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Résumé :

Compte tenu de l'importance de l'agriculture mondiale, et particulierement en Algérie
ou la culture de la pomme de terre représente une activité agricole majeure, les
maladies des plantes demeurent un probléme majeur pour les agriculteurs, notamment
le mildiou. Cette maladie se propage rapidement et peut entrainer des pertes
dévastatrices. Face a cette menace, de nombreux agriculteurs continuent de recourir
a des pratiques traditionnelles telles que la pulvérisation chimique hebdomadaire. Bien
que largement utilisée, cette méthode est inefficace et potentiellement dangereuse,
car elle entraine une utilisation excessive de produits chimiques, augmente les coUts,
nuit a I'environnement et met en danger la santé des cultures et des agriculteurs.

Dans ce travail, nous proposons un systéeme intelligent d'aide a la décision pour la
gestion et la prévention des maladies des cultures, notamment du mildiou, dans les
cultures de pomme de terre. Ce systéme intégre un modéle de détection visuelle par
apprentissage profond basé sur YOLOv8 pour identifier précocement les maladies,
qu'il combine a un systeme de prévision météorologique en temps réel pour anticiper
les conditions propices a leur apparition. Il intégre également un moteur de
recommandation capable de proposer et de planifier des actions de pulvérisation en
fonction d'analyses prédictives et de conditions environnementales optimales. Le
systéme est déployé sur une plateforme robotisée physique a empattement réglable
et équipée d'un mécanisme de pulvérisation de précision. Grace a une interface web
intuitive, toutes ces fonctionnalités sont combinées via ROS 2 et la communication
WebSocket, permettant aux agriculteurs de surveiller I'état de santé de leurs cultures,
de recevoir des alertes, d'évaluer les niveaux de risque et de contrOler les opérations
de pulvérisation a distance.

Les résultats de I'évaluation ont démontré la robustesse du modéle YOLOv8n, avec
un mAP@Q0,5 global de 0,895 et une précision de 0,894 pour la détection du mildiou
sur les données de validation, confirmant sa fiabilité pour l'identification des maladies
sur le terrain. Grace a des outils d'analyse basés sur les données et a des fonctions
d'automatisation, ce systéme permet aux agriculteurs de prendre des décisions plus
éclairées et de réduire considérablement les pulvérisations inutiles. L'objectif ultime
est d'améliorer la durabilité agricole en minimisant |'utilisation de produits chimiques
tout en garantissant une lutte efficace contre les maladies.

Mots clés : Détection des maladies des plantes ; Agriculture intelligente ;
Apprentissage profond ; Prévisions météorologiques ; Systéme de pulvérisation ;
Interface web ; Cultures de pomme de terre ;




Abstract: Given the importance of agriculture worldwide, and particularly in Algeria
where potato cultivation represents a major agricultural activity, plant diseases remain
a serious problem for farmers, particularly late blight. This disease spreads rapidly and
can cause devastating losses. Faced with this threat, many farmers continue to resort
to traditional practices such as weekly chemical spraying. Although widely used, this
method is ineffective and potentially harmful, as it leads to excessive use of chemicals,

increases costs, harms the environment, and endangers both crop and farmer health.

In this work, we propose an intelligent decision support system for managing and
preventing crop diseases, particularly late blight, in potato crops. This system
integrates a deep learning visual detection model based on YOLOvV8 to identify
diseases early, which it combines with a real-time weather forecasting system to
anticipate conditions conducive to their occurrence. It also incorporates a
recommendation engine capable of proposing and planning spraying actions based on
predictive analyses and optimal environmental conditions. The system is deployed on
a physical robotic platform with an adjustable wheelbase and equipped with a precision
spraying mechanism. Through an intuitive web interface, all these features are
combined via ROS 2 and WebSocket communication, allowing farmers to monitor the
health of their crops, receive alerts, assess risk levels, and control spraying operations
remotely. The evaluation results demonstrated the robustness of the YOLOv8n model,
with an overall mMAP@0.5 of 0.895 and an accuracy of 0.894 for late blight detection
on the validation data, confirming its reliability for identifying diseases in the field. By
providing data-driven analysis tools and automation features, this system allows
farmers to make more informed decisions and significantly reduce unnecessary
spraying. The ultimate goal is to improve agricultural sustainability by minimizing

chemical use while ensuring effective disease control.

Keywords: Plant disease detection; Smart agriculture; Deep learning; Weather

forecasting; Spraying system; Web interface; Potato crops.
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General introduction

For millennia, agriculture has served as the primary means of human sustenance. This
pivotal shift from nomadic hunting and gathering to settled cultivation of crops and
domestication of animals enabled the establishment of permanent communities and

fostered societal development.

Today, agriculture's importance persists. It not only provides the global food supply but
also underpins the livelihoods of vast populations, particularly in rural regions. With a
continually growing world population, agriculture plays an increasingly critical role in

ensuring global food security and promoting sustainable environmental stewardship.

Agriculture remains a cornerstone of Algeria’s economy, contributing 12.9% to the

national Gross Domestic Product (GDP) in 2023 and ranking as the third-largest sector

[1].

Algerian farmers currently face numerous challenges in maintaining crop health and
achieving optimal yields. Among the most significant threats are plant diseases, which
can severely damage crops, reduce food production, and result in substantial financial
losses. In severe instances, these diseases can lead to the devastation of entire
agricultural fields. Without timely detection and appropriate intervention, plant diseases
can proliferate rapidly, causing long-term detriment to agricultural productivity and food

security.

Despite its economic significance and the considerable threats to agricultural output, the

sector in Algeria continues to rely heavily on traditional practices. Farmers frequently

employ rudimentary tools and manual techniques, leading to inefficiencies in crop

monitoring, delays in disease detection, and the improper or excessive use of pesticides.
1



These shortcomings contribute to diminished crop quality, financial losses, and
environmental degradation. Human-dependent methodologies are inherently
constrained by inconsistent monitoring, diagnostic inaccuracies, and labor-intensive
processes, limitations that are particularly acute in large-scale farming operations. For
example, manual pesticide application not only poses risks to human health but also

exacerbates ecological damage through over-application.
Problem Statement:

There is a pressing need in Algeria for an intelligent system capable of early and real-
time detection and management of destructive plant diseases. Current traditional
methods for disease identification are often slow and labor-intensive, leading to delayed
interventions, significant crop losses, and the excessive application of agrochemicals. An
automated, intelligent solution would substantially improve disease control efficacy,

reduce economic losses, and promote more sustainable agricultural practices.
Our main objectives are:

a. To minimize chemical product usage by enabling targeted treatment application

only where necessary.

b. To maximize crop preservation through early and precise intervention against

diseases.

c. To reduce human health risks by Ilimiting direct exposure to harmful

agrochemicals.

d. To enhance operational efficiency by automating disease detection and treatment

processes, thereby saving labor and time.

e. To empower farmers with detailed data on crop health and environmental
conditions, facilitating more informed decision-making for the effective
management of threats such as late blight.



Solution:

To address the challenges posed by late blight in potato crops, we propose an integrated
intelligent system for efficient disease management. This system incorporates several
key technologies: a deep learning-based Al model for real-time detection of late blight
symptoms on potato leaves; weather forecasting capabilities for predictive early risk
assessment; and an automated spray mechanism to facilitate precision agriculture
techniques [2, 3]. Furthermore, a web-based interface will provide continuous data
streaming, enabling farmers to monitor crop health, receive timely alerts, and make data-
driven decisions. This comprehensive solution aims to significantly reduce crop losses,
minimize reliance on chemical treatments, and support sustainable agricultural practices

in Algeria.
General Methodology and System Architecture:

The proposed system is directed toward the real-time detection of late blight, in addition
to the prediction of potential infections. Its objective is to provide precise timing for spray
actions to mitigate disease spread. The entire system will be integrated into a robotic
platform and managed through a user-friendly interface to facilitate ease of use for the

farmer.

The Main System: The core of the system is based on an Al model that performs real-
time detection of visual disease symptoms. This detection module communicates directly
with a central decision-making logic. Concurrently, a weather-based prediction algorithm
analyzes meteorological data fetched from a weather API to forecast the risk of potential
infections. Information from both the Al detection and the weather prediction modules is
fed into the decision-making logic, which then determines if a spray command should be

issued and precisely when the intervention is most optimal.

System Integration: To translate this system from concept to reality, it must be
integrated into a physical, mechanical robotic platform, enabling it to operate within a real
agricultural environment. This integration includes the installation of an action

mechanism, specifically the precision sprayer, which ensures that treatment is applied

3



effectively with minimal losses. To simplify the operation for the end-user, a web-based
user interface will be integrated, allowing the farmer to command, monitor, and manage

the entire system remotely.

Onboard Camera Weather API

Onboard Control System

h

Al Detection Model (YOLOwv8)

Weather Prediction Algorithm

Decision-Making Logic
Command & M:Jnrlarlng&—/Sﬂ_rﬂ:Ir TRy

\ Integration }
l Software Hardwar:/
‘Web Interface Precision Spray System

Robotic Platform Mechanism

Figure 0.1: general methodology and system architecture



Chapter 1 State of the Art

1.1 Overview of Traditional Plant Disease Detection

Techniques Treatment Methods

Traditional plant disease detection has historically relied on farmers' direct visual
inspection for symptoms such as leaf spots, discoloration, wilting, or characteristic
lesions like the "burning of leaves" in potato late blight [4]. This visual assessment is
often guided by ancestral knowledge and Indigenous Technical Knowledge (ITK),
reflecting generations of experiential learning within specific agroecological contexts [5].
Upon identification of an infection, management strategies primarily involved a suite of
cultural control methods aimed at prevention and ecological balance. These included
practices such as sanitation (e.g., removal of infected plant debris), crop rotation, use of
disease-free planting material, and careful soil and site management [6]. Additionally,
farmers employed local remedies, frequently ethnobotanical in origin and developed
through empirical observation, which included plant-derived concoctions, ash, and
animal-based products [5]. While these integrated traditional systems are foundational
and demonstrate a profound understanding of local ecosystems, their efficacy can be
constrained by the subjectivity inherent in visual diagnosis, variability in the effectiveness
of local treatments, and considerable labor intensity [7], thereby highlighting areas where

advanced technologies may offer improvements.



1.2 Overview of Artificial Intelligence Techniques in

Agriculture

The field of Artificial Intelligence (Al) encompasses a hierarchy of techniques, from
foundational Machine Learning to advanced hybrid models, each with specific

applications in modern agriculture (see Figure 1.1).

Computational Systems

Al

Subset of Al

( MachineLearning }

[ NaiveBayes ] [ RandomForest ] [ DecizionTrees ] [ SupportVectorMachines ]

Advanced Techniques

k.
DeepLearning W

—

[ ConvolutionalNeuralNetworks ] [ ResNet ] [YDLD ] [ EfficientNet ]

Combines Meural Networks with Leamning

[ DeepReinforcementLearning ]

\.
N

| Applications |

{ [ CropYieldPrediction ] [ DiseaseDetection ] [ PrecisionSpraying ] [ RoboticMavigation ]

Figure 1.1: A flowchart illustrating the hierarchy of Artificial Intelligence techniques and
their applications in agriculture.
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1.2.1 Artificial Intelligence (Al)

Artificial Intelligence (Al) refers to computational systems capable of performing tasks
that traditionally require human intelligence, such as problem-solving and decision-
making [8]. In agriculture, Al has emerged as a transformative tool, enabling applications
such as crop yield prediction, disease detection, and precision pesticide spraying. By
automating resource-intensive processes, Al can reduce operational costs, minimize
human error, and enhance scalability. For example, Al-driven agricultural robots now
perform tasks ranging from soil analysis and seed planting to irrigation optimization,
leveraging real-time data on soil moisture and nutrient levels [9]. Al also plays a critical
role in pest management, where automated systems conduct regular crop inspections to

identify early signs of disease or pest damage, thereby enabling timely interventions [9].
1.2.2 Machine Learning (ML)

Machine Learning (ML), a subset of Artificial Intelligence (Al), encompasses algorithms
designed to analyze data and generate predictions through statistical analysis [8]. While
ML has long been a cornerstone of Al applications, advancements in computational
power and reduced storage costs in recent years have catalyzed the emergence of more
sophisticated techniques, such as deep learning [10]. Traditional ML algorithms remain
widely used for solving smaller-scale classification problems, including text analysis. For
instance, Naive Bayes [11, 12] operates under the assumption of independence between
input features, making it a simple yet effective choice for classification tasks. Random
Forest [13], on the other hand, aggregates multiple decision trees to model intricate
relationships within datasets, while standalone Decision Trees [14] structure data
hierarchically to support rule-based decision-making. Support Vector Machines (SVM)
[15] classify data by constructing hyperplanes that optimally separate features into
distinct categories [10]. Stochastic Gradient Descent (SGD) [16], in comparison,
optimizes model parameters through iterative updates on data subsets, enabling efficient
training for large-scale linear models like logistic regression. Despite their utility, these

conventional algorithms are primarily suited for low-complexity tasks and often struggle



with scalability when confronted with large, heterogeneous, or high-dimensional inputs,

such as high-resolution agricultural imagery or real-time sensor data.
1.2.3 Deep Learning (DL)

Deep Learning (DL), an advanced branch of ML, utilizes multi-layered neural networks
to autonomously extract hierarchical features from raw data [8]. The advent of DL has
revolutionized image-based plant disease detection, with Convolutional Neural Networks
(CNNs) [17] achieving state-of-the-art performance. Architectures like ResNet [18], which
addresses vanishing gradient issues through residual connections, and YOLO (You Only
Look Once) [19], a single-stage object detection framework, are particularly effective in
identifying diseases from leaf images [20]. EfficientNet [21] further optimizes model
scalability by balancing network depth, width, and resolution, which enables efficient
deployment on resource-constrained devices [20]. These models excel at early disease
diagnosis and can even predict susceptibility to future outbreaks when trained on robust,

well-curated datasets.
1.2.4 Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) combines deep neural networks with reinforcement
learning, enabling systems to learn optimal decision-making policies through trial-and-
error interactions with their environment [22]. In agriculture, DRL has shown promise in
applications such as robotic navigation and precision spraying. For example, DRL-
trained robots can autonomously map and navigate unstructured farm environments,
avoiding obstacles while optimizing pesticide application routes [23]. Unlike traditional
vision systems that require extensive labeled data, DRL simplifies tasks like visual
navigation by dynamically adapting to feedback, making it suitable for real-time,

unstructured scenarios [24].



1.2.5 Hybrid Models

Recent advancements integrate DL for visual perception with DRL for robotic control,
creating hybrid systems that combine accuracy and adaptability. For instance, CNNs can
detect diseased plant regions, while DRL algorithms guide the robot’s spraying
mechanism to target affected areas precisely. This approach minimizes chemical usage,
reduces environmental impact, and ensures scalable deployment across diverse

agricultural settings.

1.3 Comparative Analysis of Al Techniques for Plant

Disease Detection

The development of an effective Plant Disease Detection and Treatment System
necessitates a careful selection of the underlying Al architecture. Machine Learning (ML),
Deep Learning (DL), and Deep Reinforcement Learning (DRL) present distinct profiles
in terms of accuracy, computational efficiency, and data requirements, as summarized
in (Table 1.1). These differences significantly impact their suitability for real-world
agricultural applications, particularly for deployment on robotic platforms. Consequently,

an evaluation across these critical criteria is essential.
1.3.1 Accuracy and Model Performance

Regarding accuracy in plant disease detection, which determines the precision of
classification, different Al paradigms offer varied performance. Traditional ML models,
such as Support Vector Machines (SVM), Random Forest (RF), and Stochastic Gradient
Descent (SGD), provide structured classification. For instance, SVM has demonstrated
capabilities like achieving 87% accuracy in citrus disease detection [25]. However, a
primary limitation of ML is its reliance on manual feature extraction, a process that often
struggles to capture the complex patterns indicative of plant diseases; RF, for example,

achieved only 76.8% accuracy in one study [25]. In contrast, Deep Learning, particularly



Convolutional Neural Networks (CNNs) like VGG-16 [26] and Inception-v3 [27], excels
by automatically extracting hierarchical features from image data. This capability leads
to superior accuracy, with models like VGG-16 achieving 89.5% [25, 28, 29]. Despite
their strengths, DL models demand large datasets and face risks of overfitting when data
is small or imbalanced [30, 31]. Deep Reinforcement Learning, while offering dynamic
adaptation to environments and potential for optimizing real-time robotic decision-
making, is less directly suited for primary disease detection tasks due to its computational
intensity and the complexity of designing effective reward structures for classification. In
summary, for disease classification accuracy, DL models, especially CNNs, generally
provide the highest performance due to their advanced feature learning. ML techniques
can be suitable for smaller datasets where manual feature engineering is feasible,
whereas DRL's strengths currently lie more in autonomous navigation and control rather

than direct disease classification.
1.3.2 Computational Efficiency for Robotic Deployment

Computational efficiency for real-time robotics is another crucial factor, as deployment
often involves embedded systems like Raspberry Pi, requiring a balance between
accuracy and processing speed. Machine Learning models typically exhibit low
computational overhead, making them feasible for resource-limited systems [32].
However, their inherently lower accuracy compared to DL can limit their effectiveness in
complex, variable agricultural environments [33]. Deep Learning models, while offering
high accuracy, generally require GPUs for training and can be resource-intensive for
inference. Nevertheless, optimization techniques such as model pruning and
quantization are increasingly enabling the deployment of DL models on edge devices,
albeit with careful consideration [34]. Unoptimized DL models can significantly hinder
real-time performance [35, 36]. Deep Reinforcement Learning is adaptable to dynamic
robotics tasks but also presents high computational demands and complex reward
design challenges that can impede real-time viability [32]. Therefore, ML often stands out
for its computational efficiency on constrained systems. DL requires specific hardware

acceleration or significant optimization for real-time field deployment, and DRL’s real-
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time feasibility often depends on the complexity of the learned policy and the efficiency

of its post-training deployment.

