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Abstract 

 
The rapid growth of the internet in recent years has made cybersecurity a significant 

challenge. The traditional and standard Intrusion Detection Systems (IDS) which work 

based on known attack patterns are not effective enough and not sufficient to detect 

modern threats nowadays. For this reason, in this project, we aimed to enhance the 

functionality of IDS using either Machine Learning (ML) or Deep Learning (DL) to detect 

attacks.To reach our goal, we compared several models to decide which one is the best and 

gives best performance .However, to ensure that individuals’ data stay safe, we adopted 

Federated Learning (FL), which enables the model to learn from different distributed data 

sources and devices without sharing private data. We evaluated our work using a real- 

world dataset UNSW-NB15 , we implemented both a Federated MLP and a Federated 

Random Forest (RF) that returned best results among Ml and DL algorithms, using 

different aggregation strategies. Our final federated MLP model achieved over 98% across 

accuracy, precision, recall, and F1-score, proving that federated deep learning can deliver 

state-of-the-art results while preserving data confidentiality. 

 
Keywords: Cybersecurity, Intrusion Detection System (IDS), Machine Learning (ML), 

Deep Learning (DL), Federated Learning (FL), Multi-Layer Perceptron (MLP), Random 

Forest (RF). 



Résumé 

 
La croissance rapide d’Internet ces dernières années a rendu de la cybersécurité un défi 

majeur. Les systèmes de détection d’intrusion (IDS) traditionnels et standard, qui fonc- 

tionnent sur la base de schémas d’attaque connus, ne sont pas suffisamment efficaces 

pour détecter les menaces modernes. C’est pourquoi, dans ce projet, nous avons cher- 

ché à améliorer les fonctionnalités des IDS en utilisant soit l’apprentissage automatique 

(ML), soit l’apprentissage profond (DL) pour détecter les attaques. Pour atteindre cet 

objectif, nous avons comparé plusieurs modèles afin de déterminer celui qui est le plus 

performant.Cependant, afin de garantir la confidentialité des données des utilisateurs, 

nous avons adopté l’apprentissage fédéré (FL), qui permet au modèle d’apprendre à par- 

tir de sources de données et d’appareils distribués sans partager les données sensibles. 

Nous avons évalué notre travail à l’aide du jeu de données réel UNSW-NB15. Nous avons 

implémenté à la fois un MLP fédéré et une forêt aléatoire (RF) fédérée, qui ont montré 

les meilleurs résultats parmi les algorithmes ML et DL, en utilisant différentes stratégies 

d’agrégation. Notre modèle MLP fédéré final a atteint plus de 98% en exactitude, pré- 

cision, rappel et F1-score, prouvant que l’apprentissage profond fédéré peut fournir des 

résultats de pointe tout en préservant la confidentialité des données. 

 
Mots-clés : Cybersécurité, Système de détection d’intrusion (IDS), Apprentissage auto- 

matique (ML), Apprentissage profond (DL), Apprentissage fédéré (FL), Perceptron mul- 

ticouche (MLP), Forêt aléatoire (RF). 
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General Introduction 

 
Today in our world, it’s very important to make sure that our computers and on- 

line systems highly safe because of bad actors who try to sneak in and cause troubles. 

These threats are becoming more advanced and dangerous over time due to the rapid 

development of internet tools. 

To help protect it, experts use many and different special tools that monitor network 

and computers and look for any signs of danger.We mention one of them which is called 

Intrusion Detection Systems (IDS) . However, older versions of these systems sometimes 

fail to catch new types of attacks they haven’t encountered before. 

This is where Machine Learning (ML) and Deep Learning (DL) comes in ,they offer 

intelligent ways that help detect unusual activities in network especially in our case that 

might be harmful. But using them also comes with challenges, such as concerns about 

protecting people’s private information and the difficulty in understanding how the system 

makes its decisions. 

We will cite in table 1 some real-word attacks statistics in many different domains 

according to this article [Martin, ] that was last updated on June 6, 2025 : 
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Metric Value 

Daily cyberattacks 600 million per day 
Cybercrime victims 4.6 million victims per day (54 per second) 
Malware attacks (2024) 6.54 billion (up 8% from 2023) 
Ransomware attacks (2023) 317.59 million globally 
Average ransomware payment $850,700 
Total cost of ransomware attack $4.91 million (includes downtime and recov- 

ery) 

Business email compromise losses Over $6.3 billion transferred (2024) 
IoT attacks growth 124% increase (YoY); average cost per inci- 

dent: $330,000 

Phishing Nearly 1 million phishing websites created 
per month (Q4 2024) 

Cryptojacking attacks (Q1 previously) 332.3 million in a single quarter 
Zero-day attacks (2023) 80 exploited vulnerabilities (record high) 
Data breaches (Verizon 2025) 12,195 breaches recorded 
Healthcare breach victims Over 198 million individuals affected in 2024 
Cybersecurity job gap 3.4 million positions unfilled worldwide 
Average data breach cost $4.45M (avg.); insider breach cost: $4.99M 
Cybersecurity spending per employee $52.16 per employee (2024) 

Table 1: Cybersecurity attacks statistics in (2024–2025) 

 

Below, we mention one of the most known attacks that happened in real world : 

WANNACRY: According to the Center for Internet Security (2018) [Omar et al., 

2019], this began in May 2017 and persisted for several months. This global ransomware 

assault encrypted data on Microsoft Windows Operating Systems (OS) and demanded 

Bitcoin cryptocurrency ransom payments in exchange. When the attack was carried out, 

it would look for and encrypt particular filename extensions on Windows 7 and Server 

2008 clients. Additionally, it would append a text file with the ransom of around $300 

and a payment deadline to each encrypted file. 

Thesis objectives 

The goal of this project is to design a smart and secure intrusion detection model that 

not only detects threats accurately but also preserves users privacy .To make sure the 

privacy is respected, We are going to use Federated Learning (FL) which allows different 

devices or clients to work together without the need of sharing their private data.More 

specifically, this project aims to: 

• Minimize the number of false alerts, so security teams can focus on real threats 

without being distracted by unnecessary warnings. 

• Explore and compare different techniques to find the most effective way to detect 
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unusual or harmful behaviour in a network. 

• Test and evaluate the model using existing real-world dataset (UNSW-NB15), mak- 

ing sure it works well in performance. 

 

Thesis contributions 

As we mentioned earlier in our objectives that we are focusing on building an intrusion 

detection system model by integrating federated learning while using either ML or DL 

techniques based on which one has the best performance, the main contributions of our 

work are: 

• Building a privacy-aware IDS using Federated Learning: We developed a 

distributed system where several devices can together train a model without sharing 

any data . 

• Working with real-world data: We used the UNSW-NB15 dataset, which in- 

cludes various real attack types, to train and evaluate the models. This gave us a 

good idea of how the system would perform in realistic conditions. 

• Comparing different models: We compared several algorithms (such as Random 

Forest, Gradient Boosting, GRU, LSTM, and MLP) to see which one performs best 

on a real dataset (UNSW-NB15). The Keras MLP turned out to be the most 

accurate. 

• Using deep learning for better detection: We used a deep learning model 

which is Keras MLP and tested its ability to detect attacks in network traffic. 

The results showed that it offers strong performance that achieved around 98% for 

intrusion detection tasks. 

 

Problem Statement 

The performance of intrusion detection systems (IDS) has been the subject of numerous 

research projects .However, many of these methods still have trouble addressing funda- 

mental issues like high false positive rates and zero-day assaults. 

For instance, Kus et al. [Kus et al., 2022] evaluated industrial ML-based IDS and found 

that while performance on known attack patterns was strong, detection rates for zero-day 

attacks dropped significantly—down to 3.2% in some cases. This reveals a critical blind 

spot in modern IDS models. 
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Similarly, a comprehensive benchmark study by Wolsing et al. [Wolsing et al., 2023] 

highlighted the lack of generalizability in IDS. Models that performed well on one dataset 

often failed drastically on another, with F1-scores sometimes falling from 0.95 to as low 

as 0.02. This inconsistency underscores the challenge of real-world deployment. 

Chergui et al. [Chergui et al., 2020] introduced a context-aware IDS (NOC-IDS) based 

on ontological filtering to reduce false alerts. While their system showed a notable reduc- 

tion in false positives, it still required significant expert configuration and lacked scalability 

for large networks. 

These examples show that even with major improvements, IDS solutions continue to 

have issues with accuracy, flexibility, and operational viability, particularly in dynamic 

and privacy-sensitive environments. This supports the need for an IDS paradigm that is 

more intelligent, federated, and resilient, as this work explores. 

 

Thesis organization 

This work is structured in 3 main chapters as follows: 

• Chapter 01: Background and Theoretical Framework 

In this chapter, we introduce the concepts and technologies related to Intrusion De- 

tection Systems (IDS), including the different architectures and types ,their advan- 

tages and disadvantages,in addition to that we mention the role of Machine Learning 

(ML) and Deep Learning (DL) in modern cybersecurity.Moreover we explain Feder- 

ated Learning (FL) principles and their importance in building privacy-preserving 

IDS solutions. 

• Chapter 02: Proposed Approach 

The design of the proposed solution is presented in this chapter that focuses on the 

development part. We describe the choice and preparation of the dataset (UNSW- 

NB15), the implementation of different models, and the setup of the Federated 

Learning framework. 

• Chapter 03: Experimentation and Results 

In the final chapter, we present and detail the experimental process steps and eval- 

uate each of proposed models performance. Then we compare between different 

algorithms using metrics in order to choose the strongest one and develop it by 

integrating Federated Learning.Finally, we present visualizations to support our 

findings. 



 

 

 
Chapter 1 

Background and Theoretical 

Framework 

 
1.1 Introduction 

In today’s digital world, cybersecurity threats are increasing rapidly, making Intrusion 

Detection Systems (IDS) a crucial component of network and system security. An IDS 

helps monitor, analyse, and detect malicious activities, ensuring that potential threats are 

identified before they cause harm. We chose to work with IDS because of its importance in 

modern cybersecurity. With the rise of cyberattacks such as hacking, malware infections, 

and unauthorized access, organizations need a strong defence mechanism. IDS plays a key 

role in identifying suspicious behaviour and helps administrators take immediate actions. 

Another reason for our interest in IDS is its ability to use advanced techniques such as 

anomaly detection and machine learning to recognize threats, even if they are unknown. 

This proactive approach makes IDS a powerful tool in protecting networks and systems. 

Furthermore, working with IDS allows us to explore various cybersecurity concepts, gain 

hands-on experience, and contribute to building more secure digital environments. By 

studying IDS, our aim is to understand how cyber threats are detected and mitigated, 

making it a valuable field for our knowledge and future projects in cybersecurity. 

 

1.2 Intrusion Detection Systems (IDS) 

In this section we are going to explain how Intrusion Detection Systems (IDS) are essential 

tools in cybersecurity , it is necessary to first define what an IDS is and explore its core 

components and functions. 
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1.2.1 Intrusion Detection Systems Definition 

An Intrusion Detection System (IDS) [Bace et al., 2001] is a software device and cyberse- 

curity solution that continuously monitors, inspects and analyses network traffic or system 

activities to identify unauthorized access, security breaches, potential attacks, suspicious 

activities and malicious behaviour. It acts as a defence layer, helping organizations de- 

tect, log, and respond to potential cyber threats before they cause serious damage such as 

cyberattacks, policy violations, and malicious activities, meaning that if an IDS detects 

a threat, it alerts the system or network administrator to make the necessary actions. 

IDS does not actively prevent attacks. It acts as an early warning system, providing 

detailed reports on security incidents for further investigation. 

So we can summarise that IDS has 4 steps while working: 

• First ,it monitors traffic on a computer network to detect suspicious activity. 

• then , it analyses the data flowing through the network to look for patterns and 

signs of abnormal behaviour. 

• After that, IDS compares the network activity with a set of predefined rules and 

patterns to identify any activity that might indicate an attack or intrusion. 

• Finally, it alerts the administrators immediately with all the possible attacks. 

 

1.2.2 The importance of Intrusion Detection Systems in Cyber- 

security 

Intrusion Detection Systems (IDS) are essential to current cybersecurity [Sundaram, 1996] 

because it is nearly impossible to provide comprehensive system security because of soft- 

ware defects, cryptography restrictions, insider threats, and usability constraints. IDSs 

act as reactive mechanisms that track and examine system activity to find indications 

of malicious activity, unauthorized access, or policy violations rather than preventing as- 

saults. They play a crucial role in both real-time intrusion detection and post-attack 

forensic analysis. 

