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Résumé

Ce projet de recherche vise a explorer I'utilisation de I'apprentissage profond pour détecter
I'épilepsie a partir des signaux EEG, un besoin croissant puisque I'épilepsie est l'un des
troubles neurologiques les plus courants. Pour cette étude, nous proposons une méthodologie
qui implique plusieurs étapes telles que la collecte de données, le prétraitement du signal,
I'extraction de caractéristiques, la conception de modeles, I'entrainement et I'évaluation a
I'aide de mesures de performance. Le réseau neuronal convolutif (CNN) a été choisi en raison
de son efficacité dans I'apprentissage des modeéles spatiaux et temporels dans les données
EEG. Chaque étape du pipeline a été soigneusement congue pour s'assurer que le systeme
puisse apprendre des caractéristiques pertinentes a partir des données tout en minimisant
I'ajustement excessif et en garantissant la généralisation. Les résultats étaient prometteurs et
ont été incorporés dans une interface utilisateur comme aide au diagnostic médical.

Mots-clés: Détection de I'épilepsie, électroencéphalographie, biomarqueurs, apprentissage
profond, réseau neuronal convolutif.

Abstract

This research project aims to explore the use of deep learning for detecting epilepsy from
EEG signals, a rising need since epilepsy is one of the most common neurological disorders.
For this study, we propose a methodology that involves several stages such as, data collection,
signal preprocessing, feature extraction, model design, training and, also evaluation using
performance metrics. Convolutional neural network (CNN) was chosen due to its
effectiveness in learning spatial and temporal patterns in EEG data. Each stage of the pipeline
was carefully designed to ensure that the system could learn relevant features from the data
while minimizing overfitting and ensuring generalizability. The results were promising and

incorporated into a user interface as an aid to medical diagnosis.

Key words: Epilepsy detection, Electroencephalography, Biomarkers, Deep learning,
Convolutional Neural Network.



Table of Contents

Acknowledgments
Dedication
Abstract
Table of Contents
GENERAL INTRODUCTION ...ooiiiiicicc et Erreur ! Signet non défini.
Chapter | . MEDICAL CONTEXT ...ocoi it Erreur ! Signet non défini.
I.1. INTRODUCTION ...ccooiiiiiiiiiiiereree e Erreur ! Signet non défini.
1.2.  Anatomy of the Brain.........cccooviiiiiiiiiseeeeee Erreur ! Signet non défini.
I.2.1 Conditions and DiSOrders..........cccccvevvereieeneseeie e Erreur ! Signet non défini.
1.3, EPILEPSY ..o s Erreur ! Signet non défini.
[0 3.1 SEIZUIES ..ot Erreur ! Signet non défini.
I. 3.2 What is happening in the brain during a seizure?.................. Erreur ! Signet non défini.
I.3.3 Classification of SBIZUIES .........cccevveiiiiiiieiecece e Erreur ! Signet non défini.
I.3.4 TYPES OF SBIZUIES .....ccoiiiiiiiiieieieeee et Erreur ! Signet non défini.
I.3.5 KNOown causes Of SEIZUMES ........ccccvveveiiieeie e Erreur ! Signet non défini.
1.4. DETECTION OF EPILEPSY ...cocoiiiiicecc e Erreur ! Signet non défini.
I.5 . EEG e Erreur ! Signet non défini.
1.5.1 EEGEQUIPMENTS ....ooiiiiie e Erreur ! Signet non défini.
I.5.2 Acquisition chain of EEG............ccccociiiiiiiiiccccee, Erreur ! Signet non défini.
1.5.3 EEG WAVES....ciciiiiie ettt Erreur ! Signet non défini.
I.5.4 Labels and their meaning..........coceovvrinineneneneneeeescie Erreur ! Signet non défini.
1.6. EPpilepsy BIiomarkers.......cccoccovviieiiiiiie i Erreur ! Signet non défini.
I.6.1 Stress BIOMarkers .......ccccoveeeeieieciicie e Erreur ! Signet non défini.
[.6.2 Sleep Patterns........ccooiiiiiiieieieiee e Erreur ! Signet non défini.
I.6.3 Interictal Epileptiform DiSCharges ..........c.ccocevvvreieiiininninnnns Erreur ! Signet non défini.
1.6 .4 Ictal ACHVILY ...ooeieiiiecee e Erreur ! Signet non défini.
L7 CONCIUSION ..ot Erreur ! Signet non défini.
Chapter 1. STATE OF THE ART ..ot Erreur ! Signet non défini.
n.1. INTRODUCTION ..ottt Erreur ! Signet non défini.
n.2. Related WOrK ........cooiiiee e Erreur ! Signet non défini.
I1.2.1  Traditional Methods.........cccoviiiiiniiiie e, Erreur ! Signet non défini.
h.2.2 Features extraction Methods ..........ccccovvveveienencicine Erreur ! Signet non défini.
I1.2.3 Machine Learning methods ............ccooeviviiiniienicnnieen Erreur ! Signet non défini.

I.3. CONCIUSTON ..ttt Erreur ! Signet non défini.



Chapter I11. THEORETICAL FOUNDATIONS.......c.cceoviievecieiene Erreur ! Signet non défini.

1.1,  INTRODUCTION ....ccoioiiitiiececece et Erreur ! Signet non défini.
1.2, Machine learning (ML).......ccccooiiiiiiiie e Erreur ! Signet non défini.
[1.2.1  Supervised 1earning ........cccceorierinieneneneeeese e Erreur ! Signet non défini.
I1.2.2  Unsupervised 1arning .........cccoovevvevevivevenecce e Erreur ! Signet non défini.
I1.2.3  Semi-supervised learning.........cccccoevvvveveneiie s sciese e Erreur ! Signet non défini.
I11.2 .4 Reinforcement learning (RL).......ccocvviiiiieieieciciee Erreur ! Signet non défini.
I11.3.  Principles of Deep learning (DL).......ccccoevveviveiiniiievececee, Erreur ! Signet non défini.
I1.3.1 Artificial Neural networks (ANN)........cccocevivieiicieiiennn Erreur ! Signet non défini.
I11.3.1.a Activation funCtions ...........cccceevviriineneieneseceeee Erreur ! Signet non défini.
I11.3.2 Recurrent Neural Network (RNN)........ccocooiiiiiiiiiiiiiie Erreur ! Signet non défini.
I11.3.3 Convolutional neural network (CNN) .......cccccecevviiieiennnnne. Erreur ! Signet non défini.
I11.3.3.a Convolutional [ayer ..o, Erreur ! Signet non défini.
I11.3.3.b Activation function ...........cccoevriinininiiineeeee, Erreur ! Signet non défini.
[11.3.3.c Pooling layer .......ccooveiiiiiiiiicc e Erreur ! Signet non défini.
I1.3.3.d FIAtteNiNG......coceeieiiieeecce e Erreur ! Signet non défini.
I11.3.3.e Fully connected layer (Dense layers) ..........ccooevrvnnenne. Erreur ! Signet non défini.
[11.3.3.F OULPUL IAYET ..o Erreur ! Signet non défini.
I1.4. EEG Signal Processing ......c.ccccovveveiiiiiniesecne e Erreur ! Signet non défini.
1.4 .1 Pre-proCeSSiNg ......cccceeererrerieeeisiisiesiesieseesieseeseeeesesieseens Erreur ! Signet non défini.
11.4.2 Feature EXIraCtion...........ccooviiiiininineneeeese e Erreur ! Signet non défini.
I11.4.3 Model Training and Validation..............cccoeeevviieicinennnn, Erreur ! Signet non défini.
I11.4 .4 Performance evaluation metrics for deep learning models. Erreur ! Signet non défini.
1 .5. Challenges in Seizure Detection ...........ccccvvererereieiieinsiinnens Erreur ! Signet non défini.
HE.6.  CONCIUSION ...coviiiiiicie e et Erreur ! Signet non défini.
Chapter IV. IMPLEMENTATION AND RESULTS .......cccoceiveveiieee Erreur ! Signet non défini.
IV 1. INrOQUCTION. ...cuiiiiiicicic s Erreur ! Signet non défini.
IV.2.  Toolsand environmMEeNTS .........ccccererierieieneninesese e Erreur ! Signet non défini.
IV.2.1 Google Colab......ccooiiiiiie e Erreur ! Signet non défini.
IV .2.2 Anaconda Distribution ..o Erreur ! Signet non défini.
IV .2.3 Visual Studio COde........ccoviriririiiieeeee e Erreur ! Signet non défini.
IV.2.4 Key lBraries. ... Erreur ! Signet non défini.
IV .25 IMNE oot Erreur ! Signet non défini.
IV 2.6 Sreamlit.......cooiiiiiiiiec e Erreur ! Signet non défini.
V.3 Proposed mMethod..........ccvoviiiiiiieecs e Erreur ! Signet non défini.
v .4 EEG Data ColleCtion ..........ccceoviiiiiiiiiieeceee e Erreur ! Signet non défini.
IV.4.1 Epileptic Seizure ReCOGNITION ........covviviriiieiiieieieiiiie Erreur ! Signet non défini.



IV.4.2 EEG features dataset for stress classification .................... Erreur ! Signet non défini.

IV.4.3 Sleep-EDF Database Expanded.........c.ccccoovevevviveieinennnn, Erreur ! Signet non défini.
IV. 4.4 CHB-MIT ..o Erreur ! Signet non défini.
IV.5.  EEG PreproCesSing .......cccccureremerenierieisesisesiesreseeeeesesnesnes Erreur ! Signet non défini.
IV .6.  Feature EXraCtion.........ccccocvivieiiieiie e Erreur ! Signet non défini.
IV.7.  CNNMOGEL.....co e Erreur ! Signet non défini.
IV.8.  Pipeline Development..........cccoviiiiiniieieieeeeses e Erreur ! Signet non défini.
IV .8.1 Stress DeteCtion ........ccccceeveieiiciicie e Erreur ! Signet non défini.
IV .8.2 Sleep classification ...........cccccovvviveiiiii i Erreur ! Signet non défini.
IV.8.3  SEIZURE.......ccoiiieeeeee e Erreur ! Signet non défini.
IV .8 .4 Detection of Interictal Epileptiform Discharges (IEDs) .... Erreur ! Signet non défini.
IV .8.5 Ictal States Detection ........cccccevveieviiiieve e Erreur ! Signet non défini.
IV .8 .6  FiINal FUSION ....ociiiiiiiieee e Erreur ! Signet non défini.
IV.8.6.a CNN Fusion Model ..........cccooiiinininiiiiecce, Erreur ! Signet non défini.

IV .8.6.b Weighted fusion...........cccccveviiiiiiiiic e, Erreur ! Signet non défini.
IV.9.  Streamlit INterface.......c.ccccoovveiiiiii i, Erreur ! Signet non défini.
IV .10 . CONCIUSION ..ot Erreur ! Signet non défini.
GENERAL CONCLUSION .....ooiiiiiiieee e Erreur ! Signet non défini.
REFEIENCES ... e st re e Erreur ! Signet non défini.



List of Figures

Figure |-1. Three classes Of EEG SIZNAIS .....cccccuiiiiieciiieccceee ettt e e e e raae e e e ratae e e e raaeee e 7
Figure I-2. 10-20 and 10-10 international SYStEMS .....ccccuveiieiiieieccieee e e 10
Figure I-3. Acquisition chain of EEG Si8NalS. ......cciuiuiiiiiiiiiiiiiiiie et ee e e e s 11
FISUPE -4, EEG WQaVES. ...uuuiuuuiuuuuuentitututututuetaueaeaaaastaeaaaansasasaaaesessaeasssaeasaeasssssssssssssssssssssssssssnsssnsssssnsssnsnnns 12
Figure |-5. EEG electrodes placemeEnt ........ooviiiiiiiiiiicciee ettt e e e e e s abe e e s 13
Figure lll-1. Structure of an artificial NEtWOIK .......cvviiiiiiiiiic e 27
Figure 11-2. Activation FUNCLIONS .....oeiiiiiieccee et e e abee e e e e e e s e are e e e e areeas 28
Figure 1ll-3 . Architecture of Recurrent Neural NetWoOrk.......ccceiiviieeiiiiieeciiee e 29
Figure lll-4 . Architecture of Convolutional Neural NETWOrK. .......cccoeeiiiiiiiiciee e, 30
Figure l11-5. The cONVOIULIONAI QYN ....c...uiiiieee ettt e e e e e e aneeas 31
Figure 1l1-6. Input volume going through RELU .........oviiiiiiiiiee e 31
Figure l1I-7. Max and AVErage POOIING.......cooccuiiiiiiiiee ettt e e tee e e tee e e aree e e e nbae e e enreeas 32
Figure 111-8. Flattening on a pooled feature Map ......cueciiieiiiiiee e e e 32
Figure 111-9. FUlly CONNECTEA [QYEIS....oiieeieeeeeee ettt ettt e e et e e e e eatee e e e abe e e e e abee e e e aneeas 33
=V N A B o Yo T ={ [N o] - | o F USSP 41
Figure IV-2. Principal Anaconda Navigator (GUI) .......ccueeeciieiiiiecie ettt e vee e sve e e tee e svaeesnne e 42
Figure IV-3. Visual StUdio COAE IOZ0 ..cccuuriiiiiiiie ettt et e e e tee e et e e e et ee e e e aneeas 43
=W A B o T T 1T U YT PR 43
Figure IV-5. MINE-PYthON [0Z0 ....ccccuviiiiiiiieectee ettt vee e s abee e e bee e s s sabae e e e areeas 44
Figure IV-6. System architecture fIOWChart...........ccuviiiiiiii e 46
Figure IV-7. The polysomnography of EEG........ccoccuiiiiiiiiiiiciie et vee e e 48
Figure IV-8. The hypnogram COreSPONING .......ccoccuiieeeiiiie et eecctee e eecree e e eree e e e saree e e eabeeeeenareeesenreeas 48
Figure 1V-9. Labelled SEEMENTS .......uueiieiieecee ettt et e e et e e e e te e e e e abae e e e abeeeeenbeaeeennreeas 49
Figure IV-10. Band pass filter of 0.5-40 HzZ........coiiiiiiiiiiieee ettt esee e ee e e abee e e 50
Figure IV-11. NOTCh filter (50 HZ).....uoeeieiiieeeeee ettt et e et e e e e eatee e e e nbe e e e eabeae e e nreeas 50
Figure IV-12. Decomposition of an EEG signal in 5 important Waves. ......ccccceevvveeriieeniieeniieeenieessieeenne 52
Figure IV-13. Example of Ratios calculated for stress evaluation ..........cccceeeciieeiniiiee e, 52
Figure IV-14. SIEeP @ValUGtiON....ccccuuiiieeiiieecee ettt ettt e et e e e e tba e e e e ata e e e eabeeeeennbeeeeennnenas 53
Figure IV-15. CNN Model ArChit@CtUIE......ciiiiiee ettt aee e s e e e e ebeeas 54
Figure IV-16. Stress biomarker, beta-alpha ratio .........cccueeeeeiiii i 55
Figure IV-17. Stress classifiCation rEPOIT........uuiii ettt e et e e e e ree e e e eabee e e e areeas 56
Figure IV-18. Loss and accuracy graphs for stress detection .........cccceeeecieeeiiiiiee e, 56
Figure IV-19 Sleep classification evaluation report...........ccecuiiieeciiiee et et 57
Figure IV-20. Accuracy and Loss graphs for sleep classification........cccoecuveeeiciieeiiciiee e, 57
Figure IV-21.Seizure detection evaluation report.......c.ccueeeieieiecciiee e 58
Figure IV-22 Seizure detection confuSion MatriX ........ccccuiieeeiiiieeciiee e e 59
Figure 1V-23. [ED detection With 3X0 ....c.eeiiiiiiiice e e e e e e 60
Figure IV-24. |ED detection With 1.5X0 .....cciiiiiiiiiiiiiiiiee et e e e e e e e e e e e e s rere e e e e e e e 60
Figure IV-25. IED ACCUIACY PlOT coeiiee it e e e et e e e e e s e e e e e e e e e e e s snnraaaeeeeeeeennn 61
Figure 1V-26. Pre-ictal SEEMENT .....c.uviii ittt erre et e e et e e e are e e e st tae e e s abae e e sabaeeeesseaeeenareeas 61
Figure IV-27. EEG segment during ictal State .......ccuuvieeeiiiiicceee e e 62
Figure IV-28. EEG segment during ictal Phase.......cuueeeeiiieii et 62
Figure IV-29. Accuracy and Loss graphs for [ctal phases.......cc.ueeevciieeeiiiieec e 63
Figure 1V-30. CNN resuUlts fOr fUSION ........uuiiiii i crrrre e e e e anbrare e e e e e e 64



