q1 + Q2+ Q3 + Q4+ Q5+ Q6+ Q7+ Q8+ Q9)	13,06

• Descente de charges :

1. Poteau central: Surface afférente : $S = (6.47 - 0.3) \times (4.91 - 0.3) = 28,44 \text{ m}^2$

Calcul des différents poids :

Poids des planchers :

Poids du plancher terrasse $7.08 \times 28.44 = 201.36 \text{ kN}$

Poids du plancher étages courant = $5.49 \times 28.44 = 156.14$ kN

Poids des poutres principales et secondaires :

$$(0.30 \times (0.55 - 0.25) \times 25 \times 6.17) + (0.3 \times (0.35 - 0.25) \times 25 \times 4.61) = 17.34 \text{ kN}$$

• Poids des poteaux :

Poteau (Sous-sol) (h = 3.06) = $25 \times (3.06 - 0.55) \times (0.3)^2 = 5.72$ KN

Poteau (RDC) (h = 4.42) = $25 \times (4.42 - 0.55) \times (0.3)^2 = 8.71$ KN

Poteau (1ére étage a 8 éme étage) (h = 3.24) = $25 \times (3.24 - 0.55) \times (0.3)^2 = 6.05$ KN

Charges permanentes (G):

Tableau II.10: La descente des charges permanentes (Poteau central).

Etage	Niv	Charge permanant de chaque Niv	G cumulé
		Poids du plancher terrasse	201.36
8	N1	Poids des Poutres PP+PS	17.34
		Poids du Poteau	6.05
		N1+	224,75+
7	N2	Poids du plancher courant	156.14
/	112	Poids des Poutres PP+PS	17.34
		Poids du Poteau	6.05
6	N3	N2+X1	404,28+
U	113	1\2+X1	179.53
5	N4	N3+X1	583,81+
3	114	NS+A1	179.53
4	N5	N4+X1	763,34+
4	143	114+21	179.53
3	N6	N5+X1 942,87+	942,87+
3	110	NSTAI	179.53
2	N7	N6+X1	1122,4+
4	147	NOTAI	179.53
1	N8	N7+X1	1301,93+
1	110	11/+21	179.53
RDC	N9	N8+X1	1481,46+
KDC	117	1NO+A1	182.19
Sous-sol	N10	N9+X1	1663,65+
S002-801	1110	1N9+A1	179.2
Total			1842,85

Charges d'exploitation (Q)

Tableau II.11: La descente des charges verticales d'exploitation (Poteau central).

Etage	Surface(m)	Surcharge	Q (kN)
8	28,44	1	28,44
7	28,44	2,5	71,10
6	28,44	3,85	109,49
5	28,44	5,05	143,62
4	28,44	6,1	173,48
3	28,44	7	199,08
2	28,44	7,75	220,41
1	28,44	8,497	241,65
RDC	28,44	9,97	283,55
Sous-sol	28,44	13,06	371,43
Totale			371,43

Les résultats et le choix final des poteaux centraux sont regroupés dans le tableau suivant :

Tableau II.12: choix final des poteaux centraux.

Sous Niv	NG(KN)	NQ(KN)	Nser (KN)	Nu(KN)	Br(cm ²)	RPA (cm)	a=b (cm)	Choix	σ_{ser} (Mpa)	obs
8	224,75	28,44	253,19	346,07	184,11	30.00	15,57	30×30	2,45	Ok
7	404,28	71,1	475,38	652,43	347,09	30.00	20,63	30×30	4,59	Ok
6	583,81	109,49	693,30	952,38	506,67	30.00	24,51	30×30	6,70	Ok
5	763,34	143,62	906,96	1245,94	662,84	30.00	27,75	30×30	8,76	Ok
4	942,87	173,48	1116,35	1533,09	815,61	30.00	30,56	35x35	7,92	Ok
3	1122,4	199,08	1321,48	1813,86	964,97	30.00	33,06	35x35	9,38	Ok
2	1301,93	220,41	1522,34	2088,22	1110,93	30.00	35,33	40x40	8,27	Ok
1	1481,46	241,65	1723,11	2362,45	1256,82	30.00	37,45	40x40	9,36	Ok
RDC	1663,65	283,55	1947,20	2671,25	1421,11	30.00	39,70	40x40	10,58	Ok
Sous-sol	1842,85	371,43	2214,28	3044,99	1619,94	30.00	42,25	45x45	9,51	Ok

La même procédure de pré dimensionnement a était faite pour le poteau d'angle et le poteau de rive :

Choix final de la section

Tableau II.13: Choix final de section de poteaux

Etages	Choix final des poteaux cm2
8 ^{ème} étage	30×30
7 ^{ème} étage	30×30
6 ^{ème} étage	30×30
5 ^{ème} étage	30×30
4 ^{ème} étage	35x35
3 ^{ème} étage	35x35
2 ^{ère} étage	40x40
1 ^{ère} étage	40x40
RDC	40x40
Sous-sol	45x45

II.6.Pré dimensionnement des voiles :

Les voiles sont conçus en se basant sur les principes et conditions imposées :

- Les éléments satisfaisant à la condition Lw \geq max (h_e / 3 , 4 bw, 1m) .

Avec:

Lw: La longueur du voile.

bw: L'épaisseur du voile.

L'épaisseur minimale est de 15 cm. De plus, l'épaisseur doit être déterminée en fonction de la hauteur libre d'étage h et des conditions de rigidité aux extrémités.

Avec:

 h_e : hauteur d'étage.

bw: épaisseur de voile.

- Pour RDC:
$$h_e = 3.42 - 0.50 = 2.92 \text{ m} = ==> bw = \frac{h_e}{20} = \frac{292}{20} = 14.60 \text{ cm}$$

• Conclusion:

- On optera pour des voiles d'épaisseur bw= 20 cm.

CHAPITRE III CALCUL DES ELEMENTS SECONDAIRES

III.1.Introduction:

Dans ce chapitre on procède au ferraillage des éléments secondaires tel que : des dalles, des escaliers et de l'acrotère.

III.2.L'acrotère:

L'acrotère est un élément secondaire de sécurité entourant la terrasse qui forme une paroi contre toute chute, elle sera calculée comme une console encastrée au niveau du plancher terrasse.

III.2.1.Evaluation des charges :

- ➤ Charges permanentes : Le poids total de l'acrotère G=2,29 kN/m
- > Charge d'exploitation : La charge d'exploitation de la main courante : Q=1,0KN/m
- ➤ L'action des forces horizontales Q_h;(F_p):D'après RPA2024, les forces horizontales de calcul F_p agissant sur les éléments non structuraux et les équipements ancrés à la structure sont calculées suivant la formule :

$$F_{pk} = (A.I.S).C_p.(1 + \frac{3.h_z}{H}).W_p$$

Avec:

- A : Coefficient d'accélération de zone (cf. Tableau (3.2)) A=0,3
- I : Coefficient d'importance (cf. Tableau (3.10)) I=1
- S : Coefficient de site (cf. Tableaux (3.3) & (3.4)) S=1,3
- Cp : Facteur de force horizontale variant entre 0.4 et 0.8 (cf. Tableau (6.1)) Cp=0.8
- Wp : Poids de l'élément considéré Wp=2,29 KN
- H : Hauteur totale du bâtiment a partir de la base H= 29,34 m
- hz : Hauteur, du niveau "k", a partir de la base hz=0,6 m

$$F_p = 0.76 \, KN$$

$$Q_h = \max(1,5Q \quad ; \quad F_P)$$

$$F_P = 0.75 \text{kN} 1.5Q = 1,50 \text{kN}$$
 \Rightarrow $Q_h = 1,50 \text{kN}$

Donc pour une bande de 1m de largeur : G=2,29 kN/ml et Qh=1,50 KN/ml

III.2.2 Ferraillage de l'acrotère :

h=10cm; b=100cm; f_{c28} =30MPa; σ_{bc} =17MPa; c=c'=2 cm; f_{c28} =500MPa

$$M_u = 0.41 \text{ kN.m}$$
; $T_u = 2,25 \text{ kN}$; $N_u = 3,09 \text{ KN}$

a) Armatures principales :

1. Calcul du moment fictif M_f:

$$M_f = M_u + N_u(\frac{h}{2} - c') = 0.40 + 3,09(\frac{10}{2} - 2) \times 10^{-2} = 0.49kN.m$$

2. Calcul des armatures :

$$A_{sf} = \frac{M_f}{Z\sigma_s} A_s = A_{sf} - \frac{N_u}{\sigma_s} \mu = \frac{M_f}{bd^2\sigma_{bc}} = 0,0085$$

As=0,324 cm2 As'=0 cm2

2. Vérification de la section d'acier selon BAEL 91 modifié 99 :

Il faut vérifier A_s avec la section minimale imposée par la règle du millième et par la règle de non fragilité :

$$A_s^{min} = \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{t28}}{fe} \right\} \rightarrow A_s^{min} = \{1cm^2; 0,88cm^2\}$$

Donc : on opte finalement pour $5T8 = 2.51 \text{ cm}^2$

Avec un espacement : $S_t = \frac{100}{5} = 20cm$

L'espacement des armatures principales doit vérifier la condition suivante :

$$S \le 2h$$
; 25} $\to 20 \le 20$; 25} $\Rightarrow 0k$

a) Armatures de répartitions :

La section des armatures de répartition découle de celle des armatures principales.

$$A_r \ge \frac{A_s}{4} \Rightarrow A_r \ge \frac{1,70}{4} = 0,425cm^2$$

On a choisi **4T8** avec un espacement $S_t = \frac{60-4}{3} = 18,66cm$, On prend S= 18 cm

III.2.3. Vérification à l'E.L.S:

Tableau III.1: Les vérifications de l'ELS

Contrain	Contrainte de l'acier :				
$\sigma_{ m bc}$	$\sigma_{bc}{'}$	$\sigma_{s}^{'}$	$\sigma_{\rm s}$	$ar{oldsymbol{\sigma}}_{\mathbf{s}}$	
0,52MPa	18MPa	5,34MPa	1,07MPa	250MPa	
0	K		OK		

III.2.4 Vérification de l'effort tranchant :

D'après le BAEL 91 modifié 99 on doit vérifier que :

$$\tau_{\rm u} = \frac{T_{\rm u}}{\rm bd} \leq \bar{\tau}_{\rm u} = {\rm Min}\{0.1 {\rm f}_{\rm c28}; 4{\rm MPa}\} = 3{\rm MPa} \rightarrow \tau_{\rm u} = \frac{2.25 \times 10^3}{80.10^3} = 0.0280 {\rm MPa} < \bar{\tau}_{\rm u} \ldots ... {\rm OK}$$

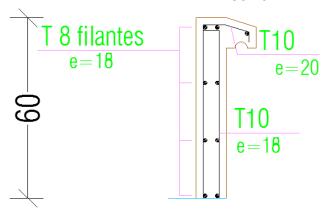


Figure III.1: Ferraillage de l'acrotère.

III.3.L'escalier:

III.3.1. Introduction:

L'escalier est un élément secondaire de la construction, mais il a une grande importance dans la structure, il permit d'accéder d'un niveau à un autre .Ils sont calculés en flexion simple.

III.3.2. Hypothèses de calcul:

- La fissuration est peu préjudiciable.
- > Le ferraillage de l'escalier se fera à l'ELU, en flexion simple pour une bande de 1m de largeur.

III.3.3. Les types des escaliers :

On a les mêmes types des escaliers (escalier à trois volées et deux palier intermédiaires) donc on a calculé un seul escalier

III.3.4. Calcul de ferraillage:

- a) Volée01:
- b) L'épaisseur de la paillasse :

$$\frac{l}{30} \le e \le \frac{l}{20}$$

$$l = 1.30 + \sqrt{1.71^2 + 2.81^2} = 4.5m$$

On prend donc l'épaisseur e=20 cm

Angle d'inclinaison de la paillasse : $tg\alpha = \frac{1.71}{2.81} = 0.60 \Rightarrow \alpha = 30.96^{\circ}$

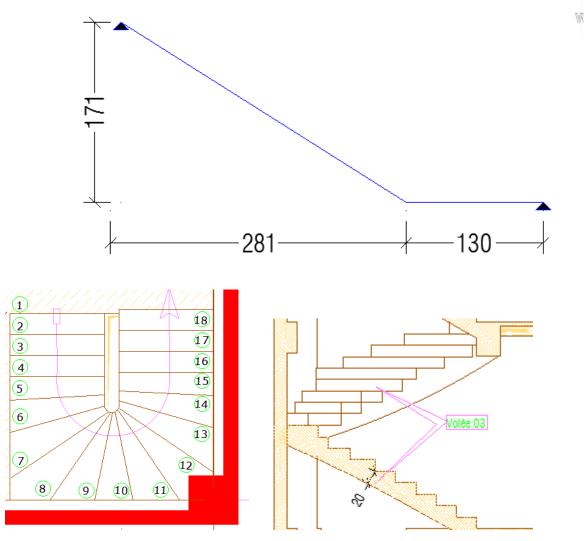


Figure III.2: Schéma statique de volée.

Le nombre de marche : n - 1 = 9

Le nombre de contre marche : n = 10

$$h = \frac{H}{n} = \frac{1.71}{10} = 0.17 \text{ m} = 17 \text{ cm}.$$

g = 30 cm

Vérification de l'équation de < BLONDEL>

N.B: Cette épaisseur sera prise en considération une fois que toutes les vérifications soient satisfaites.

Evaluation des charges :

Tableau III.2: Résultats d'évaluation des charges d'escalier

	Le paillasse (Q1)				Le palier	· (Q2)	
G	Q	q (KN	l/ml)	G	Q	q (KN	/ml)
(kN/m^2)	(kN/m^2)	ELU	ELS	(kN/m^2)	(kN/m^2)	ELU	ELS
9.28	2,5	16,27	11,78	6,7	2,5	12,79	9,2

L1=1,30 m (paillasse) L2=3.24m

Calcul de Ferraillage:

Le calcul se fait pour une section de dimension (b x h) Tel que : b=100 cm ; h=20 cm

$$f_{c28} = 30MPa$$
 ; $f_{bc} = 17MPa$; $f_{t28} = 2,40MPa$; $\gamma_b = 1,5$; $d = 0,9h = 18cm$ $\sigma_s = 434,78MPa$; $\gamma_s = 1,15$; $f_e = 500 \; Mpa$

Tableau III.3: Calcul des armatures.

	M _u (kNm)	μ	$\mu < \mu_R$	A' _s (cm ²)	α	Z (cm)	A _s ^{cal} /ml (cm ²)	Choix	A _s ^{adp} /ml (cm²)
Appui	20,96	0,037	Oui	0	0,047	175,3	2,82	4T10	3,14
Travée	35,63	0,064	Oui	0	0,082	172	4,75	5T12	5.65

Espacement:

Fig. En travée : $esp \le \frac{100}{5} = 20cm$ On prend : esp=15 cm.

Sur appui : $esp \le \frac{100}{4} = 25cm$ On prend : esp=15 cm.

Armature de répartition :

En travée : $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} ... \Rightarrow 1,54 \text{cm}^2/\text{ml} \le A_r \le 3,08 \text{cm}^2/\text{ml}$

Le choix est de 4T8=2,01m² avec $S_t=25$ cm

Sur appui $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} ... \Rightarrow 0.785 \text{cm}^2/\text{ml} \le A_r \le 1.57 \text{cm}^2/\text{ml}$

Le choix est de 4T8=2,01 cm² avec S_t=25cm

Vérification du Condition de non fragilité :

$$A_s \ge A_s^{min} = 0.23bd \frac{f_{t28}}{fe} = 1.98$$
cm²

En travée : $A_s = 6.79cm^2 A_s^{min} = 1.98cm^2$.

> Sur appui : $A_s = 4.52cm^2 A_s^{min} = 1.98cm^2$.

Vérification de l'Effort tranchant :

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$(A.5.2.2) [1]

$$\overline{\tau} = Min(0.2fc_{28}/\gamma_b; 5MPa) = 4MPa...$$
 (Fissuration peu préjudiciable)

$$\tau = \frac{T_u^{max}}{bd}$$

Vérification des armatures transversales :

$$\tau = \frac{T_u^{max}}{bd} = 0.185 < 0.05 \; f_{c28} = 1.8 \text{MPA}$$

Donc les armatures transversales ne sont pas nécessaires.

Vérification à l'ELS:

La fissuration est considérée comme peu nuisible, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

Vérification des contraintes du béton :

Avec :n=15 ; c'=2cm ; d=18 cm ; b=100cm ; $A_s'=0$

On doit vérifier que : $\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 18MP$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

Tableau III.4 : Vérification de compression du béton.

	M _{ser} (kNm)	$A_s(cm^2)$	$\sigma_{bc}(MPa)$	Vérification	
Appui	15,04	3,14	4,90	Vérifiée	
Travée	25,75	5.65	6,39	Vérifiée	

Vérification de la flèche :

Les résultats sont récapitulés dans ce tableau :

Tableau III.5: Vérification de la flèche de l'escalier.

M _{ser} (KNm)	A _s (cm ²)	δ	σ _s (MPa)	λ_{i}	$\lambda_{ m v}$	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	I _{fv} (cm ⁴)
25,75	5.57	0,0034	241,17	7,05	2,82	0,25	72580,28	28900,73	42569,06

Donc:

Figure III.3: Schéma de ferraillage de l'escalier

III.4 Dalle Pleine:

Dans notre structure, on a cité l'exemple du panneau le plus sollicité :

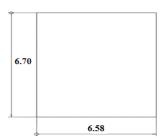


Figure III.4: Dimensions d'une dalle

III.4.1 Evaluation des charges :

Tableau III.6 : Calcul des sollicitations de dalle pleine.

Logoborg	es (KN/m²)	qu (KN	$\sqrt{m^2}$
Les charg	es (KIN/III)	Combin	naison
$G(kN/m^2)$	$Q (kN/m^2)$	ELU	ELS
5,15	5	14,45	10,15

 $\alpha = Lx/Ly = 0.98$

ELU: ELS:

 $\begin{array}{ll} \mu_x = 0,\!0384 & \mu_x = 0,\!0457 \\ \mu_y = 0,\!9545 & \mu_y = 0,\!9694 \end{array}$

ELU: ELS

 $M_x = \mu_x q_u L_x^2 = 24.02 kNm$ $M_x = \mu_x q_S L_x^2 = 20.08 kNm$

 $M_y = \mu_y M_x = 22.93 \text{ kNm}.$ $M_y = \mu_y M_x = 19.46 \text{kNm}$

Mtx=0,85Mx =20.41 KN.m Mtx=0,85Mx =17.06 KN.m

Mty=0.85My=19.49 KN.m Mty=0.85My=16.54 KN.m

Ma=0.5Mx = 12.01 KN.m Ma=0.5Mx = 10.04 KN.m

III.4.2 Ferraillage de la dalle :

b=100cm ; h=20cm ; d=18cm ; f_e=500MPa ; f_c28=30MPa ; f_t28=2,4MPa ; σ_s =434,78MPa ; $\bar{\sigma}_{bc}=18~\text{MPa}$

Tableau III.7 : Ferraillage de la dalle pleine.

	Sens	M _u (kNm)	$\begin{array}{c} A_s^{\ cal} \\ (cm^2) \end{array}$	Choix	A_s^{adp} (cm^2)	Esp (cm)
Twoyiée	X-X	20.41	2.74	5T12	5.65	20
Travée	у-у	19,49	2.61	5T12	5.65	20
Annuic	X-X	12,01	1.60	5T12	5 65	20
Appuis	у-у	12,01	1.60	3112	5.65	20

a) Espacement:

Tableau III.8: vérification des espacements.

	Travée	Appui
X-X	20cm < Min(3h; 33cm) = 33cm	20cm < Min(3h; 33cm) = 33cm
у-у	20cm < Min(3h; 33cm) = 33cm	20cm < Min(3h; 45cm) = 33cm

b) Calcul des armatures transversales

Les armatures transversales ne sont pas nécessaires si la condition ci-dessous est vérifiée :

$$\tau_{\rm u} = \frac{T_{\rm u}^{\rm max}}{{\rm b}\bar{\rm d}_{\rm uc28}}.....(A.5.2.2)[1]$$

$$\begin{split} T_x &= \frac{q_u L_x L_y}{2L_x + L_y} = \frac{14,45 \times 6.58 \times 6,70}{2 \times 6.58 + 6,70} = 32.07kN \\ T_y &= \frac{q_u L_x}{3} = \frac{14,45 \times 6.58}{3} = 31.7kN \\ T_u^{max(T_x;T_y)} &= 32.07KN \\ \tau_u &= \frac{32.07 \times 10^3}{1000 \times 180} = 0,18MPa < \bar{\tau}_u = 1,5MPa.....Vérifiée \end{split}$$

Donc l'armature transversale n'est pas nécessaire.

III.4.3 Vérification à l'ELS:

a) Vérification des contraintes :

1. Vérification des contraintes des armatures

La fissuration étant peu nuisible, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

 M_{ser} $\mathbf{A_s}$ σ_{bc} Sens $\sigma_{bc} \leq \bar{\sigma}_{bc}$ (cm^2) (kNm) (MPA) 17.06 5.65 4.57 X-X Travée Vérifié 16.54 5.65 4.30 у-у X-X

5.65

2.70

Vérifié

10.04

Tableau III.9: Vérification des contraintes à l'ELS.

2. Vérification de la flèche :

Appuis

La vérification de la flèche est nécessaire.

Les résultats sont présentés dans le tableau suivant :

у-у

Tableau III.10 : Calcul de la flèche.