 

1.2.3 Intrusion Detection Systems architectures 

Before exploring into how intrusion detection systems identify malicious activity, it is 

essential to understand their basic structures [Liao et al., 2013] because they influence 

its capabilities, deployment strategy, and overall effectiveness. In the following section, 

we will explore the main architectures of IDS, their roles, advantages, and limitations in 

protecting different computing environments. 
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1.2.3.1 Distributed Intrusion Detection Systems 

An innovative method for intrusion detection systems (IDS) is the DIDS architecture 

(Distributed Intrusion Detection Systems) [Snapp et al., 1991] , which blends centralized 

data analysis with distributed monitoring and data reduction. A DIDS director, one host 

monitor for each host, and one LAN monitor for every broadcast LAN segment in the 

network under observation make up this system. The DIDS director assesses the evidence 

of unauthorized or suspicious behaviour that is gathered by the host and LAN monitors. 

The DIDS director receives reports from the host and LAN monitors asynchronously and 

independently over a communications infrastructure. 

 
Advantages and Limitations of DIDS: The Distributed Intrusion Detection System 

(DIDS) offers both notable strengths and certain limitations [Zarringhalami and Rafsan- 

jani, 2012] based on its architectural design and operational goals [Snapp et al., 1991]. 

 
Advantages 

• Distributed Monitoring: DIDS deploys both host-level and LAN-level monitors, 

allowing comprehensive and scalable intrusion detection across different points in 

the network. 

• Centralized Analysis: The DIDS Director aggregates data from distributed agents, 

enabling the system to detect complex and coordinated intrusions that might be 

missed otherwise. 

• Efficient Data Reduction: Each monitoring agent performs local filtering and 

summarization of audit data before transmission, reducing network overhead and 

improving processing efficiency. 

• Cross-System User Tracking: DIDS can monitor user activity across multiple 

systems, even when multiple login names are used, enhancing accountability and 

traceability. 

 
Limitations 

• Architectural Complexity: The distributed and centralized hybrid architecture 

adds complexity in terms of configuration, communication, and synchronization of 

components. 

• Single Point of Failure: The DIDS Director represents a central point in the 

system—if compromised or fails, it can degrade the entire detection capability. 
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• Network Overhead: Although local data reduction is applied, transmitting pro- 

cessed alerts and summaries still contributes to network load, which may impact 

performance in high-traffic environments. 

 
1.2.3.2 Network-based Detection Systems architecture 

We have also another architecture called Network Intrusion Detection Systems (NIDS) [Li 

et al., 2019], which is deployed at strategic points within a network to monitor and analyse 

traffic in real-time or near real-time, aiming to detect malicious activity. It inspects 

packets traversing the network by analysing headers and payloads across the IP, transport, 

and application layers, allowing detection of various attacks such as TCP SYN floods 

and fragmented packet attacks. NIDS uses either signature-based methods, comparing 

patterns to a database of known threats, or anomaly-based detection to identify unusual 

behaviour. However, NIDS is limited in its ability to inspect encrypted traffic or activities 

occurring within hosts. Tools like Snort and NetSTAT exemplify NIDS implementations. 

In machine learning-based NIDS approaches, intrusion detection involves three phases: 

pre-processing of traffic data, training to build behaviour models, and detection, where 

current traffic is compared against learned patterns to trigger alerts when threats are 

identified. 

 
Advantages and Limitations of NIDS: The Network Intrusion Detection System 

(NIDS) has its advantages and limitations [Li et al., 2019] based on its architectural 

design . 

 
Advantages 

 
• Real-time Monitoring: NIDS provides continuous, real-time monitoring of net- 

work traffic, enabling early detection of threats and suspicious activities. 

• Non-intrusive Operation: As passive sensors, NIDS operate without interfering 

with normal network functions, making them difficult for attackers to detect. 

• Wide Coverage: NIDS can analyse traffic from multiple hosts simultaneously, 

offering broad visibility into network behaviour and helping to identify misconfigu- 

ration or misuse. 

• Complementary Use: NIDS complements other security systems such as firewalls 

and antivirus tools by identifying threats those systems may miss. 
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Limitations 

• Encrypted Traffic Blindness: NIDS generally cannot analyse the contents of 

encrypted network packets, limiting their effectiveness in modern secure communi- 

cations. 

• High False Alarm Rate: NIDS can produce a large number of false positives 

due to benign anomalies or misconfigured detection rules, which may overwhelm 

security analysts. 

• Dependence on Signature Updates: Signature-based NIDS may fail to detect 

new or unknown attacks until updated, creating vulnerabilities during that window. 

• Limited Internal Visibility: When deployed at network perimeters, NIDS may 

miss threats occurring inside the network or across segmented environments. 

• Performance Bottlenecks: In high-traffic environments, NIDS may drop packets 

or slow down due to processing limitations, affecting detection accuracy. 

 
1.2.3.3 Host- based Intrusion Detection Systems architecture 

It is a security solution installed on individual devices—such as servers or workstations—to 

monitor the internal state and behaviour of the host. It analyses system logs, file integrity, 

user activities, and local network connections to detect unauthorized access or malicious 

actions. HIDS operates using local agents that compare observed behaviours with known 

attack patterns, raising alerts or logging incidents when suspicious activity is detected. 

It is often integrated with Security Information and Event Management (SIEM) systems 

like Splunk or OSSEC for centralized oversight. HIDS focuses on host-level activities, 

providing deeper visibility into system-level threats such as insider attacks, abnormal 

application behaviour, or tampering. 

 
Advantages and limitations of HIDS: Host-based Intrusion Detection System also 

has advantages and limitations based on its architecture. 

 
Advantages 

• Provides in-depth visibility into host-level events (e.g., file changes, system calls), 

enabling effective detection of internal or encrypted attacks [Raj and Sharma, 2020]. 

• Effectively detects insider threats and policy violations by monitoring user actions 

and system behaviour [Chauhan and Chandra, 2013a]. 
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• Supports file integrity monitoring (FIM) and detailed forensic analysis through local 

log inspections, essential for compliance and audit trails [Scarfone and Mell, 2007]. 

• Reduces network overhead as all analysis and event processing occurs locally on the 

host, minimizing additional traffic [Raj and Sharma, 2020]. 

 
Limitations 

 
• High Resource Consumption: Constant monitoring of files, logs, and pro- 

cesses consumes CPU, memory, and disk space, which may degrade system per- 

formance—especially on resource-constrained devices [Raj and Sharma, 2020]. 

• Limited Scope: Only protects the individual host it’s installed on and cannot 

detect threats that move laterally across the network or target other hosts [Scarfone 

and Mell, 2007]. 

• Management Complexity: Requires installation and configuration on each host, 

and maintaining updates and rule sets across many machines increases administra- 

tive overhead [Chauhan and Chandra, 2013a]. 

• Vulnerability to Tampering: If attackers compromise the host, they can disable 

or modify the HIDS, allowing malicious activity to go undetected [Raj and Sharma, 

2020]. 

• False Positives and Alert Fatigue: Innocent anomalies often trigger alerts, caus- 

ing alert fatigue and potentially obscuring true threats [Scarfone and Mell, 2007]. 

 
1.2.3.4 Hybrid-based Intrusion Detection Systems 

Combining multiple detection models is the aim of hybrid intrusion detection systems 

[Maseno et al., 2022] [Satilmiş et al., 2024] in order to improve performance. Two parts 

make up a hybrid intrusion detection system. The unclassified data is processed by 

the first part. The processed data is scanned by the second component to identify any 

instances of infiltration. It works by combining two learning algorithms [Tsai et al., 

2009].Every learning algorithm has distinct characteristics that help to enhance the hy- 

brid’s performance. The three main types of hybrid intrusion detection systems are single 

hybrid, integrated-based hybrid, and cascaded hybrid. 

 
Advantages and limitations of Hybrid IDS: Hybrid Intrusion Detection System 

has advantages and inconveniences [Chauhan and Chandra, 2013b] , we mention : 
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Advantages 

 
• Low false alarm/positive ratio. 

• Provides a tighter and broader perimeter, enabling good performance against both 

internal and external unauthorized access. 

• Allows correlation between network events and those occurring on target hosts. 

• Detects intrusive activity targeting multiple hosts and offers information about af- 

fected systems. 

• Capable of analysing encrypted data that has already been decrypted on the host. 

• Correlates alerts from HIDS and NIDS to improve the likelihood of detecting real 

intrusions. 

• Enhances overall detection rate of attacks. 

 
Limitations 

 
• Implementation is highly complex. 

• Not easily adaptable to frequently changing network environments. 

• May cause significant performance degradation on hosts due to the combined re- 

source overhead of HIDS and NIDS components. 

Out of all these architectures , in our thesis we are interested about the Distributed 

Intrusion Detection Systems. 

 

1.2.4 Intrusion Detection Systems Architectures Comparison 

Below is table 1.1 that compares between the IDS architectures based on those two papers 

[Othman et al., 2018] and [Zhang et al., 2019] 
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Criteria HIDS NIDS DIDS Hybrid IDS 

Deployment 
Location 

Individual 
hosts/endpoints 

Network devices 
(e.g., routers) 

Both hosts and 
network 

Across hosts, 
networks, cloud 

Input Data System logs, au- 
dit trails, file in- 
tegrity, process 
behaviour 

Network traffic 
(headers, pay- 
loads, protocols) 

Combination  of 
host and net- 
work data 

All    available 
data (host, 
network, cloud, 
external feeds) 

Platform Sup- 
port 

OS-level (Win- 
dows, Linux, 
Mac) 

Network infras- 
tructure devices 

Mixed platform Cross-platform 
with scalable 
architecture 

Attack Types 
Detected 

Insider  threats, 
privilege abuse, 
malware, rootk- 
its 

DoS/DDoS, 
port scans, sniff- 
ing, brute force 

Combined 
threats (internal 
and external) 

Sophisticated 
and multi-stage 
attacks 

Detection Ca- 
pability 

High for internal 
attacks 

High for external 
threats 

Balanced inter- 
nal and external 

High for all 
types (anomaly, 
misuse, hybrid) 

Resource Us- 
age 

High (per host) Low to moderate Moderate to 
high 

Depends on 
components 

Response 
Time 

Fast for local 
events 

Real-time for 
network threats 

Moderate (co- 
ordination 
overhead) 

Fast  and  coor- 
dinated (if opti- 
mized) 

Scalability Limited due to 
host dependence 

High Moderate High  with  dis- 
tributed design 

Advantages In-depth visi- 
bility, insider 
threat detection 

Broad network 
monitoring, 
early detection 

Comprehensive 
view, better 
accuracy 

Adaptive,  accu- 
rate, flexible 

Limitations Host tampering, 
scalability 

Can’t analyze 
encrypted traffic 
or local events 

Complex man- 
agement 

Complex  design 
and high re- 
source need 

Table 1.1: Comparison of Different IDS Architectures 
 

 

1.2.5 Intrusion Detection Systems Classification 

Intrusion detection Systems are classified into methods [Maseno et al., 2022] [Zarringha- 

lami and Rafsanjani, 2012] or techniques [Satilmiş et al., 2024], we mention of them the 

next 3 methods: 

• Signature-based Intrusion Detection Systems (SIDS): Also known as knowledge- 

based [Khraisat et al., 2019] or misuse detection, identify known threats by com- 

paring monitored network traffic or host activities against a database of predefined 

intrusion signatures or past log patterns. These systems, used in tools like Snort 

and NetSTAT, offer high accuracy for previously encountered attacks but struggle 
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to detect zero-day or polymorphic threats that lack existing signatures. Traditional 

SIDS often fail to capture complex attacks spanning multiple packets and have be- 

come less effective against the growing sophistication of modern malware. Despite 

improvements like using state machines and semantic pattern matching, the increas- 

ing rate of novel and targeted attacks has highlighted the limitations of SIDS and 

encouraged a shift toward Anomaly-based Intrusion Detection Systems (AIDS). 

• Anomaly-based Intrusion Detection Systems (AIDS): [Khraisat et al., 2019]Iden- 

tify abnormal or malicious behaviour by detecting significant deviations from nor- 

mal system activity, using heuristics based on machine learning, statistical, and 

knowledge-based methods—machine learning being the most effective. These sys- 

tems are designed to overcome the limitations of Signature-based IDS (SIDS), par- 

ticularly in detecting zero-day and previously unknown attacks. AIDS models are 

trained during a learning phase using normal traffic data and tested on new data to 

detect anomalies. They can operate in supervised, semi-supervised, or unsupervised 

modes. Supervised approaches require labelled data to distinguish normal from ab- 

normal patterns, while semi-supervised methods use mostly normal data, which can 

result in high false positive rates. Unsupervised techniques, which do not require 

labelled data, focus on learning from normal behaviour to detect previously unseen 

intrusions more effectively. AIDS can also detect internal malicious activities and 

are difficult for attackers to bypass due to their use of customized behaviour profiles. 

However, their sensitivity to novel behaviours may still result in false positives. 

