

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET PUBLIQUE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITÉ SAAD DAHLEB BLIDA 1 INSTITUT DES SCIENCES VÉTÉRINAIRE

Projet de fin d'études en vue de l'obtention du **Diplôme de Docteur Vétérinaire**

Suivi des paramètres biologiques chez les chevaux producteurs des sérums thérapeutiques

Présenté par

Mansouri Mohamed Rayan Hadjersi Anes

Le 10/07/2025

Devant le jury :

Président(e):Kalem AmmarMCAISV- Blida 1Examinateur:Boukert RazikaMCAISV- Blida 1

Promoteur : Akache Yasmine Docteur vétérinaire INSTITUT PASTEUR ALGER

Co-promoteur : Sahraoui Naima Professeur ISV- Blida 1

Année: 2024/2025

À Mesdames et Messieurs les membres du jury

Pr. Sahraoui, pour sa disponibilité, son encadrement rigoureux et ses conseils précieux tout au long de ce travail. Son expertise et sa bienveillance ont grandement contribué à l'aboutissement de ce mémoire.

Dr. Akache, pour son accompagnement constant, sa patience et sa pédagogie tout au long de mon stage. Sa rigueur scientifique et son soutien ont été essentiels dans la réalisation de cette étude.

Dr. Kalem et **Dr. Boukert,** Je tiens à exprimer ma profonde gratitude à vous pour bien vouloir honorer ce travail par votre présence et votre évaluation.

Merci pour le temps consacré à la lecture, à l'analyse et à la discussion de ce mémoire. Votre expertise, vos remarques constructives et vos suggestions sont pour moi une source précieuse d'enrichissement et de progression.

Votre engagement envers la formation des étudiants et l'excellence académique mérite toute ma reconnaissance.

dédicaces

À mon cher père

Pour ton amour inconditionnel, ta force tranquille, tes sacrifices silencieux, et ta confiance en moi même dans les moments les plus incertains. Que ce travail soit le reflet de tout ce que tu m'as appris : la persévérance, l'humilité et la dignité.

À ma tendre mère

Pour ta tendresse infinie, ton soutien indéfectible et tes prières constantes. Merci pour ton courage et ta douceur, qui ont été mes repères tout au long de ce parcours.

À ma grand-mère

Que Dieu te récompense pour tes prières constantes, ton amour incommensurable et ton soutien silencieux tout au long de ma vie.

Tu as toujours été un pilier spirituel et affectif, une source de paix et de bénédiction. Puisse Allah te préserver, te combler de Sa miséricorde et t'accorder une longue vie pleine de santé et de sérénité.

Ce travail t'est humblement dédié, en témoignage de mon amour et de ma reconnaissance infinie.

À mes frères, mes amis et à toute ma famille

Pour leur affection, leur soutien et leurs encouragements permanents. Votre présence a toujours été une source de réconfort et de motivation.

À mes enseignants

Pour leur patience, leur savoir, leur encadrement tout au long de ma formation. Un hommage tout particulier à Pr. Sahraoui, pour son suivi rigoureux, ses conseils précieux et sa bienveillance tout au long de ce travail.

À tout le personnel de l'Institut Pasteur d'Algérie

Que j'ai eu l'honneur de rencontrer au cours de ce stage. Merci pour votre accueil, votre disponibilité et votre professionnalisme.

Un remerciement spécial à Dr. Akache

Pour son accompagnement constant, sa gentillesse, et son encadrement attentif et exigeant qui ont enrichi cette expérience.

À Pr. Benazzouz et Dr. Bouzenad

Pour leur accueil chaleureux au laboratoire, et à toute leur équipe dynamique et performante, avec qui j'ai partagé une expérience humaine et scientifique enrichissante.

À tous les vétérinaires que j'ai eu le plaisir de rencontrer

Merci pour vos échanges, votre écoute et votre passion pour le métier, qui m'ont profondément inspiré. Un remerciement spécial à Dr. Dahmani et Dr. Zinou, pour leur dévouement au développement de la filière équine en Algérie ainsi que pour l'encadrement et l'accompagnement durant mon stage en équine.

Résumé

La production des sérums thérapeutiques contre le venin vipérin bivalent de Cerastes cerastes et Vipera lebetina repose sur l'immunisation et la plasmaphérèse des chevaux pour la récolte du plasma riche en anticorps spécifiques; les chevaux utilisés pour la production des sérums thérapeutiques sont soumis à un protocole d'hyperimmunisation graduelle répétée afin de produire des taux élevés d'anticorps spécifiques, ce processus prolongée entraîne divers problèmes de santé pouvant parfois aller jusqu'à la mort de ses animaux, l'impact réel sur la santé de ses chevaux est inconnue, cette étude vise à évaluer l'impact de la production des sérums thérapeutiques sur la santé de 4 chevaux de production de sérums thérapeutiques anti-venin vipérin de L'IPA a Dely Brahim qui ont été suivis suite à 3 immunisation consécutif contre 6 chevaux témoins donc au total 18 prélèvements sont faites pour explorer les paramètres biochimiques, hématologiques et d'hémostase au niveau du laboratoire de biologie médicale de l'IPA El Hamma; les résultats ne montrent pas une différence significatifs entre les chevaux de production et les chevaux témoins, en conclusion, malgré que ces chevaux n'ont pas présenter d'anomalies et arrivent à bien tolérer les doses immunisantes il faut continuer à les suivres après les prochaines immunisations.

Mots clés: cheval, vipère, venin, sérum thérapeutique, biochimie, hématologie, hémostase

The production of therapeutic sera against the bivalent viper venom of Cerastes cerastes and Vipera lebetina is based on the immunization and plasmapheresis of horses for the collection of plasma rich in specific antibodies; the horses used for the production of therapeutic sera are subjected to a protocol of repeated gradual hyperimmunization in order to produce high levels of specific antibodies, this prolonged process causes various health problems which can sometimes lead to the death of these animals, the real impact on the health of these horses is unknown, this study aims to evaluate the impact of the production of therapeutic sera on the health of 4 horses producing therapeutic anti-viper venom sera which were followed following 3 consecutive immunizations against 6 control horses, therefore a total of 18 samples are taken to explore the biochemical, hematological and hemostasis parameters; The results do not show a significant difference between the production horses and the control horses. In conclusion, although these horses did not present any anomalies and managed to tolerate the immunizing doses well, they must continue to be monitored after the next immunizations.

