DemocRATIc RePUBlic of AlgeRiA
Ministry of Higher Education and Scientific Research

SAAD DAHLAB UNIVERSITY OF BLIDA 1
Faculty of Sciences

Department of Computer Science

FINAL YEAR PROJECT REPORT
Speciality : Computer Systems and Network
Presented by :

Houari Amel

THEME

Federated Learning For Distributed Intrusion Detection

Systems

Mme. Arkam Meriem MAA USDB Thesis supervisor
Dr. Remmide Mohamed Abdelkarim USDB Thesis co-supervisor

Acknowledgements

First and foremost, we express our profound gratitude to Almighty Allah for granting
me the strength and patience to complete this humble project. His guidance and blessings
have been a constant source of support throughout this challenging journey.

We would like to convey our deepest appreciation to our supervisor, Mme. Arkam
Meriem, and co-supervisor, Mr. Remmide Mohamed Abdelkarim, for their continuous
support, professionalism and tireless guidance. Their valuable advices during the entire
project have been enhancing the quality of this thesis.

Our heartfelt thanks go to the members of the jury for their interest in our work and
for taking the time to review it with care and attention.

We are truly grateful to all our professors whose knowledge and dedication have guided
us throughout our studies.

To our family and friends,we would like to thank them for their unconditional love ,

constant encouragement, support, and prayers that helped us overcome every challenge.

Finally, we extend our thanks to everyone who contributed, directly or indirectly, to

the completion of our project.

Abstract

The rapid growth of the internet in recent years has made cybersecurity a significant
challenge. The traditional and standard Intrusion Detection Systems (IDS) which work
based on known attack patterns are not effective enough and not sufficient to detect
modern threats nowadays. For this reason, in this project, we aimed to enhance the
functionality of IDS using either Machine Learning (ML) or Deep Learning (DL) to detect
attacks.To reach our goal, we compared several models to decide which one is the best and
gives best performance .However, to ensure that individuals’ data stay safe, we adopted
Federated Learning (FL), which enables the model to learn from different distributed data
sources and devices without sharing private data. We evaluated our work using a real-
world dataset UNSW-NB15 , we implemented both a Federated MLP and a Federated
Random Forest (RF) that returned best results among Ml and DL algorithms, using
different aggregation strategies. Our final federated MLP model achieved over 98% across
accuracy, precision, recall, and F1-score, proving that federated deep learning can deliver

state-of-the-art results while preserving data confidentiality.

Keywords: Cybersecurity, Intrusion Detection System (IDS), Machine Learning (ML),
Deep Learning (DL), Federated Learning (FL), Multi-Layer Perceptron (MLP), Random
Forest (RF).

Résumé

La croissance rapide d’Internet ces dernieres années a rendu de la cybersécurité un défi
majeur. Les systemes de détection d’intrusion (IDS) traditionnels et standard, qui fonc-
tionnent sur la base de schémas d’attaque connus, ne sont pas suffisamment efficaces
pour détecter les menaces modernes. C’est pourquoi, dans ce projet, nous avons cher-
ché a améliorer les fonctionnalités des IDS en utilisant soit I'apprentissage automatique
(ML), soit 'apprentissage profond (DL) pour détecter les attaques. Pour atteindre cet
objectif, nous avons comparé plusieurs modeles afin de déterminer celui qui est le plus
performant.Cependant, afin de garantir la confidentialité des données des utilisateurs,
nous avons adopté I'apprentissage fédéré (FL), qui permet au modele d’apprendre a par-
tir de sources de données et d’appareils distribués sans partager les données sensibles.
Nous avons évalué notre travail a 'aide du jeu de données réel UNSW-NB15. Nous avons
implémenté a la fois un MLP fédéré et une forét aléatoire (RF) fédérée, qui ont montré
les meilleurs résultats parmi les algorithmes ML et DL, en utilisant différentes stratégies
d’agrégation. Notre modele MLP fédéré final a atteint plus de 98% en exactitude, pré-
cision, rappel et F1-score, prouvant que I'apprentissage profond fédéré peut fournir des
résultats de pointe tout en préservant la confidentialité des données.

Mots-clés : Cybersécurité, Systéeme de détection d’intrusion (IDS), Apprentissage auto-
matique (ML), Apprentissage profond (DL), Apprentissage fédéré (FL), Perceptron mul-
ticouche (MLP), Forét aléatoire (RF).

P

Tm\s .t'ryp2 2z trbymrtatary tatwnmrt 9 rt r g rmrt wmnrt 3°
Tr29z r, TOrmrta2mhrta2zms, 12 zmt" trt,ups) T zylgtrt 3Imtrt u2
zz ,rl2nym,crumrtt@ce 9, r@r . Tizrtatzzhtrt 2 uzlr T 2fzrt ay9 2m
e2ut2 oLy ym'rt I'trt smL) r t I'trt tztm2 3imtrt u2 Tm\s 2Z
uyc a 349t iwmnrt 2yt i2m z2 T ,2gm 2nm9 ,2n9zce ,r! 3w}lwlr .82m hrt
,(FL) rt,zyfrt I'trt 2 zmt2t ,;Tnal yaztmmrt 822y 2q 2mar , riga .12t
a2 2ybrt T2,2ua 2 T2Ewa zh s 82 2y ,22aa a |'tr2 iwmnlr , mm @rt
2nm9 uyc ,uNsw-NB15 Ty Otwrt 82 2ybrt T2wm a tz tm2 2nlm2 yygt 2nm9 .Tm2m rt
‘@Irt |, rt,zyfrt RF Ty twu'rt T 21t iwm rt,zyfrt MLP iwm a 32 @yfnt
azyytrtmt tztm2 ,ymrt I'trt rt I'trtda2yaEtw y 2tnrt 3a9s trhZs

y2gmrt 9 %89 E 2t T92 2hnrt rt,zyfrt MLP iwm qc z9 .Tflt a gym
,229 rt,zyfrtym'rt I'trt s bi 2ma ,F1-Score _rt ¢2 rtmt T9zrt 3ia Tym2m t
a2 2ybrt Ty}wa ,I12 _2f t ga wtmmrt Tyr22 2t zq ,I2

I"trt , (ML) r t I'trt,aps) 3Imtrt u2 2\ , trbymrt at:aysGtfgt GqglKt
T2rt ,,MLP) @82gbbrt 2z'ta mrt t,2t ,(FL) rtzyfrt I'trt ,(oL) ym'rt
.(RF) Ty twu'rt

Contents

List of Figures
List of Tables
General Introduction 1
ThESIS ODJECTIVES ...evviiiiiiiiie et e e anabeeas 2
Thesis OrGaniZationeviiiiiiiii e eebeeas 4
1 Background and Theoretical Framework 5
1.1 INTrOAUCTION ...t e e e e 5
1.2 Intrusion Detection Systems (IDS)......cccoooiiiiiiiiiiiiiiii e 5
1.2.1 Intrusion Detection Systems Definitionccccceviviiiiiiiiiiieniiieee, 6
1.2.2 The importance of Intrusion Detection Systems in Cybersecurity 6
1.2.3 Intrusion Detection Systems architectures..............cccccoovviviviiiiinnnniiinnnnn, 6
1.2.4 Intrusion Detection Systems Architectures Comparison......................... 11
1.2.5 Intrusion Detection Systems Classification............ccccccvvveiiiiiiiiiiiiiinennn 12
1.2.6 Intrusion Detection Systems Methods Comparisoncccccceeeerrinnnnee. 14
1.3 Federated Learning Fundamentals.............ccccccoiiiiiiiiiiiiii e 15
1.3.1 Federated Learning Definition............cccccooiiiiiiiiiiiii e 15
1.3.2 Federated Learning Concept FOr IDS..........ccccoiiiiiii e 15
1.3.3 Federated Learning TYPEeSc.cueeiiiiiiiiiiiiiiii e 15
1.3.4 Federated Learning ArchiteCtures.............cccoceeiiiiiieeiniiiiiee e 16
1.3.5 Federated learning fundamentals...............cccccooiiiiiiiini e 17
1.3.6 Federated learning use case and applications..............ccccceeiiiiieiiniinnennns 18
1.3.7 Federated learning benefits and challenges.............cc.ccccceiiiiiiiiiiens 20
1.3.8 Federated Learning for Cybersecurity Applicationsccccccevviiinennns 22
1.4 Related WOTKS......ooiiiiiiii e 22
1.4.1 Machine learning approaches............cccceoiiiiiiiiiiiii e 22

1.4.2 Deep learning approachescccooouiiiiiiiiiiie i 23

1.4.3 Federated learning approachesccccoovveiiiiiiiiiiiii e 24
1.44 Summary Of Related Works On IDSS.........cccccviiiiiiiiiiiiiiicccce 25

T 0114 1S TP U PP TUUPPPTRRURPPP 26
1.5.1 Hybrid Meta-heuristic-Based IDS for Enhanced Network Security . 26
1.5.2 Quantum-Inspired Horse Herd Optimization for Intrusion Detection 26
1.5.3 Hybrid Federated Learning-Based IDS for [oT Using CNN and BiL-

STV ettt e e e reeeanes 27

1.6 Research Gaps and Motivationcccceiiiiiiiiiiiiiii e 27
1.7 COMCIUSION ..ttt e e s rb e e e s snbb e e e e s antbeeeeaan 28
2 Proposed Approach 29
2% N V' Un o e L0 Uox n (o) o RO PPT 29
2.2 Architecture of The Proposed Solutionc.ccccoiiiiiiiiiiiicc 29
G T D F 1 = 1] = PP 30
2.3.1 Features Of The UNSW-NB15 Datasetccccccevvvveieeiiiiiieesiiiiiee i 31
2.3.2 Types of Attacks in the UNSW-NB15 Datasetc.cccccvvveeiiiiiieeninnnnn. 33

2.4 PrePrOCESSING.......cuiiiiiiiiiiiiiiie it 36
241 Data Merging......ccoooiiiiiiiii 37
242 Data Cleaningc..eeeviiiiiiiiiiiiiiiiiie ettt 38
2.4.3 Label ENCOAINgcuuviiiiiiiiiiiiiiiiiiice e 38
244 Data NormaliZationccooviiiiiiiieiiiiie e 38
245 Data SPLEEING.....ccuvviiiiiiee e 39

2.5 Federated Learning (FL) Model Procedure..............cccccooiiiiiiiiiiiiiiiee 39
2.5.1 Training Phase ... 39

2.5.2 Testing Phase.......cooiiiiiiii e 42

2.6 Model for FL-Distributed Intrusion Detectionccccevviiiiiiieniiiiiiiice s 44
2.6.1 Machine Learning Modelsccccooiiiiiiiiiiii e 44

2.6.2 Deep Learning Models...........ccooiiiiiiiiiiiiiii e 45

2.6.3 Gated Recurrent Unit GRU..........ccccooiiiiiiiiii e 45

2.7 COMCIUSION ...ttt e e e e e e e s annneeas 46
3 Experimentation and Results 47
3.1 INErOAUCHION .ot 47
3.2 EXperimental SETUDcoooiiiiiiiiiiiic it 47
3.2.1 Hardware and Software Environment..............ccccoocivviiiiiiieeiiiiiiee i 48

3.2.2 Model Simulation SEtUPccvvviiiiiiiiiiiiii e 48

3.3 Model Implementation and Building..............cccoeeiiiiiiiii e, 49

3.3.1 Data Preparation.........ccccoociiiiiiiiiiiiciiiiicee e 49

3.3.2 Model SeleCtion.........c.uuiiiiiiiiiiee s 49

3.4 Results and Evaluation..........ccccoiiiiiiiiiiiiiii e 49
3.4.1 Centralized Training Baselines.............cccccooviiiiiiiiiii e, 50

3.4.2 Comparison of evaluated modelsccccoveriiiiiiiii 54

3.4.3 Federated Performance.............cccoriviiiiiiiiiiiie e 55

3.44 Comparison Between MLP and RF Modelsc.ccooveiiiiiiniiicninnenn, 58

3.4.5 VISUAl ANALYSIS...eiiiiiiiiiiieiiiie et 60

3.5 GlObaAl DISCUSSIONvviiiiiiiiiiec et 61

S J T 000} 4 Tol L 1] (o) o WP PPT 62
General Conclusion 63

Bibliography 64

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Architecture of the SOIUtIONc.eeeiiiiiiiii e 30
Results for K-Nearest Neighbors Model..............ccoooveiiiiiiiiii, 50
Results for Decision Tree Model.........ccuevviieeiiiiiiiiiiiiiccc e 51
Results for Random Forest Model...........ccccooiiiiiiiiiiiiii e 51
Results for Light Gradient Boosting Machine Model...............ccccoooiiiiiiiiiinnene 52
Results for Multiple Layer Perceptron Model..............cccccoiiiiiiiiiiiiiiiiiicie, 52
Results for Gated Recurrent Unit Model............cccooveiiiiiiiieiiie e, 53
Results for Long Short Term Memory Model...........ccccccooviiiiiiiiiiiieiiiiccii, 53
Final global model performance of Federated RF model...................covvveennnnnn. 55

Performance metrics using Weighted Aggregation for Federated MLP model 57
Performance metrics using Difference Aggregation for Federated MLP model 57
Final Learning Curves for both aggregation method...............ccccooviiiiiiiiinnnne, 60
Final Performance Metrics Comparison Bar Chartccccccovviviieeiiiiiiee i, 60
Final classification results of the global model using both aggregation meth-

(0T PP PP UOPRR PP 61

List of Tables

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3

Cybersecurity attacks statistics in (2024-2025)ccoooveiiiieiiiieie e 2
Comparison of Different IDS Architectures............ccccoovviiiiieiiiiiiic e 12
Comparison of Intrusion Detection Methods.............cccoveiiiiiiiiciiicc, 14

Summary of different Related Works on Intrusion Detection Systems (IDS) 25

Basic Features in UNSW-NB15oooiiiiiiii e 31
Time-based Features in UNSW-NBT5........ccccoiiiiiiiiiiiiiee e 32
Flow Features in UNSW-NBI15........c.oooiiiiii e 32
Content Features in UNSW-NB15.......oooiiiiie e 33
Other Features in UNSW-NBI15 ..o 33
Different Attack Categories in the UNSW-NB15 Dataset..........ccccceevvvveieeninnnnn. 34
Single sample row from the UNSW-NB15 dataset...........cccceveeiviviieeiiiiineeniinnnn. 35
System software and hardware environment............cccccoevviveveeiiiiiiee e e 48
Performance Comparison of Different Models..........cccccccoviiiiiiiii i, 54

Comparison between Federated MLP and Federated Random Forest Models 59

General Introduction

Today in our world, it's very important to make sure that our computers and on-
line systems highly safe because of bad actors who try to sneak in and cause troubles.
These threats are becoming more advanced and dangerous over time due to the rapid
development of internet tools.

To help protect it, experts use many and different special tools that monitor network
and computers and look for any signs of danger.We mention one of them which is called
Intrusion Detection Systems (IDS) . However, older versions of these systems sometimes
fail to catch new types of attacks they haven’t encountered before.

This is where Machine Learning (ML) and Deep Learning (DL) comes in ,they offer
intelligent ways that help detect unusual activities in network especially in our case that
might be harmful. But using them also comes with challenges, such as concerns about
protecting people’s private information and the difficulty in understanding how the system
makes its decisions.

We will cite in table 1 some real-word attacks statistics in many different domains

according to this article [Martin,] that was last updated on June 6, 2025 :

NOMENCLATURE

Metric Value

Daily cyberattacks 600 million per day

Cybercrime victims 4.6 million victims per day (54 per second)

Malware attacks (2024) 6.54 billion (up 8% from 2023)

Ransomware attacks (2023) 317.59 million globally

Average ransomware payment $850,700

Total cost of ransomware attack $4.91 million (includes downtime and recov-
ery)

Business email compromise losses Over $6.3 billion transferred (2024)

IoT attacks growth 124% increase (YoY); average cost per inci-
dent: $330,000

Phishing Nearly 1 million phishing websites created

per month (Q4 2024)
Cryptojacking attacks (Q1 previously) | 332.3 million in a single quarter

Zero-day attacks (2023) 80 exploited vulnerabilities (record high)
Data breaches (Verizon 2025) 12,195 breaches recorded

Healthcare breach victims Over 198 million individuals affected in 2024
Cybersecurity job gap 3.4 million positions unfilled worldwide
Average data breach cost $4.45M (avg.); insider breach cost: $4.99M

Cybersecurity spending per employee | $52.16 per employee (2024)

Table 1: Cybersecurity attacks statistics in (2024—2025)

Below, we mention one of the most known attacks that happened in real world :

WANNACRY: According to the Center for Internet Security (2018) [Omar et al,,
2019], this began in May 2017 and persisted for several months. This global ransomware
assault encrypted data on Microsoft Windows Operating Systems (0OS) and demanded
Bitcoin cryptocurrency ransom payments in exchange. When the attack was carried out,
it would look for and encrypt particular filename extensions on Windows 7 and Server
2008 clients. Additionally, it would append a text file with the ransom of around $300
and a payment deadline to each encrypted file.