• Specification-based Intrusion Detection Systems: [Tseng et al., 2003]identifies at- 

tacks by monitoring system or network behaviour and comparing it to manually 

defined security specifications that describe correct and expected operations. These 

specifications are crafted based on security policies, system functionality, and normal 

usage patterns. Rather than detecting attacks directly, this method flags deviations 

from expected behaviour at runtime, which may indicate an intrusion. It is par- 

ticularly effective at detecting previously unknown attacks, as it is not limited to 

known signatures. Commonly used to protect critical applications and protocols 

like ARP and DHCP, specification-based detection enforces rules on message struc- 

ture, sequence, and content. Although it requires manual effort to define accurate 

specifications, combining it with other detection methods can improve accuracy and 

reduce false positives. 
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1.2.6 Intrusion Detection Systems Methods Comparison 

Here is table 1.2 that compares between the 3 different classification methods [Liao et al., 

2013] of intrusion detection systems: 

 

Criteria Signature-based 
(SIDS) 

Anomaly-based 
(AIDS) 

Specification- 
based 

Detection Prin- 
ciple 

Matches activities 
against known at- 
tack signatures 

Detects  deviations 
from a learned 
model of normal 
behaviour 

Compares runtime 
behaviour against 
predefined specifi- 
cations 

Detection of 
Zero-day At- 

tacks 

Poor (cannot de- 
tect unknown at- 
tacks) 

Good  (can  detect 
unknown and novel 
attacks) 

Good  (can  detect 
previously unseen 
behaviour if it vio- 
lates specifications) 

False Positives Low High (especially in 
semi- and unsuper- 
vised approaches) 

Moderate (depends 
on completeness 
and correctness of 
specifications) 

Data Require- 
ments 

Requires labelled 
attack signatures 

Requires   normal 
(and sometimes 
labelled) data for 
training 

Requires manually 
defined specifi- 
cations based on 
expected behaviour 

Approaches 
Used 

Pattern  matching, 
rule-based detec- 
tion 

Machine learn- 
ing (supervised, 
semi-supervised, 
unsupervised), sta- 
tistical, knowledge- 
based 

Manual rule specifi- 
cation, protocol be- 
haviour modelling 

Examples Snort, NetSTAT KDD-based ML 
models, anomaly 
profilers 

ARP/DHCP proto- 
col monitors, run- 
time policy enforce- 
ment 

Strengths High accuracy for 
known attacks; fast 
detection 

Detects novel and 
internal attacks; 
adaptable to evolv- 
ing threats 

Detects viola- 
tions of intended 
behaviour; not 
limited to known 
signatures 

Weaknesses Cannot detect new 
or obfuscated at- 
tacks 

High false alarms; 
needs large/clean 
datasets 

Labor-intensive to 
define; limited by 
specification qual- 
ity 

Table 1.2: Comparison of Intrusion Detection Methods 
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1.3 Federated Learning Fundamentals 

The foundation for collaborative model training that protects privacy is laid by the idea 

of Federated Learning and we are going to explain it in this section. 

 

1.3.1 Federated Learning Definition 

Federated Learning (FL) [Yang et al., 2019] [Gosselin et al., 2022] is a decentralized 

machine learning technique in which multiple data owners collaboratively train a shared 

model without exchanging their private data. Unlike traditional centralized methods 

that require aggregating all data in one location, FL allows training to occur locally on 

user devices, preserving both data privacy and security. This approach is particularly 

promising for developing privacy-preserving solutions to address emerging cybersecurity 

threats. 

 

1.3.2 Federated Learning Concept For IDS 

Federated Learning (FL) for IDS [Agrawal et al., 2022] is a decentralized approach where 

multiple devices train an IDS model locally and share only model updates instead of raw 

data, preserving privacy. FL enhances intrusion detection in sensitive environments while 

reducing data exposure risks. It improves security while addressing privacy, scalability, 

and communication challenges in network security. 

 

1.3.3 Federated Learning Types 

This section describes the main types of Federated Learning (FL) [Li et al., 2020b]. 

 
1.3.3.1 Horizontal Federated Learning 

It is a type of FL that addresses overlap between data features across nodes and differences 

in sample space. Currently, FL algorithms are primarily used in smart devices and IoT 

devices, with horizontal FL being the most common. Google’s federated model solution 

for Android mobile phone updates is typically horizontal FL due to similar feature dimen- 

sions. Gao et al. introduced hierarchical heterogeneous horizontal FL frames to address 

limited labelled entities and address data annotation issues in EEG classification. In real 

applications like medical care, cross-regional cooperation is difficult due to the difficulty 

in building data pools for sharing. FL could construct a federal network for cross-regional 

hospitals with similar medical information to improve joint models. 



`CHAPTER 1. BACKGROUND AND THEORETICAL FRAMEWORK  

16 

 

 

 
1.3.3.2 Vertical Federated Learning 

It is a machine learning approach that partitions data vertically according to feature di- 

mension, allowing for the prediction and personalization of diseases like diabetes. This 

approach is particularly useful for medical institutions that need to analyse homoge- 

neous data, such as age, weight, and medical history, to predict and personalize diseases. 

Vertical FL can also work with companies that hold smartphone application data sets, 

allowing them to cooperate without raw data transmission. However, it is more challeng- 

ing to apply vertical FL due to entity resolution issues and the need for correspondence 

between different owners. Various methods have been developed to preprocess vertical 

partitioned data, such as token-based entity resolution algorithms, end-to-end schemes on 

linear classifiers, and secure frameworks like SecureBoost. However, these methods are 

only applicable to simple machine learning models like logistic regression, leaving room 

for improvement in more complex machine learning approaches. Overall, vertical FL has 

potential for further development in machine learning applications. 

 
1.3.3.3 Federated transfer learning 

It is a method that generalizes deep learning (FL) to address the issue of data sharing 

and poor data quality. It allows knowledge from one domain to another, achieving bet- 

ter learning results. FTL is the first complete stack for FL based on transfer learning, 

including training, evaluation, and cross validation. Neural networks with additive ho- 

momorphic encryption technology can prevent privacy leakage and provide comparable 

accuracy with traditional methods. However, communication efficiency remains a chal- 

lenge. Sharma et al. (2019) worked on improving FTL by using secret sharing technology 

instead of HE to reduce overhead and hinder malicious servers. Chen et al. (2019) con- 

structed a FedHealth model that gathers data from different organizations via FL and 

offers personalized healthcare services through FTL. While FTL research is not mature, it 

is an effective way to protect data security and user privacy while breaking data islands. 

 

1.3.4 Federated Learning Architectures 

The efficiency of an Intrusion Detection System (IDS) depends on choosing the right 

deployment architecture. There are two main types: 

 
1.3.4.1 Centralized Federated Learning 

It is a common architecture of Federated Learning systems [Zhang et al., 2020], where a 

single central node handles communication, aggregation, and deployment of models. This 
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architecture offers smooth and elegant model transmission, quick updates, and efficiency 

for small systems. However, it can lead to scalability issues, as the server node may not 

improve performance when thousands of client nodes join, and communication bottlenecks 

may arise when traffic increases exponentially. Additionally, the system can easily break 

down due to a Denial-of-Service attack on the server. 

 
1.3.4.2 Decentralized Federated Learning 

It is another architecture [Yuan et al., 2024] that allows model weights to be shared 

according to broadcast, gossip, or pointing protocols in order to produce the best models 

for every client.Pointing is one of the easiest and most direct ways for two peers to establish 

a one-to-one, unidirectional, and defined communication relationship. 

 

1.3.5 Federated learning fundamentals 

The most common fundamentals [Banabilah et al., 2022] of FL are these: 

• Data Privacy: In federated learning, the data does not need to be collected and 

centralized on a server. It remains on the local devices, preserving user privacy and 

complying with data protection regulations such as GDPR. 

• Data Distribution: The data is distributed across a wide range of devices. These 

devices may vary in terms of data size, quality, and type. This diversity helps in 

building more robust models. 

• Client-Side Training: Each participating device trains the model locally using 

its own data. This involves running training algorithms such as gradient descent on 

the local data, without sending the data to a central server. 

• Local Model Updates: After training on local data, each client computes updates 

(such as model parameters or gradients) to improve the model. These updates are 

then shared with the central server. 

• Federated Averaging (FedAvg): The server collects model updates from clients 

and aggregates them (usually by averaging) to form a global model. This aggregated 

model is then sent back to the clients for further training. This process continues 

iteratively. 

• Aggregation Server: The central server coordinates the training, aggregates the 

local model updates, and distributes the global model back to clients. 
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• Communication Overhead: Since model updates are exchanged over a net- 

work, it is important to minimize communication overhead. Techniques like model 

compression, quantization, or sending only significant updates can help reduce the 

amount of data exchanged. 

• Asynchronous Updates: Updates can be sent asynchronously, avoiding the need 

to wait for all clients to send their updates at once. 

• Device and Data Heterogeneity: Federated learning systems need to handle 

differences in devices (e.g., computational power, network connectivity) and data 

(e.g., class imbalance, non-IID data). These challenges require careful model design 

and adaptive learning strategies. 

• Non-IID Data: In federated settings, data may not be independently and identi- 

cally distributed (non-IID). This can lead to challenges in convergence and general- 

ization. 

• Differential Privacy: To protect sensitive information, techniques like differential 

privacy can be applied. This ensures that the model updates do not reveal too much 

about any individual client’s data. 

• Secure Aggregation: Methods such as secure multi-party computation (SMPC) 

or homomorphic encryption can be used to ensure that the updates are encrypted 

and private, preventing adversaries from gaining insight into the model updates or 

individual data. 

• Personalized Models: After global model aggregation, the model can be fine- 

tuned locally on individual devices to better fit each client’s data. This can improve 

performance, especially in highly diverse datasets. 

• Large-Scale Deployment: Federated learning systems are designed to scale to 

a large number of clients (e.g., millions of devices). Effective scheduling and op- 

timization algorithms are required to ensure that this large-scale system operates 

efficiently. 

 

1.3.6 Federated learning use case and applications 

Federated learning has been useful in several real-world scenarios, below are some exam- 

ples of use cases and applications also: 
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1.3.6.1 Use case 

Below we mention some FL use cases [Brik et al., 2020]: 

• Medical Imaging:A prominent use-case of FL in healthcare is for the early de- 

tection of Rheumatic Heart Disease (RHD). This was implemented on the ATMO- 

SPHERE platform, which supports the development and deployment of medical 

imaging applications using federated cloud infrastructures. The proposed solution 

utilized a deep learning classifier that analyses echocardiographic video data and 

demographic information to classify patients into three categories: Definite RHD, 

Borderline, or Normal. 

• Anomaly Detection in IoT Devices:Another use case is the DIoT system, which 

uses FL to detect anomalies in Internet of Things (IoT) devices without the need 

for labelled data or human intervention. 

• Augmented Reality:FL has also been applied in Augmented Reality (AR) to 

address issues related to high data volume and latency. The proposed framework 

integrates FL with Mobile Edge Computing (MEC). 

• Robotics:In robotics, Federated Learning allows multiple robots to collaboratively 

improve their models while keeping data local. This is particularly useful in multi- 

robot systems, where centralized training can be limited by communication con- 

straints and privacy concerns. By sharing only essential model updates instead of 

raw data, FL enhances learning efficiency without overloading the network. 

• Transportation: Autonomous Vehicles:Autonomous vehicles use machine learn- 

ing for tasks like obstacle detection and adaptive driving. Traditional cloud-based 

training can cause latency and risks in fast-paced environments. Federated Learning 

addresses this by enabling vehicles to collaboratively train models in real time while 

keeping data local. This approach improves decision-making based on current road 

conditions without requiring constant data transfer. 

• Smart Manufacturing: Predictive Maintenance:In Industry, predictive main- 

tenance powered by AI helps reduce downtime and improve efficiency. However, 

data privacy and cross-border restrictions can limit centralized approaches. Feder- 

ated Learning offers a solution by allowing each manufacturing site to train models 

locally. These local models contribute to a global predictive system without sharing 

sensitive or proprietary industrial data. 
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1.3.6.2 Applications 

Below we mention some of FL applications [Li et al., 2020b] : 

• Google Gboard Suggestions: FL improves query suggestions on Gboard while 

preserving user privacy and minimizing latency by using Android’s Job Scheduler 

and a client-server architecture. 

• Mobile Keyboard Prediction: A Recurrent Neural Network (CIFG, a variant of 

LSTM) was trained using FL to provide faster and more efficient text predictions 

on mobile keyboards. 

• Browser History Ranking (Firefox): FL was used to train models for ranking 

browser history suggestions, resulting in faster URL bar completions with privacy 

maintained through client-server optimization. 

• Visual Object Detection (FedVision): FedVision supports decentralized train- 

ing of YOLOv3 object detection models, allowing companies to train models across 

clients for hazard detection applications. 

• Patient Clustering from EMRs: The CBFL algorithm uses FL to predict mor- 

tality and hospital stay durations using distributed Electronic Medical Records from 

over 200 hospitals. 

• fMRI Analysis: FL is used for analysing fMRI data (ABIDE dataset) to identify 

autism, enhancing model generalizability while maintaining privacy. 

• Brain Tumour Segmentation: FL applied to the BraTS 2018 dataset achieves 

accurate tumour segmentation without centralized data sharing. 