Key words: horse, viper, venom, therapeutic serum, biochemistry, hematology, hemostasis

يعتمد إنتاج المصل العلاجي ضد سم الأفعى ثنائي التكافؤ Cerastes و Vipera lebetina على تحصين الخيول وفصل البلازما عنها لجمع بلازما غنية بالأجسام المضادة المحددة؛ تخضع الخيول المستخدمة في إنتاج المصل العلاجي لبروتوكول من التحصين المفرط التدريجي المتكرر من أجل إنتاج مستويات عالية من الأجسام المضادة المحددة، تسبب هذه العملية المطولة مشاكل صحية مختلفة يمكن أن تؤدي في بعض الأحيان إلى موت هذه الحيوانات، والتأثير الحقيقي على صحة هذه الخيول غير معروف، تهدف هذه الدراسة إلى تقييم تأثير إنتاج المصل العلاجي على صحة 4 خيول تنتج مصلًا علاجيًا مضادًا لسم الأفعى والتي تم إجراؤها بعد 3 تطعيمات متتالية ضد 6 خيول شاهدة، وبالتالي تم أخذ 18 عينة لاستكشاف المعايير الكيميائية الحيوية والدموية؛ لا تظهر النتائج فرقًا كبيرًا بين خيول الإنتاج وخيول الشاهدة. وفي الختام، على الرغم من أن هذه الخيول لم تظهر عليها أي تشوهات وتمكنت من تحمل جرعات التحصين بشكل جيد، إلا أنه يجب الاستمرار في مراقبتها بعد التحصينات التالية. الكلمات المفتاحية: الحصان، الأفعى، السم، المصل العلاجي، الكيمياء الحيوية، علم الدم،

Sommaire

1. Taxonomie et classification 2. Origine et évolution 3. Domestication du cheval 4. Distribution géographique 5. Thérapies équines et biothérapie 6. Classification des races Chapitre 2 : La filière équine Algérie	2 3 3
3. Domestication du cheval	3 3
4. Distribution géographique 5. Thérapies équines et biothérapie 6. Classification des races Chapitre 2 : La filière équine	3
5. Thérapies équines et biothérapie	3
6. Classification des races	
Chapitre 2 : La filière équine	3
·	
Algérie 4	er
1. Historique du cheval en Algérie	
2. Effectifs et évolution de l'élevage	
	de
chevaux	b
Chapitre 3 : Aspects biologiques analytiques	et
Biochimie sérique équine	7
Exploration hépatique (Albumine,	ALAT,
GGT)	8,9
Fonction rénale (Urée, Créatinine)	10
Fonction musculaire (CK, ASAT)	
1. Hématologie équine	12
Lymphocytes,	monocytes
granulocytes	•
•	hémoglobine,
hématocrite	
2. Marqueurs d'inflammation	14
	14

Partie sérothérapi		:		nimation		vipérine	et 15
1. Intro							aux 15
2. Veni	ns et toxines						16
C	2 01			composi			et 16
3. Les 6	espèces vipérin	es étudiée	es	•••••			17
С	CCTGGCG			•••••		17	7,18,19
C							20,21
4. Séro	thérapie						22
O	Définition e	t historiqu	e				22
C			sérums	•	•	plasmaphé	•
C	Difficultés d	e producti	ion	•••••			24
O			cheval			production	des 25,26
Partie 5 : Ét	ude expérimer	ntale					
Objectifs de	l'étude						28
1. Mate			piologique		et		non 28,29
2. Mét	nodes expérim	entales					30

0 F	Prélèvements			30
		hématologiques,	·	et 31,32
0 7	Fraitement stat	istique		32
artie 6 : Résul	tats			33
1. Résultat	s biochimiques	s		33
2. Résultat	s hématologiqu	ues		34
3. Résultat	s de coagulatio	on		34
artie	7	:		et
iterprétation .				35,36
onclusion gén	árala			37
Tableau 1:	Rôles et effe	ets des différents composa	nts de venin de Cerastes	19
	cerastes			
Tableau 2 :	condition de	e prélèvements des chevau	x	29
Tableau 3 :	résultats de	s paramètres biochimiques	5	33
Tableau 4 :	résultats de	es paramètres hématologic	jues	34
Tableau 5 :	résultats d	es paramètres d'hémostas	e	34
		Liste des figures		
Figure 1: Evo	lution du cheva	al au cours des 55 derniers	millions d'années	5
Figure 2: Pur-	sang anglais			6
Figure 3: Pur-	-sang arabe			6
•	val arabe-barbe	9		_
Figure 5: Chev		_		
_	val Autre que F			7
Figure 7: Cera		Pur-sang		7
		our-sang Austes cerastes d'où l'appell		6 7 18 18

Figure 9: Macrovipera lebetina	21	
Figure 10: Les pays producteur de sérums thérapeutiques anti-venin OMS 2014	25	
Figure 11: automate de NFS (Photo personnelle)	30	
Figure 12: automate de biochimie (Photo personnelle)	31	
Figure 13 : automate d'hémostase (Photo personnelle)	32	

Introduction

La production des sérums thérapeutiques antivenimeux constitue l'un des piliers de la prise en charge des envenimations causées par les vipères, notamment celles appartenant aux espèces *Cerastes cerastes* et *Vipera lebetina*. Ces serpents, présents en Afrique du Nord et au Moyen-Orient, représentent une menace réelle pour l'homme et les animaux domestiques. La réponse thérapeutique repose essentiellement sur l'administration de sérums spécifiques contenant des anticorps neutralisants, obtenus par immunisation contrôlée d'animaux producteurs, principalement les chevaux.

Ce procédé repose sur un protocole rigoureux d'hyperimmunisation progressive des équidés par injections répétées de venin atténué. L'objectif est de stimuler fortement la réponse immunitaire afin de générer des titres élevés d'anticorps spécifiques. Une fois cette réponse obtenue, une plasmaphérèse est réalisée de manière cyclique afin de récolter le plasma riche en immunoglobulines. Celui-ci est ensuite purifié et transformé en sérum thérapeutique injectable(LEVINE et al 1970).

