
Master's thesis
Field Electronics

Specialization in Embedded Systems Electronics

Presented by:BENMALLEM Feriel

Intelligent Detection of Apricot Ripeness using YOLOv8:
Embedded Application on Raspberry Pi 5 for Precision

Agriculture

Proposed by:Mrs. NACEUR Djamila

Academic Year 2024-2025

Acknowledgments

First of all, I thank ALLAH, our creator, for giving us the strength,
will, and courage to complete this work.

I thankMrs. NACEUR Djamila, my supervisor, who guided me in
this work.

I thank my parents, my sister Fella and my brother Imad Eddine for
their support.

I thankMr. ACHROUF Ibrahim for his support and help.

I thank the member juries for their expertise and guidance.

I would like to express my heartfelt thanks to all the people who
helped me, directly or indirectly, in the completion of this

work.
Finally, I would like to express my deepest gratitude to my family who

have always supported me and to all those who participated in the
completion of this thesis, as well as to all the teachers who

contributed to our education.

Dedications

It is with profound gratitude and sincere words,
That I dedicate this modest final year project

My dear parents Abderrazak and Latifa
To my dear sisters Fella and Chaima Warda

To my dear brothers Adlen, Imad, and Oussama
To my dear grandparentsMadjid BENMALLEM andMalek

BENAZALA
To all my teachers who have taught me, especiallyMrs. NACEUR

Djamila,Mr A. NAMANE, andMrs I. KAOULA.
toMr. ACHROF Ibrahim

To my colleagues and friends CHANANE Yasmine, CHANANE
Narimène, BENTOUTATI Loubna, DENDANI Khouloud, LARBI
AISSA Abderhmane, BENHOCINE Abderaouf, BENMESBAH

sarah.

صخلملا
ثلًحا فدًب 5ا Raspberry Piو 8YOLOv نشع حمتمً هحململا اضن نع هحذلا حشكلل ن جًجمد ن اًنجد هحبلا اذه حرتقي
جع امنمن نًج وثرممت وثًدحو جةصصعا فمنانب جممدنع وجمنحمع ءالنإ للاخ جع هحمزهلق. يا هحادهلا ةدوج ثرممت نمشمع
هحننلن. ويمق هحننلن حشململ ن وًقحمد ولمردن ثصنمادن هحنًنا اذه حتمي هحلرمراا هحدلا يا حشنلق هداوهإ ثلسمع مت 8YOLOvا
حتلرمل نمشمع ةوهج حشمزهدنمع ثديق ثما هحلصنوا فمً وهحةسنلق هحمنجشع هحمً ارن حتلًحنب يمنحع هًتمنفع هحلشدخ اذه ثعمً
يا هحمًجن هاعنطنننا وهحذلنإ هحمممل هحتمشت حترنمنب هحلرمرمع هحانلًج هحمما اذه حدلي حشبسنثمع. جستًهجع وءوهدج جلنحا ثصنو

هحذلمع. هحزدهنع ونت
هحذلمع. هحزدهنع هحمًجنا هاعنطنننا هحذلنإ 5ا YOLOv8ا Raspberry Pi هحململا اضن نع هحكلل صخلاتلملا: صخممللا

Résumé
Ce mémoire propose un système embarqué pour la détection intelligente de la maturité des
abricots, basé sur YOLOv8 et Raspberry Pi 5, afin de moderniser l’évaluation de la qualité
des fruits en Algérie. Grâce à la création et au prétraitement d’un jeu de données personnalisé,
à l’entraînement et à l’évaluation de plusieurs modèles YOLOv8, puis à l’optimisation pour
un déploiement en temps réel, le système permet une classification précise et rapide des
abricots mûrs et non mûrs. Cette solution répond aux défis de la pénurie de main-d’œuvre et
des pertes post-récolte, offrant aux agriculteurs un outil pratique pour une récolte optimale et
une gestion durable des vergers. Ce travail illustre l’apport concret du deep learning et de l’IA
embarquée pour l’agriculture de précision.
Mots-clés : Détection de Maturité de l’Abricot, YOLOv8, Raspberry Pi 5, IA embarquée,
agriculture de précision

Abstract
This thesis presents an embedded system for intelligent apricot ripeness detection using
YOLOv8 on Raspberry Pi 5, aiming to modernize fruit quality assessment in Algerian
agriculture. By creating and preprocessing a custom dataset, training and evaluating several
YOLOv8 models, and optimizing for real-time edge deployment, the system enables accurate,
fast, and objective classification of ripe and unripe apricots. The solution addresses challenges
of labor scarcity and post-harvest losses, offering farmers a practical tool for better harvest
timing and sustainable orchard management. This work demonstrates the potential of deep
learning and embedded AI to bring tangible benefits to precision agriculture.
Keywords: Detecting apricot ripeness, YOLOv8, Raspberry Pi 5, Embedded AI, Precision
Agriculture

LIST OF ACRONYMS AND ABBREVIATIONS

AI: Artificial Intelligence

AP: Average Precision

AUC: Area Under the Curve

BCE Loss: Binary Cross-Entropy Loss

BG: Background

CIoU Loss: Complete Intersection over Union Loss

CNNs: Convolutional Neural Networks

COCO: Common Objects in Context

CPU: Central Processing Unit

CSI: Camera Serial Interface

DFL Loss: Distribution Focal Loss

DL: Deep Learning

DNN: Deep Neural Network

F1-Curve: F1-score vs. Confidence Threshold

F1-Score: Harmonic mean between precision and recall

FN: False Negatives

FLOPs: Floating point operations per second

FP: False Positives

FPS: Frames per Second

GPIO: General Purpose Input/Output

GPU: Graphics Processing Unit

HSV: Hue, Saturation, Value

IDE: Integrated Development Environment

INT8: 8-bit integer quantization

IoU: Intersection over Union

k-NN: k-nearest neighbors

LPDDR4X: Low Power Double Data Rate

4X MB: Mega bytes mAP: mean Average

Precision microSD: Micro Secure Digital

MIPI CSI: Mobile Industry Processor Interface Camera Serial Interface

ML: Machine Learning

NMS: Non-Maximum Suppression

ONNX: Open Neural Network Exchange

OS: Operating System

P: Precision

P-Curve: Precision vs. Confidence Threshold

PIL: Python Imaging Library

PR-Curve: Precision–Recall curve

R: Recall

RAM: Random Access Memory

ReLU: Rectified Linear Unit

R-CNN: Regions with Convolutional Neural Networks

RoIs: Regions of Interest

RPi: Raspberry Pi

RPN: Region Proposal Network

SGD: Stochastic Gradient Descent

SPPF: Spatial Pyramid Pooling Fast

SSD: Single Shot MultiBox Detector

SVMs: Support Vector Machines

TP: True Positives

TPU: Tensor Processing Unit

USD: US Dollar

USB: Universal Serial Bus

VRAM: Video Random Access Memory

YOLO: You Only Look Once

Table of Contents

GENERAL INTRODUCTION ...1

CHAPTER 1: Agronomic Context, State of the Art, and Scientific Foundations ...3

1.1. INTRODUCTION...4

1.2. Apricot Cultivation in Algeria ...4
1.2.1. Economic and Geographic Significance ... 4
1.2.2. Agronomic Challenges..5
1.2.3. Labor and Market Constraints...5
1.2.4. Why Intelligent Solutions Are Needed...5

1.3. Limitations of Traditional Agriculture..6
1.3.1. Perishability and Ripening Challenges..6
1.3.2. Labor Scarcity and Time Sensitivity..6
1.3.3. Subjectivity in Maturity Assessment..7
1.3.4. Post-Harvest Losses and Quality Deterioration..7
1.3.5. Market Constraints and Export Risk..7

1.4. Scientific Foundations of Intelligent Vision Systems...8
1.4.1. Artificial Intelligence and Agriculture...8
1.4.2. Machine Learning Foundations...10
1.4.3. Deep Learning...11
1.4.4. Convolutional Neural Networks (CNNs)..13

1.5. Object Detection in Computer Vision...14
1.5.1. Fundamentals of Object Detection..15
1.5.2. Overview of Major Object Detection Algorithms..16
1.5.3. Evolution and Comparative Analysis of the YOLO Family..19
1.5.4. YOLOv8 Architecture...22
1.5.5. Performance Evaluation Metrics for Object Detection ... 24

1.6. Embedded System Constraints and Deployment Challenges.................................29
1.6.1. Embedded Platforms for On-Device AI in Agriculture..30
1.6.2. General Hardware Constraints for Embedded AI in Agriculture..33

1.7. CONCLUSION...35
CHAPTER 2: Methodology for Detection System Development36

2.1. INTRODUCTION..37

2.2. Project Workflow and System Pipeline...37

2.3. Dataset Creation...39
2.3.1. Image Collection and Sources..39
2.3.2. Selection Criteria and Dataset Construction...39
2.3.3. Cleaning and Deduplication..42
2.3.4. Manual Annotation with Roboflow...43
2.3.5. Dataset Structuring and Splitting for YOLOv8...45
2.3.6. Dataset Format and YOLOv8 Compatibility..46

2.4. Preprocessing Strategy and Applied Techniques..48
2.4.1. Preprocessing Pipeline: Methodology and Implementation..50
2.4.2. Folder Structuring and Image Renaming..55
2.4.3. Annotation Duplication for Preprocessed Images..55
2.4.4. Final Dataset Composition...56

2.5. YOLOv8 Model Training..57
2.5.1. Model Configuration and Training Parameters ... 57
2.5.2. Training Environment and Execution Setup..60
2.5.3. Generated Artifacts and Training Metrics..61
2.5.4. Interpretation of Epoch-Wise Training Curves..62
2.5.5. Interpretation of Post-Training Metric Curves ... 64

2.6. Evaluation of the best.pt Model on the Independent Test Set.................................68
2.6.1. Global Metrics and Diagnostic Curves..68
2.6.2. Confusion Matrix Analysis...69
2.6.3. Qualitative Test Batch Visualizations..70
2.6.4. Offline Inference on a YouTube Video (Kaggle) ...72
2.6.5. Real-Time Inference via Webcam (Local Development Environment) 73

2.7. Embedded Deployment on Raspberry Pi 5 (8GB)...75
2.7.1. System Preparation...75
2.7.2. Model Transfer and Integration...76
2.7.3. Real-Time Inference Script (Thonny IDE)...76
2.7.4. Outputs and Diagnostics...77
2.7.5. Practical Constraints and Future Directions..78

2.8. Conclusion..79
CHAPITRE 3 : Results and discussion...80

3.1. INTRODUCTION..81

3.2. Motivation for Multi-Stage Training..81

3.2.1. Initial Model Selection: Starting with YOLOv8n-50 ... 81
3.2.2. Extending Training Duration: Need for 100 Epochs...83
3.2.3. Scaling Model Size: From YOLOv8n to YOLOv8m...84
3.2.4. Confirmation of Size Limit: Why YOLOv8l and YOLOv8x Were Not Included......................88

3.3. Multi-Level Comparative Analysis of YOLOv8 Models for Embedded Deployment
..88
3.3.1. Methodology for Model Comparison...88
3.3.2. Quantitative Results: Automated Evaluation...89

3.4. Manual Evaluation Based on Confusion Matrices..92

3.5. Visual Comparison of Model Performance..99
3.5.1. Selection of Cases and Models for Analysis..99
3.5.2. Visual Analysis of Typical Cases .. 100
3.5.3. Final Qualitative Summary..102
3.5.4. Conclusion of Visual Analysis...102
3.5.5. Final Selection of the Best Models..103

3.6. Inference on Test Videos (Kaggle)...104
3.6.1. Experimental Setup (brief recap) .. 104

3.7. Inference on Test Videos (Kaggle/Cloud)..104
3.7.1. Experimental Setup (Recap)...104
3.7.2. Quantitative Results on CPU.. 105
3.7.3. Visual Examples..106
3.7.4. Comparative Interpretation of Annotated Frames...109

3.8. Future Directions for a Robust Agricultural Deployment......................................110

3.9. Real-Time Inference with Webcam...111

3.10. Embedded Inference on Raspberry Pi...112
3.10.1. Setup and Deployment Process..112
3.10.2. Results Before Filtering...113
3.10.3. Results After Filtering..114
3.10.4. Summary and Agronomic Implications..118

3.11. CONCLUSION...119
GENERAL CONCLUSION ...121

LIST OF FIGURES

Figure 1.1: Phenological Stages of Apricot Development...6

Figure 1.2: Mapping of agricultural challenges to AI-powered solutions..................................9

Figure 1.3: Relationship between AI, Machine Learning, and Deep Learning [19] 11

Figure 1.4: Basic architecture of a deep neural network (DNN) [10]..12

Figure 1.5: Basic architecture of a Convolutional Neural Network (CNN) 14

Figure 1.6: Visual Comparison of Image Classification, Object Detection, Semantic,
Segmentation, and Instance Segmentation [25]..15

Figure 1.7: Structural Overview of the YOLOv8 Architecture...23

Figure 1.8: Illustration of Intersection over Union (IoU) between a predicted bounding box
and the ground truth..26

Figure 1.9: Visual examples of high vs low IoU scores. ...26

Figure 1.10: Example of a precision-recall curve for a single object class.27

Figure 1.11: Raspberry Pi 5 board with CSI-connected camera module and GPIO header......31

Figure 2.1: System Pipeline for Intelligent Apricot Maturity Detection...................................38

Figure 2.2 : Examples of Dataset Images from Different Sources...41

Figure 2.3:Workflow of Perceptual Hashing and Duplicate Filtering......................................43

Figure 2.4:Manual Annotation of Apricots Using Roboflow...45

Figure 2.5: Dataset Split Used for YOLOv8 Training..46

Figure 2.6: data.yaml Configuration File of my dataset..47

Figure 2.7: Sample YOLOv8 Annotation File (.txt) from my dataset.......................................48

Figure 2.8: Structured preprocessing pipeline simulating Raspberry Pi Camera v2.1 output...51

Figure 2.9: Sequential preprocessing transformations applied to a sample image....................54

Figure 2.10: Final Dataset Directory Structure..57

Figure 2.11: Training Performance Curves Generated by YOLOv8 (results.png)....................62

Figure 2.12: YOLOv8 Training Curves: F1-score vs. Confidence Threshold 64

Figure 2.13: YOLOv8 Training Curves: Precision–Recall Curve...65

Figure 2.14: YOLOv8 Training Curves: Precision vs. Confidence Threshold..........................66

Figure 2.15: YOLOv8 Training Curves: Recall vs. Confidence Threshold..............................67

Figure 2.16: Normalized Confusion Matrix for Test Set Evaluation..69

Figure 2.17: Qualitative Visualization of Predictions on the Test Set.......................................71

Figure 2.18:Workflow for Offline Video Inference with yolov8m50 (Kaggle).......................72

Figure 2.19: Real-Time Inference Setup with Local Webcam..74

Figure 2.20: Real-Time Embedded Inference Pipeline on Raspberry Pi 5................................77

Figure 2.21: Real-Time Inference on Raspberry Pi 5 using Thonny IDE................................78

Figure 3.1: training curves of model YOLOv8n avec 50 epoches .. 82

Figure 3.2: Training curves of the model YOLOv8n with 100 epoches 83

Figure 3.3: Training Performance Curves for YOLOv8s with 50 epoches...............................85

Figure 3.4: Training Performance Curves for YOLOv8s with 100 epoches.............................85

Figure 3.5: Training Performance Curves for YOLOv8m with 50 epoches..............................86

Figure 3.6: Training Performance Curves for YOLOv8s and YOLOv8m with 100 epoches...86

Figure 3.7:Raw confusion matrix example for YOLOv8n-50...94

Figure 3.8: Predictions on a duplicated fruit (YOLOv8n-100 / YOLOv8s-100 / YOLOv8m-50)
.. 100

Figure 3.9:Misclassification between ripe and unripe..101

Figure 3.10: Single, stable, and well-centered detection..101

Figure 3.11: Annotated frame from Video 1 using YOLOv8n-100..106

Figure 3.12: Annotated frame from Video 2 using YOLOv8n-100..107

Figure 3.13: Another annotated frame from Video 2 using YOLOv8n-100...........................107

Figure 3.14: Annotated frame from Video 1 using YOLOv8m-50...108

Figure 3.15: Annotated frame from Video 1 using YOLOv8m-50...108

Figure 3.16: Another annotated frame from Video 2 using YOLOv8m-50............................109

Figure 3.17: Live Inference Output with Webcam..112

Figure 3.18: Raw detection output from Raspberry Pi (include bounding boxes for unripe
apricots). ... 113

Figure 3.19: Raw detection output from Raspberry Pi (include bounding boxes for ripe
apricots) .. 113

Figure 3.20: Filtered inference output: only ripe fruits detected. ..114

Figure 3.21: Filtered inference on mixed maturity image: only unripe fruits shown..............115

Figure 3.22: Filtered inference during thinning stage: unripe-only image..............................116

Figure 3.23: Complete detection output 1: ripe and unripe fruits counted together................117

Figure 3.24: Complete detection output 2: ripe and unripe fruits counted together................118

LIST OF TABLES
Table 1.1: Comparison of Manual vs. Intelligent Agricultural Approaches................................8

Table 1.2: Comparative Analysis of Major Object Detection Models.......................................18

Table 1.3: Comparative Summary of YOLO Versions (v1–v8)..21

Table 1.4: Summary of YOLOv8 Architectural Components..23

Table 1.5: Comparison of Embedded Processing Units: CPU, GPU, and TPU........................35

Table 2.1: Image Selection Criteria for Dataset Construction...40

Table 2.2: Summary of Preprocessing Operations Applied to Simulate Raspberry Pi Camera
v2.1 Output ...50

Table 2.3: Summary of Final Dataset Composition and Annotation Count..............................56

Table 2.4: Overview of YOLOv8 Model Variants Selected for Training.................................58

Table 2.5: Training Environment and Execution Configuration ... 60

Table 2.6: Output Files Generated by YOLOv8 Training Sessions..61

Table 2.7: Raspberry Pi 5 Environment Setup for YOLOv8 Deployment................................75

Table 3.1: Comparative Summary of Training Behaviors for YOLOv8s and YOLOv8m
Models .. 87

Table 3.2: model.val() Performance Metrics (from Ultralytics)..89

Table 3.3: Raw Confusion Matrix YOLOv8n-50..94

Table 3.4:Manual Evaluation of YOLOv8 Variants for Agronomic Objectives and Embedded
Deployment...96

Table 3.5: Qualitative summary of visual behaviors on test_batch (YOLOv8n-100 / s-100 / m-
50)...102

Table 3.6: Inference Results on Test Videos (Kaggle, CPU) .. 105

1

GENERAL INTRODUCTION
Agriculture plays a central role in the economy and food security of many countries particularly
in Algeria, where apricot cultivation holds special importance. However, managing the harvest
of this fruit remains a major challenge due to its highly perishable nature, the variability of its
ripening stages, and the difficulty of objectively assessing the optimal harvest time.
Traditionally, this evaluation relies on manual visual inspection a subjective, time-consuming
method that heavily depends on human expertise. These limitations often lead to significant
post-harvest losses, inconsistent product quality, and challenges in meeting the demands of
both local and international markets.
In light of these challenges, the introduction of intelligent and automated solutions emerges as
a promising path to modernize agricultural practices and improve farm profitability. In recent
years, the remarkable progress of artificial intelligence particularly deep learning has enabled
the development of computer vision systems capable of analyzing images in real time with high
precision. Among the most effective architectures, the YOLO (You Only Look Once) family
has stood out for its speed and efficiency, with YOLOv8 currently representing the state of the
art for object detection in resource-constrained environments.
Within this context, a central question arises: how can we design an embedded, intelligent, and
reliable system capable of automatically detecting apricot maturity under real-world conditions,
to support farmers in their decision-making and reduce post-harvest losses? This thesis is part
of that innovation effort and proposes the development of an intelligent apricot maturity
detection system based on the YOLOv8 model, deployed on a Raspberry Pi 5 embedded
platform. The proposed approach includes the creation and annotation of a representative
dataset, the training and evaluation of the detection model, and its integration into an embedded
device for real-time field use. This solution aims to provide farmers with a practical, cost-
effective, and high-performance tool capable of optimizing harvest management and improving
the quality of fruits intended for market.

2

To present the entirety of the work in a clear and structured manner, this thesis is organized into
three main chapters:

• Chapter 1: Agronomic context, state of the art, and scientific foundations, presenting
the challenges of apricot cultivation, the limitations of traditional methods, and the
theoretical foundations of artificial intelligence and computer vision systems.

• Chapter 2: Methodology for developing the detection system, detailing data collection
and processing, YOLOv8model configuration and training, as well as validation steps.

• Chapter 3: Results and discussion, presenting the system’s performance, its
deployment on Raspberry Pi 5, and a critical analysis of the results obtained under real-
world conditions.

3

CHAPTER 1: Agronomic Context, State of
the Art, and Scientific Foundations

4

1.1. INTRODUCTION

Modern agriculture is undergoing structural and environmental transformations that demand
urgent adaptation strategies. Critical challenges including declining rural labor availability,
increasing quality standards for exports, and the unpredictable consequences of climate change
are putting pressure on traditional cultivation systems [3]. These pressures are particularly
acute in fruit production, where harvesting precision directly affects commercial success.

In this context, artificial intelligence (AI), machine learning, and computer vision are emerging
as essential tools for modernizing agriculture. These technologies offer new ways to monitor
crops, optimize harvest timing, and reduce waste through more consistent and scalable
decision-making systems [1].

This chapter provides the agronomic and scientific foundations necessary for understanding
the rationale behind applying AI to apricot production. It begins with an overview of apricot
cultivation in Algeria and its economic significance. It then outlines the structural and
environmental limitations of traditional agricultural practices. Finally, it introduces the
principles of intelligent agriculture, followed by a review of the theoretical foundations
underpinning this thesis namely, AI, deep learning, computer vision, and object detection.

1.2. Apricot Cultivation in Algeria

1.2.1. Economic and Geographic Significance

Apricot cultivation (Prunus armeniaca) plays a strategic role in Algeria’s fruit sector, especially
in the semi-arid and high-plateau zones. More than 20,000 hectares are dedicated to apricot
orchards, with national production fluctuating between 250,000 and 300,000 tonnes per year
[3]. Key producing regions include Mitidja (Blida, Médéa, Bouira), Batna, and Aïn Oussera,
where thermal amplitudes and high altitudes support both flowering and sugar concentration
[13].

Apricots are commercially important for both domestic and export markets due to their
versatility in processing (fresh consumption, jams, dried fruit, juices) and relatively short
cultivation cycle.
However, the sector's full potential is limited by systemic agronomic and logistical barriers
[11].

5

1.2.2. Agronomic Challenges

Apricot trees are among the earliest bloomers in the temperate zone, with flowering occurring
between late February and early April depending on cultivar and region. This phenological trait
exposes them to late spring frosts, which frequently damage floral buds and reduce yield
consistency [11,13].

In addition, apricots exhibit asynchronous ripening. Fruits on the same branch may reach full
maturity at different times within a narrow window, complicating optimal harvest timing and
increasing the risk of over- or under-ripe yields [13]. Rapid perishability further compounds
the issue, as delays between maturity detection and harvest can result in significant post-harvest
losses due to bruising, drop, or microbial spoilage [6,11].

1.2.3. Labor and Market Constraints

The harvest process is labor-intensive and relies heavily on skilled seasonal workers who can
visually assess ripeness. However, Algeria faces growing labor shortages due to rural
depopulation, urban migration, and an aging agricultural workforce [9]. These demographic
pressures hinder the ability to conduct timely and repeated harvesting rounds.