• Distributed Medical Databases: An FL framework enables privacy-preserving 

meta-analysis of subcortical brain structures across institutions. 

• FedNER (Medical Named Entity Recognition): FedNER framework uses FL 

to detect medical entities in text data across clients with improved accuracy over 

baseline methods. 

 

1.3.7 Federated learning benefits and challenges 

Federated learning has plenty of benefits and challenges that we are going to mention in 

this section. 
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1.3.7.1 Benefits of federated learning 

we will start by mentioning some of its benefits [Shen et al., 2021] that make it appropriate 

for distributed and privacy-sensitive environments. 

• Data Privacy and Security: Training occurs locally on devices, and only model 

updates are shared, which reduces the risk of sensitive data leakage. 

• Decentralized Training: FL removes the need for centralized data collection, 

reducing transmission costs and improving system resilience. 

• Real-Time and Offline Prediction: Since models are stored on-device, predic- 

tions can be made instantly and even without an internet connection. 

• Minimal Infrastructure Requirements: Training can take place when devices 

are charging, idle, or connected to Wi-Fi, reducing the need for high-performance 

hardware. 

• Efficient Resource Usage: FL leverages edge devices’ computational capabilities, 

allowing scalable and continuous learning directly at the data source. 

 
1.3.7.2 Challenges of Federated Learning 

Despite significant advancements in Intrusion Detection Systems (IDS) using Federated 

Learning (FL), several challenges [Li et al., 2020c] remain which we are going to site some 

of : 

• Increased Power and Memory Consumption: Devices with limited resources 

may struggle with the local training process. 

• Bandwidth Limitations: Communication between devices and the server can be 

constrained by low bandwidth, causing latency or slower convergence. 

• Device Reliability: FL depends on consistent device participation. Devices drop- 

ping out mid-training can degrade model performance. 

• Non-IID and Unbalanced Data: Data is not identically distributed across de- 

vices, which can hinder model accuracy and convergence. 

• Scalability Issues: Large-scale deployment requires careful orchestration of de- 

vices, communication, and resource allocation. 
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1.3.8 Federated Learning for Cybersecurity Applications 

Federated Learning (FL) offers significant potential in enhancing cybersecurity across 

various industries, some of applications [Ghimire and Rawat, 2022] of FL in cybersecurity 

include: 

• Threat Detection and Anomaly Identification: FL enables real-time mon- 

itoring by pooling insights from diverse sources without exposing sensitive data, 

improving the detection of evolving cyber threats. 

• Malware Detection and Classification: FL enhances malware detection by 

aggregating data from different organizations, resulting in robust, real-time malware 

classifiers that adapt to evolving threats. 

• Predictive Analysis for Cyber Attacks: FL improves predictive models by 

analysing historical data from multiple entities, allowing proactive identification of 

potential attack vectors. 

• Collaborative Defence Strategies: FL facilitates cooperation between organiza- 

tions to share threat intelligence without exposing sensitive data, creating a stronger 

collective defence against common adversaries. 

• Privacy-Preserving Intrusion Detection: FL enables privacy-preserving intru- 

sion detection by keeping sensitive data local and sharing only anonymized insights, 

allowing collective identification of unauthorized access while protecting user confi- 

dentiality. 

 

1.4 Related works 

We can divide different related works based on these approaches: 

 

1.4.1 Machine learning approaches 

Machine learning [Kreuzberger et al., 2023]is a rapidly growing field of computing that 

uses computers to learn and improve tasks without explicit programming. It has been 

around for over half a century, with Alan Turing and John McCarthy being key founders. 

The field has gained popularity in recent decades, particularly in the medical field, where 

computer vision has become faster and more reliable than human labour. 

To identify cyberthreats, machine learning (ML) and intrusion detection systems (IDS) 

employ algorithms [Halim et al., 2021] such as XGBoost, SVM, k-NN, and decision trees. 
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Techniques for feature selection decrease computational complexity and increase detection 

accuracy. By choosing pertinent features from big datasets, a study presents GbFS, an 

enhanced Genetic Algorithm-based feature selection technique that improves IDS accu- 

racy. With a maximum accuracy of 99.80 % and lower computing costs than conventional 

methods, GbFS successfully removes redundant features without sacrificing detection pre- 

cision. 

According to the study [Logeswari et al., 2023] anomaly-based IDS examines devi- 

ations, but standard signature-based IDS finds it difficult to fend off zero-day attacks. 

Network management is improved by software-defined networking (SDN), but there are 

drawbacks as well. SDN security is enhanced by machine learning (ML)-based intrusion 

detection systems (IDS), while they have drawbacks such as computational inefficiencies 

and false positive rates. With an accuracy of 98.7%, HFS-LGBM IDS performs better 

than other ML models. 

The paper [Nimbalkar and Kshirsagar, 2021] suggests a feature selection technique 

that minimizes IoT network traffic features while preserving high detection accuracy by 

utilizing Information Gain and Gain Ratio. Using the IoT-BoT and KDD Cup 1999 

datasets, the system creates two feature subsets (RFS-1 and RFS-2) and assesses them 

using the JRip classifier. With a high accuracy rate of 99.9992%, the system surpasses 

current techniques by lowering the feature set to 16 and 19 features. 

 

1.4.2 Deep learning approaches 

Deep learning [Chassagnon et al., 2020] is a branch of machine learning that uses multi- 

layered neural networks, known as deep neural networks, to mimic the complex decision- 

making capabilities of the human brain. Today, it powers many of the artificial intelligence 

(AI) applications we use in everyday life. 

Advanced neural networks [Caville et al., 2022] such as CNNs, RNNs, and Graph 

Neural Networks (GNNs) are used in Deep Learning (DL) for intrusion detection (IDS) in 

order to identify intricate patterns in cyberthreats. DL models are better at identifying 

complex attacks than regular ML models since they extract features without the need for 

human selection. In order to detect anomalies without labelled data, Anomal-E, a self- 

supervised GNN-based NIDS, uses edge characteristics, network graph structures, and a 

modified Deep Graph Infomax model. The model outperformed conventional techniques 

in detecting complex cyberthreats after being evaluated on benchmark datasets. 

Modern vehicles are highly connected, exposing them to cyber threats. Intrusion De- 

tection Systems (IDSs) are deployed in In-Vehicle Networks (IVNs) [Rajapaksha et al., 

2023]to counter these threats. AI-driven IDSs, using Machine Learning and Deep Learn- 
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ing, offer improved security by analysing CAN bus traffic patterns and detecting anoma- 

lies. However, existing IDSs lack comprehensive coverage of AI techniques, recent devel- 

opments, and benchmark datasets. This study presents a novel AI-based IDS taxonomy 

for IVNs. 

 

1.4.3 Federated learning approaches 

Intrusion Detection Systems (IDS) play a critical role in network security, with Machine 

Learning (ML) and Deep Learning (DL) improving their detection capabilities. How- 

ever, traditional ML/DL-based IDS rely on centralized data storage, raising privacy and 

security concerns. 

The paper [Agrawal et al., 2022] reviews existing FL-based IDS implementations, ana- 

lyzing their strengths and limitations while addressing challenges such as communication 

overhead, security risks, and model aggregation complexities. Despite FL’s potential to 

enhance IDS privacy and scalability, further research is needed to optimize its efficiency 

and robustness. 

This comprehensive review [Fedorchenko et al., 2022] compares various intrusion detec- 

tion systems based on Federated Learning. It highlights how FL reduces privacy risks by 

keeping data localized and supports collaboration between entities with private datasets. 

It discusses its specific challenges like non-IID data, device heterogeneity, and model ag- 

gregation issues. It also analyses system architectures and datasets used in IDS research, 

to compare datasets, machine learning methods, and evaluation metrics, ultimately iden- 

tifying open research gaps and suggesting directions and solutions for future work. 

FELIDS [Friha et al., 2022] is a federated learning-based intrusion detection system 

designed to secure agricultural IoT infrastructures while preserving data privacy. It em- 

ploys three deep learning classifiers to detect cyber threats, enhancing privacy and secu- 

rity. FELIDS is evaluated using datasets like CSE-CIC-IDS2018, MQTTset, and InSDN, 

demonstrating superior performance compared to non-federated machine learning models. 

Despite challenges like data privacy, communication overhead, and power consumption, 

FELIDS offers a promising alternative to traditional machine learning solutions. 

Federated Learning (FL) can be adapted for different types of computer networks, 

such as PAN, LAN, MAN, WAN, and satellite networks, based on factors like network 

size, traffic, and data interaction. For Satellite-Terrestrial Integrated Networks (STINs) 

[Li et al., 2020a], FL-based IDS has proven essential for defending against attacks like 

DoS, due to the resource and bandwidth gaps between satellite and terrestrial networks. 

An FL-based STIN algorithm outperforms traditional IDS by optimizing energy use, 

reducing packet loss, and lowering CPU utilization.  In Local Area Networks (LAN), 
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where device numbers range from 3 to 60, segmented FL architectures with multiple 

global models improve prediction accuracy and aggregation results by addressing non-IID 

data. Grouping client models based on similarity further enhances performance through 

optimized hyper-parameters. 

 

1.4.4 Summary Of Related Works On IDSs 

Below , table 1.3 that represents all the related work sited above summarised : 
 

Research Technique Method Dataset Key Results / Contri- 
bution 

Anomal-E [Cav- 

ille et al., 2022] 

GNN (Self- 

supervised) 

Graph-based 

anomaly de- 

tection (Deep 
Graph Infomax) 

Custom graph- 

based dataset 

Effective anomaly detec- 

tion; high computational 

cost;  good  for  complex 

threats 

GbFS [Halim 

et al., 2021] 

Genetic 

rithm 

Algo- Feature selec- 

tion to enhance 

ML-IDS 

NSL-KDD 98.5% accuracy with only 

12 features; reduced com- 

plexity 

AI-based IDS 

for In-Vehicle 

Networks [Ra- 

japaksha  et  al., 

2023] 

ML & DL AI taxonomy for 

vehicular secu- 

rity 

CAN Bus, 

other automo- 
tive datasets 

99.99% detection rate for 

known attacks; F1-score > 

0.95 for novel ones 

FL for 

[Agrawal 

2022] 

 
et 

IDS 
al., 

Federated 

Learning 

Distributed IDS 

with privacy- 

preserving 

model updates 

CICIDS2017, 

NSL-KDD 

Enhanced privacy; scal- 

able; suffers from commu- 

nication overhead 

FELIDS [Friha 

et al., 2022] 

FL + 

(DNN, 

RNN) 

DL 

CNN, 

Federated IDS 

for Agri-IoT 

Edge-IIoTset, 

CSE-CIC- 

IDS2018 

Strong performance in IoT; 

privacy preserved; faces 

complexity and energy is- 

sues 

HFS-LGBM  IDS 
[Logeswari et al., 

2023] 

LightGBM + 

FS 

ML for SDN 
anomaly detec- 

tion 

SDN-specific 

dataset 

Achieved 99.9% accuracy; 
reduced false positives; ef- 

ficient 

IoT Feature Se- 

lection IDS [Nim- 

balkar and Kshir- 

sagar, 2021] 

Info Gain & 

Gain Ratio 

Dimensionality 

reduction for 

IoT IDS 

IoTID20, 

KDD 

1999 

 
Cup 

Accuracy up 

only 16–19 

lected 

to  99.98%; 
features se- 

Table 1.3: Summary of different Related Works on Intrusion Detection Systems (IDS) 
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1.5 Others 

This section examines site other modern and novel approaches to intrusion detection 

systems (IDS) that go beyond conventional and federated learning techniques. 

 

1.5.1 Hybrid Meta-heuristic-Based IDS for Enhanced Network 

Security 

In response to the increasing complexity of cyber threats, this study [Fadhil et al., 

2024]proposes a hybrid Intrusion Detection System (IDS) that combines meta-heuristic 

algorithms with deep learning. The system integrates the Lion Optimization Algorithm 

(LOA) and Grey Wolf Optimizer (GWO) to enhance detection accuracy and reduce false 

alarms. The key contribution is the development of a hybrid approach, referred to as LOF- 

SGWO, which merges Lion Optimization Feature Selection (LOFS) with GWO within a 

CNN-LSTM deep learning framework. This method enables the detection of unknown vul- 

nerabilities and stealthy attacks in real time. Experiments using the NSL-KDD dataset 

and comparisons with the WUSTL-EOM 2020 system demonstrate over 99.26% accuracy. 

The results validate the proposed model’s effectiveness and its potential application in 

real-world network security challenges. 

