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 ملخص: 

أمراض   تزال  رئيسياً، لا  زراعياً  البطاطس نشاطاً  تعُدّ زراعة  الجزائر حيث  في  الزراعة عالمياً، وخاصةً  نظراً لأهمية 

للمزارعين، لا   تشُكّل مشكلةً خطيرةً  يسُبب النباتات  أن  المرض بسرعة ويمُكن  ينتشر هذا  المتأخرة.  اللفحة  سيما مرض 

الكيميائي  التقليدية كالرش  الممارسات  إلى  اللجوء  المزارعين  العديد من  التهديد، يواصل  فادحة. في مواجهة هذا  خسائر 

إلى الإفراط في استخدام المواد    الأسبوعي. على الرغم من شيوع هذه الطريقة، إلا أنها غير فعّالة وقد تكون ضارة، إذ تؤدي

 .الكيميائية، وزيادة التكاليف، والإضرار بالبيئة، وتهديد صحة المحاصيل والمزارعين

في هذا العمل، نقترح نظاماً ذكياً لدعم القرار لإدارة أمراض المحاصيل والوقاية منها، وخاصةً مرض اللفحة المتأخرة، في  

لتحديد الأمراض   YOLOv8 النظام نموذج كشف بصري قائم على التعلم العميق قائم علىمحاصيل البطاطس. يدمج هذا  

مبكراً، ويدمجه مع نظام تنبؤ بالطقس في الوقت الفعلي لتوقع الظروف المُواتية لحدوثها. كما يتضمن النظام محرك توصيات  

قادر على اقتراح وتخطيط إجراءات الرش بناءً على التحليلات التنبؤية والظروف البيئية المُثلى. يطُبقّ النظام على منصة 

اعدة عجلات قابلة للتعديل ومُجهزة بآلية رش دقيقة. من خلال واجهة ويب سهلة الاستخدام، تدُمج جميع روبوتية مادية بق

 ، مما يمُكّن المزارعين من مراقبة صحة محاصيلهم، وتلقي التنبيهات،WebSocketو ROS 2 هذه الميزات عبر نظامي

 وتقييم مستويات المخاطر، والتحكم في عمليات الرش عن بعُد. 

للكشف عن    0.894، ودقة  mAP@0.5 0.895 ، حيث بلغ إجماليYOLOv8n وقد أظهرت نتائج التقييم متانة نموذج 

اللفحة المتأخرة في بيانات التحقق، مما يؤكد موثوقيته في تحديد الأمراض في الحقل. ومن خلال توفير أدوات تحليل قائمة  

على البيانات وميزات أتمتة، يمُكّن هذا النظام المزارعين من اتخاذ قرارات أكثر استنارة، ويقُلل بشكل كبير من الرش غير  

الكيميائية، مع ضمان    الضروري.  المواد  استخدام  تقليل  الزراعية من خلال  النهائي في تحسين الاستدامة  الهدف  ويتمثل 

 .مكافحة فعالة للأمراض

 كلمات المفاتيح: 

 كشف أمراض النبات؛ الزراعة الذكية؛ التعلم العميق؛ التنبؤ بالطقس؛ نظام الرش؛ واجهة الويب؛ محاصيل البطاطس.

 

 

 

 

 

 

 

 

 



 

 

Résumé : 

Compte tenu de l'importance de l'agriculture mondiale, et particulièrement en Algérie 

où la culture de la pomme de terre représente une activité agricole majeure, les 

maladies des plantes demeurent un problème majeur pour les agriculteurs, notamment 

le mildiou. Cette maladie se propage rapidement et peut entraîner des pertes 

dévastatrices. Face à cette menace, de nombreux agriculteurs continuent de recourir 

à des pratiques traditionnelles telles que la pulvérisation chimique hebdomadaire. Bien 

que largement utilisée, cette méthode est inefficace et potentiellement dangereuse, 

car elle entraîne une utilisation excessive de produits chimiques, augmente les coûts, 

nuit à l'environnement et met en danger la santé des cultures et des agriculteurs. 

Dans ce travail, nous proposons un système intelligent d'aide à la décision pour la 

gestion et la prévention des maladies des cultures, notamment du mildiou, dans les 

cultures de pomme de terre. Ce système intègre un modèle de détection visuelle par 

apprentissage profond basé sur YOLOv8 pour identifier précocement les maladies, 

qu'il combine à un système de prévision météorologique en temps réel pour anticiper 

les conditions propices à leur apparition. Il intègre également un moteur de 

recommandation capable de proposer et de planifier des actions de pulvérisation en 

fonction d'analyses prédictives et de conditions environnementales optimales. Le 

système est déployé sur une plateforme robotisée physique à empattement réglable 

et équipée d'un mécanisme de pulvérisation de précision. Grâce à une interface web 

intuitive, toutes ces fonctionnalités sont combinées via ROS 2 et la communication 

WebSocket, permettant aux agriculteurs de surveiller l'état de santé de leurs cultures, 

de recevoir des alertes, d'évaluer les niveaux de risque et de contrôler les opérations 

de pulvérisation à distance.  

Les résultats de l'évaluation ont démontré la robustesse du modèle YOLOv8n, avec 

un mAP@0,5 global de 0,895 et une précision de 0,894 pour la détection du mildiou 

sur les données de validation, confirmant sa fiabilité pour l'identification des maladies 

sur le terrain. Grâce à des outils d'analyse basés sur les données et à des fonctions 

d'automatisation, ce système permet aux agriculteurs de prendre des décisions plus 

éclairées et de réduire considérablement les pulvérisations inutiles. L'objectif ultime 

est d'améliorer la durabilité agricole en minimisant l'utilisation de produits chimiques 

tout en garantissant une lutte efficace contre les maladies. 

 

 

Mots clés : Détection des maladies des plantes ; Agriculture intelligente ; 

Apprentissage profond ; Prévisions météorologiques ; Système de pulvérisation ; 

Interface web ; Cultures de pomme de terre ;  

 

 

 



 

 

Abstract: Given the importance of agriculture worldwide, and particularly in Algeria 

where potato cultivation represents a major agricultural activity, plant diseases remain 

a serious problem for farmers, particularly late blight. This disease spreads rapidly and 

can cause devastating losses. Faced with this threat, many farmers continue to resort 

to traditional practices such as weekly chemical spraying. Although widely used, this 

method is ineffective and potentially harmful, as it leads to excessive use of chemicals, 

increases costs, harms the environment, and endangers both crop and farmer health. 

In this work, we propose an intelligent decision support system for managing and 

preventing crop diseases, particularly late blight, in potato crops. This system 

integrates a deep learning visual detection model based on YOLOv8 to identify 

diseases early, which it combines with a real-time weather forecasting system to 

anticipate conditions conducive to their occurrence. It also incorporates a 

recommendation engine capable of proposing and planning spraying actions based on 

predictive analyses and optimal environmental conditions. The system is deployed on 

a physical robotic platform with an adjustable wheelbase and equipped with a precision 

spraying mechanism. Through an intuitive web interface, all these features are 

combined via ROS 2 and WebSocket communication, allowing farmers to monitor the 

health of their crops, receive alerts, assess risk levels, and control spraying operations 

remotely. The evaluation results demonstrated the robustness of the YOLOv8n model, 

with an overall mAP@0.5 of 0.895 and an accuracy of 0.894 for late blight detection 

on the validation data, confirming its reliability for identifying diseases in the field. By 

providing data-driven analysis tools and automation features, this system allows 

farmers to make more informed decisions and significantly reduce unnecessary 

spraying. The ultimate goal is to improve agricultural sustainability by minimizing 

chemical use while ensuring effective disease control. 

 

Keywords: Plant disease detection; Smart agriculture; Deep learning; Weather 

forecasting; Spraying system; Web interface; Potato crops. 
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General introduction 

For millennia, agriculture has served as the primary means of human sustenance. This 

pivotal shift from nomadic hunting and gathering to settled cultivation of crops and 

domestication of animals enabled the establishment of permanent communities and 

fostered societal development. 

Today, agriculture's importance persists. It not only provides the global food supply but 

also underpins the livelihoods of vast populations, particularly in rural regions. With a 

continually growing world population, agriculture plays an increasingly critical role in 

ensuring global food security and promoting sustainable environmental stewardship. 

Agriculture remains a cornerstone of Algeria’s economy, contributing 12.9% to the 

national Gross Domestic Product (GDP) in 2023 and ranking as the third-largest sector 

[1]. 

Algerian farmers currently face numerous challenges in maintaining crop health and 

achieving optimal yields. Among the most significant threats are plant diseases, which 

can severely damage crops, reduce food production, and result in substantial financial 

losses. In severe instances, these diseases can lead to the devastation of entire 

agricultural fields. Without timely detection and appropriate intervention, plant diseases 

can proliferate rapidly, causing long-term detriment to agricultural productivity and food 

security. 

Despite its economic significance and the considerable threats to agricultural output, the 

sector in Algeria continues to rely heavily on traditional practices. Farmers frequently 

employ rudimentary tools and manual techniques, leading to inefficiencies in crop 

monitoring, delays in disease detection, and the improper or excessive use of pesticides. 
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These shortcomings contribute to diminished crop quality, financial losses, and 

environmental degradation. Human-dependent methodologies are inherently 

constrained by inconsistent monitoring, diagnostic inaccuracies, and labor-intensive 

processes, limitations that are particularly acute in large-scale farming operations. For 

example, manual pesticide application not only poses risks to human health but also 

exacerbates ecological damage through over-application. 

Problem Statement: 

There is a pressing need in Algeria for an intelligent system capable of early and real-

time detection and management of destructive plant diseases. Current traditional 

methods for disease identification are often slow and labor-intensive, leading to delayed 

interventions, significant crop losses, and the excessive application of agrochemicals. An 

automated, intelligent solution would substantially improve disease control efficacy, 

reduce economic losses, and promote more sustainable agricultural practices. 

Our main objectives are: 

a. To minimize chemical product usage by enabling targeted treatment application 

only where necessary. 

b. To maximize crop preservation through early and precise intervention against 

diseases. 

c. To reduce human health risks by limiting direct exposure to harmful 

agrochemicals. 

d. To enhance operational efficiency by automating disease detection and treatment 

processes, thereby saving labor and time. 

e. To empower farmers with detailed data on crop health and environmental 

conditions, facilitating more informed decision-making for the effective 

management of threats such as late blight. 
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Solution: 

To address the challenges posed by late blight in potato crops, we propose an integrated 

intelligent system for efficient disease management. This system incorporates several 

key technologies: a deep learning-based AI model for real-time detection of late blight 

symptoms on potato leaves; weather forecasting capabilities for predictive early risk 

assessment; and an automated spray mechanism to facilitate precision agriculture 

techniques [2, 3]. Furthermore, a web-based interface will provide continuous data 

streaming, enabling farmers to monitor crop health, receive timely alerts, and make data-

driven decisions. This comprehensive solution aims to significantly reduce crop losses, 

minimize reliance on chemical treatments, and support sustainable agricultural practices 

in Algeria. 

General Methodology and System Architecture: 

The proposed system is directed toward the real-time detection of late blight, in addition 

to the prediction of potential infections. Its objective is to provide precise timing for spray 

actions to mitigate disease spread. The entire system will be integrated into a robotic 

platform and managed through a user-friendly interface to facilitate ease of use for the 

farmer. 

The Main System: The core of the system is based on an AI model that performs real-

time detection of visual disease symptoms. This detection module communicates directly 

with a central decision-making logic. Concurrently, a weather-based prediction algorithm 

analyzes meteorological data fetched from a weather API to forecast the risk of potential 

infections. Information from both the AI detection and the weather prediction modules is 

fed into the decision-making logic, which then determines if a spray command should be 

issued and precisely when the intervention is most optimal. 

System Integration: To translate this system from concept to reality, it must be 

integrated into a physical, mechanical robotic platform, enabling it to operate within a real 

agricultural environment. This integration includes the installation of an action 

mechanism, specifically the precision sprayer, which ensures that treatment is applied 
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effectively with minimal losses. To simplify the operation for the end-user, a web-based 

user interface will be integrated, allowing the farmer to command, monitor, and manage 

the entire system remotely. 

 

Figure 0.1: general methodology and system architecture 
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Chapter 1 State of the Art 

1.1 Overview of Traditional Plant Disease Detection 

Techniques Treatment Methods 

Traditional plant disease detection has historically relied on farmers' direct visual 

inspection for symptoms such as leaf spots, discoloration, wilting, or characteristic 

lesions like the "burning of leaves" in potato late blight [4]. This visual assessment is 

often guided by ancestral knowledge and Indigenous Technical Knowledge (ITK), 

reflecting generations of experiential learning within specific agroecological contexts [5]. 

Upon identification of an infection, management strategies primarily involved a suite of 

cultural control methods aimed at prevention and ecological balance. These included 

practices such as sanitation (e.g., removal of infected plant debris), crop rotation, use of 

disease-free planting material, and careful soil and site management [6]. Additionally, 

farmers employed local remedies, frequently ethnobotanical in origin and developed 

through empirical observation, which included plant-derived concoctions, ash, and 

animal-based products [5]. While these integrated traditional systems are foundational 

and demonstrate a profound understanding of local ecosystems, their efficacy can be 

constrained by the subjectivity inherent in visual diagnosis, variability in the effectiveness 

of local treatments, and considerable labor intensity [7], thereby highlighting areas where 

advanced technologies may offer improvements. 
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1.2 Overview of Artificial Intelligence Techniques in 

Agriculture 

The field of Artificial Intelligence (AI) encompasses a hierarchy of techniques, from 

foundational Machine Learning to advanced hybrid models, each with specific 

applications in modern agriculture (see Figure 1.1).  

 

Figure 1.1: A flowchart illustrating the hierarchy of Artificial Intelligence techniques and 

their applications in agriculture. 
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1.2.1 Artificial Intelligence (AI) 

Artificial Intelligence (AI) refers to computational systems capable of performing tasks 

that traditionally require human intelligence, such as problem-solving and decision-

making [8]. In agriculture, AI has emerged as a transformative tool, enabling applications 

such as crop yield prediction, disease detection, and precision pesticide spraying. By 

automating resource-intensive processes, AI can reduce operational costs, minimize 

human error, and enhance scalability. For example, AI-driven agricultural robots now 

perform tasks ranging from soil analysis and seed planting to irrigation optimization, 

leveraging real-time data on soil moisture and nutrient levels [9]. AI also plays a critical 

role in pest management, where automated systems conduct regular crop inspections to 

identify early signs of disease or pest damage, thereby enabling timely interventions [9]. 

1.2.2 Machine Learning (ML) 

Machine Learning (ML), a subset of Artificial Intelligence (AI), encompasses algorithms 

designed to analyze data and generate predictions through statistical analysis [8]. While 

ML has long been a cornerstone of AI applications, advancements in computational 

power and reduced storage costs in recent years have catalyzed the emergence of more 

sophisticated techniques, such as deep learning [10]. Traditional ML algorithms remain 

widely used for solving smaller-scale classification problems, including text analysis. For 

instance, Naive Bayes [11, 12] operates under the assumption of independence between 

input features, making it a simple yet effective choice for classification tasks. Random 

Forest [13], on the other hand, aggregates multiple decision trees to model intricate 

relationships within datasets, while standalone Decision Trees [14] structure data 

hierarchically to support rule-based decision-making. Support Vector Machines (SVM) 

[15] classify data by constructing hyperplanes that optimally separate features into 

distinct categories [10]. Stochastic Gradient Descent (SGD) [16], in comparison, 

optimizes model parameters through iterative updates on data subsets, enabling efficient 

training for large-scale linear models like logistic regression. Despite their utility, these 

conventional algorithms are primarily suited for low-complexity tasks and often struggle 
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with scalability when confronted with large, heterogeneous, or high-dimensional inputs, 

such as high-resolution agricultural imagery or real-time sensor data. 

1.2.3 Deep Learning (DL) 

Deep Learning (DL), an advanced branch of ML, utilizes multi-layered neural networks 

to autonomously extract hierarchical features from raw data [8]. The advent of DL has 

revolutionized image-based plant disease detection, with Convolutional Neural Networks 

(CNNs) [17] achieving state-of-the-art performance. Architectures like ResNet [18], which 

addresses vanishing gradient issues through residual connections, and YOLO (You Only 

Look Once) [19], a single-stage object detection framework, are particularly effective in 

identifying diseases from leaf images [20]. EfficientNet [21] further optimizes model 

scalability by balancing network depth, width, and resolution, which enables efficient 

deployment on resource-constrained devices [20]. These models excel at early disease 

diagnosis and can even predict susceptibility to future outbreaks when trained on robust, 

well-curated datasets. 

1.2.4 Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning (DRL) combines deep neural networks with reinforcement 

learning, enabling systems to learn optimal decision-making policies through trial-and-

error interactions with their environment [22]. In agriculture, DRL has shown promise in 

applications such as robotic navigation and precision spraying. For example, DRL-

trained robots can autonomously map and navigate unstructured farm environments, 

avoiding obstacles while optimizing pesticide application routes [23]. Unlike traditional 

vision systems that require extensive labeled data, DRL simplifies tasks like visual 

navigation by dynamically adapting to feedback, making it suitable for real-time, 

unstructured scenarios [24]. 
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1.2.5 Hybrid Models 

Recent advancements integrate DL for visual perception with DRL for robotic control, 

creating hybrid systems that combine accuracy and adaptability. For instance, CNNs can 

detect diseased plant regions, while DRL algorithms guide the robot’s spraying 

mechanism to target affected areas precisely. This approach minimizes chemical usage, 

reduces environmental impact, and ensures scalable deployment across diverse 

agricultural settings. 