Thesis objectives

The goal of this project is to design a smart and secure intrusion detection model that
not only detects threats accurately but also preserves users privacy .To make sure the
privacy is respected, We are going to use Federated Learning (FL) which allows different
devices or clients to work together without the need of sharing their private data.More
specifically, this project aims to:

e Minimize the number of false alerts, so security teams can focus on real threats
without being distracted by unnecessary warnings.

e Explore and compare different techniques to find the most effective way to detect

NOMENCLATURE

unusual or harmful behaviour in a network.
e Test and evaluate the model using existing real-world dataset (UNSW-NB15), mak-

ing sure it works well in performance.

Thesis contributions

As we mentioned earlier in our objectives that we are focusing on building an intrusion
detection system model by integrating federated learning while using either ML or DL
techniques based on which one has the best performance, the main contributions of our

work are:

e Building a privacy-aware IDS using Federated Learning: We developed a
distributed system where several devices can together train a model without sharing

any data.

» Working with real-world data: We used the UNSW-NB15 dataset, which in-
cludes various real attack types, to train and evaluate the models. This gave us a
good idea of how the system would perform in realistic conditions.

o Comparing different models: We compared several algorithms (such as Random
Forest, Gradient Boosting, GRU, LSTM, and MLP) to see which one performs best
on a real dataset (UNSW-NB15). The Keras MLP turned out to be the most

accurate.

e Using deep learning for better detection: We used a deep learning model
which is Keras MLP and tested its ability to detect attacks in network traffic.
The results showed that it offers strong performance that achieved around 98% for

intrusion detection tasks.

Problem Statement

The performance of intrusion detection systems (IDS) has been the subject of numerous
research projects .However, many of these methods still have trouble addressing funda-
mental issues like high false positive rates and zero-day assaults.

For instance, Kus et al. [Kus et al., 2022] evaluated industrial ML-based IDS and found
that while performance on known attack patterns was strong, detection rates for zero-day
attacks dropped significantly—down to 3.2% in some cases. This reveals a critical blind

spot in modern IDS models.

NOMENCLATURE

Similarly, a comprehensive benchmark study by Wolsing et al. [Wolsing et al.,, 2023]
highlighted the lack of generalizability in IDS. Models that performed well on one dataset
often failed drastically on another, with F1-scores sometimes falling from 0.95 to as low
as 0.02. This inconsistency underscores the challenge of real-world deployment.

Chergui et al. [Chergui et al., 2020] introduced a context-aware IDS (NOC-IDS) based
on ontological filtering to reduce false alerts. While their system showed a notable reduc-
tion in false positives, it still required significant expert configuration and lacked scalability
for large networks.

These examples show that even with major improvements, IDS solutions continue to
have issues with accuracy, flexibility, and operational viability, particularly in dynamic
and privacy-sensitive environments. This supports the need for an IDS paradigm that is

more intelligent, federated, and resilient, as this work explores.

Thesis organization

This work is structured in 3 main chapters as follows:

e Chapter o1: Background and Theoretical Framework
In this chapter, we introduce the concepts and technologies related to Intrusion De-
tection Systems (IDS), including the different architectures and types ,their advan-
tages and disadvantages,in addition to that we mention the role of Machine Learning
(ML) and Deep Learning (DL) in modern cybersecurity.Moreover we explain Feder-
ated Learning (FL) principles and their importance in building privacy-preserving
IDS solutions.

» Chapter 02: Proposed Approach
The design of the proposed solution is presented in this chapter that focuses on the
development part. We describe the choice and preparation of the dataset (UNSW-
NB15), the implementation of different models, and the setup of the Federated
Learning framework.

o Chapter 03: Experimentation and Results
In the final chapter, we present and detail the experimental process steps and eval-
uate each of proposed models performance. Then we compare between different
algorithms using metrics in order to choose the strongest one and develop it by
integrating Federated Learning.Finally, we present visualizations to support our
findings.

Chapter 1

Background and Theoretical

Framework

1.1 Introduction

In today’s digital world, cybersecurity threats are increasing rapidly, making Intrusion
Detection Systems (IDS) a crucial component of network and system security. An IDS
helps monitor, analyse, and detect malicious activities, ensuring that potential threats are
identified before they cause harm. We chose to work with IDS because of its importance in
modern cybersecurity. With the rise of cyberattacks such as hacking, malware infections,
and unauthorized access, organizations need a strong defence mechanism. IDS plays a key
role in identifying suspicious behaviour and helps administrators take immediate actions.
Another reason for our interest in IDS is its ability to use advanced techniques such as
anomaly detection and machine learning to recognize threats, even if they are unknown.
This proactive approach makes IDS a powerful tool in protecting networks and systems.
Furthermore, working with IDS allows us to explore various cybersecurity concepts, gain
hands-on experience, and contribute to building more secure digital environments. By
studying IDS, our aim is to understand how cyber threats are detected and mitigated,

making it a valuable field for our knowledge and future projects in cybersecurity.

1.2 Intrusion Detection Systems (IDS)

In this section we are going to explain how Intrusion Detection Systems (IDS) are essential
tools in cybersecurity , it is necessary to first define what an IDS is and explore its core

components and functions.

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.2.1 Intrusion Detection Systems Definition

An Intrusion Detection System (IDS) [Bace et al., 2001] is a software device and cyberse-
curity solution that continuously monitors, inspects and analyses network traffic or system
activities to identify unauthorized access, security breaches, potential attacks, suspicious
activities and malicious behaviour. It acts as a defence layer, helping organizations de-
tect, log, and respond to potential cyber threats before they cause serious damage such as
cyberattacks, policy violations, and malicious activities, meaning that if an IDS detects
a threat, it alerts the system or network administrator to make the necessary actions.

IDS does not actively prevent attacks. It acts as an early warning system, providing
detailed reports on security incidents for further investigation.

So we can summarise that IDS has 4 steps while working:

e First,it monitors traffic on a computer network to detect suspicious activity.

e then , it analyses the data flowing through the network to look for patterns and
signs of abnormal behaviour.

e After that, IDS compares the network activity with a set of predefined rules and
patterns to identify any activity that might indicate an attack or intrusion.

e Finally, it alerts the administrators immediately with all the possible attacks.

1.2.2 The importance of Intrusion Detection Systems in Cyber-

security

Intrusion Detection Systems (IDS) are essential to current cybersecurity [Sundaram, 1996]
because it is nearly impossible to provide comprehensive system security because of soft-
ware defects, cryptography restrictions, insider threats, and usability constraints. IDSs
act as reactive mechanisms that track and examine system activity to find indications
of malicious activity, unauthorized access, or policy violations rather than preventing as-
saults. They play a crucial role in both real-time intrusion detection and post-attack
forensic analysis.

1.2.3 Intrusion Detection Systems architectures

Before exploring into how intrusion detection systems identify malicious activity, it is
essential to understand their basic structures [Liao et al., 2013] because they influence
its capabilities, deployment strategy, and overall effectiveness. In the following section,
we will explore the main architectures of IDS, their roles, advantages, and limitations in

protecting different computing environments.

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.2.3.1 Distributed Intrusion Detection Systems

An innovative method for intrusion detection systems (IDS) is the DIDS architecture
(Distributed Intrusion Detection Systems) [Snapp et al.,, 1991] , which blends centralized
data analysis with distributed monitoring and data reduction. A DIDS director, one host
monitor for each host, and one LAN monitor for every broadcast LAN segment in the
network under observation make up this system. The DIDS director assesses the evidence
of unauthorized or suspicious behaviour that is gathered by the host and LAN monitors.
The DIDS director receives reports from the host and LAN monitors asynchronously and

independently over a communications infrastructure.

Advantages and Limitations of DIDS: The Distributed Intrusion Detection System
(DIDS) offers both notable strengths and certain limitations [Zarringhalami and Rafsan-

jani, 2012] based on its architectural design and operational goals [Snapp et al., 1991].

Advantages

e Distributed Monitoring: DIDS deploys both host-level and LAN-level monitors,
allowing comprehensive and scalable intrusion detection across different points in

the network.

e Centralized Analysis: The DIDS Director aggregates data from distributed agents,
enabling the system to detect complex and coordinated intrusions that might be

missed otherwise.

» Efficient Data Reduction: Each monitoring agent performs local filtering and
summarization of audit data before transmission, reducing network overhead and

improving processing efficiency.

e Cross-System User Tracking: DIDS can monitor user activity across multiple
systems, even when multiple login names are used, enhancing accountability and

traceability.

Limitations

e Architectural Complexity: The distributed and centralized hybrid architecture
adds complexity in terms of configuration, communication, and synchronization of

components.

e Single Point of Failure: The DIDS Director represents a central point in the
system—if compromised or fails, it can degrade the entire detection capability.

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

e Network Overhead: Although local data reduction is applied, transmitting pro-
cessed alerts and summaries still contributes to network load, which may impact
performance in high-traffic environments.

1.2.3.2 Network-based Detection Systems architecture

We have also another architecture called Network Intrusion Detection Systems (NIDS) [Li
etal.,, 2019], which is deployed at strategic points within a network to monitor and analyse
traffic in real-time or near real-time, aiming to detect malicious activity. It inspects
packets traversing the network by analysing headers and payloads across the IP, transport,
and application layers, allowing detection of various attacks such as TCP SYN floods
and fragmented packet attacks. NIDS uses either signature-based methods, comparing
patterns to a database of known threats, or anomaly-based detection to identify unusual
behaviour. However, NIDS is limited in its ability to inspect encrypted traffic or activities
occurring within hosts. Tools like Snort and NetSTAT exemplify NIDS implementations.
In machine learning-based NIDS approaches, intrusion detection involves three phases:
pre-processing of traffic data, training to build behaviour models, and detection, where
current traffic is compared against learned patterns to trigger alerts when threats are
identified.

Advantages and Limitations of NIDS: The Network Intrusion Detection System
(NIDS) has its advantages and limitations [Li et al, 2019] based on its architectural
design .

Advantages

» Real-time Monitoring: NIDS provides continuous, real-time monitoring of net-

work traffic, enabling early detection of threats and suspicious activities.

e Non-intrusive Operation: As passive sensors, NIDS operate without interfering

with normal network functions, making them difficult for attackers to detect.

» Wide Coverage: NIDS can analyse traffic from multiple hosts simultaneously,
offering broad visibility into network behaviour and helping to identify misconfigu-

ration or misuse.

o Complementary Use: NIDS complements other security systems such as firewalls

and antivirus tools by identifying threats those systems may miss.

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

Limitations

e Encrypted Traffic Blindness: NIDS generally cannot analyse the contents of
encrypted network packets, limiting their effectiveness in modern secure communi-

cations.

e High False Alarm Rate: NIDS can produce a large number of false positives
due to benign anomalies or misconfigured detection rules, which may overwhelm

security analysts.

* Dependence on Signature Updates: Signature-based NIDS may fail to detect

new or unknown attacks until updated, creating vulnerabilities during that window.

e Limited Internal Visibility: When deployed at network perimeters, NIDS may

miss threats occurring inside the network or across segmented environments.

o Performance Bottlenecks: In high-traffic environments, NIDS may drop packets

or slow down due to processing limitations, affecting detection accuracy.

1.2.3.3 Host- based Intrusion Detection Systems architecture

It is a security solution installed on individual devices—such as servers or workstations—to
monitor the internal state and behaviour of the host. It analyses system logs, file integrity,
user activities, and local network connections to detect unauthorized access or malicious
actions. HIDS operates using local agents that compare observed behaviours with known
attack patterns, raising alerts or logging incidents when suspicious activity is detected.
It is often integrated with Security Information and Event Management (SIEM) systems
like Splunk or OSSEC for centralized oversight. HIDS focuses on host-level activities,
providing deeper visibility into system-level threats such as insider attacks, abnormal

application behaviour, or tampering.

Advantages and limitations of HIDS: Host-based Intrusion Detection System also

has advantages and limitations based on its architecture.

Advantages

e Provides in-depth visibility into host-level events (e.g., file changes, system calls),
enabling effective detection of internal or encrypted attacks [Raj and Sharma, 2020].

 Effectively detects insider threats and policy violations by monitoring user actions
and system behaviour [Chauhan and Chandra, 2013a].

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

e Supports file integrity monitoring (FIM) and detailed forensic analysis through local
log inspections, essential for compliance and audit trails [Scarfone and Mell, 2007].

e Reduces network overhead as all analysis and event processing occurs locally on the
host, minimizing additional traffic [Raj and Sharma, 2020].

Limitations

 High Resource Consumption: Constant monitoring of files, logs, and pro-
cesses consumes CPU, memory, and disk space, which may degrade system per-
formance—especially on resource-constrained devices [Raj and Sharma, 2020].

o Limited Scope: Only protects the individual host it’s installed on and cannot
detect threats that move laterally across the network or target other hosts [Scarfone
and Mell, 2007].

 Management Complexity: Requires installation and configuration on each host,
and maintaining updates and rule sets across many machines increases administra-
tive overhead [Chauhan and Chandra, 2013a].

e Vulnerability to Tampering: If attackers compromise the host, they can disable
or modify the HIDS, allowing malicious activity to go undetected [Raj and Sharma,
2020].

» False Positives and Alert Fatigue: Innocent anomalies often trigger alerts, caus-
ing alert fatigue and potentially obscuring true threats [Scarfone and Mell, 2007].

1.2.3.4 Hybrid-based Intrusion Detection Systems

Combining multiple detection models is the aim of hybrid intrusion detection systems
[Maseno et al., 2022] [Satilmis et al., 2024] in order to improve performance. Two parts
make up a hybrid intrusion detection system. The unclassified data is processed by
the first part. The processed data is scanned by the second component to identify any
instances of infiltration. It works by combining two learning algorithms [Tsai et al,,
2009].Every learning algorithm has distinct characteristics that help to enhance the hy-
brid’s performance. The three main types of hybrid intrusion detection systems are single

hybrid, integrated-based hybrid, and cascaded hybrid.

Advantages and limitations of Hybrid IDS: Hybrid Intrusion Detection System

has advantages and inconveniences [Chauhan and Chandra, 2013b], we mention :

10

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

Advantages
¢ Low false alarm/positive ratio.

e Provides a tighter and broader perimeter, enabling good performance against both
internal and external unauthorized access.

e Allows correlation between network events and those occurring on target hosts.

e Detects intrusive activity targeting multiple hosts and offers information about af-
fected systems.

e Capable of analysing encrypted data that has already been decrypted on the host.

e Correlates alerts from HIDS and NIDS to improve the likelihood of detecting real

intrusions.

e Enhances overall detection rate of attacks.

Limitations
e Implementation is highly complex.
¢ Not easily adaptable to frequently changing network environments.

e May cause significant performance degradation on hosts due to the combined re-
source overhead of HIDS and NIDS components.

Out of all these architectures, in our thesis we are interested about the Distributed

Intrusion Detection Systems.