1.3.3 Data Requirements and Scalability

Data requirements and scalability are critical considerations, as the quality and volume
of data directly influence model performance and its ability to generalize. Traditional ML
approaches require manual feature engineering and can function with smaller datasets,
but they often struggle with high-dimensional inputs like raw imagery [37, 35]. Deep
Learning models, conversely, demand large, meticulously annotated datasets;
architectures like ResNet and EfficientNet, for example, typically require thousands of
labeled images to achieve robust performance [38—40]. While this is a significant hurdle,
techniques such as transfer learning can mitigate data scarcity by leveraging knowledge
from pre-trained models, adapting them to specific agricultural tasks with smaller,
domain-specific datasets [41, 42]. Deep Reinforcement Learning learns through direct
interaction with its environment, bypassing the need for large pre-labeled datasets in the
traditional sense, but this learning process itself requires extensive computational
resources and careful reward tuning. Key insights reveal that DL’s high accuracy is
intrinsically linked to the availability of large, high-quality datasets, which are often costly
and time-consuming to collect and annotate [39, 43]. While transfer learning and few-
shot learning strategies are being developed to reduce these data dependencies, they
still necessitate careful domain adaptation [41, 42]. Furthermore, real-world variability in
agricultural settings, such as inconsistent lighting, diverse leaf orientations, and varying
stages of disease, poses significant challenges to dataset generalization for all image-
based approaches [40, 43]. In essence, both ML and DL rely heavily on labeled data,
with DL having the most substantial requirements. DRL offers an alternative learning
paradigm that avoids direct data annotation for classification but is generally considered
impractical for standalone disease classification when compared to supervised learning

techniques optimized for this task.
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Criteria

Accuracy

Computational

Efficiency

Data

Requirements

Table 1.1: Comparative Analysis Table

Machine Learning
(ML)

- Moderate
accuracy (e.g.,
SVM: 87%)

- Limited by manual

feature extraction

- Low
computational
demand, suitable
for embedded

systems

- Real-time feasible
but less accurate in
dynamic

environments

- Small
datasets with
manual feature

engineering

- Struggles with
high-dimensional
data

Deep Learning
(DL)

- Highest
accuracy (e.g.,
VGG-16: 89.5%)

- Automatic feature
extraction improves

detection

- High

demand (GPUs
required) but
optimizable via

pruning/quantization

- Edge deployment
possible with
optimization (e.g.,

TensorFlow Lite)

- Large labeled

datasets required

- Transfer learning
mitigates data

scarcity
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Deep Reinforcement
Learning (DRL)

- Not directly tested,
but potential for
adaptive decision-

making

- Requires complex
reward design for

disease tasks

- Extremely
resource-intensive,
challenges for real-

time deployment

- Suited for post-
training navigation

tasks

- Learns via
interaction, minimal

direct annotation

- Requires extensive
trial-and-error for

reward tuning



Conclusion:

DL (CNNs) is optimal for high-accuracy disease detection but requires dataset and
computational optimization. ML suits low-resource environments, while DRL’s niche lies
in robotic navigation and adaptive control. These key trade-offs are summarized in (Table

1.2). Ultimately, hybrid architectures (e.g., CNN + DRL) may balance vision and action

for precision agriculture.

Table 1.2: Summary of Techniques

Technique Best For

Small datasets, low-resource

ML :

environments

High-accuracy detection,
DL hierarchical features

Adaptive robotics navigation and
DRL control
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Limitations

Low accuracy, manual feature

engineering

Data-hungry, computationally

intensive

Complex reward design, high

training costs



1.4 Literature Review of Deep Learning Models

Recent advancements in plant disease detection have predominantly leveraged Deep
Convolutional Neural Networks (CNNs) with transfer learning, while Machine Learning
(ML) and Deep Reinforcement Learning (DRL) remain niche due to limitations in
scalability and adaptability. Below, we focus on DL approaches, particularly YOLO-based

architectures, to justify the selection of YOLOVS8 for our project.
1.4.1 Foundational CNNs for Image Classification

Early and influential work with traditional CNNs demonstrated their potential in
agricultural image analysis. For example, Mohanty et al. (2016) [44] utilized AlexNet [45]
and GooglLeNet [46], training them on a substantial dataset of 54,306 images from
PlantVillage [47]. Their results were compelling: GoogLeNet, when employing transfer
learning, achieved an impressive 99.35% accuracy in classifying 26 diseases across 14
different crop types. In contrast, AlexNet, when trained from scratch, reached an
accuracy of 85.53%. Similarly, Liu et al. [48] applied an AlexNet model to a dataset of
13,689 apple leaf images, successfully achieving 97.62% accuracy in detecting various
apple diseases. These traditional CNN approaches offer significant advantages, primarily
through their automated feature extraction capabilities, which eliminate the need for
laborious manual preprocessing. Furthermore, the application of transfer learning has
proven effective in mitigating issues related to data scarcity. However, these models also
present notable limitations, including high computational costs, often necessitating GPU-
dependent infrastructure, and restricted real-time feasibility when considered for

deployment on field robotics.
1.4.2 Real-Time Object Detection with YOLO

More recently, a critical distinction emerged between image classification and object
detection. While models like AlexNet and GooglLeNet are powerful for classification
(telling an operator if a disease is present in an image), object detection models like
YOLO (You Only Look Once) can identify if a disease is present and, crucially, where it
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is located within the image. This capability is far more useful for a robotic spraying
system, which needs precise coordinates for targeted treatment. YOLO-based
architectures have therefore gained prominence, particularly because they excel in real-
time performance. For instance, a hybrid approach using YOLOv7 combined with a CNN
classifier [49] achieved a remarkable 98.8% accuracy in tomato leaf disease detection
and classification, effectively merging YOLO’s processing speed with the classification
precision of CNNs. Another widely recognized model, YOLOv5 [50], demonstrated 93%
accuracy in the real-time identification of tomato diseases, showcasing a strong balance
between speed and accuracy suitable for field deployment. The primary advantages of
YOLO-based architectures are their capacity for real-time processing and their single-
stage detection mechanism. This allows them to efficiently localize and classify diseases
in a single pass, making them highly suitable for applications demanding rapid response

and operational efficiency.

To provide a clear side-by-side comparison, the performance metrics and key
characteristics of these influential DL models are summarized in (Table 1.3). This
analysis highlights the trade-offs between accuracy, speed, and deployment feasibility,

setting the stage for the selection of an optimal architecture.
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Table 1.3: Comparative Analysis of DL Models

Model Accuracy Speed Key Strength  Limitation
AlexNet 85.53— Low Foundational Computationally
97.62% CNN intensive
architecture
GooglLeNet 99.35% Moderate High accuracy  Requires large
with transfer datasets
learning
YOLOv5 93% High Real-time field  Lower accuracy
deployment than CNNs
YOLOv7 98.8% High Speed- Complex
accuracy implementation
balance
YOLOv8 (Proposed) 99%+ Very Optimized Requires fine-
(Expected) High architecture for  tuning for
precision agriculture

1.4.3 Why YOLOvV8?

YOLOvVS8, as the latest most stable iteration in the YOLO family, builds upon the
established successes of its predecessors like YOLOvS and YOLOv7, offering several
key enhancements that make it particularly suitable for our project. Firstly, it provides
enhanced accuracy resulting from improvements in its backbone and neck architectures,
which lead to better feature extraction capabilities. Secondly, YOLOVS is engineered for

faster inference speeds and is specifically optimized for edge devices, such as the
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NVIDIA Jetson platform, a critical consideration for deployment on mobile agricultural
robots. Furthermore, its adaptability is improved through advanced data augmentation
techniques, enabling it to perform more robustly in dynamic agricultural environments
characterized by variable lighting conditions and potential occlusions. Finally, YOLOv8
demonstrates strong scalability and compatibility with hybrid systems, for instance,
facilitating integration with Deep Reinforcement Learning (DRL) for tasks like advanced
robotic navigation and control, thereby supporting comprehensive precision agriculture

solutions.

1.5 Dataset Selection for Vision System

The performance of a computer vision system critically hinges on the quality, diversity,
and relevance of the dataset used for its training and validation. A well-curated dataset
is paramount as it ensures robust model generalization, enables reliable deployment in
real-world agricultural scenarios, and aligns with the operational constraints inherent in

robotic vision systems.
1.5.1 Selection Criteria

To select an optimal dataset for plant disease detection, we prioritize several key criteria:
diversity, encompassing variability in plant species, disease types, and imaging
conditions (such as lighting and angles); size, ensuring an adequate volume of images
to prevent overfitting and promote robust learning; quality, indicated by high-resolution
images with clear and accurate annotations; and compatibility with robotic vision, which
demands real-world applicability, including diverse backgrounds and authentic field

conditions.
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1.5.2 Critical Analysis

A side-by-side comparison of prominent public datasets against these criteria is
presented in (Table 1.4). On the positive side, several large datasets offer ample data
for training sophisticated deep learning models. For example, PlantifyDR [51] contains
approximately 125,000 images, and the widely-used PlantVillage dataset [47] includes
around 54,000 images. In terms of class diversity, datasets like New-Plant-Diseases and
PlantVillage are notable for covering up to 38 distinct classes, thereby enabling the

development of multi-disease detection systems.

However, significant limitations also exist. A common issue is the presence of unified
backgrounds; many prominent datasets, including PlantVillage and Tomato [52],
primarily feature images taken in controlled laboratory environments. This lack of
background variability can limit a model's ability to generalize to real-world field
conditions. Conversely, some available datasets are relatively small. For instance, Plant-
Doc [53], with about 4,500 images, risks model underfitting if used as a standalone

resource for training complex models.

These observations highlight key trade-offs in dataset selection. There is often a tension
between dataset volume and generalization. While larger datasets like PlantifyDR [51]
provide extensive training material, they might risk overfitting if the model is intended for
resource-constrained robotic platforms, or if the diversity within the large dataset doesn't
match the target environment. Smaller datasets such as Plant-Doc [53], on the other
hand, might lack the sheer volume for optimal scalability of deep learning models.
Another crucial trade-off involves field relevance. Datasets like Plant-Doc [53], despite
their smaller size, often feature more varied imaging conditions (e.g., diverse lighting,
natural backgrounds) that better mirror real-world robotic operations. However, to be
effectively used, these datasets typically require significant data augmentation to

artificially increase their size and variability for training purposes.
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Dataset

New-Plant-

Diseases[54]

Tomatoleaf[55]

Tomato[52]

PlantVillage[47]

PlantifyDR-
Dataset[51]

Plant-Doc-
Dataset[53]

1.5.3 Final Selection

Table 1.4: Dataset Comparison

Data

Size

87,000

10,000

18,000

54,000

125,000

4,500

Diversity

Quality

38 classes (plants 256%256,

+ diseases)

10 tomato

diseases

10 tomato

diseases

38 classes (14
plants + 26

diseases)

10 plants, 37

diseases

30 classes (13
plants)

JPG

256%256,
JPG

256%256,
JPG

256%256,
JPG

256%256,
JPG

900x675,
JPG

Robotic Vision

Compatibility

Unified background

Unified background

Unified background

Unified background

Unified background

Varied field

conditions

To effectively balance data volume, diversity, and crucial field applicability, we propose

a hybrid dataset strategy. This approach combines the strengths of two distinct datasets:

PlantVillage [47] will serve as the primary source for training data, leveraging its

substantial volume of approximately 54,000 images and broad coverage of 38 classes.

Its main advantage lies in providing a balanced class distribution and comprehensive

disease representation, which is essential for initial model learning. Complementing this,

the Plant-Doc [53] dataset is designated for validation and fine-tuning purposes. Although

smaller, with around 4,500 images across 30 classes, its key advantage is its
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composition of images captured under real-world field conditions. This two-stage
approach is strategic: the variety of disease morphologies in PlantVillage allows the
model to build a foundational feature set for identification, while the challenging
conditions and potential confounders (e.g., environmental artifacts that mimic symptoms)
in Plant-Doc are critical for enhancing the model’s accuracy and robustness for

operational deployment.

1.6 The Robot Operating System (ROS) Framework

The Robot Operating System (ROS) is a pivotal open-source middleware framework
engineered to facilitate the development of complex robotic systems. Despite its name,
ROS is not a conventional operating system. Instead, it functions as a flexible meta-
operating system, providing an abstraction layer that operates on top of a host OS such
as Ubuntu. ROS furnishes a comprehensive suite of tools, libraries, and standardized
conventions that streamline the creation of modular, distributed, and scalable robot
software [56, 57]. The widespread adoption of ROS in contemporary robotics
underscores its capability to provide a standardized and scalable environment for
building intelligent systems. Its impact is evident across a multitude of domains, including
autonomous vehicles, drones, medical robotics, and, increasingly, agricultural

automation [56].
1.6.1 ROS Applications in the Agricultural Sector

Several projects and academic works have successfully integrated ROS to address key

challenges in agriculture. These examples demonstrate the framework's practical utility:

« Irrigation Optimization: One project focused on developing an autonomous robotic
system to improve irrigation management, using ROS 2 to create a simulated
agricultural environment for development and testing before deployment on a

physical robot [58].
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« Autonomous Navigation: A notable thesis addressed the challenge of outdoor robot
navigation by integrating a full sensor suite (LIiDAR, GPS, cameras) with the ROS 2
Nav2 stack. It used a custom computer vision pipeline with a YOLOv8 neural network
to allow a robot to better discern traversable terrain, such as tall grass, from

impassable obstacles [59].

o Digital Twin Emulation: The "AgROS" project developed a ROS-based emulation
tool to bridge the gap between software-based decision support systems and physical
machinery. The tool allows for the predictive analysis and testing of modules that can
be directly transferred to real-world robots, aiming to create a "digital twin" for

optimizing agricultural operations [60].
1.6.2 The Modular Architecture of ROS

The power of ROS lies in its ability to decompose complex robotic applications into
smaller, independent, and reusable components called nodes. These nodes
communicate with each other using a standardized messaging system, which enhances

scalability, code reuse, and ease of debugging.
a. Nodes: The Building Blocks of a ROS System

In ROS, a node is the smallest executable unit, typically a process responsible for a
single, well-defined task. For example, a simple mobile robot might have separate nodes

for:
o Capturing and publishing camera data.
e Processing sensor data to detect obstacles.
e Controlling the wheel motors.

Each node is a standalone program, which allows them to be developed, tested, and

modified independently.
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b. Topics: The Communication Buses

Nodes communicate using a publish-subscribe model facilitated by named buses called
topics. A node with data to share (e.g., a camera node) publishes messages to a topic.
Any other node that needs this data (e.g., an object detector or a display node) can

subscribe to that topic to receive the messages.

This system decouples the nodes from one another; the publishing node does not know
or care which nodes are subscribing. This creates a highly flexible and scalable
architecture. The communication itself is handled by the underlying ROS middleware. In
the modern ROS 2, this is the Data Distribution Service (DDS), a robust protocol that
enables real-time, secure, and peer-to-peer data transfer with automatic discovery of

nodes and topics.

The specific architecture for a given application can be visualized in a communication
graph. (Figure 1.2) illustrates a conceptual graph for a hypothetical agricultural robot. In
this example, sensor nodes like “blight_detector” and “weather_reporter” publish their
data to dedicated topics. A central “spray_scheduler” node subscribes to this information
to make decisions, demonstrating how the modular design allows for a clear and logical

flow of data through the system.
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Figure 1.2: A conceptual communication graph illustrating the modular, topic-based
data flow between nodes in a ROS 2 system.