 

1.3 Comparative Analysis of AI Techniques for Plant 

Disease Detection 

The development of an effective Plant Disease Detection and Treatment System 

necessitates a careful selection of the underlying AI architecture. Machine Learning (ML), 

Deep Learning (DL), and Deep Reinforcement Learning (DRL) present distinct profiles 

in terms of accuracy, computational efficiency, and data requirements, as summarized 

in (Table 1.1). These differences significantly impact their suitability for real-world 

agricultural applications, particularly for deployment on robotic platforms. Consequently, 

an evaluation across these critical criteria is essential. 

1.3.1 Accuracy and Model Performance 

Regarding accuracy in plant disease detection, which determines the precision of 

classification, different AI paradigms offer varied performance. Traditional ML models, 

such as Support Vector Machines (SVM), Random Forest (RF), and Stochastic Gradient 

Descent (SGD), provide structured classification. For instance, SVM has demonstrated 

capabilities like achieving 87% accuracy in citrus disease detection [25]. However, a 

primary limitation of ML is its reliance on manual feature extraction, a process that often 

struggles to capture the complex patterns indicative of plant diseases; RF, for example, 

achieved only 76.8% accuracy in one study [25]. In contrast, Deep Learning, particularly 
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Convolutional Neural Networks (CNNs) like VGG-16 [26] and Inception-v3 [27], excels 

by automatically extracting hierarchical features from image data. This capability leads 

to superior accuracy, with models like VGG-16 achieving 89.5% [25, 28, 29]. Despite 

their strengths, DL models demand large datasets and face risks of overfitting when data 

is small or imbalanced [30, 31]. Deep Reinforcement Learning, while offering dynamic 

adaptation to environments and potential for optimizing real-time robotic decision-

making, is less directly suited for primary disease detection tasks due to its computational 

intensity and the complexity of designing effective reward structures for classification. In 

summary, for disease classification accuracy, DL models, especially CNNs, generally 

provide the highest performance due to their advanced feature learning. ML techniques 

can be suitable for smaller datasets where manual feature engineering is feasible, 

whereas DRL's strengths currently lie more in autonomous navigation and control rather 

than direct disease classification. 

1.3.2 Computational Efficiency for Robotic Deployment 

Computational efficiency for real-time robotics is another crucial factor, as deployment 

often involves embedded systems like Raspberry Pi, requiring a balance between 

accuracy and processing speed. Machine Learning models typically exhibit low 

computational overhead, making them feasible for resource-limited systems [32]. 

However, their inherently lower accuracy compared to DL can limit their effectiveness in 

complex, variable agricultural environments [33]. Deep Learning models, while offering 

high accuracy, generally require GPUs for training and can be resource-intensive for 

inference. Nevertheless, optimization techniques such as model pruning and 

quantization are increasingly enabling the deployment of DL models on edge devices, 

albeit with careful consideration [34]. Unoptimized DL models can significantly hinder 

real-time performance [35, 36]. Deep Reinforcement Learning is adaptable to dynamic 

robotics tasks but also presents high computational demands and complex reward 

design challenges that can impede real-time viability [32]. Therefore, ML often stands out 

for its computational efficiency on constrained systems. DL requires specific hardware 

acceleration or significant optimization for real-time field deployment, and DRL’s real-
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time feasibility often depends on the complexity of the learned policy and the efficiency 

of its post-training deployment. 

 

1.3.3 Data Requirements and Scalability 

Data requirements and scalability are critical considerations, as the quality and volume 

of data directly influence model performance and its ability to generalize. Traditional ML 

approaches require manual feature engineering and can function with smaller datasets, 

but they often struggle with high-dimensional inputs like raw imagery [37, 35]. Deep 

Learning models, conversely, demand large, meticulously annotated datasets; 

architectures like ResNet and EfficientNet, for example, typically require thousands of 

labeled images to achieve robust performance [38–40]. While this is a significant hurdle, 

techniques such as transfer learning can mitigate data scarcity by leveraging knowledge 

from pre-trained models, adapting them to specific agricultural tasks with smaller, 

domain-specific datasets [41, 42]. Deep Reinforcement Learning learns through direct 

interaction with its environment, bypassing the need for large pre-labeled datasets in the 

traditional sense, but this learning process itself requires extensive computational 

resources and careful reward tuning. Key insights reveal that DL’s high accuracy is 

intrinsically linked to the availability of large, high-quality datasets, which are often costly 

and time-consuming to collect and annotate [39, 43]. While transfer learning and few-

shot learning strategies are being developed to reduce these data dependencies, they 

still necessitate careful domain adaptation [41, 42]. Furthermore, real-world variability in 

agricultural settings, such as inconsistent lighting, diverse leaf orientations, and varying 

stages of disease, poses significant challenges to dataset generalization for all image-

based approaches [40, 43]. In essence, both ML and DL rely heavily on labeled data, 

with DL having the most substantial requirements. DRL offers an alternative learning 

paradigm that avoids direct data annotation for classification but is generally considered 

impractical for standalone disease classification when compared to supervised learning 

techniques optimized for this task. 
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Table 1.1: Comparative Analysis Table 

Criteria 
Machine Learning 

(ML) 

Deep Learning 

(DL) 

Deep Reinforcement 

Learning (DRL) 

Accuracy 

- Moderate 

accuracy (e.g., 

SVM: 87%)  

- Highest 

accuracy (e.g., 

VGG-16: 89.5%)  

- Not directly tested, 

but potential for 

adaptive decision-

making 

- Limited by manual 

feature extraction 

- Automatic feature 

extraction improves 

detection 

- Requires complex 

reward design for 

disease tasks 

Computational 

Efficiency 

- Low 

computational 

demand, suitable 

for embedded 

systems  

- High 

demand (GPUs 

required) but 

optimizable via 

pruning/quantization 

- Extremely 

resource-intensive, 

challenges for real-

time deployment 

- Real-time feasible 

but less accurate in 

dynamic 

environments  

- Edge deployment 

possible with 

optimization (e.g., 

TensorFlow Lite)  

- Suited for post-

training navigation 

tasks 

Data 

Requirements 

- Small 

datasets with 

manual feature 

engineering  

- Large labeled 

datasets required  

- Learns via 

interaction, minimal 

direct annotation 

- Struggles with 

high-dimensional 

data 

- Transfer learning 

mitigates data 

scarcity  

- Requires extensive 

trial-and-error for 

reward tuning 
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Conclusion: 

DL (CNNs) is optimal for high-accuracy disease detection but requires dataset and 

computational optimization. ML suits low-resource environments, while DRL’s niche lies 

in robotic navigation and adaptive control. These key trade-offs are summarized in (Table 

1.2). Ultimately, hybrid architectures (e.g., CNN + DRL) may balance vision and action 

for precision agriculture. 

 

Table 1.2: Summary of Techniques 

 

 

 

 

 

Technique Best For Limitations 

ML 
Small datasets, low-resource 

environments 

Low accuracy, manual feature 

engineering 

DL 

High-accuracy detection, 

hierarchical features 

Data-hungry, computationally 

intensive 

DRL 

Adaptive robotics navigation and 

control 

Complex reward design, high 

training costs 
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1.4 Literature Review of Deep Learning Models 

Recent advancements in plant disease detection have predominantly leveraged Deep 

Convolutional Neural Networks (CNNs) with transfer learning, while Machine Learning 

(ML) and Deep Reinforcement Learning (DRL) remain niche due to limitations in 

scalability and adaptability. Below, we focus on DL approaches, particularly YOLO-based 

architectures, to justify the selection of YOLOv8 for our project. 

1.4.1 Foundational CNNs for Image Classification 

Early and influential work with traditional CNNs demonstrated their potential in 

agricultural image analysis. For example, Mohanty et al. (2016) [44] utilized AlexNet [45] 

and GoogLeNet [46], training them on a substantial dataset of 54,306 images from 

PlantVillage [47]. Their results were compelling: GoogLeNet, when employing transfer 

learning, achieved an impressive 99.35% accuracy in classifying 26 diseases across 14 

different crop types. In contrast, AlexNet, when trained from scratch, reached an 

accuracy of 85.53%. Similarly, Liu et al. [48] applied an AlexNet model to a dataset of 

13,689 apple leaf images, successfully achieving 97.62% accuracy in detecting various 

apple diseases. These traditional CNN approaches offer significant advantages, primarily 

through their automated feature extraction capabilities, which eliminate the need for 

laborious manual preprocessing. Furthermore, the application of transfer learning has 

proven effective in mitigating issues related to data scarcity. However, these models also 

present notable limitations, including high computational costs, often necessitating GPU-

dependent infrastructure, and restricted real-time feasibility when considered for 

deployment on field robotics. 

1.4.2  Real-Time Object Detection with YOLO 

More recently, a critical distinction emerged between image classification and object 

detection. While models like AlexNet and GoogLeNet are powerful for classification 

(telling an operator if a disease is present in an image), object detection models like 

YOLO (You Only Look Once) can identify if a disease is present and, crucially, where it 
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is located within the image. This capability is far more useful for a robotic spraying 

system, which needs precise coordinates for targeted treatment. YOLO-based 

architectures have therefore gained prominence, particularly because they excel in real-

time performance. For instance, a hybrid approach using YOLOv7 combined with a CNN 

classifier [49] achieved a remarkable 98.8% accuracy in tomato leaf disease detection 

and classification, effectively merging YOLO’s processing speed with the classification 

precision of CNNs. Another widely recognized model, YOLOv5 [50], demonstrated 93% 

accuracy in the real-time identification of tomato diseases, showcasing a strong balance 

between speed and accuracy suitable for field deployment. The primary advantages of 

YOLO-based architectures are their capacity for real-time processing and their single-

stage detection mechanism. This allows them to efficiently localize and classify diseases 

in a single pass, making them highly suitable for applications demanding rapid response 

and operational efficiency. 

To provide a clear side-by-side comparison, the performance metrics and key 

characteristics of these influential DL models are summarized in (Table 1.3). This 

analysis highlights the trade-offs between accuracy, speed, and deployment feasibility, 

setting the stage for the selection of an optimal architecture. 
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Table 1.3: Comparative Analysis of DL Models 

Model Accuracy Speed Key Strength Limitation 

AlexNet 85.53–

97.62% 

Low Foundational 

CNN 

architecture 

Computationally 

intensive 

GoogLeNet 99.35% Moderate High accuracy 

with transfer 

learning 

Requires large 

datasets 

YOLOv5 93% High Real-time field 

deployment 

Lower accuracy 

than CNNs 

YOLOv7 98.8% High Speed-

accuracy 

balance 

Complex 

implementation 

YOLOv8 (Proposed) 99%+ 

(Expected) 

Very 

High 

Optimized 

architecture for 

precision 

Requires fine-

tuning for 

agriculture 

 

 

1.4.3 Why YOLOv8? 

YOLOv8, as the latest most stable iteration in the YOLO family, builds upon the 

established successes of its predecessors like YOLOv5 and YOLOv7, offering several 

key enhancements that make it particularly suitable for our project. Firstly, it provides 

enhanced accuracy resulting from improvements in its backbone and neck architectures, 

which lead to better feature extraction capabilities. Secondly, YOLOv8 is engineered for 

faster inference speeds and is specifically optimized for edge devices, such as the 
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NVIDIA Jetson platform, a critical consideration for deployment on mobile agricultural 

robots. Furthermore, its adaptability is improved through advanced data augmentation 

techniques, enabling it to perform more robustly in dynamic agricultural environments 

characterized by variable lighting conditions and potential occlusions. Finally, YOLOv8 

demonstrates strong scalability and compatibility with hybrid systems, for instance, 

facilitating integration with Deep Reinforcement Learning (DRL) for tasks like advanced 

robotic navigation and control, thereby supporting comprehensive precision agriculture 

solutions. 

 

1.5 Dataset Selection for Vision System 

The performance of a computer vision system critically hinges on the quality, diversity, 

and relevance of the dataset used for its training and validation. A well-curated dataset 

is paramount as it ensures robust model generalization, enables reliable deployment in 

real-world agricultural scenarios, and aligns with the operational constraints inherent in 

robotic vision systems. 

1.5.1 Selection Criteria 

To select an optimal dataset for plant disease detection, we prioritize several key criteria: 

diversity, encompassing variability in plant species, disease types, and imaging 

conditions (such as lighting and angles); size, ensuring an adequate volume of images 

to prevent overfitting and promote robust learning; quality, indicated by high-resolution 

images with clear and accurate annotations; and compatibility with robotic vision, which 

demands real-world applicability, including diverse backgrounds and authentic field 

conditions. 
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1.5.2 Critical Analysis 

A side-by-side comparison of prominent public datasets against these criteria is 

presented in (Table 1.4). On the positive side, several large datasets offer ample data 

for training sophisticated deep learning models. For example, PlantifyDR [51] contains 

approximately 125,000 images, and the widely-used PlantVillage dataset [47] includes 

around 54,000 images. In terms of class diversity, datasets like New-Plant-Diseases and 

PlantVillage are notable for covering up to 38 distinct classes, thereby enabling the 

development of multi-disease detection systems. 

However, significant limitations also exist. A common issue is the presence of unified 

backgrounds; many prominent datasets, including PlantVillage and Tomato [52], 

primarily feature images taken in controlled laboratory environments. This lack of 

background variability can limit a model's ability to generalize to real-world field 

conditions. Conversely, some available datasets are relatively small. For instance, Plant-

Doc [53], with about 4,500 images, risks model underfitting if used as a standalone 

resource for training complex models. 

These observations highlight key trade-offs in dataset selection. There is often a tension 

between dataset volume and generalization. While larger datasets like PlantifyDR [51] 

provide extensive training material, they might risk overfitting if the model is intended for 

resource-constrained robotic platforms, or if the diversity within the large dataset doesn't 

match the target environment. Smaller datasets such as Plant-Doc [53], on the other 

hand, might lack the sheer volume for optimal scalability of deep learning models. 

Another crucial trade-off involves field relevance. Datasets like Plant-Doc [53], despite 

their smaller size, often feature more varied imaging conditions (e.g., diverse lighting, 

natural backgrounds) that better mirror real-world robotic operations. However, to be 

effectively used, these datasets typically require significant data augmentation to 

artificially increase their size and variability for training purposes. 
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Table 1.4: Dataset Comparison 

Dataset Data 

Size 

Diversity Quality Robotic Vision 

Compatibility 

New-Plant-

Diseases[54] 

87,000 38 classes (plants 

+ diseases) 

256×256, 

JPG 

Unified background 

Tomatoleaf[55] 10,000 10 tomato 

diseases 

256×256, 

JPG 

Unified background 

Tomato[52] 18,000 10 tomato 

diseases 

256×256, 

JPG 

Unified background 

PlantVillage[47] 54,000 38 classes (14 

plants + 26 

diseases) 

256×256, 

JPG 

Unified background 

PlantifyDR-

Dataset[51] 

125,000 10 plants, 37 

diseases 

256×256, 

JPG 

Unified background 

Plant-Doc-

Dataset[53] 

4,500 30 classes (13 

plants) 

900×675, 

JPG 

Varied field 

conditions 

 

1.5.3 Final Selection 

To effectively balance data volume, diversity, and crucial field applicability, we propose 

a hybrid dataset strategy. This approach combines the strengths of two distinct datasets: 

PlantVillage [47] will serve as the primary source for training data, leveraging its 

substantial volume of approximately 54,000 images and broad coverage of 38 classes. 

Its main advantage lies in providing a balanced class distribution and comprehensive 

disease representation, which is essential for initial model learning. Complementing this, 

the Plant-Doc [53] dataset is designated for validation and fine-tuning purposes. Although 

smaller, with around 4,500 images across 30 classes, its key advantage is its 
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composition of images captured under real-world field conditions. This two-stage 

approach is strategic: the variety of disease morphologies in PlantVillage allows the 

model to build a foundational feature set for identification, while the challenging 

conditions and potential confounders (e.g., environmental artifacts that mimic symptoms) 

in Plant-Doc are critical for enhancing the model’s accuracy and robustness for 

operational deployment. 

 

1.6 The Robot Operating System (ROS) Framework 

The Robot Operating System (ROS) is a pivotal open-source middleware framework 

engineered to facilitate the development of complex robotic systems. Despite its name, 

ROS is not a conventional operating system. Instead, it functions as a flexible meta-

operating system, providing an abstraction layer that operates on top of a host OS such 

as Ubuntu. ROS furnishes a comprehensive suite of tools, libraries, and standardized 

conventions that streamline the creation of modular, distributed, and scalable robot 

software [56, 57]. The widespread adoption of ROS in contemporary robotics 

underscores its capability to provide a standardized and scalable environment for 

building intelligent systems. Its impact is evident across a multitude of domains, including 

autonomous vehicles, drones, medical robotics, and, increasingly, agricultural 

automation [56]. 

1.6.1 ROS Applications in the Agricultural Sector 

Several projects and academic works have successfully integrated ROS to address key 

challenges in agriculture. These examples demonstrate the framework's practical utility: 

• Irrigation Optimization: One project focused on developing an autonomous robotic 

system to improve irrigation management, using ROS 2 to create a simulated 

agricultural environment for development and testing before deployment on a 

physical robot [58]. 
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• Autonomous Navigation: A notable thesis addressed the challenge of outdoor robot 

navigation by integrating a full sensor suite (LiDAR, GPS, cameras) with the ROS 2 

Nav2 stack. It used a custom computer vision pipeline with a YOLOv8 neural network 

to allow a robot to better discern traversable terrain, such as tall grass, from 

impassable obstacles [59]. 