M (I-NI)	As		2	2	
M _{ser} (kNm)	(cm ²)	$\sigma_{\rm s}$	Λ i	Λ _V	μ
17.06	5,65	194,4	5,78	2,31	0,25

Donc:

 $f_i = 6,62 \text{mm}$

 $f_v = 13,93$ mm

Flèche totale : $\Delta f_T = f_v - f_i \le \bar{f}$.

$$\bar{f} = \frac{658}{1000} + 0.5 = 1,15cm$$

$$\Delta f_T = f_v - fi = 0.73 cm \le \bar{f} = 1.15 cm \dots v$$
érifiée

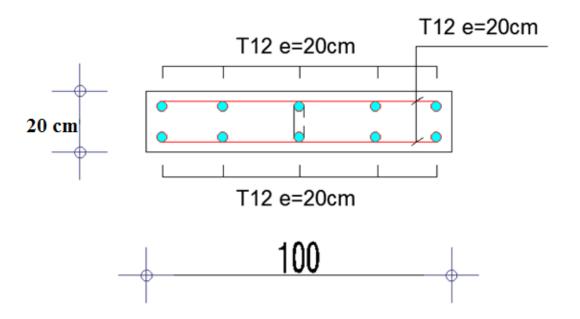
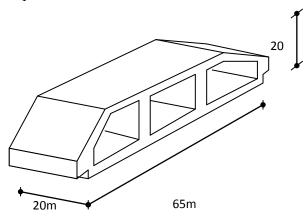


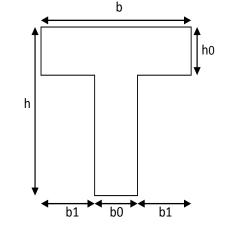
Figure III.5 : Ferraillage de la dalle pleine.

III.5 Plancher à corps creux :

III.5.1 Pré dimensionnement des poutrelles :

Notre bâtiment comporte deux types de planchers constitués d'éléments porteurs (poutrelles) et d'éléments de remplissage (corps creux) de dimension (16x20x65) cm³ avec une dalle de compression de 5cm d'épaisseur.




Figure III.6: Corps Creux.

III.5.2 Etude des poutrelles :

Les poutrelles sont des sections en (T) en béton armé, elles servent à transmettre les charges réparties ou concentrées vers les poutres principales, Elles sont disposées suivant le plus grand

nombre d'appuis. $b_0 = (0.4 \text{ à } 0.6) * h_t$ Avec : h_t : Hauteur du plancher. h_0 : Hauteur du la dalle de compression.

 $b_1 \leq \min\left(\frac{L_X}{2}; \frac{L_Y}{10}\right)$

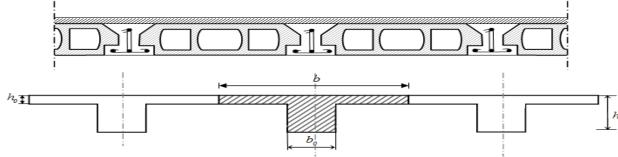


Figure III.7: Schéma de poutrelle.

Tel que:

 L_X : Distance entre nus d'appuis des poutrelles.

 L_Y : Distance entre nus d'appuis des poutres secondaires.

$$b = 2*b1 + b_0$$

 $b_0 = (0,4; 0,6) * h = (8,4; 12,6)$ cm. On a adopter $b_0 = 12$ cm.

Soit: $b_0=12$ cm.

$$b_1 = \frac{b - b_0}{2} \le min(\frac{l_x}{2}, \frac{l_y}{10}) \Rightarrow b \le 2. min(\frac{l_x}{2}, \frac{l_y}{10}) + b_0$$

$$L_x = 65 - 12 = 53$$
cm.

$$L_{\nu} = 658 - 30 = 628$$
cm.

$$b_1 = min\left(\frac{53}{2}; \frac{628}{10}\right) = 26.5cm. \Rightarrow b = 2 \times 26.5 + 12 = 65cm.$$

Soit: b=65cm.

III.5.3 Calcul des poutrelles :

Le calcul des poutrelles se fait en deux étapes :

- Avant le coulage de la dalle de compression.
- Après le coulage de la table de compression
- * 1^{ère} étape : Avant le coulage de la table de compression :
- Poutrelle de travée L=6.58 m
- On considère que la poutrelle est simplement appuyée à ses extrémités, elle supporte :
- Son poids propre.
- Poids du corps creux.
- Charge d'exploitation due à l'ouvrier $Q=1kN/m^2$.

III.5.4 Calcul des moments :

Étant donné que les poutrelles étudiées se présentent comme des poutres continues sur plusieurs appuis, leurs études se feront selon l'une des méthodes suivantes :

a. Méthode forfaitaire :

Le règlement BAEL 91 propose une méthode simplifiée dite méthode forfaitaire ; cette méthode n'est applicable que si les quatre «04 » conditions suivantes sont remplies :

1)- La charge d'exploitation est dite modérée c'est-à-dire $Q \le (5KN/m2; 2G)$.

-EC
$$\rightarrow$$
 Q \leq (5; 2x5,34) \rightarrow vérifié

-Terrasse
$$\rightarrow$$
 Q \leq (5; 2x6.93) \rightarrow vérifié

2)- Les moments d'inertie des sections transversales sont les même dans les différentes travées.

→ vérifié

3)- Les portées successives des travées sont dans un rapport compris entre :

$$0.8 \le \frac{li}{li+1} \le 1.25 \longrightarrow \text{v\'erifi\'e}$$

4)- Fissuration considérée comme non préjudiciable.

Donc : la méthode forfaitaire est applicable.

Exposé de la méthode :

$$\bullet \ \alpha = \frac{Q}{G + Q}$$

•
$$M_t \ge Max\{1,05M_0; (1+0,3\alpha)M_0\} - \frac{M_w - M_e}{2}$$

$$\bullet \ M_t \geq \begin{cases} (1+0.3\alpha)\frac{M_0}{2}.....Trav\'{e}\ interm\'{e}diaire\\ (1.2+0.3\alpha)\frac{M_0}{2}.....Trav\'{e}\ de\ rive \end{cases}$$

Avec:

M₀: La valeur minimale du moment fléchissant dans chaque travée (moment isostatique).

 $(M_w; M_e)$: Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

M_t: Le moment maximal en travée dans la travée considérée.

Moment sur appuis :

- $M=0,2M_0$appuis de rive
- M=0,6M₀.....pour une poutre à deux travées
- M=0,5M₀.....pour les appuis voisins des appuis de rives d'une poutre à plus de deux travées
- M=0,4M₀.....pour les autres appuis intermédiaires d'une poutre à plus de deux travées

b. Méthode de CAQUOT :

Cette méthode est appliquée lorsque l'une des conditions de la méthode forfaitaire n'est pas vérifiée.

Elle est basée sur la méthode des poutres continues.

Exposé de la méthode :

> Moment sur appuis :

 $M_a = 0.15 M_0$ Appuis de rive.

$$M_a = \frac{q_w l_w^{'3} + q_e l_e^{'3}}{8.5(l_w^{'} + l_e^{'})}$$
 Appuis intermédiaires.

Avec:
$$M_0 = \frac{ql^2}{8}$$

$$ightharpoonup$$
 Moment en travée : $M_t(x) = -\frac{qx^2}{2} + \left(\frac{ql}{2} + \frac{M_e - M_w}{l}\right)x + M_w$

Avec:

- M_0 : la valeur maximale du moment fléchissant dans chaque travée (moment isostatique);
- $(M_w; M_e)$: les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée;
- q_w : charge répartie à gauche de l'appui considérée;
- q_e : charge répartie à droite de l'appui considéré.

On calcul, de chaque coté de l'appui, les longueurs de travées fictives " l'_w " à gauche et " l'_e "à droite, avec :

- *l'=l....*pour une travée de rive
- *l'=0,81...* pour une travée intermédiaire

Où "l'représente la portée de la travée libre.

Effort tranchant :

$$\begin{cases} T_{w} = \frac{ql}{2} + \frac{(M_{e} - M_{w})}{l} \\ T_{e} = -\frac{ql}{2} + \frac{(M_{e} - M_{w})}{l} \end{cases}$$

Avec:

- T_w: effort tranchant à gauche de l'appui considéré,
- T_e: effort tranchant à droite de l'appui considéré.

c. Méthode des éléments finis « ETABS »

les mments, et les efforts tranchants seront calculés A l'laide du logiciel ETABS

. Etapes de calcul des poutrelles :

- * 1^{ère} étape : Avant le coulage de la table de compression :
 - Poutrelle de travée L=6,58 m
 - On considère que la poutrelle est simplement appuyée à ses extrémités, elle supporte :
- Son poids propre.
- Poids du corps creux.
- Charge d'exploitation due à l'ouvrier $Q=1kN/m^2$.
- Evaluation des charges :
- Charges permanentes:

1-Poids propre de la poutrelle......0,12x0,05x25=0,15kN/ml

 $\Sigma G = 1.97 \text{kN/ml}$

• Charges d'exploitation :

$$Q = 1 \times 0.65 = 0.65 \text{ kN/ml}$$

Combinaison des charges :

E.L.U:
$$q_u = 1,35G + 1,5Q = 3,64kN/ml$$

E.L.S:
$$q_{ser} = G + Q = 2,62kN/ml$$

A Calcul des moments :

$$M0=QL^2/8=11,15$$
 KN.m

Mtux=0.85*M0=9.48 KN.m

***** Ferraillage:

La poutre est sollicitée à la flexion simple à l'E.L.U Mu=9,45kNm ;h=21cm b=12cm ; d=4,5cm ; σ_{bc} =17Mpa

D'après l'organigramme de la flexion simple on a:

$$\mu = \frac{M_u}{bd^2\sigma_{hc}} = 2,45 > \mu_R = 0,371 \Rightarrow A_s^{'} \neq 0$$

Donc, les armatures de compression sont nécessaires, mais il est impossible de les placer du point de vue pratique car la section du béton est trop faible.

On prévoit donc des étaiements pour aider la poutrelle à supporter les charges qui lui reviennent avant et lors du coulage sans qu'elle fléchisse.

* 2^{ème} étape : Après le coulage de la table de compression :

Après le coulage et durcissement du béton de la dalle de compression, la poutrelle travaillera comme une poutrelle en "Té"

III.5.5 Evaluation des charges revenantes aux poutrelles :

Plancher terrasse:

> Charge permanentes:

G=7.08x0,65=4,60kN/ml.

> Surcharges d'exploitation :

Q=1x0,65=0,65kN/ml.

Plancher courant:

Charge permanente :

G=5,49x0,65=3,57kN/ml.

> Surcharge d'exploitation :

 $Q=2.5\times0.65=1.63$ kN/ml.

Combinaison des charges :

> Plancher terrasse :

E.L.U: $q_u=1,35G+1,5Q=7,19 \text{ kN/ml}$.

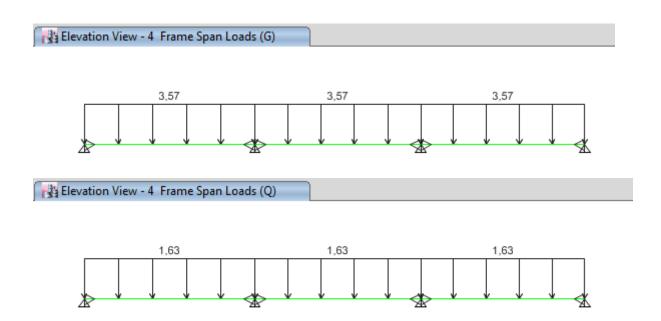
E.L.S: q_{ser} =G+Q=5.25 kN/ml.

> Plancher courant :

E.L.U: $q_u=1,35G+1,5Q=7,26 \text{ kN/ml}$.

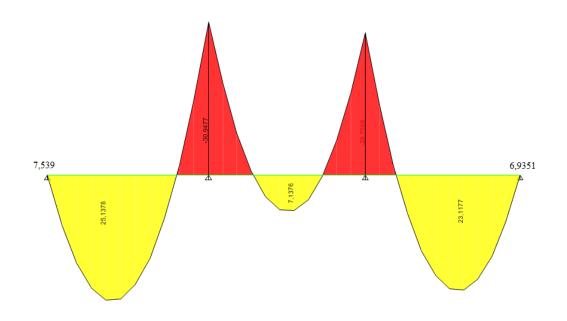
E.L.S: $q_{ser}=G+Q=5.20 \text{ kN/ml}.$

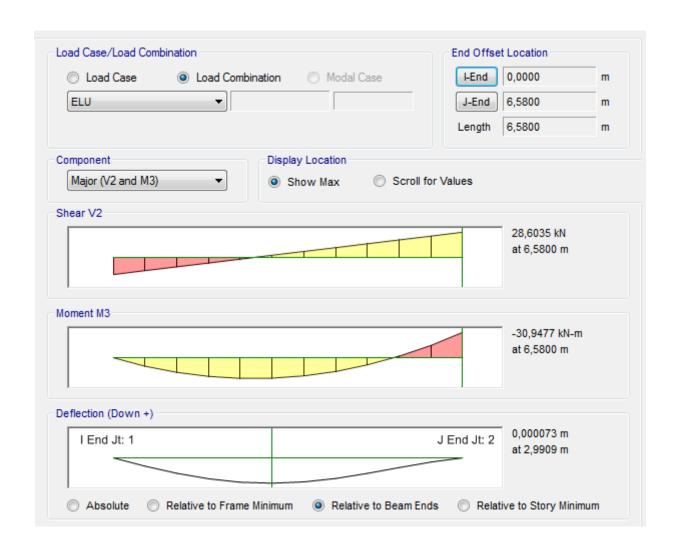
Conclusion:

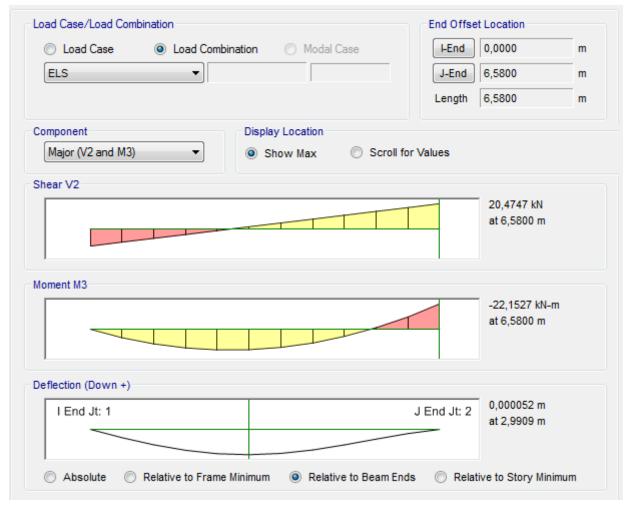

Le plancher étage courant est le plus sollicité.

> Calcul des efforts internes :

Méthode: élément finis (ETABS)


Récapitulation des moments sur appuis et en travées, Effort tranchant de la poutrelle.


(6,58 m- 6,40 m- 6,32 m).



Diagrammes des moments fléchissant ET Diagrammes des efforts tranchants :

ELU ELS:

Diagrammes des efforts tranchants :

Figure III.8: Moment fléchissant, Effort tranchant de la poutrelle à 03 travées.

> Calcul du ferraillage :

On considère pour le ferraillage le type de poutrelle le plus défavorable c'est-à-dire qui a le moment le plus grand en travée et sur appuis, et le calcul se fait à l'ELU en flexion simple.

Les efforts maximaux sur appuis et en travée sont :

E.L.U:

 M_{tu}^{max} =25,30 kNm

 M_{au}^{max} =30.94kNm

 $T_u^{max} = 28,60 \text{ kN}$

E.L.S:

 $M_{tser}^{max}=17,90kNm$

 M_{aser}^{max} =22.15kNm

 $T_s^{max} = 20.47 \text{ Kn}$

> Ferraillage en travée :

Le calcul des sections en forme de "Té" s'effectue différemment selon que l'axe neutre est dans la table ou dans la nervure.

- Si $M_u < M_{tab}$: l'axe neutre est dans la table de compression.
- Si $M_u > M_{tab}$: l'axe neutre est dans la table ou dans la nervure.

$$M_{tab} = bh0\sigma_{bc}\left(d - \frac{h0}{2}\right) = 110.50kNm$$

On a: $M_{tu} < M_{tab}$

Alors: l'axe neutre est dans la table de compression.

Comme le béton tendu n'intervient pas dans les calculs de résistance, on conduit le calcul comme si la section était rectangulaire de largeur constante égale à la largeur de la table "b".

Donc, la section étudiée est assimilée à une section rectangulaire (bxh) en flexion simple.

D'après l'organigramme donnant le ferraillage d'une section soumise à la flexion, on aura :

Tableau.III.12: Récapitulation du calcul des sections d'armatures en travée.

M _{tu} (kNm)	μ	μ<μ _R	$A_s'(cm^2)$	α	Z(cm)	μ<0,186	ζ_{s}	σ _s (MPa)	$A_s(cm^2)$
25,30	0,04	Oui	0	0,05	18,52	Oui	10‰	435	2.58

Condition de non fragilité :

$$A_s^{\min} \ge 0.23bd \frac{f_{t28}}{fe} = 1.79 \text{ cm}^2$$

 $A_s=Max\{1,79cm^2;2.58cm^2\}=2.58cm^2$

Choix: $3T12 (A_s=3,39 \text{ cm}^2)$

> Ferraillage sur appuis :

On a: $M_{au}^{max} < M_{tab}$

 \Rightarrow L'axe neutre est dans la table de compression, et la section étudiée est assimilée à une section rectangulaire (b₀xh) en flexion simple.

Tableau.III.13: Récapitulation du calcul des sections d'armatures sur appuis.

M _{Ua} (kNm)	μ	μ<μ _R	$A_s'(cm^2)$	α	Z(cm)	μ<0,186	$\zeta_{\rm s}$	$\sigma_s(MPa)$	$A_s(cm^2)$
30.94	0,27	Oui	0	0,41	18,82	oui	10‰	435	3.18

Choix: $3T12 (A_s=3,39 \text{ cm}^2)$

> Vérifications :

Effort tranchant:

Pour l'effort tranchant, la vérification du cisaillement se fera dans le cas le plus défavorable c'est-à-dire : T_u^{max} =28,60 kN.

On doit vérifier que $: \tau_u \leq \bar{\tau}_u$

Tel que:

$$ar{ au}_u = Min\Big\{0,2rac{f_{cj}}{\gamma_b};5MPa\Big\} = 4MPa...$$
 Fissuration préjudiciable $au_u = rac{T_u^{max}}{b_0ar{d}_u} = 1,17 < ar{ au}_u = 4MPa$

Vérification à l'E.L.S :

La fissuration étant préjudiciable, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

➤ Vérification des contraintes du béton : Soit "y" la distance du centre de gravité de la section homogène (par lequel passe l'axe neutre) à la fibre la plus comprimé.

La section étant soumise à un moment M_{ser} , la contrainte à une distance "y" de l'axe neutre :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

D'après l'organigramme de la vérification d'une section rectangulaire à l'ELS, on doit vérifier que : $\sigma_{bc} \leq \bar{\sigma}_{bc} = 0.6 f_{c28} = 18 MPa$

• Détermination de l'axe neutre

On suppose que l'axe neutre se trouve dans la table de compression :

$$\frac{b}{2}y^{2} + n(A_{s} + A'_{s})y - n(A_{s}.d + A'_{s}.c') = 0$$

Avec : $n = \frac{E_S}{E_h} = 15$; b=65cm (travée); b₀=12cm (appuis); c=c'=2cm

y : est la solution de l'équation du deuxième degré suivante, puis on calcule le moment d'inertie :

$$\begin{cases} by^2 + 30(A_s + A_s')y - 30(dA_s + c'A_s') = 0\\ I = \frac{b}{3}y^3 + 15A_s(d - y)^2 + 15A_s'(y - c')^2 \end{cases}$$

Si $y < h_0 \Rightarrow$ l'hypothèse est vérifiée

Si $y > h_0$ \Rightarrow la distance "y" et le moment d'inertie "I" se Calculent par les formules qui suivent :

$$\begin{cases} b_0 y^2 + [2(b - b_0)h_0 + 30(A_s - A_s')]y - [(b - b_0)h_0^2 + 30(dA_s + c'A_s')] = 0\\ I = \frac{b_0}{3}y^3 + \frac{(b - b_0)h_0^3}{12} + (b - b_0)h_0\left(y - \frac{h_0}{2}\right)^2 + 15[A_s(d - y)^2 + A_s'(y - d')^2] \end{cases}$$

Tableau III.14: Vérification de la contrainte de béton.

	M _{ser} (kNm)	$A_s(cm^2)$	$\sigma_{bc}(MPa)$	Vérification
Travée	17,90	3,39	4.95	Vérifiée
Appuis	22.15	3,39	6.03	Vérifiée

✓ Vérification de la flèche :

Puisque les (03) conditions ne sont pas vérifiées, il est nécessaire de calculer la flèche.

Flèche totale : $\Delta f_T = f_v - f_i \le \bar{f}$.

Tel que :
$$\bar{f} = 0.5 + \frac{L}{1000}$$
 Si $L \ge 5.00 \text{ m}$

$$\bar{f} = \frac{L}{500} \qquad Si \quad L < 5,00 \ m$$

Donc:
$$\bar{f} = \frac{658}{1000} + 0.5 = 1.15 \ cm$$

f_i: La flèche due aux charges instantanées.

f_v: La flèche due aux charges de longues durée.