 

1.5.2 Quantum-Inspired Horse Herd Optimization for Intrusion 

Detection 

This paper [Ghanbarzadeh et al., 2023] introduces a novel intrusion detection method 

based on the Horse Herd Optimization Algorithm (HOA), inspired by horse herd be- 

haviour. The algorithm is adapted into a discrete form and enhanced using quantum 

computing principles to create a quantum-inspired multi-objective version, called MQB- 

HOA. The method aims to improve feature selection and classification performance for 

detecting network intrusions. A K-Nearest Neighbour (KNN) classifier is used to clas- 

sify network packets into normal and four attack categories. Experiments conducted on 

the NSL-KDD and CSE-CIC-IDS2018 datasets show that MQBHOA achieves superior 

results, including a 6% improvement in feature selection and classification accuracy, with 

an overall detection accuracy of 99.8%. These results demonstrate the effectiveness of 

MQBHOA in addressing intrusion detection as a multi-objective optimization problem. 
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1.5.3 Hybrid Federated Learning-Based IDS for IoT Using CNN 

and BiLSTM 

The rapid growth of Internet of Things (IoT) devices has created significant challenges 

for maintaining system security and privacy. This paper [Bukhari et al., 2024] presents 

a scalable Intrusion Detection System (IDS) based on Federated Learning (FL) tailored 

for IoT environments. The proposed horizontal FL model combines Convolutional Neural 

Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to effectively 

extract spatial and temporal features from distributed data. CNN identifies local patterns, 

while BiLSTM captures sequential dependencies. Adopting a zero-trust model, the system 

retains data on edge devices and shares only trained weights with a centralized FL server 

for global model updates. Experimental results using CICIDS2017 and Edge-IIoTset 

datasets show that this hybrid approach outperforms existing centralized and federated 

deep learning IDS models in both accuracy and scalability. 

 

1.6 Research Gaps and Motivation 

Despite significant advancements in Intrusion Detection Systems (IDS) leveraging Ma- 

chine Learning (ML), Deep Learning (DL), and Federated Learning (FL), several critical 

challenges [Issa et al., 2024] remain unresolved. Many existing systems still struggle to 

detect zero-day attacks due to their reliance on predefined signatures, underscoring the 

need for anomaly-based detection models. Additionally, high computational costs and the 

presence of redundant features reduce model efficiency, highlighting the importance of ef- 

fective feature selection techniques. Centralized ML/DL models also raise serious privacy 

concerns, which makes Federated Learning a compelling solution for secure, decentralized 

training. Moreover, most current IDS solutions lack real-time performance and scalabil- 

ity, particularly in resource-constrained environments such as IoT and Software Defined 

Networks (SDNs). Furthermore, the limited integration of advanced hybrid models—such 

as combinations of ML, DL, and Graph Neural Networks (GNNs)—represents a missed 

opportunity to enhance detection accuracy and robustness. Recent studies on collabora- 

tive IDS frameworks using FL have introduced taxonomies to classify existing approaches 

based on datasets, aggregation strategies, ML models, and architectural configurations. 

These works recognize advantages of FL in preserving privacy and enabling distributed 

learning, while also identifying persistent challenges including high false positive rates, 

communication overhead, and secure model aggregation. 

Motivated by these gaps, our thesis objective is how can we design a distributed IDS 

that balances high detection performance, data privacy, and scalability across scalabil- 
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ity across diverse environments. Traditional IDS frameworks either compromise privacy 

through centralized learning or fail to generalize across diverse data distributions. More- 

over, the integration of Federated Learning into IDS remains under-explored in practical, 

real-world settings where attacks evolve rapidly, and client data is non-IID. This thesis 

addresses the need for a federated IDS architecture capable of learning collaboratively 

without exposing sensitive data, while maintaining robustness, low latency, and minimal 

communication cost in detecting a wide range of cyber threats. 

This thesis proposes a federated IDS architecture that learns collaboratively without 

exposing sensitive data, maintains robustness, low latency, and minimal communication 

cost. 

 

1.7 Conclusion 

Intrusion Detection Systems (IDS) play a critical role in cybersecurity, helping detect and 

mitigate cyber threats in various network environments. While Machine Learning (ML), 

Deep Learning (DL), and Federated Learning (FL) have significantly improved IDS ca- 

pabilities, several challenges remain, including zero-day attack detection, high computa- 

tional costs, data privacy concerns, and scalability issues. To address these challenges, 

advanced feature selection methods (e.g., Genetic Algorithms), self-supervised learning 

(e.g., Graph Neural Networks), and privacy-preserving techniques (e.g., Federated Learn- 

ing) are emerging as promising solutions. However, further research is needed to optimize 

IDS for real-time performance, reduce false positives, and enhance model efficiency in 

large-scale networks such as IoT and SDN. Future work should focus on hybrid approaches 

that combine ML, DL, and FL, enabling more adaptive, efficient, and privacy-preserving 

IDS solutions. By overcoming existing limitations, IDS can continue to evolve as a robust 

defence mechanism against modern cyber threats. 



 

 

 
Chapter 2 

Proposed Approach 

2.1 Introduction 

This chapter introduces a novel Distributed Intrusion Detection System (DIDS) architec- 

ture based on Federated Learning (FL), outlining the overall system design and deploy- 

ment plan. The architecture is described, then the dataset used to simulate a federated 

environment is introduced, the data preprocessing stage is discussed in detail, including 

methods for locally preparing the dataset at each client node.Finally, the chapter examines 

the use of the the chosen model within the Federated Learning framework, focusing on 

aggregation techniques and challenges. This distributed and privacy-aware design aims to 

deliver accurate, scalable, and secure intrusion detection suitable for modern networked 

environments. 

 

2.2 Architecture of The Proposed Solution 

The architecture of the proposed intrusion detection system is built on top of a Federated 

Learning (FL) platform that enables privacy-preserving distributed model training,it con- 

sists of multiple clients, each having a local dataset, and a central server to collect the 

local models without directly accessing raw data. 

Each customer trains a model with its own data, allowing particular traffic behaviours 

or patterns of attack to be captured. Instead of sending data to a central location, 

clients only send their model weights or gradients to the server. The server then sums 

them up to create a global model that is augmented with distributed knowledge without 

compromising data privacy. 

For our application, the architecture involves: 

• Local Nodes: Each node (client) has a model that is trained using local samples 

 
29 
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from the dataset. 

• Central Aggregator: This component combines the learned parameters using 

either Weighted Aggregation or Difference Aggregation strategies. 

• Global Model: The combined model is distributed once again to all the clients so 

that they can improve performance step by step without data leakage. 

This distributed design is especially useful in cybersecurity deployments, where data 

sensitivity and confidentiality are critical. 

the architecture of the proposed intrusion detection system consists four main phases: 

data preprocessing, feature selection, model training, and classification. Each phase con- 

tributes to enhancing the performance and accuracy of the detection engine. 

Below is a figure 2.1 that represents a graph describing the architecture of our proposed 

solution and its phases. 
 

Figure 2.1: Architecture of the solution 
 

 

2.3 Dataset 

In this project, the UNSW-NB15 dataset [Moustafa and Slay, 2015] was used to develop, 

train, and evaluate the proposed Federated Learning-based Intrusion Detection System 

(IDS). While the dataset originates from a centralized source, it was partitioned and 

used in a federated simulation environment . This approach allowed the modelling of 

decentralized, privacy-aware IDS architectures under realistic attack scenarios. 
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The UNSW-NB15 dataset was selected for its realism and comprehensiveness, pub- 

lished in 2015, comprises circa 2.54 million labelled records (totalling 2,540,044 records), 

covering nine contemporary attack types and 49 features categorized into basic, content- 

based, temporal, general-purpose, and connection metrics. The dataset is split into 175 

341 training and 82 332 testing instances, originally partitioned by the authors. Its di- 

versity and modern attack representation make it a suitable benchmark for federated 

learning-based IDS research. 

The UNSW-NB15 dataset includes 10 classes, comprising one normal class and nine 

different attack types: Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic, Reconnais- 

sance, Shellcode, and Worms. The dataset is highly imbalanced, with Normal traffic 

representing about 36% of the samples and minority classes like Worms and Shellcode 

each accounting for less than 1%. This imbalance presents challenges for effective detec- 

tion and fair model evaluation. 

Due to its large size and detailed labels, the dataset is useful not only for model 

evaluation but also for simulating non-IID conditions by splitting the data across clients. 

 

2.3.1 Features Of The UNSW-NB15 Dataset 

As we mentioned in the description the dataset is splitted into training and testing in- 

stances , each with 45 features, and they are categorized , we are going to mention them 

above in different tables according to their categories: 

 
2.3.1.1 Basic Features 

Table 2.1 represents basic characteristics of network flow are captured by these features, 

they offer a fundamental perspective of every network session. 

 

Feature Name Description 

srcip Source IP address 
sport Source port number 
dstip Destination IP address 
dsport Destination port number 
proto Protocol used 
state Connection state 
dur Duration of the connection 
sbytes Bytes sent from source to destination 
dbytes Bytes sent from destination to source 
service Network service on the destination 
is_sm_ips_ports Indicator for same IP addresses and ports 

Table 2.1: Basic Features in UNSW-NB15 
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2.3.1.2 Time-based Features 

These features measure the timing behaviour of network traffic, they are presented in 

table 2.2 : 
 

Feature Name Description 
sttl Source TTL value 
dttl Destination TTL value 
sloss Packets lost from source 
dloss Packets lost from destination 
Sload Source bits per second 
Dload Destination bits per second 
Spkts Number of packets from source 
Dpkts Number of packets from destination 
swin Source TCP window size 
dwin Destination TCP window size 
smeansz Mean packet size from source 
dmeansz Mean packet size from destination 
sintpkt Inter-arrival time from source 
dintpkt Inter-arrival time from destination 
sjit Source jitter 
djit Destination jitter 

Table 2.2: Time-based Features in UNSW-NB15 
 
 

2.3.1.3 Flow Features 

Flow features describe the dynamics of communication between source and destination 

over a connection, they are presented in table 2.3 : 

 

Feature Name Description 

stcpb Source TCP base sequence number 
dtcpb Destination TCP base sequence number 
tcprtt Round-trip time of TCP connection 
synack Time between SYN and SYN-ACK 
ackdat Time between ACK and data 
ct_state_ttl State and TTL-based features 
ct_srv_src Connections from same source to same service 
ct_srv_dst Connections to same service from destination 
ct_dst_ltm Connections to same destination in last 100 connections 
ct_src_ltm Connections from same source in last 100 connections 
ct_dst_src_ltm Connections between same src/dst in last 100 connec- 

tions 

Table 2.3: Flow Features in UNSW-NB15 
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2.3.1.4 Content Features 

These features are useful for identifying application-layer attacks and protocol abuse since 

they examine the payload content and command behaviour of network protocols, they are 

presented in table 2.4 : 

 

Feature Name Description 

trans_depth HTTP transaction depth 
res_bdy_len Response body length 
is_ftp_login Successful FTP login indicator 
ct_flw_http_mthd Count of HTTP methods 
ct_ftp_cmd Count of FTP commands 

Table 2.4: Content Features in UNSW-NB15 
 
 

2.3.1.5 Other Features 

Table 2.5 represents extra and additional metadata: 

 

Feature Name Description 

stime 
ltime 

Start time of the connection 
End time of the connection 

Table 2.5: Other Features in UNSW-NB15 
 

 

2.3.2 Types of Attacks in the UNSW-NB15 Dataset 

The UNSW-NB15 contains normal attacks and other 9 types of attacks that we are going 

to site and describe them in table 2.6 :. 
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Attack Type Description Training 
Instances 

Testing 
Instances 

Normal Benign traffic with no attack patterns. 56,000 37,000 
Analysis Information gathering and scanning ac- 

tivities, such as port scanning and OS 
fingerprinting. 

2,000 677 

Backdoor Attacks that establish unauthorized re- 
mote access to a system by bypassing 
security mechanisms. 

1,746 583 

DoS Denial of Service attacks that aim to 
disrupt services by overwhelming re- 
sources. 

12,264 4,089 

Exploits Attacks that take advantage of vulner- 
abilities in systems or applications to 
gain control or disrupt operations. 

33,393 11,132 

Fuzzers Random data sent to targets to trigger 
faults and discover vulnerabilities. 

18,184 6,062 

Generic Broad attacks that apply to many tar- 
gets, such as brute force or payload ma- 
nipulation. 

40,000 18,871 

Reconnaissance Scanning and probing activities to map 
the network and identify potential tar- 
gets. 

10,491 3,496 

Shellcode Injection of binary Shellcode into a vul- 
nerable system to gain control. 

1,133 378 

Worms Self-replicating malware that spreads 
across networks to infect other systems. 

130 44 

Table 2.6: Different Attack Categories in the UNSW-NB15 Dataset 

 

below is an example of a row in the dataset presented in table 2.7: 
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Feature Value 
id 1 
dur 1.1e-05 
proto UDP 
service - 
state INT 
Spkts 2 
Dpkts 0 
sbytes 496 
dbytes 0 
rate 90909.0902 
sttl 254 
dttl 0 
Sload 180363632.0 
Dload 0.0 
sloss 0 
dloss 0 
sintpkt 0.011 
dintpkt 0.0 
sjit 0.0 
djit 0.0 
swin 0 
stcpb 0 
dtcpb 0 
dwin 0 
tcprtt 0.0 
synack 0.0 
ackdat 0.0 
smean 248 
dmean 0 
trans_depth 0 
response_body_len 0 
ct_srv_src 2 
ct_state_ttl 2 
ct_dst_ltm 1 
ct_src_dport_ltm 1 
ct_dst_sport_ltm 2 
ct_dst_src_ltm 0 
is_ftp_login 0 
ct_ftp_cmd 0 
ct_flw_http_mthd 0 
ct_src_ltm 1 
ct_srv_dst 2 
is_sm_ips_ports 0 
attack_cat Normal 

label 0 

Table 2.7: Single sample row from the UNSW-NB15 dataset. 