Si l'efficacité de ces sérums dans le traitement des envenimations est bien établie, l'impact biologique et sanitaire de cette procédure intensive sur les chevaux donneurs demeure peu étudié. L'hyperimmunisation, couplée à la fréquence élevée des prélèvements, constitue une sollicitation immunologique, physiologique et métabolique importante, pouvant potentiellement induire des troubles hépatiques, rénaux, musculaires, hématologiques, voire un affaiblissement général. Certains chevaux peuvent développer des effets secondaires graves, voire succomber à long terme, mais ces conséquences sont rarement quantifiées objectivement (ziska et al 2012).

Chapitre I : généralités sur le cheval

Le cheval vient du mot latin *Equus ferus caballus* ou *Equus caballus*. Il fait partie d'une des sept espèces de la famille des équidés. C'est un mammifère, herbivore et ongulé. Il est classé selon la taxonomie suivante.

Taxonomie

Le cheval appartient au :

- Règne Animal
- Embranchement Chordé vertébré
- Classe Mammifère placentaire
- Ordre Périssodactyle
- Famille Équidé

- Genre Equus
- Espèce caballus.

Origine et évolution des chevaux :

L'histoire du cheval remonte à la préhistoire, à quelque 60 millions d'années avant l'apparition de l'homme Homo erectus (Lehmann & Steppan, 2000). Le petit mammifère original devait donner 59 millions d'années plus tard le cheval tel que nous le connaissons aujourd'hui. Pendant un million d'années, il fut une proie pour l'homme comme en témoignent les peintures ornant les grottes habitées par l'homme de Cro-Magnon voici 15 à 20 000 ans. Puis les peuples nomades de la steppe eurasienne, plus particulièrement ceux du pourtour de la mer Caspienne et de la mer Noire, entamèrent il y a 5 000 à 6 000 ans le processus de domestication du cheval, ce qui a accéléré son évolution (Georges FAFOURNOUX, Académicien de la Dombes, année).

Domestication du cheval:

Le cheval fut le dernier animal à être domestiqué avec succès par l'homme. La vigueur, la méfiance et l'agressivité des chevaux sauvages ont sans doute été longtemps dissuasives (Berber.N, 2016). La domestication du cheval a commencé il y a environ 4 000 à 5 000 ans dans les steppes russo-asiatiques. Elle s'est bien développée après celle du chien, des chèvres, des moutons et des bœufs. On ne sait pas si ce sont les peuples sédentaires ou les nomades qui les premiers ont domestiqué le cheval (Eisemann, 1980). Quoi qu'il en soit, l'homme du néolithique va l'employer pour des tâches quotidiennes, attelé à des traîneaux ou à des charrues (Vigneron, 1968). Des études génétiques ont montré qu'il devait exister deux types de chevaux sauvages, notamment des petits chevaux à crinière dressée, comme le tarpan (Equus ferus ferus) qui vivaient plutôt en milieu découvert (steppes, prairies), et des chevaux plus massifs Prjevalski (Equus ferus przewalskii), qui vivaient en forêt. La domestication du cheval serait produite en différents lieux, les diverses races actuelles de chevaux domestiques (Equus ferus caballus) trouvant leur origine chez l'une ou l'autre de ces formes sauvages (Vigneron, 1968)

Distribution géographique: À l'origine, les chevaux vivaient libres dans les prairies d'Amérique du Nord, d'Amérique du Sud, d'Europe, d'Asie et d'Afrique. Aujourd'hui, ils sont presque tous domestiqués, et vivent avec les hommes dans le monde entier. Le seul cheval sauvage existant encore est le cheval de Prjewalski, mais il vit principalement dans des zoos. Certains chevaux qui se déplacent en liberté descendent de races domestiquées (chevaux de Camargue, mustangs d'Amérique du Nord) (Universalis). Autrefois, le cheval de PRZEWALSKI

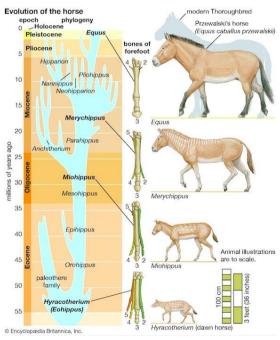
régnait sur toute l'Europe et une grande partie de l'Asie. Les hommes préhistoriques laissèrent 610 représentations de chevaux sauvages dans les grottes ornées

Thérapie équine: L'aventure de l'homme avec le cheval a commencé il y a plusieurs millénaires, à travers sa domestication et l'exploitation de ses nombreuses qualités dans des domaines très variés qui sont: le transport, le sport, l'agriculture, le loisir, la guerre et la biothérapie. Le domaine de la biothérapie a développé une gamme des produits biologiques d'origine équine avec des applications diverses. Ces applications ne sont pas toujours appréhendées surtout dans nos pays. Ainsi, les sérums thérapeutiques sont les médicaments biologiques d'origine équine les plus connus. Ils se présentent généralement sous forme de solutions, ayant pour principe actif soit les immunoglobulines G (IgG), soit leurs fragments bivalents F (ab') 2 ou simplement leurs fragments F (ab) (Salwa et al, 2003). Les formes les plus connues sont les sérums antivenimeux, les sérums antirabiques, les sérums antitétaniques et les sérums anti diphtériques (Klasset, 2006).

Classification et notion de race : De nos jours, la classification des chevaux est établie à partir de la race : Les races issues de l'espèce chevaline sont nombreuses et variées. Cette grande diversité a pour origine leur adaptation à l'environnement (aptitude à jeûner, résistance aux hautes températures ou encore sûreté de pied en terrain montagneux), et surtout l'élevage sélectif puis les croisements opérés par l'homme sur le cheval domestique. Certains traits telle la rapidité, la capacité de portage ou encore celle à tracter de lourdes charges, ont été privilégiés (Sevestreet Rosier, 1991). Les races sont généralement divisées en trois grandes catégories :

- o les chevaux de trait destinés à la traction,
- o les chevaux de selle destinés à être montés (y compris chevaux de sport pour le haut niveau) et les poneys.
- o Les cobs, chevaux à deux fins pouvant être montés aussi bien que attelés, sont parfois classés à part.