• Digital Twin Emulation: The "AgROS" project developed a ROS-based emulation 

tool to bridge the gap between software-based decision support systems and physical 

machinery. The tool allows for the predictive analysis and testing of modules that can 

be directly transferred to real-world robots, aiming to create a "digital twin" for 

optimizing agricultural operations [60]. 

1.6.2 The Modular Architecture of ROS 

The power of ROS lies in its ability to decompose complex robotic applications into 

smaller, independent, and reusable components called nodes. These nodes 

communicate with each other using a standardized messaging system, which enhances 

scalability, code reuse, and ease of debugging. 

a. Nodes: The Building Blocks of a ROS System 

In ROS, a node is the smallest executable unit, typically a process responsible for a 

single, well-defined task. For example, a simple mobile robot might have separate nodes 

for: 

• Capturing and publishing camera data. 

• Processing sensor data to detect obstacles. 

• Controlling the wheel motors. 

Each node is a standalone program, which allows them to be developed, tested, and 

modified independently. 
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b. Topics: The Communication Buses 

Nodes communicate using a publish-subscribe model facilitated by named buses called 

topics. A node with data to share (e.g., a camera node) publishes messages to a topic. 

Any other node that needs this data (e.g., an object detector or a display node) can 

subscribe to that topic to receive the messages. 

This system decouples the nodes from one another; the publishing node does not know 

or care which nodes are subscribing. This creates a highly flexible and scalable 

architecture. The communication itself is handled by the underlying ROS middleware. In 

the modern ROS 2, this is the Data Distribution Service (DDS), a robust protocol that 

enables real-time, secure, and peer-to-peer data transfer with automatic discovery of 

nodes and topics. 

The specific architecture for a given application can be visualized in a communication 

graph. (Figure 1.2) illustrates a conceptual graph for a hypothetical agricultural robot. In 

this example, sensor nodes like “blight_detector” and “weather_reporter” publish their 

data to dedicated topics. A central “spray_scheduler” node subscribes to this information 

to make decisions, demonstrating how the modular design allows for a clear and logical 

flow of data through the system. 
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Figure 1.2: A conceptual communication graph illustrating the modular, topic-based 

data flow between nodes in a ROS 2 system. 

 

1.6.3 Why Use ROS for Our System? 

The selection of ROS as the foundational framework for this project is a strategic decision 

rooted in its extensive ecosystem and proven capabilities. ROS offers a vast collection 

of open-source packages that support a wide range of robotic functionalities, including 

navigation, perception, manipulation, and artificial intelligence. These packages 

significantly accelerate development and minimize redundancy. Furthermore, ROS 

integrates powerful tools like RViz for visualization and Gazebo for simulation, which 

allow for efficient testing and prototyping before real-world deployment [3]. 

Given that our system is designed for an agricultural setting—where automation offers 

substantial savings in time, energy, and resources—ROS is the ideal foundation for 
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future integration with a physical robotic platform. The agricultural robotics industry is 

increasingly adopting ROS due to its adaptability and robust feature set. The download 

of over 550 million ROS packages in 2023 alone demonstrates its widespread adoption 

and active community support [4]. By building our system with ROS, we ensure that it is 

ready for seamless integration with robotic hardware, making the transition from a 

conceptual model to practical field deployment both smoother and more efficient. 

 

1.7 System-Level Integration: From Environmental 

Prediction to Robotic Action 

1.7.1 Weather Forecasting for Early Disease Prediction 

Environmental conditions—notably humidity, temperature, rainfall, and leaf wetness 

duration—are critical determinants in the development and spread of plant diseases, 

particularly fungal infections such as late blight in potato crops. Research has established 

that Phytophthora infestans, the oomycete pathogen responsible for late blight, thrives 

in moist and cool environments. Optimal conditions for its proliferation are generally 

around 90% relative humidity and temperatures ranging between 15°C and 25°C. 

Consequently, weather forecasting serves as an invaluable tool for the early prediction 

of disease outbreaks. 

To this end, several models and decision support systems (DSS) have been developed 

to forecast disease risk based on meteorological data. A prominent example is 

BlightCAST [61, 62], a system specifically designed to predict late blight risk by analyzing 

weather patterns and subsequently issuing regional alerts to farmers. Other systems 

leverage data from national meteorological agencies or utilize Application Programming 

Interfaces (APIs) such as OpenWeatherMap and Open-Meteo to assess atmospheric 

conditions conducive to disease development. 
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In recent years, machine learning and statistical methodologies have also been 

increasingly applied to predict disease risk using weather data. These models typically 

analyze historical weather patterns and corresponding disease occurrences to identify 

conditions likely to precede an outbreak. However, a common limitation of many such 

systems is that they are either not crop-specific or lack effective real-time field integration, 

which can diminish their accuracy and practical utility in dynamic agricultural 

environments. 

Despite their potential, a significant drawback of most existing weather-based forecasting 

systems is their predominant focus on large-scale regional forecasts. This often results 

in a failure to provide localized, real-time alerts tailored to the specific microclimatic 

conditions of individual smallholder farms. Therefore, integrating localized weather 

forecasting with real-time field data and AI-based disease detection capabilities offers a 

more robust, precise, and actionable approach to proactive disease management [63]. 

1.7.2 Automated Spraying, Mobile Robotics, and IoT Interfaces 

in Smart Farming 

The growing demand for sustainable and efficient agricultural practices has spurred the 

development of automated spraying systems and mobile robotic platforms. These 

technologies aim to significantly reduce the overuse of chemical treatments while 

improving the precision and timeliness of interventions. In contrast, traditional farming 

methods often involve manual pesticide application or uniform spraying across entire 

fields. Such approaches not only waste valuable resources but also unnecessarily 

expose agricultural workers to harmful chemicals and increase the overall environmental 

impact. 

Complementing these robotic systems, IoT-based solutions and web interfaces play a 

pivotal role in enabling effective remote monitoring and control. Through user-friendly 

dashboards and web applications, farmers can gain real-time access to critical data, 

including crop health status, prevailing environmental conditions, and the operational 

parameters of robotic units. Furthermore, these user interfaces can incorporate 
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advanced features such as alert systems for immediate notifications, historical data logs 

for trend analysis, and control functionalities for remotely activating or adjusting robotic 

behavior [64, 65]. 

While several commercial systems currently offer semi-automated spraying and remote 

monitoring capabilities, they frequently present limitations. These systems are often 

expensive, may not be crop-specific, or are generally not designed for efficient small-

scale or localized deployment. Therefore, the integration of AI-based disease detection, 

weather-based forecasting, and precision spraying within a single, cohesive robotic 

system—all managed through an accessible web interface—presents a more 

comprehensive and scalable solution for modern agriculture. This is particularly relevant 

for regions such as Algeria, where the adoption of such advanced agricultural technology 

is still nascent and its potential largely untapped. Introducing such systems can directly 

address pressing local challenges by enhancing crop yields to improve food security and 

by automating manual tasks to alleviate labor shortages. 

1.8 Conclusion 

This review of the state-of-the-art has revealed that despite significant progress in 

agricultural robotics, disease detection methodologies, and precision spraying 

technologies, current solutions often exhibit shortcomings in several key areas. Many 

existing systems are not specifically designed to address particular crop diseases, such 

as late blight in potatoes, thereby compromising their accuracy and effectiveness in real-

world applications. Furthermore, comprehensive solutions that integrate real-time 

disease monitoring with weather forecasting and accessible web-based decision-making 

tools remain largely undeveloped or inaccessible, particularly in regions like Algeria. 

These limitations underscore a clear and pressing need for an integrated system. By 

leveraging a state-of-the-art object detection model like YOLOv8, trained on a hybrid, 

field-relevant dataset, and integrated with localized weather forecasting, it becomes 

possible to develop a more affordable and farmer-accessible system capable of 

delivering targeted and timely interventions. 
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Chapter 2 Proposed Methodology – AI-based 

Detection of Potato Late Blight 

2.1 Domain of Application: Study of Potato Late Blight  

Potato (Solanum tuberosum L.) ranks among the five most vital staple food crops globally 

and is cultivated across a diverse spectrum of climatic conditions. It is characterized by 

a relatively low water footprint and high nutritional value. These attributes render it a 

significant crop for Algeria, where both potato production and consumption have 

expanded considerably over the last three decades. Currently, extensive potato 

production areas, totaling approximately 90,000 hectares, are established in several 

regions of this North African nation, and the sector continues to exhibit rapid growth. The 

majority of potatoes produced in Algeria are consumed domestically, enabling the 

country to achieve self-sufficiency in potato consumption. 

In Algeria, potato cultivation represents the leading vegetable crop in terms of both area 

and production, with an allocated area of 156,176 hectares yielding approximately 

4.6735 million tons, corresponding to an average yield of 29.9 tons/ha as of 2017 [66]. 

Common cultivation practices include bisecting oversized seed potatoes to reduce costs; 

these are subsequently planted at a depth of 15 cm, with intra-row spacing of 25-30 cm 

and inter-row spacing of 65-75 cm [66]. The optimal temperature range for potato tuber 

formation is 10°C to 16°C (50°F to 60°F) [67]. Potatoes should be planted when soil 

temperatures range between 7°C (45°F) and 27°C (80°F). Planting in overly moist soil 

heightens the risk of seed piece decay, whereas excessively cool and dry soil conditions 

can impede sprouting and emergence. Potato cultivation is compromised when 
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temperatures deviate beyond these thresholds. Ideal ambient humidity levels for potato 

plants are reported to be between 60-70% [68, 67]. 

2.1.1 Challenges in Algerian Potato Production 

Potato cultivation in Algeria faces several critical challenges that can be categorized as 

environmental, technical, and biological (Figure 2.1). 

a. Water Scarcity: 

Algeria faces significant water scarcity due to its limited renewable water resources, with 

the agricultural sector consuming the majority of available water—over 59% of freshwater 

withdrawals [69]. Inefficient water management and application practices, especially in 

agriculture, contribute to substantial water losses and exacerbate the scarcity problem  

[69]. Inefficient water application practices by farmers frequently result in substantial 

water losses, particularly in potato production, which is heavily reliant on irrigation. 

b. Mechanization and Labor: 

A low degree of mechanization in potato farming necessitates a significant reliance on 

manual labor. This dependency poses challenges due to the perceived low status of 

agricultural work and consequent difficulties in securing labor for critical operations such 

as planting, harvesting, and irrigation [66]. 

c. Plant Diseases: 

Furthermore, plant diseases represent a significant threat to potato crops, capable of 

causing substantial yield reductions. 
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Figure 2.1: Challenges in Algerian Potato Production 

 

2.1.2 Overview of Common Potato Diseases 

Several diseases commonly affect potato crops, as summarized in (Table 2.1). These 

include: 

• Brown Rot: Brown rot (Ralstonia solanacearum), also referred to as bacterial wilt or 

southern bacterial wilt, affects potato crops across a wide range of warm-temperate, 

semi-tropical, and tropical zones globally, with occurrences also reported in cooler 

climates [70]. 

• Powdery Mildew: Powdery mildew (typically caused by Erysiphe cichoracearum or 

related fungal species) can be a significant foliar disease, particularly prevalent in arid 

or semi-arid climates [70]. 

• Common Scab: Common Scab (Streptomyces scabies) is present to some degree 

in most potato-growing regions. It is a major production concern primarily affecting 

tuber grade quality, with generally minor effects on total yield or storability [70]. 
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• Potato Leafroll Virus (PLRV): Potato leafroll, an aphid-transmitted viral disease, is 

among the most serious diseases affecting potatoes and is responsible for 

considerable yield losses worldwide wherever potatoes are cultivated  [70]. 

Table 2.1:  Common Potato Diseases 

Disease 

Name 

Causal Agent Brief Description Impact 

Brown Rot Ralstonia 

solanacearum 

(bacterium) 

Also known as bacterial 

wilt; affects potatoes in 

warm-temperate, semi-

tropical, and tropical 

zones globally, and 

some cooler climates. 

Affects potato crops across a 

wide range of environments. 

Powdery 

Mildew 

Erysiphe 

cichoracearum 

or related 

fungal species 

A foliar disease that is 

particularly prevalent in 

arid or semi-arid 

climates. 

Can be a significant foliar 

disease. 

Common 

Scab 

Streptomyces 

scabies 

(bacterium) 

Present in most potato-

growing regions; 

primarily affects tuber 

quality. 

Major production concern 

affecting tuber grade quality; 

generally minor effects on total 

yield or storability. 

Potato 

Leafroll 

Virus (PLRV) 

Aphid-

transmitted 

virus 

An aphid-transmitted 

viral disease affecting 

potatoes worldwide. 

Among the most serious 
diseases affecting potatoes; 
responsible for considerable 
yield losses worldwide  
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This research narrows its focus to two particularly impactful foliar diseases: early blight 

and late blight, with a primary emphasis on late blight due to its devastating potential. A 

comparative summary of their key features is presented in (Table 2.2). 

2.1.3 Early Blight (Alternaria solani) 

Early blight, a significant foliar disease of potato (Solanum tuberosum L.), is caused by 

the fungal pathogen Alternaria solani Sorauer. It is recognized as one of the most 

prevalent diseases affecting potatoes and tomatoes. The disease can precipitate major 

yield losses in most potato-growing regions globally [70, 71]. 

a. Historical and Economic Impact:  

Historically, early blight was often regarded as a secondary disease in potatoes, typically 

causing moderate yield losses under standard growing conditions. However, under 

conditions conducive to its development (e.g., high humidity, moderate temperatures, 

and plant stress), early blight can lead to substantial economic losses, especially if 

significant defoliation occurs before tuber bulking is complete [71]. The primary damage 

mechanism is premature defoliation, which diminishes photosynthetic capacity and can 

increase respiration rates in apparently healthy plant tissues. This can result in yield 

losses ranging from 5% to 50%, with severe infections potentially causing losses 

between 20% and 50% [72].  

b. Plant and Crop Damage:  

Primary damage manifests as characteristic dark brown to black lesions, often displaying 

concentric rings (a "target spot" appearance), on the leaves. These lesions can enlarge 

and coalesce, ultimately leading to leaf necrosis and death. Premature defoliation curtails 

photosynthesis, resulting in diminished tuber size and overall yield. Disease severity is 

typically greater on senescent, stressed, malnourished, or physically damaged plants. 

Environmental factors, including temperature, moisture availability, and leaf wetness 

duration, significantly influence the severity of early blight [71]. 
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c. Symptoms: 

o Leaves: Characteristic foliar lesions are dark brown to black, featuring concentric 

rings that create a "target spot" effect (see Figure 2.2). While typically oval, lesions 

may remain small and angular under conditions unfavorable for disease progression. 

These lesions enlarge and coalesce, leading to leaf necrosis [71]. 

o Stems: Lesions can also manifest on stems and petioles. Stem lesions may facilitate 

the spread of the pathogen to other plant parts [71]. 

o Tubers: Infected tubers exhibit a dry rot characterized by isolated, dark, irregular, 

and sunken lesions on the surface. Tuber infection usually occurs via wounds, as 

Alternaria solani conidia generally cannot penetrate intact periderm [71]. 

o Overall Crop Impact: Affected plants may display signs of premature senescence, 

reduced vigor, and, in severe instances, complete vine death [71]. 

 

 

Figure 2.2: Visual Symptoms of Early Blight on Potato Plants leaf - from plant-doc 

dataset [53] 
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d. Disease Cause and Spread: 

The presence of free water on leaf surfaces or relative humidity approaching saturation 

is conducive to spore germination. Germination of A. solani spores necessitates a 

minimum leaf wetness period; studies indicate that spores can germinate at 20°C 

following a wetting period as short as two hours. Sporulation is often triggered by 

alternating wet and dry conditions. Leaf wetness duration has been shown to account for 

up to 90% of the variability in early blight development and severity. Temperature is 

another critical factor influencing infection, with the optimal range for A. solani infection 

being 20°C to 30°C [71]. 

e. Disease Management: 

o Preventive Measures: Preventive measures for early blight encompass several 

cultural and chemical strategies [71]. Crop rotation with non-host crops (e.g., cereals, 

forage crops) for a period of 3–5 years is recommended to reduce soil-borne 

inoculum. Careful site selection, ensuring well-drained fields, and thorough sanitation 

practices, such as the removal of plant debris, help eliminate overwintering pathogen 

structures. Irrigation scheduling, preferably in the morning, can minimize nocturnal 

leaf wetness duration. The cultivation of potato cultivars with higher levels of 

resistance to early blight is an important component of an integrated management 

strategy. Avoiding plant overcrowding promotes better air circulation, thereby 

reducing humidity and leaf wetness. Prophylactic application of contact fungicides 

(e.g., chlorothalonil, mancozeb, copper-based compounds) early in the growing 

season can be effective. Furthermore, the integration of predictive models for disease 

forecasting can aid in optimizing fungicide application timing and minimizing their use. 

o Curative and Control Measures:  

▪ Pruning and Removal of Infected Tissues: The pruning and proper disposal 

of infected leaves, stems, and plant debris can reduce the pathogen's spore 

load within the field [71]. 
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▪ Environmental Modification: Where feasible, reducing field moisture levels 

by improving soil drainage or employing drip irrigation instead of overhead 

sprinkler systems can mitigate disease spread [71]. 

▪ Biological Control: Biological control agents, such as Trichoderma viride and 

extracts from Clerodendrum spp. leaves, have demonstrated efficacy in 

reducing early blight severity, especially when integrated with chemical control 

methods. This approach presents an environmentally sustainable alternative 

that can help lessen dependence on synthetic fungicides [73]. 