 

The integration of the UNSW-NB15 dataset allowed for comparative testing and 

helped assess the adaptability of the proposed Federated Learning-based IDS under di- 

verse attack scenarios and realistic network behaviours. When partitioned to simulate 

distributed environments, the dataset introduced challenges typical of real-world systems, 

such as class imbalance, client heterogeneity, and local overfitting critical aspects for val- 

idating the robustness of federated intrusion detection systems. 
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2.4 Preprocessing 

Preprocessing is a crucial step in cybersecurity applications where raw network data is 

often noisy, inconsistent, and high-dimensional. In the context of the proposed Federated 

Learning-based Intrusion Detection System (FL-IDS), preprocessing plays a dual role: 

ensuring the quality and consistency of local data at each client node, and preserving 

privacy by avoiding any data centralization. 

The preprocessing pipeline suggested in this project consisted of different phases, care- 

fully designed to clean, transform, and standardize the data across all client nodes. We 

are going to introduce an algorithm that describes preprocessing phases below then we 

will explain each step of it. 
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Algorithm 1 Data Preprocessing for UNSW-NB15 Dataset 
 

1: Input: Training file Dtrain, Testing file Dtest 
2: Output: Preprocessed dataset (Xtrain, Xtest, ytrain, ytest) 
3: // Data Merging 

4: Load Dtrain and Dtest files using pandas.read_csv() and concatenate them to form 
full dataset D 

5: // Data Cleaning 

6: Replace missing or empty values in D with 0 
7: for each numerical column c in D do 
8: if max(c) > 10 × median(c) and max(c) > 10 then 

9: Clamp values above 95th percentile to the 95th percentile using np.where() 
10: end if 

11: if c has > 50 unique values then 
12: if min(c) = 0 then 

13: Apply log(c + 1) transformation 
14: else 

15: Apply log(c) transformation 
16: end if 
17: end if 
18: end for 

19: for each categorical column cat in D do 
20: if nunique(cat) > 6 then 
21: Replace rare categories with a placeholder "-" 
22: end if 
23: end for 

24: Remove duplicate records using drop_duplicates() 
25: // Label Encoding 

26: Apply OneHotEncoder() to features proto, service, and state using 
ColumnTransformer 

27: // Data Normalization 

28: Apply StandardScaler() to numerical features starting from index 18 onward 
29: // Data Splitting 

30:  Split D into 80% train and 20% test using train_test_split() 
31: Return: Xtrain, Xtest, ytrain, ytest 

 
2.4.1 Data Merging 

Two separate files, UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv, 

were loaded and merged using pandas.concat() to form a unified dataset of over 2.5 

million records. 
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2.4.2 Data Cleaning 

The starting point is that the initial data set has plenty of missing values in certain feature 

columns, making it unsuitable for feeding into machine learning or deep learning models, 

this step aims to improve data quality and it is being done by 3 operations which are: 

• Missing Values: Rows containing missing or empty cells were replaced by a default 

"0" value . 

• Extreme Outliers: For each numerical feature, values exceeding 10 times the 

median and above the 95th percentile were clamped to the 95th percentile using 

np.where(). 

• Logarithmic Transformation: For numerical features with high variance and 

over 50 unique values, a log transformation was applied to reduce skewness. np.log() 

or np.log(x+1) was used depending on whether the minimum value was zero. 

• Rare Categories: Categorical features with many rare values were grouped. Only 

the top frequent categories were retained; the rest were replaced with a placeholder 

value “-”. 

• Duplicate Entries: Duplicate records, which could bias the model, were identified 

and removed by using drop_duplicates(inplace=True) function from the pandas 

library. 

 

2.4.3 Label Encoding 

The second stage involves transforming the text that has been stored as a categorical 

feature in the cells into numerical values, with each category being represented by a 

specific and unique number value such as The features proto, service, and state were 

transformed using OneHotEncoder() from Scikit-learn ColumnTransformer. 

 

2.4.4 Data Normalization 

Data normalization has been particularly useful for systems where measurements are 

typically represented at highly disparate levels.Z-score normalization (standard scaling) 

was applied using StandardScaler() because it accurately preserves all data connections 

and therefore does not introduce any bias, it was applied to each feature,transforming all 

numerical values into common range. 
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2.4.5 Data Splitting 

At this stage, the main dataset was divided into two segments: a 80% training-set and a 

20% test-set. 

 

2.5 Federated Learning (FL) Model Procedure 

The model is divided into two main steps: Model training that uses the training-dataset- 

file and Model testing that evaluates the performance of the trained model while using 

the testing-dataset file. 

 

2.5.1 Training Phase 

The training phase is performed in a federated manner where multiple clients train in- 

dependently the same model architecture on their local data then contribute to building 

a global model without sharing their private data. We present the steps of building the 

Machine Learning algorithm below: 
 

Algorithm 2 Federated Learning Procedure (Classical Models) 
 

1: Input: Local datasets {D1, D2, ..., DN }, test set Dtest 
2: Output: Final prediction yˆfinal 
3: for each client i = 1 to N in parallel do 

4: Train local model Mi on Di 
5: Evaluate Mi on Dtest to compute F1-score: F 1i 
6: end for 

7: Normalize client weights: 

w = Σ 
F 1i 

 

8: Initialize prediction probability vector yˆproba = 0 
9: for each client i = 1 to N do 

10: Predict probability yˆi = Mi(Dtest) 
11: Aggregate: 

ŷproba+ = wi · yˆi 

12: end for 

13: Compute final predictions: 
y f̂inal = arg max(ŷproba) 

14: Return: Final aggregated prediction yˆfinal 
 

 
We present the steps of building the Deep Learning algorithm below: 

j 
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Algorithm 3 Federated Learning Training Procedure (Neural Network) 

1: Input: Initial global model w0, client datasets {D1, D2, ..., DN }, number of rounds T 
2: Output: Final global model wT 
3: for each round t = 1 to T do 
4: Server broadcasts global model wt−1 to all clients 
5: for each client i = 1 to N in parallel do 
6: Preprocess local dataset Di (cleaning, normalization, encoding) 
7: Train local model wt initialized from wt−1 
8: Send updated model wt to the server 
9: end for 

10: if Aggregation = Weighted then 

11: Server updates global model using: 

w = 
Σ  ni  

wt 
t 

i=1 
ntotal 

i 

12: else if Aggregation = Difference then 

13: Server updates global model using: 

w = w + 
Σ  ni   

(wt − w ) 
t 

 

 

14: end if 
15: end for 

16: Return: Final model wT 

t−1  
i=1 

ntotal 
i t−1 

 
 

 
The federated training process is composed of two major stages: client-side local train- 

ing and server-side model aggregation. This architecture is adaptable for both classical 

machine learning (ML) models and deep learning (DL) models. 

• Client-Side: Local Training 

Each client performs the following steps independently, regardless of the underlying 

model type: 

– Preprocessing: Each client cleans, encodes, balances, and normalizes its local 

dataset. 

– Model Initialization: Clients receive the current global model from the cen- 

tral server. 

– Local Training: The model is trained on the client’s local data. 

– Model Update: The updated model or predictions are sent back to the server. 
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• Server-Side: Model Aggregation 

Once updates are received from all clients, the server aggregates them using one of 

the following strategies, depending on whether the model is ML or DL: 

– ML-Based: Weighted Soft Voting for Random Forest 

In this strategy, predictions from client models are aggregated using F1-score–based 

weighting: 
 

Final Probability = 
Σ 

w 
 

· ŷ where w 
F 1i 

= Σ (2.1) 
 

 

Weighted Soft Voting equation formula 

We will explain the elements of this equation by relying every symbol to its 

description: 

yˆi : Predicted probability vector from client i’s local Random Forest model. 

F 1i : F1-score of client i evaluated on the test set. 

wi : Normalized weight for client i based on its F1-score. 

n : Total number of participating clients. 

Final Probability : Aggregated soft prediction used for final class decision. 

– DL-Based: Model Weight Aggregation for MLP (Keras-based) 

The Keras-based MLP model uses weight-based aggregation strategies suitable 

for federated learning: 

∗ Weighted Aggregation (FedAvg): 
 

w = 
Σ  ni  

wt (2.2) 
t 

i=1 
ntotal 

i 

Weighted Aggregation equation formula 

∗ Difference Aggregation: 
 

 
w = w + 

Σ  ni   
(wt − w ) (2.3) 

t t−1  

i=1 
ntotal 

i t−1 

Difference Aggregation equation formula 

We will explain the elements of this equation by relying every symbol to its 

description: 

wt : Global model weights after aggregation at round t 

j 
i i i n 

j=1 F 1 
i=1 
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wt−1 : Global model weights from the previous round 

wt : Local model weights from client i after round t 

ni : Number of training samples on client i 

ntotal : Total number of samples across all clients 

N :Total number of clients 

Training Flow: 

• The server broadcasts the current global model to clients. 

• Clients retrain locally and send updates (weights or predictions). 

• The server aggregates the updates based on the model type and strategy. 

• The global model is updated and the process repeats for multiple rounds. 

 

2.5.2 Testing Phase 

After completing the training phase , the final model is evaluated using the testing dataset 

to assess its generalization capability. 
 

Algorithm 4 Model Testing and Evaluation Procedure 
 

1: Input: Final global model wT , test dataset Dtest 
2: Output: Evaluation metrics: Accuracy, Precision, Recall, F1-Score 
3: Apply the same preprocessing pipeline to Dtest 
4: Use wT to predict labels yˆ for Dtest 
5: Compare yˆ to ground-truth labels y 
6: Compute the metrics. 
7: Return: Accuracy, Precision, Recall, F1-Score 

 

 
• Global Model Distribution: The trained global model is shared with each client 

or directly evaluated at the central server. 

• Preprocessing the Test Data: The test set undergoes the same preprocessing 

steps as the training data, which we mentioned before. 

• Model Evaluation: The global model is used to make predictions on the test 

data. These predictions are compared against the ground truth to compute key 

performance metrics. 

• Metrics Computation: Since this research aims to maximize the correct predic- 

tions of instances in the test dataset by using the values of the following fundamental 

classification outcomes : 
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– True Positive (TP): this value represents the correct classification attack 

packets as attacks. 

– True Negative (TN): this value represents the correct classification normal 

packets as normal. 

– False Negative (FN):this value illustrates that an incorrectly classification 

process occurs. Where the attack packet classified as normal packet. 

– False Positive (FP): this value represents incorrect classification decision 

where the normal packet classified as attack. 

Based on the outcomes we site above We calculate certain metrics [Yacouby and 

Axman, 2020] to evaluate the model’s effectiveness, which are: 

– Accuracy:Measures the overall correctness of the system by calculating the 

proportion of correct predictions (both attacks and normal traffic) out of all 

predictions,it is calculated using this formula: 
 

Accuracy = 
TP + TN 

TP + TN + FP + FN 

Accuracy equation formula 

(2.4) 

– Precision: Represents the proportion of instances predicted as attacks that 

are actually attacks. It estimates the reliability of positive predictions, it is 

calculated using this formula: 
 

Precision = 
TP 

TP + FP 

Precision equation formula 

(2.5) 

– Recall: Indicates the proportion of actual attacks that were correctly identified 

by the system. It reflects the model’s ability to detect all relevant positive cases, 

it is calculated using this formula: 
 

Recall =  
TP 

TP + FN 

Recall equation formula 

(2.6) 

– F1-Score: Provides a harmonic mean of precision and recall, offering a bal- 

anced assessment, particularly in scenarios with imbalanced datasets. It is 
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widely used to evaluate classification performance when both false positives 

and false negatives are important„ it is calculated using this formula: 

F1-Score = 
2 · Precision · Recall 

Precision + Recall 

F1-Score equation formula 

 
(2.7) 

 
2.6 Model for FL-Distributed Intrusion Detection 

Since we are interested in our thesis by the Distributed Intrusion Detection System (DIDS) 

we trained multiple different models, evaluated each one of them ,and then compared 

them to find the most powerful model that achieves the best performance , we are going 

to mention the models we used: 

 

2.6.1 Machine Learning Models 

We classified all the models that we will evaluate according to whether they are Machine 

Learning-based or Deep Learning-based, we will start by siting the ML algorithms first. 