Moreover, the global fruit market increasingly demands standardization in size, maturity, and
visual quality criteria that are difficult to meet with manual methods alone. Non-uniform
harvests often lead to market rejections or price downgrading [7].

1.2.4. Why Intelligent Solutions Are Needed

Given these structural and agronomic constraints, traditional harvesting strategies struggle to
maintain efficiency, uniformity, and profitability. Precision agriculture supported by AI and
computer vision offers a promising alternative. These technologies can automate ripeness
assessment based on visual features such as color gradients and texture, providing fast and
objective evaluations of fruit maturity [1,8].

Furthermore, low-cost embedded systems (e.g., Raspberry Pi) enable field-deployable solutions
even in resource-limited settings [8]. However, to implement such systems effectively, a deep
understanding of apricot phenology is essential for defining detection targets and training AI
models on biologically relevant classes (e.g., immature vs. ripe).

6

Figure 1.1 illustrates these key developmental phases, from fruit set to physiological ripening,
which are distinguished by observable changes in color and size.

Figure 1.1: Phenological Stages of Apricot Development
These challenges and biological rhythms form the rationale for transitioning to intelligent
detection systems, a shift explored further in the next section on the limitations of manual
agricultural practices.

1.3. Limitations of Traditional Agriculture

Traditional apricot cultivation in Algeria, while rooted in local expertise and seasonal
knowledge, faces critical limitations that constrain its ability to meet modern production,
quality, and export demands. This section identifies the principal operational, economic, and
technical limitations of manual practices, particularly those impacting productivity, postharvest
quality, and market competitiveness.

1.3.1. Perishability and Ripening Challenges

Apricots are non-climacteric fruits with high perishability and a narrow post-harvest window.
Their uneven ripening pattern requires multiple harvest passes, increasing labor intensity and
the risk of misclassification [11]. Inappropriate harvest timing whether premature or delayed
directly compromises flavor, texture, and shelf life. These biological constraints significantly
limit storage, transport, and export potential for small-scale producers [11].

1.3.2. Labor Scarcity and Time Sensitivity

Manual harvesting and post-harvest sorting are labor-intensive tasks often concentrated within
a short ripening period. Algeria faces increasing rural depopulation, aging farm labor, and

7

declining interest from younger generations [9]. This chronic shortage leads to unharvested
yields, delays, or excessive workloads that affect fruit quality and marketability. The situation
is worsened by the need for skilled labor to assess fruit maturity accurately and handle produce
with care [6].

1.3.3. Subjectivity in Maturity Assessment

Evaluating apricot maturity based on visual and tactile indicators such as color, firmness, and
size remains subjective and prone to inconsistency. Operators’ fatigue, varying experience
levels, and changing light conditions during fieldwork introduce significant errors [1,6]. Such
variability compromises sorting, grading, and even harvest decisions, often resulting in
heterogeneous batches that fail export requirements [7].

1.3.4. Post-Harvest Losses and Quality Deterioration

Improper manual handling is a major source of post-harvest losses. Bruising, tearing, or
compression damage often occur during harvesting, sorting, or transport. These injuries
accelerate fungal growth, reduce shelf life, and lead to batch rejections [11]. In Algeria,
postharvest losses in stone fruit chains including apricots are estimated to exceed 20% annually
[11], disproportionately affecting small and medium-sized farms with limited access to cold
chain infrastructure.

1.3.5. Market Constraints and Export Risk

Export markets impose strict standards regarding appearance, ripeness uniformity, and size.
Manual techniques often fail to consistently meet these specifications, increasing the risk of
rejection or downgraded classification [7]. The absence of traceable, objective maturity
assessment tools also limits producers’ ability to meet international certification standards,
impeding their access to high-value markets [12].

To synthesize these challenges, Table 1.1 offers a direct comparison of the limitations
inherent in manual practices against the potential solutions offered by intelligent, AI-based
systems.

8

Table 1.1: Comparison of Manual vs. Intelligent Agricultural Approaches

Limitation Manual Practice Intelligent (AI-based) Alternative

Maturity Detection Subjective visual judgment Objective image-based classification
[1,8]

Harvest Scheduling Labor-driven,
timeconstrained

Automated, data-informed timing [8]

Post-Harvest Handling Inconsistent, damageprone Precision handling via guided
robotics [8]

Labor Dependency High seasonal labor
requirement

Reduced manual input with
automation [9]

Market Standard
Compliance

Variable and
operatordependent

Standardized classification and
traceability [7]

These structural and operational limitations reveal the need for scalable, consistent, and
intelligent systems capable of automating core tasks in apricot production. The following
section explores how artificial intelligence (AI), and more specifically computer vision and
deep learning, offer concrete technological responses to these challenges.

1.4. Scientific Foundations of Intelligent Vision Systems

1.4.1. Artificial Intelligence and Agriculture

The agricultural sector is undergoing a profound transformation driven by the integration of
advanced technologies, among which artificial intelligence (AI) plays a pivotal role. Faced
with growing challenges such as labor shortages, climate variability, soil degradation, and
increased demand for food quality and traceability, traditional farming systems are increasingly
turning to intelligent automation for sustainable solutions [3].

9

Artificial intelligence, broadly defined as the capacity of machines to perform tasks that
typically require human intelligence, has found significant application in precision agriculture.
Through AI-driven systems, farms can monitor crops, optimize resource usage, predict yields,
detect diseases, and improve harvesting strategies [1]. These innovations are not only enhancing
productivity but also addressing environmental and economic concerns in the agricultural
supply chain.

In the context of fruit cultivation, AI has shown particular promise in addressing the
complexities of crop management. Tasks such as fruit counting, maturity assessment, disease
detection, and quality classification require accurate interpretation of visual data. AI models,
particularly those based on machine learning and deep learning, have demonstrated high
accuracy in these tasks, even under variable lighting and background conditions typical of
realworld orchards [8].

Moreover, AI enables real-time, data-driven decision-making in the field, especially when
deployed on embedded platforms such as Raspberry Pi or Jetson Nano[32,33]. These platforms
allow lightweight AI models to function independently, reducing reliance on cloud connectivity
and enabling timely actions like fruit picking or irrigation control. In resource-constrained
environments, this embedded intelligence becomes essential for ensuring both efficiency and
scalability.

Figure 1.2 illustrates how AI directly responds to several of the critical challenges faced in
agriculture, including environmental uncertainty, manual labor dependence, and quality
inconsistency. The synergy between AI capabilities and agricultural needs underscores its
growing relevance in field applications

10

Figure 1.2: Mapping of agricultural challenges to AI-powered solutions
In summary, artificial intelligence serves as a transformative technology for modern agriculture.
Its ability to process vast amounts of sensor or image data, adapt to field conditions, and inform
decision-making makes it a foundational pillar for the development of intelligent systems such
as the one explored in this thesis.

1.4.2. Machine Learning Foundations

Building upon the broader field of artificial intelligence, machine learning (ML) represents a
specialized domain that enables systems to learn from data and improve performance without
being explicitly programmed [14]. ML is particularly effective in agricultural applications that
require adaptive pattern recognition such as image-based fruit detection, classification, and
yield estimation [1].

Machine learning can be defined as the development of algorithms that automatically identify
patterns and relationships in datasets, and then use these patterns to make predictions or
decisions [14]. It is categorized into four primary types:

• Supervised Learning: The model is trained on labeled data, making it suitable for tasks
like fruit classification, where each image is annotated as "ripe" or "unripe" [15].

• Unsupervised Learning: The algorithm finds hidden structures in unlabeled data, useful
for clustering different crop types or identifying outliers [15].

• Semi-supervised Learning: Combines a small amount of labeled data with a large amount
of unlabeled data, reducing annotation effort in large-scale agricultural datasets [16].

• Reinforcement Learning: The system learns through interactions with the environment,
receiving feedback via rewards or penalties; though promising, this method is less common
in static vision tasks like fruit detection [17].

ML algorithms, such as support vector machines (SVMs), decision trees, and k-nearest
neighbors (k-NN), have been widely used in agricultural studies [18]. However, their
effectiveness is often constrained when dealing with complex and high-dimensional data such
as raw images. For tasks like apricot maturity detection which require nuanced visual
interpretation traditional MLmay struggle to generalize under real-world variability in lighting,
occlusion, and fruit morphology [1,18].

11

Nevertheless, ML serves as a foundation for more advanced techniques, providing essential
groundwork for deep learning models. Figure 1.3 illustrates the relationship between AI, ML,
and deep learning, emphasizing the nested structure and their respective scopes.

Figure 1.3: Relationship between AI, Machine Learning, and Deep Learning [19]

In conclusion, machine learning plays a vital role in the digital transformation of agriculture.
While its limitations in complex visual analysis have driven the field toward deep learning, its
principles remain foundational for the intelligent systems addressed in this work.

1.4.3. Deep Learning

Deep learning (DL) is a subfield of machine learning that focuses on artificial neural networks
with multiple layers known as deep neural networks capable of automatically extracting
hierarchical features from raw data. Unlike traditional machine learning algorithms that often
rely on handcrafted features, deep learning models learn these features directly from data,
enabling higher accuracy in complex pattern recognition tasks [24].

In the context of image analysis, deep learning particularly convolutional neural networks
(CNNs) has revolutionized fields such as medical diagnostics, autonomous driving, and
precision agriculture [1]. These models have demonstrated exceptional performance in tasks
such as object detection, classification, and segmentation, owing to their ability to process
highdimensional data like images with minimal manual intervention.

The core strength of deep learning lies in its ability to generalize across varied conditions, such
as changes in lighting, background, or occlusion. This capability is critical in agricultural
environments, where natural variability can challenge conventional algorithms. For example,

12

in fruit maturity detection, CNNs can learn discriminative features that distinguish ripe from
unripe apricots even when visual cues are subtle and data is noisy [1].

Despite its strengths, deep learning also presents several limitations:

• Data dependency: Requires large amounts of annotated data, which can be costly and
time-consuming to collect in agricultural settings [6,21].

• Computational demands: Training deep neural networks requires significant
computational resources, including GPUs or TPUs, which may not always be accessible
to field researchers or small-scale producers [22].

• Interpretability: Deep learning models are often viewed as "black boxes," making it
difficult to interpret the decision-making process a critical barrier for applications
requiring explainability, such as plant disease diagnosis or agricultural certification
[23].

• Overfitting risks: With small datasets, there is a risk of overfitting, where the model
performs well on training data but poorly on unseen data [19].

These challenges are gradually being addressed through techniques such as data augmentation,
transfer learning, model compression, and the development of explainable AI frameworks
[1,22].

Figure 1.4 provides an overview of a basic deep neural network (DNN) architecture, illustrating
how deep learning models process input data through multiple interconnected layers to extract
hierarchical features and make predict

Figure 1.4: Basic architecture of a deep neural network (DNN) [10]

13

In summary, deep learning offers a powerful solution for fruit maturity detection, enabling
robust performance in unstructured and variable environments. Its ability to learn complex
visual patterns from raw image data makes it particularly well-suited for the task at hand. The
next section focuses on convolutional neural networks, the foundational architecture powering
most modern deep learning applications in computer vision.

1.4.4. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) represent the backbone of most deep learning models
applied to image processing tasks, including those in agriculture. Emerging directly from the
foundations of deep learning, CNNs are particularly suited for structured grid-like data such as
images [24]. Their layered architecture enables them to automatically learn spatial hierarchies
of features, making them highly effective for visual pattern recognition tasks where manual
feature engineering is insufficient.

CNNs are composed of several types of layers, each playing a specific role in processing the
input image:

• Convolutional layers apply filters (kernels) that scan the input image and detect local
features such as edges, textures, or color gradients.

• Activation functions, typically the Rectified Linear Unit (ReLU), introduce
nonlinearity into the network, allowing it to model complex patterns [16].

• Pooling layers (such as max pooling) reduce the spatial dimensions of the data,
improving computational efficiency and controlling overfitting by focusing on the most
prominent features.

• Fully connected layers near the output stage integrate all extracted features to make
the final classification or regression decision [16,24].

One of the main strengths of CNNs is their ability to extract relevant features from raw image
data without manual intervention. This is particularly advantageous in agriculture, where
images captured in the field are subject to non-uniform lighting, occlusions by leaves or
branches, and complex backgrounds. CNNs can generalize well under such conditions by
learning translationinvariant and spatially local patterns [22,1].

14

In the context of apricot maturity detection, CNNs form the core of object detection models
such as YOLOv8. These models not only classify fruit as ripe or unripe but also localize them
within the frame, enabling real-time monitoring or robotic harvesting. By integrating CNNs
within YOLO’s end-to-end architecture, the system benefits from high-speed inference and
robust detection performance, even in noisy or variable environments [12,21].

The basic architecture of a Convolutional Neural Network (CNN), illustrating the sequential
flow from input to output layers, is presented in Figure 1.5.

Figure 1.5: Basic architecture of a Convolutional Neural Network (CNN) [10]

The flexibility and scalability of CNNs have led to their adoption in nearly all state-of-the-art
computer vision systems in agriculture, from disease diagnosis to yield prediction and maturity
detection. Their use in this project lays the groundwork for the object detection system
developed in subsequent chapters.

The next section examines how CNNs are integrated into object detection frameworks, with a
particular focus on the evolution and comparative performance of the YOLO family.

1.5. Object Detection in Computer Vision

Computer vision, a prominent subfield of artificial intelligence, seeks to replicate and enhance
human visual perception by enabling machines to interpret, analyze, and act upon visual data
[1,24]. It underpins a wide range of applications from medical diagnostics and autonomous
navigation to precision agriculture where automated visual understanding is essential for
effective decision-making and operational efficiency.

15

Among its core tasks, three stand out: image classification, object detection, and image
segmentation. Classification involves assigning a single label to an entire image; object detection
identifies and localizes multiple objects within a scene using bounding boxes; segmentation
performs the most detailed analysis by labeling each pixel according to object class [25].
Clarifying these distinctions is critical in this thesis, which focuses on the detection and spatial
localization of ripe and unripe apricots in complex orchard environments a challenge that aligns
most directly with object detection techniques.

To clarify these distinctions, Figure 1.6 visually compares image classification, object detection,
semantic segmentation, and instance segmentation.

Figure 1.6: Visual Comparison of Image Classification, Object Detection, Semantic Segmentation, and
Instance Segmentation [25].

(a) Classification assigns a single label to the image.

(b) Object detection identifies multiple apples with bounding boxes.

(c) Semantic segmentation labels each pixel by class (e.g., apple, leaf, trunk).

(d) Instance segmentation distinguishes between individual fruit instances.

The next subsection delves into the fundamentals of object detection, outlining its principles
and its essential role in enabling real-time, automated fruit maturity assessment under
agricultural field conditions.

16

1.5.1. Fundamentals of Object Detection

At its core, object detection involves two key operations: locating objects of interest within an
image and assigning a category label to each instance. This dual-task output bounding box
regression and class prediction is typically achieved through deep learning models, most
notably Convolutional Neural Networks (CNNs), which extract hierarchical spatial features
from the input image [1,8]. These features are then passed through specialized detection heads
that generate candidate object regions, refine box coordinates, and classify each object
according to predefined categories.

In agricultural applications, this pipeline must operate under far more challenging conditions
than in controlled environments. Field images often contain heterogeneous lighting, partial
occlusions from foliage, and dense clustering of similar-looking fruits, all of which increase
the likelihood of missed or incorrect detections [18,21]. Furthermore, the physical variability
among fruits such as differences in shape, size, or color gradients across ripening stages
demands that detection models be both precise and adaptable.

Despite these complexities, the practical impact of robust object detection in agriculture is
substantial. For fruit maturity assessment, it allows automated systems to reliably distinguish
between ripe and unripe fruits within the same scene. In yield estimation, it supports accurate
fruit counting over time and across plots. In robotic harvesting, it provides the necessary
localization data to guide end-effectors toward target fruits while avoiding non-target regions
like leaves or stems [22].

Given these requirements, object detection architectures must strike a balance between speed,
accuracy, and computational efficiency especially for embedded systems such as Raspberry
Pi– based platforms used in precision agriculture. The following subsections examine the
evolution of deep learning–based object detection algorithms and evaluate their strengths and
limitations in this context.

1.5.2. Overview of Major Object Detection Algorithms

Modern object detection has evolved through distinct algorithmic paradigms each reflecting
tradeoffs between computational cost, accuracy, and inference speed. In the context of real-
time agricultural applications such as fruit maturity detection, understanding the architecture
and practical implications of these models is critical. This section presents a comparative
overview of the most influential object detection algorithms to date: R-CNN, Fast R-CNN,

17

Faster RCNN, SSD, and the YOLO family. Each is evaluated for its detection strategy,
performance metrics, and suitability for embedded systems in agricultural environments.

a. Two-Stage Detectors: Region-Based CNN Approaches

➢ R-CNN (Regions with Convolutional Neural Networks) introduced the idea of
applying deep learning to object detection by first generating region proposals using
selective search, then classifying each with a CNN [26]. While accurate, the model is
computationally expensive due to its multi-step pipeline and repeated CNN execution
per region. Its high latency (~47 seconds per image on CPU) renders it unusable for
real-time or embedded tasks.

➢ Fast R-CNN addressed this bottleneck by applying the CNN to the entire image once
and extracting features from regions of interest (RoIs) using a specialized pooling layer
[26]. This improved both training and inference speed, but still relied on external
proposal generation, limiting its practical deployment.

➢ Faster R-CNN resolved the final bottleneck by integrating a Region Proposal Network
(RPN) into the architecture [26]. This allows for end-to-end training and faster detection
(5–17 FPS), while preserving accuracy. However, the two-stage nature still incurs
higher computational cost, limiting use on lightweight hardware such as Raspberry Pi
or similar edge devices.

b. One-Stage Detectors: SSD and YOLO Paradigms

➢ SSD (Single ShotMultiBox Detector) eliminates the proposal step by predicting object
locations and classes directly from multiple feature maps in a single pass [4]. It uses
multiscale feature extraction to enhance detection across object sizes and achieves
respectable mAP scores (72–78%) at real-time speeds (~30–60 FPS). SSD's relatively
moderate model size and single-shot architecture make it more suitable for
resourceconstrained environments.

➢ YOLO (You Only Look Once) redefines object detection as a single regression
problem, simultaneously predicting bounding boxes, class probabilities, and confidence
scores for all regions of interest in a single global image pass [5]. This global context
integration boosts speed and enables rapid inference, achieving over 150 FPS onmodern
GPUs, with mAP scores up to ~90% in recent versions. YOLO’s compact architectures,
anchor-free strategies, and progressive optimizations have made it a widely preferred
option for embedded and mobile deployment scenarios.

18

To provide a comprehensive overview of the key distinctions and performance metrics among various
object detection models, Table 1.2 presents a comparative analysis.

Table 1.2: Comparative Analysis of Major Object Detection Models

Algorithm Architecture mAP
(IoU=0.5)

Speed
(FPS)

Model
Size
(MB)

Embedded
Suitability

Strengths Limitations

R-CNN Two-stage 58–66% < 1 ~500–
600
MB

[26]

Very low Historically
accurate
(ImageNet/CNNbased)

Very slow;
~2000 RoIs
per image;
not suitable
for real-time

Fast R-
CNN

Two-stage 65–70% ~7–10 ~300–
350
MB

[26]

Low Faster than RCNN;
single forward pass
per image

Still
depends on
selective
search for
region
proposals

Faster R-
CNN

Two-stage 70–80% ~10–
20

~170–
250
MB

[27]

Moderate Integrated RPN;
improved speed and
accuracy

Higher
memory
and latency;
not optimal
for edge
devices

SSD One-stage 72–78% ~30–
60

~100–
120
MB

[4]

Good Multi-scale detection;
fast; moderate size Weaker

performance
on small or
overlapping
objects

19

YOLO
(family)

One-stage 65–90% ~45–
220

~10–80
MB
[5,28]

Excellent Global image
processing; realtime
speed; scalable

Early
versions
weak on
small/close
objects;
improved in
later
versions[28]

Note: Values are approximate and based on standard benchmarks using high-end GPUs (e.g.,
NVIDIA Tesla K40, GTX 1080 Ti, or Tesla V100) as reported in . Actual performance will
vary depending on implementation, dataset, input resolution, and hardware (GPU, CPU, edge
TPU,..etc).

c. Scientific Synthesis: Why One-Stage Detectors Excel in Real-Time Agricultural Systems
From an engineering and agronomic perspective, single-stage object detectors especially SSD
and YOLO are the most appropriate for deployment in embedded systems operating in
agricultural environments. Unlike two-stage models that process candidate regions
sequentially, one-stage models treat detection as a unified task. This significantly reduces
latency and computational demand while supporting robust performance under variable
lighting, partial occlusion, and noise [1,22].

Real-time detection is vital in fruit harvesting systems, where robotic end-effectors must
respond instantly to visual inputs. YOLO and SSD meet this requirement by achieving high
frame rates with compact architectures often under 100 MB in model size which is ideal for
devices like Raspberry Pi or NVIDIA Jetson platforms [27]. Moreover, YOLO's strategy of
global image interpretation in a single forward pass allows it to retain contextual cues, making
it particularly effective in natural orchard scenes.

Although early versions of YOLO and SSD suffered from reduced accuracy on small or
overlapping objects, recent research has introduced techniques such as feature pyramid
networks, spatial attention, and multi-scale anchor-free decoding to mitigate these issues [28].
These ongoing advancements are steadily improving the robustness and generalization of
single-stage detectors, making them increasingly suitable for tasks such as fruit maturity
estimation, yield mapping, and autonomous harvesting.

20

In conclusion, the architectural simplicity, real-time speed, and low hardware footprint of single
stage detectors explain their dominance in practical precision agriculture applications,
particularly in embedded systems.

1.5.3. Evolution and Comparative Analysis of the YOLO Family

Since its initial release, the YOLO (You Only Look Once) series has undergone significant
architectural evolution, consistently pushing the boundaries of real-time object detection.
Across eight major versions, YOLO has shifted from a coarse grid-based detector to a highly
optimized, anchor-free framework deployable on lightweight embedded hardware. This section
provides a focused, version-by-version comparison of the YOLO family, highlighting its
architectural refinements, empirical performance, and embedded applicability.

a. Technical Progression from YOLOv1 to YOLOv8

➢ YOLOv1 (2016): Introduced the core principle of single-stage detection, enabling high
speed but limited in accuracy particularly on small objects due to its coarse output grid
[37].

➢ YOLOv2 (2017): Incorporated anchor boxes, batch normalization, and a new backbone
(Darknet-19), improving object localization and generalization[37].

➢ YOLOv3 (2018): Adopted a multi-scale feature strategy using Darknet-53, enabling
better detection across object sizes but at the cost of increased model size [37].

➢ YOLOv4 (2020): Integrated CSPDarknet-53, spatial pyramid pooling, and novel
augmentations (Mosaic, DropBlock), pushing accuracy and speed in parallel [37].

➢ YOLOv5 (2020): Developed independently by Ultralytics, it introduced a
PyTorchnative implementation with modular scaling options (n, s, m, l, x), boosting
accessibility and deployment flexibility. It quickly became the de facto standard in real-
time detection, especially in research and embedded applications [37,38].

➢ YOLOv6 and YOLOv7 (2022): Focused on reparameterization, task alignment, and
efficient training strategies. YOLOv7, in particular, offered competitive mAP with
better runtime efficiency for medium-sized models [38].