1.2.4 Intrusion Detection Systems Architectures Comparison

Below is table 1.1 that compares between the IDS architectures based on those two papers
[Othman et al,, 2018] and [Zhang et al., 2019]

11

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

tegrity, process

loads, protocols)

work data

Criteria HIDS NIDS DIDS Hybrid IDS
Deployment Individual Network devices | Both hosts and | Across hosts,
Location hosts/endpoints | (e.g., routers) network networks, cloud
Input Data System logs, au- | Network traffic | Combination of | All available
dit trails, file in- | (headers, pay- | host and net- | data (host,

network, cloud,

malware, rootk-
its

ing, brute force

and external)

behaviour external feeds)
Platform Sup- | OS-level (Win- | Network infras- | Mixed platform | Cross-platform
port dows, Linux, | tructure devices with scalable

Mac) architecture
Attack Types | Insider threats, | DoS/DDoS, Combined Sophisticated
Detected privilege abuse, | port scans, sniff- | threats (internal | and multi-stage

attacks

Detection Ca-

High for internal

High for external

Balanced inter-

High for all

or local events

pability attacks threats nal and external | types (anomaly,
misuse, hybrid)
Resource Us- | High (per host) | Low to moderate | Moderate to | Depends on
age high components
Response Fast for local | Real-time for | Moderate (co- | Fast and coor-
Time events network threats | ordination dinated (if opti-
overhead) mized)
Scalability Limited due to | High Moderate High with dis-
host dependence tributed design
Advantages In-depth visi- | Broad network| Comprehensive | Adaptive, accu-
bility, insider | monitoring, view, better | rate, flexible
threat detection | early detection accuracy
Limitations Host tampering, | Can’t analyze | Complex man- | Complex design
scalability encrypted traffic | agement and high re-

source need

Table 1.1: Comparison of Different IDS Architectures

1.2.5 Intrusion Detection Systems Classification

Intrusion detection Systems are classified into methods [Maseno et al., 2022] [Zarringha-

lami and Rafsanjani, 2012] or techniques [Satilmis et al., 2024], we mention of them the

next 3 methods:

 Signature-based Intrusion Detection Systems (SIDS): Also known as knowledge-
based [Khraisat et al,, 2019] or misuse detection, identify known threats by com-

paring monitored network traffic or host activities against a database of predefined

intrusion signatures or past log patterns. These systems, used in tools like Snort

and NetSTAT, offer high accuracy for previously encountered attacks but struggle

12

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

to detect zero-day or polymorphic threats that lack existing signatures. Traditional
SIDS often fail to capture complex attacks spanning multiple packets and have be-
come less effective against the growing sophistication of modern malware. Despite
improvements like using state machines and semantic pattern matching, the increas-
ing rate of novel and targeted attacks has highlighted the limitations of SIDS and
encouraged a shift toward Anomaly-based Intrusion Detection Systems (AIDS).

e Anomaly-based Intrusion Detection Systems (AIDS): [Khraisat et al., 2019]Iden-
tify abnormal or malicious behaviour by detecting significant deviations from nor-
mal system activity, using heuristics based on machine learning, statistical, and
knowledge-based methods—machine learning being the most effective. These sys-
tems are designed to overcome the limitations of Signature-based IDS (SIDS), par-
ticularly in detecting zero-day and previously unknown attacks. AIDS models are
trained during a learning phase using normal traffic data and tested on new data to
detect anomalies. They can operate in supervised, semi-supervised, or unsupervised
modes. Supervised approaches require labelled data to distinguish normal from ab-
normal patterns, while semi-supervised methods use mostly normal data, which can
result in high false positive rates. Unsupervised techniques, which do not require
labelled data, focus on learning from normal behaviour to detect previously unseen
intrusions more effectively. AIDS can also detect internal malicious activities and
are difficult for attackers to bypass due to their use of customized behaviour profiles.
However, their sensitivity to novel behaviours may still result in false positives.

e Specification-based Intrusion Detection Systems: [Tseng et al., 2003]identifies at-
tacks by monitoring system or network behaviour and comparing it to manually
defined security specifications that describe correct and expected operations. These
specifications are crafted based on security policies, system functionality, and normal
usage patterns. Rather than detecting attacks directly, this method flags deviations
from expected behaviour at runtime, which may indicate an intrusion. It is par-
ticularly effective at detecting previously unknown attacks, as it is not limited to
known signatures. Commonly used to protect critical applications and protocols
like ARP and DHCP, specification-based detection enforces rules on message struc-
ture, sequence, and content. Although it requires manual effort to define accurate
specifications, combining it with other detection methods can improve accuracy and
reduce false positives.

13

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.2.6 Intrusion Detection Systems Methods Comparison

Here is table 1.2 that compares between the 3 different classification methods [Liao et al,,
2013] of intrusion detection systems:

Criteria Signature-based | Anomaly-based | Specification-
(SIDS) (AIDS) based
Detection Prin- | Matches activities | Detects deviations | Compares runtime
ciple against known at- | from a learned | behaviour against
tack signatures model of normal | predefined specifi-
behaviour cations
Detection of | Poor (cannot de- | Good (can detect | Good (can detect
Zero-day At- | tect unknown at- | unknown and novel | previously unseen
tacks tacks) attacks) behaviour if it vio-
lates specifications)
False Positives Low High (especially in | Moderate (depends
semi- and unsuper- | on completeness
vised approaches) | and correctness of
specifications)
Data Require-| Requires labelled | Requires normal | Requires manually
ments attack signatures (and sometimes | defined specifi-
labelled) data for | cations based on
training expected behaviour
Approaches Pattern matching, | Machine learn- | Manual rule specifi-
Used rule-based detec- | ing (supervised, | cation, protocol be-
tion semi-supervised, haviour modelling
unsupervised), sta-
tistical, knowledge-
based
Examples Snort, NetSTAT KDD-based ML | ARP/DHCP proto-
models, anomaly | col monitors, run-
profilers time policy enforce-
ment
Strengths High accuracy for | Detects novel and | Detects viola-
known attacks; fast | internal attacks; | tions of intended
detection adaptable to evolv- | behaviour; not
ing threats limited to known
signatures
Weaknesses Cannot detect new | High false alarms; | Labor-intensive to
or obfuscated at- | needs large/clean | define; limited by
tacks datasets specification qual-
ity

Table 1.2: Comparison of Intrusion Detection Methods

14

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.3 Federated Learning Fundamentals

The foundation for collaborative model training that protects privacy is laid by the idea
of Federated Learning and we are going to explain it in this section.

1.3.1 Federated Learning Definition

Federated Learning (FL) [Yang et al., 2019] [Gosselin et al., 2022] is a decentralized
machine learning technique in which multiple data owners collaboratively train a shared
model without exchanging their private data. Unlike traditional centralized methods
that require aggregating all data in one location, FL allows training to occur locally on
user devices, preserving both data privacy and security. This approach is particularly
promising for developing privacy-preserving solutions to address emerging cybersecurity
threats.

1.3.2 Federated Learning Concept For IDS

Federated Learning (FL) for IDS [Agrawal et al., 2022] is a decentralized approach where
multiple devices train an IDS model locally and share only model updates instead of raw
data, preserving privacy. FL enhances intrusion detection in sensitive environments while
reducing data exposure risks. It improves security while addressing privacy, scalability,

and communication challenges in network security.

1.3.3 Federated Learning Types

This section describes the main types of Federated Learning (FL) [Li et al., 2020b].

1.3.3.1 Horizontal Federated Learning

[tis a type of FL that addresses overlap between data features across nodes and differences
in sample space. Currently, FL algorithms are primarily used in smart devices and IoT
devices, with horizontal FL being the most common. Google’s federated model solution
for Android mobile phone updates is typically horizontal FL due to similar feature dimen-
sions. Gao et al. introduced hierarchical heterogeneous horizontal FL frames to address
limited labelled entities and address data annotation issues in EEG classification. In real
applications like medical care, cross-regional cooperation is difficult due to the difficulty
in building data pools for sharing. FL could construct a federal network for cross-regional
hospitals with similar medical information to improve joint models.

15

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.3.3.2 Vertical Federated Learning

It is a machine learning approach that partitions data vertically according to feature di-
mension, allowing for the prediction and personalization of diseases like diabetes. This
approach is particularly useful for medical institutions that need to analyse homoge-
neous data, such as age, weight, and medical history, to predict and personalize diseases.
Vertical FL can also work with companies that hold smartphone application data sets,
allowing them to cooperate without raw data transmission. However, it is more challeng-
ing to apply vertical FL due to entity resolution issues and the need for correspondence
between different owners. Various methods have been developed to preprocess vertical
partitioned data, such as token-based entity resolution algorithms, end-to-end schemes on
linear classifiers, and secure frameworks like SecureBoost. However, these methods are
only applicable to simple machine learning models like logistic regression, leaving room
for improvement in more complex machine learning approaches. Overall, vertical FL has

potential for further development in machine learning applications.

1.3.3.3 Federated transfer learning

It is a method that generalizes deep learning (FL) to address the issue of data sharing
and poor data quality. It allows knowledge from one domain to another, achieving bet-
ter learning results. FTL is the first complete stack for FL based on transfer learning,
including training, evaluation, and cross validation. Neural networks with additive ho-
momorphic encryption technology can prevent privacy leakage and provide comparable
accuracy with traditional methods. However, communication efficiency remains a chal-
lenge. Sharma et al. (2019) worked on improving FTL by using secret sharing technology
instead of HE to reduce overhead and hinder malicious servers. Chen et al. (2019) con-
structed a FedHealth model that gathers data from different organizations via FL and
offers personalized healthcare services through FTL. While FTL research is not mature, it
is an effective way to protect data security and user privacy while breaking data islands.

1.3.4 Federated Learning Architectures

The efficiency of an Intrusion Detection System (IDS) depends on choosing the right
deployment architecture. There are two main types:

1.3.4.1 Centralized Federated Learning

It is a common architecture of Federated Learning systems [Zhang et al., 2020], where a
single central node handles communication, aggregation, and deployment of models. This

16

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

architecture offers smooth and elegant model transmission, quick updates, and efficiency
for small systems. However, it can lead to scalability issues, as the server node may not
improve performance when thousands of client nodes join, and communication bottlenecks
may arise when traffic increases exponentially. Additionally, the system can easily break
down due to a Denial-of-Service attack on the server.

1.3.4.2 Decentralized Federated Learning

It is another architecture [Yuan et al,, 2024] that allows model weights to be shared
according to broadcast, gossip, or pointing protocols in order to produce the best models
for every client.Pointing is one of the easiest and most direct ways for two peers to establish

a one-to-one, unidirectional, and defined communication relationship.

1.3.5 Federated learning fundamentals

The most common fundamentals [Banabilah et al., 2022] of FL are these:

e Data Privacy: In federated learning, the data does not need to be collected and
centralized on a server. It remains on the local devices, preserving user privacy and
complying with data protection regulations such as GDPR.

e Data Distribution: The data is distributed across a wide range of devices. These
devices may vary in terms of data size, quality, and type. This diversity helps in
building more robust models.

e Client-Side Training: Each participating device trains the model locally using
its own data. This involves running training algorithms such as gradient descent on
the local data, without sending the data to a central server.

» Local Model Updates: After training on local data, each client computes updates
(such as model parameters or gradients) to improve the model. These updates are
then shared with the central server.

» Federated Averaging (FedAvg): The server collects model updates from clients
and aggregates them (usually by averaging) to form a global model. This aggregated
model is then sent back to the clients for further training. This process continues

iteratively.

» Aggregation Server: The central server coordinates the training, aggregates the

local model updates, and distributes the global model back to clients.

17

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

o« Communication Overhead: Since model updates are exchanged over a net-
work, it is important to minimize communication overhead. Techniques like model
compression, quantization, or sending only significant updates can help reduce the
amount of data exchanged.

o Asynchronous Updates: Updates can be sent asynchronously, avoiding the need
to wait for all clients to send their updates at once.

e Device and Data Heterogeneity: Federated learning systems need to handle
differences in devices (e.g., computational power, network connectivity) and data
(e.g., class imbalance, non-IID data). These challenges require careful model design
and adaptive learning strategies.

e Non-IID Data: In federated settings, data may not be independently and identi-
cally distributed (non-IID). This can lead to challenges in convergence and general-

ization.

» Differential Privacy: To protect sensitive information, techniques like differential
privacy can be applied. This ensures that the model updates do not reveal too much
about any individual client’s data.

e Secure Aggregation: Methods such as secure multi-party computation (SMPC)
or homomorphic encryption can be used to ensure that the updates are encrypted
and private, preventing adversaries from gaining insight into the model updates or
individual data.

o Personalized Models: After global model aggregation, the model can be fine-
tuned locally on individual devices to better fit each client’s data. This can improve

performance, especially in highly diverse datasets.

» Large-Scale Deployment: Federated learning systems are designed to scale to
a large number of clients (e.g., millions of devices). Effective scheduling and op-
timization algorithms are required to ensure that this large-scale system operates
efficiently.

1.3.6 Federated learning use case and applications

Federated learning has been useful in several real-world scenarios, below are some exam-
ples of use cases and applications also:

18

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.3.6.1 Use case

Below we mention some FL use cases [Brik et al., 2020]:

Medical Imaging:A prominent use-case of FL in healthcare is for the early de-
tection of Rheumatic Heart Disease (RHD). This was implemented on the ATMO-
SPHERE platform, which supports the development and deployment of medical
imaging applications using federated cloud infrastructures. The proposed solution
utilized a deep learning classifier that analyses echocardiographic video data and
demographic information to classify patients into three categories: Definite RHD,
Borderline, or Normal.

Anomaly Detection in IoT Devices:Another use case is the DIoT system, which
uses FL to detect anomalies in Internet of Things (IoT) devices without the need
for labelled data or human intervention.

Augmented Reality:FL has also been applied in Augmented Reality (AR) to
address issues related to high data volume and latency. The proposed framework
integrates FL with Mobile Edge Computing (MEC).

Robotics:In robotics, Federated Learning allows multiple robots to collaboratively
improve their models while keeping data local. This is particularly useful in multi-
robot systems, where centralized training can be limited by communication con-
straints and privacy concerns. By sharing only essential model updates instead of
raw data, FL enhances learning efficiency without overloading the network.

Transportation: Autonomous Vehicles:Autonomous vehicles use machine learn-
ing for tasks like obstacle detection and adaptive driving. Traditional cloud-based
training can cause latency and risks in fast-paced environments. Federated Learning
addresses this by enabling vehicles to collaboratively train models in real time while
keeping data local. This approach improves decision-making based on current road
conditions without requiring constant data transfer.

Smart Manufacturing: Predictive Maintenance:In Industry, predictive main-
tenance powered by Al helps reduce downtime and improve efficiency. However,
data privacy and cross-border restrictions can limit centralized approaches. Feder-
ated Learning offers a solution by allowing each manufacturing site to train models
locally. These local models contribute to a global predictive system without sharing
sensitive or proprietary industrial data.

19

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.3.6.2 Applications

Below we mention some of FL applications [Li et al,, 2020b] :

Google Gboard Suggestions: FL improves query suggestions on Gboard while
preserving user privacy and minimizing latency by using Android’s Job Scheduler

and a client-server architecture.

Mobile Keyboard Prediction: A Recurrent Neural Network (CIFG, a variant of
LSTM) was trained using FL to provide faster and more efficient text predictions
on mobile keyboards.

Browser History Ranking (Firefox): FL was used to train models for ranking
browser history suggestions, resulting in faster URL bar completions with privacy
maintained through client-server optimization.

Visual Object Detection (FedVision): FedVision supports decentralized train-
ing of YOLOv3 object detection models, allowing companies to train models across

clients for hazard detection applications.

Patient Clustering from EMRs: The CBFL algorithm uses FL to predict mor-
tality and hospital stay durations using distributed Electronic Medical Records from

over 200 hospitals.

fMRI Analysis: FL is used for analysing fMRI data (ABIDE dataset) to identify
autism, enhancing model generalizability while maintaining privacy.

Brain Tumour Segmentation: FL applied to the BraTS 2018 dataset achieves

accurate tumour segmentation without centralized data sharing.

Distributed Medical Databases: An FL framework enables privacy-preserving

meta-analysis of subcortical brain structures across institutions.

FedNER (Medical Named Entity Recognition): FedNER framework uses FL
to detect medical entities in text data across clients with improved accuracy over
baseline methods.

1.3.7 Federated learning benefits and challenges

Federated learning has plenty of benefits and challenges that we are going to mention in

this section.

20

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.3.7.1 Benefits of federated learning

we will start by mentioning some of its benefits [Shen et al., 2021] that make it appropriate
for distributed and privacy-sensitive environments.

e Data Privacy and Security: Training occurs locally on devices, and only model
updates are shared, which reduces the risk of sensitive data leakage.

e Decentralized Training: FL removes the need for centralized data collection,

reducing transmission costs and improving system resilience.

e Real-Time and Offline Prediction: Since models are stored on-device, predic-

tions can be made instantly and even without an internet connection.

o Minimal Infrastructure Requirements: Training can take place when devices
are charging, idle, or connected to Wi-Fi, reducing the need for high-performance
hardware.