▪ Chemical Control: Protectant fungicides, such as chlorothalonil, mancozeb, 

and copper-based formulations, are applied early to prevent initial infection [71, 

73]. Following the onset of symptoms, systemic fungicides like difenoconazole, 

tebuconazole, and flusilazole can be applied to arrest disease progression 

within the plant [71, 73]. 

▪ Integrated Management: Integrated management strategies combining 

biological agents with chemical treatments have shown promising results. For 

instance, the application of Clerodendrum leaf extract or T. viride in conjunction 

with mancozeb demonstrated significant disease control, with reported 

Percent Disease Index (PDI) values of 29.43% (Clerodendrum + 2 mancozeb 

sprays) and 34.66% (T. viride + 2 mancozeb sprays). Such integrated 

approaches are considered by some researchers to be among the safer 

options for disease management [73]. 
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2.1.4 Late Blight (Phytophthora infestans) 

Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is regarded 

as one of the most devastating diseases of potato globally, responsible for substantial 

production losses. The pathogen exhibits high genetic variability and a notable capacity 

for rapid adaptation to new potato cultivars and fungicide treatments [70, 74]. The 

damage inflicted by P. infestans can be both severe and widespread. 

a. Historical and Economic Impact:  

Late blight was the primary causal agent of the European potato failure in the 1840s, 

famously leading to the Irish Potato Famine (1845–1852) and the Highland Potato 

Famine (1846) [74, 75]. Current annual global economic losses attributed to P. infestans 

are estimated at €12 billion, with approximately €10 billion of this impact occurring in 

developing nations [74, 76]. In the United States, the annual expenditure on fungicides 

for late blight control alone is approximately $77.1 million, a figure that does not include 

costs associated with non-fungicidal control measures [74, 76]. 

b. Plant and Crop Damage:  

Infected plants display blackened foliage and weakened stems, which can culminate in 

crop collapse. Under conditions conducive to the disease, an entire potato field can be 

decimated within a week [74]. Infected tubers develop characteristic reddish-brown to 

purplish internal lesions. Although initially firm and dry, these infected tubers are highly 

susceptible to secondary soft rot bacteria, leading to significant losses both in the field 

and during storage [74]. The rapid and aggressive nature of late blight, particularly under 

cool, moist conditions, can result in complete crop failure if not managed effectively and 

promptly [74]. 
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c. Symptoms:  

Late blight manifests through several distinct symptoms, visually apparent on the leaves, 

stems, and tubers. These symptoms can develop rapidly, often within 2-3 days post-

infection under optimal conditions  [74]. 

o Leaves: Initial symptoms on leaves typically appear as water-soaked, irregular, pale 

green lesions, often near the tips or margins. These lesions rapidly expand into large, 

brown to purplish-black necrotic areas (see Figure 2.3) [74, 77, 78]. 

o White Sporulation: Under conditions of high humidity, a characteristic white, downy 

growth, consisting of sporangia (spore-bearing structures) of the pathogen, may be 

observed on the abaxial (lower) surface of infected leaves, particularly at the lesion 

margins [74, 77]. 

o Stems: Light to dark brown lesions can develop on stems and petioles, potentially 

girdling them. Affected stems weaken at these points and may collapse, contributing 

to the overall blighted appearance of the crop. 

o Overall Crop Impact: Under conditions favorable for the pathogen, the entire crop 

can be destroyed within a short period, sometimes as quickly as one week [74, 77]. 

o Tubers: Tubers become infected when sporangia, washed from diseased foliage by 

rain or irrigation water, infiltrate the soil. Infected tubers exhibit irregular, reddish-

brown to purplish discolored areas that extend into the flesh. Initially, these affected 

tissues are firm and dry, but they are highly susceptible to secondary invasion by soft 

rot bacteria, leading to tuber decay in the field or during storage [74, 77]. 
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Figure 2.3: Visual Symptoms of Late Blight on Potato Plants leaf - from plant-doc 

dataset [53] 

 

d. Disease Cause and Spread:  

Phytophthora infestans is an oomycete, colloquially known as a water mold, and is the 

causal agent of potato late blight. Oomycetes are characterized by different spore types, 

each fulfilling a specific role in the disease cycle. The pathogen primarily disseminates 

via sporangia, which are adapted for aerial dispersal over longer distances or can be 

spread by water splash within a field [74, 78]. Under conditions of high moisture, such as 

pooled water on soil surfaces or persistent leaf wetness, sporangia can germinate 

indirectly by releasing motile zoospores. These zoospores, capable of swimming for 

approximately 2-10 hours, facilitate short-distance dispersal and initiate new infections 

within the crop canopy [78]. High humidity levels (90-100%) coupled with moderate 

temperatures (12-23°C) are optimal for sporangia production. Direct germination of 

sporangia and subsequent infection typically occur at temperatures between 17-23°C, 

while zoospore production and infection are favored by cooler temperatures, ranging 

from 6-17°C [78]. 
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e. Disease Management: 

o Preventive Measures: Effective late blight management hinges on strategies 

designed to minimize initial inoculum sources and prevent the subsequent 

development of secondary inoculum on host plants. Several practices contribute to 

late blight control [78]. These include planting only certified, disease-free seed tubers; 

destroying cull piles and waste potato tubers, which can harbor the pathogen; 

eliminating volunteer potato and tomato plants that may arise from previous plantings; 

eradicating unmanaged or abandoned infected host plants in the vicinity; optimizing 

row spacing to enhance airflow and reduce canopy moisture; cultivating resistant 

potato cultivars; and applying fungicides prophylactically to prevent infection 

establishment. 

o Curative and Control Measures:  

▪ Biological Control: Certain natural antagonists, including Trichoderma viride, 

Bacillus subtilis, and Pseudomonas fluorescens, have shown potential in 

suppressing the growth of P. infestans. Their mechanisms of action include 

competition for nutrients, production of inhibitory compounds (antibiosis), or 

induction of host plant resistance [79, 80]. 

▪ Sanitation and Removal of Infected Material: Prompt removal and destruction of 

infected leaves, stems, and tubers are crucial to reduce the inoculum source within 

the field. Composting of infected plant material should be avoided as it may not 

effectively eliminate the pathogen and could contribute to its spread [80, 81]. 

▪ Environmental Modification: Cultural practices aimed at reducing humidity and 

leaf wetness duration can impede disease development. These include ensuring 

adequate plant spacing and selective pruning to improve airflow within the canopy. 

Avoiding overhead irrigation in favor of methods that minimize leaf wetness (e.g., 

drip irrigation) is also beneficial. 
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▪ Chemical Control: Systemic fungicides, including active ingredients such as 

metalaxyl, cymoxanil, mandipropamid, and propamocarb, are effective in arresting 

the progression of late blight. These fungicides can penetrate plant tissues by 

offering a degree of curative action if applied shortly after infection has occurred. 

The efficacy of curative sprays is highest when applied at the very first indication of 

symptoms. Repeated applications are often necessary, with frequency dictated by 

disease severity and prevailing environmental conditions [80]. 

▪ Efficacious Chemical Control Strategies: Fungicides containing cyazofamid and 

mandipropamid have demonstrated high efficacy, particularly when applied 

preventively before anticipated high-risk infection periods. Research conducted in 

Denmark indicated that the application rates of these fungicides could be reduced 

by up to 30% by tailoring dosages based on the host cultivar's resistance level and 

prevailing disease pressure [74, 80]. The combination of plant activators, such as β-

aminobutyric acid (BABA), with protectant fungicides like mancozeb has been 

reported to be more effective than either product used alone. For instance, a specific 

ratio of 5 parts BABA to 1 part mancozeb exhibited synergistic effects in controlling 

late blight [80]. 
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Table 2.2: Comparative Summary of Early Blight vs. Late Blight. 

Feature Early Blight (Alternaria solani) Late Blight (Phytophthora infestans) 

Causal 

Organism 

Fungal pathogen (Alternaria 

solani) 

Oomycete (water mold) (Phytophthora 

infestans) 

Typical Leaf 

Symptom 

Dark brown to black lesions, often 

with concentric rings ("target spot" 

appearance); lesions enlarge and 

coalesce, leading to necrosis. 

Initially water-soaked, pale green, irregular 

lesions (often near tips/margins), rapidly 

becoming large, brown to purplish-black 

necrotic areas. White, downy mildew 

(sporangia) on lower leaf surfaces in high 

humidity. 

Tuber 

Symptom 

Dry rot; isolated, dark, irregular, 

sunken lesions on the surface. 

Infection typically occurs via 

wounds. 

Reddish-brown to purplish discolored areas 

extending into the flesh; initially firm and dry, 

but very susceptible to secondary soft rot 

bacteria, leading to decay. 

Conditions 

Favoring 

Disease 

High humidity (near saturation for 

spore germination), moderate 

temperatures (optimal 20°C-30°C 

for infection), leaf wetness (min. 2 

hours at 20°C for spore 

germination); alternating wet/dry 

conditions for sporulation. 

Stressed or senescent plants are 

more susceptible. 

High humidity (90-100%), moderate 

temperatures (12-23°C for sporangia 

production; 17-23°C for direct germination; 

cooler 6-17°C for zoospore 

production/infection), persistent leaf 

wetness or pooled water for zoospore 

release. 

Relative 

Economic 

Impact 

Can cause significant yield losses 

(5-50%, potentially 20-50% in 

severe cases if defoliation occurs 

before tuber bulking). Historically 

often considered secondary but 

can cause substantial economic 

losses. 

Considered one of the most devastating 

potato diseases globally. Historically caused 

the Irish Potato Famine. Current global 

annual losses estimated at €12 billion. Can 

lead to complete crop failure rapidly. 
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2.2 Proposed Solution Architecture  

2.2.1 General System Architecture 

The proposed system architecture is designed around a central decision-making module 

that serves as the core intelligence of the robotic platform. This module is responsible for 

managing and processing all incoming data to determine if a threat to the potato crop 

exists. As illustrated in (Figure 2.4), the decision-making module receives two primary 

inputs. The first is from the AI-based visual detection model, specifically the YOLOv8 

model, whose selection was justified in (Section 1.4.3), which provides real-time 

identification of disease symptoms. The second input is from the Weather-Based 

Prediction System, which assesses environmental conditions to forecast disease risk. 

Based on the fused information from these two streams, the decision-making module 

generates a single, precise output: a command to activate the precision spraying system. 

 

Figure 2.4: Block diagram illustrating the core system logic 

 

2.2.2    Overview of Subsystems:  

a. AI Detection Module (YOLO-based)  

The AI Detection Module is a critical component that significantly enhances the 

system's power and efficacy. Its primary function is the real-time detection of late blight 

infections from visual symptoms present on the plant foliage. 

This automated approach offers key advantages over manual human inspection by 

identifying subtle signs of disease at very early stages, which are often missed by the 
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human eye, and by accurately distinguishing late blight from other visually similar 

diseases, thereby reducing the risk of misdiagnosis. 

The module operates by processing a real-time video stream from the robot's camera, 

following the algorithmic process outlined in (Figure 2.5). Each frame is analyzed to 

generate detection data. Upon positively identifying a disease infection, the module 

sends both a confirmation command and the corresponding image with detection data to 

the decision-making logic for further processing. 

 

Figure 2.5: Algorithmic flowchart illustrating the operational steps of the AI Detection 

Module. 
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b. Weather-Based Prediction System  

To minimize crop losses, the system's architecture prioritizes proactive disease 

management over reactive treatment. Central to this strategy is the integration of a 

weather-based prediction system, designed to forecast and mitigate threats before they 

emerge. The system operates on a continuous 10-minute cycle, as illustrated in (Figure 

2.6). In each cycle, it fetches both the current weather and a 48-hour forecast from 

meteorological APIs such as OpenWeatherMap [82] and Open-Meteo [83]. 

The core of the algorithm involves analyzing the upcoming 24-hour forecast to identify 

two critical windows: periods where conditions are favorable for the emergence of late 

blight and optimal times for pesticide application. Based on this analysis, the system 

publishes a comprehensive summary that includes the current weather, the next 

predicted high-risk period for blight, the next suitable time for spraying, and a general 24-

hour forecast. This proactive approach, which combines real-time data with predictive 

insights, enables timely and precise interventions before a full-scale outbreak can occur. 

 

Figure 2.6: Flowchart of the Weather-Based Prediction System's Operational Cycle. 
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c. Decision-making Strategy  

The system's decision-making logic, illustrated in (Figure 2.7), manages and automates 

pesticide spraying based on a combination of weather conditions and real-time disease 

detection. This logic is composed of two main components: a "Spray Scheduler" and a 

"Spray Decider," whose core algorithms are detailed in the flowcharts in (Figure 2.8). 

 

Figure 2.7: Architecture of the Decision-Making Strategy, detailing the data flow 

between the Spray Scheduler and Spray Decider components. 

 

The Spray Scheduler receives weather suitability data from the weather-based 

prediction system, blight detection signals from the AI detection module, logs of previous 

spray events, and any cancellation signals from the user. It processes this information to 

determine if conditions are favorable for spraying. If they are, it schedules a spray for a 

specific time and sends this schedule to the Spray Decider, while also sending a 

notification to the user. 

The Spray Decider is the component responsible for executing the spraying operation. 

It monitors for scheduled spray times, user confirmations, and cancellation commands. 

When a scheduled time arrives, it will either start spraying automatically or wait for user 

approval, depending on the selected operational mode. Once spraying begins, it records 
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the start and completion times of the event. The system supports two modes: an 

automatic mode, where spraying starts at the scheduled time unless canceled, and a 

manual mode, where spraying only proceeds after the user explicitly accepts the 

proposed schedule. This coordinated design ensures that spraying decisions are 

efficient, timely, and safe. 

                       (a)                                                                   (b) 

Figure 2.8: Algorithmic flowcharts for the decision-making logic, showing (a) the Spray 

Scheduler and (b) the Spray Decider. 
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2.3 Vision System  

The development of the vision system was an iterative process focused on optimizing 

both the dataset and model training parameters to achieve robust, real-world 

performance. This section details the experimental journey, from initial baseline models 

to the final, deployed solution. 

2.3.1 Dataset Collection and Labeling: An Iterative Approach 

The creation of a suitable dataset was one of the most challenging aspects of this project. 

The final dataset was a composite, compiled from various open-source datasets 

available on the internet, to ensure diversity. 

All images were consolidated and managed on the Roboflow platform, which facilitated 

manual labeling. The process involved defining a set of classes and then drawing 

bounding boxes around the relevant features in each image. After labeling, a series of 

data augmentation techniques—including rotations, flips, blurs, and contrast 

adjustments—were applied to increase the dataset's variability. For each dataset 

version, a stratified 80:10:10 split was used to create the training, validation, and test 

sets. The platform allowed for the dataset to be exported directly in the YOLOv8 format, 

providing a code snippet for easy integration into the training script. The primary 

experimental variables in this stage were the choice of source images and the definition 

of the classes used for detection. Several distinct datasets were created and tested, with 

the results detailed in Table 2.3. 

• First Dataset Version (Dataset-V1): The initial experiment aimed to classify leaves 

as either infected or healthy. For this, two classes were created: "blight_leaf" and 

"h_leaf". The dataset was sourced exclusively from the PlantVillage collection (see 

Figure 2.9), consisting of 1000 images of infected leaves and all 152 available images 

of healthy leaves. After training, the results were very poor due to catastrophic 

overfitting. This failure was primarily caused by the severe class imbalance in the 
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dataset; with significantly more infected than healthy samples, the model learned to 

default to detecting blight, rendering it incapable of accurate differentiation. 

 

                                   (a)                                                                 (b) 

Figure 2.9: Example images from the PlantVillage dataset showing (a) healthy potato 

leaves and (b) leaves infected with late blight, both on uniform backgrounds. 

 

 

• Second Dataset Version (Dataset-V2): To address the issues from the first version, 

the approach was fundamentally changed. Instead of classifying healthy versus 

infected leaves, this version focused purely on detection. A new single-class dataset 

was created using 1000 images of blight-infected leaves from PlantVillage, with the 

class labeled "blight-leaf". While this represented a step forward, as the model could 

now identify infections, it introduced a new, significant problem: the model began to 

misclassify soil as blight. This was because the PlantVillage dataset consists of 

images with clean, uniform backgrounds, and the model had not learned to 

distinguish blight from the complex textures found in a real-world soil environment. 
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• Third Dataset Version (Dataset-V3): To solve the soil misclassification issue, a 

hybrid dataset was created. The number of PlantVillage images was reduced, and 

more real-world images from the Plant-Doc dataset (see Figure 2.10) were added to 

expose the model to natural environments. The labeling strategy was also refined to 

be more granular, using three classes: "blight" for the specific infected area, "leaf" for 

the entire leaf, and "dead_leaf" to account for the senescent tissue frequently 

observed during labeling. Although this was a time-consuming manual annotation 

process, the goal was to teach the model more precise distinctions. However, the 

training results revealed a critical flaw in this approach: the model learned to 

misclassify soil as "dead_leaf", while also missing a significant number of true blight 

infections. 

 

Figure 2.10: Example images from the Plant-Doc dataset showing late blight 

symptoms under various real-world field conditions. 

 

• Intermediate Two-Class Versions (Dataset-V4, V5, V6): Based on the previous 

results, the strategy shifted to a two-class system ("blight", "leaf") to improve precision 

by first identifying the leaf region and then detecting blight only within that region. 