Pour le cheval comme pour bon nombre d'animaux domestiques, des listes d'ancêtres ont été établies et de nombreuses races possèdent un registre d'élevage qui peut être fermé (seuls les animaux descendants d'animaux déjà enregistrés peuvent faire partie de la race) ou ouvert (le registre accepte des croisements avec d'autres races). L'inscription d'un cheval à un tel registre est soumise à des règles de signalement et de conformité au standard de race. Ces informations sont reprises par de vastes bases de données spécialisées. Les races les plus connues incluent le Pur-Sang, l'Arabe, le Frison, le Pure race espagnole et son voisin le Lusitanien, le Quarter Horse, le Percheron, le Fjord, le Haflingeret et le poney Shetland (Sevestre et Rosier, 1991).


Chapitre II: FILIÈRE ÉQUINE EN ALGÉRIE

La filière équine constitue un élément incontournable de l'histoire et de la culture algérienne. De par sa diversité et sa complexité, la filière équine constituée un facteur

remarquable d'utilisation et de développement durable. En effet, de nombreux secteurs sont concernés et les structures s'avèrent multiples et hétérogènes. La filière équine se distingue ainsi des autres productions animales par des débouchés non alimentaires : loisirs, compétition, équitation, spectacle .

Historique:

L'Algérie est le pays type d'une grande et ancestrale tradition équestre. Le cheval endosse différents rôles, allant du compagnon de l'homme au véritable athlète dans les tribus berbères de Syphax, Jugurtha et Massinissa, aux épopées de l'Emir Abdelkader, d'El Mokrani et de Bouamama. L'apparition des équidés en Algérie, remonte à la période préhistorique au cours du 4ème millénaire (Alimen, 1955), tels qu'en témoignent les vestiges archéologiques, dessins rupestres et mosaïques qui présentent des chevaux de conformation et de types similaires à ceux du cheval barbe d'aujourd'hui. Grâce à des fouilles archéologiques effectuées en Algérie, on a abouti à l'identification des restes osseux de l'espèce Equusalgericus (Figure 1), situés au Sud Est de Tiaret et à Hydra aux environs d'Alger (Chaid-Saoudi, 1988).

Figure 1: Evolution du cheval au cours des 55 derniers millions d'années https://www.britannica.com/animal/horse/Evolution-of-the-horse

Effectifs équin en Algérie: La filière équine connaît un développement considérable sur les dernières années, aussi bien en nombre de chevaux existants, qu'en nombre d'éleveurs et de pratiquants de l'équitation. Plus de 256.000 chevaux vivent sur le territoire Algérien (MADR 2012). Ces données ne reflètent que partiellement la réalité puisqu'aujourd'hui, de nombreux équidés échappent à ce recensement.

Ethnologie des équidés

Races et répartition géographique de l'élevage équin :

Selon le recensement et les effectifs (MADR 2016)

la répartition des races au sein de la population chevaline est comme suit :

- o 10% pur-sang anglais,
- o 13% pur-sang arabe,
- o 16% barbe,
- o 53% d'arabe-barbe
- o 8% autres que pur-sang (AQPS).

Figure 2: Pur-sang anglais https://www.classequine.com/races-chevaux/pur-sang-anglais/

Figure 3: Pur-sang arabe https://www.classequine.com/races-chevaux/pur-sang-arabe/

Figure 4: Cheval arabe-barbe https://www.chevalmag.com/divers/l-arabe-barbe-un-cheval-tres-complet/

Figure 5: Cheval Barbe https://www.royal-horse.com/fr/race/le-cheval-barbe/

Figure 6 : Cheval Autre que Pur-sang https://fr.wikipedia.org/wiki/Autre que Pur-sang

Cette population est répartie sur l'ensemble du territoire algérien avec 34% dans l'Ouest du pays, 25% au Centre, 22% dans l'Est et 19% au Sud (MADR, 2016). Balance sheet of agricultural statistics 2016. In. Sub-Department of Statistics, Ministry of Agriculture and Rural Development Algeria.

La biochimie sérique en pratique équine

Le bilan biochimique est un bilan général qui permet d'explorer les principales fonctions (hépatique, rénale, musculaire). L'exploration biochimique est largement utilisée en médecine vétérinaire depuis de nombreuses années. Le laboratoire humain de proximité est souvent sollicité par le vétérinaire. En effet, la structure chimique de la plupart des molécules d'intérêt diagnostique est identique entre l'homme et l'animal. La détermination de leur concentration dans les liquides biologiques fait donc appel aux mêmes techniques chimiques développées sur les automates présents dans tous les laboratoires, qu'ils soient humains ou vétérinaires. Certaines molécules explorées diffèrent néanmoins entre l'homme et l'animal ; c'est le cas de la plupart des hormones. Or, les kits de dosage sont généralement développés pour un usage en endocrinologie humaine. Cependant, la plupart de ces kits peuvent être validés chez l'animal après adaptation des gammes de dosage .

Les fonctions suivantes sont à explorer :

A. Exploration hépatique

En raison des multiples rôles du foie, la fonction hépatique peut être évaluée par plusieurs parametres, principalement :

- -Les paramètres évaluant la fonction hépatique mesurés sont l'albumine, les protéines totales et la bilirubine.
- -Les marqueurs de lyse cellulaire et de cholestase mesurés sont les alanine aminotransférases (ALAT), les phosphatases alcalines (PAL) et les acides biliaires.

1/ Albumine

L'albumine est une protéine de masse molaire 67 000 kDa , synthétisée par le foie. Elle transporte le calcium et le phosphore. Elle est responsable de 80% de la pression oncotique.

Une diminution de la concentration sérique de l'albumine peut être le signe d'une hepathopathie mais aussi d'une carence nutritionnelle en protéine, d'une anorexie, d'une malassimilation, d'une perte rénale, d'un épanchement, d'une hyperhydratation, ou de brûlures.

Une augmentation de la concentration sérique de l'albumine est le signe d'une déshydratation. (LOUISOT P. 2008)

2/ Alanine amino-transférase (ALAT ou SGPT)

L'ALAT est une enzyme du groupe des transaminases, elle permet le transfert d'un groupe amine lors de certaines réactions chimiques.