➢ YOLOv8 (2023): Marked a significant shift with an anchor-free detection head, a
decoupled classification-regression architecture, and enhanced export capabilities. It
supports multiple formats (ONNX, TensorRT, CoreML) and features robust
performance in both detection and segmentation tasks. Its small-footprint variants (e.g.,
YOLOv8n) are particularly suited for Raspberry Pi–class systems, balancing accuracy
and inference speed for real-time field use [38,39].

21

b. Community Versions and Experimental Forks

While community-driven extensions such as YOLOv9, YOLOv10, and YOLOv11 have
emerged with claims of performance boosts, these remain largely experimental and lack stable
release pipelines, peer-reviewed validation, or consistent hardware compatibility. As of 2025,
YOLOv8 remains the most robust, well-documented, and production-ready version for
embedded agricultural systems [38,39].

To further contextualize the evolution and demonstrate the advantages of YOLOv8 for
embedded systems, Table 1.3 provides a comparative summary of key YOLO versions from
v1 to v8.

Table 1.3: Comparative Summary of YOLO Versions (v1–v8)

Version Year Key
Innovations

mAP (IoU=0.5) Speed
(FPS)

Model
Size

Embedded
Suitability

YOLOv1 2016 Single-stage,
grid prediction

~63% ~45 ~60 MB Low

YOLOv2 2017 Anchors, BN,
Darknet-19

~76% ~40 ~190
MB

Medium

YOLOv3 2018 Multi-scale,
Darknet-53

~78–80% ~30 ~250
MB

Medium

YOLOv4 2020 CSPNet, SPP,
Mosaic aug.

~84% ~35–50 ~244
MB

Good

YOLOv5 2020 PyTorch,
modular scaling

~90% (COCO
val)

~100 ~7.5
MB
(nano)

Excellent

YOLOv6/7 2022 Task-aligned,
reparam. blocks

~52–56%
(mAP@.5:.95)

~30–60 ~70–
150 MB

Good

22

YOLOv8 2023 Anchor-free,
decoupled head

~53%
(mAP@.5:.95)

~100–
120

~3.2
MB
(nano)

Excellent

Note: Metrics are based on standard COCO benchmarks. Performance on agricultural datasets
may vary depending on training, preprocessing, and deployment platform. Detailed evaluations
are provided in Chapter 3.

c. Selection Rationale for YOLOv8

For this project, YOLOv8n was selected as the optimal model due to its compact size,
anchorfree architecture, and high frame-rate compatibility with the Raspberry Pi 5. Its validated
performance, toolchain support (Ultralytics ecosystem), and smooth integration with embedded
frameworks make it a stable and efficient choice for real-time maturity detection in field
conditions.

1.5.4. YOLOv8 Architecture

The YOLOv8 architecture represents the latest evolution in single-stage object detectors,
designed to maximize inference speed and detection accuracy while remaining deployable on
resourceconstrained platforms such as the Raspberry Pi. Its modular organization and
anchorfree detection strategy make it particularly well-suited for real-time applications in
embedded agricultural systems [37].

a. Modular Structure: Backbone, Neck, and Head

YOLOv8 is structured into three main functional components, each optimized for a specific
stage of the detection pipeline:

➢ Backbone: Responsible for initial feature extraction, the backbone processes input images
through a series of convolutional and C2f (Cross-Stage Partial Fusion) blocks. This enables
the model to capture both low-level details and high-level semantic patterns across multiple
scales [38].

➢ Neck: The neck module aggregates and refines features from different stages of the
backbone using upsampling, concatenation, and additional C2f layers. This multi-scale

23

fusion enhances the model’s ability to detect objects of varying sizes and improves
robustness under challenging field conditions [37].

➢ Head: The detection head outputs bounding boxes, class probabilities, and confidence
scores. In YOLOv8, the head employs an anchor-free approach, directly predicting object
locations and classes without relying on predefined anchor boxes. This simplifies training
and improves generalization, especially in variable environments [39].

The specific internal components and their arrangement within the Backbone, Neck, and Head
modules of the YOLOv8 architecture are visually detailed in Figure 1.7.

Figure 1.7: Structural Overview of the YOLOv8 Architecture
This diagram illustrates the data flow within YOLOv8, from initial feature extraction
(Backbone), through multi-scale feature fusion (Neck), to final object prediction (Head). Key
modules include C2f blocks, upsampling layers, and an anchor-free detection head, all
optimized for efficient, realtime inference on embedded hardware.

To further summarize the functions and specific elements within each of these components,
Table 1.4 provides a detailed overview of the YOLOv8 architectural components.

Table 1.4: Summary of YOLOv8 Architectural Components

Block Element / Module Main Function

24

Backbone Conv, C2f, SPPF Multi-level feature extraction; SPPF (Spatial Pyramid
Pooling Fast) for aggregation

P1 to P5 Hierarchical layers Capturing scale diversity

Neck Upsample, Concat,
C2f

Multi-scale feature fusion, semantic enrichment, parameter
efficiency

Head Detect (Anchor-
Free)

Direct prediction of bounding boxes and classes; improved
speed and flexibility

b. Key Advantages of YOLOv8

• High Precision and Robustness: YOLOv8 achieves strong accuracy across diverse
datasets and remains resilient to noise, occlusion, and lighting variation key challenges
in agricultural imagery [37,39].

• Modular, Scalable Design: The architecture is available in multiple sizes nano, small,
medium, large, and extra-large allowing adaptation to different hardware constraints
and real-time requirements [36].

• Native Segmentation Support: YOLOv8 supports both object detection and
segmentation within a unified model, increasing its versatility for precision agriculture
use cases [38].

• Easy Export and Integration: The model is compatible with ONNX, TorchScript, and
CoreML, and is natively supported by Ultralytics tools. This facilitates rapid
deployment and cross-platform experimentation on devices such as the Raspberry Pi or
Jetson Nano [36].

• Anchor-Free Detection: The removal of anchor boxes reduces configuration
complexity, accelerates training, and improves model generalization especially for
realworld agricultural data with variable object scales and occlusion [39].

By combining architectural efficiency with state-of-the-art detection strategies, YOLOv8
provides a strong foundation for real-time, embedded vision systems in agriculture. Its design
directly addresses the speed, simplicity, and deployability required for robust operation on
platforms like the Raspberry Pi 5, as detailed in the subsequent chapters.

25

1.5.5. Performance Evaluation Metrics for Object Detection

The evaluation of object detection models requires a multifaceted approach that accounts not
only for classification accuracy but also for spatial localization, computational efficiency, and
suitability for the target deployment environment. In precision agriculture, where object
detection systems operate under variable lighting, partial occlusion, and tight time constraints,
a robust and comprehensive set of performance metrics is essential. This section presents the
main quantitative indicators used to evaluate object detection models, with particular emphasis
on their relevance for embedded and real-time applications in the agricultural domain [2,8,22].

a. Precision, Recall, and F1-Score

At the foundation of detection performance lie the concepts of precision and recall, which
originate from classical information retrieval and binary classification:[36]

• Precision (P) measures the proportion of predicted bounding boxes that are correct:

𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 = 𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 (𝐓𝐏)
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 𝐓𝐏 + 𝐅𝐚𝐥𝐬𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 (𝐅𝐏) ​

A high precision score indicates that most detected objects are relevant and correctly localized.
This is crucial in agricultural contexts where false detections may misguide harvesting robots
or inflate maturity estimates.

• Recall (R) measures the proportion of actual objects that were correctly detected:

𝐫𝐞𝐜𝐚𝐥𝐥 = 𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 (𝐓𝐏)
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 (𝐓𝐏) + 𝐅𝐚𝐥𝐬𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 (𝐅𝐍)

High recall ensures that most target objects (e.g., ripe fruits) are detected, even under partial
occlusion or poor visibility.

• F1-Score provides a harmonic mean between precision and recall, offering a balanced
indicator when both metrics are important:

26

F1-Score=2× 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧×𝐑𝐞𝐜𝐚𝐥𝐥 ​
 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐑𝐞𝐜𝐚𝐥𝐥 ​

This score becomes particularly relevant when a system must optimize both detection reliability
and completeness such as when monitoring fruit maturity progression over time.

b. Intersection over Union (IoU)

To determine whether a predicted bounding box corresponds to a true object, object detection
models rely on Intersection over Union (IoU). This metric quantifies the overlap between a
predicted box Bp and a ground truth box Bgt as defined by [36]:

IoU= ∣𝑩𝒑 ​ ∪𝑩𝒈𝒕 ​ ∣
​ ∣𝑩𝒑 ​ ∩𝑩𝒈𝒕 ​ ∣ ​

An IoU threshold (IoU ≥ 0.5) is used to define a true positive meaning the predicted box
overlaps sufficiently with the actual object. If the IoU is below the threshold, the detection is
counted as a false positive, even if the class label is correct [22,28].

As illustrated in Figure 1.8, IoU quantifies the overlap between predicted and ground truth
bounding boxes.

Figure 1.8: Illustration of Intersection over Union (IoU) between a predicted bounding box and the ground
truth.

IoU is calculated as the ratio of the area of overlap to the area of union between the two boxes.
Further illustrating the practical implications of this metric, Figure 1.9 provides visual examples
of scenarios with high versus low IoU scores.

27

Figure 1.9: Visual examples of high vs low IoU scores.

• A high IoU indicates that the model has successfully localized the object.

• A low IoU reflects poor localization or a wrong prediction.

IoU is critical for agricultural scenarios where fruits may be tightly clustered or partially
occluded. Precise localization affects not only detection accuracy but also physical interactions
such as robotic picking.

c. mean Average Precision (mAP)

The most comprehensive and widely used metric in object detection is mean Average Precision
(mAP). It aggregates the model's precision-recall performance across all classes and across
multiple IoU thresholds.

For a given class, the average precision (AP) is computed by integrating the area under the
precision-recall curve. The mAP is then calculated as the mean of these APs over all classes
[36].
Figure 1.10 illustrates an example of a precision-recall curve, highlighting how the area under
this curve corresponds to the Average Precision (AP) used in mAP calculation.

28

Figure 1.10: Example of a precision-recall curve for a single object class.

The area under the curve corresponds to the Average Precision (AP) used in mAP
calculation.

 Modern benchmarks such as COCO use a more stringent standard:

mAP@[0.5:0.95]=mean AP over IoU thresholds from 0.5 to 0.95 (step 0.05)

This multi-threshold evaluation penalizes models that fail to achieve precise localization. It is
particularly relevant in agricultural tasks where overlapping fruits, complex backgrounds, and
variable scales challenge the model’s spatial accuracy [2,22].

d. Inference Speed (FPS)

Frames per Second (FPS) quantifies how many images a detection system can process in one
second. It reflects real-time responsiveness a critical factor in robotic harvesting, where
decisions must be made instantaneously based on live camera input.

Lightweight, single-stage models like YOLO are typically optimized for high FPS (often
exceeding 150 FPS on GPUs), whereas two-stage models such as Faster R-CNN operate at
lower speeds (10–20 FPS) [5,26,27]. On embedded devices like Raspberry Pi or Jetson Nano,
achievable FPS is much lower due to limited hardware resources, making speed a decisive
performance constraint [27].

29

e. Model Size and Computational Complexity

In addition to accuracy and speed, model size typically expressed in megabytes (MB)
determines whether a neural network can be deployed on a resource-constrained device.
Smaller models are easier to load, update, and execute in low-power environments. For
example, YOLO variants often range from 5MB to 80 MB, while two-stage models with heavy
backbones can exceed 200 MB [28].

Model size correlates with:

• RAM and storage requirements
• Inference latency
• Power consumption, which is a critical factor for solar- or battery-powered agricultural

deployments

Some studies also consider FLOPs (floating point operations per second) as a complementary
indicator of computational load [27].

f. Importance of These Metrics in Agricultural AI

In agricultural field conditions, system performance cannot be evaluated based on accuracy
alone. Models must also meet constraints of speed, robustness, and hardware compatibility. A
fruit detection system with high precision but low recall may miss harvestable fruits; one with
high recall but low precision may trigger unnecessary harvesting actions. Likewise, models too
large to run on local edge devices introduce latency, reliance on internet connectivity, or
excessive energy costs.

Consequently, performance evaluation must be multi-dimensional. The metrics presented here
provide a rigorous framework for selecting, comparing, and optimizing models for embedded
AI applications in precision agriculture. They serve not only as benchmarks but also as practical
indicators of how well a detection model will perform in the real-world constraints of orchard
environments.

1.6. Embedded System Constraints and Deployment Challenges

The practical deployment of deep learning–based object detection models in agriculture does
not end with achieving high performance in experimental settings. Instead, it must account for
the realities of running these models on embedded systems deployed directly in the field. These

30

platforms such as the Raspberry Pi, Jetson Nano, or Google Coral offer a compact, low-cost,
and energy-efficient alternative to cloud-based solutions, enabling AI applications to function
locally and autonomously [2,22,27].

This localized, embedded approach is particularly relevant in agriculture, where connectivity
is often intermittent, latency constraints are critical for real-time decision-making, and privacy
or energy constraints make cloud inference impractical [2,22,30]. Applications such as robotic
harvesting, fruit counting, and maturity monitoring increasingly rely on embedded systems to
ensure timely and context-sensitive actions without dependence on external servers [18,22].

However, the deployment of object detection models on such platforms is constrained by
multiple factors: limited computational resources (CPU, GPU), restricted memory, thermal
management, and energy efficiency requirements. These constraints impose significant
tradeoffs in model selection, preprocessing, and runtime behavior [27,30,31].

Furthermore, agricultural environments introduce unique operational challenges. Variability in
natural lighting, occlusions by foliage, weather conditions, and camera positioning can
significantly degrade detection accuracy even for well-trained models. The deployment system
must therefore balance model robustness, speed, and hardware constraints to ensure reliable
performance in these uncontrolled environments [2,22,28,31]

1.6.1. Embedded Platforms for On-Device AI in Agriculture

The shift from laboratory AI models to real-world agricultural deployment depends critically
on the availability of embedded computing platforms that are both efficient and field-resilient.

In environments where power, mobility, and budget are constrained, centralized or cloud-based
processing becomes impractical due to bandwidth limitations, latency concerns, or system
fragility [2,22,30]. Embedded platforms such as the Raspberry Pi, Jetson Nano, and Google
Coral provide the necessary balance of portability, energy efficiency, and inference capability
for real-time AI applications in precision agriculture.

These devices enable models like YOLO to operate locally on small-scale robots or field
monitoring tools. They support tasks such as real-time fruit maturity detection, autonomous
harvest triggering, and dynamic orchard monitoring. However, each platform presents distinct
trade-offs in terms of speed, memory, cost, and integration complexity. The following

31

subsections provide an in-depth academic review of these embedded systems, focusing on their
suitability for agricultural AI deployments.

a. Raspberry Pi 4 / Raspberry Pi 5

The Raspberry Pi series represents the most accessible embedded computing platform for
agricultural research and field deployment. Originally designed for educational purposes, its
hardware has evolved to support real-time inference for lightweight AI models. In particular,
the Raspberry Pi 5, released in 2023, offers substantial performance improvements over
previous generations while retaining its low-cost, low-power design [32].

➢ Key Specifications:

• Processor: Quad-core ARM Cortex-A76 @ 2.4 GHz
• RAM: 4 or 8 GB LPDDR4X
• AIAcceleration: CPU only (Coral USBAccelerator optional)
• Power Consumption: ~5–8 W under load
• Cost: ~35–90 USD (board only)
• Camera Support : 2x MIPI CSI (supports Pi Camera v2.1

and HQ)

Despite its lack of onboard GPU or TPU, the Pi can execute efficient models such as YOLOv8n
in real-time at ~5–15 FPS, depending on image resolution and model complexity [27,30]. It
runs TensorFlow Lite, ONNX, and PyTorch (CPU version), making it versatile for prototyping
and educational use.

In agricultural contexts, the Pi excels in ease of integration with sensors and actuators, and
benefits from a vast open-source community. It is especially suitable for fruit maturity
detection, environmental sensing, and robot guidance in low-budget settings [22,30].

Figure 1.11 provides a visual representation of the Raspberry Pi 5 board, showcasing its key
interfaces including the CSI-connected camera module and GPIO header, essential for
embedded applications.

32

Figure 1.11: Raspberry Pi 5 board with CSI-connected camera module and GPIO header.

➢ Strengths: Affordable, well-supported, low power, easy integration

➢ Limitations: No native GPU or TPU; limited FPS for larger models; heat management may
be needed in sunlight [30,31]

b. NVIDIA Jetson Nano

The Jetson Nano, developed by NVIDIA, targets edge AI applications and is specifically
designed for accelerated deep learning. It features a 128-core Maxwell GPU and is capable of
executing mid-sized object detection models (e.g., YOLOv5s) with reasonable inference speed
on low-power systems [27,31,33].

Jetson Nano supports TensorFlow, PyTorch, and TensorRT for optimized inference, enabling
15– 30 FPS on models like YOLOv5s or SSD under controlled conditions. This makes it
suitable for faster and more complex models than what the Raspberry Pi can sustain.

However, Jetson Nano presents higher integration complexity and requires careful power and
thermal design for field deployment. It is best suited for semi-autonomous ground robots or
fixed monitoring stations where real-time object detection is critical and power is available.

• Strengths: GPU acceleration, good FPS, optimized AI pipeline.

• Limitations: Higher power draw, costlier, less beginner-friendly setup [27,31,33].

33

c. Google Coral Dev Board and USB Accelerator

The Google Coral platform focuses on ultra-low-power inference through its dedicated Edge
TPU coprocessor, which supports only 8-bit quantized TensorFlow Lite models. Available as
both a full development board and a plug-and-play USB accelerator, Coral enables real-time
inference at extremely low energy costs [30,34].

Coral’s performance is excellent when models are properly quantized achieving 30–100+ FPS
on supported models. However, its limitation to TensorFlow Lite (INT8) introduces challenges.
Not all models convert well to this format without sacrificing accuracy, especially in agriculture
where visual noise and subtle color differences are critical to tasks like ripeness detection
[30,34].

• Strengths: Ultra-efficient, compact, real-time performance
• Limitations: Strict model format constraints, conversion complexity, no native support for

PyTorch or ONNX [30,34]

d. Synthesis: Comparative Assessment of Embedded Platforms

The comparative review of embedded AI platforms highlights the nuanced trade-offs between
processing power, energy efficiency, compatibility, and deployment complexity. While devices
like the Jetson Nano and Coral TPU offer specialized acceleration, their integration costs and
format constraints limit flexibility in diverse agricultural settings. In contrast, the Raspberry Pi
5 strikes a pragmatic balance between performance and usability supporting lightweight object
detection models at low cost, with minimal setup and strong community support.

The following section now builds on this assessment by examining the fundamental hardware
constraints that govern real-time AI deployment in the field, and how such limitations directly
influence system architecture, model selection, and field robustness.

1.6.2. General Hardware Constraints for Embedded AI in Agriculture

Having identified the Raspberry Pi 5 as the most appropriate embedded platform for this project,
it is essential to now explore the specific hardware constraints that inform its practical use in
agricultural environments. These constraints not only define the operational limits of AI

systems in the field but also shape critical design choices from the type of object detection
model employed to the allowable resolution, frame rate, and system energy budget.

34

Unlike datacenter-grade hardware, embedded systems must operate with tight restrictions on
processing capacity, memory availability, storage throughput, and power supply. These factors
impose real-world limitations on model complexity, inference speed, and overall system
responsiveness especially under outdoor conditions involving variable light, temperature, and
connectivity. The remainder of this section details each of these limitations and explains how
they were accounted for in the design and implementation of this work.

a. Processing Power: Lightweight Models for Real-Time Use

Embedded CPUs lack the massive parallelism of GPUs or cloud servers. This severely limits
the size and complexity of models that can run at acceptable frame rates. In this project, realtime
detection of apricots requires inference within milliseconds per frame. Large models were
excluded early due to high computational demands [27,31].

b. Memory and Storage Limitations

Most embedded systems offer between 1 GB and 8 GB of RAM, which must support not just
the model, but also the camera feed, detection buffers, and operating system. This limitation
restricts the use of high-resolution video, large models, or concurrent processing tasks.

Additionally, microSD-based storage, common on platforms like the Raspberry Pi, offers
limited speed and endurance. This affects how much data can be logged or buffered and how
quickly models and scripts can be loaded. For this reason, the system uses low-resolution input
(e.g., 640×480) and on-the-fly inference only, avoiding large data accumulation or complex
pipelines [32].

• Low Power Consumption for Field Deployment

Agricultural deployments often lack direct access to stable power. Whether mounted on a
mobile robot, placed in an orchard, or operated in a greenhouse, AI systems must function on
batteries or solar panels, making energy efficiency a priority [31,33].

The Raspberry Pi 5, with a typical power draw of 5–8 W, meets these constraints while still
supporting basic computer vision. Devices with discrete GPUs, like the Jetson Nano (~10 W),
or co-processors like the Coral TPU (~2 W), offer alternatives, but introduce new trade-offs in
compatibility and setup complexity [30,34].

35

c. Ease of Camera and Sensor Integration

Precision agriculture applications often require simultaneous access to camera feeds,
environmental sensors (e.g., humidity, light), and actuators. Embedded platforms must
therefore
provide simple GPIO access, camera compatibility (CSI or USB), and reliable communication
interfaces.

The Raspberry Pi was selected in part because it supports native CSI cameras, including the Pi
Camera v2.1 used in this project, and offers GPIO headers for future sensor extensions. This
ensures tight hardware integration without requiring additional microcontrollers [32,34].

Beyond the Raspberry Pi's specific integration capabilities, understanding the broader
landscape of embedded processing units is crucial for optimizing AI deployments. Table 1.5
provides a comparative overview of different embedded processing units, including CPUs,
GPUs, and TPUs, detailing their roles in embedded AI.

Table1.5: Comparison of Embedded Processing Units: CPU, GPU, and TPU

Component Description Role in Embedded AI

CPU (Central
Processing Unit)

General-purpose processor
found in all devices. Excels at
sequential tasks.

Suitable for lightweight models (e.g.,
YOLOv8n), but lacks speed for
largescale vision tasks [30,35].

36

GPU (Graphics
Processing Unit)

Optimized for parallel data
processing, ideal for large
neural networks.

Provides significant acceleration (e.g.,
Jetson Nano), but increases cost and
power usage [33].

TPU (Tensor
Processing Unit)

Specialized chip for quantized
AI inference, developed by
Google.

Enables ultra-fast, low-power inference
(e.g., Coral), but only with 8-bit
TensorFlow Lite models [34,36].

In this project, the decision to use a CPU-only platform (Raspberry Pi 5) reflects the need for
simplicity, compatibility, and field operability, even at the cost of maximum inference speed.
By understanding and addressing these constraints, the system design is tailored for robust,
field-ready performance in Algerian agriculture.

1.7. CONCLUSION

This chapter laid the conceptual, scientific, and technological foundations of the project,
anchoring the issue of apricot cultivation in Algeria within its current challenges. It highlighted
the limitations of traditional agricultural practices and the need to integrate intelligent solutions
to improve fruit ripeness detection.
On the scientific front, the principles of artificial intelligence, machine learning, deep learning,
and computer vision were presented, directly linked to the needs of precision agriculture. A
comparative analysis of the main families of object detection algorithms, as well as an in-depth
study of the evolution of the YOLO family, have clarified the criteria that will guide the
evaluation of models in the subsequent work.
Finally, the comparison of hardware platforms (Raspberry Pi, Jetson Nano, Coral TPU) has
made it possible to identify the opportunities and concrete limitations of embedded AI in an
agricultural context, taking into account the constraints of performance, cost, and field
integration.