» Efficient Resource Usage: FL leverages edge devices’ computational capabilities,
allowing scalable and continuous learning directly at the data source.
1.3.7.2 Challenges of Federated Learning

Despite significant advancements in Intrusion Detection Systems (IDS) using Federated
Learning (FL), several challenges [Li et al., 2020c] remain which we are going to site some
of :

e Increased Power and Memory Consumption: Devices with limited resources

may struggle with the local training process.

e Bandwidth Limitations: Communication between devices and the server can be

constrained by low bandwidth, causing latency or slower convergence.

e Device Reliability: FL depends on consistent device participation. Devices drop-

ping out mid-training can degrade model performance.

e Non-IID and Unbalanced Data: Data is not identically distributed across de-

vices, which can hinder model accuracy and convergence.

e Scalability Issues: Large-scale deployment requires careful orchestration of de-

vices, communication, and resource allocation.

21

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.3.8 Federated Learning for Cybersecurity Applications

Federated Learning (FL) offers significant potential in enhancing cybersecurity across
various industries, some of applications [Ghimire and Rawat, 2022] of FL in cybersecurity
include:

e Threat Detection and Anomaly Identification: FL enables real-time mon-
itoring by pooling insights from diverse sources without exposing sensitive data,
improving the detection of evolving cyber threats.

» Malware Detection and Classification: FL enhances malware detection by
aggregating data from different organizations, resulting in robust, real-time malware

classifiers that adapt to evolving threats.

o Predictive Analysis for Cyber Attacks: FL improves predictive models by
analysing historical data from multiple entities, allowing proactive identification of
potential attack vectors.

» Collaborative Defence Strategies: FL facilitates cooperation between organiza-
tions to share threat intelligence without exposing sensitive data, creating a stronger
collective defence against common adversaries.

o Privacy-Preserving Intrusion Detection: FL enables privacy-preserving intru-
sion detection by keeping sensitive data local and sharing only anonymized insights,
allowing collective identification of unauthorized access while protecting user confi-
dentiality.

1.4 Related works

We can divide different related works based on these approaches:

1.4.1 Machine learning approaches

Machine learning [Kreuzberger et al., 2023]is a rapidly growing field of computing that
uses computers to learn and improve tasks without explicit programming. It has been
around for over half a century, with Alan Turing and John McCarthy being key founders.
The field has gained popularity in recent decades, particularly in the medical field, where
computer vision has become faster and more reliable than human labour.

To identify cyberthreats, machine learning (ML) and intrusion detection systems (IDS)
employ algorithms [Halim et al., 2021] such as XGBoost, SVM, k-NN, and decision trees.

22

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

Techniques for feature selection decrease computational complexity and increase detection
accuracy. By choosing pertinent features from big datasets, a study presents GbFS, an
enhanced Genetic Algorithm-based feature selection technique that improves IDS accu-
racy. With a maximum accuracy of 99.80 % and lower computing costs than conventional
methods, GbFS successfully removes redundant features without sacrificing detection pre-
cision.

According to the study [Logeswari et al., 2023] anomaly-based IDS examines devi-
ations, but standard signature-based IDS finds it difficult to fend off zero-day attacks.
Network management is improved by software-defined networking (SDN), but there are
drawbacks as well. SDN security is enhanced by machine learning (ML)-based intrusion
detection systems (IDS), while they have drawbacks such as computational inefficiencies
and false positive rates. With an accuracy of 98.7%, HFS-LGBM IDS performs better
than other ML models.

The paper [Nimbalkar and Kshirsagar, 2021] suggests a feature selection technique
that minimizes IoT network traffic features while preserving high detection accuracy by
utilizing Information Gain and Gain Ratio. Using the IoT-BoT and KDD Cup 1999
datasets, the system creates two feature subsets (RFS-1 and RFS-2) and assesses them
using the JRip classifier. With a high accuracy rate of 99.9992%, the system surpasses

current techniques by lowering the feature set to 16 and 19 features.

1.4.2 Deep learning approaches

Deep learning [Chassagnon et al,, 2020] is a branch of machine learning that uses multi-
layered neural networks, known as deep neural networks, to mimic the complex decision-
making capabilities of the human brain. Today, it powers many of the artificial intelligence
(AI) applications we use in everyday life.

Advanced neural networks [Caville et al, 2022] such as CNNs, RNNs, and Graph
Neural Networks (GNNs) are used in Deep Learning (DL) for intrusion detection (IDS) in
order to identify intricate patterns in cyberthreats. DL models are better at identifying
complex attacks than regular ML models since they extract features without the need for
human selection. In order to detect anomalies without labelled data, Anomal-E, a self-
supervised GNN-based NIDS, uses edge characteristics, network graph structures, and a
modified Deep Graph Infomax model. The model outperformed conventional techniques
in detecting complex cyberthreats after being evaluated on benchmark datasets.

Modern vehicles are highly connected, exposing them to cyber threats. Intrusion De-
tection Systems (IDSs) are deployed in In-Vehicle Networks (IVNs) [Rajapaksha et al,,
2023]to counter these threats. Al-driven IDSs, using Machine Learning and Deep Learn-

23

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

ing, offer improved security by analysing CAN bus traffic patterns and detecting anoma-
lies. However, existing IDSs lack comprehensive coverage of Al techniques, recent devel-
opments, and benchmark datasets. This study presents a novel Al-based IDS taxonomy
for IVNs.

1.4.3 Federated learning approaches

Intrusion Detection Systems (IDS) play a critical role in network security, with Machine
Learning (ML) and Deep Learning (DL) improving their detection capabilities. How-
ever, traditional ML/DL-based IDS rely on centralized data storage, raising privacy and
security concerns.

The paper [Agrawal et al., 2022] reviews existing FL-based IDS implementations, ana-
lyzing their strengths and limitations while addressing challenges such as communication
overhead, security risks, and model aggregation complexities. Despite FL’s potential to
enhance IDS privacy and scalability, further research is needed to optimize its efficiency
and robustness.

This comprehensive review [Fedorchenko et al.,, 2022] compares various intrusion detec-
tion systems based on Federated Learning. It highlights how FL reduces privacy risks by
keeping data localized and supports collaboration between entities with private datasets.
It discusses its specific challenges like non-IID data, device heterogeneity, and model ag-
gregation issues. It also analyses system architectures and datasets used in IDS research,
to compare datasets, machine learning methods, and evaluation metrics, ultimately iden-
tifying open research gaps and suggesting directions and solutions for future work.

FELIDS [Friha et al., 2022] is a federated learning-based intrusion detection system
designed to secure agricultural loT infrastructures while preserving data privacy. It em-
ploys three deep learning classifiers to detect cyber threats, enhancing privacy and secu-
rity. FELIDS is evaluated using datasets like CSE-CIC-IDS2018, MQTTset, and InSDN,
demonstrating superior performance compared to non-federated machine learning models.
Despite challenges like data privacy, communication overhead, and power consumption,
FELIDS offers a promising alternative to traditional machine learning solutions.

Federated Learning (FL) can be adapted for different types of computer networks,
such as PAN, LAN, MAN, WAN, and satellite networks, based on factors like network
size, traffic, and data interaction. For Satellite-Terrestrial Integrated Networks (STINs)
[Li et al., 2020a], FL-based IDS has proven essential for defending against attacks like
DoS, due to the resource and bandwidth gaps between satellite and terrestrial networks.
An FL-based STIN algorithm outperforms traditional IDS by optimizing energy use,
reducing packet loss, and lowering CPU utilization. In Local Area Networks (LAN),

24

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

where device numbers range from 3 to 60, segmented FL architectures with multiple

global modelsimprove prediction accuracy and aggregation results by addressing non-11D

data. Grouping client models based on similarity further enhances performance through

optimized hyper-parameters.

1.4.4 Summary Of Related Works On IDSs

Below, table 1.3 that represents all the related work sited above summarised :

Research Technique Method Dataset Key Results / Contri-
bution
Anomal-E [Cav- | GNN (Self- | Graph-based Custom graph- | Effective anomaly detec-
ille et al., 2022] supervised) anomaly de- | based dataset | tion; high computational
tection (Deep cost; good for complex
Graph Infomax) threats
GbFS [Halim | Genetic Algo- | Feature selec- | NSL-KDD 98.5% accuracy with only
et al., 2021] rithm tion to enhance 12 features; reduced com-
ML-IDS plexity
Al-based IDS | ML & DL Al taxonomy for | CAN Bus, | 99.99% detection rate for
for In-Vehicle vehicular secu- | other automo- | known attacks; F1i-score >
Networks [Ra- rity tive datasets 0.95 for novel ones
japaksha et al.,
2023]
FL for IDS | Federated Distributed IDS | CICIDS2017, Enhanced privacy; scal-
[Agrawal et al., | Learning with privacy- | NSL-KDD able; suffers from commu-
2022] preserving nication overhead
model updates
FELIDS [Friha | FL. + DL | Federated IDS | Edge-IloTset, | Strong performance in IoT;
et al., 2022] (DNN, CNN, | for Agri-IoT CSE-CIC- privacy preserved; faces
RNN) IDS2018 complexity and energy is-
sues
HFS-LGBM IDS | LightGBM + | ML for SDN | SDN-specific Achieved 99.9% accuracy;
[Logeswari et al., | FS anomaly detec- | dataset reduced false positives; ef-
2023] tion ficient
IoT Feature Se- | Info Gain & | Dimensionality | IoTID2o0, Accuracy up to 99.98%;
lection IDS [Nim- | Gain Ratio reduction for | KDD Cup | only 16-19 features se-
balkar and Kshir- IoT IDS 1999 lected

sagar, 2021]

Table 1.3: Summary of different Related Works on Intrusion Detection Systems (IDS)

25

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.5 Others

This section examines site other modern and novel approaches to intrusion detection
systems (IDS) that go beyond conventional and federated learning techniques.

1.5.1 Hybrid Meta-heuristic-Based IDS for Enhanced Network
Security

In response to the increasing complexity of cyber threats, this study [Fadhil et al,
2024]proposes a hybrid Intrusion Detection System (IDS) that combines meta-heuristic
algorithms with deep learning. The system integrates the Lion Optimization Algorithm
(LOA) and Grey Wolf Optimizer (GWO) to enhance detection accuracy and reduce false
alarms. The key contribution is the development of a hybrid approach, referred to as LOF-
SGWO, which merges Lion Optimization Feature Selection (LOFS) with GWO within a
CNN-LSTM deep learning framework. This method enables the detection of unknown vul-
nerabilities and stealthy attacks in real time. Experiments using the NSL-KDD dataset
and comparisons with the WUSTL-EOM 2020 system demonstrate over 99.26% accuracy.
The results validate the proposed model’s effectiveness and its potential application in

real-world network security challenges.

1.5.2 Quantum-Inspired Horse Herd Optimization for Intrusion
Detection

This paper [Ghanbarzadeh et al., 2023] introduces a novel intrusion detection method
based on the Horse Herd Optimization Algorithm (HOA), inspired by horse herd be-
haviour. The algorithm is adapted into a discrete form and enhanced using quantum
computing principles to create a quantum-inspired multi-objective version, called MQB-
HOA. The method aims to improve feature selection and classification performance for
detecting network intrusions. A K-Nearest Neighbour (KNN) classifier is used to clas-
sify network packets into normal and four attack categories. Experiments conducted on
the NSL-KDD and CSE-CIC-IDS2018 datasets show that MQBHOA achieves superior
results, including a 6% improvement in feature selection and classification accuracy, with
an overall detection accuracy of 99.8%. These results demonstrate the effectiveness of
MQBHOA in addressing intrusion detection as a multi-objective optimization problem.

26

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

1.5.3 Hybrid Federated Learning-Based IDS for IoT Using CNN
and BiLSTM

The rapid growth of Internet of Things (IoT) devices has created significant challenges
for maintaining system security and privacy. This paper [Bukhari et al., 2024] presents
a scalable Intrusion Detection System (IDS) based on Federated Learning (FL) tailored
for IoT environments. The proposed horizontal FL. model combines Convolutional Neural
Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to effectively
extract spatial and temporal features from distributed data. CNN identifies local patterns,
while BiLSTM captures sequential dependencies. Adopting a zero-trust model, the system
retains data on edge devices and shares only trained weights with a centralized FL server
for global model updates. Experimental results using CICIDS2017 and Edge-IloTset
datasets show that this hybrid approach outperforms existing centralized and federated
deep learning IDS models in both accuracy and scalability.

1.6 Research Gaps and Motivation

Despite significant advancements in Intrusion Detection Systems (IDS) leveraging Ma-
chine Learning (ML), Deep Learning (DL), and Federated Learning (FL), several critical
challenges [Issa et al., 2024] remain unresolved. Many existing systems still struggle to
detect zero-day attacks due to their reliance on predefined signatures, underscoring the
need for anomaly-based detection models. Additionally, high computational costs and the
presence of redundant features reduce model efficiency, highlighting the importance of ef-
fective feature selection techniques. Centralized ML/DL models also raise serious privacy
concerns, which makes Federated Learning a compelling solution for secure, decentralized
training. Moreover, most current IDS solutions lack real-time performance and scalabil-
ity, particularly in resource-constrained environments such as [oT and Software Defined
Networks (SDNs). Furthermore, the limited integration of advanced hybrid models—such
as combinations of ML, DL, and Graph Neural Networks (GNNs)—represents a missed
opportunity to enhance detection accuracy and robustness. Recent studies on collabora-
tive IDS frameworks using FL have introduced taxonomies to classify existing approaches
based on datasets, aggregation strategies, ML models, and architectural configurations.
These works recognize advantages of FL in preserving privacy and enabling distributed
learning, while also identifying persistent challenges including high false positive rates,
communication overhead, and secure model aggregation.

Motivated by these gaps, our thesis objective is how can we design a distributed IDS
that balances high detection performance, data privacy, and scalability across scalabil-

27

"CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK

ity across diverse environments. Traditional IDS frameworks either compromise privacy
through centralized learning or fail to generalize across diverse data distributions. More-
over, the integration of Federated Learning into IDS remains under-explored in practical,
real-world settings where attacks evolve rapidly, and client data is non-IID. This thesis
addresses the need for a federated IDS architecture capable of learning collaboratively
without exposing sensitive data, while maintaining robustness, low latency, and minimal
communication cost in detecting a wide range of cyber threats.

This thesis proposes a federated IDS architecture that learns collaboratively without
exposing sensitive data, maintains robustness, low latency, and minimal communication
cost.

1.7 Conclusion

Intrusion Detection Systems (IDS) play a critical role in cybersecurity, helping detect and
mitigate cyber threats in various network environments. While Machine Learning (ML),
Deep Learning (DL), and Federated Learning (FL) have significantly improved IDS ca-
pabilities, several challenges remain, including zero-day attack detection, high computa-
tional costs, data privacy concerns, and scalability issues. To address these challenges,
advanced feature selection methods (e.g., Genetic Algorithms), self-supervised learning
(e.g., Graph Neural Networks), and privacy-preserving techniques (e.g., Federated Learn-
ing) are emerging as promising solutions. However, further research is needed to optimize
IDS for real-time performance, reduce false positives, and enhance model efficiency in
large-scale networks such as [oT and SDN. Future work should focus on hybrid approaches
that combine ML, DL, and FL, enabling more adaptive, efficient, and privacy-preserving
IDS solutions. By overcoming existing limitations, IDS can continue to evolve as a robust

defence mechanism against modern cyber threats.

28

Chapter 2

Proposed Approach

2.1 Introduction

This chapter introduces a novel Distributed Intrusion Detection System (DIDS) architec-
ture based on Federated Learning (FL), outlining the overall system design and deploy-
ment plan. The architecture is described, then the dataset used to simulate a federated
environment is introduced, the data preprocessing stage is discussed in detail, including
methods for locally preparing the dataset at each client node.Finally, the chapter examines
the use of the the chosen model within the Federated Learning framework, focusing on
aggregation techniques and challenges. This distributed and privacy-aware design aims to
deliver accurate, scalable, and secure intrusion detection suitable for modern networked

environments.

2.2 Architecture of The Proposed Solution

The architecture of the proposed intrusion detection system is built on top of a Federated
Learning (FL) platform that enables privacy-preserving distributed model training,it con-
sists of multiple clients, each having a local dataset, and a central server to collect the
local models without directly accessing raw data.