1.6.3 Why Use ROS for Our System?

The selection of ROS as the foundational framework for this project is a strategic decision

rooted in its extensive ecosystem and proven capabilities. ROS offers a vast collection

of open-source packages that support a wide range of robotic functionalities, including

navigation, perception, manipulation, and artificial intelligence. These packages

significantly accelerate development and minimize redundancy. Furthermore, ROS

integrates powerful tools like RViz for visualization and Gazebo for simulation, which

allow for efficient testing and prototyping before real-world deployment [3].

Given that our system is designed for an agricultural setting—where automation offers

substantial savings in time, energy, and resources—ROS is the ideal foundation for
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future integration with a physical robotic platform. The agricultural robotics industry is
increasingly adopting ROS due to its adaptability and robust feature set. The download
of over 550 million ROS packages in 2023 alone demonstrates its widespread adoption
and active community support [4]. By building our system with ROS, we ensure that it is
ready for seamless integration with robotic hardware, making the transition from a

conceptual model to practical field deployment both smoother and more efficient.

1.7 System-Level Integration: From Environmental
Prediction to Robotic Action

1.7.1 Weather Forecasting for Early Disease Prediction

Environmental conditions—notably humidity, temperature, rainfall, and leaf wetness
duration—are critical determinants in the development and spread of plant diseases,
particularly fungal infections such as late blight in potato crops. Research has established
that Phytophthora infestans, the oomycete pathogen responsible for late blight, thrives
in moist and cool environments. Optimal conditions for its proliferation are generally
around 90% relative humidity and temperatures ranging between 15°C and 25°C.
Consequently, weather forecasting serves as an invaluable tool for the early prediction

of disease outbreaks.

To this end, several models and decision support systems (DSS) have been developed
to forecast disease risk based on meteorological data. A prominent example is
BlightCAST [61, 62], a system specifically designed to predict late blight risk by analyzing
weather patterns and subsequently issuing regional alerts to farmers. Other systems
leverage data from national meteorological agencies or utilize Application Programming
Interfaces (APIs) such as OpenWeatherMap and Open-Meteo to assess atmospheric

conditions conducive to disease development.
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In recent years, machine learning and statistical methodologies have also been
increasingly applied to predict disease risk using weather data. These models typically
analyze historical weather patterns and corresponding disease occurrences to identify
conditions likely to precede an outbreak. However, a common limitation of many such
systems is that they are either not crop-specific or lack effective real-time field integration,
which can diminish their accuracy and practical utility in dynamic agricultural

environments.

Despite their potential, a significant drawback of most existing weather-based forecasting
systems is their predominant focus on large-scale regional forecasts. This often results
in a failure to provide localized, real-time alerts tailored to the specific microclimatic
conditions of individual smallholder farms. Therefore, integrating localized weather
forecasting with real-time field data and Al-based disease detection capabilities offers a

more robust, precise, and actionable approach to proactive disease management [63].

1.7.2 Automated Spraying, Mobile Robotics, and loT Interfaces

in Smart Farming

The growing demand for sustainable and efficient agricultural practices has spurred the
development of automated spraying systems and mobile robotic platforms. These
technologies aim to significantly reduce the overuse of chemical treatments while
improving the precision and timeliness of interventions. In contrast, traditional farming
methods often involve manual pesticide application or uniform spraying across entire
fields. Such approaches not only waste valuable resources but also unnecessarily
expose agricultural workers to harmful chemicals and increase the overall environmental

impact.

Complementing these robotic systems, loT-based solutions and web interfaces play a
pivotal role in enabling effective remote monitoring and control. Through user-friendly
dashboards and web applications, farmers can gain real-time access to critical data,
including crop health status, prevailing environmental conditions, and the operational

parameters of robotic units. Furthermore, these user interfaces can incorporate
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advanced features such as alert systems for immediate notifications, historical data logs
for trend analysis, and control functionalities for remotely activating or adjusting robotic
behavior [64, 65].

While several commercial systems currently offer semi-automated spraying and remote
monitoring capabilities, they frequently present limitations. These systems are often
expensive, may not be crop-specific, or are generally not designed for efficient small-
scale or localized deployment. Therefore, the integration of Al-based disease detection,
weather-based forecasting, and precision spraying within a single, cohesive robotic
system—all managed through an accessible web interface—presents a more
comprehensive and scalable solution for modern agriculture. This is particularly relevant
for regions such as Algeria, where the adoption of such advanced agricultural technology
is still nascent and its potential largely untapped. Introducing such systems can directly
address pressing local challenges by enhancing crop yields to improve food security and

by automating manual tasks to alleviate labor shortages.
1.8 Conclusion

This review of the state-of-the-art has revealed that despite significant progress in
agricultural robotics, disease detection methodologies, and precision spraying
technologies, current solutions often exhibit shortcomings in several key areas. Many
existing systems are not specifically designed to address particular crop diseases, such
as late blight in potatoes, thereby compromising their accuracy and effectiveness in real-
world applications. Furthermore, comprehensive solutions that integrate real-time
disease monitoring with weather forecasting and accessible web-based decision-making
tools remain largely undeveloped or inaccessible, particularly in regions like Algeria.
These limitations underscore a clear and pressing need for an integrated system. By
leveraging a state-of-the-art object detection model like YOLOVS, trained on a hybrid,
field-relevant dataset, and integrated with localized weather forecasting, it becomes
possible to develop a more affordable and farmer-accessible system capable of

delivering targeted and timely interventions.
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Chapter 2 Proposed Methodology — Al-based

Detection of Potato Late Blight

2.1 Domain of Application: Study of Potato Late Blight

Potato (Solanum tuberosum L.) ranks among the five most vital staple food crops globally
and is cultivated across a diverse spectrum of climatic conditions. It is characterized by
a relatively low water footprint and high nutritional value. These attributes render it a
significant crop for Algeria, where both potato production and consumption have
expanded considerably over the last three decades. Currently, extensive potato
production areas, totaling approximately 90,000 hectares, are established in several
regions of this North African nation, and the sector continues to exhibit rapid growth. The
majority of potatoes produced in Algeria are consumed domestically, enabling the

country to achieve self-sufficiency in potato consumption.

In Algeria, potato cultivation represents the leading vegetable crop in terms of both area
and production, with an allocated area of 156,176 hectares yielding approximately
4.6735 million tons, corresponding to an average yield of 29.9 tons/ha as of 2017 [66].
Common cultivation practices include bisecting oversized seed potatoes to reduce costs;
these are subsequently planted at a depth of 15 cm, with intra-row spacing of 25-30 cm
and inter-row spacing of 65-75 cm [66]. The optimal temperature range for potato tuber
formation is 10°C to 16°C (50°F to 60°F) [67]. Potatoes should be planted when soil
temperatures range between 7°C (45°F) and 27°C (80°F). Planting in overly moist soil
heightens the risk of seed piece decay, whereas excessively cool and dry soil conditions

can impede sprouting and emergence. Potato cultivation is compromised when
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temperatures deviate beyond these thresholds. Ideal ambient humidity levels for potato
plants are reported to be between 60-70% [68, 67].

2.1.1 Challenges in Algerian Potato Production

Potato cultivation in Algeria faces several critical challenges that can be categorized as

environmental, technical, and biological (Figure 2.1).
a. Water Scarcity:

Algeria faces significant water scarcity due to its limited renewable water resources, with
the agricultural sector consuming the majority of available water—over 59% of freshwater
withdrawals [69]. Inefficient water management and application practices, especially in
agriculture, contribute to substantial water losses and exacerbate the scarcity problem
[69]. Inefficient water application practices by farmers frequently result in substantial

water losses, particularly in potato production, which is heavily reliant on irrigation.
b. Mechanization and Labor:

A low degree of mechanization in potato farming necessitates a significant reliance on
manual labor. This dependency poses challenges due to the perceived low status of
agricultural work and consequent difficulties in securing labor for critical operations such

as planting, harvesting, and irrigation [66].
c. Plant Diseases:

Furthermore, plant diseases represent a significant threat to potato crops, capable of

causing substantial yield reductions.
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Figure 2.1: Challenges in Algerian Potato Production

2.1.2 Overview of Common Potato Diseases

Several diseases commonly affect potato crops, as summarized in (Table 2.1). These

include:

Brown Rot: Brown rot (Ralstonia solanacearum), also referred to as bacterial wilt or
southern bacterial wilt, affects potato crops across a wide range of warm-temperate,
semi-tropical, and tropical zones globally, with occurrences also reported in cooler
climates [70].

Powdery Mildew: Powdery mildew (typically caused by Erysiphe cichoracearum or
related fungal species) can be a significant foliar disease, particularly prevalent in arid
or semi-arid climates [70].

Common Scab: Common Scab (Streptomyces scabies) is present to some degree
in most potato-growing regions. It is a major production concern primarily affecting

tuber grade quality, with generally minor effects on total yield or storability [70].
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o Potato Leafroll Virus (PLRV): Potato leafroll, an aphid-transmitted viral disease, is

among the most serious diseases affecting potatoes and is responsible for

considerable yield losses worldwide wherever potatoes are cultivated [70].

Table 2.1: Common Potato Diseases

Disease Causal Agent Brief
Name
Brown Rot Ralstonia Also known as bacterial
solanacearum  wilt; affects potatoes in
(bacterium) warm-temperate, semi-
tropical, and tropical
zones globally, and
some cooler climates.
Powdery Erysiphe A foliar disease that is
Mildew cichoracearum particularly prevalent in
or related arid or semi-arid
fungal species climates.
Common Streptomyces  Present in most potato-
Scab scabies growing regions;
(bacterium) primarily affects tuber
quality.
Potato Aphid- An aphid-transmitted
Leafroll transmitted viral disease affecting

Virus (PLRV) virus

potatoes worldwide.
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This research narrows its focus to two particularly impactful foliar diseases: early blight
and late blight, with a primary emphasis on late blight due to its devastating potential. A

comparative summary of their key features is presented in (Table 2.2).
2.1.3 Early Blight (Alternaria solani)

Early blight, a significant foliar disease of potato (Solanum tuberosum L.), is caused by
the fungal pathogen Alternaria solani Sorauer. It is recognized as one of the most
prevalent diseases affecting potatoes and tomatoes. The disease can precipitate major

yield losses in most potato-growing regions globally [70, 71].
a. Historical and Economic Impact:

Historically, early blight was often regarded as a secondary disease in potatoes, typically
causing moderate yield losses under standard growing conditions. However, under
conditions conducive to its development (e.g., high humidity, moderate temperatures,
and plant stress), early blight can lead to substantial economic losses, especially if
significant defoliation occurs before tuber bulking is complete [71]. The primary damage
mechanism is premature defoliation, which diminishes photosynthetic capacity and can
increase respiration rates in apparently healthy plant tissues. This can result in yield
losses ranging from 5% to 50%, with severe infections potentially causing losses
between 20% and 50% [72].

b. Plant and Crop Damage:

Primary damage manifests as characteristic dark brown to black lesions, often displaying
concentric rings (a "target spot" appearance), on the leaves. These lesions can enlarge
and coalesce, ultimately leading to leaf necrosis and death. Premature defoliation curtails
photosynthesis, resulting in diminished tuber size and overall yield. Disease severity is
typically greater on senescent, stressed, malnourished, or physically damaged plants.
Environmental factors, including temperature, moisture availability, and leaf wetness

duration, significantly influence the severity of early blight [71].
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c. Symptoms:

Leaves: Characteristic foliar lesions are dark brown to black, featuring concentric
rings that create a "target spot" effect (see Figure 2.2). While typically oval, lesions
may remain small and angular under conditions unfavorable for disease progression.

These lesions enlarge and coalesce, leading to leaf necrosis [71].

Stems: Lesions can also manifest on stems and petioles. Stem lesions may facilitate

the spread of the pathogen to other plant parts [71].

Tubers: Infected tubers exhibit a dry rot characterized by isolated, dark, irregular,
and sunken lesions on the surface. Tuber infection usually occurs via wounds, as

Alternaria solani conidia generally cannot penetrate intact periderm [71].

Overall Crop Impact: Affected plants may display signs of premature senescence,

reduced vigor, and, in severe instances, complete vine death [71].

Figure 2.2: Visual Symptoms of Early Blight on Potato Plants leaf - from plant-doc
dataset [63]
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d. Disease Cause and Spread:

The presence of free water on leaf surfaces or relative humidity approaching saturation

is conducive to spore germination. Germination of A. solani spores necessitates a

minimum leaf wetness period; studies indicate that spores can germinate at 20°C

following a wetting period as short as two hours. Sporulation is often triggered by

alternating wet and dry conditions. Leaf wetness duration has been shown to account for

up to 90% of the variability in early blight development and severity. Temperature is

another critical factor influencing infection, with the optimal range for A. solani infection
being 20°C to 30°C [71].

o

o

e. Disease Management:

Preventive Measures: Preventive measures for early blight encompass several
cultural and chemical strategies [71]. Crop rotation with non-host crops (e.g., cereals,
forage crops) for a period of 3-5 years is recommended to reduce soil-borne
inoculum. Careful site selection, ensuring well-drained fields, and thorough sanitation
practices, such as the removal of plant debris, help eliminate overwintering pathogen
structures. Irrigation scheduling, preferably in the morning, can minimize nocturnal
leaf wetness duration. The cultivation of potato cultivars with higher levels of
resistance to early blight is an important component of an integrated management
strategy. Avoiding plant overcrowding promotes better air circulation, thereby
reducing humidity and leaf wetness. Prophylactic application of contact fungicides
(e.g., chlorothalonil, mancozeb, copper-based compounds) early in the growing
season can be effective. Furthermore, the integration of predictive models for disease

forecasting can aid in optimizing fungicide application timing and minimizing their use.
Curative and Control Measures:

=  Pruning and Removal of Infected Tissues: The pruning and proper disposal
of infected leaves, stems, and plant debris can reduce the pathogen's spore
load within the field [71].
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Environmental Modification: Where feasible, reducing field moisture levels
by improving soil drainage or employing drip irrigation instead of overhead

sprinkler systems can mitigate disease spread [71].

Biological Control: Biological control agents, such as Trichoderma viride and
extracts from Clerodendrum spp. leaves, have demonstrated efficacy in
reducing early blight severity, especially when integrated with chemical control
methods. This approach presents an environmentally sustainable alternative

that can help lessen dependence on synthetic fungicides [73].

Chemical Control: Protectant fungicides, such as chlorothalonil, mancozeb,
and copper-based formulations, are applied early to prevent initial infection [71,
73]. Following the onset of symptoms, systemic fungicides like difenoconazole,
tebuconazole, and flusilazole can be applied to arrest disease progression
within the plant [71, 73].