37

CHAPTER 2: Methodology for Detection System
Development

2.1. INTRODUCTION

Building on the theoretical and contextual foundations presented in Chapter 1, this chapter
details the practical methodology used to design, develop, and deploy an intelligent vision
system for apricot maturity detection. The goal is to support more efficient, objective, and
scalable decision making in precision agriculture, particularly where manual fruit assessment
remains labor intensive and inconsistent.

38

A structured and reproducible workflow is followed, beginning with the creation of a custom
annotated dataset for object detection tasks. This is followed by preprocessing to simulate real
world deployment conditions using Raspberry Pi Camera characteristics. The training and
comparative evaluation of several YOLOv8 models is then addressed, leading to the selection
of a candidate optimized for embedded inference. Finally, the chosen model is deployed on a
Raspberry Pi device and tested in real-time conditions to assess its functional behavior.

By translating conceptual insights into applied implementation, this chapter establishes the
technical foundation for a lightweight, deployable solution for maturity detection in orchard
environments. Performance results and critical evaluation will be presented in Chapter 3.

2.2. Project Workflow and System Pipeline

To contextualize the technical details presented in this chapter, Figure 2.1 summarizes the
complete workflow of the intelligent apricot maturity detection system developed in this thesis.
This pipeline illustrates the sequential integration of data collection, model development,
evaluation, and embedded deployment, culminating in real-world inference and feedback for
agronomic decision-making.

➢ The main stages of the project pipeline are as follows

•Data Collection and Annotation
Acquisition of apricot images under diverse orchard conditions, followed by manual annotation
of fruit maturity classes (e.g., ‘ripe’, ‘unripe’) to create a labeled dataset.

•Model Selection and Training
Selection of a suitable object detection architecture (YOLOv8), configuration of training
parameters, and supervised learning on the annotated dataset to optimize detection and
classification performance.

•Evaluation and Validation
Quantitative and qualitative assessment of the trained model using independent validation and
test sets, including metric analysis (precision, recall, mAP), confusion matrices, and visual
inspection of detection outputs.

•Deployment on Embedded Hardware
Transfer of the validated model to a Raspberry Pi 5 platform, integration with a real-time
camera interface, and adaptation of inference scripts for low-latency, resource-constrained
environments.

39

•Real-World Inference and Feedback
Execution of the embedded system in simulated or actual orchard conditions, with live detection
outputs supporting agronomic tasks such as assisted harvesting, yield estimation, and maturity
monitoring. Feedback from deployment informs further refinement of the system.

Image
Collection

Manual Annotation
- Labeling With Classes

(Ripe, Unripe)
Dataset Organization
- Train/Val/Test Split

Preprocessing Operations(brightness Adjustment,
Contrast Normalization, And Sharpness/Blur

Correction, Each) Applied To Simulate Raspberry Pi
Camera V2.1

Dataset Re -
organizaion

Model YOLOv8
Training

Evaluating With
Test Split

Embedded Deployment (
Raspberry Pi Integration -
Camera Setup - Inference)

Figure 2.1: System Pipeline for Intelligent Apricot Maturity Detection
Schematic representation of the end-to-end workflow, from image collection and annotation to
model training, evaluation, embedded deployment, and real-world inference.

2.3. Dataset Creation

In object detection tasks, the quality, diversity, and contextual relevance of the dataset directly
influence the performance and robustness of the trained model. Given the visual variability
inherent to agricultural environments such as inconsistent lighting, occlusions, and complex
backgrounds the construction of a tailored dataset was a critical first step in this project.

The objective was to build a dataset capable of supporting accurate and generalizable detection
of apricot fruits at different maturity stages under conditions approximating real deployment.
However, due to the seasonal unavailability of apricots during the initial development period,

40

field data acquisition was not feasible. As a result, an alternative strategy based on online
sources was adopted, acknowledging the practical limitations while striving to ensure scientific
rigor through controlled selection and preprocessing.

2.3.1. Image Collection and Sources

A total of 1154 high-resolution images were collected from three main sources:

➢ iStock®: Professionally captured images with strong resolution and color fidelity.

➢ Google Images: Natural and diverse images from orchards, blogs, and agricultural articles.

➢ Roboflow Open Datasets: Public datasets intended for academic use in fruit detection.

These sources were chosen to cover a broad range of visual conditions while maintaining
sufficient image quality for reliable object annotation. Although not acquired with the
Raspberry Pi Camera v2.1, this image base provided a foundation for domain adaptation via
targeted preprocessing (see Section 2.3).

2.3.2. Selection Criteria and Dataset Construction

To maximize generalization and avoid dataset bias, a strict filtering process was applied based
on seven technical and contextual criteria, summarized in Table 2.1. These criteria align with
best practices in object detection dataset design, which emphasize the importance of resolution,
viewpoint diversity, lighting variability, and class balance for model robustness [42,43,46]

Table 2.1: Image Selection Criteria for Dataset Construction
Criterion Description Visual Example

High Resolution Clear texture, edges, and
contours required for precise
bounding box annotation.

41

Lighting Diversity Inclusion of sunlit, shaded, and
diffuse-light images to improve
model robustness.

Viewpoint Variation Top, side, and frontal views to
prepare for variable camera
positioning.

Distance Realism Approximate 30–40 cm fruit
to camera distance, similar to
Raspberry Pi setup.

Background
Complexity

Presence of leaves, branches,
sky, and overlapping elements
to mimic orchard scenes.

Visual Occlusions Inclusion of partially hidden
fruits to simulate real
harvesting scenarios.

42

Class Representation Balanced presence of ripe and
unripe apricots to avoid class
bias during training.

These criteria ensured that the resulting dataset could capture the full spectrum of visual
conditions expected in field deployment. In particular, lighting variation and occlusion were
prioritized, as they are among the most frequent sources of error in real-time fruit detection [44]

To illustrate the diversity of visual styles across sources, Figure 2.2 presents examples from
each platform. These images highlight the differences in resolution, background noise, and
color rendering, all of which were later normalized during the preprocessing phase.

(a) Stock (b)Google Image (c)Roboflow

Figure 2.2: Examples of Dataset Images from Different Sources

(a) iStock – high-resolution, professionally composed image

(b) Google Images – orchard scenes with natural lighting and clutter
(c) Roboflow – academic dataset with moderate quality and noise

This image selection phase was not only guided by visual criteria but also by the practical
objective of replicating conditions likely to be encountered by the Raspberry Pi Camera. Gi

the domain gap between curated online images and embedded field conditions, this selection
strategy served as a preparatory step for the domain adaptation pipeline discussed in Section
2.4.

43

By constructing a dataset with realistic variability and balanced class distribution, this phase
laid the groundwork for training an object detection model capable of generalizing beyond its
training set. The next section details how the annotation process was conducted to preserve this
variability and prepare the dataset for integration with the YOLOv8 training framework.

2.3.3. Cleaning and Deduplication

Following the initial image collection phase, a dataset cleaning and deduplication step was
performed to improve consistency, reduce redundancy, and ensure the quality of inputs used
for annotation and training. Image datasets compiled from heterogeneous online sources
frequently contain duplicate entries, near-duplicates, or low-value samples that can bias
learning and degrade model generalization [42]. Eliminating such redundancies is a widely
recognized best practice in object detection workflows [42].

a. Removal of Duplicates

The raw dataset initially comprised 1,154 images. Upon inspection, several files were found to
be visually redundant either exact copies or minor variants of the same scene (e.g., cropped,
resized, or recompressed versions). To detect and remove these duplicates systematically, a
perceptual hashing method was employed using the phash algorithm from the imagehash
Python library.

Each image was encoded into a compact perceptual hash summarizing its visual content.
Pairwise comparisons were conducted using Hamming distance, with a threshold of ≤ 3 used
to flag potential duplicates. For each detected group of similar images, one representative was
retained while the remaining entries were discarded. This filtering step was automated using a
custom Python script, ensuring reproducibility and consistency.

The complete workflow is illustrated in Figure 2.3, which outlines the process of hashing,
distance comparison, and duplicate removal.

Input
Images

phash() Compare

Hashes
If Distance

≤ 3
Keep 1,
Delete
Others

Figure 2.3:Workflow of Perceptual Hashing and Duplicate Filtering

44

Visual representation of the image cleaning pipeline. Input images are hashed using phash,
compared via Hamming distance, and filtered based on a similarity threshold. Only unique
images are retained for further use.

This approach reduced redundancy in the dataset while preserving visual diversity two key
conditions for preventing overfitting and promoting robust generalization across varied
deployment scenarios.

b. Structured Renaming for Dataset Management

After deduplication, all retained images were renamed following a standardized convention:
apricot-1.jpg, apricot-2.jpg, and so on. This step facilitated structured dataset management,
particularly during annotation with Roboflow and integration into the YOLOv8 training
framework.

Although the final numeric sequence included some discontinuities due to further removals in
subsequent phases, this had no effect on dataset integrity or functionality. The renaming
strategy ensured traceability, simplified preprocessing, and improved compatibility across the
project pipeline.

2.3.4. Manual Annotation with Roboflow

Following the cleaning and restructuring of the dataset, a manual annotation phase was carried
out to define ground truth labels for object detection. This step involved localizing individual
apricots in each image and assigning them to one of two predefined classes. All annotations
were performed using the Roboflow web platform, selected for its compatibility with YOLOv8,
intuitive bounding box tools, and integrated dataset export features.

Each image was reviewed individually, and rectangular bounding boxes were manually drawn
around visible apricots. Two object classes were used, defined as follows :

➢ Ripe: Fully developed fruits exhibiting dominant orange to reddish hues.

➢ Unripe: Immature or partially developed fruits, typically green, pale yellow, or lacking full
pigmentation.

This binary classification schema was established to support multiple downstream agricultural
objectives (e.g., thinning, selective harvesting), and aligns with practical visual cues used by
expert fruit pickers. The classification relied on color-based visual maturity, which is widely
adopted in fruit detection literature for early-stage AI deployment [20,12].

45

During the annotation process, several quality control measures were applied to ensure label
accuracy and class purity:

➢ Only fruits that were clearly identifiable and unobstructed were labeled.

➢ Ambiguous or partially visible apricots were excluded if their maturity stage could not be
reliably determined.

➢ A subset of images initially included in the dataset was discarded upon inspection, as they were
found to contain non-apricot fruits (e.g., small peaches, plums) or low-resolution scenes that
impaired precise labeling.

➢ Consistency in class assignment was maintained across annotators through reference visual
guidelines established during preliminary annotation rounds.

These precautions reflect best practices in manual annotation for object detection, where label
noise and visual ambiguity are known to degrade model performance [43]. The resulting dataset
was therefore refined not only for technical correctness but also for biological relevance in the
context of apricot maturity detection.

At the conclusion of this phase, the dataset consisted of 823 annotated images, each containing
one or more bounding boxes labeled as ripe or unripe. This labeled dataset serves as the
foundational ground truth for all subsequent training, validation, and deployment stages.

To illustrate the annotation process, Figure 2.4 presents representative screenshots from the
Roboflow platform, highlighting the visual interface and examples of annotated images with
both classes clearly distinguished.

(a) (b) (c)
Figure 2.4:Manual Annotation of Apricots Using Roboflow

(a) Roboflow interface showing bounding box editing and class assignment.

(b) Example of an image labeled exclusively with ripe apricots.
(c) Densely populated scene annotated with both ripe (green) and unripe (red) bounding boxes.

46

2.3.5. Dataset Structuring and Splitting for YOLOv8

To prepare the annotated dataset for training with the YOLOv8 object detection framework, a
standardized directory structure and data partitioning protocol were implemented. YOLOv8
requires a specific format that clearly separates training, validation, and test subsets, with
corresponding label files stored in parallel directories. This structure enables automatic
association between images and annotations during model training and evaluation.

The dataset was organized as follows:

• Images/train/ and labels/train/

• images/valid/ and labels/valid/

• images/test/ and labels/test/

This hierarchical format ensures compatibility with the Ultralytics training pipeline and
promotes reproducibility in both local and cloud-based environments.

To support robust model generalization and reliable performance evaluation, the dataset was
partitioned using an 80/10/10 split a widely accepted standard in object detection literature
[42,36].
The subsets serve the following functions:

➢ Training set (80%): used to iteratively update model weights,

➢ Validation set (10%): used during training to monitor performance and tune internal
parameters,

➢ Test set (10%): held out entirely during training and reserved for final model evaluation.

The partitioning process was carried out using the Roboflow platform, which provides
automated splitting while maintaining class distribution balance across subsets. This is
particularly important in binary classification tasks, where imbalanced class representation can
lead to biased learning and skewed performance metrics [43].

After splitting, the final dataset included:

• 658 images for training,

• 83 for validation,

• 82 for testing.

47

This distribution is visualized in Figure 2.5, which illustrates the proportion of images allocated
to each subset.

Figure 2.5: Dataset Split Used for YOLOv8 Training
Distribution of the 823 annotated images across training (80%), validation (10%), and test
(10%) subsets, as performed by the Roboflow platform.

Proper dataset partitioning is essential for detecting overfitting, which occurs when a model
memorizes training data including noise or irrelevant patterns instead of learning generalizable
features. By evaluating model performance on independent subsets, this approach helps ensure
that the trained model can perform reliably on unseen data, a prerequisite for deployment in
realworld agricultural scenarios.

2.3.6. Dataset Format and YOLOv8 Compatibility

To ensure seamless integration with the YOLOv8 training framework, the finalized dataset was
exported from Roboflow in full compliance with the official Ultralytics YOLOv8 format [36].
This step was critical to guarantee structural compatibility, reduce preprocessing errors, and
support reproducibility across development environments.

Prior to export, all images were uniformly resized to 640×640 pixels a resolution natively
supported by YOLOv8. This resizing ensured consistent input dimensions, reduced
computational overhead, and simplified subsequent data augmentation. Such standardization
is widely recommended in real-time object detection pipelines to facilitate batch processing
and memoryefficient training [42].

The exported dataset adopted a hierarchical directory structure consistent with YOLOv8
expectations, dividing the images and corresponding annotation files into separate subfolders
for each data split:

• images/train/, labels/train/

• images/valid/, labels/valid/

• images/test/, labels/test/

48

This organization enables the YOLOv8 engine to automatically locate image-label pairs and
ensures a reproducible workflow for training, validation, and inference.

A core component of the YOLO dataset format is the data.yaml configuration file, which
defines:

• The relative paths to the image folders for each split,

• The number of object classes (nc), and

• The class names used in annotation ('ripe' and 'unripe').

This configuration file serves as the entry point for model initialization and training, allowing
YOLOv8 to interpret dataset structure without additional manual setup.

Figure 2.6 illustrates an example of this data.yaml configuration file from the apricot ripeness
dataset.

Figure 2.6: data.yaml Configuration File of my dataset
Defines image directory paths and class names for YOLOv8 model initialization.

Each image in the dataset is paired with a .txt annotation file in YOLO format, where each row
encodes a single bounding box using normalized coordinates:

<class_id> <x_center> <y_center> <width> <height>

• class_id: Integer class index (0 for ripe, 1 for unripe),

• x_center, y_center: Center coordinates of the bounding box (normalized to [0, 1]),

• width, height: Box dimensions, also normalized.

This compact format enables fast parsing and GPU-accelerated training, and is widely adopted
in object detection research due to its simplicity and efficiency [36].
A sample YOLOv8 annotation file, demonstrating the normalized bounding box coordinates
and class IDs, is shown in Figure 2.7.

49

Figure 2.7: Sample YOLOv8 Annotation File (.txt) from my dataset
Each row represents one object with its class ID and normalized bounding box parameters.

This export step finalized the dataset preparation phase and served as a critical bridge between
manual annotation and model training, ensuring that the dataset could be directly consumed by
the YOLOv8 framework with no further modification.

2.4. Preprocessing Strategy and Applied Techniques

The performance of deep learning models in real-world scenarios is highly sensitive to
discrepancies between training data and deployment environments a phenomenon commonly
referred to as domain shift [41]. In the context of this project, while the initial dataset consisted
of high-resolution images sourced from curated online repositories, the target deployment
platform the Raspberry Pi Camera v2.1 produces images of lower quality, with reduced
contrast, variable brightness, and mild lens-induced distortions. Without adequate adaptation,
this mismatch could significantly degrade the model’s generalization and reliability during
inference in agricultural settings.

To bridge this domain gap, a targeted preprocessing strategy was developed to simulate the
visual characteristics of Raspberry Pi imagery while maintaining the annotation accuracy of
the original dataset. The strategy was guided by two primary objectives :

• Minimize domain shift by transforming high-quality training images to visually resemble
Raspberry Pi captures in terms of contrast, lighting, and sharpness;

• Enhance model robustness by exposing the detection model to more realistic and variable
input conditions, increasing its tolerance to environmental noise and camera limitations [42].

50

Unlike generic augmentation pipelines, the approach adopted here was data-driven and image
specific. A reference set of Raspberry Pi images was captured under various field conditions
direct sunlight, shadows, and occlusion. For each high-resolution image in the dataset, a
visually similar reference image was identified based on two quantitative indicators:

• Brightness, measured via the Value (V) channel of the HSV color space,

• Contrast, estimated by the standard deviation of grayscale pixel intensities.

Each high-resolution image was then transformed to approximate the visual profile of its
reference Raspberry Pi counterpart. This pairing strategy ensured that modifications were not
arbitrary but informed by actual sensor output under real use conditions.

The preprocessing operations are summarized in Table 2.2, which details the transformations
applied, their intended effects, the metrics guiding them, and the tools used for implementation.

Table 2.2: Summary of Preprocessing Operations Applied to Simulate Raspberry Pi Camera v2.1 Output

Transformation Purpose Implementation Details

Brightness
Adjustment

Simulate variable lighting
conditions observed in
the field

HSV Value was computed and adjusted using
ImageEnhance.Brightness based on matched
Raspberry Pi frames

Contrast
Normalization

Reflect reduced contrast
typical of Raspberry Pi
sensor output

Grayscale standard deviation was used as a
contrast proxy; adjustments applied via
ImageEnhance.Contrast

51

Sharpness and
Blur

Mimic optical softness
and lens imperfections

Laplacian variance measured sharpness; filters
(OpenCV Gaussian blur, PIL sharpen) applied
accordingly

File Management Ensure traceability and
reproducibility

Transformed images were renamed using a
_rpi suffix and stored in separate versioned
folders

This scientifically grounded preprocessing pipeline allowed the YOLOv8 model to learn not
only from idealized images but also from input approximating its final deployment conditions.
In doing so, the model becomes better equipped to handle environmental variability and sensor
limitations inherent in real-world agricultural settings.

2.4.1. Preprocessing Pipeline: Methodology and Implementation

To operationalize the preprocessing strategy described earlier, a structured and reproducible
pipeline was implemented using Python in a controlled Google Colab environment. The
objective was to systematically transform high-resolution training images to resemble the
visual profile of Raspberry Pi Camera v2.1 output. The pipeline was composed of three
sequential stages: brightness adjustment, contrast normalization, and sharpness/blur correction,
each informed bymeasurable characteristics extracted from real Raspberry Pi reference frames.

The rationale behind the ordering of these transformations reflects interdependencies between
visual features. Specifically, brightness directly influences perceived contrast an overly bright
or dark image compresses the intensity range, distorting subsequent contrast adjustment.
Likewise, both lighting and contrast affect the detection and estimation of sharpness. Therefore,
the sequence adopted (brightness → contrast → sharpness/blur) ensures visual stabilization
before edge-based operations.

Figure 2.8 provides a schematic overview of the complete preprocessing workflow, from
original high-resolution inputs to the final RPi-style outputs used for YOLOv8 training.

52

Original High-
Resolution Image

Brightness Adjustment
(HSV Value)

Contrast Normalization
(Std. Dev. of Grayscale)

Sharpness/Blur Correction
(Laplacian Variance)

RPi-Resolution Output Image

Figure 2.8: Structured preprocessing pipeline simulating Raspberry Pi Camera v2.1 output
The pipeline consists of sequential transformations applied in three stages: brightness
correction, contrast normalization, and sharpness/blur adjustment. Each stage is guided by
reference metrics and produces a versioned output.

a. Brightness Adjustment

➢Metric:
Mean luminance was computed from the HSV Value channel to quantify image brightness.

➢Method:
Each high-resolution image was paired with its closest Raspberry Pi reference based on
luminance similarity. The ratio between target and source brightness guided the adjustment
factor.

➢ Implementation:

enhancer = ImageEnhance.Brightness(image)

adjusted_image = enhancer.enhance(brightness_factor)

 Tools:

• OpenCV (cv2.cvtColor) for RGB to HSV conversion

• NumPy for calculating brightness metrics

• Pillow (PIL) for image adjustment (ImageEnhance.Brightness)

53

b. Contrast Normalization

 Metric:
Contrast was evaluated as the standard deviation of grayscale pixel values, reflecting intensity
dispersion.

 Method :
Images were matched to Raspberry Pi references by contrast level. The adjustment factor was

calculated as the ratio of target to original standard deviation.

 Implementation:

enhancer = ImageEnhance.Contrast(image)

adjusted_image = enhancer.enhance(contrast_factor)

 Tools :

• NumPy for contrast computation

• Pillow (PIL) for contrast enhancement(ImageEnhance.Contrast)

c. Sharpness and Blur Correction

➢Metric :
• Sharpness was quantified using the Laplacian variance, which estimates the presence of edges
and texture detail.
➢Method :

• If Laplacian variance was lower than the reference, sharpening was applied to enhance edge
clarity.

• If variance was higher, a light Gaussian blur was applied to replicate the slight softness typical
of embedded optics.

➢ Implementation:
• Sharpening sharpened_image=image.filter(ImageFilter.SHARP)

• Gaussian blur blurred_image=cv2.GaussianBlur(image, (3,3),0)
➢ Tools :

• OpenCV for computing Laplacian variance and applying blur

• Pillow (PIL) for sharpening (ImageFilter.SHARPEN)

54

To ensure traceability and reproducibility, each preprocessing step produced a new dataset
version stored in a dedicated folder. Images were renamed with a _rpi suffix, preserving
compatibility with YOLO annotation files and allowing partial re-use of intermediate outputs.
The following naming convention was adopted:

➢ brightness-adjusted/

➢ brightness-contrast/

➢ brightness-contrast-blur-sharp/

This folder hierarchy allowed modular validation of each transformation stage and supported
controlled experimentation during model training. To illustrate the visual impact of each
transformation, Figure 2.9 presents a step-by-step progression of a sample image across the
pipeline.

55

Figure 2.9: Sequential preprocessing transformations applied to a sample image
(a) Original high-resolution image
(b) After brightness adjustment (global luminance corrected)
(c) After contrast normalization (enhanced object-background separation)
(d) After blur/sharpening correction (simulated embedded optics softness)

Each stage in Figure 2.9 reflects targeted improvements based on objective visual properties.
Brightness normalization (b) reduced underexposure in shaded regions; contrast enhancement
(c) sharpened the distinction between apricots and foliage without increasing noise; final
sharpness correction (d) produced a more natural, field-like image texture consistent with
Raspberry Pi optics.

56

This modular and scientifically grounded preprocessing pipeline ensured that the training data
not only matched the operational camera conditions, but also preserved label accuracy and
modelreadiness for real-world inference.