Position de l'axe neutre "v₁":

$$y_1 = \frac{bh_0 \frac{h_0}{2} + (h - h_0)b_0 \left(\frac{h - h_0}{2} + h_0\right) + 15A_s d}{bh_0 + (h - h_0)b_0 + 15A_s}$$

- Moment d'inertie de la section totale homogène " ${\rm I_0}$ ":

$$I_0 = \frac{b}{3}y_1^3 + \frac{b_0}{3}(h - y_1)^3 - \frac{(b - b_0)}{3}(y_1 - h_0)^3 + 15A_s(d - y_1)^2$$

- Calcul des moments d'inerties fictifs [3]:

$$I_{fi} = \frac{1,1I_0}{1+\lambda_i\mu}.$$
 ; $I_{fv} = \frac{I_0}{1+\lambda_v\mu}$

Avec:

$$\lambda_i = \frac{0.05 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b_0}\right)}$$
.....Pour la déformation instantanée.

$$\lambda_v = \frac{0.02 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
.....Pour la déformation différée.

$$\delta = \frac{A_s}{b_0 d}$$
: Pourcentage des armatures.

$$\mu = 1 - \frac{1,75 f_{t28}}{4\delta \sigma_s + f_{t28}}$$

 σ_s : Contrainte de traction dans l'armature correspondant au cas de charge étudiée.

$$\sigma_{\rm S} = \frac{M_{\rm Ser}}{A_{\rm S}d}$$

Les résultats sont récapitulés dans ce tableau :

Tableau III.15 : Calcul de la flèche.

M _{ser} (kNm)	A _s (cm ²)	Y ₁ (cm)	σ _s (MPa)	$\lambda_{\mathbf{i}}$	$\lambda_{ m v}$	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	I _{fv} (cm ⁴)
11,06	3,39	5,54	390,77	6,27	2,50	0,57	88266,86	21227,67	36398,70

Calcul des modules de déformation :

$$E_i = 11000(f_{c28})^{\frac{1}{3}} = 34179,55MPa$$

$$E_v = 3700(f_{c28})^{\frac{1}{3}} = 11496,76MPa$$

- Calcul de la flèche due aux déformations instantanées :

$$f_i = \frac{M_{ser}l^2}{10E_iI_{fi}} = 0.33$$
cm (L = 6.58m)

- Calcul de la flèche due aux déformations différées :

$$f_{v} = \frac{M_{ser}l^{2}}{10E_{v}I_{fv}} = 0,54cm$$

$$\Delta f_T = f_v - f_i = 0,21$$
cm $\prec \bar{f} = 1.15$ cm.....vérifiée

-Calcul des armatures transversales et l'espacement

L'acier choisi pour les armatures transversales est de type rond lisse de nuance (fe=235MPa)

Selon le "BAEL 91 modifié 99":

$$\begin{cases} \bullet \frac{A_{t}}{b_{0}S_{t}} \geq \frac{\tau_{u} - 0.3f_{tj}K}{0.8fe} & K = 1 \ Art \ A \ 5.1.2.3 \\ \bullet S_{t} \leq Min(0.9d;40cm) & Art \ A \ 5.1.2.2 \\ \bullet \frac{A_{t}fe}{b_{0}S_{t}} \geq Max\left(\frac{\tau_{u}}{2};0.4MPa\right) & Art \ A \ 5.1.2.2 \end{cases}$$

• RPA 2024:

$$\begin{cases} \bullet \frac{A_t}{S_t} \geq 0,003b_0 \\ \bullet S_t \leq Min\left(\frac{h}{4};12\varphi_l\right). & Zone \ nodale \\ \bullet S_t \leq \frac{h}{2}. & Zone \ courante \end{cases}$$

Avec:

$$\varphi_t \leq Min\left(\frac{\mathrm{h}}{35}; \varphi_l; \frac{b_0}{10}\right)$$

 \mathcal{O}_l : Diamètre minimum des armatures longitudinales.

Ø_t ≤ Min (0,6cm; 1cm; 1,2cm)

On adopte :Ø_t=6mm

Donc:

• Selon le "BAEL 91 modifié 99":
$$\begin{cases} \bullet \frac{A_t}{S_t} \ge 0.038cm \\ \bullet S_t \le 17.01cm \\ \bullet \frac{A_t}{S_t} \ge 0.033cm \end{cases}$$

• Selon le "RPA 2024":
$$\begin{cases} \bullet \frac{A_t}{S_t} \geq 0.036cm \\ \bullet S_t \leq 5,25cm.....Zone \ nodale \\ \bullet S_t \leq 10,5cm.....Zone \ courante \end{cases}$$

• Choix des armatures :

On adopte $:A_t=2T6=0,57cm^2$

Choix des espacements:

$$\frac{A_t}{S_t} \ge 0.036 \Rightarrow S_t \le 15.83 cm$$

$$Donc: \begin{cases} S_t = 5cm......Zone \ nodale \\ S_t = 10cm....Zone \ courante \end{cases}$$

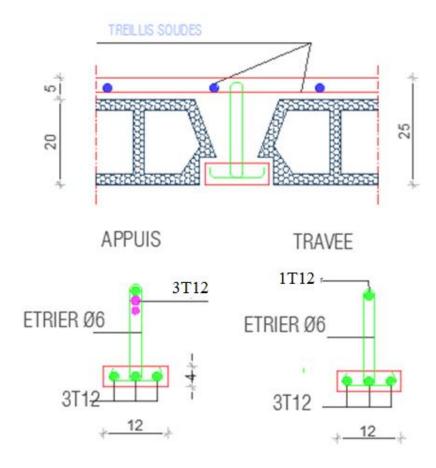


Figure. III.9: Ferraillage des poutrelles en Travée et en Appuis.

CHAPITRE IV ETUDE DYNAMIQUE EN ZONE SISMIQUE

IV.1.Introduction:

Le calcul parasismique a pour but l'estimation des valeurs caractéristiques les plus défavorables de la réponse sismique et le dimensionnement des éléments de résistance, afin d'obtenir une sécurité jugée satisfaisante pour l'ensemble de l'ouvrage. Toute structure implantée en zone sismique est susceptible de subir durant sa durée de vie une excitation dynamique de nature sismique.

De ce fait la détermination de la réponse sismique de la structure est incontournable lors de l'analyse et de la conception parasismique de cette dernière. Ainsi le calcul d'un bâtiment vis à vis du séisme vise à évaluer les charges susceptibles d'être engendrées dans le système structurel lors du séisme.

Le but de ce chapitre est de définir un modèle de structure qui vérifie les conditions et critères de sécurités imposées par les règles parasismiques Algériennes RPA2024.

IV.2. Etude dynamique en zone sismique :

IV.2.1.Introduction:

L'analyse dynamique nécessite toujours initialement de créer un modèle de calcul représentant la structure, Ce modèle introduit en suite dans un programme de calcul dynamique permet la détermination de ses modes propre de vibrations et des efforts engendrés par l'action sismique.

IV.2.2.Modélisation mathématique :

La modélisation revient à représenter un problème physique possédant un nombre de degré de liberté (D.D.L) infini par un modèle ayant un nombre de (D.D.L) fini et qui reflète avec une bonne précision les paramètres du système d'origine à savoir : la masse, la rigidité et l'amortissement. En d'autres termes ; la modélisation est la recherche d'un mécanisme simplifié qui nous rapproche le plus possible du comportement réel de la structure, en tenant compte le plus correctement possible de la masse et de la raideur (rigidité) de tous les éléments de la structure.

IV.2.3. Caractéristique dynamiques propres :

Une structure classique idéale est dépourvue de tout amortissement de sorte qu'elle peut vibrer indéfiniment tant qu'il soit nécessaire de lui fournir de l'énergie. Ce comportement est purement théorique en raison de l'existence inévitable des frottements qui amortissent le mouvement.

Les caractéristiques propres de la structure sont obtenues à partir du système non amorti et non forcé, l'équation d'un tel système est donné par : $[M] \left\{ x(t) \right\} + [K] \left\{ x \right\} = \{0\}$(1)

L'analyse d'un système à plusieurs degrés de liberté nous fournie les propriétés dynamiques les plus importantes de ce système, qui sont les fréquences propres et modes propres.

Chaque point de la structure exécute un mouvement harmonique autour de sa position d'équilibre.

Ce qui est donné par :

$$\{x(t)\} = \{A\}\sin(\varpi t + \varphi)....(2)$$

Avec:

 $\{A\}$: Vecteur des amplitudes.

ω: Fréquence de vibration.

φ: Angle de déphasage.

Les accélérations en vibration libre non amortie sont données par :

$$\begin{Bmatrix} x \\ x \end{Bmatrix} = -\omega^2 \{A\} \sin(\omega t + \varphi)....(3)$$

En substituant les équations (2) et (3) dans l'équation (1) ; on aura :

$$([K] - \omega^2 [M])(A) \sin(\omega t + \varphi) = 0....(4)$$

Cette équation doit être vérifiée quelque soit le temps (t), donc pour toutes les valeurs de la fonction sinus, ce qui donne :

$$([K] - \omega^2 [M]) A = \{0\}...(5)$$

Ce système d'équation est un système à (n) inconnues " A_i ". Ce système ne peut admettre une solution non nulle que si le déterminant de la matrice Δ_{ω} est nul c'est à dire :

$$\Delta_{\omega} = \left[\left[K. \right] - \omega^2 \left[M \right] = 0....(6)$$

L'expression ci dessus est appelée "Equation caractéristique".

En développant l'équation caractéristique, on obtient une équation polynomiale de degré (n) en (ω^2) .

Les (n) solutions $(\omega_1^2; \omega_2^2; ..., \omega_n^2)$ sont les carrés des pulsations propres des (n) modes de vibrations possibles.

Le 1^{er} mode vibratoire correspond a ω_1 et il est appelé mode fondamental $(\omega_1 \pi \omega_2 \pi ... \pi \omega_n)$

A chaque pulsation propre, correspond une forme d'oscillation appelée mode propre $\{A\}_i$ ou forme modale (modale Shape).

IV.3.Modélisation de la structure :

L'une des étapes les plus importantes lors d'une analyse dynamique de la structure est modélisation adéquate de cette dernière.

Vue la complexité et le volume de calcul que requiert l'analyse de notre structure, la nécessite de l'utilisation de l'outil informatique s'impose. L'utilisation d'un logiciel préétabli en se basant sur la méthode des éléments finis par exemple « SAP2000, ETABS, ROBOT... » Avec une modélisation adéquate de la structure, peut aboutir à une meilleure définition des caractéristiques dynamiques propres d'une structure donnée.

Dans le cadre de notre projet nous avons opté pour un logiciel de calcul existant depuis quelque années et qui est à notre porté : il s'agit du ETABS (version16.2.1)

IV.3.1. Présentation du programme ETABS :

ETABS est un logiciel de calcul des structures de génie civil (bâtiments.) ,Il offre de nombreuses possibilités d'analyse des effets statiques et dynamiques avec des compléments de conception. Il permet aussi la vérification des structures en béton armé ou en charpente métallique, L'interface graphique disponible facilite, considérablement, la modélisation et l'exploitation des résultats.

IV.3.2. Modélisation de rigidité :

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément linéaire type poutre (frame) à deux nœuds, chaque nœud possède 6 degré de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Chaque voile est modélisé par un élément surfacique type (Shell) à quatre nœud après on l'a divisé en mailles.
- A tout les planchers nous avons attribués une contrainte de type diaphragme ce qui correspond à des planchers infiniment rigide dans leur plan.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

IV.3.3.L'analyse:

Après la modélisation de la structure et la distribution des masses et des chargements ainsi que la définition des combinaisons de charges, on passe à l'analyse.

L'ETABS offre les possibilités d'analyses suivantes :

- Analyse statique linéaire.
- Analyse P-Delta.
- Analyse statique non linéaire.
- Analyse dynamique

IV.3.4.Modélisation de la masse :

- La charge des planchers est supposée uniformément répartie sur toute la surface du plancher.
- La masse est calculée par l'équation (G+ β Q) imposée par le RPA2024 avec (β =0,3 pour un bâtiment à usage d'habitation. (mass source).
- La masse volumique attribuée aux matériaux constituant les poteaux et les poutres est prise égale à celle du béton à savoir 2,5t/m³.
- La charge de l'acrotère et des murs extérieurs (maçonnerie) a été répartie aux niveaux des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).

IV.3.5.Conception du contreventement vertical :

Pour une bonne conception parasismique il faudra:

- Disposer les éléments de contreventement d'une manière symétrique dans chaque direction afin de limiter la torsion d'ensemble.
- Eloigner les éléments verticaux parallèles afin de disposer d'un grand bras de levier du couple résistant à torsion.
- Maximiser la largeur des éléments verticaux afin de diminuer la déformabilité horizontale.
- Superposer les éléments verticaux, afin de créer des consoles verticales de section constante ou élargies vers le bas.

IV.4. Etude sismique:

IV.4.1.Stratégie du calcul sismique :

Le choix des méthodes de calcul et la maîtrise de la modélisation de la structure ont comme objectif de prévoir aux mieux le comportement réel de l'ouvrage considéré. Les règles parasismiques Algériennes (RPA2024) propose trois méthodes de calcul des sollicitations, le calcul dont le choix est fonction à la fois du type de la structure et de la nature de l'excitation dynamique, il s'agit donc de s'orienter vers l'une ou l'autre des méthodes suivantes :

1. La méthode statique équivalente :

Le calcul statique équivalent implique la substitution au calcul dynamique des équivalents statiques qui sont censés produire les mêmes effets. Le calcul statique peut être considéré comme dérivant de l'analyse modale par les simplifications suivantes :

- Le mode fondamental est seul pris en compte.
- La déformée du mode fondamentale est arbitrairement assimilée à une droite pour les structure à portique et à une parabole pour les structures en voiles.

• Conditions d'applications :

Les conditions d'applications de la méthode statique équivalente sont :

Le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65m en zones I, IIetIII à 32m en zones IV V VI

Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant, outres les conditions de hauteur énoncées en haut, et les conditions complémentaires suivantes :

Zone VI:

- •groupe d'usage 3 et 2, si la hauteur est inférieur ou égale à 5 niveaux ou 17m.
- groupe d'usage 1B, si la hauteur est inférieur ou égale à 3 niveaux ou 11m.
- groupe d'usage 1A, si la hauteur est inférieur ou égale à 2 niveaux ou 8m.

La méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone **VI** de groupe d'usage 2 et sa hauteur dépasse les 17m.

2. La méthode d'analyse modale spectrale :

Il s'agit de mettre en évidence les modes propres du mouvement libre et d'introduire le spectre de dimensionnement qui fournit la valeur de la réponse maximale.

• Principe:

Il est recherché pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques, représentées par un spectre de calcul, ces effets sont par suite combinés pour obtenir la réponse de la structure.

Cette méthode est basée sur les hypothèses suivantes :

- Concentration des masses au niveau des planchers.
- Seuls les déplacements horizontaux des nœuds sont pris en compte.
- Le nombre de modes à prendre en compte est tel que la somme des coefficients massiques de ces modes soit aux moins égales 90%.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la repense totale de la structure.

Le minimum de modes à retenir est de trois (3) dans chaque direction considérée.

Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$$K \ge 3\sqrt{N}$$
 et $T_K \le 0.20 \sec$ (4-14)

Où : N est le nombre de niveaux au dessus de sol et T_K la période du mode K.

3. La méthode d'analyse dynamique par accélérogramme (temporelle) :

À partir des accélérogramme, elle donne la valeur de la réponse de la structure en fonction du temps.

IV.4.2. Choix de la méthode calcul:

Pour le choix de la méthode à utiliser, on doit vérifier un certain nombre de conditions suivant les règles en vigueur en Algérie (RPA2024).

Dans le cas de notre structure étudié la hauteur supérieurement à 17 m en zone VI, nous utiliserons la méthode d'analyse modale spectrale pour l'analyse sismique.

IV.4.3. Analyse spectrale:

IV.4.3.1. Méthode dynamique modale spectrale :

Il y a lieu de rappeler que la direction d'un séisme est aléatoire et que par conséquent il convient d'analyser une structure sous les deux composantes horizontales orthogonales d'un séisme agissant suivant les deux directions principales de celle-ci.

L'analyse spectrale permet d'avoir :

Pour chaque mode propre : la période, les facteurs des participations massique.

Pour chaque direction: déplacements, réactions et efforts correspondants à chacun des modes propres.

IV.4.3.2. Spectre de réponse :

Le règlement recommande le spectre de réponse de calcul donné par la fonction suivante :

$$\frac{S_{ad}}{g}(T) = \begin{cases} A.I.S.\left[\frac{2}{3} + \frac{T}{T_1}.(2.5\frac{Q_F}{R} - \frac{2}{3})\right] & si: 0 \le T < T_1 \\ A.I.S.\left[2.5\frac{Q_F}{R}\right] & si: T_1 \le T < T_2 \\ A.I.S.\left[2.5\frac{Q_F}{R}\right].\left[\frac{T_2}{T}\right] & si: T_2 \le T < T_3 \\ A.I.S.\left[2.5\frac{Q_F}{R}\right].\left[\frac{T_2.T_3}{T^2}\right] & si: T_3 \le T < 4s \end{cases}$$

Avec:

g: accélération de la pesanteur.

 $g = 9.81 \text{ m/s}^2$

A : coefficient d'accélération de calcul pour un sol de classe S1 pour la période de retour de non effondrement Tr=475 ans.

Pour notre cas:

• L'ouvrage est classé de (groupe 2). Donc : A= 0,30

η: Facteur de correction d'amortissement (quand l'amortissement est différent de 5%).

$$\eta = \sqrt{7/(2+\xi)} \ge 0,7$$

 ξ : Pourcentage d'amortissement critique.

avec
$$\xi = 7\% \rightarrow \eta = 0.8819$$

 ξ =7%. (Portique en béton armée et de remplissage dense).

T1 : limite inferieure des périodes correspondant au palier d'accélération spectrale constante T1=0.15 s

- T2 : limite supérieure des périodes correspondant au palier d'accélération spectrale constante ; T2=0.6 s
- T3 : valeur définissant le début de la branche a déplacement spectral constant ; T3=2 s
- I : coefficient d'importance ; I=1
- S : coefficient de site ; S=1,3

R : Coefficient de comportement de la structure qui reflète la ductilité de la structure. Il est en fonction du système de contreventement.

R=4,5 (4 : Système a contreventement mixte, équivalent a des voiles).

Qf: Facteur de qualité

Le facteur de qualité de la structure est fonction de :

- La redondance et de la géométrie des éléments qui la constituent.
- La régularité en plan et en élévation..

La valeur de **Q** déterminée par la formule : $Q = 1 + \sum_{i=1}^{6} P_q$ [2]

 P_q : Est la pénalité à retenir selon que le critère de qualité ${f q}$ "est satisfait ou non ".

Sa valeur est donnée par le tableau (RPA2024).

Critère q	Observée (o/n)	Q // xx	Observée (o/n)	Q // yy
Régularité en plan	Non	0.05	Non	0.05
Régularité en élévation	Oui	0.00	Oui	0.00
Conditions minimales sur le nombre étagé	Oui	0.00	Oui	0.00
Conditions minimales sur les travées	Oui	0.00	Oui	0.00

Tableau IV.1: Facteur de qualité.

Q//xx=1+(0.05+0+0+0)=1.05.

Q//yy=1+(0.05+0+0+0)=1.05.

Représentation graphique du spectre de réponse :

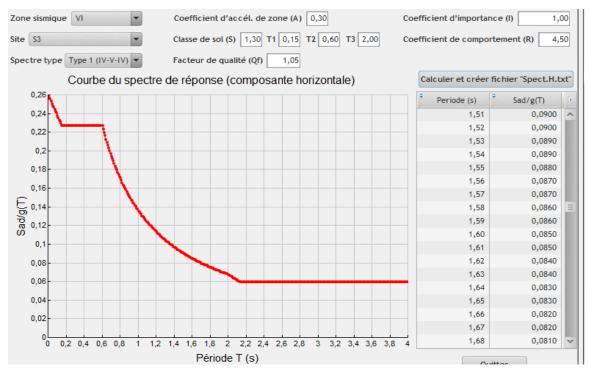


Figure IV.1 : Spectre de réponse.

Une fois le spectre de réponse injecté dans le fichier de données. La réponse sismique est obtenue sous différentes combinaisons de charges (G, Q et E)

> Résultante des forces sismiques de calcul :

La résultante des forces sismique a la base Vt obtenue par combinaison des valeurs modales ne doit pas être inférieure a 80% de la résultante des forces sismique déterminer par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si Vt<0,8V il faudra augmenter tous les paramètres de la réponse (forces, déplacements, Moments ...) dont le rapport est de : $r=\frac{0.8V}{Vt}$

Où:

Vt : tirer par logiciel de calcul (modale spectrale).

V : obtenu par la méthode statique équivalente.

> Calcul de la force sismique par la méthode statique équivalente :

Cette force V appliquée à la base de la structure doit être calculée successivement dans les deux directions horizontales par la formule suivante :

Avec:

 $\frac{\text{Sad}}{\text{g}}$: Ordonnee du spectre de calcul pour la période T0;

T0 : Période fondamentale de vibration du bâtiment, pour le mouvement de translation dans la Direction considérée.

W: Poids total de la structure.

Estimation de la période fondamentale de la structure (T) :

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculées par des méthodes analytiques ou numériques.