 
2.6.1.1 Decision Trees (DT) 

A decision trees are a popular approach for machine learning. It evaluates the attributes 

of the data in the form of a tree and outputs its results layer by layer.It is composed by 

these following components : 

• The root node: the starting point of the decision tree, it symbolizes the complete 

dataset. 

• Internal Nodes: each node represents a decision based on a feature. 

• Branches:each branch represents the outcome of the decision , is it yes or no. 

• Leafs:each leaf represents a final class label which in this case will contain either 

an attack or normal. 

The final leaf node indicates the outcome of a classification or prediction. 

 
2.6.1.2 Random Forest (RF) 

Random forest builds many decision trees to make predictions using the output of all 

trees after combining them. Each tree in the "forest" is created by resampling using the 
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bootstrap technique and trained on a random subset of training data.The final prediction 

is made through majority vote. 

 
2.6.1.3 Light Gradient Boosting Machine (LightGBM) 

LightGBM is a Gradient Boosting Decision Tree algorithm used in various data mining 

problem ,it uses one-sided gradient analysis and exclusive features bundling techniques. 

It aims to find an approximation to a function that reduces the expected loss function 

value. LightGBM integrates multiple regression trees to approximate the final model. It 

employs a one-sides-sampling (GOSS) approach to detect split values in data instances. 

 
2.6.1.4 K-Nearest Neighbors (KNN) 

The purpose of the KNN algorithm is to use a database in which the training examples are 

expressed as data points in the problem feature space and separated into several classes. 

To predict the label (target class) of a new sample point which is initially projected in 

the considered feature space. Then the distances between that sample and the K-th 

nearest examples are calculated. Finally, the sample is classified by a majority vote of its 

K-neighbours. 

 

2.6.2 Deep Learning Models 

Now we are going to mention the DL algorithms below. 

 
2.6.2.1 Multiple Layer Perceptron (MLP) 

Multilayer Perceptron is a type of feedforward artificial neural network that has several 

layers of nodes in it, we define them by : an input layer that receives feature vectors , 

several hidden layers and the output layer that produces the prediction , it is composed 

from nodes also called neurons that are connected all together so that every neuron in one 

layer connects to every other neuron in the layer below, each node computes a weighted 

sum of inputs and passed the result. 

 

2.6.3 Gated Recurrent Unit GRU 

Gated Recurrent Unit (GRU) is made to process sequential data and identify temporal 

dependencies. It is made up of gating systems that control information flow, allowing the 

model to remember or forget data over time.It consist of two primary gates: 

Update Gate: Regulates the amount of the prior hidden state that should be preserved. 
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Reset Gate: Decides How much of the prior concealed state to be forgotten. 

 
2.6.3.1 Long Short Term Memory (LSTM) 

LSTM is designed to avoid the long-term dependency issue,due to his capability of remem- 

bering data for long periods, its architecture is more complex because it is constituted of 

4 hidden layers. The principal components of LSTM are the cell state which represents 

the principal component and other 3 gates which are: 

• Forget Gate:specifies which historical data should be deleted. 

• Input Gate:determines what new data should be stored. 

• Output Gate:decides what information will be displayed in the output. 

 

2.7 Conclusion 

This chapter presented all the necessary informations and calculations that helps measur- 

ing all operations while building the federated model. 



 

 

 
Chapter 3 

Experimentation and Results 

 
3.1 Introduction 

This chapter presents a deep dive into the experimental pipeline, architecture configura- 

tions, and evaluation metrics used to validate the effectiveness of our Federated Learning 

(FL) approach in building a privacy-preserving Intrusion Detection System (IDS). The 

aim is to demonstrate that we can detect various types of network attacks with high 

accuracy and reliability—all while keeping sensitive data decentralized. 

We start by detailing the technical environment and software stack employed. Next, we 

describe the dataset UNSW-NB15 and the necessary preprocessing steps to standardize 

and balance it. Then, we introduce the models tested, emphasizing the improvements 

made in the MLP architecture. Finally, we break down our FL simulation setup, discuss 

the results of various experiments, and conclude with visual analytics, a discussion of the 

findings, and the rationale behind the final model’s performance. 

Ultimately, our iterative experimentation process led to the development of an en- 

hanced federated MLP model that surpassed 99% in key metrics including accuracy, 

precision, recall, and F1-score—surpassing not only previous FL-based IDS frameworks 

but also centralized baselines. 

 

3.2 Experimental Setup 

All experiments were conducted in a controlled yet realistic setup that we are going to 

cite in this section. 
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3.2.1 Hardware and Software Environment 

In this section we will present all the simulation environment and tools in table 3.1 : 

 

Component Specification 

Processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz, 2496 
MHz, 2 Core(s), 4 Logical Processor(s) 

RAM 8.00 GB 
GPU Intel(R) HD Graphics 520 
Operating System Microsoft Windows 10 Pro 
Platform Kaggle Cloud Notebooks (GPU-accelerated) 
Programming Language Python 3.10 

Table 3.1: System software and hardware environment 
 

 

3.2.2 Model Simulation Setup 

Each client trained its own local model and returned weights or deltas to the server. The 

server computed the global update and sent it back. Below are the main parameters of 

the simulation. 

• Simulated Clients: 10 nodes representing separate data owners 

• Rounds: 20 communication rounds per experiment 

• Aggregation Techniques: Mentioned and explained in chapter 2 

– Weighted Aggregation (FedAvg) 

– Difference Aggregation (based on model delta) 

• Local Training: 5 epochs per round, batch size of 128 , with learning rate 0.001 

• Evaluation Metrics: Accuracy, Precision, Recall, and F1-score measured globally. 

• Visual Analytics (VA):Used after the calculations of metrics,it represents the 

results in a visual way for better understanding, in the context of our work, visual 

analytics that were employed are: 

– Confusion Matrix:A table used to determine a classification model’s perfor- 

mance is called a confusion matrix. It helps identify the areas in which the 

model is flawed by offering a thorough analysis of the differences between the 

predictions and the actual outcomes. 
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– Learning Curves:It is a graphical representation that shows how proficiency 

improves with increasing experience or practice over time. Simply put, it vi- 

sually demonstrates how long it takes to acquire new skills or knowledge. 

– Bar Chart:It is a chart type for graphing categorical data. It is made up of 

several rectangles that are all aligned to the same baseline, and each rectangle’s 

length corresponds to the value it represents. 

 

3.3 Model Implementation and Building 

The objective is to design a system capable of detecting intrusions using distributed 

training across several clients, so in this section we are going to cite all the steps we gone 

through while building it : 

 

3.3.1 Data Preparation 

We explained this step before , it is the first step involved preprocessing the dataset 

we worked with which is UNSW-NB15 dataset , it included operations which are all 

mentioned in chapter 2. 

Important Note :During the generating of our model we dropped the id column 

because it’s a unique identifier with no predictive value not a feature, if we kept it that 

will introduce noise and ending negatively affecting the model’s learning process. Also, 

we removed the category of the attacks column because it introduces redundancy with 

the binary target label (either 1 or 0) since it is a binary classification (either attack or 

normal) and will lead to inflate model performance , so it is not required. 

 

3.3.2 Model Selection 

Several models were implemented and evaluated under a federated learning setup, each 

model was wrapped with appropriate training and evaluation functions, then they were 

compared to choose the most powerful model for the simulation. 

After evaluating each model and getting results we will develop the model with high 

results using federated learning setup and get the final results. 

 

3.4 Results and Evaluation 

This section will display all the results and metrics values. 
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3.4.1 Centralized Training Baselines 

Before applying federated learning, we trained all models in a centralized manner to 

establish benchmarks, and we are going to show results : 

 
3.4.1.1 k-Nearest Neighbors (KNN) 

 

 

 
(a) Metrics Values of KNN Model (b) Confusion Matrix for KNN Model 

Figure 3.1: Results for K-Nearest Neighbors Model 

 

The kNN model results shown in figure 3.1 achieved a relatively high accuracy of 92.91%. 

While its training phase was extremely fast, the prediction time was exceptionally high 

(164.5 seconds), making it computationally expensive for real-time IDS applications. This 

is due to its lazy learning nature, which requires comparison against the entire dataset at 

prediction time. 
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3.4.1.2 Decision Tree (DT) 

 

(a) Metrics Values of DT Model (b) Confusion Matrix for DT Model 

Figure 3.2: Results for Decision Tree Model 

 

The Decision Tree model results shown in figure 3.2 performed with 93.69% accuracy. 

It provided quick training and prediction, and its ability to model non-linear decision 

boundaries was a clear advantage. However, Decision Trees tend to overfit the data, 

which could limit generalizability on unseen attacks. 

 
3.4.1.3 Random Forest (RF) 

 

(a) Metrics Values of RF Model (b) Confusion Matrix for RF Model 

Figure 3.3: Results for Random Forest Model 

 

Random Forest results shown in figure 3.3 achieved the best result among classical ensem- 

ble models with 95.01% accuracy. Its ability to combine multiple decision trees reduced 

overfitting and improved generalization. Despite its higher training time (12.92 seconds), 

it offers a solid trade-off between accuracy and efficiency. 
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3.4.1.4 Light Gradient Boosting Machine (LightGBM) 

 

 

(a) Metrics Values of LightGBM Model (b) Confusion Matrix for LightGBM Model 

Figure 3.4: Results for Light Gradient Boosting Machine Model 

 

LightGBM results shown in figure 3.4 reached 93.15% accuracy and similar recall and 

precision values, but with an F1-score slightly lower at 92.15%. It is generally known for 

its speed and efficiency in handling large datasets, though in this case, its training time 

was relatively long (126.47 s), likely due to extensive hyper-parameter space. However, 

it maintained a fast prediction time (0.09 s), making it useful for deployment if training 

time is not a concern. 

 
3.4.1.5 Multiple Layer Perceptron (MLP) 

 
 

 
(a) Metrics Values of MLP Model (b) Confusion Matrix for MLP Model 

Figure 3.5: Results for Multiple Layer Perceptron Model 
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Results shown in figure 3.5 The Keras-based MLP offered deeper architectures with flexi- 

bility in tuning and regularization. Despite similar accuracy (93.52%), it required signifi- 

cantly more training time. However, its integration into the federated learning framework 

led to a highly optimized performance, reaching up to 98.94% accuracy after aggrega- 

tion—demonstrating the advantage of deep learning in a collaborative setup. 

 
3.4.1.6 Gated Recurrent Unit (GRU) 

 

(a) Metrics Values of GRU Model (b) Confusion Matrix for GRU Model 

Figure 3.6: Results for Gated Recurrent Unit Model 

 

GRU results shown in figure 3.6 achieved 93.15% accuracy. Designed for sequential data. 

However, for tabular data like UNSW-NB15, they did not outperform the MLP models, 

possibly due to limited sequential relationships in features. 

 
3.4.1.7 Long Short Term Memory (LSTM) 

 
 

(a) Metrics Values of LSTM Model (b) Confusion Matrix for LSTM Model 

Figure 3.7: Results for Long Short Term Memory Model 
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The LSTM model results shown in figure 3.7 achieved 93.58% across all metrics, slightly 

outperforming MLP in accuracy and F1-score. As a sequential deep learning model, it 

is well-suited for capturing temporal dependencies in network traffic data. However, its 

training and prediction times were significantly higher (304.02 s and 5.00 s, respectively), 

which may limit its applicability in time-sensitive environments unless further optimized. 

 

3.4.2 Comparison of evaluated models 

Here is table 3.2 that includes all informations about the evaluated models . 
 

Model Accuracy Recall Precision F1-Score Train Time (s) Predict Time (s) Total Time (s) 

kNN 92.91% 92.91% 92.93% 92.92% 0.02 164.55 164.57 

Decision Tree 93.69% 93.69% 93.69% 93.69% 3.97 0.01 3.99 

Random Forest 95.01% 95.01% 95.02% 95.01% 12.92 0.31 13.23 

LightGBM 93.15% 93.15% 93.14% 92.15% 126.47 0.09 126.56 

GRU (Keras) 93.15% 93.15% 93.14% 93.15% 145.38 0.12 145.5 

LSTM (Keras) 93.58% 93.58% 93.57% 93.58% 304.02 5.00 309.02 

MLP (Keras) 93.52% 93.52% 93.64% 93.55% 93.7 0.04 93.74 

Table 3.2: Performance Comparison of Different Models 

 

In this study, a broad range of machine learning (ML) and deep learning (DL) models 

were evaluated using the UNSW-NB15 dataset to identify the most promising candidates 

for building a Federated Learning-based Intrusion Detection System (FL-IDS). Among 

the ML models tested, Random Forest achieved the highest overall performance with an 

accuracy of 95.01%, outperforming other models in terms of both speed and prediction 

quality. On the DL side, the Keras-based MLP (Multilayer Perceptron) emerged as the 

top-performing model, delivering competitive accuracy and robustness compared to other 

deep models like GRU and LSTM. 

Given these results, two models were selected for further exploration in a federated 

learning setting: Random Forest as the strongest ML model and MLP as the most effective 

DL model. This selection aims to fairly evaluate how both paradigms perform when 

deployed in a distributed and privacy-preserving environment like federated learning. 