Plusieurs organes synthétisent cette enzyme: le foie, le muscle cardiaque, et le muscle squelettique.

Les ALAT interviennent dans de nombreux processus chimiques hépatiques. Les Valeurs de référence chez le cheval 3-23 UI/L

Une augmentation de la concentration sérique de l' ALAT peut être le signe d'une hepathopathie, de processus localisés (abcès, tumeurs), de troubles du drainage veineux, de médicaments (anticonvulsivants, glucocorticoïdes), ou d'une fièvre (COFFMAN J.R et al 1981)

3/ Gamma-glutamyl transferase (γ-GT)

La γ -GT est une enzyme associée aux membranes. Elle régule le métabolisme du glutathion (GSH) par son activité glutathionase et transférase de résidus gamma-glutamyl.

Au niveau rénal elle permet l'élimination d'ions NH4+ par son activité glutaminase.

Le rein est l'organe le plus riche en γ -GT, cependant les lésions rénales ne relarguent pas de γ -GT dans le plasma mais uniquement dans l'urine. Le pancréas est ensuite l'organe le plus riche en γ - GT, vient ensuite le tissu hépatique où l'augmentation de γ -GT s'observe surtout en cas de cholestase.

Une augmentation de la concentration sérique de γ -GT peut être le signe d'une hepathopathie avec cholestase intra- ou extrahépatique, de pancréatite, ou de colique (TENNANT B.C 2008)

4/Temps de prothrombine

Également connu sous le nom de temps de Quick, est un test de coagulation qui évalue l'efficacité de la voie extrinsèque et commune de la coagulation sanguine. Chez le cheval, le TP mesure l'intégrité des facteurs II (prothrombine), V, VII, X, ainsi que du fibrinogène. Un allongement du TP peut indiquer des anomalies dans ces facteurs, suggérant des troubles de la coagulation.

Les valeurs de référence du TP chez le cheval se situent généralement entre 10,7 et 12,5 secondes. Un TP anormalement prolongé peut résulter de diverses conditions, notamment lors d' Insuffisance hépatique car le foie produit les facteurs de coagulation. Une altération de sa fonction peut réduire la production de ces facteurs, prolongeant le TP. (Morris DD et al 2002)

C. Exploration rénale

Pour mettre en évidence une insuffisance rénale, la biochimie clinique vétérinaire utilise des tests portant aussi bien sur l'excrétion azotée (excrétion d'urée et de créatinine) que sur la fonction régulatrice de l'équilibre hydro-électrique. Nous nous intéresserons ici à l'excrétion de l'urée et de la créatinine. (Sylvain Bellier et al 2010)

1. Urée

L'ammoniaque est un toxique endogène majeur, issu du métabolisme des protéines. Le foie le transforme en glutamate puis en urée, diamide de l'acide carbonique.

L'urée constitue une forme de transport non toxique des déchets azotés. L'excrétion et la réabsorption de l'urée sont effectuées par les reins.

Une partie de l'urée peut être retransformée en ammoniaque par les bactéries intestinales

Les valeurs de référence chez le cheval 0,2-0,3 g/l

Une augmentation de la concentration sérique de l'urée peut être le signe d'une néphropathie (au moins 70% des néphrons non fonctionnels), d'une déshydratation, d'un traumatisme musculaire ou peut être due à des médicaments (glucocorticoïdes, tétracycline, thyroxine).

Une diminution de la concentration sérique de l'urée peut être physiologique suite à des repas pauvres en protéines, ou pathologique lors d'hépathopathie sévère, de shunt porto systémique. (Sylvain Bellier et al 2010)

2. Créatinine

La créatinine est un produit du métabolisme endogène musculaire : elle est issue de l'utilisation cyclique de la phosphocréatine, réserve d'énergie musculaire. Son taux est proportionnel à la masse musculaire. L'exercice peut multiplier sa valeur par trois de manière physiologique.

La créatinine n'est pas réutilisée une fois formée, son excrétion se produit principalement via la filtration glomérulaire .

Les valeurs de référence chez le cheval 10-19 mg/l

Une augmentation de la concentration sérique de la créatinine peut être le signe d'une néphropathie (au moins 70% des néphrons non fonctionnels), d'une déshydratation, d'un déséquilibre électrolytique, d'une hypoalbuminémie, d'un catabolisme tissulaire (fièvre, traumatisme musculaire, myosite) ou peut être due à des médicaments (glucocorticoïdes, tétracycline, thyroxine).

Une diminution de la concentration sérique de la créatinine peut être le signe de cachexie.

Les jeunes animaux ont une concentration sérique en créatinine plus basse compte tenu de leur musculature moins développée (Sylvain Bellier et al 2010)

D. Exploration musculaire

Grâce au dosage de la créatine kinase (CK) et de l'aspartate amino-transférase (ASAT) il est possible de détecter et de suivre l'évolution d'une lésion musculaire.

1/ Créatine Kinase (CK)

La CK est une enzyme mitochondriale qui catalyse la conversion de créatine en phosphocréatine, couplée à la conversion d'adénosine triphosphate (ATP) en adénosine diphosphate (ADP).

La CK est un indicateur très sensible mais non spécifique de souffrance musculaire. Elle est principalement présente dans le muscle squelettique, le myocarde, et le cerveau. Il est possible de séparer les trois fractions de la CK (CK-MM, CK-BB et CK-MB, une élévation de la CK-MB suggère une cardiomyopathie).

Sa demi-vie est très courte, de l'ordre de 110 minutes. Dans un exercice long, son activité atteint un maximum cinq à six heures après la fin de celui-ci. Son augmentation est proportionnelle à la durée de l'effort, mais pas à son intensité. En cas de lésions musculaires, son augmentation est proportionnelle au degré des lésions.

Une augmentation marquée de la concentration sérique de la CK peut être le signe d'un exercice physique, mais pour un cheval au repos cela indique presque toujours une lésion cardiaque ou musculaire (myopathie, myosite, injection intramusculaire, tétanie, ou décubitus prolongé). Cela peut aussi être le signe d'une anesthésie à l'halothane, de l'administration de barbituriques, d'une obstruction vésicale, ou d'un choc.