Figure IV-31. Fusion Model training [0 ......ccccuiiiiiiiiiiiciiiie ettt sree e ee e e s e e s areeas 65

Figure IV-32 Final results based on CNN FUSION MOdEl ......cccuveiiiiiiiieiieeecceee e 66
Figure IV-33 Models with their allocated WeIghtS .......cccuviiiiiiiiiiie e 67
Figure IV-34. The platform allows for the customization of biomarker weighting parameters ........... 67
Figure 1V-35. FUSION RESUILS ......coiiiiiii ettt e et e e tae e e e s abee e e e nbe e e e enaaaee e e nneeas 68
Figure IV-36. Model Performance Metrics.......cccveuieeirciieeinciieee e eeineeens Erreur ! Signet non défini.
Figure IV-37. Streamlit User Interface.......ccccoveeeeiiiieieciiee e Erreur ! Signet non défini.
Figure 1V-38. STreamlit Ul iN USE ....c.uuiiiiiiiiieiiee ettt sstee ettt e e s e e st e e e s abe e e s s abae e s snbaeesenareeas 70
Figure 1V-39.Stre@amlit Ul iN USE....ccuuiiiiiiiiieeiiee ettt sttt e e et e e s ste e e s s abae e s sabee e s snbeeesesreeas 71



List of Tables

Table 11-1. Comparative Analysis of Traditional, Feature-Based, and Deep Learning Approaches for
EEG-Based Epilepsy Detection and Classification. .............cccccoeveveinnnenne. Erreur ! Signet non défini.
Table 1V-1. ConfuSion MALMIX .......cccecveieieiicie e Erreur ! Signet non défini.


_Toc200365676

List of Abbreviations

ADHD Attention-deficit/hyperactivity disorder
AE Auto-Encoder

Al Artificial Intelligence

CNN Convolutional Neural Networks
DCT Discrete Cosine Transform

DL Deep Learning

DWT Discrete Wavelet Transform
ECG Electrocardiography

EEG Electroencephalography

EMG Electromyography

EOG Electrooculography

FN False Negative

FP False Positive

FPR False Positive Rate

IED Interictal Epileptiform Discharge
ML Machine Learning

PCA Principal Component Analysis
PSG Polysomnography

REM Rapid Eye Movement

RF Random Forest

RNN Recurrent Neural Network
SVM Support Vector Machine

TN True Negative

TP True Positive

TPR True Positive Rate

WHO World Health Organization

Vi



GENERAL INTRODUCTION



GENERAL INTRODUCTION

GENERAL INTRODUCTION

Epilepsy is one of the most common neurological disorders worldwide, affecting
approximately 50 million people according to the World Health Organization. It is
characterized by recurrent seizures resulting from abnormal electrical activity in the brain,
which are normally observed on the electroencephalogram (EEG). Accurate and timely
detection of these anomalies is very important for correct diagnosis, treatment, and improving
the quality of life for patients. To this day, the EEG remains one of the most used tools for
monitoring brain activity and diagnosing epilepsy, as it is non-invasive, painless and safe for

all ages since it does not use any form of radiation and it is cost-effective.

Overall, EEG biomarkers, such as sleep, stress, Ictal phases and interictal epileptiform
discharges (IEDs), are characterized as specific patterns or anomalies detected within EEG
recording that correlate with epileptic activity. The interrelation between sleep quality, stress
and epileptic seizures reveals a complex landscape that warrants a thorough examination.
Notably, sleep plays a crucial role where non-rapid eye movement sleep can significantly

amplify IEDs, suggesting that these biomarkers are instrumental in epilepsy modulation.

Traditionally, the interpretation of EEG signals relies heavily on expert manual
analysis, which can often be subjective and time consuming, all while risking human error
and as a result, there is a growing interest in developing automated systems capable of
detecting epileptic seizures from EEG signals with high accuracy and efficiency. These
recent developments have led to machine learning (ML), especially deep learning (DL),
which has shown promising results by harnessing the power of its algorithms to analyze
physiological signals such as EEG signals. DL approaches allow for the elimination of
manual feature extraction, which has been a bottleneck in traditional ML techniques. Instead,
these models can automatically learn relevant features from raw EEG data, efficiently

identifying patterns that may indicate seizure activity.

In the detection of epilepsy, leveraging DL techniques has emerged as a promising
approach, yet several significant challenges hinder the technology’s effectiveness and
widespread application. One of the principal challenges is the limited availability of high-
quality labelled data, which is crucial for training deep models. Another considerable

1



challenge is the inherent variability in EEG data due to individual patient differences and
environmental factors, which can affect the performance of the deep learning models. The
integration of EEG biomarkers and deep learning techniques enhances the capability to
provide immediate, accurate and personalized detection of epilepsy, ultimately improving

patient’s care outcomes.

This study explores the application of EEG biomarkers with deep learning techniques
for the detection of epileptic seizures in EEG signals, while additionally shedding more light
on epilepsy biomarkers and detecting them as well. The objective is to design and evaluate a
model that does all this, using publicly available dataset, with the final aim of the model being

integrated into real-time monitoring systems to assist clinicians.

This work is structured into four main chapters. Chapter I introduces the medical context
of epilepsy, including its neurological basis, types, causes, and the critical role of EEG in
diagnosis. Chapter Il reviews existing literature, highlighting conventional and modern
approaches to EEG-based seizure detection, including feature extraction and classification
techniques. Chapter 111 presents the theoretical foundations of the study, focusing on
machine learning and deep learning principles, with special emphasis on neural networks
applied to EEG analysis. Chapter IV details the implementation process, including data
preparation, model development, and evaluation of a CNN-based framework for classifying

EEG biomarkers while also presenting the results obtained and discussing them.
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Chapter I. MEDICAL CONTEXT

I.1. INTRODUCTION

To break down one of our keywords, in this chapter we are first going to dive deep into the
question of what is epilepsy? A chronic neurological disorder characterized by recurrent,
unprovoked seizures (which are brief episodes of involuntary muscle movement that might
involve the whole body or some parts of the body) resulting from abnormal electrical activity
in the brain. According to the World Health Organization (WHO), this disorder affects around
50 million people around the world, making it one of the most common neurological diseases

around the world [2].

Over the years, the electroencephalography (EEG) has been one of the mostly used
diagnostic tools for epilepsy, this is due to its many benefits, like being non-invasive, offering

real-time monitoring of the brain activity and being affordable among others.

The interpretation of the EEG however, requires expert knowledge and can be prone to
subjective variability and oversight, especially in prolonged recordings and to fix the problem,
we have combined the use of technology, specifically artificial intelligence to interpret these

results.

In this chapter, we are going to begin by exploring the pathophysiological basis of

epilepsy and the role of EEG in its diagnosis.

| .2. Anatomy of the Brain

Brain, the mass of nerve tissue in the anterior end of an organism. The brain integrates
sensory information and directs motor responses; in higher vertebrates it is also the center
of learning. The human brain weighs approximately 1.4 kg (3 pounds) and is made up of
billions of cells called neurons. Junctions between neurons, known as synapses, enable
electrical and chemical messages to be transmitted from one neuron to the next in the brain, a
process that underlies basic sensory functions and that is critical to learning, memory
and thought formation, and other cognitive activities. The brain and the spinal cord together

make up the system of nerve tissue in vertebrates called the central nervous system, which
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controls both voluntary movements, such as those involved in walking and in speech, and
involuntary movements, such as breathing and reflex actions. It also is the center

of emotion and cognition. [3]

The brain is composed of the cerebrum, cerebellum and brainstem. The cerebrum, the largest
part of the human brain is divided into four distinct lobes, being the frontal, parietal, temporal
and occipital lobes. Each lobe is responsible for various functions that are essential for
cognitive processing, sensory perception and motor control. Seeing that this is the largest part

of the brain, it is no surprise that this is also where most neurological disorders are rooted. [4]

I.2.1 Conditions and Disorders
There are many types of brain disorders and conditions that vary in severity. Some of the

most common include:

Alzheimer’s disease and dementia
Amyotrophic latera sclerosis
Autism spectrum disorder

Brain bleed

Brain tumor

Concussion

Depression

Multiple sclerosis

Parkinson’s disease

Stroke

Traumatic brain injury

Epilepsy

| .3. EPILEPSY

Epilepsy is a group of non-communicable neurological disorders affecting over 50 million

vV V V V V V V V V V VYV V

people worldwide and it involves recurrent, unprovoked seizures [2]. However, this does not
mean that all seizures are epileptic. The diagnosis involves ruling out other conditions that
might cause similar symptoms, such as fainting, and other causes like alcohol withdrawal or
electrolyte (ions in the blood, urine, serum or other fluids) problems. This may be done by
imaging the brain or performing blood tests but ultimately, epilepsy is often confirmed with
an electroencephalogram [5].
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I.3.1 Seizures

Seizures are neurological events characterized by abnormal electrical activity in the brain
that can be categorized into either epileptic or non-epileptic and the latter are often
psychogenic, stemming from psychological factors rather than physiological activities in the
brain. An epileptic seizure on the other hand, is the clinical manifestation of an abnormal,
excessive and synchronized electrical discharge in the neurons. The occurrence of two or
more unprovoked seizures defines epilepsy while the occurrence of just one seizure may
warrant the definition (set out by the International League Against Epilepsy) in a more

clinical usage where recurrence may be able to be prejudged [6].

Epileptic seizures can vary from brief and nearly undetectable periods to long periods of
vigorous shaking due to abnormal activity in the brain and these episodes can lead to physical
injuries, either directly, such as broken bones or through causing accidents. It, sometimes,

tends to recur and may have no detectable underlying cause.

I.3.2 Whatis happening in the brain during a seizure?
The underlying mechanism of an epileptic seizure is excessive and abnormal neuronal

activity in the cortex of the brain all at the same time, which can be observed in the
electroencephalogram (EEG) of an individual. However, it is unknown under which

circumstances the brain shifts into the activity of a seizure with its excessive synchronization.

During an epileptic seizure, the resistance of excitatory neurons to fire during this period is
decreased and this may occur due to changes to ion channels or inhibitory neurons not
functioning properly and this therefore results in a specific area from which seizures may

develop, known as a seizure focus [5].

Another mechanism of epilepsy may be the up-regulation of excitatory circuits or down-
regulation of inhibitory circuits following an injury to the brain. These secondary epilepsies
occur through processes known as epileptogenesis. Failure of the blood-brain barrier may also

be a casual mechanism as it would allow substances in the blood to enter the brain.

Any part of the brain can be affected by epilepsy. It could be a one, specific (for focalized
seizures) or all over the cortex of the brain (for generalized seizures). The reason this occurs
in most cases in unknown (cryptogenic) while some of course may occur as a result of the

aforementioned causes [7].
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Epilepsy mostly affects in children and older people in developed countries while in
developing countries, onset is more common at the extreme ages — in younger children and in
older children and young adults due to differences in frequency of the underlying causes. It
must also be noted that not all cases of epilepsy are lifelong, and many improve to the point

that treatment is no longer needed.