Integrated Management: Integrated management strategies combining
biological agents with chemical treatments have shown promising results. For
instance, the application of Clerodendrum leaf extract or T. viride in conjunction
with mancozeb demonstrated significant disease control, with reported
Percent Disease Index (PDI) values of 29.43% (Clerodendrum + 2 mancozeb
sprays) and 34.66% (7. viride + 2 mancozeb sprays). Such integrated
approaches are considered by some researchers to be among the safer

options for disease management [73].
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2.1.4 Late Blight (Phytophthora infestans)

Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is regarded
as one of the most devastating diseases of potato globally, responsible for substantial
production losses. The pathogen exhibits high genetic variability and a notable capacity
for rapid adaptation to new potato cultivars and fungicide treatments [70, 74]. The

damage inflicted by P. infestans can be both severe and widespread.
a. Historical and Economic Impact:

Late blight was the primary causal agent of the European potato failure in the 1840s,
famously leading to the Irish Potato Famine (1845-1852) and the Highland Potato
Famine (1846) [74, 75]. Current annual global economic losses attributed to P. infestans
are estimated at €12 billion, with approximately €10 billion of this impact occurring in
developing nations [74, 76]. In the United States, the annual expenditure on fungicides
for late blight control alone is approximately $77.1 million, a figure that does not include

costs associated with non-fungicidal control measures [74, 76].
b. Plant and Crop Damage:

Infected plants display blackened foliage and weakened stems, which can culminate in
crop collapse. Under conditions conducive to the disease, an entire potato field can be
decimated within a week [74]. Infected tubers develop characteristic reddish-brown to
purplish internal lesions. Although initially firm and dry, these infected tubers are highly
susceptible to secondary soft rot bacteria, leading to significant losses both in the field
and during storage [74]. The rapid and aggressive nature of late blight, particularly under
cool, moist conditions, can result in complete crop failure if not managed effectively and

promptly [74].
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c. Symptoms:

Late blight manifests through several distinct symptoms, visually apparent on the leaves,
stems, and tubers. These symptoms can develop rapidly, often within 2-3 days post-

infection under optimal conditions [74].

o Leaves: Initial symptoms on leaves typically appear as water-soaked, irregular, pale
green lesions, often near the tips or margins. These lesions rapidly expand into large,

brown to purplish-black necrotic areas (see Figure 2.3) [74, 77, 78].

o White Sporulation: Under conditions of high humidity, a characteristic white, downy
growth, consisting of sporangia (spore-bearing structures) of the pathogen, may be
observed on the abaxial (lower) surface of infected leaves, particularly at the lesion
margins [74, 77].

o Stems: Light to dark brown lesions can develop on stems and petioles, potentially
girdling them. Affected stems weaken at these points and may collapse, contributing

to the overall blighted appearance of the crop.

o Overall Crop Impact: Under conditions favorable for the pathogen, the entire crop

can be destroyed within a short period, sometimes as quickly as one week [74, 77].

o Tubers: Tubers become infected when sporangia, washed from diseased foliage by
rain or irrigation water, infiltrate the soil. Infected tubers exhibit irregular, reddish-
brown to purplish discolored areas that extend into the flesh. Initially, these affected
tissues are firm and dry, but they are highly susceptible to secondary invasion by soft

rot bacteria, leading to tuber decay in the field or during storage [74, 77].
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Figure 2.3: Visual Symptoms of Late Blight on Potato Plants leaf - from plant-doc
dataset [63]

d. Disease Cause and Spread:

Phytophthora infestans is an oomycete, colloquially known as a water mold, and is the
causal agent of potato late blight. Oomycetes are characterized by different spore types,
each fulfilling a specific role in the disease cycle. The pathogen primarily disseminates
via sporangia, which are adapted for aerial dispersal over longer distances or can be
spread by water splash within a field [74, 78]. Under conditions of high moisture, such as
pooled water on soil surfaces or persistent leaf wetness, sporangia can germinate
indirectly by releasing motile zoospores. These zoospores, capable of swimming for
approximately 2-10 hours, facilitate short-distance dispersal and initiate new infections
within the crop canopy [78]. High humidity levels (90-100%) coupled with moderate
temperatures (12-23°C) are optimal for sporangia production. Direct germination of
sporangia and subsequent infection typically occur at temperatures between 17-23°C,
while zoospore production and infection are favored by cooler temperatures, ranging
from 6-17°C [78].
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e. Disease Management:

Preventive Measures: Effective late blight management hinges on strategies
designed to minimize initial inoculum sources and prevent the subsequent
development of secondary inoculum on host plants. Several practices contribute to
late blight control [78]. These include planting only certified, disease-free seed tubers;
destroying cull piles and waste potato tubers, which can harbor the pathogen;
eliminating volunteer potato and tomato plants that may arise from previous plantings;
eradicating unmanaged or abandoned infected host plants in the vicinity; optimizing
row spacing to enhance airflow and reduce canopy moisture; cultivating resistant
potato cultivars; and applying fungicides prophylactically to prevent infection

establishment.
Curative and Control Measures:

Biological Control: Certain natural antagonists, including Trichoderma viride,
Bacillus subtilis, and Pseudomonas fluorescens, have shown potential in
suppressing the growth of P. infestans. Their mechanisms of action include
competition for nutrients, production of inhibitory compounds (antibiosis), or

induction of host plant resistance [79, 80].

Sanitation and Removal of Infected Material: Prompt removal and destruction of
infected leaves, stems, and tubers are crucial to reduce the inoculum source within
the field. Composting of infected plant material should be avoided as it may not

effectively eliminate the pathogen and could contribute to its spread [80, 81].

Environmental Modification: Cultural practices aimed at reducing humidity and
leaf wetness duration can impede disease development. These include ensuring
adequate plant spacing and selective pruning to improve airflow within the canopy.
Avoiding overhead irrigation in favor of methods that minimize leaf wetness (e.g.,

drip irrigation) is also beneficial.
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Chemical Control: Systemic fungicides, including active ingredients such as
metalaxyl, cymoxanil, mandipropamid, and propamocarb, are effective in arresting
the progression of late blight. These fungicides can penetrate plant tissues by
offering a degree of curative action if applied shortly after infection has occurred.
The efficacy of curative sprays is highest when applied at the very first indication of
symptoms. Repeated applications are often necessary, with frequency dictated by

disease severity and prevailing environmental conditions [80].

Efficacious Chemical Control Strategies: Fungicides containing cyazofamid and
mandipropamid have demonstrated high efficacy, particularly when applied
preventively before anticipated high-risk infection periods. Research conducted in
Denmark indicated that the application rates of these fungicides could be reduced
by up to 30% by tailoring dosages based on the host cultivar's resistance level and
prevailing disease pressure [74, 80]. The combination of plant activators, such as -
aminobutyric acid (BABA), with protectant fungicides like mancozeb has been
reported to be more effective than either product used alone. For instance, a specific
ratio of 5 parts BABA to 1 part mancozeb exhibited synergistic effects in controlling
late blight [80].
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Feature

Causal
Organism

Typical Leaf
Symptom

Tuber
Symptom

Conditions
Favoring
Disease

Relative
Economic
Impact

Table 2.2: Comparative Summary of Early Blight vs. Late Blight.

Early Blight (Alternaria solani)

Fungal pathogen (Alternaria
solani)

Dark brown to black lesions, often
with concentric rings ("target spot"
appearance); lesions enlarge and
coalesce, leading to necrosis.

Dry rot; isolated, dark, irregular,
sunken lesions on the surface.
Infection typically occurs via
wounds.

High humidity (near saturation for
spore germination), moderate
temperatures (optimal 20°C-30°C
for infection), leaf wetness (min. 2
hours at 20°C for spore
germination); alternating wet/dry
conditions for sporulation.
Stressed or senescent plants are
more susceptible.

Can cause significant yield losses
(5-50%, potentially 20-50% in
severe cases if defoliation occurs
before tuber bulking). Historically
often considered secondary but
can cause substantial economic
losses.
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Late Blight (Phytophthora infestans)

Oomycete (water mold) (Phytophthora
infestans)

Initially water-soaked, pale green, irregular
lesions (often near tips/margins), rapidly
becoming large, brown to purplish-black
necrotic areas. White, downy mildew
(sporangia) on lower leaf surfaces in high
humidity.

Reddish-brown to purplish discolored areas
extending into the flesh; initially firm and dry,
but very susceptible to secondary soft rot
bacteria, leading to decay.

High humidity (90-100%), moderate
temperatures (12-23°C for sporangia
production; 17-23°C for direct germination;
cooler 6-17°C for zoospore
production/infection), persistent leaf
wetness or pooled water for zoospore
release.

Considered one of the most devastating
potato diseases globally. Historically caused
the Irish Potato Famine. Current global
annual losses estimated at €12 billion. Can
lead to complete crop failure rapidly.



2.2 Proposed Solution Architecture

2.2.1 General System Architecture

The proposed system architecture is designed around a central decision-making module
that serves as the core intelligence of the robotic platform. This module is responsible for
managing and processing all incoming data to determine if a threat to the potato crop
exists. As illustrated in (Figure 2.4), the decision-making module receives two primary
inputs. The first is from the Al-based visual detection model, specifically the YOLOv8
model, whose selection was justified in (Section 1.4.3), which provides real-time
identification of disease symptoms. The second input is from the Weather-Based
Prediction System, which assesses environmental conditions to forecast disease risk.
Based on the fused information from these two streams, the decision-making module

generates a single, precise output: a command to activate the precision spraying system.

Decision-Making Spray Command

Al Detection Model —x‘

Weather-Based Prediction System

Figure 2.4: Block diagram illustrating the core system logic

2.2.2 Overview of Subsystems:
a. Al Detection Module (YOLO-based)

The Al Detection Module is a critical component that significantly enhances the
system's power and efficacy. Its primary function is the real-time detection of late blight
infections from visual symptoms present on the plant foliage.

This automated approach offers key advantages over manual human inspection by
identifying subtle signs of disease at very early stages, which are often missed by the
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human eye, and by accurately distinguishing late blight from other visually similar

diseases, thereby reducing the risk of misdiagnosis.

The module operates by processing a real-time video stream from the robot's camera,
following the algorithmic process outlined in (Figure 2.5). Each frame is analyzed to
generate detection data. Upon positively identifying a disease infection, the module
sends both a confirmation command and the corresponding image with detection data to

the decision-making logic for further processing.

Receive Image Frame from Camera Stream

)

Pre-process Frame and Pass to YOLOvS Model

I

Perform Inference & Get Detection Results -
Bounding Boxes, Classes

Is Blight detected in Leaf?

C‘Y&S

Send Positive Detection Command, Image, and Bounding Box Data to Decision-Making Logic

Figure 2.5: Algorithmic flowchart illustrating the operational steps of the Al Detection
Module.
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b. Weather-Based Prediction System

To minimize crop losses, the system's architecture prioritizes proactive disease
management over reactive treatment. Central to this strategy is the integration of a
weather-based prediction system, designed to forecast and mitigate threats before they
emerge. The system operates on a continuous 10-minute cycle, as illustrated in (Figure
2.6). In each cycle, it fetches both the current weather and a 48-hour forecast from

meteorological APIs such as OpenWeatherMap [82] and Open-Meteo [83].

The core of the algorithm involves analyzing the upcoming 24-hour forecast to identify
two critical windows: periods where conditions are favorable for the emergence of late
blight and optimal times for pesticide application. Based on this analysis, the system
publishes a comprehensive summary that includes the current weather, the next
predicted high-risk period for blight, the next suitable time for spraying, and a general 24-
hour forecast. This proactive approach, which combines real-time data with predictive

insights, enables timely and precise interventions before a full-scale outbreak can occur.

Cycle Start - Every 10 minutes

/ Fetch: Current Weather & 48-Hour Forecast /

Analyze Next 24 Hours of Forecast

:

Check for: Favorable Blight Conditions
Check for: Optimal Spraying Times

Publish Summary:
» Current Weather
» Next High-Risk Blight Time
« Next Optimal Spraying Time
* 24-Hour Forecast

Figure 2.6: Flowchart of the Weather-Based Prediction System's Operational Cycle.
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c. Decision-making Strategy

The system's decision-making logic, illustrated in (Figure 2.7), manages and automates

pesticide spraying based on a combination of weather conditions and real-time disease

detection. This logic is composed of two main components: a "Spray Scheduler" and a

"Spray Decider," whose core algorithms are detailed in the flowcharts in (Figure 2.8).

/ Log Spray Event - Timestamp /

/

| Scheduled
Spray Time

/ Al Blight Detection Signal P
Spray Scheduler
Analyzes inputs to determine

if conditions are favorable
/ Weather Suitability Data /Lb

N

Executes spray operation based on
schedule and user-selected mode

Spray Decider

Auto/Manual

%

Command to
Sprayer Mechanism

il

/ User Notification / ) )
User Cancellation Commands User Confirmation Commands

Figure 2.7: Architecture of the Decision-Making Strategy, detailing the data flow
between the Spray Scheduler and Spray Decider components.

The Spray Scheduler receives weather suitability data from the weather-based

prediction system, blight detection signals from the Al detection module, logs of previous

spray events, and any cancellation signals from the user. It processes this information to

determine if conditions are favorable for spraying. If they are, it schedules a spray for a

specific time and sends this schedule to the Spray Decider, while also sending a

notification to the user.

The Spray Decider is the component responsible for executing the spraying operation.

It monitors for scheduled spray times, user confirmations, and cancellation commands.

When a scheduled time arrives, it will either start spraying automatically or wait for user

approval, depending on the selected operational mode. Once spraying begins, it records
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the start and completion times of the event. The system supports two modes: an
automatic mode, where spraying starts at the scheduled time unless canceled, and a
manual mode, where spraying only proceeds after the user explicitly accepts the
proposed schedule. This coordinated design ensures that spraying decisions are
efficient, timely, and safe.

Spray Scheduler Spray Decider

Spray is Scheduled
AND
(Mode is Auto OR User Confirmed)?

Blight Detected
or Predicted?

Wait for
Scheduled Time

User Canceled?
0

1 e,

End Send Spra
Schedule Spray at Commgndy
Suitable Time

Yes

End

(a) (b)

Figure 2.8: Algorithmic flowcharts for the decision-making logic, showing (a) the Spray
Scheduler and (b) the Spray Decider.
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2.3 Vision System

The development of the vision system was an iterative process focused on optimizing
both the dataset and model training parameters to achieve robust, real-world
performance. This section details the experimental journey, from initial baseline models

to the final, deployed solution.
2.3.1 Dataset Collection and Labeling: An Iterative Approach

The creation of a suitable dataset was one of the most challenging aspects of this project.
The final dataset was a composite, compiled from various open-source datasets

available on the internet, to ensure diversity.

All images were consolidated and managed on the Roboflow platform, which facilitated
manual labeling. The process involved defining a set of classes and then drawing
bounding boxes around the relevant features in each image. After labeling, a series of
data augmentation techniques—including rotations, flips, blurs, and contrast
adjustments—were applied to increase the dataset's variability. For each dataset
version, a stratified 80:10:10 split was used to create the training, validation, and test
sets. The platform allowed for the dataset to be exported directly in the YOLOvVS8 format,
providing a code snippet for easy integration into the training script. The primary
experimental variables in this stage were the choice of source images and the definition
of the classes used for detection. Several distinct datasets were created and tested, with
the results detailed in Table 2.3.

« First Dataset Version (Dataset-V1): The initial experiment aimed to classify leaves
as either infected or healthy. For this, two classes were created: "blight_leaf" and
"h_leaf". The dataset was sourced exclusively from the PlantVillage collection (see
Figure 2.9), consisting of 1000 images of infected leaves and all 152 available images
of healthy leaves. After training, the results were very poor due to catastrophic

overfitting. This failure was primarily caused by the severe class imbalance in the
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dataset; with significantly more infected than healthy samples, the model learned to

default to detecting blight, rendering it incapable of accurate differentiation.

(a) (b)
Figure 2.9: Example images from the PlantVillage dataset showing (a) healthy potato
leaves and (b) leaves infected with late blight, both on uniform backgrounds.

Second Dataset Version (Dataset-V2): To address the issues from the first version,
the approach was fundamentally changed. Instead of classifying healthy versus
infected leaves, this version focused purely on detection. A new single-class dataset
was created using 1000 images of blight-infected leaves from PlantVillage, with the
class labeled "blight-leaf'. While this represented a step forward, as the model could
now identify infections, it introduced a new, significant problem: the model began to
misclassify soil as blight. This was because the PlantVillage dataset consists of
images with clean, uniform backgrounds, and the model had not learned to

distinguish blight from the complex textures found in a real-world soil environment.
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Third Dataset Version (Dataset-V3): To solve the soil misclassification issue, a
hybrid dataset was created. The number of PlantVillage images was reduced, and
more real-world images from the Plant-Doc dataset (see Figure 2.10) were added to
expose the model to natural environments. The labeling strategy was also refined to
be more granular, using three classes: "blight" for the specific infected area, "leaf" for
the entire leaf, and "dead leaf" to account for the senescent tissue frequently
observed during labeling. Although this was a time-consuming manual annotation
process, the goal was to teach the model more precise distinctions. However, the
training results revealed a critical flaw in this approach: the model learned to
misclassify soil as "dead_leaf", while also missing a significant number of true blight

infections.

Figure 2.10: Example images from the Plant-Doc dataset showing late blight
symptoms under various real-world field conditions.

Intermediate Two-Class Versions (Dataset-V4, V5, V6): Based on the previous
results, the strategy shifted to a two-class system ("blight", "leaf") to improve precision
by first identifying the leaf region and then detecting blight only within that region.
Several versions of this approach were tested. Dataset-V4 applied this strategy to the
PlantVillage-only image set. Dataset-V5 and its improved version, Dataset-V6
(composed of 91 Plant-Doc images and a balanced mix of 152 healthy and 136
blighted PlantVillage images), used a hybrid approach. However, all these versions
exhibited significant flaws: the model tended to incorrectly label the entire image as

"leaf", a failure likely caused by overfitting due to the limited dataset size. More
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critically, the misclassification of soil as "blight" persisted, indicating the model still

struggled with domain shift and could not generalize to real-world backgrounds.

o« Seventh Dataset Version (Dataset-V7): In parallel, further experiments were
conducted to refine the single-class approach. Dataset-V7 was a single-class ("blight-
leaf") hybrid dataset, combining a reduced number of PlantVillage images with real-
world Plant-Doc images. While an improvement, it still struggled to detect small, early-

stage infections.