Several versions of this approach were tested. Dataset-V4 applied this strategy to the 

PlantVillage-only image set. Dataset-V5 and its improved version, Dataset-V6 

(composed of 91 Plant-Doc images and a balanced mix of 152 healthy and 136 

blighted PlantVillage images), used a hybrid approach. However, all these versions 

exhibited significant flaws: the model tended to incorrectly label the entire image as 

"leaf", a failure likely caused by overfitting due to the limited dataset size. More 
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critically, the misclassification of soil as "blight" persisted, indicating the model still 

struggled with domain shift and could not generalize to real-world backgrounds. 

• Seventh Dataset Version (Dataset-V7): In parallel, further experiments were 

conducted to refine the single-class approach. Dataset-V7 was a single-class ("blight-

leaf") hybrid dataset, combining a reduced number of PlantVillage images with real-

world Plant-Doc images. While an improvement, it still struggled to detect small, early-

stage infections. 

The persistence of issues across so many dataset versions suggested that the dataset 

composition was not the only factor limiting performance. It became clear that to isolate 

the problem and find an optimal solution, it was also necessary to systematically evaluate 

the model's training parameters. 

 

2.3.2 Model Training  

a. Experimental Trials and Observations: 

All model training and evaluation experiments were conducted within the Google 

Colaboratory environment (Colab) to leverage its free temporary access to powerful 

NVIDIA Tesla T4 GPUs. The training script was built primarily around the ultralytics 

library, which provides pre-trained YOLO models and a streamlined training pipeline, and 

the roboflow library for direct dataset downloading. 

The training process was initiated using the ultralytics Command Line Interface (CLI), 

which allows for efficient model training with a single command. The experimental 

methodology focused on comparing the performance of two lightweight YOLOv8 model 

sizes, YOLOv8n (nano) and YOLOv8s (small), as these are better suited for deployment 

on resource-constrained hardware. The primary hyperparameter adjusted between 

experiments was the number of training epochs. 

• First Training Attempt: The initial training run utilized the YOLOv8s model with its 

default configuration on Dataset-V1. As shown in Table 2.3 (ID 1), training on this 
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highly imbalanced dataset resulted in catastrophic overfitting. The model learned to 

classify nearly every leaf as blight, rendering it completely ineffective for reliable 

detection and yielding poor results. This underscored the critical need for a more 

balanced and contextually diverse dataset for subsequent versions. 

• Systematic Parameter Tuning: After numerous experiments with various datasets 

using the YOLOv8s model and a high epoch count (100) still yielded suboptimal 

results, as detailed in Table 2.3, a new research insight emerged. It was hypothesized 

that the high number of epochs might be contributing to overfitting, especially for the 

more focused two-class detection task. Furthermore, the impact of model size had 

not been systematically evaluated. Therefore, a second phase of more focused 

experiments was designed to isolate the optimal parameters. For this phase, the 

epoch count was significantly reduced to 25, and both the YOLOv8s and YOLOv8n 

models were trained on the most promising dataset candidates (V2, V3, V6, and V7). 

The goal of this comparative analysis was to determine the best combination of 

dataset structure, model size, and training duration for the specific task of real-world 

blight detection. 

• Analysis of Comparative Training Results (IDs 8-15): The second phase of 

experiments, detailed in Table 2.3 (IDs 8-15), compared the YOLOv8s and 

YOLOv8n models across the most promising dataset versions (V2, V3, V6, and V7) 

with a reduced training duration of 25 epochs. This analysis revealed critical trade-

offs between model size, dataset structure, and real-world performance. The results 

from datasets V2 (IDs 14, 15) and V3 (IDs 12, 13) were consistently poor for both  

• model sizes. Despite achieving high mAP scores in some cases (e.g., 0.934 for 

YOLOv8n on V2), the models failed validation on real images, persistently 

misclassifying soil as blight. This demonstrated that a high metric score is 

meaningless if the underlying dataset lacks real-world diversity. The single-class 

hybrid dataset, V7, showed some promise. The YOLOv8s model (ID 8) proved 

capable of detecting small blight infections, but at the cost of missing some instances 

when soil was present. The YOLOv8n version (ID 9) had good general accuracy but 
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missed a significant amount of blight and still incorrectly detected soil. The most 

successful outcomes were achieved with the two-class hybrid dataset, V6. The 

YOLOv8s model (ID 10) achieved a high mAP@0.5 of 0.893 but failed to detect 

smaller blight spots. In direct comparison, the YOLOv8n model (ID 11), while having 

a slightly lower mAP@0.5 of 0.874, provided qualitatively better results. It 

demonstrated good overall detection and accuracy on real images, successfully 

distinguishing leaves from the background and detecting a majority of blight infections 

without the critical flaw of misidentifying soil. While neither model was perfect at 

detecting the smallest lesions, the superior generalization and reliability of the 

YOLOv8n model in Experiment 11 made it the clear choice for the final deployed 

system (see Figure 2.11). 

 

b. Explanation of Evaluation Metrics: 

 To interpret the above results accurately, the following definitions and formulas apply: 

mAP@0.5 (mean Average Precision at IoU=0.5) measures the average precision across 

all classes using a threshold of 0.5 for the Intersection over Union (IoU). A detection is 

considered correct if the IoU between the predicted and ground-truth bounding boxes is 

at least 0.5. It is calculated as:  

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 

where N is the number of classes, and APi is the average precision for class i. 

Precision reflects the accuracy of positive predictions:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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where: 

• TP (True Positives): Instances correctly identified as positive (e.g., model 

predicted blight, and it was indeed blight). 

• FP (False Positives): Instances incorrectly identified as positive (e.g., model 

predicted blight, but it was not blight). 

 

Recall measures the ability to find all relevant instances:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where: 

• FN (False Negatives): Positive instances that the model failed to detect (e.g., 

there was blight, but the model did not detect it). 

The results indicate that the model was highly effective at detecting both blight-infected 

and healthy leaves. Notably, the blight class achieved a high precision (0.894), indicating 

very few false detections, while the leaf class showed excellent recall (0.895), meaning 

most relevant instances were correctly identified. 
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                                     (a)                                                       (b) 

Figure 2.11: Qualitative comparison of detection results. (a) The model from ID 10 fails 

to detect smaller lesions. (b) The final model from ID 11 shows accurate and reliable 

detection. 
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Table 2.3: Comprehensive Results of Iterative Experiments Comparing Dataset 

Configurations, YOLOv8 Model Variants, and Training Parameters 

ID 
Dataset 

version 

Dataset 

Source 

Total 

Image 

Class 

Labels 

YOLO 

Model 

Type 

Epochs 

mAP 

@0.5 

mAP@ 

0.5:0.95 

Precision Recall 
test on real 

images 

1 V1 

152 from 

plantvillage 

without 

blight 

1000 from 

plantvillage 

with blight 

1152 

2 classes: 

blight_leaf, 

h_leaf 

yolov8s 100 0.678 0.546 1.000 0.356 

it detects 

everything as 

blight leaf 

2 V2 

1000 from 

plantvillage 

with blight 

1000 

1 class: 

blight-leaf 

yolov8s 50 0.684 0.342 0.772 0.582 

 

the detection is 

bad  

the accuracy is 

not bad 

it misses a lot  

it detects soil as 

blight 

3 V3 

15 from 

plant-doc  

30 from 

plantvillage 

with blight 

45 

3 classes: 

blighte, 

dead-leaf, 

leaf 

yolov8s 100 0.881 0.629 0.948 0.816 

the detection is 

bad 

miss some leaf  

miss a lot of 

blight  

detect soil as 

blight and dead 

leaf 

4 V4 

1000 from 

plantvillage 

with blight 

1000 

2 classes: 

blight, leaf 

yolov8s 100 0.891 0.761 0.836 0.896 

it detects the hole 

image as leaf  

the accuracy is 

bad 

it detects soil as 

blight 

5 V5 

 

225 from 

plantvillage 

without 

blight 

100 from 

plantvillage 

with blight 

325 

2 classes: 

blight, leaf 

yolov8s 100 0.875 0.657 0.860 0.871 

it detects the hole 

image as leaf  

the accuracy is 

bad 

it detects soil as 

blight 
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6 V6 

91 from 

plant-doc  

152 from 

plantvillage 

without 

blight 

136 from 

plantvillage 

with blight 

371 

2 classes: 

blight, leaf 

yolov8s 100 N/A N/A N/A N/A 

it detects the hole 

image as leaf  

the accuracy is 

bad 

it detects soil as 

blight 

7 V6 

91 from 

plant-doc  

152 from 

plantvillage 

without 

blight 

136 from 

plantvillage 

with blight 

371 

2 classes: 

blight, leaf 

yolov8n 100 N/A N/A N/A N/A 

the detection is 

good 

average 

accuracy 

the detection of 

leaf is pretty 

good 

8 V7 

104 from 

plant-doc  

100 from 

plantvillage 

with blight 

204 

1 class: 

blight-leaf 

yolov8s 25 0.691 0.35 0.703 0.658 

the detection is 

pretty good  

the accuracy is 

good  

it's detected 

small blight 

infection  

its miss some 

blight when soil is 

present 

9 V7 

104 from 

plant-doc  

100 from 

plantvillage 

with blight 

204 

1 class: 

blight-leaf 

yolov8n 25 0.677 0.334 0.759 0.587 

 good detection is  

  good accuracy  

its miss a lot of 

blight  

it detects soil as 

blight 

10 V6 

91 from 

plant-doc  

152 from 

plantvillage 

without 

blight 

136 from 

plantvillage 

with blight 

371 

2 classes: 

blight, leaf 

yolov8s 25 0.893 0.716 0.846 0.867 

 

Average 

detection 

it’s not detected 

small blight 

11 V6 

91 from 

plant-doc  

152 from 

plantvillage 

without 

371 

2 classes: 

blight, leaf 

yolov8n 25 0.874 0.704 0.905 0.833 

the accuracy and 

detection are 

good  

it detects a lot but 

not all blight  
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blight 

136 from 

plantvillage 

with blight 

it’s not detected 

small blight 

12 V3 

15 from 

plant-doc  

30 from 

plantvillage 

with blight 

45 

3 classes: 

blighte, 

leaf, dead-

leaf 

yolov8s 25 0.905 0.542 0.886 0.833 

the detection is 

bad 

miss a lot of leaf 

and blight  

detect soil as 

blight  

its didn’t detect 

dead leaf 

13 V3 

15 from 

plant-doc  

30 from 

plantvillage 

with blight 

45 

3 classes: 

blighte, 

leaf, dead-

leaf 

yolov8n 25 0.869 0.576 0.837 0.840 

the detection is 

bad  

the accuracy is 

bad  

it detects soil as 

blight-leaf 

14 V2 

1000 from 

plantvillage 

with blight 

1000 

1 class: 

Blight 

yolov8s 25 0.928 0.514 0.942 0.756 

the detection is 

bad  

the accuracy is 

bad 

it misses a lot  

it detects soil as 

blight 

15 V2 

1000 from 

plantvillage 

with blight 

1000 

1 class: 

Blight 

yolov8n 25 0.934 0.519 0.914 0.872 

the detection is 

bad  

the accuracy is 

bad  

it detects soil as 

blight 
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2.3.3 Conclusions from Experimental Analysis for Final Model 

Training 

The series of experiments yielded several key insights that will directly inform the 

methodology for training the final vision system model. The analysis concluded that 

achieving optimal performance requires enhancements in both the dataset and the 

training parameters. 

The primary conclusion regarding the dataset is that a larger and more diverse set of 

images is necessary. To improve precision and reduce the persistent issue of false 

positives where the model misidentifies soil, the final training dataset must be enhanced 

with a significant number of negative samples. This includes images of healthy plants in 

field conditions, bare soil, and random images of other common field elements to teach 

the model what to ignore. This will compel the model to learn more discriminative features 

specific only to late blight. 

Regarding the training configuration, the comparative analysis demonstrated that the 

YOLOv8n model is the most suitable choice for this specific task. Its smaller capacity 

proved to be an advantage, making it less prone to overfitting on a focused, two-class 

problem compared to the larger YOLOv8s model. Finally, the experiments clearly 

indicated that a lower number of training epochs is more effective; setting the epoch 

number to 25 provided the best balance between performance and training efficiency, 

avoiding the diminishing returns of longer training runs. These conclusions form the basis 

for the final model training protocol. 

2.3.4 Final Model Training and Evaluation Results 

Based on the conclusions drawn from the iterative experimental phase, a final, optimized 

dataset was constructed and used to train the selected YOLOv8n model. This section 

details the configuration of the final dataset, the specific training parameters used, and 

the resulting performance metrics. 
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a. Final Dataset Configuration 

The final dataset was strategically compiled to maximize diversity and real-world 

applicability, directly addressing the critical issues of domain shift and class imbalance 

identified in earlier versions. A pivotal decision was to create a balanced combination of 

image sources. This included exactly 410 real-world images from the Plant-Doc dataset, 

which were essential for exposing the model to natural environmental variability. 

Because the Plant-Doc images often contain multiple leaves, and for better balance, this 

was complemented by a set of 1000 high-quality, realistic images with blight from the 

PlantVillage collection. To further ensure enough healthy leaf examples for detection, we 

also added 200 images without infection from PlantVillage, ensuring the model had clear, 

classifiable examples of both infected and healthy tissue. 

To further enhance the dataset's diversity, 80 images from different neighboring areas 

were provided by INPV (Institut National de la Protection des Végétaux) during a field 

visit, as exemplified in (Figure 2.12). Additionally, 10 self-captured images of potato 

plants grown at home were included, such as those shown in (Figure 2.13). Crucially, all 

these images were initially labeled using the best model from previous tests to identify 

and correct any labeling issues. We also employed "hard negative mining" by using the 

model to detect and save images from environments without any leaves or blight. From 

these, 500 images where the model made a detection but no real object was present 

were collected and added as negative images to the dataset, as illustrated in (Figure 

2.14). This process was a key step in teaching the model what to ignore, thus reducing 

the false positive detections that plagued earlier experiments. This comprehensive 

approach resulted in a base dataset of 2200 images across two final classes: "blight" and 

"leaf". The distribution of these two classes within the dataset was carefully managed to 

be very close, aiming for balanced representation, as further detailed in (Figure 2.15). 

The dataset was manually partitioned, to ensure the best training, into a 96%/3%/1% 

split, resulting in 2108 images for the training set, 69 for the validation set, and 23 for the 

test set. To further enhance robustness and simulate real-world conditions, a 
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comprehensive set of augmentations was applied, effectively tripling the dataset size to 

6378 images. 

Figure 2.12: Sample images provided by INPV 

Figure 2.13: Sample images of potato plants grown at home  
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Figure 2.14: Sample of negative images used for hard negative mining 

 

Figure 2.15: Class distribution in the dataset 

 

b. Training Setup 

The final training configuration was informed by the experimental analysis. We selected 

the lightweight YOLOv8n model for its superior real-world generalization and lower risk 

of overfitting. Based on previous results, the training was set for an optimal duration of 

25 epochs, and an input image size of 800x800 pixels was used to improve the detection 

of small, early-stage lesions. 
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c. Evaluation Results 

The final trained model demonstrated strong performance across all key metrics during 

both the training and validation phases. The model architecture consists of 168 layers 

and approximately 3 million parameters. A detailed breakdown of the model's 

performance is illustrated by the confusion matrix (Figure 2.16) and a series of 

performance evaluation curves (Figure 2.17). 

Figure 2.16: Confusion matrix for the final YOLOv8n model. 
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Training Phase Results: The model achieved excellent results on the training set, 

indicating successful learning. 

• Overall mAP@0.5: 0.895 

• Blight Class mAP@0.5: 0.862 (with a precision of 0.895 and recall of 0.716) 

• Leaf Class mAP@0.5: 0.928 (with a precision of 0.820 and recall of 0.895) 

Validation Phase Results: Critically, the model's high performance transferred 

effectively to the unseen validation data, demonstrating good generalization. 

• Overall mAP@0.5: 0.895 

• Blight Class mAP@0.5: 0.863 (with a precision of 0.894 and recall of 0.721) 

• Leaf Class mAP@0.5: 0.927 (with a precision of 0.813 and recall of 0.895) 

(a)                                                                        (b) 
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(c)                                                                        (d) 

Figure 2.17: Performance evaluation curves for the final model: (a) Precision-Recall, 

(b) F1-Confidence, (c) Precision-Confidence, and (d) Recall-Confidence. 

Conclusion: In conclusion, the evaluation results confirm the success of the final model 

configuration. The consistent mAP of 0.895 across both training and validation sets 

indicates that the model has generalized well and is not overfit. The high precision and 

recall for both "blight" and "leaf" classes demonstrate its reliability in identifying the 

targeted features. Combined with the rapid inference speed, these results validate that 

the chosen YOLOv8n model, trained on the final hybrid dataset, is a robust and efficient 

solution ready for deployment on the robotic system. 

2.3.5 Deployment in ROS: 

The trained YOLOv8 model, saved as a .pt file, is deployed into the robotic system using 

a dedicated ROS 2 node named “blight_detector”. This node is responsible for real-time 

visual analysis of the environment, and its operational logic is illustrated in the flowchart 

below (Figure 2.18). Upon initialization, it loads the pre-trained best.pt model weights 

using the ultralytics library. The core functionality is driven by a timer that periodically 

triggers a detection cycle. During each cycle, the node captures a frame from a 

connected webcam. This image is then processed by the YOLO model, which performs 
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inference to identify objects within the frame, specifically looking for "blight" and "leaf" 

classes with a confidence threshold of 0.5. 