I.3.3 Classification of seizures
Seizure are classified according to where they start in the brain, whether the patient stays

conscious or not and it has been proven that epileptic seizures are usually not random events
but are often brought on by some factors (also known as triggers or biomarkers) like stress,

flickering lights, lack of sleep or excessive use of alcohol to mention a few [8].

In epileptic seizures, a group of neurons begins firing in an abnormal, excessive and
synchronized manner, which results in a wave of depolarization known as ‘a paroxysmal
depolarizing shift’. The figure (I-1) below shows three classes of EEG signals, the last one

exhibiting excessive and synchronized firing of neurons during an epileptic seizure.
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Figure 1-1. Three classes of EEG signals [54]

The most common class is the partial (focal) seizures which account for almost 60% of
new epilepsy cases and originate in a specific area of the cerebral cortex. Their manifestations
depend on the particular region involved and they can further be classified into major
subcategories including aware and impaired awareness seizures. The remaining 40% are
generalized seizures which differ in that they simultaneously affect both hemispheres of the

brain, leading to widespread neurological effects [9] [10].
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I.3.4 Types of seizures
Tonic-clonic seizures (most common): They occur with a contraction of the limbs followed
by their extension and arching of the back, which lasts 10-30 seconds (the tonic phase). Due
to contraction of chest muscles, it is usually accompanied by a cry, followed by a shaking of
limbs in unison (clonic phase). Tonic seizures produce constant contractions of the muscles. A

person often turns blue as breathing is stopped.

Focal aware seizure: It starts in the small area in the brain and the patient remains conscious

during the seizure. A person may have twitching on one part of their body.

Generalized absence seizures: Absence seizures can be subtle with only a slight turn of the
head or eye blinking with impaired consciousness; typically, the patient does not fall over and
returns to normal right after it ends. The patient will be present this second and absent the
next, maybe even in the middle of a sentence and they are normally aware that there are

lapses of time missing from their memories.

Myoclonic seizures: These seizures involve very brief muscle very brief muscle spasms in
either a few areas or all over and sometimes cause the person to fall, which can consequently

cause injury.

Atonic seizures: They involve losing muscle activity for greater than one second, typically

occurring on both sides of the body.

I.3.5 Known causes of seizures
Like most neurological conditions, the underlying causes of seizures are complex and can
develop from a range of events, from faulty wiring during brain development to brain
inflammation, or from physical injuries or infections. Epilepsy is the most common cause of
seizures but other factors like head injuries, brain tumors, infections, metabolic issues, and
genetic disorders. Some triggers may include; stress, lack of sleep, flashing lights, and use of
alcohol or drugs to mention a few [7]. Treatment might include diet therapy, medication,

surgery, and neuro-modulation.

| .4. DETECTION OF EPILEPSY

The diagnostic procedures for distinguishing between epileptic and non-epileptic seizures
are multifaceted and involve various clinical approaches. While electroencephalography
(EEG) is the basic tool for diagnosing seizure disorders, its effectiveness in confirming the

type of seizure can vary significantly. Due to these challenges, the application of video-EEG
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monitoring represents a more refined diagnostic approach as it allows for simultaneous
recording of EEG data and video of the patient’s activity, giving insights into the semiological
features of seizures. Other methods include, Computed tomography (CT) scan, magnetic
resonance imaging (MRI), positron emission tomography (PET), single photon emission
computed tomography (SPECT) and simple blood tests. Studies suggest that EEG and MRI

are the two principal techniques used in the diagnosis of epileptic seizures [10].

| .5. EEG

The EEG was first developed in 1924 by the German physicist Hans Berger, who was
always very intrigued by the connection between the brain (the physical organ) and the mind
(the consciousness, thoughts and emotions). He wanted to find a way to measure brain
activity in real-time and he used a galvanometer and placed electrodes on his scalp to record
his first human EEG. Berger discovered rhythmic oscillations in brain activity, which he
called the “alpha waves”, typically observed when a person is awake but relaxed with closed
eyes. Though the machine has been developed further over the past years, his first findings
were published in 1929, marking the formal introduction of the EEG to the scientific world
[11].

The electroencephalogram is a non-invasive test that measures electrical activity in the
brain. It uses electrodes (small metal discs that attach to the scalp, usually using international
10-20 system) to detect bio-signals. These bio-signals are then amplified and appear as a
graph on a computer screen to be interpreted by a doctor. Brain cells (neurons) communicate
via electrical impulses and this activity appears as waves on an EEG recording. Neurons are

always active, even when the patient is sleeping [11].

1.5.1 EEGEQUIPMENTS
Electroencephalography (EEG) is an important component in diagnosis and management

of epilepsy, using the electroencephalograph which interprets the electrical activity from the
scalp through a series of electrodes. Typically, a standard EEG uses a minimum of 21
electrodes arranged in accordance with the international 10-20 system, which allows for the
capture of brain wave patterns and the identification of interictal epileptiform discharges
(IEDs) that are crucial in diagnosing various epileptic conditions. Furthermore, the selection
and calibration of amplifiers are critical factors as they must possess adequate bandwidth and
gain settings to accurately capture the subtle changes in electrical activity, often filtered to

minimize noise [12].
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EEG electrodes: These are small metal discs that are typically attached to the scalp during an
EEG test so as to work as sensors in order to detect electrical activity in the brain. They are
usually made of stainless steel, gold, carbon or silver covered with silver chloride.

(a) (b)

Figure 1-2. 10-20 and 10-10 international systems [55]

The international 10-20 system provides 21 electrodes distributed proportionally on the scalp.
The distance between two adjacent electrodes is 10 to 20% of the skull extremities’ total
distance. The 10-10 standard was developed with more electrodes because it uses smaller
distances of 10% between all electrodes, resulting in a higher density of electrodes [13].
Figure (I-2) above shows both 10-20 and 10-10 international systems as ‘a’ and ‘b’,

respectively.

Data acquisition system: This is where the EEG signals are captured, digitalized and stored.
It is often considered the core of the EEG system where the actual “recording of data” takes
place. In some systems, the writing unit can be a dedicated device that logs and stores the
brainwave data onto digital format for further analysis. This system also includes analog to
digital converters (ADC), and sometimes a direct data storage mechanism to ensure that the

recorded signals are stored for long-term analysis [15].

Amplifier: The electrical signals produced by the brain are very weak (typically in the range
of microvolts) and therefore too small to be directly recorded by most instruments. So, the
amplifier increases the signal strength to a level where it can be easily detected and analyzed.
It does this by taking energy from a power supply and controlling the output to match the
input signal shape but with a larger amplitude [15].

Filter: It is used to process and improve the quality of the electrical signals recorded from the
brain. Like every other physiological signal, EEG can be contaminated by various types of

noise and artifacts, such as muscle activity, eye movements and electrical interference and

10
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filters help isolate the specific frequency bands of interest and remove unwanted signals.
Band-pass filters are mostly used because they allow specific frequency bands (such as delta,
alpha, beta and gamma waves) to pass through, which are crucial for understanding different

states of brain activity [15].

Display: It is the visual interface of an EEG system where brainwave activity is shown in
real-time and it typically displays continuous waveforms that represent the electrical activity
of the brain recorded by electrodes placed on the scalp. This way the practitioners can observe
different types of brainwave patterns such as alpha, beta and delta waves over time. Multiple
channels are shown simultaneously, with each channel representing data from a different
electrode or region of the brain. The display screen helps in identifying normal and abnormal
brain activity. It may also highlight artifacts (unwanted signals like eye blinks) to help

clinicians interpret the data accurately [15].

I.5.2 Acquisition chain of EEG
The EEG is recorded using the technology of a differential amplifier. The amplifier takes
two electrical inputs to give out one output and this means that with the help of the electrodes
placed on the scalp, an EEG can find changes in brain activity that might help in diagnosing
brain conditions. As shown in figure (1-3), the steps are as follows :

Filters

HPF LPF Notch Sensitivity

Writing unit

Analog to digital
converter

Chart Ink-writing
driver oscillograph

EEG chart

Figure 1-3. Acquisition chain of EEG signals. [56]

» The brain generates electrical signals when neurons (nerve cells) communicate with
each other. These signals arise from the synchronized firing of neurons, creating electrical
fields.

» The electrodes are placed on the scalp to detect the electrical signals generated by the

neurons according to standardized systems like the international 10-20 (which is the most
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frequently used) or 10-10 (used when more spatial resolution is needed, which it achieves by
using more electrodes than the international 10-20) system to mention a few.

» The electrodes pick up the electrical potentials from groups of neurons firing together.
However, these signals are very weak (in microvolts) and they therefore need to be amplified
to increase their strength so they can be recorded and analyzed.

» The amplified electrical signals are then sent to the recording unit where they are
displayed on the screen as continuous waveforms representing the overall activity of the brain
over time.

> The last step in an EEG test is interpretation of results. The different patterns produced
by the brain are known as waveforms (alpha, beta, theta and delta waves) and they are
categorized by frequency and amplitude. It is through these waveforms that the practitioners
will understand the state of the brain, like whether the person is awake, deep in sleep or if

they are having seizures.

1.5.3 EEG waves
The observed frequencies range from 1 to 30 Hz with amplitudes of 20-100u0V and are

subdivided into various groups; alpha (8-13Hz), beta (14-30Hz), delta (0.5-3.5Hz), and theta

(4-7Hz) as show on the figure (1-4) below.

Awake with Beta

mental activity NNAAUNAN A AN AN WA s 14-30 Hz
Awake and \/\/\f\/v\-\/\['\/\/\/‘/\/\/\/\/\’\/\/\/\/\’\/\/\’\/\ Alpha
resting 8-13Hz
seons PANAAA NN WA, B
Deep sleep Delta
<3.5Hz

Figure 1-4. EEG waves [53]

Alpha waves: They were the first observed over the occipital cortex when human subjects

were relaxed or closed their eyes. However, alpha and theta are now known to be involved in
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many different waking tasks in many parts of the brain. In many cases, these near 10 Hz
waves may function when the person is in the state of relaxed wakefulness and mostly
prominent over the parietal and occipital sites.

Beta waves: More prominent during intense mental activity. They are shown mostly in the
frontal region as well as other regions. If a relaxed person opens their eyes, the alpha activity

decreases and the beta activity increases.

Theta waves: These rhythms may appear normally during relaxed wakefulness. The patterns
of normal EEG that predominantly involve theta frequencies are the slow alpha variant,
rhythmic temporal theta activity of drowsiness, midline theta rhythms are generally not seen

in wakefulness but if they are, it’s a sign of brain dysfunction.

Delta waves: They are the slowest recorded brain waves in human beings. They are often
found in young children and infants and are associated with the deepest levels of relaxation
and restorative, healing sleep. Delta is prominently seen in brain injuries, learning problems,
inability to think and severe ADHD. If this wave is suppressed, it leads to inability to
rejuvenate the body and revitalize the brain and poor sleep. Adequate production of delta
waves helps us feel completely rejuvenated and promotes the immune system, natural healing

and restorative/ deep sleep.

I.5.4 Labelsand their meaning
After understanding the waves used in EEG, it is also very important that we understand
both the labels used in accordance to the electrode placement and the different EEG
montages, so as to be able to comprehend the display of the results. Figure (1-5) below

represents the placement of EEG electrodes.

F- Frontal
C- Central

P-Parietal

O- Occital

Figure 1-5. EEG electrodes placement [56]
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Odd numbers are on the left and even numbers on the right. The lower numbers are closer to

the center/midline. The midline itself is represented by a ‘z’, which means zero.

Fpl, Fp2: Frontopolar electrodes, located on the forehead, left and right side.
F3, F4: Frontal electrodes, on the left and right side of the forehead.
C3, C4: Central electrodes, placed above the left and right hemispheres of the brain.

YV V V VY

P3, P4: Parietal electrodes, located on the upper back portion of the head, left and right
side.

» 01, 02: Occipital electrodes, positioned at the back of the head, near the visual cortex.

» T3, T4, T5, T6: Temporal electrodes, situated on the left and right sides of the head
near the ears. They are often involved in monitoring auditory functions.

» F7, F8: Frontal-temporal electrodes, located at the front of temporal lobes.

» Fz, Cz, Pz: Midline electrodes, located at the frontal (Fz), central (Cz) and parietal
(Pz) positions on the midline of the head.

» EKG: Electrocardiogram electrode, which records the heart’s electrical activity. It is
not directly related to brain activity but can be important in some EEG analyses, an example
can be when reducing ECG artifacts in EEG in order to get more accurate results after

filtering the former from the latter.

| .6. Epilepsy Biomarkers

Electroencephalography serves as a critical tool in the assessment of epilepsy, providing
insight into the electrical activity of the brain whenever a seizure occurs. Epilepsy biomarkers
are characterized as specific patterns or anomalies detected within EEG recordings that
correlate with epileptic activity. These biomarkers facilitate the identification of seizures,

frequency and potential onset, thereby playing a pivotal role in diagnosing and managing

epilepsy [14].

I.6.1 Stress Biomarkers
The early diagnosis of stress symptoms is essential for preventing various mental disorder

such as depression and epilepsy as high levels of stress could trigger a seizure.
Electroencephalography (EEG) signals are frequently employed in stress detection research
and are both inexpensive and non-invasive modality. Stress can be triggered by the change in
the body's emotional response to various situations such as depression, anxiety, anger, grief,
guilt, low self-esteem, etc. It can be classified as positive stress (eustress) or negative stress
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(distress) [16]. There are different ways to measure stress levels. Traditionally, the stress level
of an individual has been calculated only through self-reports. Recently deep learning has
been widely used in the domain of stress recognition through EEG as it can directly take input
from raw data and identify the most prominent features automatically without any feature

engineering and pre-processing.

I.6.2 Sleep Patterns
Sleep patterns play a crucial role in understanding both normal brain function and the
pathophysiology of neurological disorders such as epilepsy, especially because sleep
deprivation could also trigger an epileptic seizure. Healthy sleep consists predominantly of
non-rapid eye movement and rapid eye movement (REM) stages, each contributing to

restorative processes in the brain.