The persistence of issues across so many dataset versions suggested that the dataset
composition was not the only factor limiting performance. It became clear that to isolate
the problem and find an optimal solution, it was also necessary to systematically evaluate

the model's training parameters.

2.3.2 Model Training

a. Experimental Trials and Observations:

All model training and evaluation experiments were conducted within the Google
Colaboratory environment (Colab) to leverage its free temporary access to powerful
NVIDIA Tesla T4 GPUs. The training script was built primarily around the ultralytics
library, which provides pre-trained YOLO models and a streamlined training pipeline, and

the roboflow library for direct dataset downloading.

The training process was initiated using the ultralytics Command Line Interface (CLI),
which allows for efficient model training with a single command. The experimental
methodology focused on comparing the performance of two lightweight YOLOv8 model
sizes, YOLOv8n (nano) and YOLOV8s (small), as these are better suited for deployment
on resource-constrained hardware. The primary hyperparameter adjusted between

experiments was the number of training epochs.

« First Training Attempt: The initial training run utilized the YOLOv8s model with its

default configuration on Dataset-V1. As shown in Table 2.3 (ID 1), training on this
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highly imbalanced dataset resulted in catastrophic overfitting. The model learned to
classify nearly every leaf as blight, rendering it completely ineffective for reliable
detection and yielding poor results. This underscored the critical need for a more

balanced and contextually diverse dataset for subsequent versions.

Systematic Parameter Tuning: After numerous experiments with various datasets
using the YOLOv8s model and a high epoch count (100) still yielded suboptimal
results, as detailed in Table 2.3, a new research insight emerged. It was hypothesized
that the high number of epochs might be contributing to overfitting, especially for the
more focused two-class detection task. Furthermore, the impact of model size had
not been systematically evaluated. Therefore, a second phase of more focused
experiments was designed to isolate the optimal parameters. For this phase, the
epoch count was significantly reduced to 25, and both the YOLOv8s and YOLOv8n
models were trained on the most promising dataset candidates (V2, V3, V6, and V7).
The goal of this comparative analysis was to determine the best combination of
dataset structure, model size, and training duration for the specific task of real-world

blight detection.

Analysis of Comparative Training Results (IDs 8-15): The second phase of
experiments, detailed in Table 2.3 (IDs 8-15), compared the YOLOv8s and
YOLOv8n models across the most promising dataset versions (V2, V3, V6, and V7)
with a reduced training duration of 25 epochs. This analysis revealed critical trade-
offs between model size, dataset structure, and real-world performance. The results
from datasets V2 (IDs 14, 15) and V3 (IDs 12, 13) were consistently poor for both

model sizes. Despite achieving high mAP scores in some cases (e.g., 0.934 for
YOLOv8n on V2), the models failed validation on real images, persistently
misclassifying soil as blight. This demonstrated that a high metric score is
meaningless if the underlying dataset lacks real-world diversity. The single-class
hybrid dataset, V7, showed some promise. The YOLOv8s model (ID 8) proved
capable of detecting small blight infections, but at the cost of missing some instances

when soil was present. The YOLOv8n version (ID 9) had good general accuracy but
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missed a significant amount of blight and still incorrectly detected soil. The most
successful outcomes were achieved with the two-class hybrid dataset, V6. The
YOLOv8s model (ID 10) achieved a high mAP@0.5 of 0.893 but failed to detect
smaller blight spots. In direct comparison, the YOLOv8n model (ID 11), while having
a slightly lower mAP@0.5 of 0.874, provided qualitatively better results. It
demonstrated good overall detection and accuracy on real images, successfully
distinguishing leaves from the background and detecting a majority of blight infections
without the critical flaw of misidentifying soil. While neither model was perfect at
detecting the smallest lesions, the superior generalization and reliability of the
YOLOv8n model in Experiment 11 made it the clear choice for the final deployed

system (see Figure 2.11).

b. Explanation of Evaluation Metrics:
To interpret the above results accurately, the following definitions and formulas apply:

mAP@0.5 (mean Average Precision at loU=0.5) measures the average precision across
all classes using a threshold of 0.5 for the Intersection over Union (loU). A detection is
considered correct if the loU between the predicted and ground-truth bounding boxes is

at least 0.5. It is calculated as:

M=

1
mAP =+ » AP,

i=1
where N is the number of classes, and APi is the average precision for class i.
Precision reflects the accuracy of positive predictions:

TP

p , . —
recision —TP T FP
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where:

« TP (True Positives): Instances correctly identified as positive (e.g., model
predicted blight, and it was indeed blight).

« FP (False Positives): Instances incorrectly identified as positive (e.g., model
predicted blight, but it was not blight).

Recall measures the ability to find all relevant instances:

TP

Recall = TP+—FN

where:

« FN (False Negatives): Positive instances that the model failed to detect (e.g.,
there was blight, but the model did not detect it).

The results indicate that the model was highly effective at detecting both blight-infected
and healthy leaves. Notably, the blight class achieved a high precision (0.894), indicating
very few false detections, while the leaf class showed excellent recall (0.895), meaning

most relevant instances were correctly identified.
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Figure 2.11: Qualitative comparison of detection results. (a) The model from ID 10 fails
to detect smaller lesions. (b) The final model from ID 11 shows accurate and reliable
detection.
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Table 2.3: Comprehensive Results of Iterative Experiments Comparing Dataset
Configurations, YOLOv8 Model Variants, and Training Parameters

Dataset Dataset Total Class YOLOo mAP  mAP@ . test on real
) s | Label Model Epochs Precision Recall )
version ource mage abels Type @0.5 0.5:0.95 images
152 from
plantvillage
without 2 classes: it detects
V1 blight 1152  blight_leaf, yolov8s 100 0.678 0.546 1.000 0.356 everything as
1000 from h_leaf blight leaf
plantvillage
with blight
the detection is
1000 from 1 class: the act::i(:ac is
V2 plantvillage | 1000 yolov8s 50 0.684 0.342 0.772 0.582 y
. . . not bad
with blight blight-leaf ]
it misses a lot
it detects soil as
blight
the detection is
bad
llfien 3 classes: miss some leaf
plant-doc .
. miss a lot of
V3 30 from 45 blighte, yolov8s 100 0.881 0.629 0.948 0.816 blight
plantvillage dead-leaf, g :
with blight leaf detect soil as
blight and dead
leaf
it detects the hole
V4 plantvillage = 1000 yolov8s 100 0.891 0.761 0.836 0.896 y
with blight blight, leaf bad
9 ’ it detects soil as
blight
225 from it detects the hole
plantvillage 2l image as leaf
. classes: )
h h
V5 "‘Qtig‘:t‘t 325 yolovBs 100 0875 0657 0860 0871 ° ac;:(;acy s
blight, leaf
100 from g it detects soil as
plantvillage blight
with blight
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91 from
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152 from
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without
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136 from

plantvillage
with blight

91 from
plant-doc
152 from

plantvillage
without
blight

136 from

plantvillage
with blight

104 from
plant-doc

100 from
plantvillage
with blight

104 from
plant-doc

100 from
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with blight

91 from
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152 from
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without
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136 from
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25
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0.35
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13
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V2
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blight
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2.3.3 Conclusions from Experimental Analysis for Final Model

Training

The series of experiments yielded several key insights that will directly inform the
methodology for training the final vision system model. The analysis concluded that
achieving optimal performance requires enhancements in both the dataset and the

training parameters.

The primary conclusion regarding the dataset is that a larger and more diverse set of
images is necessary. To improve precision and reduce the persistent issue of false
positives where the model misidentifies soil, the final training dataset must be enhanced
with a significant number of negative samples. This includes images of healthy plants in
field conditions, bare soil, and random images of other common field elements to teach
the model what to ignore. This will compel the model to learn more discriminative features

specific only to late blight.

Regarding the training configuration, the comparative analysis demonstrated that the
YOLOv8n model is the most suitable choice for this specific task. Its smaller capacity
proved to be an advantage, making it less prone to overfitting on a focused, two-class
problem compared to the larger YOLOv8s model. Finally, the experiments clearly
indicated that a lower number of training epochs is more effective; setting the epoch
number to 25 provided the best balance between performance and training efficiency,
avoiding the diminishing returns of longer training runs. These conclusions form the basis

for the final model training protocol.
2.3.4 Final Model Training and Evaluation Results

Based on the conclusions drawn from the iterative experimental phase, a final, optimized
dataset was constructed and used to train the selected YOLOv8n model. This section
details the configuration of the final dataset, the specific training parameters used, and

the resulting performance metrics.
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a. Final Dataset Configuration

The final dataset was strategically compiled to maximize diversity and real-world
applicability, directly addressing the critical issues of domain shift and class imbalance
identified in earlier versions. A pivotal decision was to create a balanced combination of
image sources. This included exactly 410 real-world images from the Plant-Doc dataset,
which were essential for exposing the model to natural environmental variability.
Because the Plant-Doc images often contain multiple leaves, and for better balance, this
was complemented by a set of 1000 high-quality, realistic images with blight from the
PlantVillage collection. To further ensure enough healthy leaf examples for detection, we
also added 200 images without infection from PlantVillage, ensuring the model had clear,

classifiable examples of both infected and healthy tissue.

To further enhance the dataset's diversity, 80 images from different neighboring areas
were provided by INPV (Institut National de la Protection des Végétaux) during a field
visit, as exemplified in (Figure 2.12). Additionally, 10 self-captured images of potato
plants grown at home were included, such as those shown in (Figure 2.13). Crucially, all
these images were initially labeled using the best model from previous tests to identify
and correct any labeling issues. We also employed "hard negative mining" by using the
model to detect and save images from environments without any leaves or blight. From
these, 500 images where the model made a detection but no real object was present
were collected and added as negative images to the dataset, as illustrated in (Figure
2.14). This process was a key step in teaching the model what to ignore, thus reducing
the false positive detections that plagued earlier experiments. This comprehensive
approach resulted in a base dataset of 2200 images across two final classes: "blight" and
"leaf". The distribution of these two classes within the dataset was carefully managed to
be very close, aiming for balanced representation, as further detailed in (Figure 2.15).

The dataset was manually partitioned, to ensure the best training, into a 96%/3%/1%
split, resulting in 2108 images for the training set, 69 for the validation set, and 23 for the

test set. To further enhance robustness and simulate real-world conditions, a
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comprehensive set of augmentations was applied, effectively tripling the dataset size to

6378 images.

Figure 2.13: Sample images of potato plants grown at home
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Figure 2.14: Sample of negative images used for hard negative mining

COLOR CLASS NAME COUNT 3
blight g 307
] leaf 8 864

Figure 2.15: Class distribution in the dataset

b. Training Setup

The final training configuration was informed by the experimental analysis. We selected
the lightweight YOLOv8n model for its superior real-world generalization and lower risk
of overfitting. Based on previous results, the training was set for an optimal duration of
25 epochs, and an input image size of 800x800 pixels was used to improve the detection
of small, early-stage lesions.
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c. Evaluation Results

The final trained model demonstrated strong performance across all key metrics during
both the training and validation phases. The model architecture consists of 168 layers
and approximately 3 million parameters. A detailed breakdown of the model's
performance is illustrated by the confusion matrix (Figure 2.16) and a series of
performance evaluation curves (Figure 2.17).

Confusion Matrix

300

= 250

200

leaf

104 150

Predicted

—100

44 17 -50

background

blight leaf
True

Figure 2.16: Confusion matrix for the final YOLOv8n model.

background
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Training Phase Results: The model achieved excellent results on the training set,

indicating successful learning.
e OverallmMAP@0.5: 0.895
o Blight Class mAP@0.5: 0.862 (with a precision of 0.895 and recall of 0.716)
o Leaf Class mAP@0.5: 0.928 (with a precision of 0.820 and recall of 0.895)

Validation Phase Results: Critically, the model's high performance transferred

effectively to the unseen validation data, demonstrating good generalization.
e OverallmMAP@0.5: 0.895
o Blight Class mAP@0.5: 0.863 (with a precision of 0.894 and recall of 0.721)

o Leaf Class mAP@0.5: 0.927 (with a precision of 0.813 and recall of 0.895)

Precision
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Figure 2.17: Performance evaluation curves for the final model: (a) Precision-Recall,
(b) F1-Confidence, (c) Precision-Confidence, and (d) Recall-Confidence.
Conclusion: In conclusion, the evaluation results confirm the success of the final model
configuration. The consistent mAP of 0.895 across both training and validation sets
indicates that the model has generalized well and is not overfit. The high precision and
recall for both "blight" and "leaf" classes demonstrate its reliability in identifying the
targeted features. Combined with the rapid inference speed, these results validate that
the chosen YOLOv8n model, trained on the final hybrid dataset, is a robust and efficient

solution ready for deployment on the robotic system.
2.3.5 Deployment in ROS:

The trained YOLOV8 model, saved as a .pt file, is deployed into the robotic system using
a dedicated ROS 2 node named “blight_detector”. This node is responsible for real-time
visual analysis of the environment, and its operational logic is illustrated in the flowchart
below (Figure 2.18). Upon initialization, it loads the pre-trained best.pt model weights
using the ultralytics library. The core functionality is driven by a timer that periodically
triggers a detection cycle. During each cycle, the node captures a frame from a

connected webcam. This image is then processed by the YOLO model, which performs
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inference to identify objects within the frame, specifically looking for "blight" and "leaf"

classes with a confidence threshold of 0.5.

If both classes are detected in the same frame, the node concludes that a blight-infected
leaf is present. It then publishes the string "blight" to the “/blight_detection” ROS topic to
alert the decision-making strategy. Simultaneously, to provide visual confirmation, the
raw image frame is encoded into a base64 string and published to a separate
“/blight_image” topic. The node also includes a control mechanism, subscribing to a
“/blight_detector/control” topic, which allows the detection process to be paused or

resumed via simple string commands, enabling efficient resource management.

64



Initialize Node & Publishers

'

Load YOLO Model

Model Load OK?

Start Timer - 0.1s

No

@ No ES
F—‘ Paused?

Read Camera Frame

No

Yes

Yes

¥

Run YOLO Detection Already Published?

Blight + Leaf Detected?

No

\ 4

Publish Blight Detection

No '
b

Reset Published Flag

Encode & Publish Image

Set Published Flag

Figure 2.18: Operational Flowchart of the blight_detector Node.
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2.4 Weather-Based Prediction System

2.4.1 Data Collection

For this project, meteorological data is sourced through two primary weather forecasting
APls: OpenWeatherMap and Open-Meteo. The initial choice, OpenWeatherMap, is a
globally utilized platform offering real-time and forecasted weather data. It aggregates
information from diverse sources, including weather stations and radar networks, making
it a common choice for agricultural applications. However, a comparative evaluation
revealed that while its temperature forecasts are relatively accurate, humidity data can

exhibit higher variability, which is a significant concern for blight prediction [84].