Les formules empiriques à utiliser selon le RPA2024 sont :

$$T = C_T \times h_N^{3/4}$$

$$C_T = 0.05$$

 h_N : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

$$h_N = 29.34 \text{ m}$$

$$\rightarrow$$
 T = C_T × hn^{3/4} = 0,05 × (29.34)^{3/4} = 0,63 sec,

$$T0=0.63 \text{ s Alors} => \frac{\text{Sad}}{\text{g}} = 0.217$$

$$\lambda = \left\{ \begin{array}{l} 0.85 : \text{si } T_0 \leq (2.T_2) \text{ et si le bâtiment a plus de 2 niveaux} \\ 1, \text{ autrement} \end{array} \right.$$

$$T0=0.63 \text{ s} < 2T2=2*0.6 = 1.2 \text{ s} \quad \lambda=0.85$$

Donc:

$$Vx = Vy = 0.85 * 0.217 * W = 0.184W$$

IV.5 Résultats de l'analyse sismique :

1-Modèle initial:

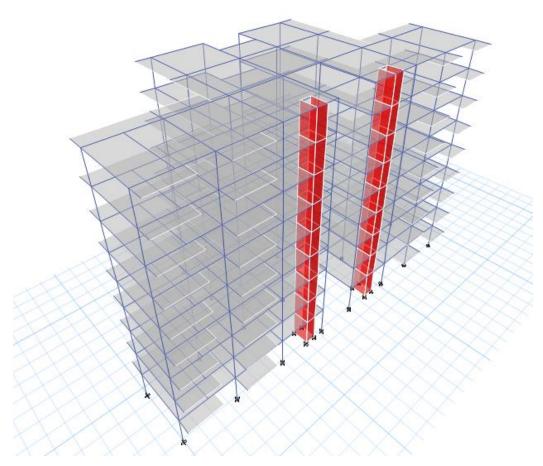


Figure IV.2 : Vue en 3D du modèle initial

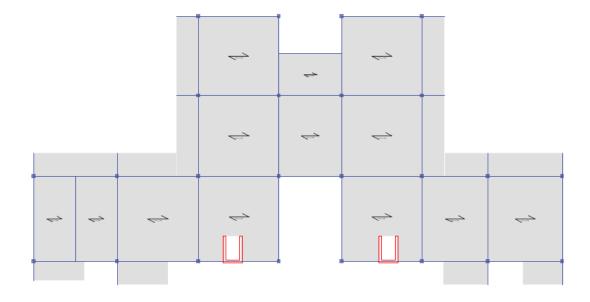


Figure IV.3 : Vue en 2D du modèle initial

Caractéristiques dynamiques propres :

Tableau IV.2: Participation massique du modèle initial.

Mode	Période (sec)	UX (%)	UY (%)	SumUX (%)	SumUY (%)
1	1,766	0,2486	0,0032	0,2486	0,0032
2	1,538	0,0019	0,6923	0,2505	0,6955
3	1,239	0,4783	0,0002	0,7288	0,6956
4	0,592	0,0482	0,0004	0,777	0,696
5	0,423	0,0005	0,1635	0,7775	0,8595
6	0,36	0,1092	0,0003	0,8867	0,8598
7	0,312	0,0142	0,0001	0,9009	0,8599
8	0,2	0,0134	0,0001	0,9143	0,86
9	0,182	0,0008	0,0628	0,9152	0,9228
10	0,17	0,0333	0,001	0,9484	0,9238
11	0,141	0,0063	0,0002	0,9547	0,924
12	0,113	0,0044	0,0003	0,9591	0,9242

Constatation:

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =1,766 sec.
- La participation massique dépasse le seuil des 90% à partir du 9ème mode.
- Le 1^{er} mode est un mode rotation.
- Le 2^{ème} mode est un mode translation Y-Y.
- Le 3^{ème} mode est un mode translation X-X.

Dans le contexte de la rotation 1^{er} mode de rotation qui nécessite l'ajoute de voiles pour ajuster la participation de la structure.

Les voiles ajoutés peuvent aider la contrôler la rotation et la distribution des force dans la structure.

1-Modèle 1:

• Disposition des voiles :

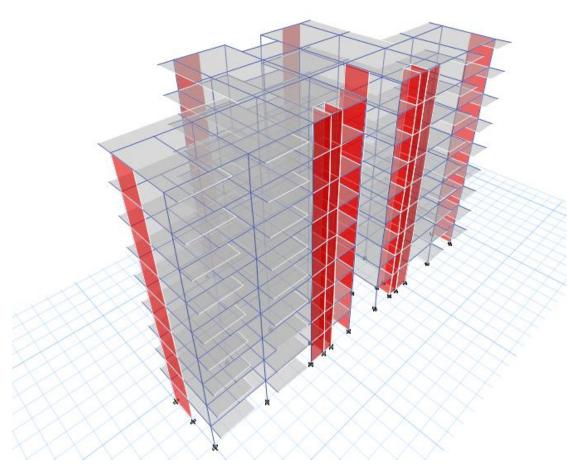


Figure IV.4 : Vue en 3D du modèle 1.

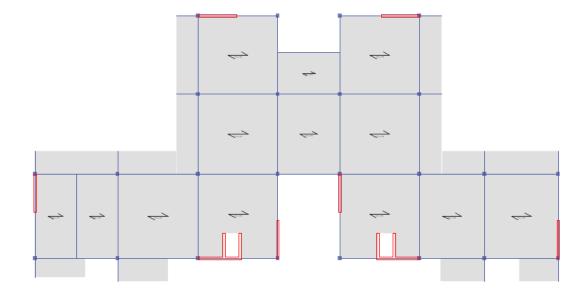


Figure IV.5 : Vue en 2D du modèle 1.

a-Caractéristiques dynamiques propres :

Tableau IV.3: Participation massique du modèle 1.

Mode	Période (sec)	UX (%)	UY (%)	SumUX (%)	SumUY (%)
1	1,019	0,0002	0,6795	0,0002	0,6795
2	0,963	0,6366	2,666E-05	0,6368	0,6795
3	0,857	0,0482	0,0016	0,685	0,6812
4	0,245	0,0005	0,1761	0,6855	0,8573
5	0,234	0,1728	0,0003	0,8583	0,8576
6	0,206	0,0067	0,0003	0,865	0,8579
7	0,101	0,0002	0,0671	0,8652	0,9251
8	0,1	0,0676	0,0003	0,9329	0,9254
9	0,086	0,0003	0,0001	0,9332	0,9254
10	0,058	0,0324	0,0008	0,9656	0,9262
11	0,056	0,0008	0,0338	0,9664	0,96
12	0,048	3,399E-05	0,0001	0,9664	0,9601

Constatation:

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =1,019 sec.
- La participation massique dépasse le seuil des 90% à partir du 8ème mode.
- Le 1^{er} mode est un mode translation Y-Y
- Le 2^{ème} mode est un mode translation X-X
- Le 3^{ème} mode est un mode rotation

b-Résultantes des forces sismiques :

D'après le fichier des résultats de « ETABS » on a :

W = 44161.4969 KN , V=0,184W

Vx=Vy=8125.72 KN => 0.8Vx=0.8Vy = 6500.57 KN

Vtx = 6500.68 KN

Vty = 6500.87 KN

(Vtx>0,8Vx et Vty>0,8Vty) => Condition vérifié.

c-Vérification du critère de l'effort normal réduit :

$$(v = \frac{N_d}{B_c.f_{c28}}) \le 0.35$$

Avec:

B_c: section de poteau

 N_d : G+0,2Q+E1 , G+0,2Q+E2

Les résultats sont regroupés dans le tableau suivant :

Tableau IV.4 : Vérification de l'effort normal pour les poteaux.

Niveau	Spoteaux	N_d	u	$v_{ m RPA}$	Observations
RDC	40x40	2926,10	0,61	0,35	Non vérifiée
1 ^{ème}	40x40	2603,07	0,54	0,35	Non vérifiée
2 ^{ème}	40x40	2270,82	0,47	0,35	Non vérifiée
3 ^{ème}	35x35	1933,12	0,53	0,35	Non vérifiée
4 ^{ème}	35x35	1599,32	0,44	0,35	Non vérifiée
5 ^{ème}	30x30	1271,59	0,47	0,35	Non vérifiée
6 ^{ème}	30x30	956,80	0,35	0,35	vérifiée
7 ^{ème}	30x30	647,84	0,24	0,35	vérifiée
8 ^{ème}	30x30	346,27	0,13	0,35	vérifiée

Remarque:

Les efforts normaux réduits dépassent les valeurs admissibles imposées par le

Tableau IV.5: nouveau section des poteaux

Niveau	$S_{ m poteaux}$
$RDC \rightarrow 1^{er}$	55x55
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45
$6^{\mathrm{\`e}me} \rightarrow 8^{\mathrm{me}}$	40x40

[&]quot;RPA2024". Donc il faut augmenter les sections des poteaux dans la structure.

Modèle final:

• Disposition des voiles :

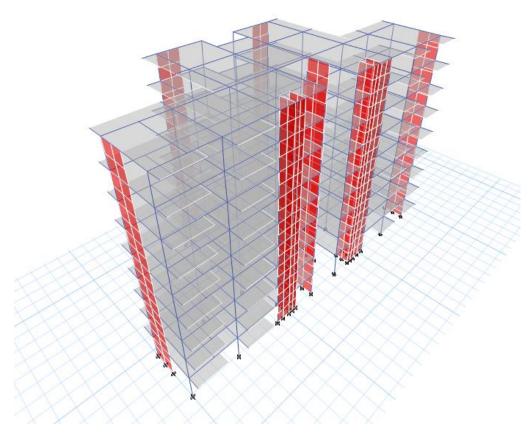


Figure IV.6 : Vue en 3D du modèle final

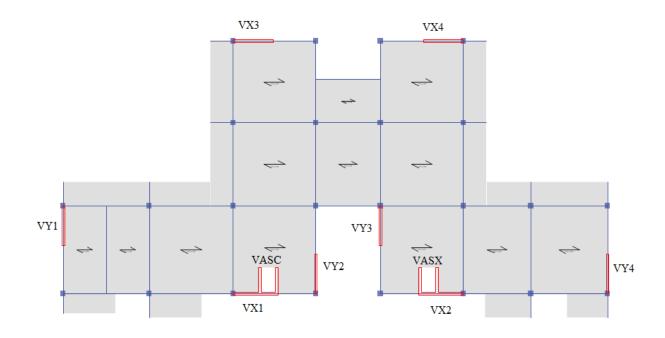


Figure IV.7 : Vue en 2D du modèle final.

a-Caractéristiques dynamiques propres :

Tableau IV.6: Participation massique du modèle final.

Mode	Période (sec)	UX (%)	UY (%)	SumUX (%)	SumUY (%)
1	0,878	0,0008	0,691	0,0008	0,691
2	0,835	0,6683	0,0005	0,6692	0,6915
3	0,747	0,0247	0,0012	0,6939	0,6927
4	0,225	0,0006	0,1685	0,6944	0,8612
5	0,214	0,1703	0,0005	0,8647	0,8617
6	0,19	0,004	0,0002	0,8688	0,8619
7	0,097	0,0009	0,0667	0,8697	0,9286
8	0,095	0,0668	0,0008	0,9365	0,9294
9	0,082	0,0001	4,789E-05	0,9366	0,9295
10	0,057	0,0323	0,0001	0,9689	0,9296
11	0,056	0,0001	0,0343	0,9689	0,9639
12	0,048	0,0001	2,065E-05	0,969	0,9639

Constatation:

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0,878sec.
- La participation massique dépasse le seuil des 90% à partir du 8ème mode.
- Le 1^{er} mode est un mode translation Y-Y
- Le 2^{ème} mode est un mode translation X-X
- Le 3^{ème} mode est un mode rotation

b-Résultantes des forces sismiques :

D'après le fichier des résultats de « ETABS » on a :

W= KN45762.96, V=0,184W

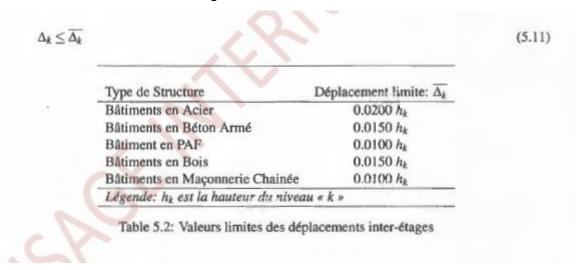
Vx=Vy=8440.97 KN => 0.8Vx=0.8Vy = 6752.78 KN

Vtx = 6752.80 KN

Vty= 6752.79 KN

(Vtx>0,8Vx et Vty>0,8Vty) => Condition vérifié.

c-Vérification du critère de l'effort normal réduit :


Tableau IV.7 : Vérification de l'effort normal pour les poteaux.

Niveau	Spoteaux	N_d	u	$ u_{\mathrm{RPA}}$	Observations
$RDC \rightarrow 1^{\text{ème}}$	55x55	3135,12	0,35	0,35	vérifiée
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	2450,00	0,33	0,35	vérifiée
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	1728,87	0,28	0,35	vérifiée
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	1031,01	0,21	0,35	vérifiée

Vérification des déplacements inter-étage :

L'une des vérifications préconisées par le **RPA2024**, concerne les déplacements latéraux inter étages.

En effet, selon le RPA2024 l'inégalité ci-dessous doit nécessairement être vérifiée :

Avec:

Où : he représente la hauteur de l'étage.

Avec: $\delta k = \frac{R}{OF} \delta e k$

δek : Déplacement élastique du aux forces sismiques Fi (y compris l'effet de torsion)

R : Coefficient de comportement

QF: Coefficient de qualité

Le déplacement relatif, au niveau "k" par rapport au niveau "k-1", est égal a :

 $\Delta k = \delta k - \delta k - 1$

 Δ_K^x : Correspond au déplacement relatif au niveau K par rapport au niveau K-1 dans le sens x-x (idem dans le sens y-y, Δ_K^y).

Exemple:

sans x-x
$$8^{\text{eme}}$$
 étage => δ ek=5,43 cm 7^{eme} étage δ ek=4,76 cm $\frac{R}{QF} = \frac{4.5}{1.05} = 4.29$

$$\Delta k = \delta k - \delta k - 1 = 4.29*(5,43-4,76) = 2.88cm =>$$

 $\Delta k = 2.88 \text{cm} < 0.015*324 \text{cm} = 4.86 \text{cm}$

 $\delta_{eK}^{x}(cm)$ $\delta_{eK}^{y}(cm)$ $\Delta_K^x(cm) \mid \Delta_K^y(cm)$ **Etage** $\overline{\Delta}(cm)$ Observation 5,43 Vérifié 8 5,72 2,88 3,02 4,86 7 4,76 5,02 3,03 3,17 4,86 Vérifié 6 4,05 4,28 3,15 3,31 4,86 Vérifié 5 3,32 3,50 3,17 3,34 Vérifié 4,86 4 2,58 3,09 Vérifié 2,73 3,27 4,86 3 1,86 1,96 2,84 3,02 4,86 Vérifié 2 1,19 1,26 2,44 2,59 Vérifié 4,86 1 0,62 1,79 Vérifié 0,65 1,90 4,86

Tableau IV.8: Vérification des déplacements inter-étage du modèle final

Vérification du critère de l'effort normal réduit VOILE :

0,21

Outre les vérifications prescrites par le C.B.A et dans le but d'éviter ou limiter le risque de rupture Fragile (en flexion composée), sous sollicitations d'ensemble dues au séisme, l'effort normal de Compression de calcul des voiles est limite par la condition suivante

0,88

0,89

5,13

Vérifié

$$(v = \frac{N_d}{B_c.f_{c28}}) \le 0.40$$

Nd : effort applique en flexion composée

0,21

Bc: section de voile e*L

RDC

Tableau IV.9 : Vérification de l'effort normal pour les Voiles.

voile	S _{voile cm}	N _d	v	$v_{ m RPA}$	Observations
VX (1/2/3/4)	20x300	4807,79	0,27	0,4	vérifiée
VY (1/2/3/4)	20x300	4299,57	0,24	0,4	vérifiée

Remarque:

- Les déplacements relatifs inter étages sont inférieurs à la limite imposée par le «RPA2024».
- Les efforts normaux réduits (Poteau et voile) sont inférieurs à la limite imposée par le «RPA2024».

d-Justification vis-à-vis de l'effet $P-\Delta$ (les effets du second ordre) :

C'est le moment additionnel dû au produit de l'effort normal dans un poteau au niveau d'un nœud de la structure par le déplacement horizontal du nœud considéré.

Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux:

$$\theta = \frac{P_K \Delta_K}{V_K h_K} \le 0.10 \text{ "RPA2024"}$$

Avec:

 p_k : Poids total de la structure et des charges d'exploitations associées au dessus du niveau

$$P_K = \sum_{i=k}^{n} (W_{Gi} + \beta W_{Qi})$$

K: V_{κ} : Effort tranchant d'étage au niveau 'K'

 Δ_k : Déplacement relatif du niveau 'K' par rapport au niveau 'K-1'.

 h_k : Hauteur d'étage 'k' comme indique-la figure

Les résultats sont regroupés dans le tableau suivant :

Tableau IV.10 : Vérification l'effet $P-\Delta$ inter étages du modèle final.

Niveau	PK(KN)	Vx(KN)	Vy(KN)	Δx (cm)	Δy (cm)	Hk(m)	θх	θу	condition	observation
8	5591,17	1811,02	1833,29	2,88	3,02	3,24	0,03	0,03	0,10	vérifiée
7	10471,84	3004,03	3016,68	3,03	3,17	3,24	0,03	0,03	0,10	vérifiée
6	15352,51	3914,66	3919,16	3,15	3,31	3,24	0,04	0,04	0,10	vérifiée
5	20307,92	4666,86	4664,76	3,17	3,34	3,24	0,04	0,04	0,10	vérifiée
4	25263,33	5299,57	5295,01	3,09	3,27	3,24	0,05	0,05	0,10	vérifiée
3	30303,21	5838,73	5838,14	2,84	3,02	3,24	0,05	0,05	0,10	vérifiée
2	35343,09	6270,96	6274,83	2,44	2,59	3,24	0,04	0,05	0,10	vérifiée
1	40477,15	6587,65	6594,03	1,79	1,9	3,24	0,03	0,04	0,10	vérifiée
RDC	45762,96	6752,80	6752,78	0,88	0,89	3,42	0,02	0,02	0,10	vérifiée

Vu les résultats obtenus les conditions $\theta_x et \theta_y \le 0,1$ est satisfaites, d'ou les effets du 2° ordre (ou effet P- Δ) peuvent être négligés.

e-Vérification des conditions du facteur de comportement R :

e-1- Justification des voiles sous charges horizontale :

X-X

L'effort sismique total à la base de la structure V_{Tot} = 6752.79 kN.

L'effort sismique à la base repris par les Voiles V_{VOILE}= 5499.99 KN

$$P_{VOILEe}/P_{Tot} = 81.44 \% > 65\%$$
.

у-у

L'effort sismique total à la base de la structure V_{Tot} = 5627.84 kN.

L'effort sismique à la base repris par les voiles V_{VOILE}= 6752.78 kN

$$P_{VOILE}/P_{Tot} = 83.34 \% > 65\%$$
.

Remarque:

la résistance a l'effort tranchant, a la base du bâtiment, dépasse 65 % de la résistance a l'effort tranchant du système structural dans son ensemble donc Système a contreventement mixte, équivalent a des voiles non justifie si change le système a Système de contreventement constitue par des voiles (système 5)

Conclusion:

Les étapes de vérification suivie pour définir le modèle finale étaient de:

- comparer l'effort tranchant à la base obtenu par l'approche statique équivalente (=0.8* $V_{(mse)}$) qui ne doit pas dépassé la résultante des forces a la base V_t obtenue par combinaison des valeurs modales ,cet effort(0.8* $V_{(mse)}$) représente l'effort tranchant minimale.
- Vérifier les déplacements inter-étage qui est un indice de dommage de l'étage.
- Vérifier l'effet P- Δ pour la stabilité de structure vis-à-vis de moment de 2ème ordre.
- L'effort normal réduit pour prendre on considération du béton sous la composante verticale du séisme.
- Justifier le choix de facteur de comportement qui est un paramètre qui reflète la ductilité de la structure ; il dépend du système de contreventement de la structure.
 Dans notre cas on a choisit un facteur R=4,5

CHAPITRE V

FERRAILLAGE DES
ELEMENTS
RESISTANTS

V.1.INTRODUCTION:

Le ferraillage des éléments résistants devra être conforme aux règlements en vigueur en l'occurrence le **BAEL 91** et le **RPA2024**.

V.2.FERRAILLAGE DES POTEAUX:

V.2.1. Introduction:

Les poteaux sont des éléments structuraux verticaux, ils constituent des points d'appuis pour les poutres et jouent un rôle très important dans la transmission des efforts vers les fondations.

Les sections des poteaux sont soumises à la flexion composée (M, N) qui est due à l'excentricité de l'effort normal "N" par rapport aux axes de symétrie, et à un moment fléchissant "M" dans le sens longitudinal et transversal (dû à l'action horizontale).

Une section soumise à la flexion composée peut être l'un des trois cas suivants:

Section entièrement tendue SET.

Section entièrement comprimée SEC.

Section partiellement comprimée SPC.

Les armatures sont obtenues à l'état limite ultime (E.L.U) sous l'effet des sollicitations les plus défavorables et dans les situations suivantes:

a. Situation durable:

Béton: $\gamma_b=1,5$; $f_{c28}=30MPa$; $\sigma_{bc}=17MPa$

Acier: γ_s =1,15; Nuance FeE500; σ_s =435MPa

b. Situation accidentelle:

Béton: γ_b =1,20 ; f_{c28} =30MPa ; σ_{bc} =21.25MPa

Acier: γ_s =1,00 ; Nuance FeE500 ; σ_s =500MPa

V.2.2. Combinaisons d'actions :

En fonction du type des sollicitations, nous distinguons les différentes combinaisons suivantes:

Situation durable: 1,35G+1,5Q et G+Q

Situation accidentelle: G+Q+E1, G+Q+E2

Avec:

G: Charge permanente.

Q: Surcharge d'exploitation.

E: Action du séisme.