1.6.3 Interictal Epileptiform Discharges

Interictal epileptiform discharges (IEDs) represent a significant biomarker in the context
of epilepsy diagnosis as they commonly indicate the potential for epileptic seizures. IEDs
manifest as abnormal spikes or sharp waves on the electroencephalogram and their detection
is critical for evaluating seizure disorders. Notably, the identification of IEDs is complex due
to the inherent variability of these discharges, which can be influenced by numerous factors
including patient state (awake, drowsy, sleep, etc.) and individual anatomical and neurological
differences. For example, variations in duration, morphology and localization can render the

distinction between IEDs and normal EEG activity particularly challenging [17].

1.6.4 Ictal Activity
Ictal activity refers to the altered state of consciousness, behavior, and cognitive function

associated with an epileptic seizure. During an ictal episode, the brain exhibits distinct
electroencephalographic (EEG) patterns that can be analyzed for seizure detection. Ictal
patterns can vary significantly across individuals, necessitating a patient-specific approach for
accurate detection [18]. The development of a patient-specific epileptic seizure detection
algorithm incorporating spectral features and classifiers, yielding improved performance in
real-time seizure detection tailored to individual EEG characteristics. Such advancements
underline the importance of recognizing the unique attributes of ictal activity for effective

seizure identification.
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| .7 . Conclusion

In summary, this chapter reviewed that epilepsy is a complex and widespread neurological
disorder that is characterized by recurrent seizures that result from abnormal electrical activity
in the brain, but despite how common it is, its diagnosis remains a challenge. The most
common tool used for epilepsy detection, the electroencephalogram (EEG), plays a critical
role in the clinical evaluation as well and it has its many advantages, which include but are

not limited to being non-invasive and having no radiation exposure.

EEG signals provide valuable insights into the brain’s electrical patterns and are important
in detecting epilepsy-related events, including both ictal and interictal activity and
abnormalities in these signals such as spikes, sharp waves and rhythmic discharges serve as

important biomarkers for epilepsy.

This chapter has laid the foundation by outlining the clinical significance of epilepsy and
the role of EEG in its assessment and the next chapter will outline the advances in signal
processing and machine learning that have further enhanced the ability to analyze EEG data,

allowing for the development of automated systems.
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Chapter Il . STATE OF THE ART

1. INTRODUCTION

The accurate detection and classification of epilepsy-related activity using
electroencephalogram (EEG) has gained significant attention in both research and clinical
fields and with the growing demand for automated tools, a number of studies have explored
different signal processing techniques and machine learning algorithms to analyze EEG data

for epilepsy detection.

Various features, data processing methods, and classification algorithms have been applied
for detecting and classifying seizures using EEG signals. However, in some studies, features
used together in the classification process may carry similar information and this overlap can
lead to redundancy, meaning that some features do not contribute new or useful insights to the
model and may reduce its overall efficiency. The current methods utilized in epileptic seizure
detection and classification are based on the use of artificial intelligence (Al), especially,
Machine learning (ML) and Deep Learning (DL). Intelligent models have enabled the
integration of EEG biomarkers, such as seizures, interictal epileptiform discharges (IEDs),
stress, sleep, and postictal states, to improve detection, prediction, and clinical decision for

epileptic seizure.

In this chapter, we will establish a review of the methodologies employed in epilepsy
research based on EEG, presenting a broad-spectrum angling from conventional techniques to

the integration of biomarkers.

I1.2. Related Work

Historically, epilepsy diagnosis via EEG involved visual inspection by neurologists, a
process that is time-consuming, subjective, and prone to errors in long-term recordings. To
address these limitations, researchers have employed signal processing techniques such as
Fourier Transform, Wavelet Transform, and empirical mode decomposition to extract relevant

features from EEG signals and artificial intelligence (Al) [19].
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I1.2.1 Traditional methods

% Subasi, A. (2007): Here, the author decomposes EEG signals into sub-bands
frequencies using discrete wavelet transform (DWT). Then these sub-band frequencies were
used as the input to an Expectation-Maximization network with two discrete outputs: normal
and epileptic. In order to improve accuracy, the outputs of expert networks were combined
according to a set of local weights called the “gating function”. The performance of the
proposed model was evaluated in terms of classification accuracies and the results confirmed
that the proposed network structure has some potential in detecting epileptic seizures [20].

% Huang, X. et al. (2009): This study presents a novel feature extraction method based
on an autoencoder (AE) which was proposed to extract the features of EEG signals in the time
domain for providing an efficient feature extraction algorithm for real-time epilepsy detection.
The obtained features were fed into three classical classifiers for automatic epilepsy detection.
Meanwhile, the performance of the proposed method was compared with PCA, and the results
demonstrated that the AE-based features achieved a prediction accuracy of 97%, which was
much higher than that of the features extracted from PCA. A limitation of this study might
have been that the analysis was mainly conducted on the EEG analysis on only time domain
which is less sufficient [21].

% Tzallas, A. et al. (2009): This research demonstrates the suitability of the time-
frequency analysis to classify EEG segments for epileptic seizures. The authors also used
several methods for time-frequency analysis of EEGs, such as, Short-time Fourier transform
and several time-frequency distributions, to calculate the power spectrum density (PSD) of
each segment. The methods are evaluated using three classification problems obtained from a
benchmark EEG dataset, and its shows good results [22].

« Ling Guo et al. (2010): This paper presents the first method for automatic epileptic
seizure detection that combines entropy features derived from multiwavelet transform with an
artificial neural network to classify the EEG signals regarding the existence or absence of
seizure. The original EEG signal is firstly decomposed into several sub-signals through 4-
level multiwavelet transformation with repeated-row preprocessing. For each sub-signal, the
approximate entropy feature, which measures the regularity or predictability of the signal, is
calculated. Then, a three-layer with Bayesian regularization back-propagation training. The
high accuracy obtained for two different classification problems verified the success of the
method [23].
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I1.2.2 Features extraction methods

< Boonyakitanont, P. et al. (2020): This paper summarizes feature descriptions and
their interpretations in characterizing epileptic seizures using EEG signals to review

classification performance metrics [24].

< Cherifi et al. (2022): In this study, authors developed three different approaches to
extract features from the filtered EEG signals. The first approach was to extract eight
statistical features directly from the time-domain signal while the second approach they used
only the frequency domain information by applying the Discrete Cosine Transform (DCT) to
the EEG signals, extracting two statistical features from the lower coefficients. In the last
approach, they used a tool that combines both time and frequency domain information, which
is the Discrete Wavelet Transform (DWT). For Epilepsy detection (healthy vs epileptic), the
first approach performed badly. Using the DCT improved the results, but the best accuracies
were obtained with the DWT-based approach. For seizure detection, the three methods
performed quite well [25].

% Yonggiang Y (2022): In this paper, the four dimensions of time domain analysis,
frequency domain analysis, time frequency analysis and nonlinear Kinetic analysis are
reviewed for feature extraction, with the purpose of summarizing and prospecting the research
content and possibilities of epilepsy EEG feature extraction, and providing new ideas for
clinical epilepsy diagnosis and treatment [26].

% Zhang, D. et al. (2022): The authors developed a method of EEG feature extraction
based on wavelet packet transform and improved fuzzy entropy. The Wavelet packet
Transform is used to decompose the EEG signal with multi-resolution and make it into the
signal with different characteristics. The original Fuzzy entropy algorithm was enhanced to
improve its ability of reflecting the degree of irregularity and complexity of time series.
Finally, by combining these techniques, the method effectively extracted meaningful features
from epileptic EEG signals. The results show that this approach can accurately identify

characteristic patterns associated with epilepsy [27].

Il1.2.3 Machine Learning methods
Machine learning approaches are intensely being applied to this problem due to their
ability to classify seizure conditions from a large amount of data, and provide pre-screened

results for neurologists.
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< lhsan Ullah et al. (2018): They propose a system that is an ensemble of pyramidal
one-dimensional convolutional neural network models. It works on the concept of refinement
approach and it involves 61% fewer parameters compared to standard CNN models and as
such it has better generalization. To overcome the limitations of the small amount of data,
they propose two augmentation schemes. The results gives an accuracy of 99.1% [28].

« Y. Yuan et al. (2019): Presents a unified multi-view deep learning framework to
capture brain abnormalities associated with seizures based on multi-channel scalp EEG
signals. The proposed approach is an end-to-end model that is able to jointly learn multi-view
features  both unsupervised multi-channel EEG reconstruction and supervised seizure
detection via spectrogram representation. Authors construct a new autoencoder-based multi-
view learning model by incorporating both inter and intra correlations of EEG channels to
unleash the power of multi-channel information. By adding a channel-wise competition
mechanism in the training phase, they propose a channel-aware seizure detection module to
guide our multi-view structure to focus on important and relevant EEG channels. To validate
the effectiveness of the proposed framework, extensive experiments against nine baselines,
including both traditional handcrafted feature extraction and conventional deep learning
methods, are carried out on a benchmark scalp EEG dataset. Experimental results show that
the proposed model is able to achieve higher average accuracy and fl-score at 94.37% and
85.34%, respectively, using 5-fold subject-independent cross validation, demonstrating a
powerful and effective method in the task of EEG seizure detection [29].

+ Dissanayake, T. et al. (2021): Propose a Patient-independent seizure prediction
models to offer accurate performance across multiple subjects within a dataset, and have been
identified as a real-world solution to the seizure prediction problem. Two patient-independent
deep learning architectures with different learning strategies are designed, that can learn a
global function utilizing data from multiple subjects. Proposed models achieve state-of-the-art
performance for seizure prediction, demonstrating 88.81% and 91.54% accuracy respectively.
The Siamese model trained on the proposed learning strategy is able to learn patterns related
to patient variations in data while predicting seizures [30].

«» Alsuwaiket (2022): In this paper, the aim of study is to automate the extraction of
electroencephalogram signals without referring to doctors using two feature extraction
methods, namely Wavelet Packet decomposition and Genetic Algorithm-Based Frequency-
Domain Feature Search. Three machine learning algorithms were applied, namely
Conventional Neural Networks (CNNs), Support Vector Machine (SVM), and Random Forest
(RF) to diagnose epileptic seizures. The results achieved from the classifiers show a higher
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accuracy rate using CNNs as a classifier and Genetic Algorithm-Based Frequency-Domain
Feature Search as feature extraction reaching 97.93% accuracy while the accuracy rate of the
SVM and RF was 94.49% and 88.03% respectively [31].

s Jie Xu et al. (2024): This review is dedicated to exploring seizure detection
approaches based on deep learning, focusing on three distinct avenues. Primarily, they delve
into the application of canonical deep learning methods in epilepsy detection. Subsequently, a
more in-depth study was conducted on the hybrid models of deep learning. Next, the third is
the integration of deep learning and traditional machine learning strategies. Finally, the

challenges and future prospects related to this topic are given [32].

Many methods have been proposed for the classification of EEG signals in binary (Normal
vs Epileptic and seizure vs non-seizure) classification problems. A comparison with state-of-

the-art methods is given in Table (11-1).

Table I1-1. Comparative Analysis of Traditional, Feature-Based, and Deep Learning Approaches for EEG-Based

Epilepsy Detection and Classification.

Approach Feature Type Model Performance Category
Multiwavelet + Entropy|  Nonlinear ANN Entropy boos_ts Traditional
pattern detection
Time-Frequency | tr miciribution | sym | High specificity in |- o nal
Decomposition seizure segments
. Hybrid method
DCT Time + SVM, MLP | vyielded highest Feature
Frequency Extraction
accuracy
Nonlinear Enhances subtle Feature
WPT + Fuzzy Entropy Dynamic SVM difference capture | Extraction
1D Convolutional 99.506 accurac
Neural Network (P- Raw EEG CNN D70 Y Deep Learning
real-time capable
CNN)
Learned Latent Robust feature
Deep Autoencoder Space SVM encoding, high [Deep Learning
P accuracy
Compact model
Compact CNN Raw EEG CNN with good Deep Learning
generalization
Feature quality Eifrztgtri?)n
Comparative Review | Multi-domain | Multi-model | affects overall N
model success .
Deep Learning

Sources: [20]-[32].
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1.3, Conclusion

Based on our review, traditional clinical approaches, while effective, are time-consuming
and rely heavily on expert interpretation but deep learning has revolutionized epilepsy
monitoring by enabling the integration of diverse EEG biomarkers into unified, highly
accurate, and interpretable models. These advances support real-time, automated, and
clinically relevant epilepsy management, paving the way for more personalized and effective
care. As a result, we chose this approach in developing the strategy we propose in this work,
which will be examined and explained in detail in the following chapters.
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Chapter 11l . THEORETICAL
FOUNDATIONS

I .1. INTRODUCTION

In recent years, the application of machine learning and, more specifically, neural
networks to biomedical signal processing has shown great promise and this is due to the fact
that neural networks are capable of automatically extracting complex patterns and features
from high-dimensional data, which in turn makes them well-suited for EEG analysis.

Furthermore, in this chapter we will go in depth about how machine learning can help us in
our field, specifically in analyzing EEG data and detecting some pathologies or abnormalities
related to epilepsy in our case. To narrow it down even more, we will be mostly focused on
artificial neural networks and delve thoroughly into understanding their application in this

regard.

i .2. Machine learning (ML)

It is a field of study in artificial intelligence (Al) concerned with the development and
study of statistical algorithms that can learn from data and generalize to unseen data, and thus
perform tasks without explicit instructions [33]. In basic terms, it is the practice of using
algorithms to analyze data, and then make a determination or prediction about new data.
Applicated in several domains, such as Natural language processing, Computer vision, Speech

recognition, Email filtering, Agriculture and Medicine.