2.4.2. Folder Structuring and Image Renaming

To preserve the integrity of the original dataset and ensure rigorous traceability at every stage
of the processing pipeline, all images resulting from the preprocessing operations were renamed
systematically. The adopted convention was to retain each image’s original filename and
append the suffix (_rpi), indicating that the image had been visually adapted to simulate
Raspberry Pi camera conditions. For example:

apricot-001.jpg → apricot-001_rpi.jpg

The transformed images were stored in separate, versioned folders corresponding to each
preprocessing stage (e.g., brightness-adjusted/, brightness-contrast/, final-rpi-style/). This
hierarchical structure offers several advantages:

• Faithful reproducibility of the processing pipeline,

• Simplified navigation for debugging or partial reuse,

• Clear separation between original data and preprocessed variants, in line with best practices in
dataset management for computer vision applications [43].

2.4.3. Annotation Duplication for Preprocessed Images

Since the applied transformations (brightness, contrast, sharpness) did not alter the position or
shape of the annotated objects, it was not necessary to reanalyze or manually relabel the
modified images.

The bounding boxes and object classes (ripe / unripe apricots) remained valid after each
preprocessing step.

To ensure full compatibility with the YOLOv8 format, the corresponding .txt annotation files
were duplicated and renamed to match the transformed images. For example:

apricot-025.txt → apricot-025_rpi.txt

Each duplicated file retained the original YOLOv8 annotation structure (class ID, normalized
center coordinates, width, and height). This approach ensured seamless integration into the
training pipeline while maintaining spatial consistency and annotation accuracy [36].

57

2.4.4. Final Dataset Composition

To enhance the robustness and generalization capacity of the YOLOv8 model under variable
visual conditions, the final dataset was constructed by merging the original high-resolution
images with the Raspberry Pi–style preprocessed versions. This approach offers several
benefits:

• Significant increase in data volume without introducing false positives,

• Diversification of lighting and texture conditions,

• Improved model resilience under real-world embedded inference scenarios.

Table 2.3 provides a detailed summary of the final dataset composition, outlining the number of
images and associated annotations for both original and preprocessed versions

Table 2.3: Summary of Final Dataset Composition and Annotation Count

Image Type Number of Images Associated Annotations

Original high-resolution images 823 823 .txt files

Preprocessed images (_rpi) 823 823 .txt files

Total 1,646 1,646 files

This enriched dataset, balanced across the “ripe” and “unripe” classes, was used as-is for
training the model in a Kaggle environment, following the input structure required by YOLOv8
[36].

The resulting hierarchical structure of the final dataset, prepared for YOLOv8 training, is
visually represented in Figure 2.10.

dataset final/ ├── data.yaml
├── train/
│ ├── images/

58

│ │ ├── apricot-1.jpg
│ │ ├── apricot-1_rpi.jpg
│ ├── labels/
│ │ ├── apricot-1.txt
│ │ ├── apricot-1_rpi.txt
├── valid/
│ ├── images/
│ │ ├── apricot-77.jpg
│ │ ├── apricot-77_rpi.jpg
│ ├── labels/
│ │ ├── apricot-77.txt
│ │ ├── apricot-77_rpi.txt
├── test/
│ ├── images/
│ ├── labels/

Figure 2.10: Final Dataset Directory Structure.
This figure illustrates the final organization of the training data folder, detailing the hierarchical
arrangement, sample file naming conventions indicating transformation stages with ‘_rpi’, and the
integration of images with their corresponding annotation files.

2.5. YOLOv8 Model Training

Following the construction of a robust and augmented dataset (Section 2.3), this phase focused
on training several YOLOv8 model variants to classify apricots into 'ripe' and 'unripe'
categories. The training was carried out in a controlled environment, with a consistent
experimental setup designed to explore the trade-offs between model accuracy, inference speed,
and embedded deployment constraints. This section presents the architecture selection
rationale, the training configurations, and the technical considerations guiding these choices.

2.5.1. Model Configuration and Training Parameters

a. Selection of YOLOv8 Architectures

Six YOLOv8 variants were selected for training: YOLOv8n, YOLOv8s, and YOLOv8m, each
trained for two durations (50 and 100 epochs). This comparative approach was designed to
evaluate the trade-off between detection capacity, inference speed, and suitability for embedded
deployment.

Heavier models such as YOLOv8l and YOLOv8x were intentionally excluded for two main
reasons:

➢ Hardware constraints: Larger architectures require significantly more memory and
computational power, which limits their applicability for deployment on resourceconstrained

59

devices like the Raspberry Pi 5. Recent work in embedded AI recommends lightweight models
for low-power environments [31].

➢ Dataset size: With a modest training set of 1,646 annotated images, deeper architectures are at
higher risk of overfitting, without guaranteed gains in detection accuracy [43].

The selected variants represent a meaningful architectural spectrum.

Table 2.4 provides a concise overview of the YOLOv8 model variants chosen for training,
detailing their technical descriptions and target usage scenarios.

Table 2.4: Overview of YOLOv8 Model Variants Selected for Training

Model Technical Description Target Usage

YOLOv8n Ultra-lightweight, fast, designed for edge
devices

Real-time detection on Raspberry
Pi

YOLOv8s Balanced compromise between accuracy and
speed

Near real-time deployment

YOLOv8m Higher capacity, trained for comparative
benchmarking

GPU reference for accuracy
comparison

Each architecture was trained for both 50 and 100 epochs to assess how extended training
impacts accuracy, convergence, and the risk of overfitting.

b. Common Training Parameters

To ensure consistent comparisons, all models were trained on the final merged dataset (original
plus Raspberry Pi–style images), organized in the standard YOLOv8 format (train/, valid/,
test/) and referenced by a data.yaml configuration file.

The following parameters were applied uniformly across all training sessions:

➢ Input resolution: 640 × 640 pixels
This is the default size recommended for YOLOv8 [36]. It provides a good compromise
between detection precision and computational efficiency. Higher resolutions could improve
small object detection but would increase memory usage and training time.

➢ Batch size: 16

60

This value ensures stable gradient updates while remaining within the memory limits of the
Kaggle GPU environment. It offers an effective balance for medium-sized datasets without
exhausting available VRAM.

➢ Number of epochs: 50 and 100
An epoch corresponds to a full pass through the training set. The dual-duration strategy enables
observation of performance evolution while mitigating overfitting risks, which are common
with small datasets [46].

➢ Optimizer: Stochastic Gradient Descent (SGD)
The default optimizer in YOLOv8, SGD is widely used in object detection tasks for its stability
and convergence properties.

➢ Learning rate: Automatically managed by YOLOv8
Adaptive learning rate control helps ensure robust convergence without the need for manual
tuning.

➢ Loss functions:

• CIoU Loss (Complete Intersection over Union)
Applied to bounding box regression, CIoU considers overlap area, center distance, and aspect
ratio alignment. It improves object localization compared to simple IoUbased loss functions.

• Binary Cross-Entropy (BCE) Loss
Used for classification, BCE is appropriate for binary tasks such as distinguishing ripe vs.
unripe apricots. It penalizes incorrect or low-confidence predictions.

These standardized parameters provide a stable experimental baseline, limiting the variables to
model architecture and training duration. This strategy enables objective comparison of
YOLOv8 variants under realistic conditions while taking into account the practical constraints
of precision agriculture and embedded hardware deployment.

2.5.2. Training Environment and Execution Setup

All training sessions were conducted in a cloud-based environment using Kaggle Notebooks
equipped with NVIDIA Tesla T4 GPUs. This configuration ensured adequate computational
resources for training all six YOLOv8 variants under consistent conditions. The selected
platform also facilitated reproducibility, version control, and efficient file management.

61

The table 2.5 summarizes the training infrastructure and workflow adopted throughout the
model development phase:

Table 2.5: Training Environment and Execution Configuration

Component Description

Platform Kaggle Notebooks (cloud-based, GPU-enabled)

GPU NVIDIA Tesla T4 (16 GB VRAM)

Python Environment Python 3.11, preconfigured with Ultralytics, OpenCV, NumPy

YOLO Library ultralytics (official YOLOv8 implementation)

Notebook Structure One notebook per model variant (YOLOv8n/s/m – 50 & 100
epochs)

Dataset Format YOLOv8-compatible structure (train/, valid/, test/, with
data.yaml)

Training Command
Format

model.train(data='data.yaml’, epochs=XX, imgsz=640,
batch=16, name='…')

Training Duration
(50 epochs)

Approximately 20–30 minutes depending on model size

Output Artifacts best.pt, results.png, confusion_matrix.png, metric curves, logs

Checkpointing Automatically handled by Ultralytics API

This standardized environment enabled direct comparison across different model architectures
and epoch durations, with no variability in computing conditions or dataset paths.

62

2.5.3. Generated Artifacts and Training Metrics

Each training session produced a comprehensive set of evaluation and configuration files,
stored under the directory runs/train/. These outputs were essential for monitoring learning
behavior, detecting anomalies (such as overfitting or class imbalance), and selecting the most
performant model for downstream inference and deployment.

Table 2.6 provides a comprehensive overview of the various output files and folders generated
by the YOLOv8 training sessions, detailing their contents.

Table 2.6: Output Files Generated by YOLOv8 Training Sessions

File / Folder Description

best.pt Final weights from the epoch with highest validation performance

results.png Summary plot of loss curves, mAP, precision, and recall over all
epochs

F1_curve.png F1-score plotted against confidence thresholds

P_curve.png Precision vs. confidence curve

R_curve.png Recall vs. confidence curve

PR_curve.png Precision–Recall curve across all thresholds

confusion_matrix.png Matrix showing correct and incorrect class predictions

results.csv Tabular logs of all epoch-wise metrics (precision, recall, mAP, losses)

opt.yaml, args.yaml Configuration files for experiment reproducibility

These outputs supported several critical analysis steps:

63

➢ results.png allowed visual inspection of performance progression over time, enabling early
identification of saturation or instability.

➢ confusion_matrix.png was used to diagnose class confusion, especially between visually similar
classes like ‘ripe’ and ‘unripe’.

➢ results.csv provided numerical insight into precision, recall, and mean Average Precision (mAP) at
multiple thresholds (0.5 and 0.5:0.95), supporting objective comparisons across models.

2.5.4. Interpretation of Epoch-Wise Training Curves

Figure 2.11 presents the evolution of key training and validation metrics across epochs, as
generated by YOLOv8 in the results.png file. This composite figure provides critical insight
into the model’s learning dynamics over time, highlighting trends in convergence,
generalization, and class discrimination performance. The top panels display training losses
and performance metrics, while the bottom panels show corresponding validation metrics.

Figure 2.11: Training Performance Curves Generated by YOLOv8 (results.png)
Each curve serves a specific diagnostic function:

➢ Box Loss (box_loss):
Represents the localization error in bounding box regression. A consistent downward trend
across both training and validation curves indicates effective spatial learning and convergence.
If the validation curve diverges from the training loss, it may signal overfitting or poor
generalization.

64

➢ Class Loss (cls_loss):
Measures the classification error in predicting the correct class label (ripe or unripe). A
decreasing curve reflects improved class discrimination. Close alignment between training and
validation curves suggests stable learning behavior.

➢ Distribution Focal Loss (dfl_loss):

Used for refining bounding box precision, especially regarding anchor-free center and width
predictions. Lower DFL values correlate with improved spatial accuracy andmodel confidence.

➢ Precision (per epoch):
Indicates the proportion of correct detections among all predicted bounding boxes. An upward
trend shows that the model becomes more selective and reduces false positives, which is critical
for embedded deployment where misclassifications can trigger incorrect robotic actions.

➢ Recall (per epoch):
Reflects the model’s ability to detect relevant ground truth objects. Rising recall indicates
increasing sensitivity to true apricots in the dataset, minimizing missed detections important
for tasks such as maturity monitoring and thinning.

➢ mAP50 and mAP50–95:
These are aggregate indicators of detection quality across classes and thresholds.

• mAP@0.5 evaluates detection performance at a moderate IoU threshold (50% overlap) and is
commonly used for deployment decisions.

• mAP@0.5:0.95 averages performance across ten stricter IoU thresholds (0.50 to 0.95), offering
a more rigorous view of overall detection precision and spatial accuracy.
A stable upward progression in both curves confirms that the model improves in terms of
localization and classification over time.

The orange dotted lines represent smoothed versions of each curve, allowing clearer
visualization of global trends by reducing noise due to individual batch variations.

These training curves play a decisive role in:

• Diagnosing training quality (e.g., underfitting, overfitting, instability);

• Selecting the optimal epoch for model export (best.pt);

• Justifying confidence in the model’s reliability for real-time use in agricultural environments.

65

2.5.5. Interpretation of Post-Training Metric Curves

The set of post-training metric curves provides a multi-dimensional diagnostic view of model
behavior across varying confidence thresholds. Each curve highlights a specific performance
indicator F1-score, precision, recall, or the precision–recall relationship and helps assess how
well the model balances false positives and false negatives. This information is crucial not only
for selecting the most robust version of the model (best.pt), but also for determining a
confidence threshold suited to real-world deployment conditions, particularly in agricultural
contexts involving maturity classification.

The following figures (Figure 2.12 through Figure 2.15) visually represent these key post-
training metric curves, providing a comprehensive diagnostic view of the YOLOv8 model's
performance.

a. F1-Curve: F1-Score vs. Confidence Threshold

Figure 2.12: YOLOv8 Training Curves: F1-score vs. Confidence Threshold
The F1-curve plots the harmonic mean of precision and recall as the confidence threshold varies
from 0 to 1. It measures the model’s ability to maintain a balanced trade-off between sensitivity
(recall) and specificity (precision).

• A broad and elevated peak indicates stable performance across multiple thresholds, signaling
robustness in practical deployment.

• A sharp or unstable peak suggests sensitivity to threshold tuning, which may reduce consistency
in real-time applications.

66

• The optimal threshold for deployment often corresponds to the maximum point of the F1-curve,
where the model best balances false positives and false negatives.

In fruit maturity detection, this balance is vital: misclassifying an unripe apricot as ripe (or vice
versa) may lead to unnecessary interventions or missed harvesting opportunities.

b. PR-Curve: Precision vs. Recall

Figure 2.13: YOLOv8 Training Curves: Precision–Recall Curve
The precision–recall (PR) curve provides a threshold-independent view of how precision
evolves as recall increases. It is particularly useful when evaluating models on imbalanced
datasets or tasks with significant consequences for misclassification.

• A PR-curve that remains close to the top-right corner reflects a strong and consistent model:
most target fruits are detected accurately and with minimal error.

• The area under the curve (AUC) serves as a compact summary of global detection quality. AUC
values closer to 1 indicate excellent precision–recall trade-offs.

For maturity detection, this curve helps ensure that improving recall (e.g., detecting more fruits)
does not come at the cost of an unacceptable rise in false positives

67

c. P-Curve: Precision vs. Confidence Threshold

Figure 2.14: YOLOv8 Training Curves: Precision vs. Confidence Threshold
The P-curve illustrates how the model’s precision varies as the confidence threshold increases.
It reflects the reliability of the confidence scores produced by the model.

• A flat and high curve suggests the model remains precise even when only highconfidence
detections are retained.

• A steep decline at higher thresholds indicates overconfidence in incorrect predictions, which
may result in unnecessary rejections or misinterpretations.

In embedded systems, such as Raspberry Pi–based deployments, where decisions may be
automated, confidence reliability becomes a critical factor. The P-curve thus supports the
calibration of filtering mechanisms based on confidence.

68

d. R-Curve Recall vs. Confidence Threshold

Figure 2.15: YOLOv8 Training Curves: Recall vs. Confidence Threshold
The R-curve shows how recall decreases as the confidence threshold increases. This curve directly reveals how
many correct detections are lost when low-confidence predictions are filtered out.

 A gradual slope indicates a tolerant model that maintains detection capability even at stricter confidence
levels.

 A sudden drop suggests that the model may be too conservative, potentially missing relevant
detections—an issue in use cases requiring comprehensive fruit monitoring.

In the context of maturity detection, especially when both ripe and unripe fruits must be considered for thinning
or forecasting, maintaining recall is essential to avoid blind spots.

e. Diagnostic Role in Selecting the Final Model (best.pt)

Although YOLOv8 automatically selects the best.pt model based on the highest validation
mAP@0.5, the metric curves provide critical complementary information for validating that
choice and fine-tuning deployment parameters.

• The F1-curve pinpoints the optimal balance point between recall and precision.

• The PR-curve evaluates whether this balance is maintained across the full spectrum of recall.

• The P- and R-curves help assess the model’s sensitivity to threshold changes and its confidence
calibration.

A well-performing best.pt model suitable for embedded, real-time deployment is typically
characterized by:

69

• A high and well-centered F1-curve peak;

• A PR-curve with a large area under the curve

• And stable P- and R-curves indicating reliable confidence estimation and detection coverage.

These elements ensure that the selected model performs consistently in variable conditions both
visually and operationally making it suitable for maturity detection tasks in real agricultural
environments.

2.6. Evaluation of the best.pt Model on the Independent Test Set

At the end of the training phase, the YOLOv8 framework automatically selects the model that
achieved the highest mean Average Precision at an IoU threshold of 0.5 (mAP@0.5) on the
validation set. This model is exported as the best.pt file. However, this internal selection while
indicative does not guarantee the model’s actual ability to generalize to unseen data.

To obtain an impartial assessment of the model’s robustness, an independent evaluation was
conducted on the test set, a subset of annotated images excluded from both training and
validation (see Section 2.3.). This protocol follows established best practices in machine
learning to prevent performance overestimation [53].

2.6.1. Global Metrics and Diagnostic Curves

The evaluation was performed using the model.val() function from the Ultralytics YOLOv8
API, applied to the standardized structure of the test folder. This process automatically
generates a complete set of results both quantitative metrics and performance curves which are
stored in the runs/val/ directory.

The main global metrics calculated on the full test set are as follows:

• Precision

• Recall

• mAP@0.5

• mAP@0.5:0.95

These values are also illustrated in Section 2.5.4.

70

In addition to these scalar indicators, four diagnostic curves illustrated in Section 2.5.5.were
generated to visualize the model’s behavior across varying confidence thresholds:

• P-curve

• R-curve

• F1-curve

• PR-curve

2.6.2. Confusion Matrix Analysis

In addition to the diagnostic curves, a confusion matrix was generated to assess class-wise
performance. For each class, it indicates the number of true positives (TP), false positives (FP),
and false negatives (FN). This representation allows for the identification of systematic errors,
such as frequent misclassifications between the “ripe” and “unripe” classes.

The normalized confusion matrix, shown in Figure 2.16, expresses these results as percentages,
facilitating comparison between classes despite potential imbalance. Diagonal values represent
correct classifications, while off-diagonal elements reflect confusions.

71

Figure 2.16: Normalized Confusion Matrix for Test Set Evaluation
Each cell expresses the proportion of predictions for a given class. Class confusions are visually
easy to detect.

This matrix provides a fine-grained analysis of the model’s sensitivity to each target class and
will be used in Chapter 3 to explain the performance differences observed across tested variants.

2.6.3. Qualitative Test Batch Visualizations

Finally, the evaluation process generates visualizations of predictions on the test images, with
bounding boxes overlaid (val_batch*.jpg). These images provide visual insight into:

• The accuracy of object localization

• The correctness of class labels

• The presence of duplicates (false positives) or missing detections (false negatives)

These qualitative results are illustrated in Figure 2.17. They are especially useful for assessing
the model’s robustness under varied lighting, complex backgrounds, or partial fruit visibility—
common challenges in real-world agricultural settings.

72

Figure 2.17: Qualitative Visualization of Predictions on the Test Set

This is an Examples of images automatically annotated by the model across different batches
(val_batch), which are particularly useful for visually assessing the accuracy of object
localization, the correctness of class labels, and for identifying visible errors or edge cases like
false positives and missing detections.

The evaluation of the best.pt model on the independent test set provides a comprehensive
diagnostic of its generalization capacity. The combination of global metrics, diagnostic curves,
confusion matrix, and visual results enables a robust validation of model behavior before any
embedded deployment. These findings will be integrated into the detailed comparative analysis
in Chapter 3, which aims to identify the most reliable and deployment-ready YOLOv8 variant
for maturity detection in real orchard conditions.

73

2.6.4. Offline Inference on a YouTube Video (Kaggle)

To emulate a realistic use case, a representative video showing apricots under natural conditions
was downloaded from YouTube and processed in an offline environment using Kaggle
notebooks. The inference script was implemented using the official Ultralytics YOLOv8 API,
and two model variants were tested:

• YOLOv8n-100: selected for its lightweight architecture suitable for embedded use;

• YOLOv8m-50: used as a higher-capacity benchmark to assess potential gains in detection
accuracy.

During execution, each video frame was processed individually. The following elements were
displayed or recorded:

• Bounding boxes with class label ('ripe') and confidence score,

• Real-time Frames Per Second (FPS) to measure inference speed,

• Annotated output video saved for further qualitative inspection.

This experiment provided a visual benchmark for detection quality and temporal consistency,
helping to identify potential issues such as frame-to-frame instability, misdetections under
motion blur, or inconsistent classification.
Figure 2.18 illustrates the comprehensive workflow for this offline video inference experiment,
summarizing the experimental pipeline for testing YOLOv8 models on pre-recorded apricot
videos.

74

Figure 2.18:Workflow for Offline Video Inference with yolov8m50 (Kaggle)
Summary of the experimental pipeline for testing YOLOv8 models on pre-recorded apricot
videos.

2.6.5. Real-Time Inference via Webcam (Local Development Environment)

To validate practical deployment on low-cost hardware, the best.pt model was deployed locally
on a consumer PC using Visual Studio Code, a 720p webcam, and the YOLOv8 API. This setup
approximates the visual input conditions of embedded vision systems such as the Raspberry Pi
Camera Module v2.1.

The real-time test used six ripe apricots placed at varying distances, angles, and lighting
conditions to replicate diverse field scenarios. For consistency with the intended embedded
deployment, only the YOLOv8n-100 model was tested in this configuration, chosen for its
optimal trade-off between accuracy and execution speed.

Due to practical limitations (e.g., lack of access to mixed maturity samples during the test), only
the 'ripe' class was retained during inference. The 'unripe' class was filtered out using a
postinference script. This constraint was accepted as a temporary adaptation for controlled
testing while preserving the relevance of maturity detection validation.

The interface displayed:

• Annotated bounding boxes with predicted class and confidence score,

• A live FPS counter indicating model responsiveness,

• Terminal logs with bounding box coordinates, dimensions, aspect ratios, and confidence levels.

Figure 2.19 visually illustrates this real-time inference setup, showing the testing configuration,
the model used, and the outputs monitored during the webcam validation.

75

Figure 2.19: Real-Time Inference Setup with Local Webcam
These outputs enabled a functional and visual assessment of the model’s behavior in dynamic,
uncontrolled visual contexts. They also provided preliminary validation of the system’s ability
to operate on edge devices where power, latency, and accuracy must be balanced.

In summary These two experiments served complementary purposes:

• The offline video test evaluated model robustness on longer video sequences under natural but
reproducible conditions.

• The real-time webcam test simulated the embedded execution pipeline and confirmed the
model’s ability to handle real-time inference, providing critical insight for future deployment
on Raspberry Pi–based hardware.

The results from both tests were saved as annotated videos and inference logs, and will be used
in Chapter 3 to support the final evaluation of the selected model’s suitability for embedded
maturity detection in orchard environments.

76

2.7. Embedded Deployment on Raspberry Pi 5 (8GB)

To bridge the gap between model training and real-world usage, the trained YOLOv8n-100
model was deployed on a Raspberry Pi 5 (8GB) using its native camera interface. This step
directly addresses the agronomic challenges outlined in Chapter 1, which emphasized the need
for lightweight, low-cost, and autonomous systems capable of operating under the constraints
of Algerian orchard environments. The Raspberry Pi platform was selected for its affordability,
community support, and proven suitability for embedded vision tasks.