L'hémolyse du prélèvement ainsi qu'une bilirubinémie peuvent entraîner des artefacts.

Les valeurs sériques normales diminuent avec l'âge (REECE W.O. et al 1991)

2/ Aspartate amino-transférase (ASAT ou SGOT)

C'est une enzyme intracellulaire qui appartient au groupe des transaminases, elle permet le transfert d'un groupe amine lors de réactions chimiques.

Les ASAT sont présentes dans le muscle squelettique et le myocarde surtout. On en trouve aussi dans le foie et les tissus nerveux. Les ASAT sont donc un indicateur sensible mais non spécifique de souffrance musculaire. Cette enzyme cytosolique est liée aux mitochondries. Elle joue un rôle important dans la synthèse de l'urée au sein de l'hépatocyte.

Toute augmentation sérique traduit un état inflammatoire, traumatique ou dégénerescent des tissus qui en sont riches. Elle peut toutefois augmenter de manière physiologique lors d'effort musculaire moyen à important, probablement par augmentation de la perméabilité membranaire de mitochondries cellulaires.

Sa demi-vie est assez longue (3 à 12 jours). Ainsi les valeurs de référence chez le cheval 226-366 UI/L

Une augmentation de la concentration sérique des ASAT peut être le signe d'un exercice physique, d'une myopathie, d'une hepathopathie, d'une cardiomyopathie, ou de l'administration de médicaments (Sylvain Bellier et al 2010)

L'hématologie en pratique équine: est une discipline essentielle pour le diagnostic et la gestion des maladies chez les chevaux. Ils sont représentés essentiellement par des aspects clés :

Lymphocytes

Types: Ils comprennent les lymphocytes T, B et les cellules NK (Natural Killer).

En effet, une augmentation des lymphocytes peut indiquer une infection virale chronique, tandis qu'une diminution peut signaler une immunosuppression.

Monocytes

Fonctions:

Ces cellules se transforment en macrophages une fois qu'ils pénètrent dans les tissus. Les macrophages phagocytent (ingèrent) et détruisent les agents pathogènes et les débris cellulaires. Il joue un rôle clé dans la présentation des antigènes aux lymphocytes, initiant ainsi une réponse immunitaire adaptative.

Une élévation des monocytes peut être observée dans des infections chroniques ou des inflammations.

Granulocytes

Ils comprennent les neutrophiles, les éosinophiles et les basophiles.

Neutrophiles:

Fonction: La première ligne de défense contre les infections bactériennes. Ils phagocytent les bactéries et libèrent des enzymes pour détruire les agents pathogènes. Une augmentation est souvent un signe d'infection ou d'inflammation aiguë.

Éosinophiles:

Fonction: Ils sont impliqués dans les réponses allergiques et la lutte contre les parasites.

En effet, une élévation des éosinophiles peut indiquer une réaction allergique ou une infection parasitaire.

Basophiles:

Fonction : Ils libèrent des substances comme l'histamine lors de réactions allergiques. Ils sont moins nombreux et leur rôle est moins bien compris. Leur augmentation peut être liée à des réactions allergiques ou à des infections.

Les globules rouges (érythrocytes) jouent un rôle essentiel dans le transport de l'oxygène et la régulation de la circulation sanguine chez les équidés.

Hémoglobine

En effet, l'hémoglobine est une protéine contenue dans les globules rouges, responsable du transport de l'oxygène des poumons vers les tissus et du dioxyde de carbone des tissus vers les poumons.

Valeurs normales : La concentration d'hémoglobine chez les chevaux se situe généralement entre 12 et 18 g/dL, mais cela peut varier selon la race et l'état de santé.

Toutefois une diminution de l'hémoglobine peut indiquer une anémie, tandis qu'une augmentation peut résulter de déshydratation ou d'une réponse physiologique à l'exercice.

Hématocrite

En effet, L'hématocrite mesure le pourcentage du volume total du sang occupé par les globules rouges. C'est un indicateur de la capacité du sang à transporter l'oxygène.

Valeurs normales : Chez les chevaux, l'hématocrite normal se situe généralement entre 30 % et 45 %, selon la race et les conditions.

En effet, un hématocrite bas peut signaler une anémie, une hémorragie ou une maladie chronique, tandis qu'un hématocrite élevé peut être le signe d'une déshydratation ou d'une polycythémie (augmentation excessive des globules rouges).

Marqueurs d'inflammation:

Protéine C réactive ou CRP: est une protéine de la phase aiguë dont la concentration augmente rapidement en réponse à l'inflammation chez de nombreuses espèces animales, y compris le cheval. Chez le cheval, la CRP a été identifiée et caractérisée pour la première fois en 1990 par Takiguchi et al., qui ont démontré que sa concentration sérique augmente en cas de pneumonite, d'entérite et d'arthrite cliniques. (M Takiguchi et al 1990)

CHAPITRE 3: ENVENIMATION VIPÉRINE ET SEROTHERAPIE

Introduction

Les envenimations ophidiennes sont une forme d'empoisonnement causée par des morsures de serpents venimeux. Il existe y a environ 2.7 millions d'envenimations de serpent chaque année dans le monde, causant de 81 410 a 137 880 personnes décèdent suite à une morsure de serpent, et environ trois fois plus d'amputations et autres handicaps permanents en résultent (Gutiérrez JM et al 2017).

Ces envenimations constituent en Afrique un problème de santé publique majeur. Plus de 100000 cas de décès sont enregistrés dans le monde, dont 20 000 sont sur le continent Africain. Par ailleurs, quatre cents mille des victimes envenimées conservent des séquelles fonctionnelles graves et permanentes

En Afrique tropicale, les morsures de *Viperidae* sont responsables de 90 % des envenimations. Alors qu'en Algérie, deux espèces sévissent dans les zones désertiques et les hauts plateaux : *Macrovipera lebetina* et *Cerastes cerastes*. Cette dernière déserticole d'Afrique du Nord est endémique de la région (Chippaux JP et al 2002)

II. Venins

1. Définition des venins

De nombreux organismes vivants, procaryotes ou eucaryotes, sont capables d'élaborer des substances toxiques.