A partir de ces combinaisons, on distingue les cas suivants:

- 1- N^{max}, M^{corr}
- 2- M^{max}, N^{corr}
- $3-N^{min}$, M^{corr} ($N^{min} = N$ traction)

V.2.3. Recommandation selon RPA2024:

D'après le RPA2024, pour une zone sismique VI, les armatures longitudinales doivent être à haute adhérence, droites et sans crochet.

Leur pourcentage est limité par:

$$-1\% < \frac{As}{R} < 4\%$$
 Zone courante (Z.C)

- 1%
$$< \frac{As}{B} < 8\%$$
 Zone de recouvrement (Z.R)

Avec:

A_s: La section d'acier.

B: Section du béton [cm²].

Le diamètre minimal est de 12mm.

La longueur minimale de 60Ø en zone de recouvrement..

Situation accidentelle:

Combinaison : G+Q+E1/G+Q+E2

Tableau V.1: Ferraillages des poteaux situation accidentelle (N^{max},M^{corr}).

Niveaux	Sections (cm ²)	N ^{max} (kN)	M ^{corr} (kNm)	Sollicitation	A's (cm ²)	A _{s/nap} (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
$RDC \rightarrow 1^{\text{ème}}$	55x55	3135,12	128,03	SEC	0	0	30.25
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	2450,00	230,09	SEC	0	0	25
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	1728,87	99,33	SEC	0	0	20.25
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	1031,01	77,31	SEC	0	0	16

Tableau V.2: Ferraillages des poteaux situation accidentelle (N^{min},M^{corr}).

Niveaux	Sections (cm ²)	N ^{min} (kN)	M ^{corr} (kNm)	Sollicitation	A' _s (cm ²)	A _{s/nap} (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
$RDC \rightarrow 1^{\text{ème}}$	55x55	-1473,76	15,38	SET	14,12	15,35	30.25
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	-1202,65	125,34	SET	6.46	17.6	25
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	-772,06	147,50	SET	0.35	15.1	20.25
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	-375,84	127,37	SPC	0	10.89	16

Tableau V.3: Ferraillages des poteaux situation accidentelle (M^{max},N^{corr}).

Niveaux	Sections (cm ²)	N ^{cor} (kNm)	M ^{max} (kN)	Sollicitation	A's (cm ²)	A _{s/nap} (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
$RDC \rightarrow 1^{\text{ème}}$	55x55	2438,05	330,30	SEC	0	0	30.25
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	1790,33	398,45	SPC	0	7.48	25
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	1127,96	373,00	SPC	0	14.13	20.25
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	271,11	298,13	SPC	0	17.1	16

Combinaison: 1.35G+1.5Q

Tableau V.4: Ferraillages des poteaux situation Durable (N^{max},M^{corr}).

Niveaux	Sections (cm ²)	N ^{max} (kN)	M ^{corr} (kNm)	Sollicitation	A' _s (cm ²)	A _{s/nap} (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
$RDC \rightarrow 1^{\text{ème}}$	55x55	4237,52	19,53	SEC	0	0	30.25
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	3243,81	23,43	SEC	0	0	25
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	2315,51	23,55	SEC	0	0	20.25
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	1408,18	21,07	SEC	0	0	16

Tableau V.5: Ferraillages des poteaux situation Durable (N^{min},M^{corr}).

Niveaux	Sections (cm ²)	N ^{min} (kN)	M ^{corr} (kNm)	Sollicitation	A' _s (cm ²)	A _{s/nap} (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
$RDC \rightarrow 1^{\text{ème}}$	55x55	550,12	14,53	SEC	0	0	30.25
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	393,74	15,54	SEC	0	0	25
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	247,10	14,91	SEC	0	0	20.25
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	50,64	16,91	SPC	0	0.38	16

Tableau V.6: Ferraillages des poteaux situation Durable (M^{max},N^{corr}).

Niveaux	Sections (cm ²)	M ^{max} (kN)	N ^{cor} (kNm)	Sollicitation	A's (cm ²)	A _{s/nap} (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
$RDC \rightarrow 1^{\text{ème}}$	55x55	1901,63	107,53	SEC	0	0	30.25
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	1394,61	105,73	SEC	0	0	25
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	919,75	109,48	SEC	0	0	20.25
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	251,54	114,18	SEC	0	0	16

V.2.4. Choix des armatures :

Tableau V. 4: Choix des armatures des poteaux.

NIVEAU	SECTION [cm ²]	A _{RPA} [cm ²]	A _{s/nap necc} [cm ²]		
$RDC \rightarrow 1^{\text{ème}}$	55x55	30.25	15,35	4HA25+8HA20+4HA16	52.8
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	25	17.6	4HA25+8HA20+4HA16	52.8
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	20.25	15.1	4HA25+8HA20+4HA16	52.8
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	16	17.1	4HA25+8HA20+4HA16	52.8

V.2.5. Vérification vis-à-vis de l'état limite de service :

Les contraintes sont calculées à l'état limite de service sous (M_{ser}, N_{ser}) (voir annexe)., puis elles sont comparées aux contraintes limites :

Béton:

On doit vérifier que :

$$\sigma_{bc} = \frac{M^{Ser}}{I} \cdot y \le \overline{\sigma_{bc}} = 0.6F_{bc} = 18\text{MPA}$$

b. Acier:

La fissuration est considérée préjudiciable, alors :

Avec

 $\eta = 1.6$ pour les aciers H.A

On doit vérifier que :

$$\sigma_S = n \cdot \frac{M_{Ser}}{I} \cdot (d - y) \le \overline{\sigma_S} = 250 \text{MPA}$$
:

Tableau V.8 : Vérification des contraintes pour les poteaux.

Niveaux	Sections (cm ²)	N _{ser} ^{max} (kNm)	M _{ser} corr (kN)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Vérification
$RDC \rightarrow 1^{\text{ème}}$	55x55	3062,80	14,03	133.5	250	8.93	18	Vérifiée
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	2346,12	17,79	123.2	250	8,27	18	Vérifiée
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	1675,10	17,73	107,3	250	7,24	18	Vérifiée
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	1019,44	15,89	82.4	250	5,6	18	Vérifiée

Tableau V.9: Vérification des contraintes pour les poteaux.

Niveaux	Sections (cm ²)	N _{ser} min (kNm)	M _{ser} corr (kN)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Vérification
$RDC \rightarrow 1^{\text{ème}}$	55x55	403,11	10,59	20,5	250	1,39	18	Vérifiée
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	288,43	11,34	19	250	1,3	18	Vérifiée
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	180,97	10,89	16.5	250	1,15	18	Vérifiée
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	37,14	12,40	11.7	250	0,89	18	Vérifiée

Tableau V.5: Vérification des contraintes pour les poteaux.

Niveaux	Sections (cm ²)	N ^{ser} cor (kNm)	M ^{ser} max (kN)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Vérification
$RDC \rightarrow 1^{\text{ème}}$		949,01	74,14	65,1	250	4,51	18	Vérifiée
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	1013,15	76,96	82.2	250	5,72	18	Vérifiée
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	668,64	79,71	82,2	250	5,85	18	Vérifiée
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	184,16	83,28	75,9	250	5,86	18	Vérifiée

V.2.6. Vérification de l'effort tranchant :

V.2.6.1. Vérification de la contrainte de cisaillement :

Il faut vérifier que : $\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$

Avec:

T_u: L'effort tranchant à l'état limite ultime.

b: Largeur de la section du poteau.

d: Hauteur utile de la section du poteau.

 τ_u : Contrainte de cisaillement.

 $\bar{\tau}_u$: Contrainte limite de cisaillement du béton.

La valeur de la contrainte $\bar{\tau}_u$ doit être limitée aux valeurs suivantes :

Selon le BAEL 91 modifie 99:

$$\bar{\tau}_{\mu} = Min(0.13f_{c28}.5MPa)$$
 Fissuration peu nuisible.

Selon le RPA2024:

$$\bar{\tau}_u = \rho_d f_{c28}$$

$$\rho_d$$
=0,075.....si l'élancement $\lambda \ge 5$

$$\rho_d$$
=0,040.....si l'élancement λ <5

Avec:

λ: L'élancement du poteau

i: Rayon de giration.

I : Moment d'inertie de la section du poteau dans la direction considérée.

B: Section du poteau.

L_f: Longueur de flambement.

Les résultats sont regroupés dans le tableau suivant :

Tableau V.6: Vérification de la contrainte de cisaillement pour les poteaux.

Niveaux	Section (cm ²)	T _u (kN)	τ _u (MPa)	λ	ρ _d	$ar{ au}_u^{RPA}$ (MPa)	$ar{ au}_u^{BAEL}$ (MPa)	Vérification
$RDC \rightarrow 1^{\text{ème}}$		191,99	0,71	23,64	0.075	2.25	3	Vérifiée
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	201120	248,85	1,11	21,21	0.075	2.25	3	Vérifiée
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	235,38	1,29	21,21	0.075	2.25	3	Vérifiée
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	196,86	1,37	21,21	0.075	2.25	3	Vérifiée

V.2.6.2. Ferraillage transversal des poteaux :

Les armatures transversales sont déterminées à partir des formules du RPA2024; elles sont données comme suit :

Selon le 2024:

$$\frac{At}{t} = \frac{paVu}{fe * h}$$

Avec:

A_t: Section d'armatures transversales.

t: Espacement des armatures transversales.

V_u: Effort tranchant à l'ELU.

f_e: Contrainte limite élastique de l'acier d'armatures transversales.

h: Hauteur totale de la section brute.

ρ_a: Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.

$$\rho_a$$
=2,5.....si λ_g \geq 5

$$\rho_a$$
=3,75.....si λ_g <5

 λ_g : Espacement géométrique.

L'espacement des armatures transversales est déterminé comme suit :

 $S_t \leq 10$ cm....Zone nodale (zone VI).

$$S_t \le Min\left(\frac{b}{2}; \frac{h}{2}; 10\phi_t\right)$$
.....Zone courante (zone VI).

Ø₁: Diamètre minimal des armatures longitudinales du poteau.

La quantité d'armatures transversales minimale $\frac{A_t}{Sh}$ en (%) est donnée comme suite :

$$\left[0,3\%....si\,\lambda_g\,\geq 5\right]$$

$$\left\{0,8\%....si\,\lambda_{g}\leq3\right\}$$

 $\begin{cases} 0,3\%.....si \ \lambda_g \geq 5 \\ 0,8\%.....si \ \lambda_g \leq 3 \\ Interpolation \ entre \ les \ valeurs \ lim \ ites \ précédentes \ si \ 3 \ \pi \ \lambda_g \ \pi \ 5 \end{cases}$

 λ_g : L'élancement géométrique du poteau $\left(\lambda_g = \frac{L_f}{a}\right)$

a : Dimension de la section droite du poteau.

L_f: Longueur du flambement du poteau.

Pour les armatures transversales f_e=500MPa (FeE500).

Le tableau suivant rassemble les résultats des espacements maximums des poteaux :

Tableau V.7: Espacements maximales selon RPA2024.

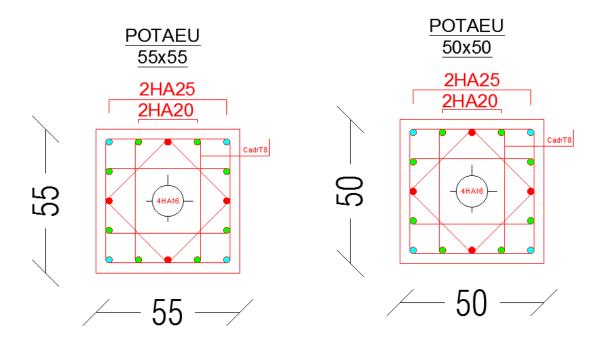
	Section			S_{t} (cm)		
Niveaux	(cm ²)	Barres	Ø _l (mm)	Zone nodale	Zone courante	
$RDC \rightarrow 1^{\text{ème}}$	55x55	4HA25+8HA20+4HA16	25	10	15	
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	4HA25+8HA20+4HA16	25	10	15	
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	45x45	4HA25+8HA20+4HA16	25	10	15	
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	4HA25+8HA20+4HA16	25	10	15	

Le choix des armatures transversales est regroupé dans le tableau suivant :

Tableau V.8: Choix des armatures transversales pour les poteaux.

Niveaux	Section (cm ²)	λ _g (%)	ρ_a	T _u ^{max} (kN)	Zone	S _t (cm)	$\begin{array}{c} A_t^{\text{ cal}} \\ (\text{cm}^2) \end{array}$	Choix	A_s^{adp} (cm^2)
$RDC \rightarrow 1^{\text{ème}}$	55x55	4.35	3,75	191,99	N	10	0.99	8T8	4.02
$ KDC \rightarrow 1 $	JJXJJ	4.33	3,73 191,99	C	15	1,44	8T8	4.02	
$2^{\text{ème}} \rightarrow 3^{\text{ème}}$	50x50	4.54	3,75	248,85	N	10	3,99	8T8	4.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	JUXJU	4.54	3,73	240,03	С	15	1.65	8T8	4.02
$4^{\text{ème}} \rightarrow 5^{\text{me}}$	15 15	5.04	2.5	225 20	N	10	2.1	8T8	4.02
$4 \rightarrow 3$	$^{\text{ne}} \rightarrow 5^{\text{me}} \mid 45\text{x}45 \mid 5.04 \mid 2,3$	2,5	235,38	С	15	3,20	8T8	4.02	
$6^{\text{ème}} \rightarrow 8^{\text{éme}}$	40x40	5 67 25	101.00	N	10	2,56	8T8	4.02	
$0 \rightarrow 8$	40X40	5.67	2,5	191,99	С	15	3,80	8T8	4.02

Longueur de recouvrement :


La longueur minimale de recouvrement est de : L_r =60 \emptyset_1 en **zone VI**.

Pour:

 \emptyset =25mm....L_r=150cm

 \emptyset =20mm....L_r=120cm

 \emptyset =16mm....L_r=96cm

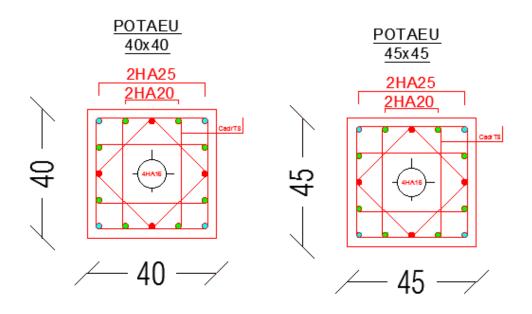


Figure V.1: Schéma de ferraillages des poteaux.

V.3. FERRAILLAGE DES POUTRES:

V.3.1.Introduction:

Le ferraillage des éléments résistants devra être conforme aux règlements en vigueur.

V.3.2. Les combinaisons de charges :

En fonction du type de sollicitation, nous distinguons les différentes combinaisons suivantes :

Combinaisons exigées par le "CBA 93"[6]:

$$E.L.U: 1.35 G + 1.5 Q$$

$$E.L.S:G+Q$$

Combinaisons exigées par le "RPA 2024":

$$G + Q + E1 / G + Q + E2$$

G: charge permanente.

Q: charge d'exploitation.

E: charge sismique.

V.3. 3. Recommandation du rpa2024:

Selon Le pourcentage des aciers longitudinaux sur toute la longueur de la poutre est donné par :

$$> 0.5\% \le \frac{A}{b.h} \le 4\%$$
 au niveau de la zone courante.

>
$$0.5\% \le \frac{A}{b h} \le 6\%$$
 au niveau de la zone de recouvrement.

b : largeur de la poutre.

h: hauteur de la poutre.

 \triangleright La longueur minimale de recouvrement est de 60 Φ (zone III).

L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°.

La quantité d'armatures " A_t " est donnée par : A_t = 0.003 St. L.

L : longueur de la poutre.

S_t: espacement de deux cadres consécutifs, il est donné par :

$$S_t \le Min \left\lceil \frac{h}{4}; 12\phi \right\rceil$$
 (Zone nodale).

$$S_t \leq \frac{h}{2}$$
 (Zone courante).

h: hauteur de la poutre.

φ: Le plus grand diamètre d'acier.

Les armatures longitudinales sont déterminées en tenant compte des deux situations suivantes :

> Situation durable :

Béton : $\gamma_b = 1.5$; $f_{c28} = 30$ MPa ; $\sigma_{bc} = 17$ MPa.

Acier : $\gamma_s = 1.15$; FeE 500 ; $\sigma_s = 435$ MPa.

> Situation accidentelle:

Béton : $\gamma_b = 1.2$; $f_{c28} = 30$ MPa ; $\sigma_{bc} = 21.25$ MPa.

Acier : $\gamma_s = 1$; FeE 500 ; $\sigma_s = 500$ MPa.

V.3.4.Calcul du ferraillage :

Pour le cas de notre structure, les efforts sont déterminés par le logiciel ETABS.

On dispose un seul type de poutre :

Poutre porteuse => $30x55 \text{ (cm}^2\text{)}$

 $30x50 \text{ (cm}^2\text{)}$ Poutre non porteuse =>

Les tableaux suivants regroupent tous les résultats des efforts ainsi que les sections d'armatures calculées par le logiciel (SOCOTEC) pour chaque type de poutres sous les différentes combinaisons de charge

Remarque:

Les poutres de notre structure seront calculées à la flexion simple (F.S.).

Telle que:

As: représente les armatures de la fibre inférieure (tondue).

A'_s: représente les armatures de la fibre supérieure (comprimée).

➤ Poutre porteuse (30x 55)

a. Situation durable 1,35G+1,5Q:

Tableau V. 9: Ferraillage des poutres porteuses (Situation Durable).

Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)	A _s ' (cm ²)	A _S ^{min} (cm ²)
30x55	Travée	153,35	6,25	0	8.25
SUXSS	Appui	-233,08	11,23	0	8.25

b. Situation accidentelle G+Q+E1/2:

Tableau V. 10: Ferraillage des poutres porteuses (Situation Accidentelle).

Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)	A _s ' (cm ²)	A _S ^{min} (cm ²)
2055	Travée	189,71	8,96	0	8.25
30x55	Appui	-425,75	18,24	0	8.25

➤ Poutre non porteuse (30x50)

a. Situation durable 1,35G+1,5Q:

Tableau V.16: Ferraillage des poutres non porteuses (Situation Durable).

Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)	A _s ' (cm ²)	A _S ^{min} (cm ²)
30x50	Travée	175,69	9,28	0	7.5
O O A C O	Appui	-191,51	10,20	0	7.5

b. Situation accidentelle G+Q+E1/2:

Tableau V.17: Ferraillage des poutres non porteuses (Situation Accidentelle).

Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)	A _s ' (cm ²)	A _S ^{min} (cm ²)
30x50	Travée	231,62	10,49	0	7.5
C OILC O	Appui	-325,36	15,27	0	7.5

•Choix des armatures :

Le ferraillage final adopté est donné par le tableau suivant :

Tableau V.18: Choix des armatures pour les poutres porteuses.

Section (cm ²)	Position	A ^{min} sRPA cm ²	A ^{cal} s (cm²)	Choix des armatures	A^{adps} (cm^2)
30x55	Travée	0.25	8,96	3HA16+3HA14	10.65
	Appuis	8.25	18,24	6HA20	18.84

Tableau V.19: Choix des armatures pour les poutres non porteuses.

Section (cm ²)	Position	A ^{min} sRPA cm ²	A ^{cal} s (cm ²)	Choix des armatures	A^{adps} (cm^2)
20. 50	Travée	7.5	10,49	3HA20+3HA16	15.45
30x50	Appuis	7.5	15,27	3HA20+3HA16	15.45

V.3.5. Condition de non fragilité :

Dans toute poutre comportant une zone tendue, qu'elle soit soumise à la flexion simple ou composée, les armatures longitudinales de traction doivent présenter une section au moins égale à 0,001 de la section droite de la poutre.

On peut se dispenser de la vérification de la condition de non-fragilité dans les sections doit vérifier la condition suivant :

$$A_s \ge A_s^{\min} = 0.23bd \frac{f_{t28}}{f_e}$$

Avec:

 $f_{t28}=2,4MPa$; $F_e=500MPa$

Tableau V. 20: Vérification de la condition de non fragilité.

Section (cm ²)	As ^{choisi} (cm ²)	As min(cm ²)	Vérification
Poutre30x55	10.65	1.63	Vérifiée
Poutre30x50	10.65	1.49	Vérifiée

V.3.6. Vérification vis-à-vis de l'état limite de service :

Les contraintes sont calculées à l'état limite de service sous (M_{ser}, N_{ser}) , puis elles sont comparées aux contraintes admissibles données par :

Béton:

On doit vérifier que :

$$\sigma_{bc} = \frac{M^{Ser}}{I} \cdot y \le \overline{\sigma_{bc}} = 0.6F_{bc} = 18\text{MPA}$$

b. Acier:

La fissuration est considérée préjudiciable, alors :

Avec

 $\eta = 1.6$ pour les aciers H.A

On doit vérifier que :
$$\sigma_S = n \cdot \frac{M_{Ser}}{I} \cdot (d - y) \le \overline{\sigma_S} = 250 \text{MPA}$$

a. Poutres porteuses (30x 55)

Les résultats sont récapitulés dans les tableaux suivants :

Tableau V.21: Vérification des poutres porteuse à l'ELS.

Poutre p	M _{ser} (kNm)	A _s (cm ²)	σ _{bc} (MPa)	σ- _{bc} (MPa)	Vérification	δs (MPa)	σ-s (MPa)	Vérification
Travée	112,70	10.65	8.60	18	ok	229.07	250	ok
Appuis	-170,31	18.84	10.85	18	ok	202.25	250	ok

b. Poutres non porteuses (30x50)

Les résultats sont récapitulés dans les tableaux suivants :

Tableau V.22: Vérification des poutres non porteuses à l'ELS.