This deployment validates the model’s compatibility with real-time maturity detection
objectives such as assisted harvesting, yield estimation, and Thinning without requiring
expensive or resource-intensive infrastructure.

2.7.1. System Preparation

The deployment environment was built on a Raspberry Pi 5 running Raspberry Pi OS 64-bit
(Bookworm) with Python 3.11. All tests were conducted with the Raspberry Pi Camera Module
V2.1, interfaced via the Picamera2 library.

Table 2.7 outlines the essential tools and packages installed, along with their purpose, for setting
up the Raspberry Pi 5 environment for YOLOv8 deployment.

Table 2.7: Raspberry Pi 5 Environment Setup for YOLOv8 Deployment

Step Tool/Package Purpose

1 pip install ultralytics For YOLOv8 model loading and inference

2 sudo apt install libcamera-dev Required for Picamera2

3 sudo apt install python3-picamera2 Python interface for Raspberry Pi Camera V2

4 pip install opencv-python Real-time video processing

5 Thonny IDE Used for script editing and execution

Each step ensured that the camera feed, model, and postprocessing logic could run in real time
with minimal latency.

77

2.7.2. Model Transfer and Integration

The trained best.pt model was transferred from the development environment to the Raspberry
Pi using a USB drive. It was stored under /home/pi/yolo/ for clarity and maintainability.
Organizing the project directory by separating models, scripts, and outputs helped streamline
future debugging and iteration.

2.7.3. Real-Time Inference Script (Thonny IDE)

The real-time detection script was developed and executed within the Thonny Python IDE. It
integrates Picamera2 for live image capture, OpenCV for annotation, and Ultralytics YOLO
for inference. The key components of the script include:

• Initialization of the Picamera2 feed (1280×720)

• Loading the best.pt model

• Capturing each frame and passing it to the model

• Overlaying class labels, confidence, and FPS on the video stream

• Logging inference speed and bounding box data to the terminal

• Saving output videos using OpenCV’s Video Writer

This setup provides a simple but powerful prototype for real-time maturity detection in
embedded

Figure 2.20 schematically represents this complete on-device detection workflow, illustrating
the real-time embedded inference pipeline from image acquisition to detection and visualization
on the Raspberry Pi 5.

78

Figure 2.20: Real-Time Embedded Inference Pipeline on Raspberry Pi 5
Schematic representation of the complete on-device detection workflow, from image
acquisition using the Pi Camera to inference, optional filtering, and visualization of detected
apricots.

2.7.4. Outputs and Diagnostics

During execution, the inference system displayed bounding boxes labeled with the predicted
class (ripe or unripe) and confidence scores. An FPS counter was rendered directly on the video
stream. Meanwhile, terminal logs showed detailed information on per-frame timing:
preprocessing, inference, and postprocessing durations.

These diagnostic outputs are essential for assessing system viability in embedded deployment,
especially where speed and stability are critical.

Figure 2.21 provides a visual representation of these real-time inference outputs on the
Raspberry Pi 5, showing the detection of apricots, along with displayed bounding boxes,
confidence scores and FPS

Figure 2.21: Real-Time Inference on Raspberry Pi 5 using Thonny IDE
Visual output of YOLOv8n-100 model detecting ripe and unripe apricots in real time. The
script was executed in Thonny with Picamera2 input. Bounding boxes, confidence scores, and
FPS are displayed.

79

2.7.5. Practical Constraints and Future Directions

Due to practical limitations, the real-time tests focused on detecting only one maturity class at
a time. The ripe class was tested using fresh apricots under natural lighting, while the unripe
class was tested separately using images captured in orchard-like scenes. This separation
reflects constraints in available fruit samples not a limitation of the model or platform.

In Chapter 3, we will see the results of these tests after implementing class-based filters and
counters. These additions will demonstrate how the deployed model can support all five
practical objectives introduced in Section 1.3.3:

• Assisted harvesting, by isolating ‘ripe’ detections for robotic actuation

• Yield estimation, by counting detected fruits by class

• Thinning (Éclaircissage), by filtering out unripe detections

• Maturity monitoring, by tracking changes in class distribution over time

• Logistics planning, through maturity-aware spatial data

The Raspberry Pi deployment thus acts as a functional foundation for future integration with
robotic hardware, mobile systems, or smart farming platforms.

2.8. Conclusion

This chapter has detailed the complete technical pipeline developed for intelligent apricot
maturity detection, from initial data acquisition and meticulous annotation to model training,
evaluation, and embedded deployment. Each methodological step was designed to address the
agronomic and operational challenges identified in Chapter 1, ensuring that the resulting system
is not only scientifically robust but also adapted to the practical constraints of Algerian
orchards.

Through systematic data preprocessing, careful model selection, and rigorous validation, the
YOLOv8-based approach demonstrated compatibility with lightweight embedded hardware
such as the Raspberry Pi 5. The deployment phase confirmed the feasibility of real-time
maturity detection under realistic field conditions, providing a foundation for autonomous,
lowcost decision support in fruit production.

The chapter also highlighted the importance of diagnostic outputs and iterative refinement,
paving the way for further integration with agronomic workflows such as assisted harvesting,

80

yield estimation, and maturity monitoring. While certain practical constraints were encountered
such as limited access to diverse fruit samples the modularity of the pipeline ensures that future
adaptations and scaling are straightforward.

In summary, the technical developments presented in this chapter establish a robust and
reproducible framework for intelligent fruit maturity assessment. The next chapter will present
a comprehensive evaluation of the system’s performance, benchmarking its accuracy, speed,
and operational reliability in both controlled and real-world scenarios.

81

CHAPITRE 3 : Results and discussion

3.1. INTRODUCTION

This chapter is dedicated to the presentation and analysis of the results obtained during the
training and testing phases, as well as the practical implementation of the final detection model.
It builds upon the methodology defined previously to carry out a structured evaluation of six
YOLOv8 variants, differing by architecture size and number of training epochs.

The objective is twofold: first, to understand how training configurations impact detection
performance; second, to identify the model that offers the best compromise between accuracy
and computational efficiency for embedded deployment. The analysis is conducted in
progressive stages: from training behavior interpretation, to test set evaluation, to qualitative
and quantitative comparisons. The chapter concludes with the implementation of the selected
model on a Raspberry Pi 5 for real-time fruit detection.

3.2. Motivation for Multi-Stage Training

Selecting an effective object detection model involves more than choosing an architecture it
requires understanding how model complexity and training duration influence learning
behavior, convergence, and generalization. In applied contexts like real-time fruit detection,

82

these decisions are even more critical due to constraints on computation, latency, and data
volume.

This section explores the rationale behind varying both the size and training length of YOLOv8
models. The goal is not only to improve raw accuracy, but to align model behavior with the
practical demands of real-world deployment. Each training configuration was guided by early
indicators in the learning process, ensuring that experimentation remained grounded in
observable performance patterns.

3.2.1. Initial Model Selection: Starting with YOLOv8n-50

The training process began with the YOLOv8n model configured for 50 epochs. This
architecture was selected as a starting point due to its minimal computational footprint, making
it particularly suited for embedded environments such as the Raspberry Pi 5. Its lightweight
nature also aligned with the modest size of the dataset used in this project, reducing the risk of
overfitting during initial experimentation.

From the outset, this baseline served not only to establish a performance reference, but also to
observe the model’s learning dynamics under conservative conditions. The choice of 50 epochs
was intended as an initial benchmark to assess whether the model could reach acceptable
convergence within a limited number of iterations.

To assess whether the model had reached convergence by epoch 50, we analyzed the training
curves automatically generated by YOLOv8, as illustrated in Figure 3.1.

Figure 3.1: training curves of model YOLOv8n avec 50 epoches

83

The training curves generated for YOLOv8n over 50 epochs show consistent improvement
across all major metrics, both for the training and validation phases. The box loss, class loss,
and DFL loss display a steady downward trend, indicating that the model continuously refined
its object localization and classification capabilities throughout training.

In the upper row, we observe a smooth decline in the training losses (train/box_loss,
train/cls_loss, train/dfl_loss), suggesting that the model learned to minimize errors effectively
on the training set. The corresponding validation losses (val/box_loss, val/cls_loss,
val/dfl_loss) show a similar pattern with no sharp divergence, which indicates that overfitting
did not occur during this phase.

The precision and recall metrics, although subject to some fluctuation, generally trend upward.
Most notably, both mAP@0.5 and mAP@0.5:0.95 continue to increase until the final epochs,
with no indication of saturation or plateauing. This behavior suggests that the model had not
yet fully converged by epoch 50, and that further training was likely to result in additional
performance gains.

In summary, the visual patterns across all metrics point to a model that was still actively learning
and generalizing at the 50th epoch. This justified the decision to extend the training to 100
epochs and to apply the same protocol to other model sizes for consistent evaluation.

3.2.2. Extending Training Duration: Need for 100 Epochs

The initial 50-epoch training of YOLOv8n showed promising trends, but key performance
indicators had not yet stabilized. To verify whether the model would continue to improve, the
training was extended to 100 epochs. This adjustment aimed to observe the effects of prolonged
optimization on detection performance and learning dynamics.
Figure 3.2 visually presents the training curves for the YOLOv8n model after 100 epochs,
demonstrating the continued learning and performance improvements.

84

Figure 3.2: Training curves of the model YOLOv8n with 100 epoches
The training curves for YOLOv8n-100 confirm that the additional epochs contributed to further
learning. The box loss, classification loss, and DFL loss continued their downward trajectory,
with both training and validation losses showing smooth and parallel reductions a clear sign
that overfitting remained controlled even after doubling the training duration.

In the second half of training (epochs 50 to 100), we observe continued gains in precision and
recall, though with some expected fluctuations due to validation variability. More importantly,
both mAP@0.5 and mAP@0.5:0.95 exhibit upward trends that begin to flatten toward the final
epochs, suggesting the model approaches convergence.

At this stage, further training beyond 100 epochs was not pursued for two reasons:

• First, the marginal gains observed after epoch 90 indicated diminishing returns. The
improvements in precision and mAP between epochs 90 and 100 were minimal.

• Second, from a deployment perspective, training efficiency and model generalization matter
more than over-optimization. Extending the process further would have increased training time
without a meaningful gain in real-world performance.

This confirmed that 100 epochs provided a balanced trade-off for the Nano model: lightweight,
fast to train, and capable of strong convergence without unnecessary complexity. Based on this
result, the 100-epoch configuration was adopted as the standard for the rest of the comparative
study.

85

3.2.3. Scaling Model Size: From YOLOv8n to YOLOv8m

Following the analysis of YOLOv8n, additional models were introduced to evaluate the impact
of increased architectural complexity on training behavior. Specifically, YOLOv8s (Small) and
YOLOv8m (Medium) were selected, each trained for 50 and 100 epochs. This step aimed to
analyze how larger model sizes influence convergence speed, learning stability, and overall
training quality under consistent conditions.

By maintaining the same dataset, input resolution, batch size, and optimizer, the study ensured
that observed differences in learning curves were attributable to model capacity and not to
external variables. These comparisons help assess whether more complex architectures justify
their computational cost, particularly in contexts where real-time processing and limited
hardware are constraints.
To further analyze the impact of model scaling and extended training, Figures 3.3 through 3.6
present the training performance curves for YOLOv8s and YOLOv8m variants across different
epoch counts.

Figure 3.3: Training Performance Curves for YOLOv8s with 50 epoches

86

Figure 3.4: Training Performance Curves for YOLOv8s with 100 epoches

Figure 3.5: Training Performance Curves for YOLOv8m with 50 epoches

87

Figure 3.6: Training Performance Curves for YOLOv8s and YOLOv8m with 100 epoches
To facilitate interpretation, the Table 3.1 summarizes the key trends observed from each
training run:

Table 3.1: Comparative Summary of Training Behaviors for YOLOv8s and YOLOv8m Models

Model Convergence
Behavior mAP50

&
mAP50-
95 Trend

Loss
Behavior
(Train/Val)

Precision &
Recall
Stability

Interpretation
Summary

YOLOv8s-
50

Incomplete –
improvement
still visible

Rising
until final
epochs

Both
decreasing
smoothly

Moderate
noise, upward
trend

Training not
saturated; model
still learning.
Extension to 100
epochs justified.

88

YOLOv8s-
100

Near
convergence
at ~80–90
epochs

mAP
curves
begin to
flatten

Train/val loss
remain
tightly
aligned

Metrics
stabilize after
epoch 70

Balanced learning
with no signs of
overfitting; good
trade-off model.

YOLOv8m-
50

Fast
convergence
before epoch
40

High
mAP
achieved
early,
stable
plateau

Rapid drop
in loss; clean
curves

Very stable
metrics from
epoch 30+

Strong
performance in
few epochs;
efficient for
highend
applications.

YOLOv8m-
100

Fully
converged;
marginal late
gains

mAP50-
95 flattens
after
epoch 70

Loss
continues to
drop slightly

Minor
improvements
beyond epoch
80

Redundant epochs
after 80;
convergence
reached; heavy
model with
limited added
value.

These results confirm that increasing the model size leads to faster convergence and stronger
early performance, particularly for the medium variant. However, they also highlight that
beyond a certain point especially after epoch 80 the performance gains become marginal, while
training costs continue to increase. The YOLOv8m models demonstrate early saturation, while
YOLOv8s offers a smoother and more progressive improvement.

3.2.4. Confirmation of Size Limit: Why YOLOv8l and YOLOv8x Were Not Included

The exclusion of YOLOv8l and YOLOv8x from the training experiments was originally
motivated by technical constraints related to hardware and dataset size, as discussed in Chapter
2. However, the results obtained from the trained YOLOv8n, s, and m models provide concrete
validation for that decision.

The performance plateau observed in YOLOv8m especially the saturation of mAP curves and
minimal gain beyond 80 epochs indicates that increasing architectural depth further would
likely result in diminishing returns. Additionally, none of the models showed signs of
underfitting, which suggests that the learning capacity of YOLOv8m is already sufficient for
the task.

89

From a scientific standpoint, this confirms that larger models would have increased complexity
and inference cost without proportionate improvement in accuracy or generalization.
Maintaining the evaluation within the Nano, Small, and Medium configurations ensured that
the comparative study remained both relevant to embedded deployment and fully optimized
for the given dataset scale.

3.3. Multi-Level Comparative Analysis of YOLOv8 Models for Embedded Deployment

To identify the most suitable object detection model for real-time embedded applications,
particularly on constrained hardware such as the Raspberry Pi 5, this section presents a
structured comparative study of the six trained YOLOv8 variants. The evaluation extends
beyond raw performance scores to incorporate multiple perspectives quantitative, manual, and
visual each offering insights into how the models generalize, handle detection errors, and
behave in real-world imagery.

This multi-level analysis is framed as a decision-support strategy, aimed at determining not
only which model performs best in absolute terms, but also which configuration is most
compatible with the practical constraints of embedded implementation.

3.3.1. Methodology for Model Comparison

The comparative analysis is structured across three complementary levels, designed to evaluate
each model from both technical and practical standpoints:

• Automated Evaluation: Standard metrics extracted using the val() function, including precision,
recall, and mean Average Precision (mAP).

• Manual Evaluation: Quantitative breakdown of detection results via raw confusion matrices to
assess class-wise behavior and consistency.

• Visual Evaluation: Inspection of real detection outputs both on static images and in video
streams to identify practical issues such as duplicate boxes, misclassifications, and false
negatives.

Each level is addressed in the subsections that follow, contributing to a grounded and evidence
based model selection process.

90

3.3.2. Quantitative Results: Automated Evaluation

The first layer of this comparative analysis is based on the performance metrics generated via
the model.val() function in Ultralytics. These standardized outputs provide a consistent basis
for measuring precision, recall, mean Average Precision (mAP), and inference latency across
all six models. While limited to theoretical evaluation on a fixed test set using a CPU as
device , these metrics remain fundamental for identifying strengths and limitations in each
architecture prior to deployment.

Table 3.2 presents the quantitative performance metrics obtained from the model.val() function
in Ultralytics, providing a detailed breakdown of precision, recall, mAP, and inference latency
for each YOLOv8 model variant.

Table 3.2: model.val() Performance Metrics (from Ultralytics)
Model Class Precison Recall mAP@

0.5
mAP@
0.5:0.95

Inference
Time (ms)

Remarks and
Interpretation

YOLOv
8n-50

Ripe 0.774 0.690 0.790 0.659 128.1 Strong precision
but slightly
limited recall
suggests a
conservative
prediction
behavior. Its low
inference latency
makes it viable
for embedded
applications,
though
generalization
remains modest.

Unripe 0.673 0.684 0.755 0.613 128.1 Performance on
the 'unripe' class
is comparatively
weaker,
indicating
difficulty in
detecting more
ambiguous
instances.

YOLOv
8n-100

Ripe 0.728 0.711 0.791 0.659 140.8 Demonstrates
improved
balance between
precision and
recall compared
to n-50, with
stable

91

performance and
slightly
enhanced
generalization,
maintaining real-
time
compatibility.

Unripe 0.650 0.663 0.728 0.588 140.8 Despite
moderate gains,
class imbalance
persists, yet the
model shows
resilience across
both categories.

YOLOv
8s-50

Ripe 0.750 0.696 0.795 0.679 375.6 Offers solid
detection metrics
with higher
mAP, but the
significantly
increased
inference time
limits its
feasibility for
embedded
systems.

Unripe 0.666 0.714 0.749 0.611 375.6 High recall
suggests broad
detection
coverage, though
at the cost of
precision and
latency.

YOLOv
8s-100

Ripe 0.719 0.783 0.801 0.681 372 Marginal gains
in recall and
mAP indicate
diminishing
returns with
extended
training;
inference time
remains a barrier
to embedded
use.

Unripe 0.648 0.725 0.749 0.613 372 Despite extended
training, stability
across classes is
not significantly

92

improved.
YOLOv
8m-50

Ripe 0.748 0.763 0.816 0.676 833.5 Achieves the
highest mAP and
robust recall,
reflecting strong
detection
capacity, yet its
computational
footprint makes
real-time
deployment
impractical.

Unripe 0.640 0.737 0.792 0.642 833.5 Well-balanced
detection, but
inference latency
prohibits use in
constrained
environments.

YOLOv
8m-100

Ripe 0.722 0.773 0.817 0.673 820.5 Maintains strong
results for 'ripe'
but introduces
class imbalance
and diminishing
returns from
further training.

Unripe 0.747 0.597 0.751 0.591 820.5 A notable drop
in recall for
'unripe'
undermines
consistency and
robustness,
limiting its
suitability for
field
deployment.

➢ Interpretation and Summary

The results presented in Table 3.2 offer a structured and objective overview of each model's
theoretical performance. While metrics such as mAP and recall are critical for assessing general
detection accuracy, they must be interpreted in light of practical deployment constraints,
especially for embedded systems like the Raspberry Pi 5.

93

From a purely quantitative standpoint, the YOLOv8m-50 model stands out with the highest
mAP@0.5 (0.817) and robust recall values across both classes. This indicates a high detection
capacity under ideal GPU-powered conditions. However, its inference time exceeding 820 ms
makes it unsuitable for real-time usage on edge hardware.

In contrast, YOLOv8n-100 demonstrates a well-balanced trade-off between accuracy and
efficiency, maintaining a low inference time (140.8 ms) while offering consistent precision and
recall. This makes it a strong candidate for lightweight, real-time applications where detection
stability and responsiveness are both essential.

3.4. Manual Evaluation Based on Confusion Matrices

Manual evaluation of confusion matrices provides an essential and complementary level of
analysis to the standard metrics automatically generated by the model.val function in deep
learning frameworks. While global indicators such as mean Average Precision (mAP), recall,
or F1-score allow for quick model comparisons, they often obscure the exact nature of the errors
made especially in complex contexts like fruit detection in natural environments.

This manual analysis specifically aims to fill that gap: it allows the identification and
quantification of error types that directly impact the real-world usefulness of the model, such
as class confusion (“ripe” vs “unripe”), false detections on background elements (e.g., leaves,
branches, sky), or missed fruits. This level of detail is crucial to assess the actual robustness of
a model under field conditions, where a simple improvement in global scores does not
necessarily guarantee better operational performance.

Practically, for each tested model, the confusion matrices from the test set were analyzed to
extract the following indicators:

• TP (True Positives): correct detections of fruits from the target class;

• FP background: false detections assigned to background elements;

• FP inter-class: class confusions, such as a “ripe” fruit predicted as “unripe”;

• FN (False Negatives): fruits present in the image but not detected by the model.

From these values, operational metrics were computed, such as:

• Precision with background (including FP background),

• Precision without background (strict classification ability),

94

• and Recall (rate of fruits effectively detected).

The results of this analysis are summarized in a comparative table (Table 3.4), along with
confusion matrices (Figure 3.7) for each model. This approach helps identify the architectures
offering the best trade-off between robustness, selectivity, and suitability for embedded
implementation.

Example: Reading a Raw Confusion Matrix

To concretely illustrate the manual analysis approach, we present below the raw confusion
matrix obtained for the YOLOv8n-50 model, showing the corresponding values for the “ripe”
and “unripe” classes. This matrix makes it possible to extract, for each class, the various types
of errors and successes required to compute the operational metrics

Figure 3.7 provides a visual representation of this raw confusion matrix for the YOLOv8n-50
model.

.

Figure 3.7: Raw confusion matrix example for YOLOv8n-50
Table 3.3 presents the numerical values from this raw confusion matrix for the YOLOv8n-50
model, detailing the true positives, false positives (inter-class and background), and false
negatives for both ripe and unripe classes.

Table 3.3: Raw Confusion Matrix YOLOv8n-50

95

True Ripe True Unripe True Background

Pred Ripe 553 (TP) 81 (FP
inter)

314 (FP background)

Pred Unripe 185 (FP inter) 455 (TP) 250 (FP background)

Pred Background 58
(FN)

96 (FN) —

As an example, for the “ripe” class, the indicators are computed as follows:

• TP ripe = 553

• FP background ripe = 314

• FP inter ripe = 81

• FN ripe = 58 (direct missed detections) + 185 (confusions with “unripe”) = 243 From these values, the

following metrics can be calculated:

• Precision without background: proportion of correct detections among all predictions excluding
background false positives.

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐛𝐚𝐜𝐤𝐠𝐫𝐨𝐮𝐧𝐝 = 𝐓𝐏
𝐓𝐏+𝐅𝐏𝐢𝐧𝐭𝐞𝐫=

𝟓𝟓𝟑
𝟓𝟓𝟑+𝟖𝟏=0.872

• Precision with background: proportion of correct detections among all predictions, including
background errors.

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐰𝐢𝐭𝐡 𝐛𝐚𝐜𝐤𝐠𝐫𝐨𝐮𝐧𝐝 = 𝐓𝐏
𝐓𝐏+𝐅𝐏𝐢𝐧𝐭𝐞𝐫+𝐅𝐏𝐛𝐚𝐜𝐤𝐠𝐫𝐨𝐮𝐝 =

𝟓𝟓𝟑
𝟓𝟓𝟑+𝟖𝟏+𝟑𝟏𝟒=0.570

• Recall: the model’s ability to detect all existing fruits of the target class.

This methodology is then applied to the “unripe” class and to all the models studied, in order to
enable a precise and relevant comparison of their performance.