En biologie animale, on appelle « venins » tous les poisons d'origine animale. Ces venins sont soit injectés, soit projetés sur un prédateur potentiel ou une proie en vue de la paralyser ou de la tuer, soit excrétés à la surface du tégument, soit contenus dans les milieux intérieurs ou les tissus des animaux. On distinguera les animaux venimeux actifs, capables d'injecter leur venin, ou du moins ayant un comportement offensif (scorpions, serpents), des animaux venimeux passifs dont le venin ne s'exprime qu'en situation de défense (batraciens, diplopodes). (Bert et all 2010)

On peut en extraire des toxines (du grec toxicon : poison pour flèche), c'est-à-dire des espèces chimiques bien définies. Un venin contient souvent plusieurs toxines et plusieurs enzymes. [Dietrich Mebs (trad. Max Goyffon), Animaux venimeux et vénéneux (Tec&Doc et al 2012)

Il existe chez les procaryotes (bactéries), chez les eucaryotes végétaux (protistes végétaux et végétaux pluricellulaires), ainsi que chez les champignons, de très nombreuses toxines (toxines bactériennes, alcaloïdes) et parfois même de véritables venins (euphorbiacées, urticacées, bufoténine)

Certaines de ces substances sont utilisées par les animaux pour leur protection.

En général, on appelle venin toute substance toxique produite par des animaux et destinée à tuer ou paralyser leurs proies. Les venins sont souvent des mélanges complexes de substances chimiques variées, surtout des enzymes qui servaient probablement à faciliter la digestion des proies. (Quinton, Loïc et al 2006)

2. Composition des venins

La plupart des venins sont composés de protéines. Certaines sont des enzymes qui provoquent des réactions chimiques et libèrent des produits perturbant divers mécanismes physiologiques. D'autres sont principalement composés de toxines (c'est le cas des venins défensifs tels ceux des grenouilles d'Amérique tropicale). La plupart ont des effets anticoagulants.

Ces venins sont des substances très stables, gardant leurs propriétés jusqu'à des températures avoisinant les 100° C, susceptible d'être conservés soit à l'état sec et à basse température pour une longue durée, soit plus provisoirement dans de l'acide éthanoïque. Ils peuvent, entre autre, contenir du zinc, du fer ou du cuivre. (CHIPPAUX et al. 2017)

Les venins sont actifs dans l'ensemble du règne animal, des Insectes à l'Homme, démontrant par là l'universalité du monde vivant. Cependant ,certains animaux possèdent des facultés de dilater les vaisseaux sanguins, et de provoquer ainsi des nécroses à leurs victimes. (CHIPPAUX et al. 2018)

Le venin de chaque espèce présente une composition biochimique propre qui s'exprime autant par son action pharmacologique que par ses propriétés antigéniques, c'est-à-dire sa capacité à induire les mécanismes de défense chez l'animal mordu, cela explique que le sérum antivenimeux qui utilise cette propriété doit être adaptée à l'espèce venimeuse responsable de la morsure.

Les vipères:

1.2 Cerastes cerastes

La vipère à corne Cerastes cerastes faisant partie de la famille des Viperidae est un serpent venimeux emblématique des régions désertiques. Dotée de caractéristiques morphologiques et de comportements lui permettant de s'adapter à son environnement hostile (Allam et al ; 2016).

1.2.1 Description de Cerastes cerastes

Une description générale de l'espèce C. cerastes inclut sa morphologie qui fait référence à la structure d'un organisme et comprend des éléments tels que la taille, la forme, les écailles et les couleurs.

La Vipères Cerastes cerastes est un serpent de petite à moyenne taille, mesurant généralement entre 50 et 70 centimètres de long, bien qu'elle puisse atteindre les 90 centimètres, son poids est de 8 kg environ.

C. cerastes est caractérisée par un corps trapu terminé par une queue courte et pointue et par une tête triangulaire large et aplatie, terminée par un museau composé de deux cornes distinctes dirigées vers le haut, qui donnent à la vipère C. cerastes son nom commun de "serpent à cornes" (Chippaux, 2006).

Les écailles de C. cerastes sont robustes, avec une ornementation de microstructures adaptées aux conditions de stress des habitats désertiques, permettant de maintenir un équilibre entre la température et l'humidité pour éviter la déshydratation. On y retrouve de fortes concentrations de protéines, ce qui augmente leur résistance mécanique et améliore aussi leur capacité d'adaptation aux conditions environnementales difficiles (Allam et al., 2016).

C. cerastes se distingue par son dos de teinte sable jaune, qui peut varier de très pâle à plus foncé. Au travers de son dos, environ trente marques sombres forment des bandes transversales. Avec le temps, ces marques ont tendance à s'estomper ou à se rejoindre, ce qui assombrit la couleur de base de l'animal. Le ventre en contraste, reste d'un ivoire ou blanc nacré uniforme sans tâche (Chippaux, 2006).

C. cerastes possède une denture solénoglyphe, un système élaboré d'injection du venin. Le crochet est une dent très longue, dont le canal d'injection est clos sur toute sa longueur. À partir de ce canal, le venin s'écoule et pénètre par la suite d'une morsure outre la plaie (Boué, 1974). De plus, l'os maxillaire, auquel il se rattache, ainsi que sa dent de remplacement est court et articulé à l'avant de la mâchoire, permettent une injection en profondeur mais également le repliement des crochets lorsqu'ils sont au repos .

Figure 7: Cerastes cerastes

https://stock.adobe.com/fr/search?k=cerastes

Figure 8 : Les cornes de Cerastes cerastes d'où l'appellation vipère à cornes

https://stock.adobe.com/fr/search?k=cerastes

La relation entre la composition du venin et ses effets toxiques après envenimation

Le venin de C. cerastes se caractérise par une couleur jaune due à la présence d'une enzyme la L-Amino acide oxydase et par une viscosité qui varie entre 1,5 et 2,5, et un pH variant entre 5,5 et 7 (Boquet, 1960 ; Chippaux et Goyffon, 1997). La grande variabilité dans la composition du venin de C. cerastes est responsable des diverses manifestations cliniques des envenimations. Ces venins contiennent une diversité d'enzymes qui jouent un rôle crucial dans la digestion des parois cellulaires, contribuant ainsi à la fonction toxique du venin, parmi ces enzymes on trouve les phospholipases PLA2, les amino acide oxidases, les hyaluronidases, les acétylcholinestérases, les phosphoestérases, et les désintégrines.