The goal of a learning machine is to generalize from its experience, that is, for it to be able
to perform accurately on new, unseen examples or tasks after having experienced a learning
data set. The training examples come from some generally unknown probability distribution
and the learner has to build a general model about this space that enables it to produce
sufficiently accurate predictions in new cases. However, the mentioned training sets are finite
and the future is uncertain so, learning theory usually does not yield guarantees of the
performance of algorithms. Instead, there are problems often associated with machine
learning [33].
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1.2 .1 Supervised learning
Supervised machine learning is defined by its use of labeled datasets to train algorithms to
classify data or predict outcomes accurately. During training, the model adjusts its weights
through optimization methods like gradient descent to fit the data. Cross-validation is then
used to evaluate the model’s performance and ensure it generalizes well, avoiding overfitting
or under-fitting. This approach solves a variety of problems, such as classifying pathologies
and some methods used in supervised learning include neural networks, linear regression,

random forest, support vector machine (SVM) and Naive Bayes [34].

1.2 .2 Unsupervised learning
This method uses machine learning algorithms to analyze and cluster unlabeled datasets.
These algorithms discover hidden patterns or data groupings without the need for human
intervention. Its ability to discover similarities and differences in information make it ideal for
exploratory data analysis, customer segmentation, and image and pattern recognition. It is
used to reduce the number of features in a model through the process of dimensionality
reduction [34].

111 .2 .3 Semi-supervised learning
As the name suggests, this method offers a medium between supervised and unsupervised
learning. During training, it uses a smaller labeled dataset to guide classification and feature
extraction from a larger, unlabeled dataset. Semi-supervised learning can solve the problem of
not having enough labeled data for a supervised learning algorithm and it is also useful in

cases where labeling data is expensive [34].

111 . 2 .4 Reinforcement learning (RL)

It is a type of machine learning where an agent learns to make decisions by interacting
with an environment. The goal is to maximize some notion of cumulative reward through trial
and error. In reinforcement learning, the agent receives feedback (rewards or penalties) from
the environment after taking key actions [40]. Over time, it learns which actions lead to best
outcomes (i.e. the highest rewards). RL involves concepts like states (the situation the agent is
in), actions (choices the agent can make) and rewards (feedback on the action’s effectiveness)
[39].
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i .3. Principles of Deep learning (DL)

Deep Learning (DL) is a subset of Machine Learning (ML), that teaches computers to do
what humans naturally do. The elementary bricks of deep learning are the neural networks,

that are combined to form the deep neural networks [35] to learn from data.

Deep learning models have become pivotal in the detection and diagnosis of medical
pathologies, such as epilepsy, through various types of data, including images, signals and
videos, showcasing remarkable advancements that transform traditional methods. Various
types of deep learning architectures have been utilized to address this complex task, each

offering unique advantages in processing and analyzing vast datasets.

1. 3.1 Artificial Neural networks (ANN)
Neural networks, also known as artificial neural networks (ANNS) are a subset of machine

learning (ML) that provide the foundation of deep learning techniques. Their name and form
are inspired by the human brain, and they replicate the way real neurons communicate with
one another [36]. An artificial neural network creates an adaptive system that computers use

to learn from their mistakes and improve continuous.

Input Output
Hidden

Figure I11-1. Structure of an artificial network [57]

In the figure (I11-1) above, each circular node represents an artificial neuron and an arrow
represents a connection from the output of one artificial neuron to the input of another.
Neurons are organized in layers: the first layer consists of three units, which together make
the input layer. Each of the three nodes in the input layer represents an individual feature from
each sample within our dataset that will pass through the model. Each of the inputs are

connected to every single unit in the next layer called the hidden layer.
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At its core, an artificial neuron is a function of the input x = (x1, ..., xd) weighted by a

vector of connection weights wj = (wj,1,...,wj,d), completed by a neuron bias bj, and

associated to an activation function ¢, namely

yi=fi ()= ( {wj,x) +Dbj). 1)

I11.3.1.a Activation functions
The most critical part in an artificial neural network, which is a mathematical function

applied to the output of a neuron. It introduces non-linearity into the model, allowing the
network to learn and represent complex patterns in the data. Activation function decides
whether a neuron should be activated by calculating the weighted sum of inputs and adding a
bias term. This helps the model make complex decisions and predictions by introducing non-
linearities to the output of each neuron [37].

The choice of an activation function is influenced by the specific task, the architecture of
the network and the nature of data. While non-linear functions like ReLU are commonly used
in hidden layers to mitigate vanishing gradient issues, output layers often use functions like
Softmax or Sigmoid depending on whether the task is multiclass or binary classification.

Figure (111-2) below shows different activation functions and their graphs.

Sigmoid : Leak% IlReLU )

o(z) = = max(0.1z, z)

tanh Maxout

tanh(x) max(w{ z + by, wd = + by)

RelU / ELU /
0 T 220

maX( 733) _ ) {a((’"" 1) z<0 ; ,. =

Figure 111-2. Activation functions [38]

Historically, the sigmoid was the mostly used activation function since it is differentiable
and allows to keep values in the interval [0, 1], but due to its gradient being very close to 0
when || is not close to 0, it causes troubles for the backpropagation algorithm to estimate the
weights and biases, it was quickly surpassed by the rectified linear unit (ReLU) function [35].

28



CHAPTER Ill. THEORETICAL FOUNDATIONS

¢ Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU) function is defined by A(x)=max(0,x), this means that if the
input x is positive, ReLU returns x, if the input is negative, it returns 0.

Although it gives an impression of a linear function, ReLU has a derivative function and
also allows for back-propagation while simultaneously making it computationally efficient.
The main issue here is that ReLU function does not activate all the neurons at the same time.
The neurons will be deactivated if the output of the linear transformation is less than 0 [38].
Since only a certain number of neurons are activated, the ReLU function is far more
computationally efficient when compared the sigmoid and tahn functions. It is limited by the
“dying ReLU problem” but several variations of the ReLU function are considered to make
sure that all units have a non-vanishing gradient and that for x < 0 the derivative is not equal
to 0.

111 .3 .2 Recurrent Neural Network (RNN)
Recurrent neural networks (RNN) are type of neural networks designed for processing

sequential data, like speech, text, and time series, where order of elements is important [42].
Instead of treating each input as separate, they maintain a hidden state that passes information
from one step to the next, where at each time step, the RNN takes the current data and the
previous hidden state (l.e., memory from earlier steps), then combines the two to produce a
new output (an updated hidden state) which will be used on the next stop, as shown in figure
(1-3).

Figure 111-3 . Architecture of Recurrent Neural Network. [58]
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Another key feature of RNNSs is that they use the same set of weights at every time step.
Unlike feedforward networks, where each layer has its own unique weights, RNNs share the
same parameters as they process each element in a sequence. Though the weights are shared,
they are still updated during training using back-propagation through time and gradient

descent allowing the network to learn over time.

111 . 3.3 Convolutional neural network (CNN)

A convolutional neural network (CNN) is a specialized type of deep learning algorithm
specifically designed for tasks that need object recognition, such as image classification,
detection and segmentation [40]. Though CNNs resemble the human brain in many ways,
such as the non-linearity of the neuron activation keys and the hierarchical structure, with
simple features extracted in early layers while more complex features are built up in deeper
layers, they also have obvious differences. One being that CNNs usually rely on supervised
learning unlike the human brain, which most of its learning (especially early in development)

IS unsupervised/ self-supervised.

fc 3 fc_a

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A /—M
(5x5) kernel Max-Pooling (5 x 5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2) @ A
i, TN aubemmn I conias ® Qo
® 0!
® @
. o) :
INPUT nl channels n1 channels n2 channels n2 channels E . 9
(28x28x1) (24 x24xn1) (12x12 xn1) (8 x8xn2) (4x4xn2) 0 OUTPUT

n3 units

Figure 111-4 . Architecture of Convolutional Neural Network. [40]

As illustrated in figure (I11-4), the architecture of CNN is decomposed in:

I11.3.3.a  Convolutional layer
This is the fundamental building block of the CNN. As the name implies, its main

mathematical task is convolution, a process where a sliding window, known as a filter/kernel
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moves across a matrix of pixel values representing an image. As the filter moves, it generates

a new grid (feature map) which highlights the areas where the pattern was found [40].

Filter 1
Input 119 18 = —t Output
1|0 |
1o [a
3x3x3 4x4
% ‘
Filter 2
olofo —_ / 4x4x2
1|0 [N -
| = =
3x3x3 4x4

Figure I111-5. The convolutional layer [41]

I11.3.3.b  Activation function
Usually using the ReLU function, it is introduced after each convolution to allow the

network to learn non-linear mappings and helps in speeding up training and introducing

complexity.

Input ReLU

-249 | -91 -37 0 0 0

250 | -134 | 101 —» 250 0 101 —»

27 61 | -153 27 61 0

Figure 111-6. Input volume going through ReLU [41]

I .3.3.c Pooling layer
Its main purpose is to reduce the spatial size (height and width) of the feature maps. This

step is necessary as it decreases computation and also, helps avoid overfitting by reducing
feature map size. After this step, in practice the first three steps are repeated since deeper
layers learn complex structures and this gives CNNs a hierarchical understanding of the image
[41]. Pooling has three types; max (selects maximum element), average (computes the
average of the elements) and global pooling (reduces each channel in the feature map to one

value).
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POOLING

Average pooling

Max pooling

Figure 111-7. Max and Average Pooling [41]

I11.3.3.d Flattening
This stage prepares the data for the fully connected layers by reshaping 3D (height, width,

channels) arrays that are feature maps into a single 1D vector, as demonstrated in figure (111-
8).

1|11(0

Flattening
41211
0l 2 | %

Pooled Feature Map
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B
4 |
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1]
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1]

Figure 111-8. Flattening on a pooled feature map [41]

11 .3.3.e Fully connected layer (Dense layers)
Its role is to perform high-level reasoning based on the features extracted and interpret

them to make predictions. The way it works is that typically there are one or more fully
connected layers where each neuron is connected to all outputs of the previous layer and the

weights are learned to associate feature patterns with specific classes or patterns.
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Figure 111-9. Fully connected layers [41]

I .3.3.f Output layer

As the name suggests, this is where we get our final prediction, which, depending on the task
could be classification label, probability scores or regression output.

» Classification: Assigning the input to one or more categories, binary or Multi-class
classification

» Regression: The CNN predicts continuous numerical values instead of classes, like
estimating age from a photo, for example. The output in this case can either be a single value
or multiple values.

» Segmentation: Instead of predicting one label for the whole image, the CNN predicts

a label for each pixel and this can be used to highlight tumor regions in medical imaging.

i 4. EEG Signal Processing

In the first chapter, we explained that the electroencephalography (EEG) records electrical
activity from the brain through electrodes placed on the scalp but raw EEG signals are

typically noisy and need pre-processing before being used for seizure detection.

The process of detecting epileptic seizures in EEG signals using deep learning involves
several steps; including signal processing, feature extraction, and the application of deep

learning model for seizure recognition.

I11.4 .1 Pre-processing
EEG signals are inherently noisy due to various artifacts like eye blinks, muscle

movements, and electrical interference, so we apply band-pass filters to retain only the
frequencies that are most relevant to the task, typically between 0.5 Hz and 50 Hz since EEG
signals typically range between 1Hz to 30 Hz. This range covers most of the relevant brain

activity.
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The sliding window technique is a method used in machine learning and signal
processing to break down a continuous stream of data into smaller, manageable segments for
processing or analysis. The continuous EEG signals are divided into small segments
(windows). Each segment might span several seconds (e.g., 1-5 seconds), then these segments
can be analyzed individually, and the sliding window technique is commonly used. Each

segment is treated as an independent sample for the deep learning model.

Data augmentation: This refers to a technique used to increase the diversity and size of a
dataset by creating modified versions of existing data without actually collecting new data.
This is to improve the performance of machine learning models, prevent overfitting and to
make the model robust to variations (like noise, distortions or shifts). It is commonly by
applying transformations such as, rotation, scaling, cropping, noise addition or synthetic data

generation.

Normalization: To avoid biases introduced by varying signal scales, normalizing the data
standardizes the values of the signal. This brings all EEG data into a similar range, which

makes the model more robust.

I11.4 .2 Feature Extraction
Feature extraction is a pivotal step in the automated detection of epilepsy from EEG
signals, ensuring that the most relevant characteristics of the signal are emphasized while
reducing noise and irrelevant data. A feature can be defined as a unique characteristic that

allows to understand the neural activity and assess the state of the brain.

Once common traditional method for feature extraction involves the use of Time-domain
features, such as mean, standard deviation, entropy, kurtosis, etc. Below are some traditional

features:

Mean (W) - The average of the signal over a segment, which can provide insight because if
the signal is stable, the mean will stay close to zero but if there is abnormal brain activity, the
signal will go up and down and the mean will consequently change.

N ’
= — X;j
KT N i=1
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where Xx; is the EEG signal and N is the number of samples.

Standard deviation (6) - Measures how much the signal fluctuates from its mean, and
this is helpful, knowing that seizure events often show increased variability in EEG. Higher

SD means greater signal fluctuation.

N (3)

o= [t

i=1

Variance - It is the square of variance and it represents power signal in time domain. It

detects high-energy events like epileptic spikes or discharges.

N
1 (4)
o=~ E (xi — w?
NL'=1

Skewness - It measures the asymmetry of the signal distribution and indicates if the signal
events are biased in one direction, which helps because during a seizure, there might be sharp

spikes.

N
1 Xi— U 3 (5)
skewness = NZ ( )

Kurtosis - It represents the “peaked-ness” of the signal (sharpness of peaks). High kurtosis

means the presence of outliers or sharp spikes.
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e =y (6)
kurtosis = —Z( )
N — o

Entropy - Measures unpredictability or complexity of the signal and from it we can
deduce how random or chaotic the signal is. High entropy suggests that the signal is erratic

and unpredictable (e.g., seizure or noisy signals).