Poutre S	M _{ser} (kNm)	A _s (cm ²)	σ _{bc} (MPa)	σ- _{bc} (MPa)	Vérification	δs (MPa)	σ-s (MPa)	Vérification
Travée	127,88	15.45	10.25	18	ok	203.44	250	ok
Appuis	-138,45	15.45	11.10	18	ok	220.26	250	ok

V.3.7. Vérification vis-à-vis de l'effort tranchant :

a. Vérification de la contrainte de cisaillement :

Il faut vérifier que :
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$$

Avec:

T_u: l'effort tranchant maximum.

b: Largeur de la section de la poutre.

d: Hauteur utile.

$$\bar{\tau}_u = Min(0,10f_{c28};4MPa) = 3MPA$$
 (Fissuration préjudiciable).

Tableau V. 23: Vérification de la contrainte de cisaillement.

Section (cm ²)	T _{u max} (kN)	τ _u (MPa)	τ _{u BAEL add} (MPa)	Vérification
Poutre 30x55	332.68	2.24	3	Ok
Poutre 30x50	294.50	2.18	3	Ok

L'acier choisi pour les armatures transversales est de type haut adhérence et nuance FeE500 ($f_e=500$ MPa).

Selon le RPA 2024:

$$\begin{cases} A_{t} = 0.003S_{t}b \\ S_{t} \leq Min\left(\frac{h}{4};12\phi_{l};30cm\right).....Zone \ nodale \end{cases} \qquad \text{Avec} : \phi_{t} \leq Min\left(\frac{h}{35};\phi_{l};\frac{b}{10}\right) \\ S_{t} \leq \frac{h}{2}....Zone \ courante \end{cases}$$

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau V.24: Calcul des armatures transversales.

Section	Ø	S_t	adp	▲ min	
(cm ²)	Ø _l mm	ZN (cm)	ZC (cm)	(cm^2)	Choix
Poutre 30x55	20 et 14	10	15	1.35	4T8
Poutre 30x50	20 et 14	10	15	1.35	4T8

V.3.8.Recouvrement des armatures longitudinales :

 $L_r = 60\emptyset$ (zone III) : Longueur de recouvrement

On a:

Ø=20mm L_r=120cm

Ø=16mm L_r=96cm

 \emptyset =14mm L_r =84cm

V.3.9.Arrêt des barres [1]:

Armatures inférieures : $h \le \frac{L}{10}$

Armatures supérieures : $h' \ge \begin{cases} \frac{L^{\max}}{4} & Appuis \ en \ travée \ de \ rive \\ \frac{L^{\max}}{5} & Appuis \ en \ travée \ int \ ermédiaire \end{cases}$

Avec :L=Max(L_{gauche}; L_{droite})

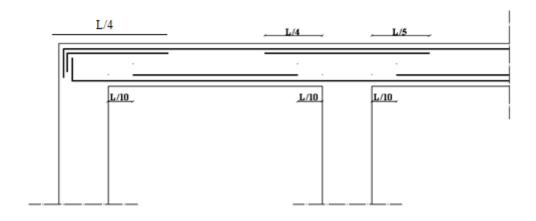


Figure V.2: arrêts des barres.

V.3.10. Vérification de la flèche :

Flèche totale : $\Delta f_T = f_v - f_i \le \bar{f}$.

Tel que : f1 =
$$\frac{L}{1000}$$
 + 0.5 = 1.17cm => L = 6,7 > 5m

$$f2 = \frac{L}{1000} + 0.5 = 1.16$$
cm => $L = 6.58 > 5$ m

f_i: La flèche due aux charges instantanées.

f_v: La flèche due aux charges de longues durée.

Calcul de la flèche due aux déformations différées :

$$f_v = \frac{M_{ser}l^2}{10E_vI_{fv}}$$

Calcul de la flèche due aux déformations instantanées :

$$f_i = \frac{M_{ser}l^2}{10E_i I_{fi}}$$

Les résultats sont récapitulés dans ce tableau :

Moment d'inertie de la section homogène I₀ :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A_s' \left(\frac{h}{2} - d'\right)^2$$

$$\begin{cases}
I_{fi} = \frac{1,1I_0}{1 + \lambda_i \mu} \\
I_{fv} = \frac{I_0}{1 + \lambda_v \mu}
\end{cases}$$
Moment d'inertie fictive.

$$I_{fv} = \frac{I_0}{1 + \lambda_v \mu}$$

$$\begin{cases} \lambda_{i} = \frac{0.05 f_{t28}}{\delta \left(2 + \frac{3b_{0}}{b}\right)} \\ \lambda_{v} = \frac{0.02 f_{t28}}{\delta \left(2 + \frac{3b_{0}}{b}\right)} \end{cases} ; \begin{cases} \delta = \frac{A_{s}}{b_{0}d} \\ \mu = 1 - \frac{1.75 f_{t28}}{4 \delta \sigma_{s} + f_{t28}} \\ \sigma_{s} = \frac{M_{ser}}{A_{s}d} \end{cases}$$

Tableau V.25: Tableau récapitulatif du calcul de la flèche.

Section (cm ²)	Longueur (m)	M _{ser} KNm	A_s^{adp} (cm^2)	fi (mm)	fv (mm)	Δft(mm)	\bar{f} (mm)
30x55	6.70	112,70	10.65	12.72	23.91	11.18	11.7
30x50	6.58	127,88	15.45	10.94	21.77	10.83	11.6

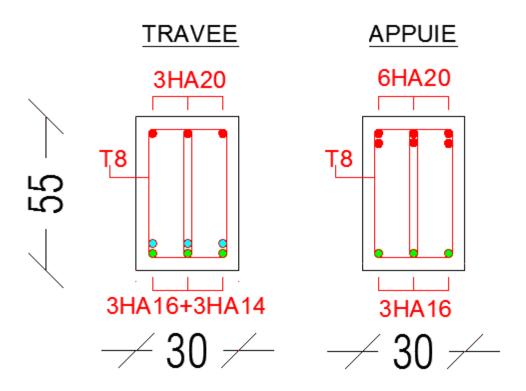


Figure V.3: Schéma de ferraillages des Poutres 30x55.

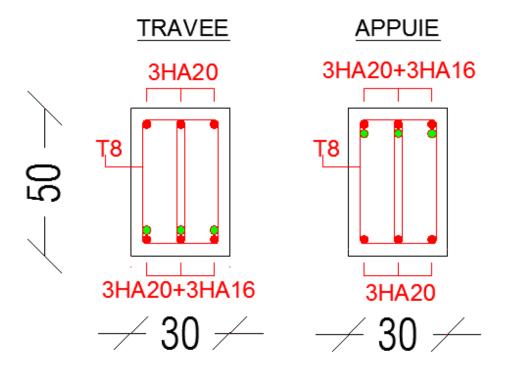


Figure V.4: Schéma de ferraillages des Poutres 30x50.

V.4. FERRAILLAGE DES VOILES:

V.4.1. GENERALITES:

Les voiles et murs sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur, généralement verticaux et chargés dans leur plan.

Ces éléments peuvent être :

En maçonnerie non armée ou armée, auxquels on réservera le nom de murs ;

En béton armé ou non armé, et appelés voiles.

Remarque:

Le rôle des voiles et murs est :

- Reprendre les charges permanentes et d'exploitation apportée par les planchers.
- Participer au contreventement de la construction (vent et séisme).
- Assurer une isolation acoustique entre deux locaux, en particulier entre logements, chambre d'hôtel,..., et une protection incendie (coupe-feu).

De servir de cloisons de séparation entre locaux.

Les calculs des voiles en béton armé et non armé sont effectués suivant les dispositions du RPA2024.

Les voiles sont utilisés en façade, en pignons ou à l'intérieur (murs de refends) des constructions.

Les voiles en béton comportent un minimum d'armatures :

Au droit des ouvertures (concentration de contraintes) ,a leur jonction avec les planchers (chaînages) et a leurs extrémités.

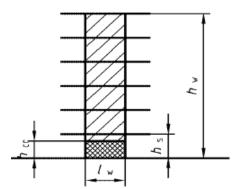
Dans leur grande majorité, les constructions en béton armé sont contreventées par des refends. Les murs de contreventement, ou refends, peuvent être définis comme des structures planes dont la raideur hors plan est négligeable. La rigidité d'un élément résistant aux efforts latéraux va en diminuant depuis le mur de contreventement plein jusqu'au portique, en passant par le mur de contreventement percé d'ouvertures.

Ce sont des éléments en béton armé ou non armé assurant, d'une part le transfert des charges verticales (fonction porteuse) et d'autre part la stabilité sous l'action des charges horizontales (fonction de contreventement). Les murs voiles peuvent donc être assimilés à des consoles verticales soumises à une sollicitation de flexion composée avec compression, ayant un certain degré d'encastrement à la base, sur des fondations superficielles ou sur pieux.

De plus, les murs de contreventement se distinguent par le nombre limite d'ouvertures ou de passages qu'ils comportent, de telle sorte que les déformations élastiques de leurs éléments

constitutifs sont faibles par rapport à la déformation de l'ensemble. En général, la déformation prépondérante des refends est une déformation de flexion due aux moments de renversement. La fonction de contreventement peut être assurée si l'effort normal de compression, provenant des charges verticales est suffisant pour que, sous l'action du moment de renversement, le centre des pressions reste à l'intérieur de la section du mur.

II.10.2. méthode le nouveau RPA2024 :


a) Ferraillages des voiles et des trumeaux :

Les trumeaux et les voiles seront calculés en flexion composée avec effort tranchant. Pour les voiles élancés (h_w/l_w est supérieur à 2.0), le diagramme de moment fléchissant de calcul en fonction de la hauteur est donné par une enveloppe linéaire du diagramme de moment fléchissant obtenu par le calcul de structure, déplacée verticalement d'une distance égale à la hauteur h_{cr} de la zone critique du mur.

Pour les voiles courts (h_w/l_w est inférieur à 2.0), il n'est pas nécessaire de modifierles moments fléchissant résultants du calcul de structure.

La hauteur h_{cr} de la zone critique au-dessus de la base du mur est estimée comme suit (voir): $h_{Cr} \square \max(l_W, h_W 6)$

Avec :h_e: hauteur libre de chaque niveau, et où la base est définie comme étant le niveau des fondations ou de l'encastrement dans le soubassement, en présence de diaphragmes et de murs périphériques adéquats.

Figure V.5: Zone critique à la base du voile

b) Exigences de ductilité pour la zone critique

Le béton situé aux extrémités des voiles (éléments de rive) est confiné sur une longueur l_c mesurés à partir du bord du voile jusqu'au point correspondant à une déformation critique du béton prise égale à 0,2% (voir Figure 2.17). Cet élément de rive peut comprendre des membrures perpendiculaires au mur. La longueur de l'élément de rive doit respecter :

 $l_c \ge \max(0.15l_w, 1.5b_w)$

Avec : x_u longueur de la zone comprimée, b_w largeur de l'âme du voile. L'épaisseur de l'élément de rive confiné doit respecter la condition suivante :

$b_c \ge \max(20\text{cm}; h_e/15)$

Le pourcentage des armatures longitudinales dans les éléments de rive doit rester au moins égale à 0,5% de la surface de la zone confinée.

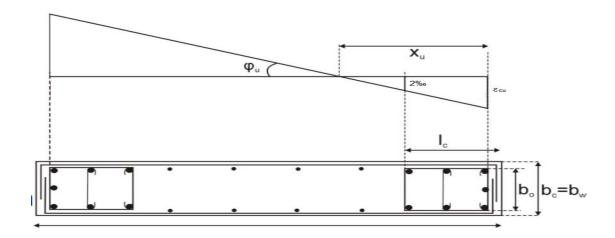


Figure V.6: Eléments de rive pour les voiles

Les barres verticales des éléments de rive devraient être confinées avec des cadres et/ou des épingles horizontales dont l'espacement vertical ne doit pas être supérieur à l'épaisseur du voile.

$$S_t \le \min(b_0/2, 20cm, 8d_{bl})$$

Avec

d_{bl} diamètre minimal des armatures longitudinales dans les éléments de rive.

Les armatures de confinement dans les éléments de rive, mesurée dans le sens parallèle à l'épaisseur du voile, qui doivent être présentes sur la hauteur h_{cr} doiventsatisfaire :

$$A_t \ge 0.09. S_t b_c. \frac{f_{c28}}{fe}$$

$$A_t \ge 0.3. S_t b_c. \left(\frac{As}{Ac} - 1\right) \frac{f_{c28}}{fe}$$

Avec:

(A_g/A_{ch}) représente le rapport de la surface totale de l'élément de rive sur sa surface confinée.

Au-dessus de la zone critique, et en respectant la disposition de contreventement en voiles dans deux directions orthogonales, le calcul des voiles et des trumeaux se

fera exclusivement dans la direction de leur plan moyen en appliquant les règles classiques de béton armé (cf. DTR-B.C.-2.41 "CBA 93").

c) Aciers verticaux :

Lorsqu'une partie du voile est tendue sous l'action des forces verticales et horizontales, l'effort de traction doit être pris en totalité par les armatures, le pourcentage minimum des armatures verticales sur toute la zone tendue est de 0.20%. Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile. Si des efforts importants de compression agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux.

Les barres verticales du dernier niveau doivent être munies de crochets à la partie supérieure. Toutes les autres barres n'ont pas de crochets (jonction par recouvrement).

d) Aciers horizontaux:

Les barres horizontales doivent être munies de crochets. Dans le cas où il existe des talons de rigidité, les barres horizontales peuvent être ancrées sans crochets si les dimensions des talons permettent la réalisation d'un ancrage droit. Le ferraillage horizontal nécessaire pour la résistance à l'effort tranchant doit satisfaire la

formules
$$\frac{A_h}{S} > \frac{\overline{V}}{zfe}$$

Avec \overline{V} effort tranchant de calcul.

z = 0.9d

Le pourcentage minimum d'armatures verticales et horizontales dans l'âme du voile est de 0,2%. De plus, l'espacement des barres horizontales et verticales doit être inférieur à la plus petite des deux valeurs suivantes :

$$S \le min (1,5b_w, 25cm)$$

Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles/m².

Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones confinées) ne devrait pas dépasser b_w/10.

e) Règles communes

Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{vj} = 1.1 \frac{\bar{V}}{f_e}$$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrerles efforts de traction dus aux moments de renversement.

V.4.3.1.exemple de calculer voile(VY1):

Donne:

$$h=3.42$$
, $hp=0.55m ==>h_e=2.87m$

$$l_w = 3m$$
,

$$b_w = 0.2m$$
, $h_w = 29.34m$,

Avec:

l_w: la longueur des voiles,

bw: l'épaisseur des voiles,

h_e:la hauteur libre,

1. Exigence de ductilité pour la zone critique :

a. la hauteur h_{cr} de la zone critique : $hcr=Max(l_w,h_w/6)=4.89m$

$$h_{cr} \le \begin{cases} 2.l_w \\ 2h_e, n > 6 \text{niveaux} \end{cases} \begin{cases} 6m \\ 5.74m \end{cases}$$

On prend : $h_{cr} = 4.89 \text{ m}$

b. la longueur de l élément de rive : (lc)

$$l_c \ge \max(0.15l_w, 1.5b_w)$$

$$l_c = \max(0.45, 0.3)$$

On prend : $l_c=1m$

c. l épaisseur de l élément de rive (bc) :

 $b_c \ge max (20cm, h_{e/20})$

 $b_c > max(20cm, 14.35cm)$

On prend : $b_c=0.2 \text{ m}$

2. calculer de ferraillage :

a. calculer des armatures nécessaires a la flexion composé :

On calculer la section d armature nécessaire pour une section rectangulaire $(l_w, b_w)=>(0.2;3m)$

$$\begin{array}{cccc} N^{max} & => & M^{cor} \\ N^{min} & => & M^{cor} \\ M^{max} & => & N^{cor} \end{array}$$

b. L'enveloppe de calcul, du diagramme de moment fléchissant :

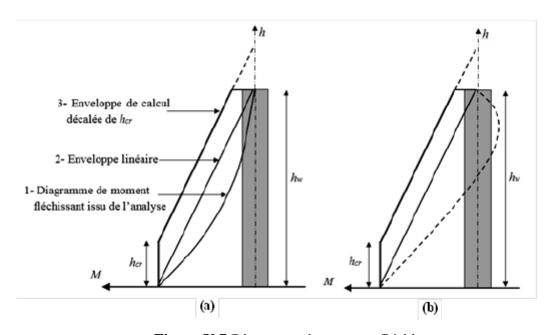
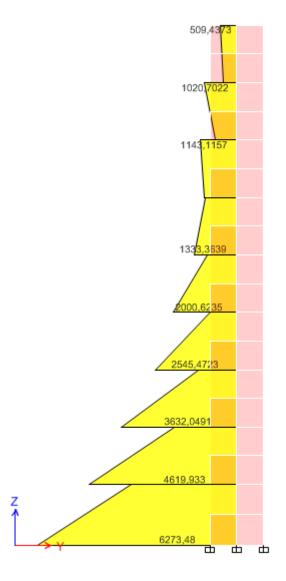



Figure V.7:Digramme de moment fléchissant

Tableau V.26: les moments max du voile

NIV(m)	Mmax
29,34	424,39
26,1	683,66
22,86	1034,98
19,62	1333,36
16,38	2000,62
13,14	2545,47
9,9	3632,05
6,66	4619,93
3,42	6273,48

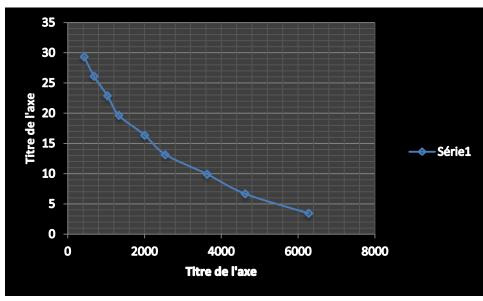


Figure V.8:Digramme de moment fléchissant de l'analyse

NIV	4,89	29,34		
Mmax	6273,48	424,39		

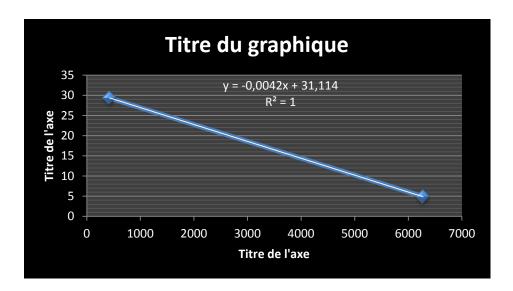


Figure V.9:Digramme de moment fléchissant Linaire :

Calculer les moments avec fonction : Mdevl=Mmax+(0,042X+31,114)

Tableau V.27: les moments max devl du voile

NIV(m)	Mmax	Mdevl	N(KN)
29,34	424,39	455,63	-72,0483
26,10	683,66	714,88	-59,9681
22,86	1034,98	1066,19	80,5519
19,62	1333,36	1364,56	237,7095
16,38	2000,62	2031,80	525,6841
13,14	2545,47	2576,64	848,9109
9,90	3632,05	3663,21	851,6533
6,66	4619,93	4651,07	184,121
3,42	6273,48	6304,61	-613,1267

Pour cette exemple : (la section d'armatures calculer par le logiciel socotec).

 $N^{max} = 613.13kn$

 $M^{cor} = 6273.48 \text{ kn.m} => A_s = 41.97 \text{cm}^2$

 $N^{min} = -851.65kn$

 $M^{cor} = 3663.21 \text{ kn.m} => A_s = 33.97 \text{ cm}^2$

 $M^{max} = 613.13 kn.m$

 $N^{cor} = 6273.48 \text{ kn} = >A_s = 41.97 \text{ cm}^2$

Dance en prend A_s=41.97 cm²

Comme le moment est considéré comme une section réversible.

Les deux extrémités du voile on le même pourcentage de ferraillage reporté sur la longueur critique l_c =1m on opte comme suit.

 $A_{\text{s choisie}} = 6\text{HA}20 + 14\text{T}16 \text{ (avec un As} = 46.98 \text{ cm}^2\text{)}$

b. Le pourcentage des armatures longitudinales dans les éléments de rive :

On vérifier :
$$\frac{A_{s choisie}}{A_{AC}} \times 100 > 0.5\%$$
,

AAC: section des armatures de la zone confiné

$$A_{AC} = 20 * 100 = 2000cm^2$$

$$\frac{46.98}{2000} \times 100 = 2.35\% > 0.5\% \rightarrow ok$$

> L'espacement vertical :

$$S_t \le \min \left(\frac{b_0}{2}, 20 \ cm, 8dl\right)$$
 $b_0 = b_w - \emptyset_l = 20cm - 2 = 18cm$
 $S_t \le \min (9cm, 20cm, 16cm)$
On opte: $S_t = 10m$

c. Les armatures de confinement dans les éléments de rive :

$$A_t$$
=0.09 S_t . b_c . $\frac{F_{ch}}{F_e}$ = 0.09(100). (200). $\frac{30}{500}$
 A_t > 1.08 cm²

Donc On adopte comme un ferraillage dans les zones confinées 9T10.

d. Acier horizontaux:

$$A_h = \frac{\bar{V}.S_t}{z.f_e}$$

Avec :
$$\bar{V} = 1.4V_u$$

$$Z=0.9d$$
: avec $d=0.9l_w=2.7$ m

$$A_{hmin}=0.2\% l_w.b_w$$

Donc avec :
$$V_u = 1078.60 \text{ kN}$$

$$\bar{V} = 1.4 \times 1078.60 = 1510.04 \, kN$$

$$S_t=15 \text{ cm} => A_h \ge \frac{1510.04 \times 10^3 \times 15}{0.9 \times 2700 \times 500} = 1.86 cm^2$$

•
$$A_{hmin} = 0.2\% (300) * 20$$

•
$$A_{hmin}=12 \text{ cm}^2$$

Pour une distance de 100 cm on a : $2*7HA12 = 15.82 \text{ cm}^2$

$$S_t \le min(1.5b_w, 25) ==> S_t \le min(0.75, 25 cm) ==> S_t = 15 cm$$

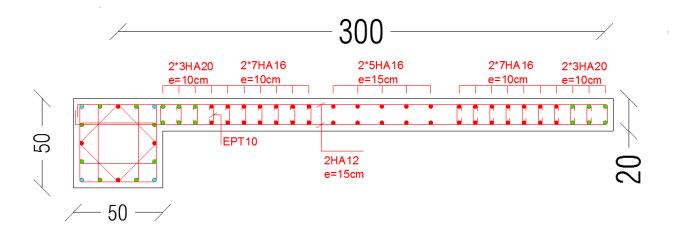


Figure V.10: Schéma de ferraillages VOILES VY1.