Each customer trains a model with its own data, allowing particular traffic behaviours
or patterns of attack to be captured. Instead of sending data to a central location,
clients only send their model weights or gradients to the server. The server then sums
them up to create a global model that is augmented with distributed knowledge without
compromising data privacy.

For our application, the architecture involves:

e Local Nodes: Each node (client) has a model that is trained using local samples

29

"CHAPTER 2. PROPOSED APPROACH

from the dataset.

o Central Aggregator: This component combines the learned parameters using
either Weighted Aggregation or Difference Aggregation strategies.

e Global Model: The combined model is distributed once again to all the clients so
that they can improve performance step by step without data leakage.

This distributed design is especially useful in cybersecurity deployments, where data
sensitivity and confidentiality are critical.

the architecture of the proposed intrusion detection system consists four main phases:
data preprocessing, feature selection, model training, and classification. Each phase con-
tributes to enhancing the performance and accuracy of the detection engine.

Below is a figure 2.1 that represents a graph describing the architecture of our proposed
solution and its phases.

(/ Preprocessing \

Data Splitting
[Data cleaning
UNSW-NE15 Testing DATASET 20% ‘ Training DATASET 80% I
DATASET
Label encoding
Training Algorithms
| MNormalization
A)/ ML algorithms

DL algorithms

Best Algorithms Federated

. . Prediction Aggregation FL-ML Algorithm
Metrics Evaluation Global Model Testing
Model Aggregation FL-DL Algorithm

Figure 2.1: Architecture of the solution

2.3 Dataset

In this project, the UNSW-NB15 dataset [Moustafa and Slay, 2015] was used to develop,
train, and evaluate the proposed Federated Learning-based Intrusion Detection System
(IDS). While the dataset originates from a centralized source, it was partitioned and
used in a federated simulation environment . This approach allowed the modelling of
decentralized, privacy-aware IDS architectures under realistic attack scenarios.

30

"CHAPTER 2. PROPOSED APPROACH

The UNSW-NB15 dataset was selected for its realism and comprehensiveness, pub-
lished in 2015, comprises circa 2.54 million labelled records (totalling 2,540,044 records),
covering nine contemporary attack types and 49 features categorized into basic, content-
based, temporal, general-purpose, and connection metrics. The dataset is split into 175
341 training and 82 332 testing instances, originally partitioned by the authors. Its di-
versity and modern attack representation make it a suitable benchmark for federated
learning-based IDS research.

The UNSW-NB15 dataset includes 10 classes, comprising one normal class and nine
different attack types: Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic, Reconnais-
sance, Shellcode, and Worms. The dataset is highly imbalanced, with Normal traffic
representing about 36% of the samples and minority classes like Worms and Shellcode
each accounting for less than 1%. This imbalance presents challenges for effective detec-
tion and fair model evaluation.

Due to its large size and detailed labels, the dataset is useful not only for model
evaluation but also for simulating non-IID conditions by splitting the data across clients.

2.3.1 Features Of The UNSW-NB15 Dataset

As we mentioned in the description the dataset is splitted into training and testing in-
stances , each with 45 features, and they are categorized , we are going to mention them
above in different tables according to their categories:

2.3.1.1 Basic Features

Table 2.1 represents basic characteristics of network flow are captured by these features,
they offer a fundamental perspective of every network session.

Feature Name | Description

srcip Source IP address

sport Source port number

dstip Destination IP address

dsport Destination port number

proto Protocol used

state Connection state

dur Duration of the connection

sbytes Bytes sent from source to destination
dbytes Bytes sent from destination to source
service Network service on the destination
is_sm_ips_ports | Indicator for same IP addresses and ports

Table 2.1: Basic Features in UNSW-NB15

31

"CHAPTER 2. PROPOSED APPROACH

2.3.1.2 Time-based Features

These features measure the timing behaviour of network traffic, they are presented in
table 2.2 :

Feature Name | Description

sttl Source TTL value

dttl Destination TTL value

sloss Packets lost from source

dloss Packets lost from destination
Sload Source bits per second

Dload Destination bits per second

Spkts Number of packets from source
Dpkts Number of packets from destination
swin Source TCP window size

dwin Destination TCP window size
smeansz Mean packet size from source
dmeansz Mean packet size from destination
sintpkt Inter-arrival time from source
dintpkt Inter-arrival time from destination
sjit Source jitter

djit Destination jitter

Table 2.2: Time-based Features in UNSW-NB15

2.3.1.3 Flow Features

Flow features describe the dynamics of communication between source and destination
over a connection, they are presented in table 2.3 :

Feature Name | Description

stcpb Source TCP base sequence number

dtcpb Destination TCP base sequence number

tcprtt Round-trip time of TCP connection

synack Time between SYN and SYN-ACK

ackdat Time between ACK and data

ct_state_ttl State and TTL-based features

ct_srv_src Connections from same source to same service

ct_srv_dst Connections to same service from destination

ct_dst_Itm Connections to same destination in last 100 connections

ct_src_ltm Connections from same source in last 100 connections

ct_dst_src_ltm | Connections between same src/dst in last 100 connec-
tions

Table 2.3: Flow Features in UNSW-NB15

32

"CHAPTER 2. PROPOSED APPROACH

2.3.1.4 Content Features

These features are useful for identifying application-layer attacks and protocol abuse since
they examine the payload content and command behaviour of network protocols, they are

presented in table 2.4 :

Feature Name Description

trans_depth HTTP transaction depth
res_bdy_len Response body length
is_ftp_login Successful FTP login indicator
ct_flw_http_mthd | Count of HTTP methods
ct_ftp_cmd Count of FTP commands

Table 2.4: Content Features in UNSW-NB15

2.3.1.5 Other Features

Table 2.5 represents extra and additional metadata:

Feature Name | Description
stime Start time of the connection
ltime End time of the connection

Table 2.5: Other Features in UNSW-NB15

2.3.2 Types of Attacks in the UNSW-NB15 Dataset

The UNSW-NB15 contains normal attacks and other 9 types of attacks that we are going
to site and describe them in table 2.6 :.

33

"CHAPTER 2. PROPOSED APPROACH

Attack Type Description Training | Testing
Instances | Instances

Normal Benign traffic with no attack patterns. | 56,000 37,000

Analysis Information gathering and scanning ac- | 2,000 677
tivities, such as port scanning and OS
fingerprinting.

Backdoor Attacks that establish unauthorized re- | 1,746 583
mote access to a system by bypassing
security mechanismes.

DoS Denial of Service attacks that aim to | 12,264 4,089
disrupt services by overwhelming re-
sources.

Exploits Attacks that take advantage of vulner- | 33,393 11,132
abilities in systems or applications to
gain control or disrupt operations.

Fuzzers Random data sent to targets to trigger | 18,184 6,062
faults and discover vulnerabilities.

Generic Broad attacks that apply to many tar- | 40,000 18,871
gets, such as brute force or payload ma-
nipulation.

Reconnaissance | Scanning and probing activities to map | 10,491 3,496
the network and identify potential tar-
gets.

Shellcode Injection of binary Shellcode into avul- | 1,133 378
nerable system to gain control.

Worms Self-replicating malware that spreads | 130 44

across networks to infect other systems.

Table 2.6: Different Attack Categories in the UNSW-NB15 Dataset

below is an example of a row in the dataset presented in table 2.7:

34

"CHAPTER 2. PROPOSED APPROACH

Feature Value
id 1

dur 1.1e-05
proto UDP
service -

state INT
Spkts 2
Dpkts 0
sbytes 496
dbytes 0

rate 90909.0902
sttl 254
dttl 0
Sload 180363632.0
Dload 0.0
sloss 0

dloss 0
sintpkt 0.011
dintpkt 0.0

sjit 0.0
djit 0.0
swin 0
stepb 0
dtcpb 0

dwin 0
teprtt 0.0
synack 0.0
ackdat 0.0
smean 248
dmean 0
trans_depth 0
response_body_len 0
ct_srv_src 2
ct_state_ ttl 2
ct_dst_Itm 1
ct_src_dport_Itm 1
ct_dst_sport_Itm 2
ct_dst_src_ltm 0
is_ftp_login 0
ct_ftp_cmd 0
ct_flw_http_ mthd 0
ct_src_ltm 1
ct_srv_dst 2
is_sm_ips_ports 0
attack_cat Normal
label 0

Table 2.7: Single sample row from the UNSW-NB15 dataset.

The integration of the UNSW-NB15 dataset allowed for comparative testing and
helped assess the adaptability of the proposed Federated Learning-based IDS under di-
verse attack scenarios and realistic network behaviours. When partitioned to simulate
distributed environments, the dataset introduced challenges typical of real-world systems,
such as class imbalance, client heterogeneity, and local overfitting critical aspects for val-
idating the robustness of federated intrusion detection systems.

35

"CHAPTER 2. PROPOSED APPROACH

2.4 Preprocessing

Preprocessing is a crucial step in cybersecurity applications where raw network data is
often noisy, inconsistent, and high-dimensional. In the context of the proposed Federated
Learning-based Intrusion Detection System (FL-IDS), preprocessing plays a dual role:
ensuring the quality and consistency of local data at each client node, and preserving
privacy by avoiding any data centralization.

The preprocessing pipeline suggested in this project consisted of different phases, care-
fully designed to clean, transform, and standardize the data across all client nodes. We
are going to introduce an algorithm that describes preprocessing phases below then we
will explain each step of it.

36

"CHAPTER 2. PROPOSED APPROACH

Algorithm 1 Data Preprocessing for UNSW-NB15 Dataset

: Input: Training file Digin, Testing file Dyest
Output: Preprocessed dataset (Xirain, Xtest, Yirain, Viest)
// Data Merging
Load Dugin and Dres: files using pandas.read_csv() and concatenate them to form
full dataset D
// Data Cleaning
Replace missing or empty values in D with 0
for each numerical column ¢ in D do
if max(c) > 10 X median(c) and max(c) > 10 then
Clamp values above 95th percentile to the 95th percentile using np.where()
10 end if
11: if c has > 50 unique values then
12: if min(c) = 0 then
13: Apply log(c + 1) transformation
14: else
15: Apply log(c) transformation
16: end if
17: end if
18: end for
19: for each categorical column cat in D do
20: if nunique(cat) > 6 then

PobdbdR

@ oo N g

21: Replace rare categories with a placeholder "-"
22: end if
23: end for

24: Remove duplicate records using drop_duplicates()

25: // Label Encoding

26: Apply OneHotEncoder() to features proto, service, and state using
ColumnTransformer

27 // Data Normalization

28: Apply StandardScaler() to numerical features starting from index 18 onward

29: // Data Splitting

30: Split D into 80% train and 20% test using train_test_split()

3L Return: Xtrain/ Xtest/ Ytrains Ytest

2.4.1 Data Merging

Two separate files, UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv,
were loaded and merged using pandas.concat() to form a unified dataset of over 2.5
million records.

37

"CHAPTER 2. PROPOSED APPROACH

2.4.2 Data Cleaning

The starting point is that the initial data set has plenty of missing values in certain feature
columns, making it unsuitable for feeding into machine learning or deep learning models,
this step aims to improve data quality and it is being done by 3 operations which are:

e Missing Values: Rows containing missing or empty cells were replaced by a default

"0" value.

o Extreme Outliers: For each numerical feature, values exceeding 10 times the
median and above the 95th percentile were clamped to the 95th percentile using

np.where().

e Logarithmic Transformation: For numerical features with high variance and
over 50 unique values, alog transformation was applied to reduce skewness. np.log()

or np.log(x+1) was used depending on whether the minimum value was zero.

» Rare Categories: Categorical features with many rare values were grouped. Only
the top frequent categories were retained; the rest were replaced with a placeholder

“o »n

value “-”.

e Duplicate Entries: Duplicate records, which could bias the model, were identified
and removed by using drop_duplicates(inplace=True) function from the pandas

library.

2.4.3 Label Encoding

The second stage involves transforming the text that has been stored as a categorical
feature in the cells into numerical values, with each category being represented by a
specific and unique number value such as The features proto, service, and state were

transformed using OneHotEncoder() from Scikit-learn ColumnTransformer.

2.4.4 Data Normalization

Data normalization has been particularly useful for systems where measurements are
typically represented at highly disparate levels.Z-score normalization (standard scaling)
was applied using StandardScaler() because it accurately preserves all data connections
and therefore does not introduce any bias, it was applied to each feature,transforming all

numerical values into common range.

38

"CHAPTER 2. PROPOSED APPROACH

2.4.5 Data Splitting

At this stage, the main dataset was divided into two segments: a 80% training-set and a
20% test-set.

2.5 Federated Learning (FL) Model Procedure

The model is divided into two main steps: Model training that uses the training-dataset-
file and Model testing that evaluates the performance of the trained model while using
the testing-dataset file.

2.5.1 Training Phase

The training phase is performed in a federated manner where multiple clients train in-
dependently the same model architecture on their local data then contribute to building
a global model without sharing their private data. We present the steps of building the

Machine Learning algorithm below:

Algorithm 2 Federated Learning Procedure (Classical Models)

1: Input: Local datasets {D1, Dy, ..., Dy }, test set Diest
2: Output: Final prediction y final
3: for each client i =1 to N in parallel do
4: Train local model M on D;
5: Evaluate M; on Diest to compute F1-score: F1;
6: end for
7: Normalize client weights:
oo s FL
o =
/',\il F1;

8: Initialize prediction probability vector y"proba = 0

9: for each clienti=1to N do
10: Predict probability y~i = M|(Drest)
11: Aggregate:

)’/\proba+ =W y“/
12: end for
13: Compute final predictions:
Y final = arg max(Yproba)

14: Return: Final aggregated prediction y final

We present the steps of building the Deep Learning algorithm below:

39

"CHAPTER 2. PROPOSED APPROACH

Algorithm 3 Federated Learning Training Procedure (Neural Network)

1: Input: Initial global model wy, client datasets {Ds, D, ..., Dnv }, number of rounds T
2: Output: Final global model wr
3: for each round t=1to T do

4 Server broadcasts global model w;-1 to all clients
5: for each client i =1 to N in parallel do
6: Preprocess local dataset D; (cleaning, normalization, encoding)
7. Train local model w/ initialized from w1
8 Send updated model w! to the server
o: end for
10: if Aggregation = Weighted then
11 Server updates global model using:
_ % _hni t
w = w
! 1 Ntotal '
12: else if Aggregation = Difference then
13: Server updates global model using:
w=w + " T(w—w)
t t—1 n t—1
_ total
14: end if
15: end for

16: Return: Final model wr

The federated training process is composed of two major stages: client-side local train-

ing and server-side model aggregation. This architecture is adaptable for both classical

machine learning (ML) models and deep learning (DL) models.

e Client-Side: Local Training
Each client performs the following steps independently, regardless of the underlying

model type:

Preprocessing: Each client cleans, encodes, balances, and normalizes its local

dataset.

Model Initialization: Clients receive the current global model from the cen-

tral server.

Local Training: The model is trained on the client’s local data.

Model Update: The updated model or predictions are sent back to the server.

40

"CHAPTER 2. PROPOSED APPROACH

e Server-Side: Model Aggregation
Once updates are received from all clients, the server aggregates them using one of
the following strategies, depending on whether the model is ML or DL:

- ML-Based: Weighted Soft Voting for Random Forest
In this strategy, predictions from client models are aggregated using F1-score-based
weighting:

> F1;
Final Probability = w; y; where w; = =—— (2.1)

n
i=1 j=1 F 1/

Weighted Soft Voting equation formula

We will explain the elements of this equation by relying every symbol to its
description:

y"i : Predicted probability vector from client i’s local Random Forest model.

F1;: Fl-score of client i evaluated on the test set.

w; : Normalized weight for client i based on its F1-score.

n : Total number of participating clients.

Final Probability : Aggregated soft prediction used for final class decision.
- DL-Based: Model Weight Aggregation for MLP (Keras-based)

The Keras-based MLP model uses weight-based aggregation strategies suitable
for federated learning:

+ Weighted Aggregation (FedAvg):

_ % _hi
w = w (2.2)

i
Niotal
=1

Weighted Aggregation equation formula
+ Difference Aggregation:

%ni

W =w) (2:3)
1 Niotal

Difference Aggregation equation formula

We will explain the elements of this equation by relying every symbol to its
description:

w: : Global model weights after aggregation at round t

41

"CHAPTER 2. PROPOSED APPROACH

we-1 @ Global model weights from the previous round
w: : Local model weights from client i after round t
n;: Number of training samples on client i

Niotal : Total number of samples across all clients

N :Total number of clients
Training Flow:
e The server broadcasts the current global model to clients.
e Clients retrain locally and send updates (weights or predictions).
e The server aggregates the updates based on the model type and strategy.

e The global model is updated and the process repeats for multiple rounds.