H= - Zpi log(p:) (7

Sometimes temporal analysis may fail to capture key features in EEG signals, especially
when recordings have low temporal or spatial resolution and only oscillatory activity is
present. In such cases, spectral methods like fast Fourier transform (FFT), wavelet transforms,
particularly noted for their ability to handle transient and non-stationary signals like those
found in EEG data. FFT can be formulated as;

N (8)
X[k] = Z x[n].e /2™n/N |k =0,1..N — 1
n=0

Where X(k) = frequency domain points, x(n) = time domain samples, n = index of time

samples, k = index of frequency points, N = number of input samples in the record

Power Spectral Density (PSD) represents how the power of the signal is distributed over
different frequency bands and this is achieved by applying a Fourier Transform to convert
EEG from the time domain to the frequency domain. Specific frequency bands (e.g., delta,
alpha, beta, theta) are often linked to particular brain states. Seizure activity might show an

increase in power at certain frequencies [52]. Mathematically, it can be represented as:

1
PSD (f) = & IF()I? ©)
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Where N is the number of samples in the EEG signal x(t) and F(x) is the Fourier

Transform.

111 .4 .3 Model Training and Validation
Model training and validation in the context of detecting epileptic seizure using EEG
biomarkers and deep learning algorithms play a crucial role in ensuring the robustness and
reliability of the proposed systems. A common challenge in the development of these models
is the inherent variability in EEG data, which can be influenced by a multitude of factors
including patient demographics, seizure types and environmental conditions. Therefore, a
rigorous training and validation approach is imperative to achieve high classification accuracy

and generalizability.

111 .4 .4 Performance evaluation metrics for deep learning models
Evaluation metrics are the tools we use to measure how well the model performs. They

play a key role in figuring out how accurate the model is, the kind of errors it makes and
finally, to evaluate if it is good enough to be used in practice. With the help of evaluation

metrics, we can also see if our model is reliable when data changes.

Confusion matrix - It is an important table that summarizes the performance of a

classification model by comparing the model’s predicted labels against the true labels, table
(IV-1).

Table I11-1. Confusion matrix

Predicted: Seizure Predicted: Non-seizure
Actual: Seizure True Positive (TP) False Negative (FN)
Actual: Non-seizure False Positive (FP) True Negative (TN)

» True Positive (TP) - In this case, the model correctly identifies a seizure segment as
such.

» False Positive (FP) - The model incorrectly labels a non-seizure segment as seizure. In
other words, this can be taken as a false alarm.

> False Negative (FN) - This means that a seizure may be missed and be labelled as a
non-seizure event.

» True Negative (TN) - The non-seizure segment is correctly labelled as such.
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Accuracy: It is a fundamental metric for evaluating the performance in classification
problems and it measures the proportion of correct predictions in the total prediction made. It

is defined as equation (10):

Number of correctpredictions

Accuracy = Totalnumber of predictions (10)

Mathematically it can also be written as: Accuracy = (TP+TN)/ (TP+TN+FP+FN).

Precision: It is a measure of a model’s performance that explains how many of the

positive predictions made by the model are actually true. It is given by equation (11):

TP
Precision = re+Fp (11)
Recall/ Sensitivity: It is the ratio of correctly predicted positive instances to the total
actual positive instances. It measures how well the model captures all relevant positive cases

and it is represented by equation (12):

True Positives (TP) (12)
True Positives (TP)+False Negatives (FN)

Sensitivity =

F1 Score: F1-Score is a harmonic mean between recall and precision with the range of
[0,1]. This metric usually tells us how precise (correctly classifies how many instances) and
robust (does not miss any significant number of instances) our classifier is. It can be

expressed mathematically in this way equation (13):

Fl=2Xx —— (13)

Precision+recall

Area under curve (AUC) and Receiver operating characteristic curve: The ROC curve is a
graphical representation of classification model performance at different thresholds. It is
created by plotting the true positive ratio (TPR) against the false positive ratio (FPR).
Whereas AUC represents the area under the ROC curve. It therefore provides a single scalar
value that summarizes the overall performance of a classifier across all possible threshold

values. The formula for TPR and FPR represented in equation (14) and (15) respectively:

TP
TPR = Recall = rp+rx (14)
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FP
FPR = rp+7n (15)
Specificity: It is the ability of a model to correctly identify true negatives (e.g., correctly
ruling out seizures when they are absent), meaning that high specificity indicates few false

positives (false alarms). Its equation (16) is shown below.

s s _ True Negatives (TN
Speafwtty o True Negatives (TN)+False Positives (FP) (16)
i .5. Challenges in Seizure Detection

While deep learning methods have revolutionized many aspects of healthcare, their
implementation in seizure detection is not without obstacles. The need for large, annotated
datasets to train deep learning models poses a barrier, seizures can be infrequent, and dataset
imbalances might result in overfitting or under-fitting of models. For instance, factors such as
noise in EEG recordings from different devices, variations in electrode placement, and patient
specific characteristics can affect the reliability of deep learning algorithms. Addressing these
challenges will be crucial for the transition from research to clinical practice, where the
integration of EEG signals with deep learning model can lead to timely and effective

interventions for individuals affected by epilepsy, which is the aim of our project.

Il .6. Conclusion

This chapter has provided an overview of the key concepts behind machine learning and
deep learning, focusing on their relevance to EEG signal analysis and epileptic seizure
detection. We examined the structure and functioning of neural networks, particularly
convolutional neural networks (CNNs), which are well-suited for capturing spatial and
temporal patterns in EEG data. By exploiting their ability to learn meaningful features directly
from raw input, deep learning models eliminate the need for manual feature extraction and
often outperform traditional approaches in complex classification tasks. The principles
discussed here lay the groundwork for the practical implementation of a deep learning-based

system aimed at detecting epileptic seizures, which will be presented in the following chapter.
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Chapter IV . IMPLEMENTATION AND
RESULTS

vV .1. Introduction

So far, we have only discussed the theoretical foundations of our project but in this
chapter, we will outline the steps and methods, while also implementing them to finally
develop a deep learning-based system for detecting epileptic using EEG signals. Furthermore,
this chapter will go into more details about how raw EEG data was processed, modelled and

evaluated in relation to seizure detection.

1V .2. Tools and environments

The development and implementation our project required a robust computational
environment capable of supporting data-intensive signal processing, machine learning and
visualization tasks. Therefore, a set of tools and programming environments was used to
ensure compatibility and efficiency throughout the entire workflow, from data pre-processing
to model training and evaluation. These tools were run on an 12th Gen Intel (R) Core (TM)
i7-1255U with 8Go RAM.

IV . 2.1 Google Colab
Google Colaboratory (Colab) is a hosted Jupyter Notebook service that requires no setup to

use and provides free access to computing resources, including GPUs and TPUs. Colab is
especially well suited to machine learning, data science, and education [43].

Google

Figure I1V-1. Google Colab [43]
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IV . 2.2 Anaconda Distribution
The implementation of this project was conducted within “Anaconda distribution”, an
open-source platform widely adopted for scientific computing and machine learning
applications in “Python”. Anaconda provides an integrated environment for managing
packages, dependencies, and virtual environments [51], which helped maintain consistency

and prevent version conflicts during development.
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Figure IV-2. Principal Anaconda Navigator (GUI) [51]

The project was developed using Python 3.10, selected for its compatibility with key
libraries used in EEG processing and deep learning. Additionally, Jupyter Notebook, which
comes bundled with Anaconda, was used as the primary interface for interactive coding, data
visualization and debugging. This environment facilitated the implementation of various

stages of the methodology.

IV . 2.3 Visual Studio Code
Commonly known as VS code, is an integrated development environment by Microsoft for
Windows, Linux, macOS and web browsers with features that include but not limited to
support for debugging, code refactoring, and intelligent code completion. With its multiple

features, it is designed for writing and editing code is very easy to navigate [50].
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Visual Studio Code

Figure 1V-3. Visual Studio Code logo  [50]

IV .2 .4 Key libraries
Several Python libraries were used throughout the stages of this project to support
different EEG signal processing and classification. These libraries offered useful tools for
tasks like filtering, visualization, and model development. But above all, they were chosen for
their compatibility with EEG data formats. Figure (I\VV-4) shows a list of libraries used in this

project.

# Importation of modules

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from scipy.fft import fft

from scipy.stats import kurtosis, entropy

from sklearn.model_selection import train_test_split

from sklearn.metrics import (classification_report, roc_auc_score, roc_curve, auc, confusion_matrisx,

ConfusionMatrixDisplay)

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import (Input, Dense, ConvlD, MaxPoolinglD, Flatten,
Concatenate, Dropout, BatchNormalization,
MultiHeadAttention, LayerNormalization,
GlobalAveragePoolinglD)

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping, ReducelROnPlateau

from tensorflow.keras.regularizers import 12

import optuna

from scipy.fft import fft
from scipy.stats import kurtosis

Figure 1VV-4. Libraries used

Numpy, short for Numerical Python, is a fundamental library for numerical and scientific

computing in Python. It provides support for large for large, multi-dimensional arrays and
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matrices, along with a collection of mathematical functions to operate on those arrays. It is

essential for tasks involving data analysis, machine learning, and scientific computing [43].

TensorFlow is an open-source platform for machine learning using data flow graphs.
Nodes in the graph represent mathematical operations, while the graph edges represent the
multidimensional data arrays (tensors) that flow between them. This flexible architecture
allows machine learning algorithms to be described as a graph of connected operations and it
was developed for the purposes of conducting machine learning and deep neural networks
(DNNs) research [43].

Pandas is a software written for the Python Programming language for data analysis and
manipulation. In particular, it offers data structures and operations for manipulating numerical

tables and time series [43].

Matplotlib, portmanteau of MATLAB, plot, and library, is a comprehensive library for

creating static, animated, and interactive visualizations in Python [43].

Scipy is a free open-source library that is designed for quickly performing scientific and
numerical computing in Python. It provides broadly applicable algorithms for optimization,

integration, interpolation, statistics, and others [43].

IV.2.5 MNE
Short for Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python,
MNE-Python is an open-source Python package for exploring, visualizing, and analysing
human neurophysiological data such as MEG, EEG, sEEG, ECoG, and more. It includes
modules for data input/output, preprocessing, visualization, time-frequency analysis, machine

learning, and much more [49].

Figure IV-5. MNE-Python logo [49]
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IV .2 .6 Streamlit
Streamlit is also an open-source Python library that makes it easy to create and share
custom web apps for machine learning and data science. It makes it easier to quickly add and
deploy powerful data applications [43]. This is what we chose work with when building our
interactive interface because of its many advantages like, simplicity, only Python is needed to

build so we don’t need to convert, and the fact that it works in real-time.

IV .3. Proposed method

The aim of our study is to develop a fully automatic method for epilepsy detection

using the integration of biomarkers on EEG signals, with deep learning classification models.

The methodology involves several stages such as, data collection, signal
preprocessing, feature extraction, model design and training and also evaluation using
performance metrics. As discussed in the previous chapter, a convolutional neural network
(CNN) was chosen due to its effectiveness in learning spatial and temporal patterns in EEG
data. Each stage of the pipeline was carefully designed to ensure that the system could learn
relevant features from the data while minimizing overfitting and ensuring generalizability.

The flow chart of our method is shown in figure (1\VV-6).
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Pre-processing

-MNE

-Band pass filter Feature Extraction
Uit e -Time domain features
-Windowing .
-Frequency domain features
-FFT
-Sleep features
-Stress features
CNN Models

-CNN Seizure.h5

-CNN Stress.h5

-CNN Sleep.h5 Final Fusion

-CNN [ED.h5

CNN Ictal states.h5

Final Epilepsy Classification

Figure 1V-6. System architecture flowchart
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1V 4. EEG Data Collection

IV .4 .1 Epileptic Seizure Recognition
This dataset was used for seizure classification, obtained from Kaggle [44] and contains
electroencephalogram (EEG) recordings intended for the classification of seizure and non-
seizure states. It originally consists of 5 different folders, each with 100 files, with each file
representing a single subject/patient. Each file is a recording of brain activity for 23.6 seconds
and the corresponding time-series is sampled into 4097 data points. Each data point is the

value of the EEG recording at a different point in time.

IV .4 .2 EEG features dataset for stress classification
Since the previous dataset was specifically curated for epilepsy detection, we collected

more data from Kaggle [45] to efficiently train our model and, this dataset consists of EEG
(Electroencephalogram) signals collected from participants under different stress conditions.
It contains 6,000 samples (instances) representing EEG recordings, with each sample
corresponding to a short time window (e.g., 1-5 sec) of EEG data. It is also composed of
1,602 columns, where 1,601 features are EEG-derived metrics and 1 target column (Stress

level).

IV . 4 .3 Sleep-EDF Database Expanded
When it comes to sleep quality, we first have to explain a few terms related to the

diagnosis of sleep disorders.

= Polysomnography (PSG) - Sleep study that includes simultaneous recordings of

multiple bio-signals to access sleep quality and diagnose sleep disorders, figure (IV-7).

= Hypnogram- A visual representation of a person’s sleep stages over the course of a
sleep period, which is typically divided into two main types: Rapid eye movement
(REM) and Non-REM sleep, which is further divided into three stages (N1, N2, N3)
ranging from light, intermediate, and deep sleep, respectively. Basically, a hypnogram

is made from sleep annotations mentioned above, figure (I1V-8).
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Figure I1V-7. The polysomnography of EEG

Our data was collected from [Sleep-EDF Database Expanded v1.0.0] as PSG, figure (IV-
7) data (EEG signals) and sleep stage annotations (hypnogram, figure (I\VV-8)) which we
loaded, merged and continued to label (as in, map each sleep stage annotation to a numerical

number) in order to prepare for further analysis.
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Figure 1V-8. The hypnogram coresponding
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1IV.4 .4 CHB-MIT
Interictal Epileptiform Discharges (IEDs) are described as abnormal spikes or waveforms
on EEG recordings between seizures and are considered as biomarkers of epilepsy and reflect
brief, abnormal bursts of electrical activity in the brain. If we are going to diagnose epilepsy,

it is therefore essential that we have a model to detect these biomarkers too.