CHAPITRE VI ETUDE DE L'INFRA STRUCTURE

VI.1. INTRODUCTION:

Les fondations d'une construction sont constituées par les parties de l'ouvrage qui sont en contact avec le sol auquel elles transmettent les charges de la superstructure; elles constituées donc la partie essentielle de l'ouvrage puisque de leurs bonnes conception et réalisation découle la bonne tenue de l'ensemble

Le calcul des fondations ne peut se faire que lorsque l'on connaît :

La charge totale qui doit être transmise aux fondations.

Les caractéristiques du sol sur lequel doit reposer la structure.

Au début on s'attendait à avoir deux types de fondation (un pour chaque bloc).

VI.2.FONCTIONS ASSURÉES PAR LES FONDATIONS:

La fondation est un élément de structure qui a pour objet de transmettre au sol les efforts apportés par la structure.

Dans le cas le plus général, un élément déterminé de la structure peut transmettre à sa fondation :

- Un effort normal : charge verticale centrée dont il convient de connaître les valeurs extrêmes.
- Une force horizontale résultant, par exemple, de l'action du vent ou du séisme, qui peut être variable en grandeur et en direction.
- Un moment qui peut être de grandeur variable et s'exercer dans des plans différents.

Compte tenu de ces sollicitations, la conception générale des fondations doit assurer la cohérence du projet vis-à-vis du site, du sol, de l'ouvrage et interaction sol structure.

VI.3. CHOIX DU TYPE DE FONDATION:

Le choix de type de fondation se fait suivent trois paramètres.

- La nature et le poids de la superstructure.
- La qualité et la quantité des charges appliquées sur la construction.
- La qualité du sol de fondation.

D'après les caractéristiques du sol (une contrainte moyenne admissible =2,5 bars)

Sur le quel est implanté notre ouvrage et la proximité du bon sol par rapport à la surface, nous a conduit dans un premier temps à considérer les semelles isolées comme solution.

VI.4.CLASSIFICATION DES FONDATIONS:

Fondé un ouvrage consiste essentiellement à répartir les charges qu'ils supportent sur le sol suivant l'importance des charges et la résistance du terrain.

- Lorsque les couches de terrain capable de supporter l'ouvrage sont à une faible profondeur on réalise des fondations superficielles (semelles isolées, filantes et radier général).
- Lorsque les couches de terrain capable de supportées l'ouvrage sont à une grande profondeur on réalise des fondations profondes et semi profondes (puits et pieux).

VI.5.CALCUL DES FONDATIONS:

Afin de satisfaite la sécurité et l'économie, tout en respectant les caractéristiques de l'ouvrage ; la charge que comporte l'ouvrage – la portance du sol – l'ancrage et les différentes donnée du rapport du sol. On commence le choix de fondation par les semelles isolées – filantes et radier, chaque étape fera l'objet de vérification.

On suppose que l'effort normal provenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

On doit vérifier la condition suivante : $\frac{N}{S} \le \sigma_{sol} \Rightarrow S \ge \frac{N}{\sigma_{sol}}$

Avec:

 σ_{sol} : Contrainte du sol.

N_{ser}: Effort normal appliqué sur la fondation.

S : Surface de la fondation.

VI.6. CHOIX DE TYPE DE SEMELLE:

VI.6.1. Semelles Isolées:

On adoptera une semelle homothétique, c'est-à-dire

le rapport de A sur B est égal au rapport a sur b :

$$\frac{a}{b} = \frac{A}{B}$$

Pour les poteaux carrés : a=b donc $A=B \Rightarrow S=A^2$

Avec :
$$A = B = \sqrt{S}$$

 σ_{sol} : contrainte admissible du sol σ_{sol} =2,5 bar

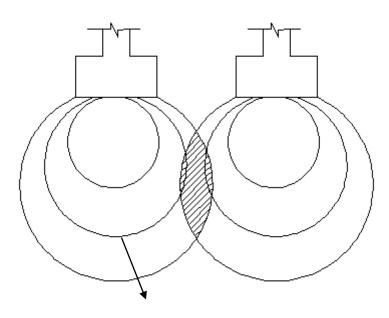
Pour assurer la validité de la semelle isolée, on choisit le poteau le plus sollicité de telle façon à vérifier que :

$$\sigma_{ser} = \frac{N_{ser}}{S_{Somil}} \le \sigma_{sol}$$

Effort normal revenant au sous sol:

 $N_{sous sol} = 3485,0372KN$

D'où
$$S \ge \frac{3485.0372}{250} => S=13.94 \text{ m}^2$$


$$A = \sqrt{S} \implies A = \sqrt{13.49} = 3.73 \implies B = 3.75 \text{m}$$

Vérification de l'interférence entre deux semelles :

Il faut vérifie que : $L_{\min} \ge 1.5xB$

Tel que L_{min} est l'entre axe minimum entre deux poteaux

On a: $L_{min} = 4,95 \text{ m} < 1,5 \text{xB} = 5.63 \text{ m} \dots \text{non vérifie}$

Risque de cisaillement du sol

Figure VI.1 : l'effet de cisaillement du sol.

Conclusion:

On remarque qu'il y a chevauchement des bulbes de pression qui peut provoquer un cisaillement du sol, on passe alors a l'étude des semelles filantes.

VI.6.2. Semelles Filantes:

Le recours à des semelles filantes se fait quand les poteaux et par conséquent les semelles dans une direction donnée sont proches les unes des autres de façon que la somme des contraintes des deux semelles au niveau du point d'interface dépasse la contrainte du sol. On peut dire que la semelle continue sous poteaux travail sous des contraintes linéaires réparties. L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux et les voiles qui se trouvent dans la même ligne.

On doit vérifier que:
$$\sigma_{sol} \ge \frac{N}{S}$$

Tel que:

 $N=\sum N_i$ de chaque file de poteaux.

 $S=B \times L$

B: Largeur de la semelle.

L: Longueur de la file considérée.

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$

Les résultats sont résumés dans le tableau qui suit:

Tableau VI.1: Sections des semelles filantes

Files	N(kN)	L(m)	B(m)	B ^{choisie} (m)	S(m ²)
A	5239,37	19,27	1,09	1,1	21,197
В	7268,59	19,27	1,51	2	38,54
С	8953,46	19,27	1,86	2	38,54
D	8015,75	19,27	1,66	2	38,54
Е	9119,94	19,27	1,89	2	38,54
F	8929,05	19,27	1,85	2	38,54
G	6179,89	19,27	1,28	2	38,54
Н	4840,58	19,27	1,00	1,1	21,197
1	14932,55	41,61	1,44	1,5	62,415
4	9220,36	41,61	0,89	1,1	45,771
		S total =			381,82

> Vérification :

Il faut vérifier que : $\frac{ss}{sh}$ < 50%

$$Ss=381,82m^2 =>, \sigma_{sol}=2,50 \text{ bar} =>$$

Le rapport entre la surface du bâtiment et la surface

S bâtiment = 794.83 m2 (calculer par AUTOCAD)

$$\frac{\text{Ss}}{\text{Sb}} = \frac{381,82}{794.83} = 48,03\% < 50\% \text{ Vérifier.}$$

VI.6.3.Pré dimensionnement de la semelle filante :

a) Dalle:

> Condition de l'épaisseur minimale :

La hauteur de la semelle doit avoir au minimum 25 cm $(h_{min} \ge 25)$

On prend h = 25 cm

$$ht = \frac{B - b}{4} + 5cm$$

$$ht = \frac{200 - 55}{4} + 5cm = 41.25 \text{ cm} \approx 45cm$$

Tableau VI.2 : Les dimensions de la dalle des semelles filantes.

B(m)	$h_t(cm)$
2,00	45
1,50	30
1,10	30

b) Nervure:

Pour étudier la raideur d'une nervure nous utilisons la théorie de la poutre sur sol élastique

La nervure est rigide, l'expression suivante : $L_{\text{max}} \leq \frac{\pi}{2} L_e \text{ Avec: } L_e = \sqrt[4]{\frac{4EI}{bK}}$

I: Inertie de la section transversale du radier $\left(I = \frac{bh^3}{12}\right)$

E: Module d'élasticité du béton.

Bn: largeur de la nervure; bsf: largeur semelle; a: largeur de poteau

K: Coefficient de raideur du sol (0,5kg/cm³≤K≤12kg/cm³).

On pourra par exemple adopter pour K les valeurs suivantes :

• K=0,5[kg/cm³] \rightarrow pour un très mauvais sol.

- K=4 [kg/cm³] →pour un sol de densité moyenne.
- $K=12[kg/cm^3]$ \rightarrow pour un très bon sol.

On aura:

Nous avons un sol de densité moyenne \rightarrow K=4 [kg/cm³].

$$le = \sqrt[4]{\frac{4xExI}{Kxbsf}}$$

$$b_n = 55~cm$$
 ; $b_{Sf} = 2~m$; $E = 11000 \times 30^{1/3} = 34179.55~Mpa$; $K = 40~MN/m^3$ Lmax=6.70 m

$$\ln \ge \sqrt[3]{\frac{48xKxbsfxl^4}{Exbnx\pi^4}} = \sqrt[3]{\frac{48x0.04x2000x6700^4}{34179.155x550x\pi^4}} = 1,61 \approx 1.65m$$

Tableau VI.3: Les dimensions de la dalle des semelles filantes

Filles	bsf (m)	ht (cm)	bn (cm)	hn choix (m)
BCDEFG	2	45	55	1.65
A/H/4	1,10	30	55	1.65
1	1,50	30	55	1.65

VI.6.3.1. Vérification de la stabilité:

Il est très important d'assurer la stabilité au renversement de cet ouvrage vis-à-vis des efforts horizontaux.

Le rapport
$$\frac{M_s}{M_R}$$
 doit être supérieur au coefficient de sécurité $1,5\left(\frac{M_s}{M_R}>1,5\right)$

Avec:

 M_s : Moment stabilisateur sous l'effet du poids propre, et éventuellement des terres.

 M_R : Moment de renversement dû aux forces sismique.

$$M_R = \sum M_0 + V_0 h$$

 M_0 : Moment à la base de la structure.

 V_0 : L'effort tranchant à la base de la structure.

h: Profondeur de l'ouvrage de la structure.

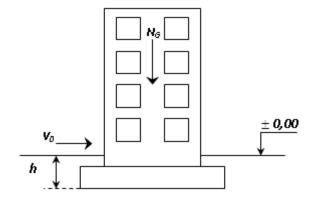


Figure VI.2: Schéma statique du bâtiment.

Position de centre de gravité : $x_G(m) = 20.77$, $y_G(m) = 9.58m$

Sens x-x:

 M_0 = 106511,59 kN.m; V_0 = 6752,80kN; h=3,06+1,65= 4,71 m.

Donc: M_R= 137979,64kN.m

Avec:

 $N_G = N_{G1} + N_{G2}$

N_{G1}: Poids propre de la structure.

N_{G2}: Poids propre de la semelle filent.

A.N:

 $N_G = 51928, 10 + 3810, 29 = 55738, 39KN$

 $M_s = N.x_G = 1157686,3KN.m$

Ms/Mr = 8,39> 1.5 => Vérifiée

Sens-y-y:

 M_0 = 146171,85 KN.m; V_0 = 6752,78kN; h=4,71 m

Donc: $M_R = 177639,80$ kN.m

 $M_s = N.y_G = 533973,75KN.m$

Ms/Mr = 3.00 > 1.5 => Vérifiée

Conclusion:

Le rapport du moment de stabilité et du moment de renversement est supérieur à 1,5, donc notre structure est stable dans les deux sens.

VI.6.3.2. Vérification des contraintes dans le sol sous semelle filante:

Tableau VI.4	: Les c	limensions	de la d	lalle d	les semel	lles filantes
--------------	---------	------------	---------	---------	-----------	---------------

Fille	P	${f L}$	В	Sf	σ	σ	Observation	
Fille	(kN)	(m)	(m)	(m ²)	(KN/m^2)	(KN/m^2)	Observation	
A	5239,37	19,27	1,1	21,197	247,18	250	vérifiée	
В	7268,59	19,27	2	38,54	188,60	250	vérifiée	
С	8953,46	19,27	2	38,54	232,32	250	vérifiée	
D	8015,75	19,27	2	38,54	207,99	250	vérifiée	
E	9119,94	19,27	2	38,54	236,64	250	vérifiée	
F	8929,05	19,27	2	38,54	231,68	250	vérifiée	
G	6179,89	19,27	2	38,54	160,35	250	vérifiée	
Н	4840,58	19,27	1,1	21,197	228,36	250	vérifiée	
1	14932,55	41,61	1,5	62,415	239,25	250	vérifiée	
4	9220,36	41,61	1,1	45,771	201,45	250	vérifiée	

VI.6.3.3 Ferraillage Des Semelles Filantes:

1. Ferraillage de la dalle :

Le ferraillage se calcule par la méthode des bielles à l'ELU pour 1 m linéaire, nous avons :

Pu: L'effort normal reparti à l'ELU.

• Exemple de calcul : Fille E plus défavorable pour B=2,00 m

As =
$$\frac{\text{Pu(B - b)}}{8\text{xdx}\delta \text{s}} = \frac{652(2 - 0.55)}{8\text{x}0.45\text{x}0.9\text{x}(\frac{500}{1.15})} = 6.70\text{cm}^2$$

CNF:

$$As = \frac{0.23xbxdxft28}{fe} = \frac{0.23x2000x450x0.9x2.4}{500} = 8.94cm^{2}$$

$$As = max (As ,As_{CNF}) = 8,94 cm^{2} Choisie : 8HA12 = 9.04 cm^{2}$$

$$Ar = \frac{AsxB}{4} = 4.52 = > choisie 4HA12 = > 4.52 cm^2$$

• Exemple de calcul : Fille 1 plus défavorable pour B=1,5 m

$$As = \frac{Pu(B-b)}{8xdx\delta s} = \frac{493.72x(1,5-0.55)}{8x0.30x0.9x(\frac{500}{1.15})} = 4.99 \text{ cm}^2$$

CNF:

As =
$$\frac{0.23 \text{xbxdxft28}}{\text{fe}} = \frac{0.23 \text{x1500x300x0.9x2.4}}{500} = 4.47 \text{cm}^2$$

As = max (As ,As_{CNF}) = 4.99 cm² Choisie : 5HA12 = 5.65 cm²

$$Ar = \frac{AsxB}{4} = 2.11 =$$
 choisie $4HA12 = > 4.52 cm^2$

• Exemple de calcul : Fille A plus défavorable pour B=1,1 m

$$As = \frac{Pu(B-b)}{8xdx\delta s} = \frac{374.70x(1,1-0.55)}{8x0.30x0.9x(\frac{500}{1.15})} = 2.19cm^2$$

CNF:

As =
$$\frac{0.23 \text{xbxdxft28}}{\text{fe}} = \frac{0.23 \text{x}1100 \text{x}300 \text{x}0.9 \text{x}2.4}{500} = 3.28 \text{cm}^2$$

As = max (As ,As_{CNF}) = 3.28 cm² Choisie : 5HA12 = 5.65 cm²

$$Ar = \frac{AsxB}{4} = 1.55 =$$
 choisie $4HA12 = > 4.52 cm^2$

2. Ferraillage des nervures :

a. Calcul des efforts:

Pour le calcul des efforts, on utilise la méthode forfaitaire (BAEL91 modifier 99)

On a
$$M_0 = \frac{QL^2}{8}$$
, L=6.70 m, Q=652KN/m Mu= 3658,535 KN.m

- En travée : $M_t = 0.85 M_0$

Sur appuis : $M_a = 0.50 M_0$

b. Calcul des armatures :

b = 55cm; h = 165cm; d = 148.5cm

Tableau VI.5: Ferraillage des nervures.

	M _u (kNm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	3109,75	47.20	14HA25	68.74
Appuis	1829,27	26.93	12HA20	37.68

c. Vérifications nécessaires :

- Vérification des contraintes à l'E.L. S :

Q=473,27KN/m Mu= 2655,6363 KN.m

Tableau VI.6: Vérification des contraintes à L'E.L.S.

Sens	M _{ser} (kN.m)	σ _{bc} (MPa)	σ _{bc} MPa	σ _s (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérification
Travée	2257,29	8.34	18	231.68	250	vérifiée
Appuis	1327,82	7.02	18	242.26	230	vérifiée

> Vérification de la contrainte tangentielle du béton :

On doit vérifier que : $\tau_u \le \overline{\tau_u} = \text{Min } (0.1 \text{ f}_{c28}; 4 \text{ MPa}) = 3 \text{ MPa}$

> Armatures transversales :

> RPA2024 [2]:

$$*\frac{A_t}{S_t} \ge 0.003b_0$$

$$* S_t \le Min\left(\frac{h}{4}; 12\phi_t\right) = 30cm.....Zone nodale$$
.

$$* S_t \le \frac{h}{2} = 80 \text{cm}$$
....Zone courante .

Avec:

$$\varphi_{t} \leq Min\left(\frac{h}{35}; \varphi_{l}; \frac{b}{10}\right) = 2.5cm$$

 f_e =500MPa ; τ_u =0,74MPa ; f_{t28} =2,4MPa ; b=55cm ; d=148.5cm

On trouve:

- $S_t=15$ cm....Zone nodale.
- S_t =20cm....Zone courante.

 $A_t \ge 3.9 \text{cm}^2$

On prend: 6T10=4,74cm²

> Armatures de peau :

Pour les poutres de grande hauteur, il y a lieu de prévoir des armatures de peau dont la section dépend du préjudice de la fissuration.

En effet on risquerait en l'absence de ces armatures d'avoir des fissures relativement ouvertes en dehors des zones armées par les armatures longitudinales inférieures et supérieures.

Leur section est au moins 3 cm²/ml pour mettre de longueur de paroi mesuré perpendiculairement à leur direction (h=165 cm).

 $Ap=3cm^2/m \times 1,65=4.95cm^2$

On opte : 4T14=6,16 cm²

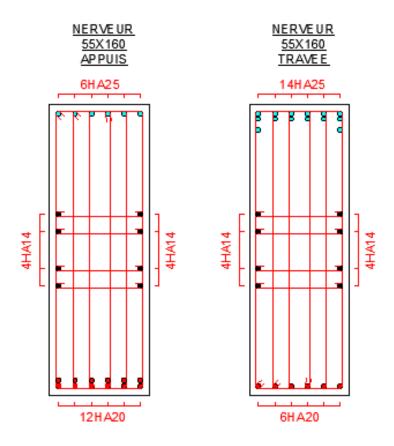


Figure VI.3: Schéma de ferraillage des nervures

VI.6.4. Etude du Voile périphérique :

VI.6.4.1.Introduction:

Notre structure comporte un voile périphérique de soutènement qui s'élève du niveau de fondation jusqu'au niveau du plancher de RDC.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec les planchers du RDC et les fondations.

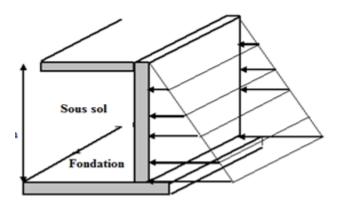


Figure VI.4: Evaluation des charges.

VI.6.4.2.Pré dimensionnement :

Pour le pré dimensionnement du voile périphérique, on se réfère aux prescriptions du **RPA2024**, qui stipule d'après l'article 10.1.2.

- ❖ Les ossatures au-dessous du niveau de base comportent un voile périphérique continu entre le niveau de fondation et le niveau de base
- Ce voile doit avoir les caractéristiques minimales ci-dessous :
- Epaisseur e≥15cm
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0,1%B dans les deux sens (horizontal et vertical)..
- La longueur de recouvrement est de 60Ø avec disposition d'équerres de renforcement dans les angles.

Avec: B: Section du voile.

VI.6.4.2.Evaluation des charges :

On considère le voile comme une dalle pleine reposant sur quatre appuis, et qui supporte les charges horizontales dues aux poussées des terres. On considère le tronçon le plus défavorable.

Les charges et surcharges prise uniformément répartie sur une bande de 1m se situe à la base du voile (cas le plus défavorable).

$$L_x = H = 3.06$$

$$L_x=3.06 \text{ m}$$
; $L_v=6.70 \text{m}$; $e=20 \text{cm}$.

La charge de poussées des terres est donnée par :

$$Q=A \times \gamma \times h$$

Avec:

Q : Contrainte sur une bande de 1m.

 γ : Poids spécifique des terres ($\gamma = 20 \text{ KN/m}^3$).

h: Hauteur du voile.