2.5.2 Testing Phase

After completing the training phase, the final model is evaluated using the testing dataset

to assess its generalization capability.

Algorithm 4 Model Testing and Evaluation Procedure

Input: Final global model wr, test dataset Diest

Output: Evaluation metrics: Accuracy, Precision, Recall, F1-Score
Apply the same preprocessing pipeline to Diest

Use wr to predict labels y” for Drest

Compare y” to ground-truth labels y

Compute the metrics.

Return: Accuracy, Precision, Recall, F1-Score

e Global Model Distribution: The trained global model is shared with each client

or directly evaluated at the central server.

e Preprocessing the Test Data: The test set undergoes the same preprocessing

steps as the training data, which we mentioned before.

e Model Evaluation: The global model is used to make predictions on the test
data. These predictions are compared against the ground truth to compute key

performance metrics.

e Metrics Computation: Since this research aims to maximize the correct predic-
tions of instances in the test dataset by using the values of the following fundamental

classification outcomes :

42

"CHAPTER 2. PROPOSED APPROACH

- True Positive (TP): this value represents the correct classification attack
packets as attacks.

- True Negative (TN): this value represents the correct classification normal
packets as normal.

- False Negative (FN):this value illustrates that an incorrectly classification
process occurs. Where the attack packet classified as normal packet.

- False Positive (FP): this value represents incorrect classification decision
where the normal packet classified as attack.

Based on the outcomes we site above We calculate certain metrics [Yacouby and
Axman, 2020] to evaluate the model’s effectiveness, which are:

- Accuracy:Measures the overall correctness of the system by calculating the
proportion of correct predictions (both attacks and normal traffic) out of all

predictions,it is calculated using this formula:

TP + TN
Accuracy = (2.4)

TP+TN +FP +FN

Accuracy equation formula

- Precision: Represents the proportion of instances predicted as attacks that
are actually attacks. It estimates the reliability of positive predictions, it is
calculated using this formula:

TP
Precision =——— (2.5)
TP + FP

Precision equation formula

- Recall: Indicates the proportion of actual attacks that were correctly identified
by the system. It reflects the model’s ability to detect all relevant positive cases,
it is calculated using this formula:

Recall =L (2.6)
TP + FN

Recall equation formula

- F1-Score: Provides a harmonic mean of precision and recall, offering a bal-
anced assessment, particularly in scenarios with imbalanced datasets. It is

43

"CHAPTER 2. PROPOSED APPROACH

widely used to evaluate classification performance when both false positives
and false negatives are important, it is calculated using this formula:

2 - Precision - Recall
F1-Score = re.c1.51on eca @2.7)
Precision + Recall

F1-Score equation formula

2.6 Model for FL-Distributed Intrusion Detection

Since we are interested in our thesis by the Distributed Intrusion Detection System (DIDS)
we trained multiple different models, evaluated each one of them ,and then compared
them to find the most powerful model that achieves the best performance , we are going

to mention the models we used:

2.6.1 Machine Learning Models

We classified all the models that we will evaluate according to whether they are Machine

Learning-based or Deep Learning-based, we will start by siting the ML algorithms first.

2.6.1.1 Decision Trees (DT)

A decision trees are a popular approach for machine learning. It evaluates the attributes
of the data in the form of a tree and outputs its results layer by layer.It is composed by
these following components :

o The root node: the starting point of the decision tree, it symbolizes the complete

dataset.
o Internal Nodes: each node represents a decision based on a feature.
e Branches:each branch represents the outcome of the decision, is it yes or no.

o Leafs:each leaf represents a final class label which in this case will contain either

an attack or normal.

The final leaf node indicates the outcome of a classification or prediction.

2.6.1.2 Random Forest (RF)

Random forest builds many decision trees to make predictions using the output of all

trees after combining them. Each tree in the "forest" is created by resampling using the

"CHAPTER 2. PROPOSED APPROACH

bootstrap technique and trained on a random subset of training data.The final prediction
is made through majority vote.

2.6.1.3 Light Gradient Boosting Machine (LightGBM)

LightGBM is a Gradient Boosting Decision Tree algorithm used in various data mining
problem ,it uses one-sided gradient analysis and exclusive features bundling techniques.
It aims to find an approximation to a function that reduces the expected loss function
value. LightGBM integrates multiple regression trees to approximate the final model. It
employs a one-sides-sampling (GOSS) approach to detect split values in data instances.

2.6.1.4 K-Nearest Neighbors (KNN)

The purpose of the KNN algorithm is to use a database in which the training examples are
expressed as data points in the problem feature space and separated into several classes.
To predict the label (target class) of a new sample point which is initially projected in
the considered feature space. Then the distances between that sample and the K-th
nearest examples are calculated. Finally, the sample is classified by a majority vote of its
K-neighbours.

2.6.2 Deep Learning Models

Now we are going to mention the DL algorithms below.

2.6.2.1 Multiple Layer Perceptron (MLP)

Multilayer Perceptron is a type of feedforward artificial neural network that has several
layers of nodes in it, we define them by : an input layer that receives feature vectors ,
several hidden layers and the output layer that produces the prediction, it is composed
from nodes also called neurons that are connected all together so that every neuron in one
layer connects to every other neuron in the layer below, each node computes a weighted
sum of inputs and passed the result.

2.6.3 Gated Recurrent Unit GRU

Gated Recurrent Unit (GRU) is made to process sequential data and identify temporal
dependencies. It is made up of gating systems that control information flow, allowing the

model to remember or forget data over time.It consist of two primary gates:

Update Gate: Regulates the amount of the prior hidden state that should be preserved.

45

"CHAPTER 2. PROPOSED APPROACH

Reset Gate: Decides How much of the prior concealed state to be forgotten.

2.6.3.1 Long Short Term Memory (LSTM)

LSTM is designed to avoid the long-term dependency issue,due to his capability of remem-
bering data for long periods, its architecture is more complex because it is constituted of
4 hidden layers. The principal components of LSTM are the cell state which represents
the principal component and other 3 gates which are:

¢ Forget Gate:specifies which historical data should be deleted.
e Input Gate:determines what new data should be stored.

¢ Output Gate:decides what information will be displayed in the output.

2.7 Conclusion

This chapter presented all the necessary informations and calculations that helps measur-

ing all operations while building the federated model.

46

Chapter 3

Experimentation and Results

3.1 Introduction

This chapter presents a deep dive into the experimental pipeline, architecture configura-
tions, and evaluation metrics used to validate the effectiveness of our Federated Learning
(FL) approach in building a privacy-preserving Intrusion Detection System (IDS). The
aim is to demonstrate that we can detect various types of network attacks with high
accuracy and reliability—all while keeping sensitive data decentralized.

We start by detailing the technical environment and software stack employed. Next, we
describe the dataset UNSW-NB15 and the necessary preprocessing steps to standardize
and balance it. Then, we introduce the models tested, emphasizing the improvements
made in the MLP architecture. Finally, we break down our FL simulation setup, discuss
the results of various experiments, and conclude with visual analytics, a discussion of the
findings, and the rationale behind the final model’s performance.

Ultimately, our iterative experimentation process led to the development of an en-
hanced federated MLP model that surpassed 99% in key metrics including accuracy,
precision, recall, and F1-score—surpassing not only previous FL-based IDS frameworks

but also centralized baselines.

3.2 Experimental Setup

All experiments were conducted in a controlled yet realistic setup that we are going to

cite in this section.

47

"CHAPTER 3. EXPERIMENTATION AND RESULTS

3.2.1 Hardware and Software Environment

In this section we will present all the simulation environment and tools in table 3.1 :

Component Specification

Processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz, 2496
MHz, 2 Core(s), 4 Logical Processor(s)

RAM 8.00 GB

GPU Intel(R) HD Graphics 520

Operating System Microsoft Windows 10 Pro

Platform Kaggle Cloud Notebooks (GPU-accelerated)

Programming Language | Python 3.10

Table 3.1: System software and hardware environment

3.2.2 Model Simulation Setup

Each client trained its own local model and returned weights or deltas to the server. The
server computed the global update and sent it back. Below are the main parameters of
the simulation.

o Simulated Clients: 10 nodes representing separate data owners
e Rounds: 20 communication rounds per experiment
o Aggregation Techniques: Mentioned and explained in chapter 2

- Weighted Aggregation (FedAvg)

- Difference Aggregation (based on model delta)
e Local Training: 5 epochs per round, batch size of 128, with learning rate 0.001
o Evaluation Metrics: Accuracy, Precision, Recall, and F1-score measured globally.

e Visual Analytics (VA):Used after the calculations of metrics,it represents the
results in a visual way for better understanding, in the context of our work, visual
analytics that were employed are:

- Confusion Matrix:A table used to determine a classification model’s perfor-
mance is called a confusion matrix. It helps identify the areas in which the
model is flawed by offering a thorough analysis of the differences between the
predictions and the actual outcomes.

48

"CHAPTER 3. EXPERIMENTATION AND RESULTS

- Learning Curves:It is a graphical representation that shows how proficiency
improves with increasing experience or practice over time. Simply put, it vi-
sually demonstrates how long it takes to acquire new skills or knowledge.

- Bar Chart:lt is a chart type for graphing categorical data. It is made up of
several rectangles that are all aligned to the same baseline, and each rectangle’s
length corresponds to the value it represents.

3.3 Model Implementation and Building

The objective is to design a system capable of detecting intrusions using distributed
training across several clients, so in this section we are going to cite all the steps we gone
through while building it :

3.3.1 Data Preparation

We explained this step before , it is the first step involved preprocessing the dataset
we worked with which is UNSW-NB15 dataset , it included operations which are all
mentioned in chapter 2.

Important Note :During the generating of our model we dropped the id column
because it’s a unique identifier with no predictive value not a feature, if we kept it that
will introduce noise and ending negatively affecting the model’s learning process. Also,
we removed the category of the attacks column because it introduces redundancy with
the binary target label (either 1 or 0) since it is a binary classification (either attack or

normal) and will lead to inflate model performance, so it is not required.

3.3.2 Model Selection

Several models were implemented and evaluated under a federated learning setup, each
model was wrapped with appropriate training and evaluation functions, then they were
compared to choose the most powerful model for the simulation.

After evaluating each model and getting results we will develop the model with high

results using federated learning setup and get the final results.

3.4 Results and Evaluation

This section will display all the results and metrics values.

49

"CHAPTER 3. EXPERIMENTATION AND RESULTS

3.4.1 Centralized Training Baselines

Before applying federated learning, we trained all models in a centralized manner to
establish benchmarks, and we are going to show results :

3.4.1.1 k-Nearest Neighbors (KNN)

30000

25000

Accuracy: 92.91% 0 1737

Recall: 92.91% 20000
Precision: 92.93%
F1-Score: 92.92%

True label

- 15000

time to train: 8.02 s ! e F 10000
time to predict: 164.55 s
r 5000
tct a 1 : 164 " 5? s ° Predicted label ' —
(a) Metrics Values of KNN Model (b) Confusion Matrix for KNN Model

Figure 3.1: Results for K-Nearest Neighbors Model

The kNN model results shown in figure 3.1 achieved a relatively high accuracy of 92.91%.
While its training phase was extremely fast, the prediction time was exceptionally high
(164.5 seconds), making it computationally expensive for real-time IDS applications. This

is due to its lazy learning nature, which requires comparison against the entire dataset at
prediction time.

50

"CHAPTER 3. EXPERIMENTATION AND RESULTS

3.4.1.2 Decision Tree (DT)

30000

25000

Accuracy: 93.69%
Recall: 93.69%
Precision: 93.69%
F1-Score: 93.69%

time to train: 3.97 s
time to predict: ©.01 s
total: 3.99 s 0 1

Predicted label —

(a) Metrics Values of DT Model (b) Confusion Matrix for DT Model

20000

F 15000

True label

- 10000

- 5000

Figure 3.2: Results for Decision Tree Model

The Decision Tree model results shown in figure 3.2 performed with 93.69% accuracy.
It provided quick training and prediction, and its ability to model non-linear decision
boundaries was a clear advantage. However, Decision Trees tend to overfit the data,
which could limit generalizability on unseen attacks.

3.4.1.3 Random Forest (RF)

30000

Accuracy: 95.81%
Recall: 95.81%
Precision: 95.82%
Fl-Score: 95.81%

time to train: 12.92 s
time to predict: 8.31 s
total: 13.23 s

25000

20000

True label

15000

10000

5000

] 1
Predicted label

(a) Metrics Values of RF Model (b) Confusion Matrix for RF Model

Figure 3.3: Results for Random Forest Model

Random Forest results shown in figure 3.3 achieved the best result among classical ensem-
ble models with 95.01% accuracy. Its ability to combine multiple decision trees reduced
overfitting and improved generalization. Despite its higher training time (12.92 seconds),
it offers a solid trade-off between accuracy and efficiency.

51

"CHAPTER 3. EXPERIMENTATION AND RESULTS

3.4.1.4 Light Gradient Boosting Machine (LightGBM)

30000

25000

Accuracy: 93.15%
Recall: 93.15%
Precision: 93.14%
Fl1-Score: 93.15%

time to train: 126.47 s
time to predict: @.89 s
total: 126.56 s ’ !

Predicted label

20000

15000

True label

10000

5000

(a) Metrics Values of LightGBM Model (b) Confusion Matrix for LightGBM Model

Figure 3.4: Results for Light Gradient Boosting Machine Model

LightGBM results shown in figure 3.4 reached 93.15% accuracy and similar recall and
precision values, but with an F1-score slightly lower at 92.15%. It is generally known for
its speed and efficiency in handling large datasets, though in this case, its training time
was relatively long (126.47 s), likely due to extensive hyper-parameter space. However,
it maintained a fast prediction time (0.09 s), making it useful for deployment if training
time is not a concern.

3.4.1.5 Multiple Layer Perceptron (MLP)

30000

25000

Accuracy: 93.52%
Recall: 93.52%
Precision: 93.64%
F1-Score: 93.55%

time to train: 93.70@ s
time to predict: .84 s
total: 93.74 s ° !

Predicted label —

20000

- 15000

True label

- 10000

F 5000

(a) Metrics Values of MLP Model (b) Confusion Matrix for MLP Model

Figure 3.5: Results for Multiple Layer Perceptron Model

52

"CHAPTER 3. EXPERIMENTATION AND RESULTS

Results shown in figure 3.5 The Keras-based MLP offered deeper architectures with flexi-
bility in tuning and regularization. Despite similar accuracy (93.52%), it required signifi-
cantly more training time. However, its integration into the federated learning framework
led to a highly optimized performance, reaching up to 98.94% accuracy after aggrega-
tion—demonstrating the advantage of deep learning in a collaborative setup.

3.4.1.6 Gated Recurrent Unit (GRU)

30000

Accuracy: 93.15% 25000
Recall: 93.15% ’
Precision: 93.14%
F1-Score: 93.15%

20000

True label

r 15000

time to train: 145.38 s ! 1o [10000
time to predict: ©.12 s .
tOtEI]. : 145 a SB S ° Predicted label ' —

(a) Metrics Values of GRU Model (b) Confusion Matrix for GRU Model

Figure 3.6: Results for Gated Recurrent Unit Model

GRU results shown in figure 3.6 achieved 93.15% accuracy. Designed for sequential data.
However, for tabular data like UNSW-NB15, they did not outperform the MLP models,
possibly due to limited sequential relationships in features.

3.4.1.7 Long Short Term Memory (LSTM)

25000

Training time: 384.82 seconds

Classification Report:

precision recall fi-score support

@ @.2126 @.%a92 @.9189 18668

1 @.8488 @.85a83 @.24493 32935

accuracy @.9358 51535

macro avg @.93a7 @.%380 @.9384 51535

weighted avg 9.08357 @.0358 9.0358 51535
(a) Metrics Values of LSTM Model (b) Confusion Matrix for LSTM Model

Figure 3.7: Results for Long Short Term Memory Model

53

"CHAPTER 3. EXPERIMENTATION AND RESULTS

The LSTM model results shown in figure 3.7 achieved 93.58% across all metrics, slightly
outperforming MLP in accuracy and F1-score. As a sequential deep learning model, it
is well-suited for capturing temporal dependencies in network traffic data. However, its
training and prediction times were significantly higher (304.02 s and 5.00 s, respectively),
which may limit its applicability in time-sensitive environments unless further optimized.