If both classes are detected in the same frame, the node concludes that a blight-infected 

leaf is present. It then publishes the string "blight" to the “/blight_detection” ROS topic to 

alert the decision-making strategy. Simultaneously, to provide visual confirmation, the 

raw image frame is encoded into a base64 string and published to a separate 

“/blight_image” topic. The node also includes a control mechanism, subscribing to a 

“/blight_detector/control” topic, which allows the detection process to be paused or 

resumed via simple string commands, enabling efficient resource management. 
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Figure 2.18: Operational Flowchart of the blight_detector Node. 
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2.4 Weather-Based Prediction System  

 

2.4.1 Data Collection 

For this project, meteorological data is sourced through two primary weather forecasting 

APIs: OpenWeatherMap and Open-Meteo. The initial choice, OpenWeatherMap, is a 

globally utilized platform offering real-time and forecasted weather data. It aggregates 

information from diverse sources, including weather stations and radar networks, making 

it a common choice for agricultural applications. However, a comparative evaluation 

revealed that while its temperature forecasts are relatively accurate, humidity data can 

exhibit higher variability, which is a significant concern for blight prediction [84]. 

Due to these limitations, and to improve forecast reliability, the open-source Open-Meteo 

API was also integrated. Open-Meteo leverages high-resolution meteorological data from 

reputable sources such as the European Centre for Medium-Range Weather Forecasts 

(ECMWF), Deutscher Wetterdienst (DWD), and NOAA’s Global Forecast System (GFS) 

[85, 86]. Crucially, preliminary tests indicated that Open-Meteo's humidity forecasts 

showed a 3% improvement in accuracy over OpenWeatherMap [87]. By integrating both 

APIs, the system can cross-reference data and leverage the strengths of each, allowing 

for a more robust and accurate assessment of environmental conditions and disease 

risk. 

2.4.2 Prediction Algorithm 

The core of the system is a Weather-Based Prediction and Spraying Advisory 

Algorithm, implemented as a ROS 2 node named “weather_reporter”. The operational 

logic of this node is visually detailed in the flowchart below (see Figure 2.19). This node 

continuously analyzes meteorological data for the user's specific field location, running 

on a recurring timer (every 10 minutes). The process begins by acquiring real-time 

current weather data (air temperature, wind speed) and a detailed 48-hour hourly 

forecast (temperature, relative humidity, precipitation, wind speed). This chronological 
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data sequence is then evaluated against two rule-based environmental models. The 

Blight Favorability Model identifies high-risk periods when the air temperature is 

between 10°C and 25°C and relative humidity exceeds 90%. In parallel, the Spraying 

Suitability Model determines optimal application windows, defined as times when the 

temperature is between 0°C and 45°C, there is zero precipitation, and wind speed is 

below 10 m/s. The algorithm systematically iterates through the upcoming 24-hour 

forecast to find the earliest "Blight-Suitable Time" and the earliest "Spray-Suitable Time." 

The final output is a structured JSON message containing an actionable forecast, which 

is published to the “/weather_status” ROS 2 topic, providing the current weather status 

and a prediction for the next high-risk blight period alongside the next optimal window for 

preemptive spraying. 
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Figure 2.19: Flowchart of the Weather-Based Prediction and Spraying Advisory 

Algorithm. 
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2.4.3 Integration with the Decision System 

The weather prediction algorithm is encapsulated within a dedicated ROS 2 node named 

“weather_reporter”. This node functions as a standalone module that integrates the 

prediction logic into the system, as illustrated in the data flow diagram in Figure 2.20. The 

node does not rely on external topic subscriptions for its primary operation. Instead, its 

execution is triggered by an internal, periodic timer set to a 600-second (10-minute) 

interval. At each interval, the node autonomously executes the full data collection and 

prediction process. The primary output of the “weather_reporter” node is a ROS 2 topic 

named “/weather_status”. On this topic, it publishes a “std_msgs/String” message 

containing the analysis results formatted as a JSON object. This JSON string provides a 

comprehensive summary, including current weather conditions, the predicted time for the 

next blight-favorable conditions (next_blight_suitable_time), and the next optimal window 

for spraying (next_spray_suitable_time). This published data is then consumed by the 

system's primary decision-making node, which subscribes to the “/weather_status” topic. 

This node is responsible for interpreting the weather analysis and making high-level 

strategic decisions, such as determining the optimal time to dispatch the robot for a 

spraying mission. 

 

 

Figure 2.20: Data Flow Diagram of the weather_reporter Node. 
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2.5 Decision-making Strategy and ROS-Based 

Communication  

 

2.5.1 Node Design and Topics 

The system employs a decoupled, publisher-subscriber design where nodes 

communicate asynchronously through specialized ROS2 topics, creating a resilient and 

scalable architecture. The flow of information, as illustrated in the system architecture 

diagram (Figure 2.21), begins with the weather nodes. The "weather_reporter" node 

publishes comprehensive environmental data and Blight Favorability prediction and 

Spraying Suitability time to the "/weather_status" topic. The "blight_detector" node, which 

can be paused and resumed independently via a "/blight_detector/control" topic to save 

resources, sends out alerts on the "/blight_detection" topic upon identifying an infection. 

The central "spray_scheduler" node subscribes to both "/weather_status" and 

"/blight_detection" to gather the necessary data for its decision-making logic. Once it 

determines a spray is necessary, it publishes the designated time on the 

"/spray_schedule" topic. The "spray_decider" node, which orchestrates the physical 

spraying, is a primary subscriber to this "/spray_schedule" topic. 

A critical feedback loop is established through the "/spray_log" topic. When the 

"spray_decider" initiates a spray, it publishes the start timestamp to "/spray_log". The 

"spray_scheduler" subscribes to this log, allowing it to confirm that a spray has been 

executed and prevent scheduling redundant operations. Additional topics facilitate 

manual control and user interaction. The "/spraying_mode" topic allows switching 

between manual and automatic operation, the "/spray_cancel" topic allows a scheduled 

mission to be aborted, and the "/spray_command" topic can be used to trigger an 

immediate spray. Finally, the "/spray_schedule_notification" topic is used by both the 

scheduler and the decider to send human-readable status updates to a user interface. 

This separation of concerns ensures that each node can operate independently, reacting 

only to the data relevant to its specific task. 
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Figure 2.21: System Architecture and Topic Communication Diagram. 

 

2.5.2 Decision-making Strategy logic 

The decision-making process, visually outlined in the flowchart in (Figure 2.22), is a 

coordinated sequence across the "spray_scheduler" and "spray_decider" nodes, 

designed to be both proactive and reactive. 

1. Trigger Identification: The process begins in the "spray_scheduler" node, which 

listens for two primary triggers: 

o Reactive Trigger: A message on the "/blight_detection" topic indicates a 

confirmed, active blight infection. This is treated as a high-priority event. 

o Proactive Trigger: A message on the "/weather_status" topic containing a 

"next_blight_suitable_time" indicates that conditions will soon be favorable for a 

blight outbreak. This allows for preventative action. 

2. Constraint Validation: Once a trigger is identified, the "spray_scheduler" 

validates a set of constraints before proposing a mission. It first checks its own 
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state to ensure a spray mission is not already scheduled. Then, it checks the 

"/weather_status" data for the "next_spray_suitable_time" to ensure the mission 

is effective and safe, specifically avoiding scheduling a mission in the current hour 

to provide lead time. Crucially, it also consults its internal state, which is updated 

by the "/spray_log", to ensure a spray has not already been performed within the 

last 7 days. The node also includes a self-correcting timer that automatically 

cancels proposed schedules if they expire before being executed. 

3. Mission Proposal: If both a trigger and all constraints are satisfied, the 

"spray_scheduler" publishes the optimal spray time to the "/spray_schedule" topic. 

This acts as a formal mission proposal for the rest of the system. 

4. Action and Execution: The "spray_decider" node receives the mission proposal 

from "/spray_schedule". Its behavior then depends on its current operational 

mode: 

o If in "auto" mode, it automatically accepts the mission and sets a timer to 

execute the spray at the scheduled time. 

o If in "manual" mode, it notifies the user (via "/spray_schedule_notification") and 

awaits an "accept" or "decline" message on the "/spray_accept" topic before 

proceeding. 

5. Closing the Loop: Once a spray mission is executed (either from a schedule or 

an immediate command), the "spray_decider" begins spraying for a fixed duration 

of 60 seconds. At the start of this period, it publishes a timestamp to "/spray_log". 

This message is received by the "spray_scheduler", which updates its 

"last_spray_time" state, successfully closing the decision loop and preventing 

redundant actions. 
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Figure 2.22: Flowchart of the Decision-Making Logic. 
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Chapter 3 System Integration 

3.1 Overview of System Integration 

This chapter addresses the critical phase of System Integration, where the system's 

theoretical and algorithmic foundations are translated into a functional, real-world 

prototype. The high-level architecture of this integrated system, illustrated in (Figure 3.1), 

involves integrating the AI-driven software, which handles perception and decision-

making, with a custom-built physical robotic body platform designed for mobility and 

durability in agricultural environments. The core hardware components include the 

mobile robot chassis, a precision spraying mechanism for targeted treatment, and a web-

based user interface that allows the farmer to command, monitor, and manage the entire 

system remotely. The Robot Operating System (ROS) serves as the central framework, 

providing the necessary communication and synchronization between all software 

modules and hardware components to create a cohesive, end-to-end crop management 

solution. 

 

Figure 3.1: High-level system architecture, illustrating the interaction between the 

control system, the physical robotic platform, and the web interface. 
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3.2 Robot Mechanism Design 

3.2.1 Field and Plant Analysis 

Understanding the physical characteristics of potato plants is crucial for designing 

effective robotic systems, particularly for detecting fungal infections and applying 

fungicides precisely. This study focuses on the Spunta potato variety, which dominates 

cultivation in Algeria, accounting for approximately 40% of the country's potato 

production (5). Therefore, the robot's design and operational parameters are tailored 

specifically to this variety. 

a. Study of potato plant dimensions and spacing 

Potato plant dimensions exhibit considerable variation influenced by environmental 

factors, cultivation techniques, and genetic characteristics. Under controlled aeroponic 

conditions with optimized nutrients and environmental parameters, Spunta and other 

cultivars achieve heights of 150–180 cm, averaging approximately 93 cm at 63 days after 

transplanting (DAT) [88–90]. In open-field environments, Spunta typically attains 60–100 

cm, though exceptional cases under ideal irrigation and fertility reach 120–130 cm in 

varieties like Belete and Gudanie [88–90]. Within Algerian agricultural settings, Spunta 

demonstrates vigorous growth with maximum heights of 70–100 cm (see figure 3.2.a), 

contingent upon seasonal conditions and field management practices [66]. Regarding 

lateral development, Spunta exhibits canopy widths of 60–75 cm. This growth pattern 

correlates directly with standard Algerian row spacing configurations of approximately 80 

cm between rows and 20–30 cm within rows (see figure 3.2.b), facilitating near-complete 

canopy coverage under high-fertility irrigation [66, 91]. Stem structural properties include 

robustness, with seedling stems measuring 7–12 cm featuring 5–8 mature leaves, while 

main stems display diameters of approximately 6.3 mm under experimental conditions 

(see figure 3.2.a), supporting upright growth and canopy expansion [88, 92]. Leaf 

morphology parameters are similarly significant, with the fourth leaf of Spunta plants 

averaging 18.3 cm in length and 14.1 cm in width during controlled studies (see figure 
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3.2.a), establishing critical baselines for precision agriculture applications [88, 92]. 

 

 

          (a)                                                                         (b) 

Figure 3.2: Diagram of potato plant morphological dimensions (a) and its standard field 

planting geometry (b) 

 

b. Field Structure and Navigation Constraints 

The adopted row spacing of 80 cm and within-row spacing of 25 cm, combined with 

Spunta’s typical canopy width of 75 cm, creates a tightly structured field environment. 

This configuration results in minimal inter-row clearance (effectively ~5 cm per side) and 

dense intra-row plant placement, necessitating precise robot control to navigate between 

rows without damaging adjacent canopies. However, the moderate maximum plant 

height of 90 cm facilitates over-canopy operation, enhancing the robot’s field of vision 

and accessibility for both disease detection and targeted spraying. 

Critical operational parameters for the robotic platform were established through rigorous 

analysis of Spunta potato cultivation practices in Algeria. The foundational 

measurements include: 
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• Row spacing: Standardized at 80 cm based on prevalent field configurations. 

• Canopy width: Documented as 75 cm, representing typical lateral spread. 

• Within-row spacing: Defined as 25 cm, reflecting optimal planting density. 

• Maximum plant height: Set at 90 cm, accounting for growth variability under field 

conditions. 

• Operational clearance: Derived as 5 cm per side from the difference between row 

spacing (80 cm) and canopy width (75 cm). 

This constrained spatial environment necessitates an adaptive width capability in the 

robotic design. This core functional requirement ensures safe traversal capabilities within 

inter-row corridors while accommodating natural biological variability in canopy 

development. 

 

3.2.2 Robot Mechanical Design 

The robotic system prioritizes three critical design objectives to address field operational 

challenges: 

• Adaptability: Essential for accommodating varied field geometries across Algerian 

agricultural landscapes, where spatial layouts exhibit substantial variation between 

plots. 

• Stability: Must be maintained throughout navigation to ensure consistent platform 

orientation, enabling accurate imaging and targeted spray deployment. 

• Accessibility: Requires comprehensive coverage of all plant structures, —

particularly lower foliage where late blight infections typically initiate —to support 

effective disease intervention. 

These goals collectively enable reliable performance in unstructured field environments. 
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3.2.3 Robot Structure Overview 

To address the aforementioned constraints, several versions have been developed. 

Each version aimed to systematically resolve the shortcomings of the previous design, 

focusing on enhancing stability, mobility, and overall robustness for agricultural fieldwork. 

a. Version V1.0: 

The first design version introduced a table-like structure serving as the robot’s main body 

(see Figure 3.3). Four horizontal beams extend outward from the central platform; each 

connected via pivot joints to both the central platform and a vertical pillar. At the bottom 

end of each pillar is a single fixed wheel, enabling movement. Notably, the entire leg 

assembly relies on the rotation of the vertical pillars to change direction, eliminating the 

need for a traditional steering mechanism. This configuration aimed to give the robot 

width adaptability, ideal for navigating between rows of trees or crops with varying 

spacing. The symmetrical layout allows the robot to straddle over vegetation. However, 

deeper inspection of the model reveals structural and functional issues. The long 

horizontal arms are unsupported and prone to flexing under load, especially near the 

pivot joints. Additionally, the concentration of forces on the central plate and minimal 

bracing reduce overall stability. The reliance on pillar rotation for steering increases 

mechanical complexity and power consumption. These design weaknesses made the 

system fragile, inefficient, and unsuitable for uneven terrain or sustained field use, 

leading to the development of an improved version. 
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Figure 3.3: Robot Structure V1.0 

 

b. Version V2.0: 

In this second version, significant improvements were introduced to address the 

structural weaknesses of V1.0 (see Figure 3.4). The robot’s legs are now inclined 

outward, rather than mounted vertically. This angled design enhances overall mechanical 

strength and allows the robot to better distribute its weight, improving both stability and 

durability during motion. 

The main platform has been widened, reducing the center of a gravity and increasing 

ground clearance between the wheels. This makes the structure more stable on uneven 

surfaces and less likely to tip during operation. 

A major upgrade was made in the steering and mobility mechanism: the bulky vertical 

pillars were replaced with compact, independent wheel mounts, each capable of rotation. 
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These small wheel holders offer higher control precision, especially during tight turns or 

when navigating irregular paths between crops. The wheels are a caster type, which 

allows for omni-directional movement. This change also reduces mechanical complexity, 

weight, and energy consumption compared to the previous pillar-based steering system. 

 

Figure 3.4: Robot Structure V2.0 

c. Version V2.1: 

This version focuses on compactness, balance, and terrain adaptability (see Figure 3.5). 

The most visible structural change is the inward angling of the legs, which significantly 

reduces the overall footprint of the robot. This new geometry not only shortens the base 

length but also centers the mass beneath the main platform, enhancing stability, 

especially when operating on uneven ground. 

To support better maneuverability in agricultural environments, larger and wider wheels 

were introduced. These wheels are more suited for soft soil, offering better grip, smoother 
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rolling, and reduced chances of sinking or slipping. Their size also increases ground 

clearance slightly, giving the robot a better ability to pass over small obstacles like roots 

or rocks. 

The leg configuration now adopts a more vertical posture with slight inward inclination, 

which reduces torque on the chassis and contributes to a more compact, lightweight 

design.  

Internally, the connections between the legs and the chassis have been simplified, 

removing redundant supports and making the assembly easier to manufacture and 

maintain. This version is practical for today's work, and its simple design makes it easy 

to upgrade with better sensors or wheels in the future. 

 

Figure 3.5: Robot Structure V2.1 
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3.2.4 Adjustable Wheelbase and Structural Layout 

The robot features a dynamically adjustable wheelbase that allows it to adapt to varying 

crop row widths, enhancing its versatility across diverse field geometries. The structural 

frame is constructed from lightweight aluminum, offering a balance of strength, durability, 

and ease of manufacturing. The platform is mounted on four wheeled legs connected 

through a scissor-like mechanism, forming a stable elevated chassis. A single central 

motor drives a gearbox with one perpendicular input and two lateral outputs; each 

connected to a pair of legs on the left and right sides. These outputs actuate lead screw–

nut assemblies that drive a sliding mechanism, enabling the legs to extend or retract 

symmetrically (see Figure 3.6). 