Due to these limitations, and to improve forecast reliability, the open-source Open-Meteo
APl was also integrated. Open-Meteo leverages high-resolution meteorological data from
reputable sources such as the European Centre for Medium-Range Weather Forecasts
(ECMWEF), Deutscher Wetterdienst (DWD), and NOAA'’s Global Forecast System (GFS)
[85, 86]. Crucially, preliminary tests indicated that Open-Meteo's humidity forecasts
showed a 3% improvement in accuracy over OpenWeatherMap [87]. By integrating both
APls, the system can cross-reference data and leverage the strengths of each, allowing
for a more robust and accurate assessment of environmental conditions and disease

risk.
2.4.2 Prediction Algorithm

The core of the system is a Weather-Based Prediction and Spraying Advisory
Algorithm, implemented as a ROS 2 node named “weather_reporter”. The operational
logic of this node is visually detailed in the flowchart below (see Figure 2.19). This node
continuously analyzes meteorological data for the user's specific field location, running
on a recurring timer (every 10 minutes). The process begins by acquiring real-time
current weather data (air temperature, wind speed) and a detailed 48-hour hourly

forecast (temperature, relative humidity, precipitation, wind speed). This chronological
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data sequence is then evaluated against two rule-based environmental models. The
Blight Favorability Model identifies high-risk periods when the air temperature is
between 10°C and 25°C and relative humidity exceeds 90%. In parallel, the Spraying
Suitability Model determines optimal application windows, defined as times when the
temperature is between 0°C and 45°C, there is zero precipitation, and wind speed is
below 10 m/s. The algorithm systematically iterates through the upcoming 24-hour
forecast to find the earliest "Blight-Suitable Time" and the earliest "Spray-Suitable Time."
The final output is a structured JSON message containing an actionable forecast, which
is published to the “/weather_status” ROS 2 topic, providing the current weather status
and a prediction for the next high-risk blight period alongside the next optimal window for

preemptive spraying.
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Figure 2.19: Flowchart of the Weather-Based Prediction and Spraying Advisory
Algorithm.
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2.4.3 Integration with the Decision System

The weather prediction algorithm is encapsulated within a dedicated ROS 2 node named
“‘weather_reporter”. This node functions as a standalone module that integrates the
prediction logic into the system, as illustrated in the data flow diagram in Figure 2.20. The
node does not rely on external topic subscriptions for its primary operation. Instead, its
execution is triggered by an internal, periodic timer set to a 600-second (10-minute)
interval. At each interval, the node autonomously executes the full data collection and
prediction process. The primary output of the “weather_reporter” node is a ROS 2 topic
named “/weather_status”. On this topic, it publishes a “std_msgs/String” message
containing the analysis results formatted as a JSON object. This JSON string provides a
comprehensive summary, including current weather conditions, the predicted time for the
next blight-favorable conditions (next_blight_suitable_time), and the next optimal window
for spraying (next_spray_suitable time). This published data is then consumed by the
system's primary decision-making node, which subscribes to the “/weather_status” topic.
This node is responsible for interpreting the weather analysis and making high-level
strategic decisions, such as determining the optimal time to dispatch the robot for a

spraying mission.

weather_reporter node

OpenWeatherMap API ,_.\ ROS Topic: /weather_status

» current_weather
« next_blight_suitable_time
= next_spray_suitable_time

Open-Meteo AP e - forecast_24h

predection algorithm

Figure 2.20: Data Flow Diagram of the weather_reporter Node.
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2.5 Decision-making Strategy and ROS-Based
Communication

2.5.1 Node Design and Topics

The system employs a decoupled, publisher-subscriber design where nodes
communicate asynchronously through specialized ROS2 topics, creating a resilient and
scalable architecture. The flow of information, as illustrated in the system architecture
diagram (Figure 2.21), begins with the weather nodes. The "weather_reporter" node
publishes comprehensive environmental data and Blight Favorability prediction and
Spraying Suitability time to the "/weather_status" topic. The "blight_detector" node, which
can be paused and resumed independently via a "/blight_detector/control" topic to save

resources, sends out alerts on the "/blight_detection" topic upon identifying an infection.

The central "spray_scheduler" node subscribes to both "/weather_status" and
"/blight_detection" to gather the necessary data for its decision-making logic. Once it
determines a spray is necessary, it publishes the designated time on the
"Ispray_schedule" topic. The "spray_decider" node, which orchestrates the physical

spraying, is a primary subscriber to this "/spray_schedule" topic.

A critical feedback loop is established through the "/spray_log" topic. When the
"spray_decider" initiates a spray, it publishes the start timestamp to "/spray log". The
"spray_scheduler" subscribes to this log, allowing it to confirm that a spray has been
executed and prevent scheduling redundant operations. Additional topics facilitate
manual control and user interaction. The "/spraying_mode" topic allows switching
between manual and automatic operation, the "/spray_cancel" topic allows a scheduled
mission to be aborted, and the "/spray_command" topic can be used to trigger an
immediate spray. Finally, the "/spray_schedule_notification" topic is used by both the
scheduler and the decider to send human-readable status updates to a user interface.
This separation of concerns ensures that each node can operate independently, reacting

only to the data relevant to its specific task.
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Figure 2.21: System Architecture and Topic Communication Diagram.

2.5.2 Decision-making Strategy logic

The decision-making process, visually outlined in the flowchart in (Figure 2.22), is a
coordinated sequence across the "spray scheduler" and "spray_ decider" nodes,

designed to be both proactive and reactive.

1. Trigger Identification: The process begins in the "spray_scheduler" node, which

listens for two primary triggers:

o Reactive Trigger: A message on the "/blight_detection" topic indicates a

confirmed, active blight infection. This is treated as a high-priority event.

o Proactive Trigger: A message on the "/weather_status" topic containing a
"next_blight_suitable_time" indicates that conditions will soon be favorable for a

blight outbreak. This allows for preventative action.

2. Constraint Validation: Once a trigger is identified, the "spray scheduler

validates a set of constraints before proposing a mission. It first checks its own
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state to ensure a spray mission is not already scheduled. Then, it checks the
"/weather_status" data for the "next_spray_suitable time" to ensure the mission
is effective and safe, specifically avoiding scheduling a mission in the current hour
to provide lead time. Crucially, it also consults its internal state, which is updated
by the "/spray_log", to ensure a spray has not already been performed within the
last 7 days. The node also includes a self-correcting timer that automatically

cancels proposed schedules if they expire before being executed.

3. Mission Proposal: If both a trigger and all constraints are satisfied, the
"spray_scheduler" publishes the optimal spray time to the "/spray_schedule" topic.

This acts as a formal mission proposal for the rest of the system.

4. Action and Execution: The "spray_decider" node receives the mission proposal
from "/spray_schedule". Its behavior then depends on its current operational

mode:

o If in "auto™ mode, it automatically accepts the mission and sets a timer to

execute the spray at the scheduled time.

o Ifin "manual™ mode, it notifies the user (via "/spray_schedule_noatification") and
awaits an "accept" or "decline" message on the "/spray_accept" topic before

proceeding.

5. Closing the Loop: Once a spray mission is executed (either from a schedule or
an immediate command), the "spray_decider" begins spraying for a fixed duration
of 60 seconds. At the start of this period, it publishes a timestamp to "/spray_log".
This message is received by the "spray_scheduler", which updates its
"last_spray_time" state, successfully closing the decision loop and preventing

redundant actions.
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Figure 2.22: Flowchart of the Decision-Making Logic.
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Chapter 3 System Integration

3.1 Overview of System Integration

This chapter addresses the critical phase of System Integration, where the system's
theoretical and algorithmic foundations are translated into a functional, real-world
prototype. The high-level architecture of this integrated system, illustrated in (Figure 3.1),
involves integrating the Al-driven software, which handles perception and decision-
making, with a custom-built physical robotic body platform designed for mobility and
durability in agricultural environments. The core hardware components include the
mobile robot chassis, a precision spraying mechanism for targeted treatment, and a web-
based user interface that allows the farmer to command, monitor, and manage the entire
system remotely. The Robot Operating System (ROS) serves as the central framework,
providing the necessary communication and synchronization between all software
modules and hardware components to create a cohesive, end-to-end crop management

solution.

Control System

software Robotic Platform (hardware)

Command & Monitoring
Mobile Robot Chassis

Web Interface Ul —| Spiay Command |

Precision Spray System

Figure 3.1: High-level system architecture, illustrating the interaction between the
control system, the physical robotic platform, and the web interface.
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3.2 Robot Mechanism Design
3.2.1 Field and Plant Analysis

Understanding the physical characteristics of potato plants is crucial for designing
effective robotic systems, particularly for detecting fungal infections and applying
fungicides precisely. This study focuses on the Spunta potato variety, which dominates
cultivation in Algeria, accounting for approximately 40% of the country's potato
production (5). Therefore, the robot's design and operational parameters are tailored

specifically to this variety.
a. Study of potato plant dimensions and spacing

Potato plant dimensions exhibit considerable variation influenced by environmental
factors, cultivation techniques, and genetic characteristics. Under controlled aeroponic
conditions with optimized nutrients and environmental parameters, Spunta and other
cultivars achieve heights of 150-180 cm, averaging approximately 93 cm at 63 days after
transplanting (DAT) [88—90]. In open-field environments, Spunta typically attains 60—-100
cm, though exceptional cases under ideal irrigation and fertility reach 120-130 cm in
varieties like Belete and Gudanie [88—90]. Within Algerian agricultural settings, Spunta
demonstrates vigorous growth with maximum heights of 70100 cm (see figure 3.2.a),
contingent upon seasonal conditions and field management practices [66]. Regarding
lateral development, Spunta exhibits canopy widths of 60—75 cm. This growth pattern
correlates directly with standard Algerian row spacing configurations of approximately 80
cm between rows and 20—-30 cm within rows (see figure 3.2.b), facilitating near-complete
canopy coverage under high-fertility irrigation [66, 91]. Stem structural properties include
robustness, with seedling stems measuring 7-12 cm featuring 5—-8 mature leaves, while
main stems display diameters of approximately 6.3 mm under experimental conditions
(see figure 3.2.a), supporting upright growth and canopy expansion [88, 92]. Leaf
morphology parameters are similarly significant, with the fourth leaf of Spunta plants

averaging 18.3 cm in length and 14.1 cm in width during controlled studies (see figure
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3.2.a), establishing critical baselines for precision agriculture applications [88, 92].

Canopy Width: 60-75 cm

7 25cm Within Ro\ws
B
- Q90O O® .

é‘ar_l_opy Width: 75_,;37"1:1

Height: 70-100 cm

Stem Dia: 0.63 cm

e e e
] 00000
(a) (b)
Figure 3.2: Diagram of potato plant morphological dimensions (a) and its standard field
planting geometry (b)

b. Field Structure and Navigation Constraints

The adopted row spacing of 80 cm and within-row spacing of 25 cm, combined with
Spunta’s typical canopy width of 75 cm, creates a tightly structured field environment.
This configuration results in minimal inter-row clearance (effectively ~5 cm per side) and
dense intra-row plant placement, necessitating precise robot control to navigate between
rows without damaging adjacent canopies. However, the moderate maximum plant
height of 90 cm facilitates over-canopy operation, enhancing the robot’s field of vision

and accessibility for both disease detection and targeted spraying.

Critical operational parameters for the robotic platform were established through rigorous
analysis of Spunta potato -cultivation practices in Algeria. The foundational

measurements include:
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¢ Row spacing: Standardized at 80 cm based on prevalent field configurations.

e Canopy width: Documented as 75 cm, representing typical lateral spread.

e Within-row spacing: Defined as 25 cm, reflecting optimal planting density.

e Maximum plant height: Set at 90 cm, accounting for growth variability under field
conditions.

e Operational clearance: Derived as 5 cm per side from the difference between row

spacing (80 cm) and canopy width (75 cm).

This constrained spatial environment necessitates an adaptive width capability in the
robotic design. This core functional requirement ensures safe traversal capabilities within
inter-row corridors while accommodating natural biological variability in canopy

development.

3.2.2 Robot Mechanical Design

The robotic system prioritizes three critical design objectives to address field operational

challenges:

e Adaptability: Essential for accommodating varied field geometries across Algerian
agricultural landscapes, where spatial layouts exhibit substantial variation between
plots.

e Stability: Must be maintained throughout navigation to ensure consistent platform
orientation, enabling accurate imaging and targeted spray deployment.

e Accessibility: Requires comprehensive coverage of all plant structures, —
particularly lower foliage where late blight infections typically initiate —to support

effective disease intervention.

These goals collectively enable reliable performance in unstructured field environments.
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3.2.3 Robot Structure Overview

To address the aforementioned constraints, several versions have been developed.
Each version aimed to systematically resolve the shortcomings of the previous design,

focusing on enhancing stability, mobility, and overall robustness for agricultural fieldwork.
a. Version V1.0:

The first design version introduced a table-like structure serving as the robot’s main body
(see Figure 3.3). Four horizontal beams extend outward from the central platform; each
connected via pivot joints to both the central platform and a vertical pillar. At the bottom
end of each pillar is a single fixed wheel, enabling movement. Notably, the entire leg
assembly relies on the rotation of the vertical pillars to change direction, eliminating the
need for a traditional steering mechanism. This configuration aimed to give the robot
width adaptability, ideal for navigating between rows of trees or crops with varying
spacing. The symmetrical layout allows the robot to straddle over vegetation. However,
deeper inspection of the model reveals structural and functional issues. The long
horizontal arms are unsupported and prone to flexing under load, especially near the
pivot joints. Additionally, the concentration of forces on the central plate and minimal
bracing reduce overall stability. The reliance on pillar rotation for steering increases
mechanical complexity and power consumption. These design weaknesses made the
system fragile, inefficient, and unsuitable for uneven terrain or sustained field use,

leading to the development of an improved version.
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Figure 3.3: Robot Structure V1.0

b. Version V2.0:

In this second version, significant improvements were introduced to address the
structural weaknesses of V1.0 (see Figure 3.4). The robot’s legs are now inclined
outward, rather than mounted vertically. This angled design enhances overall mechanical
strength and allows the robot to better distribute its weight, improving both stability and

durability during motion.

The main platform has been widened, reducing the center of a gravity and increasing
ground clearance between the wheels. This makes the structure more stable on uneven

surfaces and less likely to tip during operation.

A major upgrade was made in the steering and mobility mechanism: the bulky vertical

pillars were replaced with compact, independent wheel mounts, each capable of rotation.
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These small wheel holders offer higher control precision, especially during tight turns or
when navigating irregular paths between crops. The wheels are a caster type, which
allows for omni-directional movement. This change also reduces mechanical complexity,

weight, and energy consumption compared to the previous pillar-based steering system.

Figure 3.4: Robot Structure V2.0

c. Version V2.1:

This version focuses on compactness, balance, and terrain adaptability (see Figure 3.5).
The most visible structural change is the inward angling of the legs, which significantly
reduces the overall footprint of the robot. This new geometry not only shortens the base
length but also centers the mass beneath the main platform, enhancing stability,

especially when operating on uneven ground.

To support better maneuverability in agricultural environments, larger and wider wheels

were introduced. These wheels are more suited for soft soil, offering better grip, smoother
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rolling, and reduced chances of sinking or slipping. Their size also increases ground
clearance slightly, giving the robot a better ability to pass over small obstacles like roots

or rocks.

The leg configuration now adopts a more vertical posture with slight inward inclination,
which reduces torque on the chassis and contributes to a more compact, lightweight

design.

Internally, the connections between the legs and the chassis have been simplified,
removing redundant supports and making the assembly easier to manufacture and
maintain. This version is practical for today's work, and its simple design makes it easy

to upgrade with better sensors or wheels in the future.

Figure 3.5: Robot Structure V2.1
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3.2.4 Adjustable Wheelbase and Structural Layout

The robot features a dynamically adjustable wheelbase that allows it to adapt to varying
crop row widths, enhancing its versatility across diverse field geometries. The structural
frame is constructed from lightweight aluminum, offering a balance of strength, durability,
and ease of manufacturing. The platform is mounted on four wheeled legs connected
through a scissor-like mechanism, forming a stable elevated chassis. A single central
motor drives a gearbox with one perpendicular input and two lateral outputs; each
connected to a pair of legs on the left and right sides. These outputs actuate lead screw—
nut assemblies that drive a sliding mechanism, enabling the legs to extend or retract

symmetrically (see Figure 3.6).

Figure 3.6: Drive mechanism for wheelbase adjustment
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This mechanism effectively translates the linear push/pull motion from the lead screws
into a lever-like action on the legs. This allows for a smooth and coordinated adjustment

of the wheelbase width from 42 cm to 95 cm, without compromising structural integrity

(see Figure 3.7).

(a) (b)

Figure 3.7: Adjustable wheelbase range, showing (a) minimum width and (b) maximum
width.

The height from the ground to the lower surface of the platform is fixed at 112 cm,
ensuring consistent clearance above the crop canopy, while the legs are angled outward

at 110° to enhance lateral stability (see Figure 3.8).
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Figure 3.8: Side profile view showing the robot's height and leg angle.

The distance between the front and rear wheels ranges from 93 cm to 113 cm, depending
on the adjusted width, due to the direct relationship between leg extension and horizontal
spread (see Figure 3.9). This dynamic structural adaptability allows the robot to maintain
optimal alignment over crop rows, ensuring both precise navigation and unobstructed

operation of its sensing and spraying systems.
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Figure 3.9: Front-to-rear wheel distance variation, showing (a) the minimum distance
at maximum width and (b) the maximum distance at minimum width.

3.2.5 Camera Mounting and Vision Coverage

The camera is centrally mounted on the underside of the robot’s main platform, oriented
directly downward (see Figure 3.10). Positioned at a fixed height of 112 cm above the
ground, this placement offers a wide, unobstructed field of view across the crop canopy.
The elevated and centralized configuration is designed to capture high-resolution images

focused on the upper leaf surfaces, which are most indicative of plant health.
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Figure 3.10: Underside view of the robot platform showing the central mounting
position of the camera.

By aligning the camera with the geometric center of the robot’s base, uniform image
coverage is achieved as the robot moves along crop rows. This strategic positioning
ensures consistent data acquisition, minimizes occlusions, and enhances the accuracy
of the vision system. Overall, this setup significantly improves the system’s ability to

detect, localize, and monitor plant health conditions with precision.