3.4.2 Comparison of evaluated models

Here is table 3.2 that includes all informations about the evaluated models .

Model Accuracy | Recall | Precision | F1-Score | Train Time (s) | Predict Time (s) | Total Time (s)
KNN 92.91% 92.91% 92.93% 92.92% 0.02 164.55 164.57
Decision Tree 93.69% 93.69% 93.69% 93.69% 3.97 0.01 3.99
Random Forest | 95.01% | 95.01% | 95.02% 95.01% 12.92 0.31 13.23
LightGBM 93.15% 93.15% 93.14% 92.15% 126.47 0.09 126.56
GRU (Keras) 93.15% 93.15% 93.14% 93.15% 145.38 0.12 145.5
LSTM (Keras) 93.58% 93.58% 93.57% 93.58% 304.02 5.00 309.02
MLP (Keras) 93.52% | 93.52% | 93.64% | 93.55% 93.7 0.04 93.74

Table 3.2: Performance Comparison of Different Models

In this study, a broad range of machine learning (ML) and deep learning (DL) models
were evaluated using the UNSW-NB15 dataset to identify the most promising candidates
for building a Federated Learning-based Intrusion Detection System (FL-IDS). Among
the ML models tested, Random Forest achieved the highest overall performance with an
accuracy of 95.01%, outperforming other models in terms of both speed and prediction
quality. On the DL side, the Keras-based MLP (Multilayer Perceptron) emerged as the
top-performing model, delivering competitive accuracy and robustness compared to other
deep models like GRU and LSTM.

Given these results, two models were selected for further exploration in a federated
learning setting: Random Forest as the strongest ML model and MLP as the most effective
DL model. This selection aims to fairly evaluate how both paradigms perform when
deployed in a distributed and privacy-preserving environment like federated learning.

The motivation behind choosing the MLP model in particular also stems from its nat-
ural compatibility with federated architectures. Deep learning models such as MLP are
well-suited for distributed training using weight or gradient aggregation, which are essen-
tial in federated learning frameworks. Furthermore, MLP allows for advanced techniques
like dropout, batch normalization, and fine-tuning, which make them more adaptable and

54

"CHAPTER 3. EXPERIMENTATION AND RESULTS

scalable in dynamic cybersecurity environments.
So, we are going to develop both of them in a federated-based and recompare them to
decide which one is working best with IDS.

3.4.3 Federated Performance

We chose to implement our model with both RF and Keras MLP separated not hybrid
model as we mentioned earlier, we applied the following steps:

3.4.3.1 Federated Random Forest (RF) Model

e Model Type: We used the Random Forest classifier, a robust ensemble learn-
ing method based on multiple decision trees, well-suited for classification tasks in
intrusion detection.

e Federated Learning Integration: The training was decentralized by partitioning
the dataset across 10 clients. Each client trained an independent Random Forest
model locally on its own data.

o Aggregation Method: Rather than aggregating model weights (which is not ap-
plicable for ensemble trees), we implemented a prediction-level aggregation strategy
using weighted soft voting. Each client’s predicted probabilities on the test set were
weighted based on its local F1-score before being combined into a global prediction.

e Hyper-parameter Optimization: After multiple iterations, we set the number of
trees to 400, with a maximum depth of 35. We also fine-tuned ‘min-samples-split’,

‘min-samples-leaf’, and ‘max-features’ to improve generalization and accuracy.

The final global model, formed after aggregation, achieved competitive results with
an accuracy of 94.93%, precision of 95.04%, recall of 94.93%, and F1-score of
94.87%, demonstrating the model’s strong detection capability in a federated set-
ting.

The final results are shown in figure 3.8 below :

Final Global Model Performance:
Accuracy: @.9493
Precision: &.9584
Recall: 8.9493
F1 Score: ©.9487

Figure 3.8: Final global model performance of Federated RF model

55

"CHAPTER 3. EXPERIMENTATION AND RESULTS

3.4.3.2 Federated-based RF Model Discussion

the Random Forest (RF) model was chosen as a representative of traditional ensemble-
based machine learning algorithms,due to its well-known resilience, interpretability, and
excellent high performance in a variety of supervised learning tasks. In this study, we
investigated whether RF deployment is feasible in a federated learning (FL) context, in
which models are trained separately on several clients and then combined centrally using
weighted soft voting determined by the F1-score of each client. 10 clients participated
in the federated RF implementation, and they were all trained locally using a stratified
split of the UNSW-NB15 dataset. Each client generated its own probability predictions
on the global test set following local training. Client F1-scores were utilized to calculate
each fore-cast’s contribution to the final global prediction, which was then combined using
a weighted soft voting technique. These results provide dependable performance across
all important criteria, confirming the effectiveness of RF in intrusion detection. Several

factors contributed to this performance:

e Weight-based federated aggregation techniques aren’t advantageous for RF. The
ensemble’s trees are individually taught and difficult to break down or combine
among clients. This restricts the model’s capacity for truly federated collaborative
learning.

e With more trees and depth, RF models get more sophisticated and have larger mem-
ory capacities. In environments with limitations or edge devices, this can become
difficult, particularly when implemented in federated configurations.

e Random Forest does not naturally support continued training across rounds, which
is a key component of federated iterative optimization.

3.4.3.3 Federated MLP (Keras) Model

e Architecture Optimization: We implemented a deep feed-forward neural net-
work with three fully connected (dense) layers using the ReLU activation function,
followed by a final linear output layer with two legits, suitable for binary classifica-
tion using cross-entropy loss.

e Optimizer and Learning Rate: The model was trained using the Adam optimizer
with a learning rate of 0.001, which provided adaptive and stable convergence.

e Federated Learning Integration: The MLP model was integrated into a fed-
erated learning framework using both Weighted Aggregation (FedAvg) and

56

"CHAPTER 3. EXPERIMENTATION AND RESULTS

Weight Difference Aggregation across 10 clients, preserving data locality and
privacy.

o Hyper-parameter Tuning: Several values for batch size, epochs (50 per round),
number of rounds (20), and hidden layer sizes (e.g., 20-20) were tested to achieve
optimal performance.

e Feature Normalization: The input data from the UNSW-NB15 dataset under-
went log transformation, chi-squared feature selection, one-hot encoding, and stan-
dardization to ensure consistent training and reduce noise.

These improvements enabled the Federated MLP model to achieve high performance,
with accuracy and F1-scores exceeding 98%, demonstrating its robustness and scalability
in a distributed intrusion detection context.

The final results are shown for both weighted aggregation in figure 3.9 and difference
aggregation in figure 3.10 :

Final Test Metrics with Weighted Average Aggregation:
Accuracy: ©.9858, Precision: ©.9864, Recall: ©.9919, F1l Score: ©.9891

Figure 3.9: Performance metrics using Weighted Aggregation for Federated MLP model

Final Test Metrics with Weight Difference Aggregation:
Accuracy: ©.9862, Precision: ©.9870, Recall: ©.9918, F1l Score: ©.9894

Figure 3.10: Performance metrics using Difference Aggregation for Federated MLP model

3.4.3.4 Federated-based MLP Model Discussion

This study’s deep learning accurate, the Multilayer Perceptron (MLP) model, was chosen
because of its capacity to represent intricate, non-linear patterns in data. The MLP
architecture was implemented using PyTorch and included a final classification layer after
several dense layers that were activated by ReLU algorithms. Weighted Aggregation
(FedAvg) and Difference Aggregation are two distinct aggregation algorithms that were
used to train the MLP model across ten dispersed clients in the federated configuration.
Over several epochs and communication rounds, each client separately trained its local
model; the global model was updated using the combined client parameters at the end
of each round. It achieved high results (beyond 98% in all metrics) which demonstrates

how well the MLP adapts to dispersed learning settings and how well it works with the

57

"CHAPTER 3. EXPERIMENTATION AND RESULTS

iterative weight-based updates of federated learning. Several factors contributed to this

performance:

e Deep neural networks like MLP are suitable for federated learning, as their weights
can be easily aggregated and updated across clients using standard optimization
strategies.

e The Model architecture works well for a variety of deployment scenarios, ranging
from edge devices to cloud infrastructure, because it can be readily scaled up or
down based on the computing power of the client devices.

e The MLP model demonstrated smooth and continuous improvement across commu-
nication rounds,this allowed the global model to benefit from local patterns learned

by each client.

3.4.4 Comparison Between MLP and RF Models

In the table 3.3 we are going to compare both of the federated models and decide which

one is the best for our final result:

58

"CHAPTER 3. EXPERIMENTATION AND RESULTS

Dropout, Sigmoid output

Aspect Federated MLP (Keras) Federated Random Forest
(Sklearn)
Algorithm Type Deep Learning (Neural Net- | Machine Learning (Ensemble
work) Trees)
Architecture 3 Dense Layers (ReLU) with | 400 Decision Trees, Depth=35,

Bootstrap, Balanced Weights

Federated Setup

Model weight aggregation (Fe-
dAvg and Weight Difference)

Prediction-level aggregation
via weighted soft voting

systems

Client Count 10

Accuracy (%) 98.62 94.93

Precision (%) 98.70 95.04

Recall (%) 99.18 94.93

F1-Score (%) 98.94 94.87

Training Time Higher (DL training loops per | Faster (Single pass tree train-
round) ing per client)

Flexibility for FL. | High (supports dropout, fine- | Limited (tree-based models
tuning, regularization) cannot be aggregated via

weights)
Scalability Highly scalable for deep FL | Moderate scalability

Best Use Case

Real-time federated learning
with adaptive models

Fast local training in low-
resource or ensemble-focused
FL

Table 3.3: Comparison between Federated MLP and Federated Random Forest Models

The MLP model was selected over the Random Forest model for a number of im-

portant reasons based on the comparison of the two models’ federated implementations.

The federated MLP outperformed the federated Random Forest, which performed well

(94.93% accuracy, 94.87% F1-score), by achieving a much greater performance (about

98% across all important criteria). The choice of MLP as the main model for our sug-

gested federated intrusion detection system is justified by the significant improvement in

accuracy, precision, recall, and F1-score.

Furthermore, because of its increased scalability in dispersed contexts and compatibil-

ity with weight-based aggregation, MLP which is a deep learning model, is more naturally

suited to federated learning systems. As a result, using MLP supports the objectives of

federated learning systems for scalability and architectural compatibility in addition to

performance supremacy.

59

"CHAPTER 3. EXPERIMENTATION AND RESULTS

3.4.5 Visual Analysis

Since the best model for our Federated-based Intrusion Detection System is MLP ,we are
going to present its final results we had in visual analysis in this section.

Below in figure 3.11 we present learning curves for both aggregation methods on the
same axes for all the metrics : accuracy,precision,recall and F1-Score:

Accuracy over Rounds Precision over Rounds

—e— Weighted Avg

—e— Weighted Avg = =
—— %~ Weight Difference

098 |~ Weight Difference

092

25 50 75 100 125 15.0 175 200 25 50 75 100 125 15.0 175 200
Federated Round Federated Round

(a) Accuracy Learning Curve (b) Precision Learning Curve

F1 over Rounds

Recall over Rounds

0.99 | —8— Weighted Avg
—e— Weighted Avg ~+~ Weight Difference
0.99 | s~ Weight Difference

25 5.0 75 Fw:g:wmkuu";n 15.0 175 200 25 50 75 Fede‘ruatuedkounszs 15.0 17.5 20.0
(c) Recall Learning Curve (d) F1-Score Learning Curve

Figure 3.11: Final Learning Curves for both aggregation method

Below in figure 3.12 we present a bar chart that compares each metric result for both
aggregation methods utilized :

Final Test Metrics Comparison

mm Weighted Avg
W Weight Difference

0.98

Score

0.97

Accuracy Precision Recall F1 Score

Figure 3.12: Final Performance Metrics Comparison Bar Chart

60

"CHAPTER 3. EXPERIMENTATION AND RESULTS

We present in figure 3.13 below confusion matrix for each aggregation method :

Confusion Matrix - Weighted Aggregation Confusion Matrix - Weight Difference Aggregation

Actual
Actual

Predicted 0 1
Predicted

(a) Confusion Matrix for Weighted Aggregation (b) Confusion Matrix for Difference Aggregation

Figure 3.13: Final classification results of the global model using both aggregation methods.

3.5 Global Discussion

The project’s experimental results demonstrate Federated Learning’s (FL) enormous promise
in cybersecurity, especially for intrusion detection tasks. The improved Keras-based Mul-
tilayer Perceptron (MLP) continuously showed the best performance out of all tested
models. It has a clear edge over traditional machine learning models such as Random
Forest because of its capacity to learn intricate, non-linear patterns in a decentralized con-
text. While careful architecture and training parameter adjustment allowed for effective
and stable convergence across multiple rounds. The comparison of the two aggregation
strategies(Weighted Aggregation and Difference Aggregation) produced a particularly in-
teresting findings. After 20 communication rounds, both performed well. FL proved its
capacity to deliver both privacy preservation and top-tier speed with the right architec-
ture, optimized hyper-parameters, and a successful aggregation the technique. The MLP
model demonstrated that FL is a workable solution—rather than merely a theoretical
concept—for actual security applications by achieving approximately 98% in all signifi-
cant performance criteria. Furthermore, the MLP model’s success supports the feasibility
of implementing deep learning in distributed, resource-constrained contexts. The archi-
tecture was robust enough to identify a variety of assaults while being small enough to
be deployed on edge or Internet of Things devices. This opens up a viable approach for
privacy-preserving, real-time intrusion detection across dynamic infrastructures. These
findings confirm that Federated Learning can provide a solid basis for next-generation
intrusion detection systems by providing a balance between scalability, privacy, and ac-
curacy when combined with an optimized deep learning architecture.

61

"CHAPTER 3. EXPERIMENTATION AND RESULTS

3.6 Conclusion

Through thoughtful experimentation and architecture refinement, we built a federated IDS
model that reaches beyond 98% accuracy, precision, recall, and F1-score while maintaining
data privacy. These results validate the power of federated learning as a secure and

scalable alternative to centralized IDS models.

62

General Conclusion

In this thesis, we explored the integration of Federated Learning (FL) with Intrusion De-
tection Systems (IDS) to address the growing challenges in cybersecurity. As cyber threats
become increasingly complex and user data becomes extremely sensitive, traditional IDS
models that rely on centralized data collection are no longer adequate and sufficient.
These problems motivated us to design a distributed, privacy-preserving solution capable
of detecting modern threats while ensuring data confidentiality.

To this end, we implemented and compared several machine learning and deep learning
models, including Random Forest, LightGBM, GRU, LSTM, and particularly Multi-Layer
Perceptron (MLP). After evaluating these models on the UNSW-NB15 dataset, our ex-
periments showed that the federated MLP model achieved remarkable results, surpassing
98% in all metrics we evaluated which are accuracy, precision, recall, and F1-score. These
findings confirmed the effectiveness of deep learning in detecting complex attacks and the
feasibility of using federated architectures in cybersecurity.

Despite these encouraging results, some challenges remain, most notably non-IID data,
communication costs, and resource constraints on client devices. These are important
issues that must be addressed to extend federated systems to real-world environments.
Furthermore, implementing FL requires more careful design to prevent potential attacks
on the assembly process and maintain model robustness across different client devices.

Looking forward, several promising directions can be considered. Future research may
focus on integrating differential privacy and secure aggregation to strengthen confiden-
tiality,also exploring personalized federated learning for adaptive intrusion detection,and
without forgetting the test of this system in real-time environments with multiple orga-
nizations and heterogeneous devices.

In conclusion, this work contributes to the ongoing efforts to design intelligent, dis-
tributed, and privacy-preserving intrusion detection systems. It opens up new possibilities
for collaborative cybersecurity models and sets a foundation for future developments in

secure federated intelligence.

63

Bibliography

[Agrawal et al., 2022] Agrawal, S., Sarkar, S., Aouedi, O., Yenduri, G., Piamrat, K,
Alazab, M., Bhattacharya, S., Maddikunta, P. K. R,, and Gadekallu, T. R. (2022).
Federated learning for intrusion detection system: Concepts, challenges and future
directions. Computer Communications, 195:346-361.