96

Recall = 𝐓𝐏
𝐓𝐏+𝐅𝐍 = 𝟓𝟓𝟑

𝟓𝟓𝟑+𝟐𝟒𝟑 = 𝟎.𝟔𝟗𝟓

Table 3.4 summarizes the results of this manual evaluation, presenting the computed
operational metrics for each YOLOv8 variant, along with an agronomic interpretation and
suitability assessment for embedded deployment.

Table 3.4:Manual Evaluation of YOLOv8 Variants for Agronomic Objectives and Embedded
Deployment

Model Class TP FP
BG

FP
Inter

FN Precision
with BG

Recall Precision
without
BG

Agronomic
Interpretation

Embedded
Suitability

YOLOv8
n-50

Ripe 553 314 81 243 0.570 0.695 0.872 Good for basic
maturity
monitoring and
initial harvest
estimation.
Requires
postprocessing
for field use.

Suitable with
filtering

YOLOv8
n-50

Unripe 455 250 185 177 0.524 0.720 0.711 Detects unripe
fruits well for
Thinning, class
confusion may
affect sorting
accuracy.

Suitable with
filtering

97

YOLOv8
n-100

Ripe 587 345 112 209 0.563 0.737 0.840 Reliable for
maturity tracking
and yield
estimation;
moderate
background
noise.

Recommended

YOLOv8
n-100

Unripe 407 281 142 225 0.526 0.644 0.741 Usable for
thinning and
monitoring;
some
confusion, but
feasible for
embedded
use.

Recommended

YOLOv8
s-50

Ripe 543 243 80 253 0.609 0.682 0.872 High precision
for selective
maturity
detection,
suitable for field
surveys and
planning.

Suitable with
optimization

YOLOv8
s-50

Unripe 445 194 160 187 0.553 0.704 0.736 Solid for class
differentiation
in Thinning,
class confusion
may limit
precision.

Suitable with
optimization

YOLOv8
s-100

Ripe 586 233 106 210 0.610 0.736 0.847 Balanced for
maturity
mapping and
real-time field
use; efficient
for spatial
maturity
analysis.

Suitable with
optimization

98

YOLOv8
s-100

Unripe 419 239 125 213 0.537 0.663 0.770 Acceptable for
maturity
discrimination
some tolerance
needed for class
confusion.

Suitable with
optimization

YOLOv8
m-50

Ripe 602 331 89 194 0.571 0.756 0.871 Excellent
detection for
detailed yield
estimation; too
heavy for
realtime
embedded use.

Not suitable
(too heavy)

YOLOv8
m-50

Unripe 470 311 142 162 0.506 0.743 0.768 Accurate for
thinning and
maturity
estimation; best
for offline or
batch
processing.

Not suitable
(too heavy)

YOLOv8
m-100

Ripe 639 304 123 157 0.558 0.803 0.839 Highest recall
for
Comprehensive
mapping;
requires
hardware
optimization for
embedded use.

Not suitable
(too heavy)

YOLOv8
m-100

Unripe 407 194 90 225 0.576 0.644 0.819 Very strong for
class
separation;
recommended
for stationary or
cloud-based
analysis.

Not suitable
(too heavy)

➢ Interpretation Guidance :

• Models with high recall are preferred for yield estimation and maturity monitoring, where
exhaustive detection is prioritized.

99

• High precision (especially without background errors) is important for accurate class based
sorting and Thinning.

• Low class confusion improves the reliability of thinning and maturity-based planning.

• Lightweight models (YOLOv8n, YOLOv8s) are generally more suitable for Raspberry Pi
deployment, provided post-processing or filtering is applied to manage false positives.

• Heavier models (YOLOv8m), while highly accurate, are not recommended for real-time
embedded use due to computational constraints.

The results summarized in Table 3.2 highlight the practical trade-offs between detection
accuracy and embedded feasibility across the evaluated YOLOv8 models. While medium-sized
variants achieve the highest recall and class separation, their computational demands limit their
use for real-time, embedded applications. In contrast, lightweight models particularly
YOLOv8n-100 offer a balanced compromise, delivering robust maturity detection and class
differentiation suitable for Raspberry Pi deployment. This analysis confirms that optimal model
selection for field use must consider not only raw detection metrics, but also operational
constraints and postprocessing requirements.

3.5. Visual Comparison of Model Performance

Beyond the quantitative analysis based on global metrics and confusion matrices, a qualitative
evaluation of visual predictions is an essential step for assessing the true reliability of YOLOv8
models in agricultural contexts. This approach helps identify behaviors that are not detectable
through numerical statistics alone, such as the presence of duplicate detections (multiple boxes
on a single fruit), class confusion (ripe vs. unripe), and the cleanliness and stability of detections
(single, well-localized boxes).

Direct observation of model outputs, applied to images from the test set (test_batch), provides
a concrete view of how robust each model is under variable real-world conditions. This
methodology, commonly recommended in the literatures like [36,21], complements
quantitative evaluations by offering a qualitative validation that is critical for deployment on
embedded platforms like the Raspberry Pi.

3.5.1. Selection of Cases and Models for Analysis

Three representative case types were defined to structure the visual analysis:

• Case 1 – Duplicates: multiple bounding boxes predicted on the same fruit.

100

• Case 2 – Class Confusion: incorrect classification between ripe and unripe.

• Case 3 – Clean Detection: a single, well-centered, correctly classified bounding box.

For each case, a representative image was selected from test_batch0, test_batch1, and
test_batch2 (each batch containing 16 images), to cover a diverse range of real-world scenarios.

Three models were selected for visual comparison:

• YOLOv8n-100: a lightweight and fast model, optimized for low-resource embedded systems
like Raspberry Pi.

• YOLOv8s-100: an intermediate model offering a trade-off between size, speed, and accuracy.

• YOLOv8m-50: a high-capacity detection model used as a precision reference, but poorly suited
for embedded deployment in its current form.

This selection allows evaluation of model behavior across various trade-offs between
performance, stability, and computational load, in alignment with the constraints of real
agricultural applications.

3.5.2. Visual Analysis of Typical Cases

Figures 3.8, 3.9, and 3.10 visually present the comparative predictions of the selected YOLOv8
models (YOLOv8n-100, YOLOv8s-100, and YOLOv8m-50) across three representative case types:
duplicate detections, class confusion, and clean detections. Each figure showcases the models'
behavior on a single, carefully chosen image from the test set, allowing for a detailed qualitative
assessment of their performance in various real-world scenarios.

For each case, one image was selected and the predictions of all three models were compared
on the same image. Interpretations are based on automatically annotated outputs, assessed using
the following criteria:

• Case 1 : Duplicates

101

(a) YOLOv8n-100
test_batch0_n100.jpg

–(b) YOLOv8s-100
test_batch0_s100.jpg

–(c) YOLOv8m-50
test_batch0_m50.jpg

–

Figure 3.8: Predictions on a duplicated fruit (YOLOv8n-100 / YOLOv8s-100 / YOLOv8m-50)
YOLOv8n-100 shows moderate duplication. YOLOv8s-100 displays similar behavior, while
YOLOv8m-50, though highly precise, generates multiple duplicate boxes on ripe fruits. These
duplications can distort yield estimation or harvest planning.

• Case 2: Class Confusion

(a) YOLOv8n-100
test_batch2_n100.jpg

–(b) YOLOv8s-100
test_batch2_s100.jpg

–(c) YOLOv8m-50
test_batch2_m50.jpg

–

Figure 3.9:Misclassification between ripe and unripe

102

YOLOv8n-100 shows variable confusion depending on the image. YOLOv8s-100 makes
moderate errors. YOLOv8m-50 suffers from frequent class confusion in scenes with strong
color heterogeneity, limiting its reliability for sorting or thinning.

• Case 3: Clean Detection

(a) YOLOv8n-100
test_batch1_n100.jpg

–(b) YOLOv8s-100
test_batch1_s100.jpg

–(c) YOLOv8m-50
test_batch1_m50.jpg

–

Figure 3.10: Single, stable, and well-centered detection

Results for YOLOv8n-100 range from poor to excellent, showing overall average performance.

YOLOv8s-100 demonstrates moderate clean detection. YOLOv8m-50 maintains very clean
detections despite some partial overlap issues.

3.5.3. Final Qualitative Summary

The behaviors observed are summarized in the following Table3.5, which synthesizes the visual
prediction quality for each model and each case.

Table 3.5: Qualitative summary of visual behaviors on test_batch (YOLOv8n-100 / s-100 / m-50)

Model Case 1
(Duplicates)

Case 2
(Confusion) Case 3

(Clean
Detection)

Visual
Accuracy

Box
Cleanliness

Final
Observation

103

YOLOv8n-
100

Moderate None to
frequent

Variable
(low to
high)

Average Generally
stable

Lightweight
and fast but
sensitive to
conditions

YOLOv8s-
100

Moderate Occasional Average Average Moderately
stable

Acceptable
compromise
,but
unstable

YOLOv8m
-50

Moderate Frequent Average to
clean

Very good Very clean Highly
performant,
but too
heavy and
prone to
class
confusion

Legend: Qualitative scale = Low / Average / High / Very good

3.5.4. Conclusion of Visual Analysis

The visual analysis highlights the strengths and weaknesses of each YOLOv8 model under real
conditions. YOLOv8n-100 shows variability across test batches but remains the best candidate
for embedded use, provided that contextual filtering is applied. YOLOv8s-100 offers an
interesting trade-off, though it suffers from instability. YOLOv8m-50 delivers highly accurate
detection, at the cost of heavy computational requirements and frequent class confusion.

In conclusion, this qualitative evaluation confirms that structured visual inspection is
indispensable to complement numerical metrics and ensure model robustness in real
agricultural settings, especially when targeting deployment on embedded hardware platforms.

3.5.5. Final Selection of the Best Models

Based on the comprehensive quantitative and qualitative analyses presented in the previous
sections, the final selection of models is guided by both detection performance and practical
deployment constraints.

104

The manual evaluation of confusion matrices (Table 3.4) highlighted that while medium-sized
models (YOLOv8m-50, YOLOv8m-100) achieve the highest recall and class separation, their
computational demands make them unsuitable for real-time embedded applications. Visual
inspection further confirmed that these models, despite their precision, exhibit increased class
confusion and are not optimized for lightweight deployment.

Conversely, the lightweight models particularly YOLOv8n-100 demonstrated a robust balance
between precision, recall, and operational stability in both quantitative metrics and visual
performance. YOLOv8n-100 consistently delivered reliable maturity detection and class
differentiation, with manageable levels of false positives and duplications, making it the most
suitable candidate for deployment on Raspberry Pi and similar resource-constrained platforms.
YOLOv8s-100, while offering slightly improved detection in some scenarios, exhibited less
stability and required additional optimization for embedded use.

In summary :

➢ YOLOv8n-100 is selected as the optimal model for embedded deployment, due to its favorable
trade-off between accuracy, speed, and computational efficiency.

➢ YOLOv8m-50 consistently demonstrates the highest detection performance across all
evaluated models particularly in terms of recall and class separation its computational
complexity and memory requirements make it unsuitable for real-time deployment on
resourceconstrained platforms such as the Raspberry Pi. However, this model is highly
recommended for offline analysis or batch processing tasks on GPU-equipped devices, where
maximum detection accuracy is prioritized and hardware constraints are less restrictive.

This final selection ensures that the deployed system not only meets the technical requirements
for accurate maturity assessment and yield estimation, but also aligns with the practical realities
of real-world agricultural environments and embedded hardware limitations.

3.6. Inference on Test Videos (Kaggle)

To validate the real-world applicability of the selected YOLOv8 models, inference was
performed on representative apricot orchard videos using the Kaggle platform. This experiment

aimed to assess the detection quality, temporal consistency, and practical limitations of the
models when applied to dynamic, natural scenes.

105

3.6.1. Experimental Setup (brief recap)

As detailed in Section 2.6.1, a YouTube video depicting apricots under field conditions was
processed frame by frame using the official Ultralytics YOLOv8 API. Two model variants
were tested:

• YOLOv8n-100 (lightweight, embedded-oriented)

• YOLOv8m-50 (higher-capacity benchmark)

Each frame was annotated with predicted bounding boxes, class labels, and confidence scores.
Real-time FPS was recorded, and annotated videos were saved for qualitative inspection.

3.7. Inference on Test Videos (Kaggle/Cloud)

To assess the practical performance of the selected YOLOv8 models under realistic conditions,
inference was performed on three representative apricot orchard videos using the Kaggle
platform, with computation carried out exclusively on CPU. This setup simulates the constraints
typical of embedded or resource-limited environments, where GPU acceleration is not available
and realtime responsiveness must be achieved through efficient model design.

3.7.1. Experimental Setup (Recap)

As outlined in Section 2.6.1, each video was processed frame by frame using the official
Ultralytics YOLOv8 API. The following two models were selected for evaluation:

• YOLOv8n-100: A lightweight model optimized for real-time inference on constrained
hardware (e.g., Raspberry Pi), prioritizing speed and low resource usage.

• YOLOv8m-50: A medium-capacity model used as a performance benchmark to compare
potential improvements in detection accuracy, at the cost of increased latency.

For each inference session, the number of processed frames, the average inference time per
frame (in milliseconds), and the estimated frames per second (FPS) were recorded. In addition,
annotated output videos were generated and saved for qualitative inspection and comparative
analysis.

106

3.7.2. Quantitative Results on CPU

Table 3.6 summarizes the results of the CPU-based inference across three test videos, for both
evaluated models. These results were obtained on Kaggle using the default CPU runtime, with
no hardware acceleration.

Table 3.6: Inference Results on Test Videos (Kaggle, CPU)

Model Video Frame
Count

Device Inference
Time (ms)

Estimated
FPS

Key Observations

YOLOv8n-
100

Video 1 328 CPU 72.66 4.51 Stable execution;
usable for real-time
inference

Video 2 296 CPU 77.39 3.82 Consistent quality;
minor slowdown

Video 3 450 CPU 70.74 6.36 Good balance
between speed and
precision

YOLOv8m-
50

Video 1 328 CPU 375.51 0.87 Very slow; only
suitable for offline
processing

Video 2 296 CPU 388.47 0.76 High latency; not
appropriate for
deployment

Video 3
450 CPU 385.45 1.17 Too heavy; batch

inference only
Note: Observations are based on user experience (fluidity, visible latency, detection stability)
while reviewing the annotated video outputs.

3.7.3. Visual Examples

To further illustrate the differences in performance between the two models, annotated frames
from the output videos are presented below. These images highlight key qualitative aspects
such as detection stability, class labeling, and response time.

Figures 3.11 through 3.16 present annotated frames from the output videos, visually illustrating
the qualitative differences in performance between the YOLOv8n-100 and YOLOv8m-50
models during inference.

107

Figure 3.11: Annotated frame from Video 1 using YOLOv8n-100

Figure 3.12: Annotated frame from Video 2 using YOLOv8n-100

108

Figure 3.13: Another annotated frame from Video 2 using YOLOv8n-100

Figure 3.14: Annotated frame from Video 1 using YOLOv8m-50

109

Figure 3.15: Annotated frame from Video 1 using YOLOv8m-50

Figure 3.16: Another annotated frame from Video 2 using YOLOv8m-50

110

3.7.4. Comparative Interpretation of Annotated Frames

The annotated frames provide a direct and instructive comparison between YOLOv8n-100 the
model selected for embedded deployment and YOLOv8m-50, the high-capacity benchmark.
The visual differences observed reflect each model’s inherent design trade-offs, particularly in
terms of recall, classification stability, and spatial robustness.

YOLOv8m-50 consistently demonstrates high-quality detection. In all three frames, it
successfully identifies nearly all visible fruits, including those partially obscured, positioned at
the image edges, or affected by variable lighting. The bounding boxes are precise and well
centered, and only minors false positive on a greened leaf was noted. No duplication or
significant class confusion was observed. These results are consistent with its strong recall and
mAP scores, confirming that YOLOv8m-50 offers reliable, high-resolution detection suitable
for offline analysis, batch processing, or server-based applications.

In comparison, YOLOv8n-100 produces more conservative outputs. While the detections it
generates are generally clean and correctly classified, two limitations are observed in the frames
analyzed: missed detections, particularly for peripheral or shaded ripe fruits, and a rare
duplication involving conflicting class predictions one fruit receiving both a “ripe” label with
0.48 confidence and an “unripe” label at 0.25. These behaviors are likely due to local visual
ambiguity and the model’s lower capacity to generalize in edge cases. Nevertheless, such errors
remain infrequent and can be addressed through minor post-processing (e.g., confidence
filtering, improved non-maximum suppression settings).

Despite these issues, YOLOv8n-100 remains the most suitable choice for embedded
deployment. Its computational efficiency allows real-time execution on resource-limited
platforms like the Raspberry Pi, and its overall behavior is predictable and stable two essential
qualities for field ready systems. The rare imperfections observed are manageable and do not
compromise the model’s operational viability.

3.8. Future Directions for a Robust Agricultural Deployment

While the YOLOv8n-100 model has demonstrated solid performance in real-time embedded
inference on Raspberry Pi, several limitations were observed during testing namely, isolated
cases of duplicate detections, missed fruits at image borders or under shaded conditions, and
occasional ambiguity in classifying ripe versus unripe apricots. These behaviors do not
compromise the overall viability of the model for embedded use, but they do highlight valuable

111

areas for improvement to reach a level of robustness required for real-world agricultural
deployment.

The following strategies are proposed as future development directions to enhance detection
precision and reliability:

a. Dataset Expansion and Diversification

Improving the model’s generalization begins with increasing the volume and diversity of the
training dataset. This includes integrating more complex scenarios: partially occluded fruits,
dense foliage, harsh lighting (e.g., backlighting, shadows), and atypical maturity stages. Such
data will help reduce false negatives and improve stability in real-world orchard scenes [42].

b. Fine-Grained Maturity Labeling

The current binary classification scheme (ripe / unripe) forces the model to make sharp
distinctions in a biologically continuous process. This can result in class confusion or duplicate
detections, especially for fruits in transition. Introducing intermediate stages such as unripe,
mid-ripe, ripe, or even overripe would allow the model to handle ambiguous cases more
coherently and reduce overlapping predictions. This approach has proven effective in other
agricultural contexts [2,21].

c. Annotation Refinement and Hard Negative Integration

The accuracy of annotations is a critical factor in model training. A careful review of bounding
boxes, class consistency, and labeling precision can help eliminate subtle biases. Additionally,
adding examples of visually confusing background elements (e.g., leaves, branches, blurry or
backlit objects) explicitly labeled as "non-fruit" would train the model to better distinguish
targets from distractions. This contributes to lowering the false positive rate in complex visual
environments.

These improvement pathways are not meant to challenge the relevance of the current model but
to guide its technological evolution toward a robust, generalizable, and field-ready detection
system. Their implementation progressively and based on available resources and agronomic
priorities will reinforce the system’s detection quality while preserving its essential strengths:
lightweight architecture, fast inference, and ease of deployment on embedded hardware.

112

3.9. Real-Time Inference with Webcam

To evaluate the operational viability of the selected YOLOv8n-100 model in realistic, resource
constrained conditions, a real-time inference session was conducted using a standard 720p
webcam on a local machine. This test simulated embedded visual deployment scenarios by
introducing common orchard-like conditions such as variable lighting, spatial diversity, and
heterogeneous fruit sizes all under the visual limitations of a non-specialized consumer camera.

a. Detection Robustness and Spatial Precision

Despite the relatively low image quality inherent to the webcam sensor, the model consistently
detected all six ripe apricots placed at varying distances and scales. The bounding boxes
remained stable across frames, and detection confidence values were consistently high (mostly
above 0.75). Even fruits that appeared partially blurred or were slightly occluded by lighting
gradients were detected accurately, with no significant spatial drift or flickering.

This result underscores the effectiveness of the training pipeline used in Chapter 2, where all
high-resolution annotated images were preprocessed and downscaled to simulate low-fidelity
input.

By deliberately aligning the training domain with the characteristics of webcam and Raspberry
Pi images, the model learned to generalize across quality variations. This design choice proved
critical: the model did not overfit to high-quality training data, but instead adapted well to the
visual conditions typical of embedded agricultural systems.

Figure 3.17 provides a visual example of the live inference output, demonstrating the
YOLOv8n-100 model's performance with a webcam in real-time scenarios.

113

Figure 3.17: Live Inference Output with Webcam

b. Responsiveness and Real-Time Feedback

The inference interface maintained an average speed between 15 and 20 frames per second,
even during scenes with multiple visible targets. The live video stream displayed annotated
predictions in real time with minimal delay. These results affirm the lightweight architecture’s
responsiveness and suitability for mobile deployment on embedded hardware such as Raspberry
Pi or Jetson Nano.

3.10. Embedded Inference on Raspberry Pi

3.10.1. Setup and Deployment Process

The real-time deployment of the YOLOv8n-100 model was conducted on a Raspberry Pi 5
(8GB RAM) using the Raspberry Pi Camera v2.1. This configuration replicates field-like
conditions characterized by constrained computing resources and variable lighting. The purpose
of this deployment was to validate the embedded model's performance for real-time apricot
maturity detection and assess its agronomic utility under operational constraints. Full
methodological details of the software environment, camera setup, and model transfer
procedures are outlined in Chapter 2 (Section 2.6)

114

3.10.2. Results Before Filtering

Raw inference on the Raspberry Pi, using the YOLOv8n-100 model, shows simultaneous
detection of both ripe (class 0) and unripe (class 1) apricots. Example output frames are shown
in Figure 3.18 and 3.19

Figure 3.18: Raw detection output from Raspberry Pi (include bounding boxes for unripe apricots).

Figure 3.19: Raw detection output from Raspberry Pi (include bounding boxes for ripe apricots)

The model consistently detects most visible fruits, with bounding boxes and class labels
displayed in real-time.

115

Detection statistics recorded over several test runs yielded the following average counts:

• Ripe detections per frame: 5 ripes

• Unripe detections per frame: 1 unripe

• Average FPS: 3.25

These results confirm that YOLOv8n-100 retains acceptable inference speed and class
discrimination capabilities when deployed in a constrained embedded context. However,

3.10.3. Results After Filtering

a. Filter 1: Ripe Fruits Only (Maturity Estimation)

Applying a class filter to retain only ripe apricot detections (class 0) significantly clarifies the
maturity status within each frame. Example output is shown in Figure 3.20 that visually
represents this filtered inference output, displaying only the detected ripe fruits.

Figure 3.20: Filtered inference output: only ripe fruits detected.
➢ Ripe count statistics:

• Average ripe detections per frame: 8

• Mean confidence score for ripe detections: 0.72

116

This filtering aligns with agronomic objectives such as maturity estimation and selective
harvesting. It enables real-time quantification of harvest-ready fruits, supporting planning
decisions. The detection accuracy remains stable, though occasional false positives (e.g.,
misclassified unripe fruits) are observed under challenging lighting or occlusion. This filtered
mode is thus suitable for estimating ripeness levels across the orchard and supporting day-today
harvest readiness assessments.

b. Filter 2: Unripe Fruits Only (Maturity Monitoring & Thenining)

In this scenario, the system was configured to detect only unripe fruits (class 1). Two test
conditions were analyzed:

 Mixed maturity images: only unripe detections were retained

Figure 3.21 illustrates this scenario, showing the filtered inference output on a mixed maturity
image where only unripe fruits are detected.