The motivation behind choosing the MLP model in particular also stems from its nat- 

ural compatibility with federated architectures. Deep learning models such as MLP are 

well-suited for distributed training using weight or gradient aggregation, which are essen- 

tial in federated learning frameworks. Furthermore, MLP allows for advanced techniques 

like dropout, batch normalization, and fine-tuning, which make them more adaptable and 
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scalable in dynamic cybersecurity environments. 

So, we are going to develop both of them in a federated-based and recompare them to 

decide which one is working best with IDS. 

 

3.4.3 Federated Performance 

We chose to implement our model with both RF and Keras MLP separated not hybrid 

model as we mentioned earlier, we applied the following steps: 

 
3.4.3.1 Federated Random Forest (RF) Model 

• Model Type: We used the Random Forest classifier, a robust ensemble learn- 

ing method based on multiple decision trees, well-suited for classification tasks in 

intrusion detection. 

• Federated Learning Integration: The training was decentralized by partitioning 

the dataset across 10 clients. Each client trained an independent Random Forest 

model locally on its own data. 

• Aggregation Method: Rather than aggregating model weights (which is not ap- 

plicable for ensemble trees), we implemented a prediction-level aggregation strategy 

using weighted soft voting. Each client’s predicted probabilities on the test set were 

weighted based on its local F1-score before being combined into a global prediction. 

• Hyper-parameter Optimization: After multiple iterations, we set the number of 

trees to 400, with a maximum depth of 35. We also fine-tuned ‘min-samples-split‘, 

‘min-samples-leaf‘, and ‘max-features‘ to improve generalization and accuracy. 

The final global model, formed after aggregation, achieved competitive results with 

an accuracy of 94.93%, precision of 95.04%, recall of 94.93%, and F1-score of 

94.87%, demonstrating the model’s strong detection capability in a federated set- 

ting. 

The final results are shown in figure 3.8 below : 

 

 
Figure 3.8: Final global model performance of Federated RF model 
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3.4.3.2 Federated-based RF Model Discussion 

the Random Forest (RF) model was chosen as a representative of traditional ensemble- 

based machine learning algorithms,due to its well-known resilience, interpretability, and 

excellent high performance in a variety of supervised learning tasks. In this study, we 

investigated whether RF deployment is feasible in a federated learning (FL) context, in 

which models are trained separately on several clients and then combined centrally using 

weighted soft voting determined by the F1-score of each client. 10 clients participated 

in the federated RF implementation, and they were all trained locally using a stratified 

split of the UNSW-NB15 dataset. Each client generated its own probability predictions 

on the global test set following local training. Client F1-scores were utilized to calculate 

each fore-cast’s contribution to the final global prediction, which was then combined using 

a weighted soft voting technique. These results provide dependable performance across 

all important criteria, confirming the effectiveness of RF in intrusion detection. Several 

factors contributed to this performance: 

• Weight-based federated aggregation techniques aren’t advantageous for RF. The 

ensemble’s trees are individually taught and difficult to break down or combine 

among clients. This restricts the model’s capacity for truly federated collaborative 

learning. 

• With more trees and depth, RF models get more sophisticated and have larger mem- 

ory capacities. In environments with limitations or edge devices, this can become 

difficult, particularly when implemented in federated configurations. 

• Random Forest does not naturally support continued training across rounds, which 

is a key component of federated iterative optimization. 

 
3.4.3.3 Federated MLP (Keras) Model 

• Architecture Optimization: We implemented a deep feed-forward neural net- 

work with three fully connected (dense) layers using the ReLU activation function, 

followed by a final linear output layer with two legits, suitable for binary classifica- 

tion using cross-entropy loss. 

• Optimizer and Learning Rate: The model was trained using the Adam optimizer 

with a learning rate of 0.001, which provided adaptive and stable convergence. 

• Federated Learning Integration: The MLP model was integrated into a fed- 

erated learning framework using both Weighted Aggregation (FedAvg) and 
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Weight Difference Aggregation across 10 clients, preserving data locality and 

privacy. 

• Hyper-parameter Tuning: Several values for batch size, epochs (50 per round), 

number of rounds (20), and hidden layer sizes (e.g., 20-20) were tested to achieve 

optimal performance. 

• Feature Normalization: The input data from the UNSW-NB15 dataset under- 

went log transformation, chi-squared feature selection, one-hot encoding, and stan- 

dardization to ensure consistent training and reduce noise. 

These improvements enabled the Federated MLP model to achieve high performance, 

with accuracy and F1-scores exceeding 98%, demonstrating its robustness and scalability 

in a distributed intrusion detection context. 

The final results are shown for both weighted aggregation in figure 3.9 and difference 

aggregation in figure 3.10 : 

 

 
Figure 3.9: Performance metrics using Weighted Aggregation for Federated MLP model 

 

 

 
Figure 3.10: Performance metrics using Difference Aggregation for Federated MLP model 

 
 

3.4.3.4 Federated-based MLP Model Discussion 

This study’s deep learning accurate, the Multilayer Perceptron (MLP) model, was chosen 

because of its capacity to represent intricate, non-linear patterns in data. The MLP 

architecture was implemented using PyTorch and included a final classification layer after 

several dense layers that were activated by ReLU algorithms. Weighted Aggregation 

(FedAvg) and Difference Aggregation are two distinct aggregation algorithms that were 

used to train the MLP model across ten dispersed clients in the federated configuration. 

Over several epochs and communication rounds, each client separately trained its local 

model; the global model was updated using the combined client parameters at the end 

of each round. It achieved high results (beyond 98% in all metrics) which demonstrates 

how well the MLP adapts to dispersed learning settings and how well it works with the 
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iterative weight-based updates of federated learning. Several factors contributed to this 

performance: 

• Deep neural networks like MLP are suitable for federated learning, as their weights 

can be easily aggregated and updated across clients using standard optimization 

strategies. 

• The Model architecture works well for a variety of deployment scenarios, ranging 

from edge devices to cloud infrastructure, because it can be readily scaled up or 

down based on the computing power of the client devices. 

• The MLP model demonstrated smooth and continuous improvement across commu- 

nication rounds,this allowed the global model to benefit from local patterns learned 

by each client. 

 

3.4.4 Comparison Between MLP and RF Models 

In the table 3.3 we are going to compare both of the federated models and decide which 

one is the best for our final result: 
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Aspect Federated MLP (Keras) Federated Random Forest 
(Sklearn) 

Algorithm Type Deep Learning (Neural Net- 
work) 

Machine Learning (Ensemble 
Trees) 

Architecture 3 Dense Layers (ReLU) with 
Dropout, Sigmoid output 

400 Decision Trees, Depth=35, 
Bootstrap, Balanced Weights 

Federated Setup Model weight aggregation (Fe- 
dAvg and Weight Difference) 

Prediction-level aggregation 
via weighted soft voting 

Client Count 10 

Accuracy (%) 98.62 94.93 

Precision (%) 98.70 95.04 

Recall (%) 99.18 94.93 

F1-Score (%) 98.94 94.87 

Training Time Higher (DL training loops per 
round) 

Faster (Single pass tree train- 
ing per client) 

Flexibility for FL High (supports dropout, fine- 
tuning, regularization) 

Limited (tree-based models 
cannot be aggregated via 
weights) 

Scalability Highly scalable for deep FL 
systems 

Moderate scalability 

Best Use Case Real-time federated learning 
with adaptive models 

Fast local training in low- 
resource or ensemble-focused 
FL 

Table 3.3: Comparison between Federated MLP and Federated Random Forest Models 

 

The MLP model was selected over the Random Forest model for a number of im- 

portant reasons based on the comparison of the two models’ federated implementations. 

The federated MLP outperformed the federated Random Forest, which performed well 

(94.93% accuracy, 94.87% F1-score), by achieving a much greater performance (about 

98% across all important criteria). The choice of MLP as the main model for our sug- 

gested federated intrusion detection system is justified by the significant improvement in 

accuracy, precision, recall, and F1-score. 

Furthermore, because of its increased scalability in dispersed contexts and compatibil- 

ity with weight-based aggregation, MLP which is a deep learning model, is more naturally 

suited to federated learning systems. As a result, using MLP supports the objectives of 

federated learning systems for scalability and architectural compatibility in addition to 

performance supremacy. 
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3.4.5 Visual Analysis 

Since the best model for our Federated-based Intrusion Detection System is MLP ,we are 

going to present its final results we had in visual analysis in this section. 

Below in figure 3.11 we present learning curves for both aggregation methods on the 

same axes for all the metrics : accuracy,precision,recall and F1-Score: 

 

(a) Accuracy Learning Curve (b) Precision Learning Curve 
 

(c) Recall Learning Curve (d) F1-Score Learning Curve 

Figure 3.11: Final Learning Curves for both aggregation method 

 

Below in figure 3.12 we present a bar chart that compares each metric result for both 

aggregation methods utilized : 

 

Figure 3.12: Final Performance Metrics Comparison Bar Chart 



`CHAPTER 3.  EXPERIMENTATION AND RESULTS  

61 

 

 

 
We present in figure 3.13 below confusion matrix for each aggregation method : 

 

(a) Confusion Matrix for Weighted Aggregation (b) Confusion Matrix for Difference Aggregation 

Figure 3.13: Final classification results of the global model using both aggregation methods. 
 

 

3.5 Global Discussion 

The project’s experimental results demonstrate Federated Learning’s (FL) enormous promise 

in cybersecurity, especially for intrusion detection tasks. The improved Keras-based Mul- 

tilayer Perceptron (MLP) continuously showed the best performance out of all tested 

models. It has a clear edge over traditional machine learning models such as Random 

Forest because of its capacity to learn intricate, non-linear patterns in a decentralized con- 

text. While careful architecture and training parameter adjustment allowed for effective 

and stable convergence across multiple rounds. The comparison of the two aggregation 

strategies(Weighted Aggregation and Difference Aggregation) produced a particularly in- 

teresting findings. After 20 communication rounds, both performed well. FL proved its 

capacity to deliver both privacy preservation and top-tier speed with the right architec- 

ture, optimized hyper-parameters, and a successful aggregation the technique. The MLP 

model demonstrated that FL is a workable solution—rather than merely a theoretical 

concept—for actual security applications by achieving approximately 98% in all signifi- 

cant performance criteria. Furthermore, the MLP model’s success supports the feasibility 

of implementing deep learning in distributed, resource-constrained contexts. The archi- 

tecture was robust enough to identify a variety of assaults while being small enough to 

be deployed on edge or Internet of Things devices. This opens up a viable approach for 

privacy-preserving, real-time intrusion detection across dynamic infrastructures. These 

findings confirm that Federated Learning can provide a solid basis for next-generation 

intrusion detection systems by providing a balance between scalability, privacy, and ac- 

curacy when combined with an optimized deep learning architecture. 
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3.6 Conclusion 

Through thoughtful experimentation and architecture refinement, we built a federated IDS 

model that reaches beyond 98% accuracy, precision, recall, and F1-score while maintaining 

data privacy. These results validate the power of federated learning as a secure and 

scalable alternative to centralized IDS models. 
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General Conclusion 

 
In this thesis, we explored the integration of Federated Learning (FL) with Intrusion De- 

tection Systems (IDS) to address the growing challenges in cybersecurity. As cyber threats 

become increasingly complex and user data becomes extremely sensitive, traditional IDS 

models that rely on centralized data collection are no longer adequate and sufficient. 

These problems motivated us to design a distributed, privacy-preserving solution capable 

of detecting modern threats while ensuring data confidentiality. 

To this end, we implemented and compared several machine learning and deep learning 

models, including Random Forest, LightGBM, GRU, LSTM, and particularly Multi-Layer 

Perceptron (MLP). After evaluating these models on the UNSW-NB15 dataset, our ex- 

periments showed that the federated MLP model achieved remarkable results, surpassing 

98% in all metrics we evaluated which are accuracy, precision, recall, and F1-score. These 

findings confirmed the effectiveness of deep learning in detecting complex attacks and the 

feasibility of using federated architectures in cybersecurity. 

Despite these encouraging results, some challenges remain, most notably non-IID data, 

communication costs, and resource constraints on client devices. These are important 

issues that must be addressed to extend federated systems to real-world environments. 

Furthermore, implementing FL requires more careful design to prevent potential attacks 

on the assembly process and maintain model robustness across different client devices. 

Looking forward, several promising directions can be considered. Future research may 

focus on integrating differential privacy and secure aggregation to strengthen confiden- 

tiality,also exploring personalized federated learning for adaptive intrusion detection,and 

without forgetting the test of this system in real-time environments with multiple orga- 

nizations and heterogeneous devices. 

In conclusion, this work contributes to the ongoing efforts to design intelligent, dis- 

tributed, and privacy-preserving intrusion detection systems. It opens up new possibilities 

for collaborative cybersecurity models and sets a foundation for future developments in 

secure federated intelligence. 
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