[Bace et al.,, 2001] Bace, R. G., Mell, P, et al. (2001). Intrusion detection systems.

[Banabilah et al., 2022] Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., and Jarar-
weh, Y. (2022). Federated learning review: Fundamentals, enabling technologies, and
future applications. Information processing & management, 59(6):103061.

[Brik et al., 2020] Brik, B., Ksentini, A, and Bouaziz, M. (2020). Federated learning
for uavs-enabled wireless networks: Use cases, challenges, and open problems. |IEEE
Access, 8:53841-53849.

[Bukhari et al., 2024] Bukhari, S. M. S., Zafar, M. H., Abou Houran, M., Moosavi, S.
K. R, Mansoor, M. Muaaz, M., and Sanfilippo, F. (2024). Secure and privacy-
preserving intrusion detection in wireless sensor networks: Federated learning with
scnn-bi-lstm for enhanced reliability. Ad Hoc Networks, 155:103407.

[Caville et al., 2022] Caville, E,, Lo, W. W, Layeghy, S., and Portmann, M. (2022).
Anomal-e: A self-supervised network intrusion detection system based on graph neural
networks. Knowledge-based systems, 258:110030.

[Chassagnon et al,, 2020] Chassagnon, G., Vakalopolou, M., Paragios, N., and Revel, M.-
P. (2020). Deep learning: definition and perspectives for thoracic imaging. European
radiology, 30:2021-2030.

[Chauhan and Chandra, 2013a] Chauhan, P. and Chandra, N. (2013a). A review on hy-
brid intrusion detection system using artificial immune system approaches. Interna-
tional Journal of Computer Applications, 68(20).

64

BIBLIOGRAPHY

[Chauhan and Chandra, 2013b] Chauhan, P. and Chandra, N. (2013b). A review on
hybrid intrusion detection systems. International Journal of Computer Applications,
68(20).

[Chergui et al,, 2020] Chergui, H. et al. (2020). Noc-ids: Network ontology context-based
intrusion detection system. Expert Systems with Applications, 140:112881.

[Fadhil et al., 2024] Fadhil, H. M., Dawood, Z. 0., and Al Mhdawi, A. (2024). Enhancing
intrusion detection systems using metaheuristic algorithms. Diyala Journal of Engi-
neering Sciences, pages 15-31.

[Fedorchenko et al., 2022] Fedorchenko, E., Novikova, E., and Shulepov, A. (2022). Com-
parative review of the intrusion detection systems based on federated learning: Advan-
tages and open challenges. Algorithms, 15(7):247.

[Friha et al, 2022] Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., Choo, K.-K. R., and
Nafaa, M. (2022). Felids: Federated learning-based intrusion detection system for
agricultural internet of things. Journal of Parallel and Distributed Computing, 165:17-
31.

[Ghanbarzadeh et al., 2023] Ghanbarzadeh, R., Hosseinalipour, A., and Ghaffari, A.
(2023). A novel network intrusion detection method based on metaheuristic optimisa-
tion algorithms. Journal of ambient intelligence and humanized computing, 14(6):7575-
7592.

[Ghimire and Rawat, 2022] Ghimire, B. and Rawat, D. B. (2022). Recent advances on
federated learning for cybersecurity and cybersecurity for federated learning for internet
of things. IEEE Internet of Things Journal, 9(11):8229-8249.

[Gosselin et al., 2022] Gosselin, R., Vieu, L., Loukil, F., and Benoit, A. (2022). Privacy
and security in federated learning: A survey. Applied Sciences, 12(19):9901.

[Halim et al., 2021] Halim, Z., Yousaf, M. N., Waqgas, M., Sulaiman, M., Abbas, G., Hus-
sain, M., Ahmad, 1., and Hanif, M. (2021). An effective genetic algorithm-based feature
selection method for intrusion detection systems. Computers & Security, 110:102448.

[[ssa et al., 2024] Issa, M. M., Aljanabi, M., and Muhialdeen, H. M. (2024). Systematic
literature review on intrusion detection systems: Research trends, algorithms, methods,
datasets, and limitations. Journal of Intelligent Systems, 33(1):20230248.

65

BIBLIOGRAPHY

Khraisat et al.,, 2019] Khraisat, A., Gondal, 1., Vamplew, P., and Kamruzzaman, J.
p
(2019). Survey of intrusion detection systems: techniques, datasets and challenges.
Cybersecurity, 2(1):1-22.

[Kreuzberger et al., 2023] Kreuzberger, D., Kiihl, N., and Hirschl, S. (2023). Machine
learning operations (mlops): Overview, definition, and architecture. IEEE access,
11:31866-31879.

[Kus et al., 2022] Kus, B. et al. (2022). A false sense of security? revisiting the effec-
tiveness of industrial intrusion detection systems on real network traffic. Computers &
Security, 114:102580.

[Li et al., 2019] Li, J., Qu, Y., Chao, F., Shum, H. P,, Ho, E. S., and Yang, L. (2019).
Machine learning algorithms for network intrusion detection. Al in Cybersecurity, pages 151-
179.

[Li et al, 2020a] Li, K., Zhou, H., Tu, Z., Wang, W., and Zhang, H. (2020a). Distributed
network intrusion detection system in satellite-terrestrial integrated networks using
federated learning. IEEE Access, 8:214852-214865.

[Li et al, 2020b] Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020b). A review of applications
in federated learning. Computers & Industrial Engineering, 149:106854.

[Li et al., 2020c] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020c). Federated
learning: Challenges, methods, and future directions. IEEE signal processing magazine,
37(3):50-60.

[Liao et al,, 2013] Liao, H.-],, Lin, C.-H. R, Lin, Y.-C, and Tung, K.-Y. (2013). In-
trusion detection system: A comprehensive review. Journal of network and computer
applications, 36(1):16-24.

[Logeswari et al, 2023] Logeswari, G., Bose, S., and Anitha, T. (2023). An intrusion
detection system for sdn using machine learning. Intelligent Automation & Soft Com-
puting, 35(1):867-880.

[Martin, | Martin, J]. How many cyber attacks occur each day?(2024).

[Maseno et al., 2022] Maseno, E. M., Wang, Z., and Xing, H. (2022). A systematic re-
view on hybrid intrusion detection system. Security and Communication Networks,
2022(1):9663052.

66

BIBLIOGRAPHY

[Moustafa and Slay, 2015] Moustafa, N. and Slay, J. (2015). Unsw-nb15: a comprehensive
data set for network intrusion detection systems. In 2015 Military Communications and
Information Systems Conference (MilCIS).

[Nimbalkar and Kshirsagar, 2021] Nimbalkar, P. and Kshirsagar, D. (2021). Feature se-
lection for intrusion detection system in internet-of-things (iot). ICT Express, 7(2):177-
181.

[Omar et al., 2019] Omar, M. et al. (2019). A world of cyber attacks (a survey).

[Othman et al,, 2018] Othman, S. M., Alsohybe, N. T., Ba-Alwi, F. M., and Zahary, A. T.
(2018). Survey on intrusion detection system types. International Journal of Advanced
Computer Science and Applications, 9(6):241-252.

[Raj and Sharma, 2020] Raj, Y. and Sharma, K. S. (2020). Comparison of host-based
and network-based intrusion detection system: A review. International Journal of
Computer Sciences and Engineering, 8(2):115-119.

[Rajapaksha et al.,, 2023] Rajapaksha, S. Kalutarage, H., Al-Kadri, M. 0., Petrovski,
A., Madzudzo, G., and Cheah, M. (2023). Ai-based intrusion detection systems for
in-vehicle networks: A survey. ACM Computing Surveys, 55(11):1-40.

[Satilmis et al., 2024] Satilmis, H., Akleylek, S., and Tok, Z. Y. (2024). A systematic
literature review on host-based intrusion detection systems. leee Access, 12:27237-
27266.

[Scarfone and Mell, 2007] Scarfone, K. and Mell, P. (2007). Guide to intrusion detection
and prevention systems (idps). Technical Report SP 800-94, National Institute of
Standards and Technology.

[Shen et al.,, 2021] Shen, C,, Xu, J., Zheng, S., and Chen, X. (2021). Resource rationing
for wireless federated learning: Concept, benefits, and challenges. IEEE Communica-
tions Magazine, 59(5):82-87.

[Snapp et al.,, 1991] Snapp, S. R, Brentano, J., Dias, G. V., Goan, T. L., Heberlein,
L. T., Ho, C.-L., Levitt, K. N., Mukherjee, B., Smaha, S. E., Grance, T., et al. (1991).
Dids (distributed intrusion detection system)-motivation, architecture, and an early
prototype. In Proceedings of the 14th national computer security conference, volume 1,
pages 167-176. Washington, DC.

[Sundaram, 1996] Sundaram, A. (1996). An introduction to intrusion detection. Cross-
roads, 2(4):3-7.

67

BIBLIOGRAPHY

[Tsai et al,, 2009] Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009). Intrusion de-
tection by machine learning: A review. expert systems with applications, 36(10):11994-
12000.

[Tseng et al., 2003] Tseng, C.-Y., Balasubramanyam, P., Ko, C., Limprasittiporn, R,
Rowe,], and Levitt, K. (2003). A specification-based intrusion detection system for
aodv. In Proceedings of the 1st ACM workshop on Security of ad hoc and sensor
networks, pages 125-134.

[Wolsing et al., 2023] Wolsing, K. et al. (2023). Expectations vs reality: A comparative
study of intrusion detection datasets and their effect on ml models. In IEEE Symposium
on Security and Privacy.

[Yacouby and Axman, 2020] Yacouby, R. and Axman, D. (2020). Probabilistic extension
of precision, recall, and f1 score for more thorough evaluation of classification models.
In Proceedings of the first workshop on evaluation and comparison of NLP systems,
pages 79-91.

[Yang et al., 2019] Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated machine
learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST), 10(2):1-109.

[Yuan et al., 2024] Yuan, L., Wang, Z., Sun, L., Yu, P. S, and Brinton, C. G. (2024).
Decentralized federated learning: A survey and perspective. IEEE Internet of Things
Journal, 11(21):34617-34638.

[Zarringhalami and Rafsanjani, 2012] Zarringhalami, Z. and Rafsanjani, M. K. (2012).
A survey on intrusion detection systems in computer networks. Journal of applied
mathematics & informatics, 30(5_6):847-864.

[Zhang et al., 2020] Zhang, H., Bosch,]., and Olsson, H. H. (2020). Federated learning
systems: Architecture alternatives. In 2020 27th Asia-Pacific Software Engineering
Conference (APSEC), pages 385-394. IEEE.

[Zhang et al,, 2019] Zhang,], Li, F,, Zhang, H., Li, R,, and Li, Y. (2019). Intrusion de-
tection system using deep learning for in-vehicle security. Ad Hoc Networks, 95:101974.

68

	Acknowledgements
	Abstract
	Résumé

	Contents
	List of Figures
	List of Tables
	General Introduction
	Thesis objectives
	Thesis contributions
	Problem Statement
	Thesis organization
	• Chapter 01: Background and Theoretical Framework
	• Chapter 02: Proposed Approach
	• Chapter 03: Experimentation and Results

	Chapter 1
	1.1 Introduction
	1.2 Intrusion Detection Systems (IDS)
	1.2.1 Intrusion Detection Systems Definition
	1.2.2 The importance of Intrusion Detection Systems in Cyber- security
	1.2.3 Intrusion Detection Systems architectures
	1.2.3.1 Distributed Intrusion Detection Systems
	Advantages
	Limitations
	1.2.3.2 Network-based Detection Systems architecture
	Advantages (1)
	Limitations (1)
	1.2.3.3 Host- based Intrusion Detection Systems architecture
	Advantages (2)
	Limitations (2)
	1.2.3.4 Hybrid-based Intrusion Detection Systems
	Advantages (3)
	Limitations (3)

	1.2.4 Intrusion Detection Systems Architectures Comparison
	1.2.5 Intrusion Detection Systems Classification
	1.2.6 Intrusion Detection Systems Methods Comparison

	1.3 Federated Learning Fundamentals
	1.3.1 Federated Learning Definition
	1.3.2 Federated Learning Concept For IDS
	1.3.3 Federated Learning Types
	1.3.3.1 Horizontal Federated Learning
	1.3.3.2 Vertical Federated Learning
	1.3.3.3 Federated transfer learning

	1.3.4 Federated Learning Architectures
	1.3.4.1 Centralized Federated Learning
	1.3.4.2 Decentralized Federated Learning

	1.3.5 Federated learning fundamentals
	1.3.6 Federated learning use case and applications
	1.3.6.1 Use case
	1.3.6.2 Applications

	1.3.7 Federated learning benefits and challenges
	1.3.7.1 Benefits of federated learning
	1.3.7.2 Challenges of Federated Learning

	1.3.8 Federated Learning for Cybersecurity Applications

	1.4 Related works
	1.4.1 Machine learning approaches
	1.4.2 Deep learning approaches
	1.4.3 Federated learning approaches
	1.4.4 Summary Of Related Works On IDSs

	1.5 Others
	1.5.1 Hybrid Meta-heuristic-Based IDS for Enhanced Network Security
	1.5.2 Quantum-Inspired Horse Herd Optimization for Intrusion Detection
	1.5.3 Hybrid Federated Learning-Based IDS for IoT Using CNN and BiLSTM

	1.6 Research Gaps and Motivation
	1.7 Conclusion

	Chapter 2 Proposed Approach
	2.1 Introduction
	2.2 Architecture of The Proposed Solution
	2.3 Dataset
	2.3.1 Features Of The UNSW-NB15 Dataset
	2.3.1.1 Basic Features
	2.3.1.2 Time-based Features
	2.3.1.3 Flow Features
	2.3.1.4 Content Features
	2.3.1.5 Other Features

	2.3.2 Types of Attacks in the UNSW-NB15 Dataset

	2.4 Preprocessing
	3: // Data Merging
	5: // Data Cleaning
	25: // Label Encoding
	27: // Data Normalization
	29: // Data Splitting
	2.4.1 Data Merging
	2.4.2 Data Cleaning
	2.4.3 Label Encoding
	2.4.4 Data Normalization
	2.4.5 Data Splitting

	2.5 Federated Learning (FL) Model Procedure
	2.5.1 Training Phase
	• Client-Side: Local Training
	• Server-Side: Model Aggregation
	– ML-Based: Weighted Soft Voting for Random Forest
	– DL-Based: Model Weight Aggregation for MLP (Keras-based)
	∗ Weighted Aggregation (FedAvg):
	∗ Difference Aggregation:
	Training Flow:

	2.5.2 Testing Phase

	2.6 Model for FL-Distributed Intrusion Detection
	2.6.1 Machine Learning Models
	2.6.1.1 Decision Trees (DT)
	2.6.1.2 Random Forest (RF)
	2.6.1.3 Light Gradient Boosting Machine (LightGBM)
	2.6.1.4 K-Nearest Neighbors (KNN)

	2.6.2 Deep Learning Models
	2.6.2.1 Multiple Layer Perceptron (MLP)

	2.6.3 Gated Recurrent Unit GRU
	2.6.3.1 Long Short Term Memory (LSTM)

	2.7 Conclusion

	Chapter 3
	3.1 Introduction
	3.2 Experimental Setup
	3.2.1 Hardware and Software Environment
	3.2.2 Model Simulation Setup

	3.3 Model Implementation and Building
	3.3.1 Data Preparation
	3.3.2 Model Selection

	3.4 Results and Evaluation
	3.4.1 Centralized Training Baselines
	3.4.1.1 k-Nearest Neighbors (KNN)
	3.4.1.2 Decision Tree (DT)
	3.4.1.3 Random Forest (RF)
	3.4.1.4 Light Gradient Boosting Machine (LightGBM)
	3.4.1.5 Multiple Layer Perceptron (MLP)
	3.4.1.6 Gated Recurrent Unit (GRU)
	3.4.1.7 Long Short Term Memory (LSTM)

	3.4.2 Comparison of evaluated models
	3.4.3 Federated Performance
	3.4.3.1 Federated Random Forest (RF) Model
	3.4.3.2 Federated-based RF Model Discussion
	3.4.3.3 Federated MLP (Keras) Model
	3.4.3.4 Federated-based MLP Model Discussion

	3.4.4 Comparison Between MLP and RF Models
	3.4.5 Visual Analysis

	3.5 Global Discussion
	3.6 Conclusion

	General Conclusion
	Bibliography