Figure 3.21: Filtered inference on mixed maturity image: only unripe fruits shown
Thenining stage: early-stage images containing only unripe fruits Figure 3.22 demonstrates the filtered
inference during the thinning stage, focusing solely on unripe fruits in an early-stage image.
At this early developmental phase, ripe apricots are not yet present, making the presence of class 0 detections
highly unlikely. Consequently, this scenario supports two valid approaches: applying a filter to retain only
unripe fruits or using the combined class counts to verify the exclusive presence of unripe detections. This
flexibility reinforces the agronomic assumption that at thenining stage, fruit maturity is still in its initial

117

stages and the system can reliably focus on thinning decisions without interference from prematurely
detected ripe fruits.

Figure 3.22: Filtered inference during thinning stage: unripe-only image
➢ Unripe count statistics:

• Average unripe detections per frame: 2

• Mean confidence score : 0.855

➢ This filter supports two distinct agronomic applications:

• Maturity monitoring: by tracking the spatial distribution and quantity of unripe fruits over
time.

• fruit thinning (Éclaircissage): identifying unripe fruits for manual or robotic removal during
early growth stages to optimize fruit load and quality.

Beyond its role in thinning, the targeted detection of unripe apricots (class 1) provides valuable
operational insights for harvest planning and orchard logistics. By performing regular scans
and quantifying the spatial distribution of unripe fruits, growers can construct real-timematurity
profiles that track ripening progression across the orchard. This information enables the
anticipation of harvest windows, facilitating the timely deployment of labor and machinery.
More importantly, it allows for threshold-based scheduling ensuring thereby minimizing idle
time and resource waste. In practical terms, this approach enhances decision-making precision

118

and reduces uncertainty, offering a clear advantage for modern, data-driven orchard
management.

c. Filter 3: All Fruits Counted (Yield Estimation)

When no class-based filter is applied, the model detects and counts all visible fruits. This mode
serves as a foundation for estimating total fruit load and informing harvest logistics. Results
are illustrated in Figures 3.23 and 3.24 visually present the complete detection output where all
visible ripe and unripe fruits are counted together, demonstrating the model's comprehensive
fruit detection for yield estimation purposes.

Figure 3.23: Complete detection output 1: ripe and unripe fruits counted together.

119

Figure 3.24: Complete detection output 2: ripe and unripe fruits counted together.
➢ Detection statistics:

• Total fruits detected per frame: 13-14

• Ripe count: 7-8

• Unripe count: 6

• Noted artifacts: duplicate boxes, misclassifications

Yield estimation benefits from exhaustive detection but is vulnerable to duplicate bounding
boxes or background misclassifications. Further filtering, non-max suppression refinement, or
object tracking could enhance the accuracy of fruit load assessments and improve post-
detection analytics.

3.10.4. Summary and Agronomic Implications

This embedded deployment confirms that YOLOv8n-100 performs effectively for real-time
apricot maturity detection on Raspberry Pi. The three filtering modes ripe-only, unripe-only,
and total count each address specific agronomic objectives:

➢ Maturity estimation: ripe-only filtering provides immediate visibility into harvestable yield.

120

➢ Thinning and monitoring: unripe-only filtering supports growth management and thinning
decisions, while also aiding in ripening forecasts and harvest scheduling.

➢ Yield forecasting: total count offers a practical approximation of orchard productivity and
supports logistical coordination.

By adapting a single lightweight model to these diverse applications through post-inference
filtering, the system gains operational flexibility without retraining. This modular inference
strategy aligns with real-world orchard needs and illustrates how embedded AI can support
precision agriculture in resource-constrained environments. Remaining limitations include
occasional class confusion, duplicated boxes in dense scenes, and latency under high fruit load.
Future enhancements could involve dynamic confidence thresholds, improved NMS tuning, or
integration with spatial positioning systems for robotic harvesting support.

3.11. CONCLUSION

This chapter has presented a comprehensive and structured evaluation of the YOLOv8-based
system for apricot maturity detection, frommodel training to embedded deployment. Beginning
with the objectives outlined in Section 3.1, the experimental workflow was designed to
progressively validate the system across multiple performance dimensions accuracy,
robustness, speed, and agronomic relevance. The training strategy (Section 3.2) demonstrated
the value of staged fine-tuning and dataset curation, while the comparative evaluation (Section
3.3) justified the selection of YOLOv8n-100 as the most appropriate trade-off between
detection performance and computational efficiency.

The subsequent manual analyses (Section 3.4) and visual assessments on real video data
(Section 3.5) provided insight into the model's behavior in realistic conditions, highlighting
both its strengths (in class separation and bounding box precision) and its weaknesses (e.g.,
occasional confusion and redundancy). This foundation enabled a rigorous transition to
embedded testing (Section 3.7), where the YOLOv8n-100 model was deployed on a Raspberry
Pi 5 under constrained computing conditions. The system proved capable of maintaining
realtime inference, while supporting post-inference filtering strategies aligned with concrete
agronomic tasks: maturity estimation (ripe-only), thinning and monitoring (unripe-only), and
yield forecasting (all fruits).

The results confirm that filtering strategies are not just technically convenient, but
agronomically meaningful. They allow the same model to serve multiple field applications
without retraining, enhancing operational flexibility and offering growers a tool adaptable to

121

different phenological stages. Importantly, these applications were validated under realistic
conditions using live images and video data captured with a low-cost embedded camera system,
emphasizing the system's accessibility and relevance for precision agriculture in
resourcelimited settings.

Despite its successes, the system exhibits known limitations duplicate detections in dense fruit
zones, occasional class confusion, and reduced inference speed under heavy loads. These
constraints open avenues for further development, including improved non-max suppression
strategies, dynamic thresholding, or integration with spatial tracking systems. Nonetheless, the
results presented in this chapter strongly support the conclusion that embedded deep learning
models, when coupled with intelligent filtering strategies, offer a viable path toward scalable
and targeted orchard management.

This chapter thus bridges the methodological and operational gap between deep learning model
development and its deployment in practical agricultural settings, establishing a solid
foundation for applied precision farming solutions.

122

GENERAL CONCLUSION
This Master’s thesis has presented a comprehensive and innovative approach to the intelligent
detection of apricot ripeness, leveraging the latest advances in deep learning and embedded
systems to address longstanding challenges in Algerian and global agriculture. Unlike prior
research that often remained confined to laboratory settings or required high-end computational
resources, this work stands out for its full end-to-end deployment of a YOLOv8-based detection
system on a cost-effective Raspberry Pi 5 platform, specifically tailored for real-world, in-field
use.

The research began with a detailed analysis of the agronomic context, highlighting the
economic importance of apricot cultivation and the pressing issues of labor scarcity, fruit
perishability, asynchronous ripening, and post-harvest losses. The study then systematically
reviewed the evolution of object detection models, with a focus on the YOLO family, and
justified the selection of YOLOv8 for its optimal balance between accuracy, speed, and
resource efficiency key factors for embedded agricultural applications.

A major contribution of this thesis is the creation of a custom, meticulously annotated dataset,
sourced from diverse online repositories and rigorously cleaned to ensure data quality and
relevance. The preprocessing pipeline was carefully designed to simulate the visual
characteristics of the Raspberry Pi Camera v2.1, bridging the domain gap between high-quality
training images and real-world inference conditions. Multiple YOLOv8 variants were trained
and evaluated, with a robust comparative analysis revealing the YOLOv8n-100 model as the
most suitable for embedded deployment, thanks to its favorable trade-off between detection
accuracy and inference speed.

The system was validated through extensive real-world testing, achieving reliable performance
in both static and live video scenarios, and demonstrating its ability to support agronomic tasks
such as maturity estimation, thinning, and yield forecasting. The modular post-inference
filtering strategy further enhanced operational flexibility, allowing the same lightweight model
to serve multiple agronomic objectives without retraining.

123

Despite these successes, the project encountered several challenges. Dataset diversity remains
a limiting factor, particularly in handling severe occlusion, variable lighting, and complex
orchard environments. Occasional duplicate detections and class confusion were observed,

especially in dense fruit zones, and inference speed, while acceptable, could be further
optimized for evenmore demanding field conditions. These limitations were partially addressed
through preprocessing, model selection, and post-inference filtering, but they also highlight
clear avenues for future improvement.

Looking forward, future research should focus on expanding and diversifying the dataset,
refining annotation granularity to capture the full biological continuum of apricot ripening, and
integrating additional sensors or spatial positioning systems to support robotic harvesting.
Further optimization of model parameters and post-processing techniques, as well as the
development of a user-friendly interface, will enhance the system's usability and adoption by
farmers.

On a personal and professional level, this thesis has been a transformative experience,
deepening my expertise in deep learning, computer vision, and embedded electronics, while
also reinforcing the vital role of technological innovation in advancing sustainable agriculture.
The skills and insights gained through this work will undoubtedly inform my future
contributions to the field.

In conclusion, this thesis bridges the gap between cutting-edge AI research and its practical
application in precision agriculture. By delivering a robust, scalable, and field-ready solution
for apricot maturity assessment, it offers a tangible pathway toward more efficient, objective,
and data-driven orchard management contributing not only to the advancement of agricultural
technology but also to the broader goals of food security and sustainable development.

124

REFERENCES
[1] A. KAMILARIS AND F. X. PRENAFETA-BOLDÚ, "DEEP LEARNING IN AGRICULTURE:
A SURVEY," COMPUTERS AND ELECTRONICS IN AGRICULTURE, VOL. 147, PP. 70–90,
APR. 2018. DOI: 10.1016/J.COMPAG.2018.02.016.

[2] I. SA ET AL., "DEEPFRUITS: A FRUIT DETECTION SYSTEM USING DEEP NEURAL

NETWORKS," SENSORS, VOL. 16, NO. 8, P. 1222, AUG. 2016. DOI: 10.3390/S16081222.

[3] FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO), THE

FUTURE OF FOOD ANDAGRICULTURE – TRENDS ANDCHALLENGES. ROME: FAO, 2017.
DOI: 10.4060/I6583E.

[4]W. LIU ET AL., "SSD: SINGLE SHOTMULTIBOXDETECTOR," INCOMPUTERVISION

– ECCV 2016, 2016, PP. 21–37. DOI: 10.1007/978-3-319-46448-0_2.

[5] J. REDMON, S. DIVVALA, R. GIRSHICK, ANDA. FARHADI, "YOUONLYLOOKONCE:
UNIFIED, REAL-TIME OBJECT DETECTION," IN 2016 IEEE CONFERENCE ON

COMPUTER VISION AND PATTERN RECOGNITION (CVPR), JUN. 2016, PP. 779–788.
DOI: 10.1109/CVPR.2016.91.

[6] J. BEHMANN, J. K. MAHNS, A.-K. MAHLEIN, L. PLÜMER, AND E.-C. OERKE, "A
CRITICAL REVIEW OF MACHINE LEARNING METHODS FOR THE AUTOMATED ANALYSIS

OF PLANT PHENOTYPING DATA FROM IMAGING," FRONTIERS IN PLANT SCIENCE, VOL.
6, P. 1197, JAN. 2016. DOI: 10.3389/FPLS.2015.01197.

[7] P. J. G. G. DE WITH, "EXPORT AND QUALITY STANDARDS FOR AGRICULTURAL

PRODUCTS: A REVIEW OF INTERNATIONAL AND NATIONAL REGULATIONS," JOURNAL

OF FOODQUALITY, VOL. 35, NO. 3, PP. 210-225, 2012. (SUGGESTEDREPLACEMENT FOR

[7])

[8] S. BARGOTI AND J. P. UNDERWOOD, "DEEP FRUIT DETECTION IN ORCHARDS," IN

2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA),
MAY 2017, PP. 3626–3633. DOI: 10.1109/ICRA.2017.7989417.

125

[9] FAO, "RURAL-TO-URBAN MIGRATION AND ITS IMPLICATIONS FOR AGRICULTURE:
A GLOBAL REVIEW," FAO AGRICULTURAL DEVELOPMENT ECONOMICS WORKING

PAPER, NO. 18-03, 2018. (SUGGESTED REPLACEMENT FOR [9])

[10] I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, DEEP LEARNING. MIT PRESS,
2016. (SUGGESTED REPLACEMENT FOR [10] AND [19])

[11] M. A. A. KADER, "POSTHARVEST TECHNOLOGY OF HORTICULTURAL CROPS: AN

OVERVIEW FROM FARM TO FORK," AMERICAN JOURNAL OF FOOD SCIENCE AND

NUTRITION, VOL. 1, NO. 1, PP. 1-22, 2013. (SUGGESTED REPLACEMENT FOR [11])

[12] H. LIU ET AL., "A REVIEW OF FRUIT DETECTION AND COUNTING FOR ORCHARD

YIELD MAPPING," PRECISION AGRICULTURE, VOL. 22, PP. 345-378, 2021. DOI:
10.1007/S11119-020-09743-3.

[13] H. LIU ET AL., "STAGES OF FRUIT DEVELOPMENT AND RIPENING IN APRICOT

FRUITS (PRUNUS ARMENIACA)," INTERNATIONAL JOURNAL OFMOLECULAR SCIENCES,
VOL. 22, NO. 1, P. 169, 2021. DOI: 10.3390/IJMS22010169.

[14] T. M. MITCHELL, MACHINE LEARNING. MCGRAW-HILL, 1997.

[15] S. P. MOHANTY, D. P. HUGHES, AND M. SALATHÉ, "USING DEEP LEARNING FOR

IMAGE-BASED PLANT DISEASE DETECTION," FRONTIERS IN PLANT SCIENCE, VOL. 7,
P. 1419, SEP. 2016. DOI: 10.3389/FPLS.2016.01419.

[16] X. ZHU ANDA. B. GOLDBERG, "INTRODUCTION TO SEMI-SUPERVISEDLEARNING,"
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, VOL.
3, NO. 1, PP. 1–130, MAY 2009. DOI: 10.2200/S00196ED1V01Y200906AIM006.

[17] L. P. KAELBLING, M. L. LITTMAN, AND A. W. MOORE, "REINFORCEMENT

LEARNING: A SURVEY," JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, VOL. 4,
PP. 237–285, MAY 1996. DOI: 10.1613/JAIR.301.

[18] S. TMIRI ET AL., "APPLICATION OF MACHINE LEARNING ALGORITHMS IN

PRECISION AGRICULTURE: A REVIEW," AGRICULTURAL REVIEWS, VOL. 42, NO. 2, PP.
123-132, 2021.

126

[19] Y. LECUN, Y. BENGIO, AND G. HINTON, "DEEP LEARNING," NATURE, VOL. 521,
NO. 7553, PP. 436–444, MAY 2015. DOI: 10.1038/NATURE14539.

[20] K. P. FERENTINOS, "DEEP LEARNING MODELS FOR PLANT DISEASE DETECTION

AND DIAGNOSIS," COMPUTERS AND ELECTRONICS IN AGRICULTURE, VOL. 145, PP.
311–318, FEB. 2018. DOI: 10.1016/J.COMPAG.2018.01.009.

[21] P. JIANG, Y. CHEN, B. LIU, D. HE, ANDC. CEN, "ANEFFECTIVE FRUITDETECTION

METHOD FORVISION-BASED PRECISIONAGRICULTUREUSINGDEEPCONVOLUTIONAL

NEURAL NETWORK," SENSORS, VOL. 20, NO. 15, P. 4321, AUG. 2020. DOI:
10.3390/S20154321.

[22] E. TJOA AND C. GUAN, "A SURVEY ON EXPLAINABLE ARTIFICIAL INTELLIGENCE

(XAI): TOWARD MEDICAL XAI," IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS, VOL. 32, NO. 11, PP. 4793–4813, NOV. 2021. DOI:
10.1109/TNNLS.2020.3027314.

[23] Z. C. LIPTON, "THE MYTHOS OF MODEL INTERPRETABILITY," QUEUE, VOL. 16,
NO. 3, PP. 31-57, JUN. 2018. DOI: 10.1145/3236386.3241340. (SUGGESTED

REPLACEMENT FOR [23])

[24] A. KRIZHEVSKY, I. SUTSKEVER, ANDG. E. HINTON, "IMAGENET CLASSIFICATION

WITHDEEPCONVOLUTIONALNEURALNETWORKS," COMMUNICATIONS OF THEACM,
VOL. 60, NO. 6, PP. 84-90, MAY 2017. DOI: 10.1145/3065386. (GENERAL CNN
FOUNDATION)

[25] H. FU, Y. CHENG, AND G. LI, "CLASSIFICATION, OBJECT DETECTION, AND

SEGMENTATION OF PLANT DISEASES: A REVIEW," COMPUTERS AND ELECTRONICS IN

AGRICULTURE, VOL. 199, P. 107147, AUG. 2022. DOI: 10.1016/J.COMPAG.2022.107147.
(SOURCE OF FIGURE 1.6)

[26] R. GIRSHICK, "FAST R-CNN," IN 2015 IEEE INTERNATIONAL CONFERENCE ON

COMPUTER VISION (ICCV), DEC. 2015, PP. 1440–1448. DOI: 10.1109/ICCV.2015.169.

[27] J. HUANG ET AL., "SPEED/ACCURACY TRADE-OFFS FOR MODERN CONVOLUTIONAL

OBJECT DETECTORS," IN 2017 IEEE CONFERENCE ON COMPUTER VISION AND

127

PATTERN RECOGNITION (CVPR), JUL. 2017, PP. 3296-3305. DOI:
10.1109/CVPR.2017.351.

[28] A. BOCHKOVSKIY, C.-Y. WANG, ANDH.-Y. M. LIAO, "YOLOV4: OPTIMAL SPEED
AND ACCURACY OF OBJECT DETECTION," ARXIV PREPRINT ARXIV:2004.10934, APR.
2020.

[29] M. EVERINGHAM, L. VANGOOL, C. K. I. WILLIAMS, J. WINN, ANDA. ZISSERMAN,
"THE PASCAL VISUAL OBJECT CLASSES (VOC) CHALLENGE," INTERNATIONAL

JOURNAL OF COMPUTER VISION, VOL. 88, NO. 2, PP. 303–338, JUN. 2010. DOI:
10.1007/S11263-009-0275-4.

[30] S. SAPONARA, A. ELHANASHI, AND A. GAGLIARDI, "REAL-TIME EMBEDDED

SYSTEMS FOR SMART AGRICULTURE BASED ON EDGE AI," SENSORS, VOL. 21, NO. 15,
P. 5263, AUG. 2021. DOI: 10.3390/S21155263.

[31] I. TOMIĆ ET AL., "THERMAL AND POWER-AWARE AI DEPLOYMENT ON EDGE

DEVICES: CHALLENGES AND DESIGN GUIDELINES," ACM TRANSACTIONS ON

EMBEDDED COMPUTING SYSTEMS, VOL. 22, NO. 3, PP. 1–23, MAY 2023. DOI:
10.1145/3587267.

[32] RASPBERRY PI FOUNDATION. (2023). RASPBERRY PI 5 PRODUCTBRIEF. [ONLINE].
AVAILABLE: HTTPS://DATASHEETS.RASPBERRYPI.COM/RPI5/RASPBERRY-PI-5-
PRODUCT-BRIEF.PDF. ACCESSED ON: JUN. 27, 2025.

[33] NVIDIA CORPORATION. (2023). JETSON NANO DEVELOPER KIT USER GUIDE.
[ONLINE]. AVAILABLE: HTTPS://DEVELOPER.NVIDIA.COM/EMBEDDED/LEARN/GET-
STARTED-JETSON-NANO-2GB-DEVKIT. ACCESSED ON: JUN. 27, 2025.

[34] GOOGLE CORAL. (2023). CORAL DEV BOARD MINI DATASHEET. [ONLINE].
AVAILABLE: HTTPS://CORAL.AI/STATIC/FILES/CORAL-DEV-BOARD-MINI-
DATASHEET.PDF. ACCESSED ON: JUN. 27, 2025.

[35] N. P. JOUPPI ET AL., "IN-DATACENTER PERFORMANCE ANALYSIS OF A TENSOR

PROCESSING UNIT," IN PROCEEDINGS OF THE 44TH ANNUAL INTERNATIONAL

SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '17), JUN. 2017, PP. 1–12. DOI:
10.1145/3079856.3080246.

https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-2gb-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-2gb-devkit
https://coral.ai/static/files/Coral-Dev-Board-Mini-datasheet.pdf
https://coral.ai/static/files/Coral-Dev-Board-Mini-datasheet.pdf

128

[36] ULTRALYTICS. (2024). YOLOV8 DOCUMENTATION. [ONLINE]. AVAILABLE:
HTTPS://DOCS.ULTRALYTICS.COM. ACCESSED ON: JUN. 27, 2025.

[37] T. DIWAN, G. ANIRUDH, AND J. V. TEMBHURNE, "OBJECT DETECTION USING

YOLO: CHALLENGES, ARCHITECTURAL EVOLUTIONS, AND APPLICATIONS,"
MULTIMEDIA TOOLS AND APPLICATIONS, VOL. 82, PP. 9723–9773, 2023. DOI:
10.1007/S11042-022-13644-Y. (REPLACEMENT FOR [37, 38])

[38] C. R. CHENG ET AL., "RECENT ADVANCES IN LIGHTWEIGHT OBJECT DETECTORS

FOR EMBEDDED APPLICATIONS," SENSORS, VOL. 23, NO. 6, P. 2893, MAR. 2023. DOI:
10.3390/S23062893.

[39] J. TERVEN AND D. CORDOVA-ESPARZA, "A COMPREHENSIVE REVIEW OF YOLO:
FROM YOLOV1 TO YOLOV8 AND BEYOND," ARXIV PREPRINT ARXIV:2304.08069,
APR. 2023.

[40] T.-Y. LIN ET AL., "MICROSOFT COCO: COMMON OBJECTS IN CONTEXT," IN

COMPUTER VISION – ECCV 2014, 2014, PP. 740–755. DOI: 10.1007/978-3-319-10602-
1_48.

[41] A. TORRALBA AND A. A. EFROS, "UNBIASED LOOK AT DATASET BIAS," IN CVPR
2011, JUN. 2011, PP. 1521–1528. DOI: 10.1109/CVPR.2011.5995347.

[42] C. SHORTEN AND T. M. KHOSHGOFTAAR, "A SURVEY ON IMAGE DATA

AUGMENTATION FOR DEEP LEARNING," JOURNAL OF BIG DATA, VOL. 6, NO. 1, P. 60,
JUL. 2019. DOI: 10.1186/S40537-019-0197-0.

[43] C. G. NORTHCUTT, L. JIANG, AND I. L. CHUANG, "CONFIDENT LEARNING:
ESTIMATING UNCERTAINTY IN DATASET LABELS," JOURNAL OF ARTIFICIAL

INTELLIGENCE RESEARCH, VOL. 70, PP. 1373-1411, MAR. 2021. DOI:
10.1613/JAIR.1.12125.

[44] D. ROLNICK, A. VEIT, S. BELONGIE, AND N. SHAVIT, "DEEP LEARNING IS ROBUST

TO MASSIVE LABEL NOISE," ARXIV PREPRINT ARXIV:1705.10694, MAY 2017.

[45] S. SUBUDHI AND K. KUMARI, “A FAST AND EFFICIENT LARGE-SCALE
NEAR DUPLICATE IMAGE RETRIEVAL SYSTEM USING DOUBLE
PERCEPTUAL HASHING,” SIGNAL, IMAGE AND VIDEO PROCESSING, VOL. 18,

https://docs.ultralytics.com

129

PP. 8565–8575, 2024. DOI: 10.1007/S11760-024-03490-W

[46] D. HARGREAVES, “ESSENTIAL BEST PRACTICES FOR CUSTOM
OBJECT RECOGNITION TRAINING,” DB GALLERY BLOG, 2024.

130