The CHB-MIT Scalp EEG [46] database provides annotated EEG recordings from
pediatric epilepsy patients, making it a valuable resource for interictal epileptiform discharge
(IED) detection and ictal phase classification [47]. For IED classification, non-epileptic
intervals are exploited to extract brief, spike-like waveforms characteristic of interictal
discharges. These segments are then labelled and used to form a binary classifier

distinguishing IED from non-1ED activity, figure (I\V-9).
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Figure 1VV-9. Labelled segments

For the classification of the ictal phase, precise annotations of the onset and termination of
the seizure enable the EEG to be segmented into pre-ictal, ictal and post-ictal periods. This
enables a model to be trained to differentiate ictal activity from baseline brain states. In this
way, CHB-MIT facilitates a dual objective: identifying transient epileptiform events (TEES)
and learning the dynamic temporal profile of seizures (ictal phases), both of which are

essential for comprehensive epilepsy monitoring and early seizure detection [48].
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IV .5. EEG preprocessing

The first act of pre-processing we come across here is by converting our files to MNE
format to be able to read and handle EEG data. Then we continued to filter our signal with
both band-pass and notch filters. Band-pass filter, demonstrated in figure (IV-10) was set
between 0.5- 40 Hz because with EEG signals, frequencies below 0.5Hz may be drift or

movement and above 40Hz are often muscle noise or external interference.

Power (dB Vv mz)

" . * ™~ \ v B
0 10 20 30 <0 50 60 70

frequency (Hz)

80

Figure 1VV-10. Band pass filter of 0.5-40 Hz

By eliminating irrelevant frequencies outside of the target range, band-pass filters reduce
noise and artifacts, therefore increasing the quality of the EEG signal. Notch filters are also
used to eliminate power line interference (50Hz and its harmonics) that can contaminate the

signal, but they are generally used alongside band-pass filters, fig (IV-11).

Densité Spectrale apres Filtrage
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Power (dB WV
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Figure 1V-11. Notch filter (50 Hz)
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1V 6. Feature Extraction

For each of the five parameter - seizures, interictal epileptiform discharges (IEDs),
stress, sleep stages and ictal phases - feature extraction plays a crucial role in improving the
discriminative power of classifiers. EEG signals are first segmented into epochs of fixed
length (30 seconds). For each segment, time-domain and frequency-domain features are

extracted.

In the time domain, five key features were computed for each EEG segment: (1) the
mean amplitude, identifying baseline shifts characteristic of ictal states; (2) standard
deviation, quantifying signal variability that increases during seizures; (3) kurtosis, detecting
peaked distributions associated with epileptic spikes; (4) Shannon entropy, measuring signal
complexity that typically decreases during ictal events; and (5) zero-crossing rate, indicating

frequency changes in seizure activity.

For frequency analysis, a Hamming-windowed FFT was applied to compute band power
features across five clinically-relevant frequency bands: delta (0.5-4Hz), theta (4-8Hz), alpha
(8-13Hz), beta (13-30Hz), and gamma (30-50Hz) as illustrated in figure (IVV-12). These bands
were selected as they capture the spectral signatures of epileptiform discharges - particularly
the gamma band, which contains high-frequency oscillations that are biomarkers for
epileptogenic tissue. Together, these features help the CNN identify the signs of seizure, from

sudden spikes to ongoing abnormal rhythms.
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Figure 1V-12. Decomposition of an EEG signal in 5 important waves. [53]

For the stress classifier, relative band power ratios are essential to distinguish between
different stress stages, figure (IV-13).

3. Ratios and stress interpretation
Puissance Alpha (uV?/Hz) : 0.003

Puissance Béta (uV*/Hz) : 0.001

Ratio Béta / Alpha : 0.271

Ratio Béta / (Alpha + Théta) : 0.062

B Stress level low / relaxation

The alpha bands are associated with relaxation, the beta with intense mental activity, and the theta
with inner calm. A high §/(a+8) ratio may indicate a state of stress or hyperactivation.

Figure 1VV-13. Example of Ratios calculated for stress evaluation
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In the sleep evaluation model, additional features such as Total sleep time (TST) quantifies
the total time spent sleeping during the monitoring period. Sleep efficiency (SE) is the ratio of
total sleep time to total time spent in bed, indicating the individual's sleep efficiency. Sleep
onset latency (SOL) measures the time taken to go from wakefulness to sleep, reflecting the
quality of sleep initiation. Time awake after sleep onset (WASO) quantifies the total duration
of awakenings after sleep onset, giving an idea of sleep continuity. The classifier also includes
the proportion of time spent in different sleep stages: N1, N2 and N3 (representing
progressively deeper stages of non-REM sleep) and REM (Rapid Eye Movement sleep), each

associated with different restorative and cognitive functions, figure (1V-14).

Sleep Quality
TST (min); 326.5

SE (9%): 24.64

WASO (min): 488.0

SOL (min): 510.5

N1 (%): 2.188679245283019

N2 (%): 9.433962264150944
N3 (%): 8.30188675245283

REM (%): 4.716581132075472

Interpretation : Sleep mediocre (monitoring
recommended)

Figure 1V-14. Sleep evaluation

We designed a complete EEG signal processing pipeline for the detection of five
biomarkers: stress, sleep stages, seizures, ictal phase and IEDs. Each biomarker was
processed individually via a dedicated CNN model, trained and validated independently from
specific databases, before being integrated into a weighted fusion model designed to improve
epilepsy detection. However, to avoid complications, the architecture of the CNN model was
the same for all biomarkers, the only difference was in the features extracted and pre-
processing, fig (IV-15).
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IV .7. CNN Model

CNN models are trained to classify each segment as positive (presence of biomarker)
or negative. Once trained and tested, the models are saved in .h5 format, so that they can be
called up in the platform. Each CNN model returns a probability in the interval [0, 1] for each
segment. The outputs of these models are then transmitted to the fusion layer. The figure (IV-

15), shows an example of CNN architecture.

Model: "seq_u ent iﬁ_'.’-"

Layer (type) output Shape Param #
convid 16 (ConviD) ( , 2558, 32) 2,240
max_poolingld 16 (MaxPoolingiD) | ( , 1279, 32) e
convlid 11 (ConviD) ( » 1277, 64) 6,208
max_poolingld 11 (MaxPoolinglD) | ( , 638, 64) e
flatten_5 (Flatten) { , 40832) e
dense 1@ (Dense) ( » 64) 2,613,312
dropout_4 (Dropout) { , 64) 2
dense 11 (Dense) ( s 1) 65

Total params: 2,621,825 (10.2@ MB)
Trainable params: 2,621,825 (10.00 MB)
Non-trainable params: @ (@.e@ B)

Figure I\V-15. CNN Model Architecture

Conv1D layers: Two consecutive 1D convolutional layers are used to extract local temporal
features from EEG signal segments. The first layer produces 32 feature maps and the second
64.

MaxPoolinglD layers: Each convolutional layer is followed by a maximum pooling layer to

reduce temporal dimensionality and focus on the most important features.

Flattening layer: The resulting feature maps are flattened into a one-dimensional vector.
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Dense layers: A fully connected dense layer with 64 neurons is followed by a final output
layer with a single neuron and a sigmoid activation function to produce a binary (yes/no)

classification.

Dropout layer: The dropout layer is applied after the dense layer to avoid overfitting.
IV 8. Pipeline Development

The development the pipeline for each biomarker is detailed below.

IV . 8.1 Stress Detection
The dataset for this CNN model was collected from [EEG features dataset for stress

classification], which we preprocessed by; normalization, filtering and augmentation.
Afterwards, we extracted spectral and temporal features such as alpha, beta and gamma band
power, as well as statistics (mean, variance, RMS), figure (IV-16).

BioMargueur de Stress: Ratio Beta/Alpha
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Figure 1VV-16. Stress biomarker, beta-alpha ratio

These descriptors were fed into a binary CNN model to classify each EEG segment as
“stressed” or “not stressed” and the model was then trained with regularization, learning rate

adjustment and an early stopping mechanism to give the following results.
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38/38 1s 18ms/step
precision recall fi1-score  support
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accuracy e.79 1208
macro avg e.7/9 e.7/9 e./9 1208
welghted avg 8.79 a.79 8.79 1208

Figure 1V-17. Stress classification report
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Figure 1V-18. Loss and accuracy graphs for stress detection

The classification report in figure (IV-17) shows balanced performance, with precision,
recall, and F1-scores of approximately 0.79 for both classes. The model achieved an overall
accuracy of 79% on a test set of 1,200 samples, suggesting a reliable ability to differentiate
between stressed and non-stressed conditions. The training and validation curves, figure (IV-
18) show steady improvement in both accuracy and loss, with no major signs of overfitting,
indicating that the model generalizes reasonably well to unseen data. However, despite these
encouraging outcomes, the model has some limitations. Its moderate accuracy may not be
sufficient for critical real-time applications such as mental health monitoring or workplace
stress detection. With more time, we plan to try more architectures and adjust some

parameters, like number of layers or/ and batch size.

IV . 8.2 Sleep classification
Dataset used in this model was collected from [Sleep-EDF Database Expanded v1.0.0].
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Sleep quality detection is based on polysomnographic signals manually annotated by
experts according to N1, N2, N3, REM and Wake stages. EEG signals extracted from *-
PSG.edf files were segmented and aligned with their *-hypnogram.edf hypnograms. Identical
pre-processing was applied, followed by extraction of power spectral density features in the
different EEG bands. Segments were labeled as “good sleep quality” or “bad sleep quality”
(binary classification). The CNN sleep model was trained to discriminate between these two
classes. The probabilities derived from this model were stored in sleep_prob.

precision recall fl-score support

o 0.96 8.94 0.95 2400

1 9.94 0.97 9.95 2400

accuracy .95 4300
macro avg 8.95 9.95 9.95 4800
weighted avg 9.95 9.95 .95 4300

Figure 1VV-19 Sleep classification evaluation report
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Figure 1VV-20. Accuracy and Loss graphs for sleep classification

The classification report in figure (IV-19) shows that the model performs very well on
both classes (0 and 1), with precision, recall, and F1-scores all hovering around 0.95, also
suggesting that the model is not only accurate but also well-balanced. Since the dataset is
perfectly balanced with 2,400 samples per class, the high overall accuracy of 95% is a solid
indicator of its reliability. The training curves back this up: training accuracy climbs to about
96%, and validation accuracy levels off around 94%, with no signs of overfitting. This model

performs very well overall.

IV.8.3 SEIZURE
For epileptic seizure detection, we used the tabular dataset [46] seizure_recognition.csv

available on Kaggle, which contains features extracted from EEG signals. Each row of the file
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represents an EEG segment of a few seconds, already pre-processed and transformed into
statistical features such as mean, standard deviation, min/max, power in certain frequency
bands, or transformed coefficients (FFT). The dataset includes a Seizure target column, which

indicates whether the EEG segment originates from epileptic activity (1) or not (0).

The model achieves high accuracy (98%) and AUC (0.9945), showing strong overall
performance. However, it struggles with seizure cases, where recall (91%) is lower than for
non-seizure cases (99%). This gap is due to class imbalance—there are far more non-seizure
samples (1,840) than seizure samples (460), as presented in figure (IV-21).

Epoch 49/50

144/144 @s 3ms/step - accuracy: 8.9713 - auc: 0.9902 - loss: 8.0853 - val_acc
uracy: 9.9665 - val_auc: ©.9906 - val_loss: 0.08921

Epoch 58/50

144/144 @s 3ms/step - accuracy: 8.97804 - auc: 0.9861 - loss: 8.0933 - val_acc
uracy: 0.9761 - val_auc: 0.9943 - val_loss: 0.0699
72/72 @s 3ms/step
precision recall fl-score support
%] 8.98 8.99 8.99 1840
1 0.97 9.91 0.94 460
accuracy 8.98 23080
macro avg 8.97 8.95 8.96 2300
weighted avg 0.98 0.98 0.98 23008
AUC: 8.9945

Figure 1VV-21.Seizure detection evaluation report
The confusion matrix confirms this issue, with 15 false negatives (missed seizures). While
precision for seizures is high (97%), meaning most seizures predictions are correct, the model
still misses some true seizures, figure (IV-22). To improve this, techniques like class
weighting or oversampling should be used to reduce false negatives without sacrificing

precision. The model is effective but needs refinement for better crisis detection.
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Figure 1V-22 Seizure detection confusion matrix

IV . 8 .4 Detection of Interictal Epileptiform Discharges (IEDs)
For automatic IED detection, we exploited EEG signals from the public CHB-MIT

database [Temple University EEG Corpus], renowned for its recordings of epilepsy patients

under real-life clinical conditions. Files in EDF format were loaded using the MNE-Python
library, which provides a standardized interface for processing multi-channel EEG signals.
Band-pass filtering between 1 Hz and 40 Hz was applied by means of a linear-phase FIR filter
designed by the firwin method, using a Hamming window. The aim was to remove very low-
frequency components (drift artifacts) as well as high-frequency noise, while preserving the

physiological band of interest.