3.2.6 Description of the 3D Model in SolidWorks

The complete mechanical structure of the robot was designed as a detailed 3D model in
SolidWorks to ensure precision in manufacturing and assembly. The design focuses on
a modular, symmetrical, and robust frame capable of navigating agricultural
environments while supporting the necessary electronic and mechanical subsystems.
Different views of the model, including an isometric perspective of the final assembly
(Figure 3.11), an exploded view (Figure 3.13), and standard orthographic projections

(Figure 3.12), provide a comprehensive understanding of the robot's construction.
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Figure 3.11: Isometric view of the assembled V2.1 robot model.

d. Structural Assembly:

The robot’s chassis is built around a central platform (BASE1), which acts as the main
structural hub. The symmetrical nature of the design is clearly visible in the top-down
orthographic view (Figure 3.12c), which shows how the leg assemblies are perfectly
mirrored. This flat, rectangular component is designed with specific cutouts and mounting
holes to securely attach the leg assemblies and the wheelbase adjustment mechanism.
The underside of the platform also features a dedicated, centralized mount (CAM in
Figure 3.13) designed to hold the vision system's camera in a fixed, downward-facing
orientation. The four support legs are two-part assemblies (LEG BAS1 and LEG1) that
connect to the underside of the main platform. The side and front profiles (Figure 3.12a
and 3.12b) best illustrate the aggressive outward angle of the legs, which creates a very
stable, trapezoidal footprint crucial for operating on uneven terrain. At the end of each

leg, a simple, durable wheel (WHEEL1) is mounted, allowing for mobility.
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(c)

Figure 3.12: Orthographic views of the robot model: (a) Side view, (b) Front view, and
(c) Top view.
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e. Wheelbase Adjustment Mechanism:

A key feature of the design is the dynamic wheelbase adjustment system, which is clearly
visualized in the 3D model. This mechanism is driven by a central gearbox (gear_box).
The gearbox actuates a sliding lead-screw system. The exploded view (Figure 3.13)
provides a clear look at this system's individual components, showing precisely how the
parts labeled Part8G and Part69 interlock to form the sliding housing for the lead-screw
assembly. This assembly converts the rotational motion from a single motor into a
synchronized linear force, pushing the leg assemblies outward or pulling them inward.
This design allows the robot’s width to be smoothly adjusted to match varying crop row

spacing.

The exploded view of the model (Figure 3.13) highlights the modularity of the design,
showing how each component fits together. This detailed digital blueprint was essential
for verifying component compatibility and for guiding the subsequent manufacturing and

assembly processes.

WHEEL1

Figure 3.13: Exploded view of the robot's 3D model showing the main components.
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3.3 Precision Spraying System

3.3.1 Spraying Geometry and Environmental Assumptions

To design a robust spraying system, the spatial and agronomic parameters of the field
and crop must be defined. The crop of focus is the Spunta potato variety, which typically
grows to a height of 90 cm with an average canopy width of 75 cm. The spraying robot
features two categories of nozzle placements: top-mounted and leg-mounted nozzles,

with their key dimensions shown in the CAD models in (Figure 3.14) and (Figure 3.15).

e« Top nozzles are positioned 35 cm laterally from the robot’s centerline (Figure

3.14b) and are elevated 12 cm above the plant canopy (Figure 3.15a).

e Leg nozzles are located 10 cm away from the crop rows and elevated 29 cm from

the ground (Figure 3.15).

The obijective is to provide uniform coverage of the potato plants, ensuring full foliar and
vertical surface exposure while avoiding blind spots. To that end, the target spray area
includes a 1.5m width at the top of the canopy (80cm per nozzle with overlap of 10cm)
and a 1.5m (80cm per nozzle with overlap of 10cm) lateral spread at ground level, along

with complete coverage of the 90 cm plant height.
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(a) (b)

Figure 3.14: CAD model illustrating the placement of the top-mounted nozzles,
showing (a) the elevation above the plant canopy and (b) the lateral distance from the
robot's centerline.

Figure 3.15: CAD diagram detailing the vertical and horizontal placement of the leg-
mounted nozzles relative to the ground and crop row.
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3.3.2 Nozzle Orientation and Spray Angle Requirements
a. Top Nozzles

For the top nozzles, which are aimed directly downwards, there is no need for inclination.
Each top nozzle must cover a width of 80 cm (40 cm to either side) from an elevation of
12 cm. Using the geometric analysis shown in (Figure 3.16), we can determine the

required spray angle.
« Calculation: Let a be the half-angle of the spray cone.

opposite 40 cm

40
tan(a) = a = arctan (E) ~ 7330

adjacent 12 cm

Required Total Spray Angle = 2 X a =~ 146.6

nozzles

g

spray field

150cm

Figure 3.16: Conceptual diagram of the overlapping spray fields from the top-mounted
nozzles.

b. Leg-Mounted Nozzles
The leg-mounted nozzles must be precisely oriented to cover both the full vertical height

of the plant and the required lateral width on the ground. This requires calculating both a

spray angle and an inclination angle for the vertical and horizontal planes.

« Vertical Orientation (Covering Plant Height): As illustrated in (Figure 3.17a), the
nozzles are positioned at a height of 29 cm and must cover the plant up to its full
height of 90 cm. The nozzle is 10 cm away from the plant row.
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Calculation: Vertical distance to cover upwards = 90 cm — 29 cm = 61 cm

Let b, be the angle to spray downwards and b, be the angle to spray upwards, relative

to the horizontal plane.

downward jisiance

29
b, = arctan( ) = arctan (E) ~ 71.0°

lateraldistance

upwarddistance

61
b, = arctan( ) = arctan (E) ~ 80.7°

lateraldistance
Required Vertical Spray Angle (b) = by + b, = 151.7°
Required Vertical Inclination (Iv) = b, — by = 9.7° (angled upwards)

« Horizontal Orientation (Covering Ground Width): As illustrated in Figure 3.17b,
each leg nozzle must cover a horizontal width of 80 cm from a lateral distance of 10
cm. The spray is asymmetric, covering 27 cm to front and 53 cm to the back
depending on the front-to-rear wheel distance at maximum width that is 90cm (see

section 3.2.4), so

90cm

and we add the overlap
45cm + 10 cm = 55cm

Calculation: Let t; and t, be the angles required to cover the two horizontal sections.

t1 = t (25) 68.2°
= arctan 10) = 8

t2 = t 55 79.7
= arc an(lo) ~ 79.

Required Horizontal Spray Angle (t) = t; + t, =~ 147.9°

Required Horizontal Inclination (Ih) = t, —t; =~ 11.5°
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spray field

spray field
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Figure 3.17: Geometric analysis for determining the (a) inclinations from side view and
(b) spray angles from top view, for the leg-mounted nozzles.

3.3.3 Nozzle Type and Material Selection

Given the robot’s stationary spraying behavior and the need for full area saturation, full
cone nozzles were deemed most appropriate. Full cone nozzles provide uniform
coverage across a circular footprint, making them ideal for pesticide and fungicide
applications on dense canopies. The next consideration is material compatibility. Curzate
M contains mancozeb, a chemical known to corrode metals like brass over time. Studies
have shown that ceramic nozzles offer the highest durability and chemical resistance,

with lifespan ratings of 90 to 130 times longer than brass. Plastic nozzles, although
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variable in performance, can be acceptable for cost-sensitive applications provided they
are made of chemically resistant polymers. As a result, we recommend the use of
ceramic nozzles for durability and chemical safety, while chemical-grade plastic nozzles

may be used when budget constraints demand it [93, 94].
3.3.4 Conclusion and Final Specifications

Based on the geometric analysis and material considerations, the optimal nozzle

configuration for the precision spraying system is as follows:

e Nozzle Type: Full cone nozzles should be used for both top and leg placements

to ensure uniform saturation of the plant canopy.

o Material: Ceramic nozzles are the primary recommendation due to their high
durability and resistance to chemical corrosion from fungicides like Curzate M.
Chemical-grade plastic nozzles are a viable secondary option for budget-

conscious implementations.

o Spray Angle: The calculated required angles are approximately 146.6°, 151.7°,
and 147.9°. The best practical option is to select a single type of nozzle with a
standard cone angle of 150° for all placements. This simplifies procurement while

providing coverage that closely matches all requirements.
e Top Nozzle Inclination: 0° (aimed directly downwards).
e Leg-Mounted Nozzle Inclination:
o Vertical: Angled upwards at approximately 9.7°.
o Horizontal: Angled sideways at approximately 11.5°.

This configuration ensures complete and uniform coverage of the target crop (see Figure
3.18), maximizing the effectiveness of the treatment while adhering to safety and

durability standards.
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Figure 3.18: The complete coverage of the target crop with the spraying system
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3.4 Web user Interface

The user interface serves as the primary point of interaction between the farmer and the
underlying technologies. Developed using HTML, CSS, and JavaScript, the web-based
interface is designed to be lightweight, accessible, and user-friendly across various
devices. It enables the farmer to visualize real-time disease detection results and
weather-based blight risk forecasts without needing to directly manipulate ROS
commands or logic. By centralizing data display and control functions, the interface

enhances decision-making and simplifies the management of plant health in the field.
3.4.1 Objectives

The main objective of the web interface is to provide the farmer with a clear, real-time
view of the plant health and environmental conditions, while also enabling direct control

over the system’s actions.

To achieve this, the interface is designed to display a range of critical information. This
includes the direct output of the YOLO deep learning model, which reports whether
infected areas are present, and a corresponding grid-like image gallery for visual
confirmation of any detected infected leaves. It also provides a 24-hour weather-based
blight risk forecast to notify the farmer of upcoming risks, alongside a real-time display of

current weather data, including temperature, humidity, and wind.

In addition to its display capabilities, the interface provides comprehensive control over
the system's functions. The user can start or stop the system, enable or disable the
camera feed for the detection node, and select the desired spraying mode, choosing
between "automatic" and "manual" operation. Furthermore, the interface allows for
detailed mission control, giving the user the ability to accept or decline spraying
suggestions, cancel a previously scheduled spray, or issue a direct, immediate command

to begin spraying.
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3.4.2 Architecture of the Interface

The web interface was developed to serve as the main communication layer between
the farmer, the designed ROS system (Al-based detection system, weather forecast
services, and robotic spraying unit). The primary communication mechanism enables the
web interface to publish commands to ROS topics that our system subscribes to (typically
command data), while simultaneously subscribing to topics where ROS publishes
information (typically display data). This ensures a smooth bidirectional data flow

between the system and its interface.

This real-time communication is made possible through WebSocket connections
established via rosbridge, which creates a persistent, full-duplex communication channel
between the browser and ROS. A WebSocket is an advanced communication protocol
providing full-duplex communication channels over a single TCP connection, enabling
real-time data exchange between web clients and servers. In our system, JavaScript
code initiates a WebSocket connection to the rosbridge server running on port 9090,

acting as the bridge between ROS topics and the web interface.
3.4.3 Front-end Design and Layout

The frontend layout is structured into several functional sections, each dedicated to a
specific task—for instance, the sidebar handles robot control settings. This modular
design creates a clear, grid-based interface that enhances usability and ensures efficient
access to all system features, resulting in the grid-like view for the web application shown
in (Figure 3.19).
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c ©® 127.00.1:5500/Farmer_contro_panel/farm.htm

Condition warnings :

W No favorable conditions in next 24h

Last spray :

Spray control panel
Mode: manual

Status: Waiting

g Robot suggests spraying at 2025-06-
10T19:00:00

Cancel Accept

SPRAY

Il Notifications

Blight status :
Blight count (last 24h):
Blight detected! :
Blight

Blight

Blight ! : 10/06/25, 18:49

Blight de 1 : 10/06/
Blight

Blight

Blight det

Blight det

Blight detected! :

| Weather in Blida

© Time: 6:51:40 PM
i Date: 6/10/2025
1 Temp: 32.27 °C
& Humidity: 57 %
Be Wind: 2.1 m/s

M Status: not suitable

Detected Blight Images

Figure 3.19: The main dashboard of the web user interface, showing real-time data

and control panels.

a. Sidebar Section

= & @ Finishupdate i

Settings :

Auto Navigation

Auto Spraying

Camera :

The sidebar, shown in (Figure 3.20), contains all robot control parameters in the form of

buttons and toggles. A green glow appears when a parameter is activated and

disappears when it's turned off. These settings are sent to the robot to define its current

permissions and operational behavior. The farmer has the ability to turn the robot's

camera on or off (pausing the blight detector node), start or stop the system, set the

spraying mode to manual or automatic, and control the auto-navigation and main power.
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Figure 3.20: The sidebar settings panel for robot control.

b. Weather Section

This section, shown at the top of the dashboard in (Figure 3.21), streams real-time data
for date, time, temperature, humidity, and wind. The data is specific to a selected city
(Blida), determined by its longitude and latitude coordinates in the “weather_reporter”
node. This provides the user with an immediate, at-a-glance view of the current

environmental conditions.

| Weather in Blida

© Time: 8:01:18 PM
i Date: 6/10/2025
1 Temp: 29.05 °C
& Humidity: 69 %

B¢ Wind: 1.39 m/s

] Status: not suitable

Figure 3.21: The weather section displaying current conditions.
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c. Blight Weather Conditions Warnings Section

As the name suggests, this section shows the soonest meteorological danger so that the
farmer can be aware of favorable blight conditions coming at a specific time within the
next 24 hours. As shown in (Figure 3.22), if a risk is identified, a red warning box appears

with the date and time of the predicted event.

Condition warnings :

Next suntable condions! | 03/06/2025 22:00

Suttable condibons! | 03/06/2025 2200

Figure 3.22: The condition warnings panel displaying a future blight risk.

d. Spray Control Section

This section, shown in (Figure 3.23), displays all information related to spraying. This
includes the current spraying mode (e.g., manual), the spraying status (e.g., waiting),
and notifications for spraying commands, such as suggestions, cancellations, and
acceptances. It also provides the user with the ability to cancel or accept any suggested
or scheduled spraying action, as well as launch an unconditional spray action from a
separate "SPRAY" button.
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Spray control panel

Mode: manual

Status: Waiting...

Robot suggests spraying at 2025-06-
10T19:00:00

Cancel Accept

B Notifications

[6:49:32 PM] Spray suggested at 2025-06-16T10:60:60

Figure 3.23: The spray control panel displaying a spraying suggestion.

e. Spray Logs Section

This section displays recent spraying activity. As shown in (Figure 3.24), it displays the
exact time and date of the last spray committed, providing a clear history for the farmer

to reference.

Last spray :

2025-06-10719:00:00.004778

Figure 3.24: The spray log panel showing the timestamp of the last completed spray.
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f. Blight Section

This section (Figure 3.25) displays data from the YOLO prediction node in ROS, showing
alerts when blight is detected along with the detection time. It includes a counter to track

the number of detections, helping assess disease spread, and a gallery of detected blight

images on leaves for visual verification.

Blight status : Detected Blight Images

Blight count (last 24h):
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,
Blight detected! : 10/06/25,

Blight detected! : 10/06/25,

Figure 3.25: The blight status panel showing detection logs and an image gallery.

3.4.4 Backend Communication and Integration

The web interface is not a standalone application but a tightly integrated component of
the overall system, bridging the gap between the farmer and the intelligent robotic
platform. It communicates with the backend components—particularly the ROS 2
environment through asynchronous and websocket interactions. These connections

allow the interface to both retrieve information and send user commands in real time.
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a. Real-Time WebSocket Bridge with ROS 2

To enable real-time, low-latency communication between the ROS 2 environment and
the browser, a WebSocket bridge is implemented using rosbridge_server, which offers
live streaming of the data published by our system's nodes. In our setup, as shown in
(Figure 3.26), a ros_connection.js JavaScript file instantly requests to connect to the
WebSocket channel as soon as the page loads. The rosbridge_server is launched in the
ROS environment and starts a WebSocket server on port 9090 (Figure 3.27), acting as
the bridge between ROS topics and the web interface.

n:J Yos connectior <

Connected to rosbridge
WebSocket serxrver

o0

start response farm.html:13
» Object

[ROS] Weatherx weatherxr. jis
data and warnings updated.

Figure 3.26: JavaScript connection to WebSocket.

bash: /home/hixy/fyour_ros2_ws/install/setup.bash: No such file or directory

bash: /home/hixy/your_ros2 ws/install/setup.bash: No such file or directory

A[[A :-$ rlaunch rosbridge_server rosbridge_websocket_launch.xml

[INFO] [launch]: All log files can be found below /home/hixy/.ros/log/2025-06-03-23-42-02-281410-hixy-Latitude-7490-22942
[INFO] [launch]: Default logging verbosity is set to INFO

[INFO] [rosbridge_websocket-1]: process started with pid [22943]

[INFO] [rosapi_node-2]: process started with pid [22945]

[rosbridge_websocket-1] [INFO] [1748990522.902469926] [rosbridge_websocket]: Rosbridge WebSocket server started on port 9090

Figure 3.27: Launching the rosbridge server.
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b. Blight Display

For the blight display, a dedicated blight.js JavaScript file is created. As shown in the
data flow diagram in (Figure 3.28), this script holds the responsibility of updating the front-
end with the latest updates from the blight_detector node. It does this by subscribing to
the /blight_detection topic for textual alerts and the /blight_image topic for the visual data

used to populate the image gallery.