 

Figure 3.6: Drive mechanism for wheelbase adjustment 
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This mechanism effectively translates the linear push/pull motion from the lead screws 

into a lever-like action on the legs. This allows for a smooth and coordinated adjustment 

of the wheelbase width from 42 cm to 95 cm, without compromising structural integrity 

(see Figure 3.7). 

                                (a)                                                             (b) 

Figure 3.7: Adjustable wheelbase range, showing (a) minimum width and (b) maximum 

width. 

 

The height from the ground to the lower surface of the platform is fixed at 112 cm, 

ensuring consistent clearance above the crop canopy, while the legs are angled outward 

at 110° to enhance lateral stability (see Figure 3.8). 
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Figure 3.8: Side profile view showing the robot's height and leg angle. 

 

The distance between the front and rear wheels ranges from 93 cm to 113 cm, depending 

on the adjusted width, due to the direct relationship between leg extension and horizontal 

spread (see Figure 3.9). This dynamic structural adaptability allows the robot to maintain 

optimal alignment over crop rows, ensuring both precise navigation and unobstructed 

operation of its sensing and spraying systems. 
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                                  (a)                                                           (b) 

Figure 3.9: Front-to-rear wheel distance variation, showing (a) the minimum distance 

at maximum width and (b) the maximum distance at minimum width. 

3.2.5 Camera Mounting and Vision Coverage 

The camera is centrally mounted on the underside of the robot’s main platform, oriented 

directly downward (see Figure 3.10). Positioned at a fixed height of 112 cm above the 

ground, this placement offers a wide, unobstructed field of view across the crop canopy. 

The elevated and centralized configuration is designed to capture high-resolution images 

focused on the upper leaf surfaces, which are most indicative of plant health. 
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Figure 3.10: Underside view of the robot platform showing the central mounting 

position of the camera. 

 

By aligning the camera with the geometric center of the robot’s base, uniform image 

coverage is achieved as the robot moves along crop rows. This strategic positioning 

ensures consistent data acquisition, minimizes occlusions, and enhances the accuracy 

of the vision system. Overall, this setup significantly improves the system’s ability to 

detect, localize, and monitor plant health conditions with precision. 

 

3.2.6 Description of the 3D Model in SolidWorks 

The complete mechanical structure of the robot was designed as a detailed 3D model in 

SolidWorks to ensure precision in manufacturing and assembly. The design focuses on 

a modular, symmetrical, and robust frame capable of navigating agricultural 

environments while supporting the necessary electronic and mechanical subsystems. 

Different views of the model, including an isometric perspective of the final assembly 

(Figure 3.11), an exploded view (Figure 3.13), and standard orthographic projections 

(Figure 3.12), provide a comprehensive understanding of the robot's construction. 
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Figure 3.11: Isometric view of the assembled V2.1 robot model. 

 

d. Structural Assembly: 

The robot’s chassis is built around a central platform (BASE1), which acts as the main 

structural hub. The symmetrical nature of the design is clearly visible in the top-down 

orthographic view (Figure 3.12c), which shows how the leg assemblies are perfectly 

mirrored. This flat, rectangular component is designed with specific cutouts and mounting 

holes to securely attach the leg assemblies and the wheelbase adjustment mechanism. 

The underside of the platform also features a dedicated, centralized mount (CAM in 

Figure 3.13) designed to hold the vision system's camera in a fixed, downward-facing 

orientation. The four support legs are two-part assemblies (LEG BAS1 and LEG1) that 

connect to the underside of the main platform. The side and front profiles (Figure 3.12a 

and 3.12b) best illustrate the aggressive outward angle of the legs, which creates a very 

stable, trapezoidal footprint crucial for operating on uneven terrain. At the end of each 

leg, a simple, durable wheel (WHEEL1) is mounted, allowing for mobility. 
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                                      (a)                                                                 (b) 

                                                                (c) 

Figure 3.12: Orthographic views of the robot model: (a) Side view, (b) Front view, and 

(c) Top view. 
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e. Wheelbase Adjustment Mechanism: 

A key feature of the design is the dynamic wheelbase adjustment system, which is clearly 

visualized in the 3D model. This mechanism is driven by a central gearbox (gear_box). 

The gearbox actuates a sliding lead-screw system. The exploded view (Figure 3.13) 

provides a clear look at this system's individual components, showing precisely how the 

parts labeled Part8G and Part69 interlock to form the sliding housing for the lead-screw 

assembly. This assembly converts the rotational motion from a single motor into a 

synchronized linear force, pushing the leg assemblies outward or pulling them inward. 

This design allows the robot’s width to be smoothly adjusted to match varying crop row 

spacing. 

The exploded view of the model (Figure 3.13) highlights the modularity of the design, 

showing how each component fits together. This detailed digital blueprint was essential 

for verifying component compatibility and for guiding the subsequent manufacturing and 

assembly processes. 

 

Figure 3.13: Exploded view of the robot's 3D model showing the main components. 
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3.3 Precision Spraying System 

3.3.1 Spraying Geometry and Environmental Assumptions 

To design a robust spraying system, the spatial and agronomic parameters of the field 

and crop must be defined. The crop of focus is the Spunta potato variety, which typically 

grows to a height of 90 cm with an average canopy width of 75 cm. The spraying robot 

features two categories of nozzle placements: top-mounted and leg-mounted nozzles, 

with their key dimensions shown in the CAD models in (Figure 3.14) and (Figure 3.15). 

• Top nozzles are positioned 35 cm laterally from the robot’s centerline (Figure 

3.14b) and are elevated 12 cm above the plant canopy (Figure 3.15a). 

• Leg nozzles are located 10 cm away from the crop rows and elevated 29 cm from 

the ground (Figure 3.15). 

The objective is to provide uniform coverage of the potato plants, ensuring full foliar and 

vertical surface exposure while avoiding blind spots. To that end, the target spray area 

includes a 1.5m width at the top of the canopy (80cm per nozzle with overlap of 10cm) 

and a 1.5m (80cm per nozzle with overlap of 10cm) lateral spread at ground level, along 

with complete coverage of the 90 cm plant height. 
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                         (a)                                                                   (b) 

Figure 3.14: CAD model illustrating the placement of the top-mounted nozzles, 

showing (a) the elevation above the plant canopy and (b) the lateral distance from the 

robot's centerline. 

 

Figure 3.15: CAD diagram detailing the vertical and horizontal placement of the leg-

mounted nozzles relative to the ground and crop row. 

 

 

 



 

 

 

92 

 

 

 

3.3.2 Nozzle Orientation and Spray Angle Requirements 

a. Top Nozzles 

For the top nozzles, which are aimed directly downwards, there is no need for inclination. 

Each top nozzle must cover a width of 80 cm (40 cm to either side) from an elevation of 

12 cm. Using the geometric analysis shown in (Figure 3.16), we can determine the 

required spray angle. 

• Calculation: Let a be the half-angle of the spray cone.  

tan(𝑎) =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
=

40 𝑐𝑚

12 𝑐𝑚
𝑎 = arctan (

40

12
) ≈ 73.3 ∘  

Required Total Spray 𝑨𝒏𝒈𝒍𝒆 =  𝟐 × 𝒂 ≈ 𝟏𝟒𝟔. 𝟔 ∘  

Figure 3.16: Conceptual diagram of the overlapping spray fields from the top-mounted 

nozzles. 

b. Leg-Mounted Nozzles 

The leg-mounted nozzles must be precisely oriented to cover both the full vertical height 

of the plant and the required lateral width on the ground. This requires calculating both a 

spray angle and an inclination angle for the vertical and horizontal planes. 

• Vertical Orientation (Covering Plant Height): As illustrated in (Figure 3.17a), the 

nozzles are positioned at a height of 29 cm and must cover the plant up to its full 

height of 90 cm. The nozzle is 10 cm away from the plant row. 
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Calculation: Vertical distance to cover 𝒖𝒑𝒘𝒂𝒓𝒅𝒔 =  𝟗𝟎 𝒄𝒎 − 𝟐𝟗 𝒄𝒎 = 𝟔𝟏 𝒄𝒎  

Let 𝒃𝟏 be the angle to spray downwards and 𝒃𝟐 be the angle to spray upwards, relative 

to the horizontal plane. 

𝒃𝟏 =  𝐚𝐫𝐜𝐭𝐚𝐧 (
𝒅𝒐𝒘𝒏𝒘𝒂𝒓𝒅𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝐥𝒂𝒕𝒆𝒓𝒂𝒍𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆
) = 𝐚𝐫𝐜𝐭𝐚𝐧 (

𝟐𝟗

𝟏𝟎
) ≈ 𝟕𝟏. 𝟎∘ 

𝒃𝟐 = 𝐚𝐫𝐜𝐭𝐚𝐧 (
𝒖𝒑𝒘𝒂𝒓𝒅𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝒍𝒂𝒕𝒆𝒓𝒂𝒍𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆
) = 𝐚𝐫𝐜𝐭𝐚𝐧 (

𝟔𝟏

𝟏𝟎
) ≈ 𝟖𝟎. 𝟕∘ 

Required Vertical Spray Angle (𝒃) =  𝒃𝟏 + 𝒃𝟐 ≈ 𝟏𝟓𝟏. 𝟕°  

Required Vertical Inclination (𝑰𝒗) =  𝒃𝟐 − 𝒃𝟏 ≈ 𝟗. 𝟕° (angled upwards) 

• Horizontal Orientation (Covering Ground Width): As illustrated in Figure 3.17b, 

each leg nozzle must cover a horizontal width of 80 cm from a lateral distance of 10 

cm. The spray is asymmetric, covering 27 cm to front and 53 cm to the back 

depending on the front-to-rear wheel distance at maximum width that is 90cm (see 

section 3.2.4), so  

𝟗𝟎𝒄𝒎

𝟐
=  𝟒𝟓 

and we add the overlap  

𝟒𝟓𝒄𝒎 +  𝟏𝟎 𝒄𝒎 =  𝟓𝟓𝒄𝒎 

Calculation: Let 𝒕𝟏 and 𝒕𝟐 be the angles required to cover the two horizontal sections.  

𝒕𝟏 = 𝒂𝒓𝒄𝒕𝒂𝒏 (
𝟐𝟓

𝟏𝟎
) ≈ 𝟔𝟖. 𝟐° 

 𝒕𝟐 = 𝒂𝒓𝒄𝒕𝒂𝒏(
𝟓𝟓

𝟏𝟎
) ≈ 𝟕𝟗. 𝟕 ∘  

Required Horizontal Spray Angle (𝒕) =  𝒕𝟏 + 𝒕𝟐 ≈ 𝟏𝟒𝟕. 𝟗°  

Required Horizontal Inclination (𝑰𝒉) =  𝒕𝟐 − 𝒕𝟏 ≈ 𝟏𝟏. 𝟓°  
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                                   (a)                                                             (b) 

Figure 3.17: Geometric analysis for determining the (a) inclinations from side view and 

(b) spray angles from top view, for the leg-mounted nozzles. 

 

3.3.3 Nozzle Type and Material Selection 

Given the robot’s stationary spraying behavior and the need for full area saturation, full 

cone nozzles were deemed most appropriate. Full cone nozzles provide uniform 

coverage across a circular footprint, making them ideal for pesticide and fungicide 

applications on dense canopies. The next consideration is material compatibility. Curzate 

M contains mancozeb, a chemical known to corrode metals like brass over time. Studies 

have shown that ceramic nozzles offer the highest durability and chemical resistance, 

with lifespan ratings of 90 to 130 times longer than brass. Plastic nozzles, although 
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variable in performance, can be acceptable for cost-sensitive applications provided they 

are made of chemically resistant polymers. As a result, we recommend the use of 

ceramic nozzles for durability and chemical safety, while chemical-grade plastic nozzles 

may be used when budget constraints demand it [93, 94]. 

3.3.4 Conclusion and Final Specifications 

Based on the geometric analysis and material considerations, the optimal nozzle 

configuration for the precision spraying system is as follows: 

• Nozzle Type: Full cone nozzles should be used for both top and leg placements 

to ensure uniform saturation of the plant canopy. 

• Material: Ceramic nozzles are the primary recommendation due to their high 

durability and resistance to chemical corrosion from fungicides like Curzate M. 

Chemical-grade plastic nozzles are a viable secondary option for budget-

conscious implementations. 

• Spray Angle: The calculated required angles are approximately 146.6°, 151.7°, 

and 147.9°. The best practical option is to select a single type of nozzle with a 

standard cone angle of 150° for all placements. This simplifies procurement while 

providing coverage that closely matches all requirements. 

• Top Nozzle Inclination: 0° (aimed directly downwards). 

• Leg-Mounted Nozzle Inclination: 

o Vertical: Angled upwards at approximately 9.7°. 

o Horizontal: Angled sideways at approximately 11.5°. 

This configuration ensures complete and uniform coverage of the target crop (see Figure 

3.18), maximizing the effectiveness of the treatment while adhering to safety and 

durability standards. 
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Figure 3.18: The complete coverage of the target crop with the spraying system  
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3.4 Web user Interface 

The user interface serves as the primary point of interaction between the farmer and the 

underlying technologies. Developed using HTML, CSS, and JavaScript, the web-based 

interface is designed to be lightweight, accessible, and user-friendly across various 

devices. It enables the farmer to visualize real-time disease detection results and 

weather-based blight risk forecasts without needing to directly manipulate ROS 

commands or logic. By centralizing data display and control functions, the interface 

enhances decision-making and simplifies the management of plant health in the field. 

3.4.1 Objectives 

The main objective of the web interface is to provide the farmer with a clear, real-time 

view of the plant health and environmental conditions, while also enabling direct control 

over the system’s actions. 

To achieve this, the interface is designed to display a range of critical information. This 

includes the direct output of the YOLO deep learning model, which reports whether 

infected areas are present, and a corresponding grid-like image gallery for visual 

confirmation of any detected infected leaves. It also provides a 24-hour weather-based 

blight risk forecast to notify the farmer of upcoming risks, alongside a real-time display of 

current weather data, including temperature, humidity, and wind. 

In addition to its display capabilities, the interface provides comprehensive control over 

the system's functions. The user can start or stop the system, enable or disable the 

camera feed for the detection node, and select the desired spraying mode, choosing 

between "automatic" and "manual" operation. Furthermore, the interface allows for 

detailed mission control, giving the user the ability to accept or decline spraying 

suggestions, cancel a previously scheduled spray, or issue a direct, immediate command 

to begin spraying. 
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3.4.2 Architecture of the Interface 

The web interface was developed to serve as the main communication layer between 

the farmer, the designed ROS system (AI-based detection system, weather forecast 

services, and robotic spraying unit). The primary communication mechanism enables the 

web interface to publish commands to ROS topics that our system subscribes to (typically 

command data), while simultaneously subscribing to topics where ROS publishes 

information (typically display data). This ensures a smooth bidirectional data flow 

between the system and its interface. 

This real-time communication is made possible through WebSocket connections 

established via rosbridge, which creates a persistent, full-duplex communication channel 

between the browser and ROS. A WebSocket is an advanced communication protocol 

providing full-duplex communication channels over a single TCP connection, enabling 

real-time data exchange between web clients and servers. In our system, JavaScript 

code initiates a WebSocket connection to the rosbridge_server running on port 9090, 

acting as the bridge between ROS topics and the web interface. 

3.4.3 Front-end Design and Layout 

The frontend layout is structured into several functional sections, each dedicated to a 

specific task—for instance, the sidebar handles robot control settings. This modular 

design creates a clear, grid-based interface that enhances usability and ensures efficient 

access to all system features, resulting in the grid-like view for the web application shown 

in (Figure 3.19). 
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Figure 3.19: The main dashboard of the web user interface, showing real-time data 

and control panels. 

a. Sidebar Section 

The sidebar, shown in (Figure 3.20), contains all robot control parameters in the form of 

buttons and toggles. A green glow appears when a parameter is activated and 

disappears when it's turned off. These settings are sent to the robot to define its current 

permissions and operational behavior. The farmer has the ability to turn the robot's 

camera on or off (pausing the blight detector node), start or stop the system, set the 

spraying mode to manual or automatic, and control the auto-navigation and main power. 
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Figure 3.20: The sidebar settings panel for robot control. 

 

b. Weather Section 

This section, shown at the top of the dashboard in (Figure 3.21), streams real-time data 

for date, time, temperature, humidity, and wind. The data is specific to a selected city 

(Blida), determined by its longitude and latitude coordinates in the “weather_reporter” 

node. This provides the user with an immediate, at-a-glance view of the current 

environmental conditions. 

 

Figure 3.21: The weather section displaying current conditions. 
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c. Blight Weather Conditions Warnings Section 

As the name suggests, this section shows the soonest meteorological danger so that the 

farmer can be aware of favorable blight conditions coming at a specific time within the 

next 24 hours. As shown in (Figure 3.22), if a risk is identified, a red warning box appears 

with the date and time of the predicted event. 

 

Figure 3.22: The condition warnings panel displaying a future blight risk. 

 

d. Spray Control Section 

This section, shown in (Figure 3.23), displays all information related to spraying. This 

includes the current spraying mode (e.g., manual), the spraying status (e.g., waiting), 

and notifications for spraying commands, such as suggestions, cancellations, and 

acceptances. It also provides the user with the ability to cancel or accept any suggested 

or scheduled spraying action, as well as launch an unconditional spray action from a 

separate "SPRAY" button. 
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Figure 3.23: The spray control panel displaying a spraying suggestion. 

 

e. Spray Logs Section 

This section displays recent spraying activity. As shown in (Figure 3.24), it displays the 

exact time and date of the last spray committed, providing a clear history for the farmer 

to reference. 