After pre-processing the EEG signal to remove noise, we implemented adaptive peak
detection to identify potential IEDs (Interictal Epileptiform Discharges)—abnormal spikes
indicative of epilepsy. Using Python’s scipy.signal find_peaks, we first set a detection
threshold at 3 times the standard deviation (o) of the signal within 10-second windows as
shown in figure (IV-23), a common statistical approach to flag significant deviations.
However, this strict threshold missed many spikes, prompting adjustments to a lower
threshold (1.5xe6) or a fixed microvolt value. These refinements improved detection of true

IEDs, characterized by their short duration, high amplitude, and distinct polarity, fig (1\V-24).
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Figure I1VV-23. IED detection with 3xo

Max: Amplitude 5.648166707571975e-05 pv
Medium Amplitude: -3.6141378372722244e-08 pv

le-5 EEG Segment 200-210s with IEDs
6 R
9 — FP1-F7
® ED
4
I
o 2
3
Q
2"
E‘
< 27
-4 4
—6 -
200 202 204 206 208 210
Time (s)

Figure IV-24. IED detection with 1.5x¢

Figure (IV-25) below shows the accuracy plot of the model's performance over 8 training
epochs, with both training and validation accuracy increasing steadily from around 86% to
96%. The close alignment between training and validation curves indicates good
generalization without significant overfitting.
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Figure 1VV-25. IED Accuracy plot

IV . 8.5 Ictal States Detection

The detection of ictal phases was carried out using EEG data from the CHB-MIT database,
the same one used for IEDs since they mostly possess the same features. EEG recordings are
provided in EDF format, and some files include manual annotations of seizure onset and
termination times, in seconds. The first step was to load the signals via the MNE-Python

library, enabling efficient manipulation of multi-channel data.
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Figure 1V-26. Pre-ictal segment
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Figure 1V-27. EEG segment during ictal state
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Figure 1V-28. EEG segment during ictal phase

Spectral pre-processing was applied by bandpass filtering from 1 to 40 Hz with a non-
causal, linear-phase FIR filter, using a Hamming window to ensure sufficient attenuation in
the transition bands. This filtering aims to remove low-frequency (<1 Hz) and high-frequency
(>40 Hz) noise, while retaining EEG components relevant to seizure detection. In addition to
the pre-processing steps, and for the detection of Ictal phases using, we proceeded to the
Automatic Segmentation step, slicing the entire EEG signal into fixed 10-second segments

(with no overlap), and labelling each segment according to its position:
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Label 1 if the segment is in an ictal phase (e.g. between 1467 s and 1490 s).
Label O otherwise.

For classification, a CNN (Convolutional Neural Network) model was trained on the EEG
segments. The model inputs are the multichannel segments in the form of normalized tensors
(standardization per segment), and the output is a probability of seizure presence. An early
stopping function and adaptive learning were used to avoid overlearning and optimize
convergence. Figure (IV-26) shows the segment of pre-ictal phase while figures (IV-27 and

IV-28) shows the signals during the seizure/ ictal phase.

Accuracy Loss
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Figure 1V-29. Accuracy and Loss graphs for Ictal phases

Figure (1\VV-29) shows that our model learns well and improves steadily. The accuracy goes
up from 75% to 95% in just 4 training epochs, while mistakes (loss) drop quickly from 0.6 to
0.2. The fact that both training and test results improve together means the model works
properly without overfitting and gets better bit by bit. It reaches very good performance (95%

accuracy) fast, then stops improving much after 4 epochs. This means it learns efficiently.

IV . 8.6 Final Fusion
For the automatic detection of epilepsy from EEG signals, a multi-biomarker approach has
been adopted, exploiting five independent classifiers, each dedicated to a specific biomarker:
stress, sleep, IEDs (Interictal Epileptiform Discharges), ictal, and seizure. Each classifier is
based on a convolutional neural network (CNN) model trained separately on adapted
databases, and provides an output probability indicating the presence or absence of the

biomarker under consideration on a given EEG segment.
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In order to integrate these different sources of information and produce a robust final

decision on the occurrence of epilepsy, two decision fusion strategies can be considered:

IV.8.6.a CNN Fusion Model
CNN-based fusion involves using a second convolutional neural network (CNN) model as

a meta-classifier to combine the outputs of several classifiers specialized in the detection of
different EEG biomarkers (e.g. stress, sleep, IEDs, ictal, seizure). This strategy, known as
deep learning decision fusion, enables the system to learn the complex interactions between
biomarkers, rather than simply aggregating their predictions. To integrate the predictions of

all biomarker classifiers, we construct a feature vector for each EEG segment, figure (1\VV-30).

st.write(f"CNN training for {biomarker}...")
model, history, y true, y pred proba = train cnn model(X, y, biomarker)

models[biomarker] = model
predictions[biomarker] = y pred proba

Figure 1V-30. CNN results for fusion

According to figure (IV-31) and (IV-32) below, our fusion model shows strong
performance in detecting epilepsy, achieving an accuracy of 86.11%, with precision, recall,
and F1-scores all around 86% for both epileptic and non-epileptic cases. The confusion matrix
shows 5 false positives and 5 false negatives, indicating that the model maintains a good
balance without favoring one class over the other. Additionally, the high AUC-ROC score of

0.9305 shows its strong ability to distinguish between the two conditions.
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Figure 1VV-31. Fusion Model training log and metrics
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Final Decision Based on CNN Fusion
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Figure 1V-33 Final results based on CNN Fusion Model

While the model shows promising accuracy, there are some limitations, for example,
occasional mismatches occur where the model misses seizures (red bars without blue spikes)
or raises false alarms (blue spikes without red bars). However, these are outweighed by the
many correct detections where probability spikes align perfectly with confirmed seizures. The
model's ability to consistently identify clear seizure events while providing interpretable
confidence scores makes it valuable as automated tool. With further refinement and additional

training on rare seizure types, this could become an even more reliable diagnostic tool.

IV.8.6.b  Weighted fusion
In this case, each classifier output is multiplied by a weight reflecting its relevance

(reliability, accuracy, or medical importance) in the context of epilepsy detection. These
weights can be fixed prior. For example, if the biomarker “seizure” or “ictal” correlates
highly with critical events, their contribution will be accentuated in the final calculation
(>=30%), compared with indirect markers such as stress or sleep (<20%). An example of

weights is given in figure(IV-33).
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Figure 1V-34 Models with their allocated weights

The final score is computed as a weighted sum of the normalized probabilities from each
biomarker classifier, where the weights reflect the clinical importance or reliability of each

biomarker in the context of epilepsy detection. The equation is defined as:

Final score =Y (w_i x P_i) a7

e wi: The pre-defined weight assigned to biomarker ii, such that the sum of all weights equals
1 (3 wi=1). These weights prioritize biomarkers like "seizure" or "ictal" (weights >0.3) over

indirect markers like "stress" or "sleep” (weights <0.2).

e Pi: The normalized probability (0 to 1) output by the classifier for biomarker i.

2. Configure Fusion Parameters

Seizure Weight ®  IED Weight ® Ictal Weight (® Sleep Weight (®  stress Weight
—  — — — -

0.00 1.06 0.00 1.00 ©.09 1.60 ©.00 1.06 ©.00

Normalized Weights

Decision Threshold

0.00

Run Fusion Analysis

Figure 1V-35. The platform allows for the customization of biomarker weighting parameters
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3. Fusion Results
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Figure 1VV-36. Fusion Results

As shown in figure (IV-36), this CNN model demonstrates strong potential for epilepsy
detection, with several key strengths visible in the results. The probability-based output (blue
line) correctly identifies multiple seizure events, showing the model can recognize true
epileptic patterns. The adjustable threshold line allows customization for different clinical
needs, depending on each patient’s personal circumstances and this plays a huge role in better
and precise diagnosis. The clear visual output helps doctors quickly verify detections and spot

errors.

68



CHAPTER IV. IMPLEMENTATION AND RESULTS

1V .9. Streamlit Interface

At the completion of our project, we needed to connect it to the real world, so we built an
interactive user interface that combines all five of epilepsy biomarkers to give conclusive
results on whether the patient is epileptic or not, and what their state of mind is. We did this
using streamlit, which is easier to use and requires no conversion since we were already in
Python.

Interface for Epelipsy Detection using

EEG Analysis

This is an interactive user interface for automated detection of
epilepsy

EEG Biomarkers :

© Seizure
) IEDs
) Ictal
Sleep

) Stress

Final Analysis

Made by Moliehi Macheli. [moliehimac@gmail.com]

Figure 1V-37. Streamlit user interface
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Figure (IV-37) shows the sidebar of our user interface, displaying all the five EEG
biomarkers that can be detected with our epileptic seizure system. Upon clicking on one
biomarker, it allows the user to upload their EEG file, in EDF or CSV format. The “final
analysis” button allows the user to get the final results of whether the patient is epileptic or
not.

o _ ) < 0.006
Interface for Epelipsy Detection using e
EEG Analysis 0.004
0.002
0.000 T T T
Theta (4-7 Hz) Alpha (8-12 Hz) Beta (13-30 Hz)
This is an interactive user interface for automated detection of 3. Ratios and stress interpretatiOH
EEleE Alpha Power (pV?/Hz) : 0.003
EEG Biomarkers : Béta Power (uV?/Hz) : 0.001
SEE **Béta/Alpha Ratio **: 0.271
IEDs
Ictal **Béta/(Alpha + Théta) Ratio ** : 0.062
Sleep
O s |1 Stress level low [ relaxation
Final Analysis

The alpha bands are associated with relaxation, the beta with intense mental activity, and the theta
with inner calm. A high B/(a+8) ratio may indicate a state of stress or hyperactivation

Figure 1VV-38. Streamlit Ul in use

The figures (IV-38) and (I\VV-39) show our interface in interface, the first one shows stress
analysis results of the patient after being run. The analysis (in green) shows that the patient
was not stressed but rather in a relaxed state of mind. The comments below the results (in
blue) explaining how stress was diagnosed. The second figure below, shows files of all five of

the biomarkers selected, ready to be run and processed by our system.

/ ( v 1: .. . - Fichier EDF
Interface for Epelipsy Detection using

Drag and drop file here

FEG. 1:’;’1/1}'!'\./\ Browse files

chb05_08.edf 4 X

anotations

file h:
Dragané drop file here Browse files

This is an interactive user interface for automated detection of

epilepsy | chb05-summary.txt 4 X
EEG Biomarkers : @ EEGupload...
O seizure 4 CNN Biomarker Model Training : Seizure
IEDs
Ictal 2 CNN Biomarker Model Training : IED
Sleep » o
2 CNN Biomarker Model Training : Ictal
Stress
2 CNN Biomarker Model Training : Sleep
Final Analysis

2 CNN Biomarker Model Training : Stress

Fusion Model...
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Figure 1VV-39.Streamlit Ul in use

IV.10. Conclusion

In conclusion, this chapter has presented the development and evaluation of a CNN-based
model for automated epilepsy detection from EEG signals. The system integrates five
specialized classifiers, each targeting a distinct neurological biomarker: stress, sleep quality,
epileptic seizures, interictal epileptiform discharges and ictal states of the patient. The
individual models achieved promising performance, with the stress classifier reaching an
accuracy of (79%), the sleep model achieving the impressive accuracy of (95%), and analysis
of ictal states’ performance accuracy of (95%). The model used for seizure detection also
impressively achieved (98%) accuracy, (99%) AUC and the precision of (97%). Lastly, for
the interictal epileptiform discharges (IEDs), the model achieved (87%) in training accuracy
and rose to a promising (90%) accuracy. These results indicate that each classifier provides

meaningful contributions toward assessing brain states.

To make a final decision, two fusion strategies were applied at the decision level: one
based on a late fusion technique using an intelligent model, and the other using a weighted
fusion approach. Unlike direct classification from raw EEG signals, this method leverages the
probabilistic outputs of several specialized models, each focused on a particular biomarker
(stress, sleep, IED, ictal activity, or seizure detection). Each model provides complementary
information on the patient's brain state. The late fusion approach allows this heterogeneous
information to be combined during the decision-making process, either through weighted
averaging or model stacking, to produce a more robust final prediction. This strategy reduces
uncertainty arising from individual sub-model errors, enhances generalization, and improves
interpretability by highlighting the relative impact of each biomarker on the final diagnosis.
This is especially important in clinical scenarios, where seizures may appear in diverse forms

influenced by multiple physiological factors.

The weighted fusion method, in particular, helps boost the final model’s performance by
downplaying the influence of weaker classifiers and giving more weight to the most reliable
signals. Although the current accuracy of the fusion model is promising (86.11% overall

accuracy and 86% recall), its performance could likely be improved by training on a larger
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and more diverse dataset. Unfortunately, due to time constraints, such data expansion could

not be carried out during this project.

These results establish a strong foundation for future work. For future work, we will focus
on reducing false positives through expanded training datasets, improved feature engineering,
and model optimization. Clinical validation will also be essential to confirm the system's
performance in real-world medical settings. Overall, the proposed approach represents a
significant step toward reliable, automated EEG analysis and holds considerable potential for

enhancing diagnostic efficiency in neurological practice.
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GENERAL CONCLUSION

This project presented a comprehensive study on the detection of epilepsy using EEG
signals through the application of deep learning techniques with the integration of biomarkers.
Beginning with an overview of epilepsy and the challenges associated with its diagnosis, the
work emphasized the critical role of EEG as a non-invasive and reliable tool for capturing
brain activity. The study then explored the principles of machine learning and deep learning,
highlighting how neural networks—particularly convolutional architectures—can effectively

extract complex patterns in EEG data without the need for manual feature engineering.

A deep learning-based model was proposed, trained, and evaluated using real EEG
datasets, demonstrating promising performance in classifying seizure and non-seizure states.
The model achieves clinically relevant performance with the stress classifier reaching an
accuracy of (79%), the sleep model achieving the impressive accuracy of (95%), and analysis
of ictal states’ performance accuracy of (95%). The model used for seizure detection also
impressively achieved (98%) accuracy, (99%) AUC and the precision of (97%). Lastly, for
the interictal epileptiform discharges (IEDs), the model achieved (87%) in training accuracy
and rose to a promising (90%) accuracy. The final fusion model for epileptic seizure detector
obtained an overall accuracy of (86.11%) and a precision and recall of (86)% for seizure
detection and this supports the potential of Al-assisted systems to enhance the accuracy and
speed of epilepsy diagnosis, particularly in clinical environments where rapid and reliable

decision-making is crucial.

While the results are encouraging, certain limitations such as the need for large, well-
annotated datasets and the challenge of generalizing across patients remain. Future work
could focus on improving model robustness, incorporating transfer learning, or exploring real-

time implementation in wearable devices.

In conclusion, this work contributes to the growing field of intelligent biomedical systems

and demonstrates the value of deep learning in addressing real-world healthcare challenges. In
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addition, it also represents a step toward more efficient, accessible, and automated diagnostic

tools for epilepsy and other neurological disorders.
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