BLIGHT SECTION

3
i
g

Figure 3.28: Data flow for the blight display section.

c. Weather Data Retrieval and Integration

As shown in (Figure 3.29), the interface retrieves real-time and forecast weather data
through a weather.js JavaScript file. This script subscribes to the /weather_status topic
and listens for data published by the weather_reporter node. The front-end then uses
this data to populate both the main weather section and the weather warnings section,
providing a 24-hour forecast of potential blight danger.
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Figure 3.29: Data flow for the weather section.
d. Spray Log Display
For the spray log, a spray.js JavaScript file subscribes to the /spray_log topic. It listens

to the data published on this topic to find and display the timestamp of the latest

completed spray action, providing a clear history of interventions.
e. Spray Control

The spray control functionality is a central feature that involves multiple JavaScript files
and ROS topics.

o spray_modes.js: This file handles user selections for the spraying mode
("manual" or "auto") and publishes the choice to the /spraying_mode topic. It also
publishes the user's response to spray suggestions (accept/decline) to the

/spray_accept and /spray_cancel topics.

o spray.js: This file manages the unconditional spray command. When the user
clicks the "SPRAY" button, it publishes a message to the /spray_command topic.
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o spray_notifications.js: This script is responsible for displaying system actions,
such as schedules and suggestions, as well as user responses. It subscribes to

the /spray_schedule_notification topic to receive the necessary data for display.

All these JavaScript modules are connected and managed by the main farm.html file,
creating a cohesive and interactive user experience. The complete architecture,

illustrating the connections between all ROS nodes, web interface files, and topics, is
shown in (Figure 3.30).

spray_sehedule.
natification

SYSTEM LAUNCHER

web interface
launenjs

AN mebsacketserver
l h (locat host 9080}

Flask web
bakend
(backend py)

Figure 3.30: A comprehensive block diagram of the full system architecture, detailing
the interaction between all ROS nodes and the web interface components.
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3.4.5 System Launch Setup

The system is a website that connects to a ROS 2 system consisting of four nodes via a
rosbridge. To run this system, there are two primary methods: a manual setup and a

more user-friendly, automated setup using a Flask backend.

a. Manual Setup

The manual method requires launching each component from the terminal.

1. Initiate the WebSocket Bridge: The connection between ROS and the web
browser is established by running the rosbridge server with the following
command: rlaunch rosbridge_server rosbridge _websocket_launch.xml

2. Open the Web Interface: Open the farm.html file in a web browser. This will
automatically attempt to connect to the ROS system via the WebSocket.

3. Launch ROS Nodes: The four main ROS nodes can be launched all at once using
a ROS launcher or individually. To run a single node, use the command: ros2 run
<pkg_name> <node_name> (e.g., ros2 run weather_reporter weather_node)

If ROS 2 is installed and configured correctly, the system will run effectively with this
method.
b. Automated Setup with Flask Backend

To eliminate the need for manual terminal commands and make the system more user-
friendly, a Flask backend web server was integrated. This allows the user to start the
entire system simply by opening the website and pressing the "Start System" button.
The Flask application is designed to launch the main ROS launcher file but waits for a
command from the web interface. This interaction works as follows:

o The Flask application listens for HTTP POST requests on two specific endpoints:

http://localhost:5000/start and http://localhost:5000/stop.
e A backend.js file in the web interface sends a POST request to the appropriate

endpoint when the user clicks the "Start System" or "Stop System" button.
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« When a request is received on the /start channel, the Flask server executes the
ros_launcher, which starts all four ROS nodes simultaneously.

« When a request is received on the /stop channel, the Flask server uses the psutil
library to find the Process ID (PID) of the main ROS launcher process and all of its
children (the running nodes) and then terminates them all.

To make the system completely seamless, the final step is to configure the rosbridge
WebSocket and the Flask backend to run instantly when the operating system boots.
This allows the system to run silently in the background until the user opens the website
and starts it from the interface.

c. Conclusion

The interface enhances the system's usability by presenting real-time data and controls
in a clear, accessible layout. It allows the user to monitor blight detection, weather
forecasts, and spraying history, while also enabling direct control of the system. By
centralizing information and actions in one place, the interface empowers the user to

make timely, informed decisions and manage crop health more effectively.

109



Chapter 4 Validation and Results

4.1 System Performance Analysis

4.1.1 The System Usability with the User Interface

The overall usability of the system was evaluated by testing the web interface, which
serves as the primary control and monitoring platform for all underlying components.
Through extensive testing and observation, the following key features were verified,

confirming the system's intuitive and effective design:

a. Weather Monitoring and Auto-Update Functionality

o The system successfully fetches real-time weather data at 10-minute intervals, which
is displayed in the main weather panel (Figure 4.1a).

« Favorable conditions for late blight development are accurately detected and
displayed in real time.

o The interface clearly distinguishes between current and forecast weather risks using
color-coded warnings and status indicators. For instance, a green panel indicates no
immediate threat (Figure 4.1b), while a red warning highlights an upcoming period of
high risk (Figure 4.1c).
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| Weather in Blida

© Time: 8:01:18 PM
i Date: 6/10/2025
} Temp: 29.05 °C
& Humidity: 69 %

E# Wind: 1.39 m/s

W Status: not suitable

Condition warnings : Condition warnings :

¥ No favorable conditions in next 24h

(b) (c)
Figure 4.1: The weather monitoring and warning panels of the user interface, with (a)

Real-Time Weather Panel, (b) "Next Suitable Conditions" Warning, (c) "No Favorable
Conditions" Warning.

b. Blight Detection Integration

The blight detection node is triggered through a camera control toggle on the
interface.

Captured images of infected crops are correctly analyzed and uploaded to the gallery
section with proper labeling.

Detections are timestamped and displayed, allowing users to track and review
incidents.

A separate window provides a live camera feed with real-time bounding boxes drawn

around detected blight and leaves, as shown in (Figure 4.2).
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Blight Detection - Camera Feed 2 @ % = @ Finishupdate :

Weather in Blida Settings :

© Time: 3:14:24 AM

i Date: 6/11/2025 Stop System
} Temp: 28.21°C
4 Humidity: 34 %

Be Wind: 1.42 /s

] Status: not suitable Auto Navigation

Detected Blight Images

Auto Spraying

ed! : 11/66/25, 03:14

Figure 4.2: Real-time blight detection feed showing bounding boxes around infected
areas.

c. Spray Control Modes

Automatic Spraying Mode: The system autonomously schedules a spray event
when either favorable conditions for late blight are detected or an infection is
confirmed by the Al detector. The interface then shows the scheduled spray, as seen
in (Figure 4.3b).

Manual Spraying Mode: The user is prompted to confirm or decline any spray
recommendation (Figure 4.3a). If accepted, the system schedules the spray

accordingly.
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Spray control panel Spray control panel

Mode: manual

Status: Waiting

B Notifications B Notifications

(a) (b)
Figure 4.3: Spray control panel showing (a) a user prompt in Manual Mode and (b) an
automatically scheduled spray in Auto Mode.

d. Spraying Status and Scheduling

Scheduled spraying actions are tracked and displayed in the interface. Once a user
accepts a manual suggestion, the interface updates to reflect the officially scheduled
mission (Figure 4.4).

When a spray event reaches its execution time, the system logs the operation and
updates the spray history table.

Users are informed of past spraying activities within a 15-day window for reference.
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B Notifications

[3:23:12 AM] B8 Spray offi
86-11764:00

[3:14:14 A

Figure 4.4: The spray control panel after a user accepts a suggestion in manual mode,
showing the mission is now officially scheduled.

e. System and Node Control

« Camera Control: The camera toggle button activates or deactivates the blight
detection node in real time.

o System Control: The "Start System" and "Stop System" buttons control all nodes.
Clicking "Stop System" safely shuts down all active services, while "Start System"

re-initializes them. The control panel for these actions is shown in Figure 4.5.
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Settings :

Stop System

Auto Navigation :

Auto Spraying :

Figure 4.5: The sidebar control panel for system and node settings.

f. General Observations

« All functional objectives of the web interface have been met.

e« The user experience is responsive, with smooth transitions between system
states.

o The interface provides centralized and accessible control over weather analysis,

disease monitoring, and spray decisions.

4.1.2 YOLO Detection Performance Evaluation
a. Generalization on Unseen Internet Images

After training, the model's generalization capabilities were evaluated using a set of
unseen images collected from the internet, which were not part of the training dataset.
The model demonstrated high effectiveness, accurately detecting nearly all instances of

blight present in these images.
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A key strength observed was its ability to identify challenging cases, including both small
and blurred infections (Figure 4.6). Furthermore, the model proved robust against false
positives by accurately avoiding the detection of soil (Figure 4.7). Critically, it successfully
differentiated late blight from visually similar diseases, such as Botrytis gray mold (Figure
4.8). Overall, these evaluations confirmed the model's high detection accuracy on

diverse, real-world images, even in challenging backgrounds.

UlIgIIL .37
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Figure 4.6: Detection of (a) small and (b) blured blight infections
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Botrytis grey mold Late blight

Figure 4.8: Differentiation of Late Blight from Botrytis gray mold
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b. Real-Time Detection on images in Mobile phone

After the deployment of the model on ROS, real-time detection was tested using a
camera feed with images from a mobile phone. This testing evaluated the rapidity and
accuracy of the model, particularly with low-quality images, yielding very good results.
An example of these real-time detections is shown in (Figure 4.9). Despite this strong
performance, certain limitations were observed. For instance, in some cases, the model
had a tendency to misclassify early blight as late blight, as seen in (Figure 4.10:
Misclassification of Early Blight as Late Blight). This occurred due to the significant visual
similarity between their symptoms. The accuracy remained good, and blight was still

correctly detected even with poor imaging resolution.

Blight Detection - Camera Feed — >

SO0 E= G

{(x=161, y=370) — R:78 :103 2

Figure 4.9: Real-time Detections by the YOLOv8n Model Showing Late Blight and
General Good Detection
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Figure 4.10: Misclassification

c. Field Deployment and On-Site Evaluation

For further real-world validation, the system was put to the test in an agricultural
environment by visiting ITCMI (Institut Technique des Cultures Maraichéres Et
Industrielles). However, as all potato crops had been removed, the system was tested
on a morphologically similar plant species. During this field test, the model successfully
detected healthy leaves (Figure 4.11). Furthermore, a disease very similar to late blight

was encountered on site, and the model successfully detected it as well (Figure 4.12).
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Figure 4.11: Detection of healthy leaves in field conditions

Blight Detection - Camera Fnd Blight Detection - Camera Feed
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Figure 4.12: Detection of a late blight-like disease in the field
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4.2 Limitations and Observations

This section outlines the current limitations identified during the development and testing
of the intelligent decision-support system, along with general observations. It also
proposes avenues for future improvements to enhance the system's robustness,

efficiency, and practical applicability.

4.2.1 Environmental Constraints

o Variability in Field Conditions: The performance of the Al detection model, while
robust, can still be influenced by extreme variations in real-world agricultural
environments, such as inconsistent lighting (e.g., direct sunlight, shadows), diverse
leaf orientations, and the presence of dust or debris that might mimic or obscure
disease symptoms.

e Microclimatic Specificity: While the weather-based prediction system utilizes high-
resolution data, localized microclimates within a large farm might exhibit slight
deviations from broader regional forecasts, potentially affecting the precise timing of

blight predictions for very small areas.

4.2.2 System Bottlenecks

« Computational Intensity for Al Training: The initial training of the deep learning
model, particularly with large and diverse datasets, remains computationally
intensive, requiring significant GPU resources. While inference on edge devices is
optimized, the training phase can be a bottleneck for rapid model iteration.

o Dataset Generalization: Despite efforts to create a hybrid dataset, the model's ability
to generalize perfectly to every conceivable real-world scenario (e.g., highly unusual
blight manifestations, different potato varieties) is an ongoing challenge that requires
continuous data acquisition and model retraining.

« Physical Robot Mobility: The current robotic platform, while adaptable, might face
limitations in extremely rough terrain or highly dense crop fields where physical

obstructions could impede seamless navigation or precise spraying.
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4.3 Future Improvements

4.3.1 Advanced Al Model Refinement:

o Few-shot Learning: Investigate few-shot learning techniques to enable the model to
detect new or rare plant diseases with minimal training data, improving adaptability.

o Enhanced Small Object Detection: Further optimize the YOLOv8n model or explore
other architectures to improve the detection of very small, incipient lesions that are
crucial for even earlier intervention.

o Multi-disease Detection: Expand the model's capabilities to detect and differentiate
multiple potato diseases beyond late blight, offering a more comprehensive plant

health monitoring solution.

4.3.2 Sophisticated Weather Prediction:

o Hyperlocal Weather Stations: Integrate the system with on-site, hyperlocal weather
stations within the farm to gather more precise microclimatic data, leading to even
more accurate and localized blight forecasts.

o Predictive Analytics for Treatment Efficacy: Develop algorithms that not only
predict disease outbreaks but also recommend specific fungicide types or application

rates based on predicted disease severity and environmental conditions.

4.3.3 Robotic Platform Enhancements:

o Autonomous Navigation: Implement more advanced autonomous navigation
capabilities, potentially using Deep Reinforcement Learning, to allow the robot to
learn optimal paths, avoid obstacles, and navigate complex field geometries more
efficiently.

o Dynamic Spraying Mechanism: Explore a dynamic spraying mechanism that can
adjust spray angles and pressure in real-time based on plant density, height, and
precise lesion location, further optimizing chemical application.

o Energy Efficiency: Research and integrate more energy-efficient components and
power management strategies to extend the robot's operational time in the field.
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4.3.4 User Interface Evolution:

Advanced Reporting: Develop more comprehensive reporting features, including
historical trends of disease incidence, treatment effectiveness, and detailed
environmental data analysis.

Mobile Application: Create a dedicated mobile application for the system, providing
farmers with on-the-go access to critical information and control functionalities.

« Scalability and Multi-robot Systems:

Fleet Management: Investigate the potential for managing a fleet of multiple robots
working collaboratively across larger agricultural areas, optimizing coverage and
efficiency.

Data Integration with Farm Management Systems: Explore integration with
existing farm management systems to provide a holistic view of agricultural

operations.
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General Conclusion

In this thesis, we addressed the problem of optimizing plant disease management and
reducing agrochemical usage, particularly for late blight in potato crops, which remain a
significant challenge for farmers in Algeria and globally. Our goal was to develop an
intelligent decision-support system that combines early disease detection with predictive
weather forecasting to enable precise and timely interventions, thereby enhancing

agricultural sustainability.

Through the implementation of a deep learning-based Al model (YOLOv8n) for real-time
disease detection, integration of a weather-based prediction system using meteorological
APls, and the design of a precision spraying robotic platform managed via an intuitive
web interface and successfully demonstrated an integrated system capable of proactive
threat mitigation and automated precision spraying. The developed system empowers
farmers with data-driven insights and remote control over crop health management,
leading to more informed decisions and reduced unnecessary chemical applications. Our
findings demonstrate that a hybrid dataset strategy, combined with optimized lightweight
deep learning models like YOLOv8n and systematic parameter tuning, is crucial for

achieving effective and adaptable performance in real-world agricultural settings.

This research contributes to the field of smart agriculture and agricultural robotics by
proposing a novel integrated decision-support system specifically tailored for late blight
management in potato crops. It improves the precision of disease detection through a
robust Al model capable of operating on edge devices, and enhances intervention timing
by integrating real-time weather forecasting with a recommendation engine. While the
system shows promising results, certain limitations such as the need for extensive
computational resources during initial model training and the ongoing challenge of
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dataset generalization to all real-world agricultural variabilities may be addressed in

future studies.

The proposed approach can be applied in various agricultural settings for targeted plant
disease management, paving the way for significant reductions in agrochemical usage,
increased crop yields, enhanced food security, and a more sustainable farming future.
For future work, the Al model can be further improved to detect symptoms at a very early
stage and adapt to a wider range of environmental conditions, exploring advanced
robotic navigation and control strategies using DRL, and conducting long-term field trials

to validate the system's economic and environmental impact at scale.

Overall, this thesis lays the foundation for a new generation of intelligent and sustainable
agricultural practices, particularly in regions like Algeria where advanced technological

adoption in agriculture is still emerging
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