 

Figure 3.24: The spray log panel showing the timestamp of the last completed spray. 
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f. Blight Section 

This section (Figure 3.25) displays data from the YOLO prediction node in ROS, showing 

alerts when blight is detected along with the detection time. It includes a counter to track 

the number of detections, helping assess disease spread, and a gallery of detected blight  

images on leaves for visual verification. 

 

Figure 3.25: The blight status panel showing detection logs and an image gallery. 

 

 

3.4.4 Backend Communication and Integration 

The web interface is not a standalone application but a tightly integrated component of 

the overall system, bridging the gap between the farmer and the intelligent robotic 

platform. It communicates with the backend components—particularly the ROS 2 

environment through asynchronous and websocket interactions. These connections 

allow the interface to both retrieve information and send user commands in real time. 
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a. Real-Time WebSocket Bridge with ROS 2 

To enable real-time, low-latency communication between the ROS 2 environment and 

the browser, a WebSocket bridge is implemented using rosbridge_server, which offers 

live streaming of the data published by our system's nodes. In our setup, as shown in 

(Figure 3.26), a ros_connection.js JavaScript file instantly requests to connect to the 

WebSocket channel as soon as the page loads. The rosbridge_server is launched in the 

ROS environment and starts a WebSocket server on port 9090 (Figure 3.27), acting as 

the bridge between ROS topics and the web interface. 

 

Figure 3.26: JavaScript connection to WebSocket. 

 

Figure 3.27: Launching the rosbridge server. 
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b. Blight Display 

For the blight display, a dedicated blight.js JavaScript file is created. As shown in the 

data flow diagram in (Figure 3.28), this script holds the responsibility of updating the front-

end with the latest updates from the blight_detector node. It does this by subscribing to 

the /blight_detection topic for textual alerts and the /blight_image topic for the visual data 

used to populate the image gallery. 

 

Figure 3.28: Data flow for the blight display section. 

 

c. Weather Data Retrieval and Integration 

As shown in (Figure 3.29), the interface retrieves real-time and forecast weather data 

through a weather.js JavaScript file. This script subscribes to the /weather_status topic 

and listens for data published by the weather_reporter node. The front-end then uses 

this data to populate both the main weather section and the weather warnings section, 

providing a 24-hour forecast of potential blight danger. 
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Figure 3.29: Data flow for the weather section. 

d. Spray Log Display 

For the spray log, a spray.js JavaScript file subscribes to the /spray_log topic. It listens 

to the data published on this topic to find and display the timestamp of the latest 

completed spray action, providing a clear history of interventions. 

e. Spray Control 

The spray control functionality is a central feature that involves multiple JavaScript files 

and ROS topics. 

• spray_modes.js: This file handles user selections for the spraying mode 

("manual" or "auto") and publishes the choice to the /spraying_mode topic. It also 

publishes the user's response to spray suggestions (accept/decline) to the 

/spray_accept and /spray_cancel topics. 

• spray.js: This file manages the unconditional spray command. When the user 

clicks the "SPRAY" button, it publishes a message to the /spray_command topic. 
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• spray_notifications.js: This script is responsible for displaying system actions, 

such as schedules and suggestions, as well as user responses. It subscribes to 

the /spray_schedule_notification topic to receive the necessary data for display. 

All these JavaScript modules are connected and managed by the main farm.html file, 

creating a cohesive and interactive user experience. The complete architecture, 

illustrating the connections between all ROS nodes, web interface files, and topics, is 

shown in (Figure 3.30). 

 

Figure 3.30: A comprehensive block diagram of the full system architecture, detailing 

the interaction between all ROS nodes and the web interface components. 
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3.4.5 System Launch Setup 

The system is a website that connects to a ROS 2 system consisting of four nodes via a 

rosbridge. To run this system, there are two primary methods: a manual setup and a 

more user-friendly, automated setup using a Flask backend. 

 

a. Manual Setup 

The manual method requires launching each component from the terminal. 

1. Initiate the WebSocket Bridge: The connection between ROS and the web 

browser is established by running the rosbridge_server with the following 

command: rlaunch rosbridge_server rosbridge_websocket_launch.xml 

2. Open the Web Interface: Open the farm.html file in a web browser. This will 

automatically attempt to connect to the ROS system via the WebSocket. 

3. Launch ROS Nodes: The four main ROS nodes can be launched all at once using 

a ROS launcher or individually. To run a single node, use the command: ros2 run 

<pkg_name> <node_name> (e.g., ros2 run weather_reporter weather_node) 

If ROS 2 is installed and configured correctly, the system will run effectively with this 

method. 

b. Automated Setup with Flask Backend 

To eliminate the need for manual terminal commands and make the system more user-

friendly, a Flask backend web server was integrated. This allows the user to start the 

entire system simply by opening the website and pressing the "Start System" button. 

The Flask application is designed to launch the main ROS launcher file but waits for a 

command from the web interface. This interaction works as follows: 

• The Flask application listens for HTTP POST requests on two specific endpoints: 

http://localhost:5000/start and http://localhost:5000/stop. 

• A backend.js file in the web interface sends a POST request to the appropriate 

endpoint when the user clicks the "Start System" or "Stop System" button. 
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• When a request is received on the /start channel, the Flask server executes the 

ros_launcher, which starts all four ROS nodes simultaneously. 

• When a request is received on the /stop channel, the Flask server uses the psutil 

library to find the Process ID (PID) of the main ROS launcher process and all of its 

children (the running nodes) and then terminates them all. 

To make the system completely seamless, the final step is to configure the rosbridge 

WebSocket and the Flask backend to run instantly when the operating system boots. 

This allows the system to run silently in the background until the user opens the website 

and starts it from the interface. 

c. Conclusion 

The interface enhances the system's usability by presenting real-time data and controls 

in a clear, accessible layout. It allows the user to monitor blight detection, weather 

forecasts, and spraying history, while also enabling direct control of the system. By 

centralizing information and actions in one place, the interface empowers the user to 

make timely, informed decisions and manage crop health more effectively. 
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Chapter 4 Validation and Results 

4.1 System Performance Analysis 

4.1.1 The System Usability with the User Interface 

The overall usability of the system was evaluated by testing the web interface, which 

serves as the primary control and monitoring platform for all underlying components. 

Through extensive testing and observation, the following key features were verified, 

confirming the system's intuitive and effective design: 

 

a. Weather Monitoring and Auto-Update Functionality 

• The system successfully fetches real-time weather data at 10-minute intervals, which 

is displayed in the main weather panel (Figure 4.1a). 

• Favorable conditions for late blight development are accurately detected and 

displayed in real time. 

• The interface clearly distinguishes between current and forecast weather risks using 

color-coded warnings and status indicators. For instance, a green panel indicates no 

immediate threat (Figure 4.1b), while a red warning highlights an upcoming period of 

high risk (Figure 4.1c). 
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                                                                  (a) 

                                (b)                                                                (c) 

Figure 4.1: The weather monitoring and warning panels of the user interface, with (a) 

Real-Time Weather Panel, (b) "Next Suitable Conditions" Warning, (c) "No Favorable 

Conditions" Warning. 

 

b. Blight Detection Integration 

• The blight detection node is triggered through a camera control toggle on the 

interface. 

• Captured images of infected crops are correctly analyzed and uploaded to the gallery 

section with proper labeling. 

• Detections are timestamped and displayed, allowing users to track and review 

incidents. 

• A separate window provides a live camera feed with real-time bounding boxes drawn 

around detected blight and leaves, as shown in (Figure 4.2). 
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Figure 4.2: Real-time blight detection feed showing bounding boxes around infected 

areas. 

 

c. Spray Control Modes 

• Automatic Spraying Mode: The system autonomously schedules a spray event 

when either favorable conditions for late blight are detected or an infection is 

confirmed by the AI detector. The interface then shows the scheduled spray, as seen 

in (Figure 4.3b). 

• Manual Spraying Mode: The user is prompted to confirm or decline any spray 

recommendation (Figure 4.3a). If accepted, the system schedules the spray 

accordingly. 
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  (a)                                                           (b) 

Figure 4.3: Spray control panel showing (a) a user prompt in Manual Mode and (b) an 

automatically scheduled spray in Auto Mode. 

 

d. Spraying Status and Scheduling 

• Scheduled spraying actions are tracked and displayed in the interface. Once a user 

accepts a manual suggestion, the interface updates to reflect the officially scheduled 

mission (Figure 4.4). 

• When a spray event reaches its execution time, the system logs the operation and 

updates the spray history table. 

• Users are informed of past spraying activities within a 15-day window for reference. 
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Figure 4.4: The spray control panel after a user accepts a suggestion in manual mode, 

showing the mission is now officially scheduled. 

 

e. System and Node Control 

• Camera Control: The camera toggle button activates or deactivates the blight 

detection node in real time. 

• System Control: The "Start System" and "Stop System" buttons control all nodes. 

Clicking "Stop System" safely shuts down all active services, while "Start System" 

re-initializes them. The control panel for these actions is shown in Figure 4.5. 
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Figure 4.5: The sidebar control panel for system and node settings. 

 

f. General Observations 

• All functional objectives of the web interface have been met. 

• The user experience is responsive, with smooth transitions between system 

states. 

• The interface provides centralized and accessible control over weather analysis, 

disease monitoring, and spray decisions.  

 

 

4.1.2 YOLO Detection Performance Evaluation 

a. Generalization on Unseen Internet Images 

After training, the model's generalization capabilities were evaluated using a set of 

unseen images collected from the internet, which were not part of the training dataset. 

The model demonstrated high effectiveness, accurately detecting nearly all instances of 

blight present in these images. 
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A key strength observed was its ability to identify challenging cases, including both small 

and blurred infections (Figure 4.6). Furthermore, the model proved robust against false 

positives by accurately avoiding the detection of soil (Figure 4.7). Critically, it successfully 

differentiated late blight from visually similar diseases, such as Botrytis gray mold (Figure 

4.8). Overall, these evaluations confirmed the model's high detection accuracy on 

diverse, real-world images, even in challenging backgrounds. 

 

(a)                                                                    (b) 

Figure 4.6: Detection of (a) small and (b) blured blight infections 
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Figure 4.7: Detection of healthy leaves in the presence of soil 

 

 

Figure 4.8: Differentiation of Late Blight from Botrytis gray mold 
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b. Real-Time Detection on images in Mobile phone 

After the deployment of the model on ROS, real-time detection was tested using a 

camera feed with images from a mobile phone. This testing evaluated the rapidity and 

accuracy of the model, particularly with low-quality images, yielding very good results. 

An example of these real-time detections is shown in (Figure 4.9). Despite this strong 

performance, certain limitations were observed. For instance, in some cases, the model 

had a tendency to misclassify early blight as late blight, as seen in (Figure 4.10: 

Misclassification of Early Blight as Late Blight). This occurred due to the significant visual 

similarity between their symptoms. The accuracy remained good, and blight was still 

correctly detected even with poor imaging resolution. 

 

Figure 4.9: Real-time Detections by the YOLOv8n Model Showing Late Blight and 

General Good Detection 
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Figure 4.10: Misclassification of Early Blight as Late Blight 

 

 

c. Field Deployment and On-Site Evaluation 

For further real-world validation, the system was put to the test in an agricultural 

environment by visiting ITCMI (Institut Technique des Cultures Maraîchères Et 

Industrielles). However, as all potato crops had been removed, the system was tested 

on a morphologically similar plant species. During this field test, the model successfully 

detected healthy leaves (Figure 4.11). Furthermore, a disease very similar to late blight 

was encountered on site, and the model successfully detected it as well (Figure 4.12). 
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Figure 4.11: Detection of healthy leaves in field conditions 

 

 

Figure 4.12: Detection of a late blight-like disease in the field 
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4.2 Limitations and Observations 

This section outlines the current limitations identified during the development and testing 

of the intelligent decision-support system, along with general observations. It also 

proposes avenues for future improvements to enhance the system's robustness, 

efficiency, and practical applicability. 

4.2.1 Environmental Constraints 

• Variability in Field Conditions: The performance of the AI detection model, while 

robust, can still be influenced by extreme variations in real-world agricultural 

environments, such as inconsistent lighting (e.g., direct sunlight, shadows), diverse 

leaf orientations, and the presence of dust or debris that might mimic or obscure 

disease symptoms. 

• Microclimatic Specificity: While the weather-based prediction system utilizes high-

resolution data, localized microclimates within a large farm might exhibit slight 

deviations from broader regional forecasts, potentially affecting the precise timing of 

blight predictions for very small areas. 

4.2.2 System Bottlenecks 

• Computational Intensity for AI Training: The initial training of the deep learning 

model, particularly with large and diverse datasets, remains computationally 

intensive, requiring significant GPU resources. While inference on edge devices is 

optimized, the training phase can be a bottleneck for rapid model iteration. 

• Dataset Generalization: Despite efforts to create a hybrid dataset, the model's ability 

to generalize perfectly to every conceivable real-world scenario (e.g., highly unusual 

blight manifestations, different potato varieties) is an ongoing challenge that requires 

continuous data acquisition and model retraining. 

• Physical Robot Mobility: The current robotic platform, while adaptable, might face 

limitations in extremely rough terrain or highly dense crop fields where physical 

obstructions could impede seamless navigation or precise spraying. 
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4.3 Future Improvements 

4.3.1 Advanced AI Model Refinement: 

o Few-shot Learning: Investigate few-shot learning techniques to enable the model to 

detect new or rare plant diseases with minimal training data, improving adaptability. 

o Enhanced Small Object Detection: Further optimize the YOLOv8n model or explore 

other architectures to improve the detection of very small, incipient lesions that are 

crucial for even earlier intervention. 

o Multi-disease Detection: Expand the model's capabilities to detect and differentiate 

multiple potato diseases beyond late blight, offering a more comprehensive plant 

health monitoring solution. 

4.3.2 Sophisticated Weather Prediction: 

o Hyperlocal Weather Stations: Integrate the system with on-site, hyperlocal weather 

stations within the farm to gather more precise microclimatic data, leading to even 

more accurate and localized blight forecasts. 

o Predictive Analytics for Treatment Efficacy: Develop algorithms that not only 

predict disease outbreaks but also recommend specific fungicide types or application 

rates based on predicted disease severity and environmental conditions. 

4.3.3 Robotic Platform Enhancements: 

o Autonomous Navigation: Implement more advanced autonomous navigation 

capabilities, potentially using Deep Reinforcement Learning, to allow the robot to 

learn optimal paths, avoid obstacles, and navigate complex field geometries more 

efficiently. 

o Dynamic Spraying Mechanism: Explore a dynamic spraying mechanism that can 

adjust spray angles and pressure in real-time based on plant density, height, and 

precise lesion location, further optimizing chemical application. 

o Energy Efficiency: Research and integrate more energy-efficient components and 

power management strategies to extend the robot's operational time in the field. 



 

 

 

123 

 

 

 

4.3.4 User Interface Evolution: 

o Advanced Reporting: Develop more comprehensive reporting features, including 

historical trends of disease incidence, treatment effectiveness, and detailed 

environmental data analysis. 

o Mobile Application: Create a dedicated mobile application for the system, providing 

farmers with on-the-go access to critical information and control functionalities. 

• Scalability and Multi-robot Systems: 

o Fleet Management: Investigate the potential for managing a fleet of multiple robots 

working collaboratively across larger agricultural areas, optimizing coverage and 

efficiency. 

o Data Integration with Farm Management Systems: Explore integration with 

existing farm management systems to provide a holistic view of agricultural 

operations. 
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General Conclusion 

In this thesis, we addressed the problem of optimizing plant disease management and 

reducing agrochemical usage, particularly for late blight in potato crops, which remain a 

significant challenge for farmers in Algeria and globally. Our goal was to develop an 

intelligent decision-support system that combines early disease detection with predictive 

weather forecasting to enable precise and timely interventions, thereby enhancing 

agricultural sustainability. 

Through the implementation of a deep learning-based AI model (YOLOv8n) for real-time 

disease detection, integration of a weather-based prediction system using meteorological 

APIs, and the design of a precision spraying robotic platform managed via an intuitive 

web interface and successfully demonstrated an integrated system capable of proactive 

threat mitigation and automated precision spraying. The developed system empowers 

farmers with data-driven insights and remote control over crop health management, 

leading to more informed decisions and reduced unnecessary chemical applications. Our 

findings demonstrate that a hybrid dataset strategy, combined with optimized lightweight 

deep learning models like YOLOv8n and systematic parameter tuning, is crucial for 

achieving effective and adaptable performance in real-world agricultural settings. 

This research contributes to the field of smart agriculture and agricultural robotics by 

proposing a novel integrated decision-support system specifically tailored for late blight 

management in potato crops. It improves the precision of disease detection through a 

robust AI model capable of operating on edge devices, and enhances intervention timing 

by integrating real-time weather forecasting with a recommendation engine. While the 

system shows promising results, certain limitations such as the need for extensive 

computational resources during initial model training and the ongoing challenge of 
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dataset generalization to all real-world agricultural variabilities may be addressed in 

future studies. 

The proposed approach can be applied in various agricultural settings for targeted plant 

disease management, paving the way for significant reductions in agrochemical usage, 

increased crop yields, enhanced food security, and a more sustainable farming future. 

For future work, the AI model can be further improved to detect symptoms at a very early 

stage and adapt to a wider range of environmental conditions, exploring advanced 

robotic navigation and control strategies using DRL, and conducting long-term field trials 

to validate the system's economic and environmental impact at scale. 

Overall, this thesis lays the foundation for a new generation of intelligent and sustainable 

agricultural practices, particularly in regions like Algeria where advanced technological 

adoption in agriculture is still emerging 
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