A : coefficient numérique en fonction de l'angle de frottement interne.

$$\varphi = 25^{\circ} \Rightarrow A = f(\varphi) = tg^{2} \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) = 0.41$$

$$Q = A.\gamma.H = 25.09 \text{ KN/ml}$$

$$Qu = 1.35 \times 20.99 = 33.87 \text{ KN/ml}$$

VI.6.4.3. Effort dans le voile périphérique :

Les efforts dans le voile périphérique seront calculés en plaçant une charge surfacique uniformément répartie sur toute la hauteur du voile (cas défavorable)

$$\rho = \frac{L_x}{L_y}$$

La dalle travaille dans les deux sens.

- Dans le sens de la petite portée : $M_x = \mu_x q_u L_x^2$
- Dans le sens de la grande portée : $M_y = \mu_y M_x$

Les coefficients μ_x et μ_y sont fonction de $\rho = \frac{L_x}{L_y}$ et de v.

 μ_x et μ_y sont donnés par l'abaque de calcul des dalles rectangulaire

$$\rho = 0.45 \Rightarrow \begin{cases} \mu_x = 0.1036 \\ \mu_y = 0.2500 \end{cases}$$

$$M_x = \mu_v q_u L_x^2 = 32.85 \text{kN. m}$$

$$M_y = \mu_v M_x = 8.21 kN. m$$

• Moments en travées :

 $M_{tx}=0.85M_x=27.93$ kNm.

 $M_{ty}=0.85M_y=6.98 \text{ kNm}.$

• Moments sur appuis :

 $M_{ax}=0.5M_x=16.43 \text{ kNm}$

Ferraillage du voile périphérique :

b=100cm; h=20cm; d=0.9h=18 cm; $f_e=500MPa$; $f_{c28}=30MPa$; $f_{t28}=2.4MPa$;

 σ_s =435 MPa ; F_{bc} =17 MPa

Les résultats sont récapitulés dans le tableau suivant :

Tableau VI.7: Ferraillage voile périphérique du.

	Cong	$M_{\rm u}$	$\mathbf{A_s}^{\mathrm{cal}}$	Chair	$\mathbf{A_s}^{\mathrm{adp}}$	Esp
	Sens	(kNm)	(cm ²)	Choix	(cm ²)	(cm)
Travée	X-X	27.93	3.66	7T12	7,91	15
Travec	у-у	6.98	0.89	7T12	7,91	15
Appuis	X-X	16.43	2.13	7T12	7,91	15
Appuis	у-у	10.43	2,10	, 112	7,52	10

Condition exigée par les RPA2024:

Le RPA préconise un pourcentage minimum de 0,1% de la section dans les deux sens disposés en deux nappes.

$$A_L \ge 0.1 \times 2 \times 100 = 2 \text{cm}^2.....$$
 Vérifiée

$$A_T \ge 0.1 \times 2 \times 100 = 2 \text{cm}^2.....$$
 Vérifiée

On adopte le ferraillage calculé.

Condition de Non Fragilité :

$$A_{S_{min}} = 0.23bd \frac{f_{t28}}{f_e} = 1.73cm^2$$
 La condition est vérifiée

Vérification à l'ELS:

a. Evaluation des sollicitations à l'ELS

$$\frac{L_x}{L_y} = 0.45 > 0.4$$
; => $\mu_x = 0.1063$ $\mu_y = 0.3234$

$$Q_{ser} = 25.09 \text{ kN/ml}$$

$$M_x = \mu_x Q_{ser} L_x^2 = 24.97 \; kNm$$

$$M_v = \mu_v M_x = 8.07 \text{ kNm}$$

• Moment en travée

$$M_{tx}$$
=0,85 M_x =21.23 kN.m

$$M_{ty}=0.85M_y=6.86 \text{ kN.m}$$

• Moment sur appuis

$$M_{ax}=M_{ay}=0,5M_x=12.49 \text{ kN.m}$$

b. Vérification des contraints :

Il faut vérifier que :
$$\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28}$$
 18MPA

Le tableau suivant récapitule les résultats trouvés

Tableau V I.8: Vérification des Contraintes à l'ELS.

	Song	M_{ser}	$\mathbf{A_s}$	σ_{bc}	$\overline{\sigma}_{bc}$	$\sigma_{\rm s}$	$\overline{\sigma}_{\scriptscriptstyle s}$	
	Sens	(k N.m)	(cm ²)	(MPa)	(MPa)	(MPa)	(MPa)	Vérification
	х-х	21.23	7,91	4.81	18	165.87	250	Vérifiée
Travée	у-у	6.86	7,91	1.59	18	54.69	250	Vérifiée
	х-х							
Appuis	у-у	12.49	7,91	2.83	18	97.58	250	Vérifiée

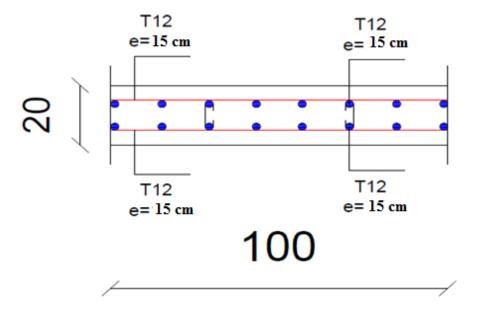


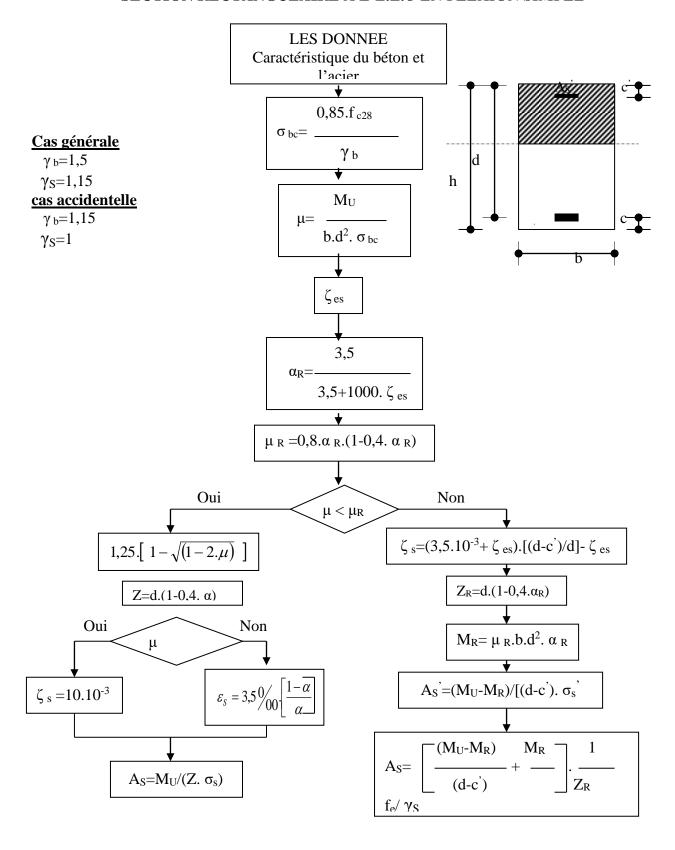
Figure VI.5 : ferraillage du Voile Périphérique.

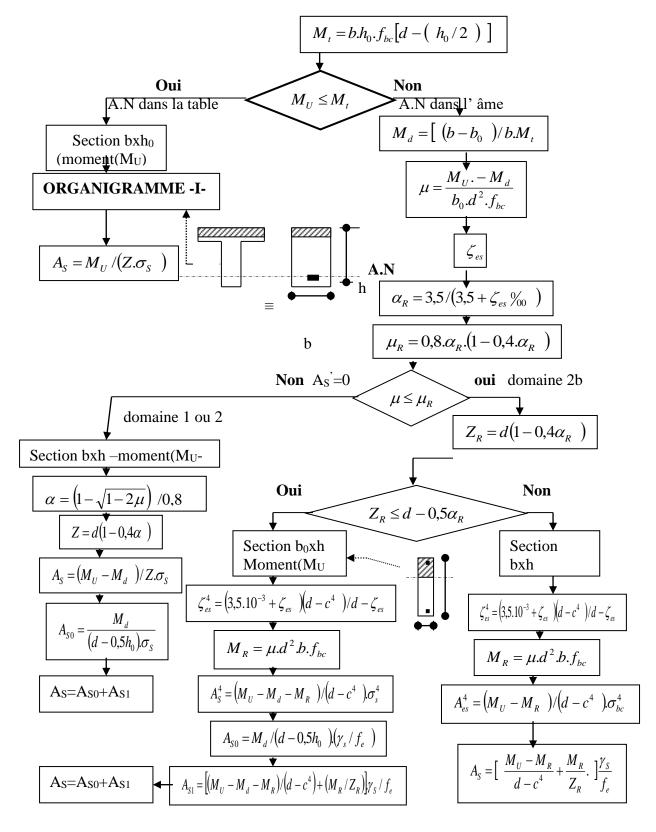
CONCLUSION GENERALE

D'après notre étude de recherche sur le chemisage et la recherche bibliographique (les thèses de doctorat , les articles scientifiques , les mémoires , les recherches des scientifique) on a constaté que la réparation par chemisage et la meilleures solution de réparation disponible dans le marché algérien , vu le cout et la main-d'œuvre et les solutions que cette méthode apporte au niveau de béton et d'acier , et pour avoir des résultats exacts , on a opté pour le logiciel ETABS V16 il nous a facilité la tache des calculs

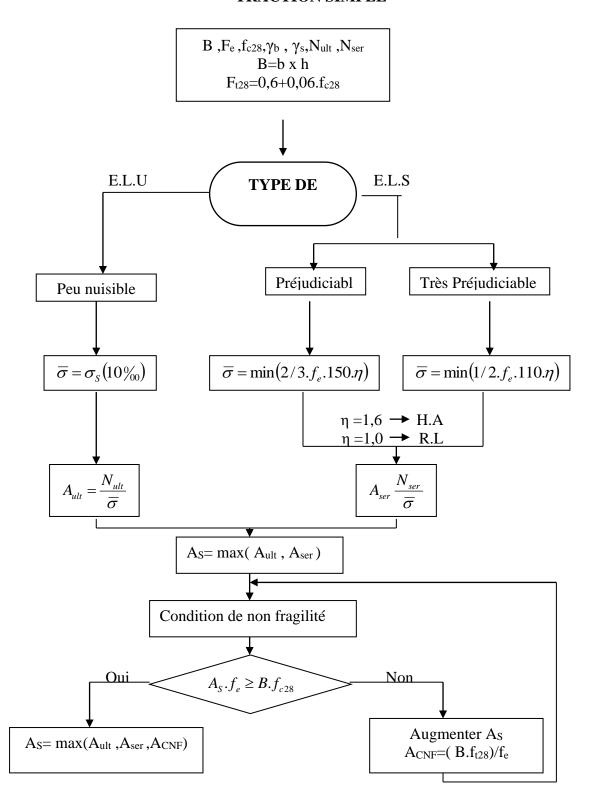
L'étude de ce projet nous a permis, d'appliquer toutes nos connaissances acquises durant le cursus universitaire ainsi que de les approfondir d'avantage concernant le domaine du bâtiment tout en respectant la règlementation en vigueur. L'analyse de la structure d'un ouvrage est une étape très importante qui permet de faire une bonne conception parasismique au moindre coût.

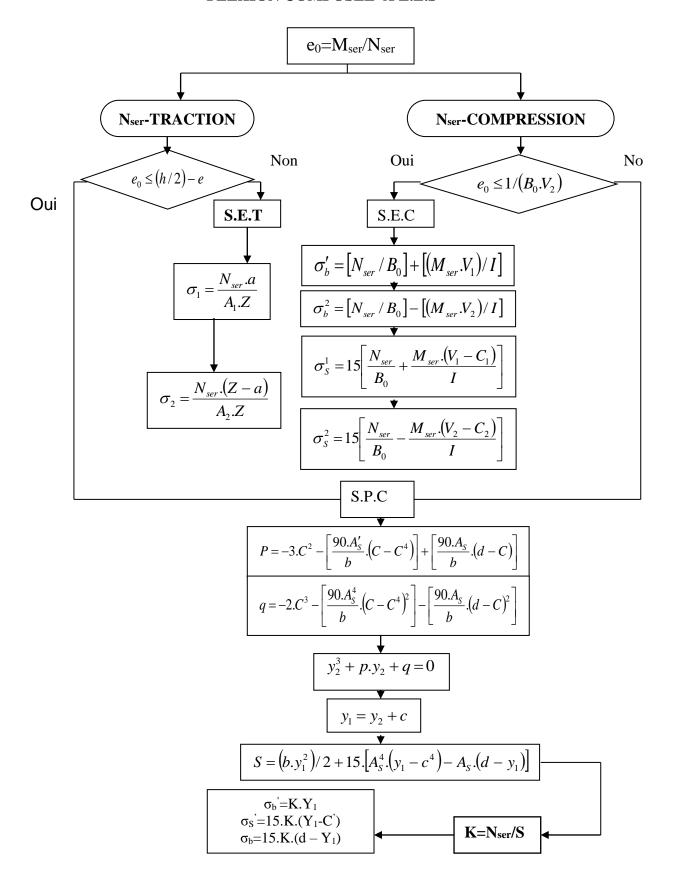
Les points importants tirés de cette étude sont :

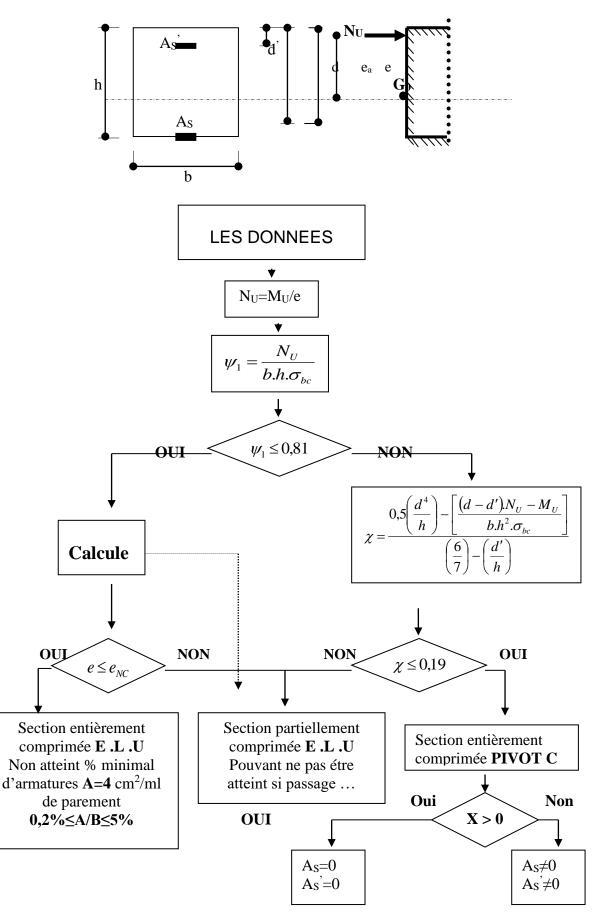

- Le pré dimensionnement est une étape préliminaire qui a pour but de choisir des sections pour les éléments structuraux afin de les modéliser, un pré dimensionnement bien réfléchi facilitera énormément l'étude dynamique de la structure.
- Le séisme est l'un des effets à considérer dans le cadre de la conception des structures, reste le plus dangereux, ainsi la modélisation des structures nécessite une bonne maitrise de la méthode des éléments finis et des logiciels utilisés (ETABS V16).
- La disposition des voiles en respectant l'aspect architectural du bâtiment, est souvent un obstacle majeur pour l'ingénieur Génie Civil, ces contraintes architecturales influentes directement sur le comportement adéquat de la structure vis-à-vis des sollicitations extérieures, telles que les séismes.
- Le choix du type de fondation dépend de la nature du sol et du volume des charges prévenant de la structure, dans notre cas, une semelle filante a été nécessaire afin de stabiliser la structure.
- L'utilisation des logiciels et programmes de calcul (ETABS, SOCOTEC, EXCEL...) permet de diminuer les erreurs de calcul manuel et le temps de l'étude.

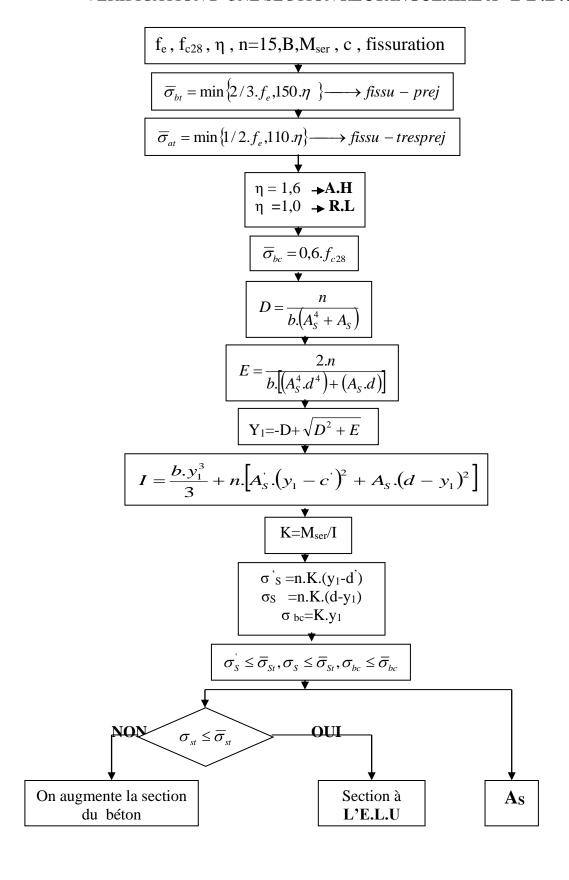

REFERENCES

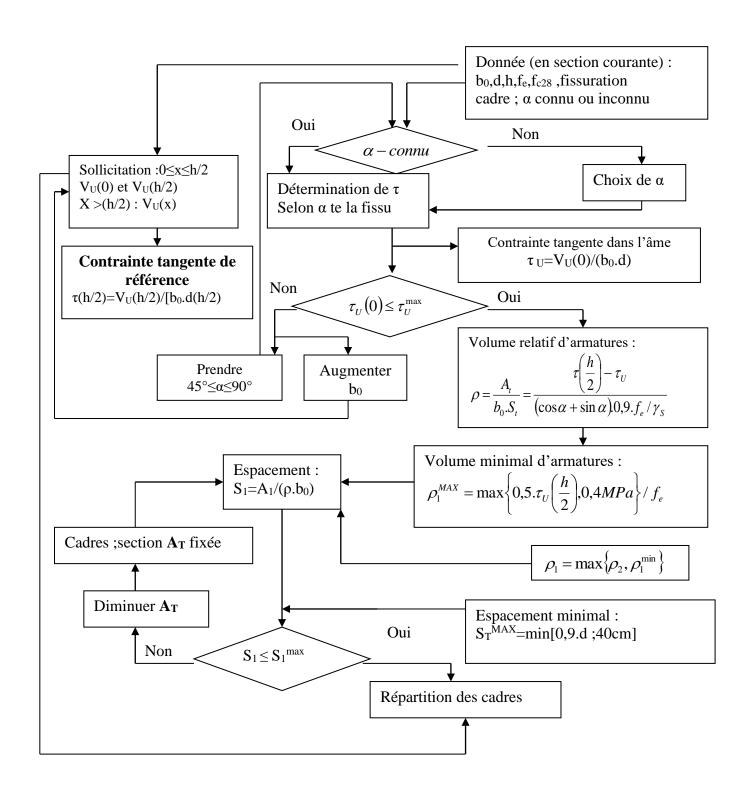
- [1] Corrosion des armatures (jonthan MAI-NHU)
- [2] Article INFOCIMNTS (Patruk Guiraud).
- [3] Mémoire de master 2 (BENSALMA Nassira) unv mouloud mammeri de tizi-ouzou .
- [4] [Raphaëlle Sadone]; « Comportement de poteaux en béton armé renforcés par matériaux composites, soumis à des sollicitations de type sismique, et analyse d'éléments de dimensionnement », thèse de Doctorat, 12 décembre 2011.
- [6] Nechnech, W. Contribution à l'étude numérique du comportement du béton et des structures en béton armé soumises à des sollicitations thermiques et mécaniques couplées : une approche thermo-élasto-plastique endommageable. Thèse de doctorat, INSA Lyon, France. 2000.
- [7]BAEL 91 révisées 99 : Règles Techniques de Conception et de Calcul des Ouvrages et Constructions en Béton Armé suivant la méthode des Etats Limites, DTU P 18-702, février 2000.
- [8]RPA 2024 : Règles Parasismiques Algériens, Document technique règlementaire DTR-BC 2.48, Ministère de l'habitat, Centre Nationale de Recherche en Génie Parasismique, Alger.
- [9] Charges permanentes et Charges d'exploitation, DTR-BC 2.2, Ministère de l'habitat, Centre Nationale de Recherche en Génie Parasismique, Alger.


ORGANIGRAMME -I-SECTION RECTANGULAIRE A L'E.L.U EN FLEXION SIMPLE


ORGANIGRAMME -II-CALCUL D'UNE SECTION EN -TE- A L'E.L.U EN FLEXION SIMPLE


ORGANIGRAMME -III-TRACTION SIMPLE


ORGANIGRAMME-VI-FLEXION COMPOSEE A E.L.S


ORGANIGRAMME -V-CALCUL D'UNE SECTION RECTANGULAIRE A L'E .L .U EN FLEXION COMPOSEE

ORGANIGRAMME -IV-VERIFICATION D'UNE SECTION RECTANGULAIRE A -L'E .L .U-

ORGANIGRAMME -VIICALCUL DES ARMATURES D' UNE POUTRE SOUMISE A L'EFFORT TRANCHANT