En plus des enzymes, plusieurs types de protéines sont également présents dans les venins des serpents. Ces protéines comprennent les toxines telles que les protéines de type lectine de type C et les cytotoxines, dont les cerastocytines, les métalloprotéinases, et les sérine protéases (Gutiérrez et al., 2017).

L'action synergique de ce cocktail toxique amplifie son efficacité et perturbe la cascade de coagulation du système hémostatique normal entraînant des saignements persistants (tableau 1). (Schneemann et al., 2004). De plus, des études de cytotoxicité ont montré une activité cytotoxique élevée de ce venin sur la structure cellulaire (Vyas et al., 2013 ; Ozveren &al., 2019). Ce venin contient entre 70 à 82% d'eau et est d'une densité comprise entre 1030 et 1050 (Boquet, 1960).

Tableau 1: Rôles et effets des différents composants du venin de Cerastes cerastes.

Catégorie	Enzymes / Toxines	Rôle / Effets
Phospholipases (Chippaux,	PLA2 (Phospholipase A2)	Hydrolyse des

2002)		phospholipides en acides gras et lysophospholipides. Les lysophospholipides résultants sont tensioactifs et peuvent intervenir dans la pathogenèse de lésions tissulaires locales et d'autres systèmes physiologiques.
Phosphoestérases (Chippaux, 2002).	Nucléotidases, Phosphomonoestérases Nucléases	Hydrolyse de nucléotides et acides nucléiques.
L-amino-acideoxydase (Hadjam et al., 2008)	LAAOs	Catalyse la désamination oxydative d'un L-aminoacide, produisant des effets biologiques et pharmacologiques, y compris la couleur jaune du venin.
Hyaluronidases (Chippaux, 2002) (Hadjam et al., 2008)	Hyaluronidases	Hydrolyse de l'acide hyaluronique ou du sulfate de chondroïtine, favorisant la pénétration du venin dans la peau et potentialisant sa toxicité.
Protéases (Chippaux, 2002) (Hadjam et al., 2008)	SVSP (Sérine-protéases de type trypsine), SVMP (Snake Venom MetalloProteinase)	Clivage de liaisons peptidiques, impliquées dans la coagulation sanguine, la libération de bradykinine, et autres effets toxiques.
Toxines (Goyffon et al., 2006)	Neurotoxines, Cytotoxines, Myotoxines, Sarafotoxines, Désintégrines	Agissent sur divers récepteurs ou cibles cellulaires, provoquant des effets neurologiques, cardiovasculaires, musculaires, etc.

1.2 Macrovipera lebetina

La **Macrovipera lebetina**, communément appelée vipère lébétine, est une espèce de serpent appartenant à la famille des Viperidae. En Algérie, sa présence est attestée dans les

régions sahariennes, notamment le Hoggar, le Tassili, Beni Ounif, Biskra, le sud de l'Atlas saharien et le Tassili des Ajjer. Elle fréquente divers habitats désertiques tels que les regs, hamadas, dayas et dunes non vives. Cette vipère est principalement nocturne et erratique durant l'été, devenant plus sédentaire en hiver, période pendant laquelle elle utilise divers refuges, y compris des terriers, pour s'abriter et réguler sa température corporelle. Son régime alimentaire se compose de petits vertébrés, comme les lézards et les souris, ainsi que d'insectes tels que les arthropodes, coléoptères et orthoptères (Rouag et al 2012)

Description de Macrovipera lebetina

C'est une très grosse vipère, trapue avec un corps assez large et aplati. La tête est triangulaire et très distincte du cou. Elle mesure généralement entre 90 et 130 cm à l'âge adulte. Elle peut atteindre 150 cm et même exceptionnellement dépasser les 2 m. Les records connus sont de 214 cm pour la sous-espèce obtusa et 230 cm pour la sous-espèce nominale. Sa taille varie géographiquement. Ainsi le record connu à Chypre, qui est peuplée par la sous-espèce nominale, n'est que de 153 cm, tandis que la sous-espèce schweizeri, endémique des Cyclades, mesure en moyenne 65-75 cm pour un maximum connu de 107 cm.La coloration est très variable mais elle est généralement assez claire et terne, le plus souvent grisâtre comme la pierre, mais aussi beige, sable, jaunâtre, olivâtre ou gris bleuté. Sur cette couleur de fond, il y a généralement une ornementation faiblement contrastée, brune ou rose-orangée, constituée d'une double rangé de taches dorsales reliées ou non par une ligne dorsale fine, le tout formant parfois un vague zigzag dorsal, auxquelles s'ajoutent des rangés de taches latérales sur les flancs. Ces dessins peuvent être à peine visibles ou absents, (figure 9) notamment chez la sous-espèce obtusa qui est souvent uniforme. Chez la plupart des sous-espèces certains individus sont uniformément brun-rouge ou brique. Le dessus de la tête n'a généralement pas de dessin, sinon ils sont très estompés. (Philippe Geniez et al 2015)

Figure 9: Macrovipera lebetina https://animalia.bio/fr/blunt-nosed-viper

Des études scientifiques ont été menées pour mieux comprendre les propriétés du venin de cette vipère. Par exemple, une étude a été réalisée dans le but de comparer les effets du

venin de Macrovipera lebetina à ceux de Cerastes cerastes sur l'adhérence aux intégrines de cellules cancéreuses, fournissant des informations sur les potentiels applications médicales de ces venins.

_Par ailleurs, des travaux ont porté sur l'étude comparative des propriétés biochimiques et des effets physiopathologiques induits par les venins de Cerastes cerastes et Macrovipera lebetina. Ces recherches ont mis en évidence des différences significatives dans la composition protéique de ces venins, influençant leurs effets hémorragiques et oedémateux. De plus, une amélioration de l'efficacité des immun-sérums après irradiation gamma à 2 kGy a été observée, suggérant des pistes pour le développement d'antivenins plus efficaces.

Il est important de noter que la classification de certaines populations de vipères en Afrique du Nord a évolué au fil du temps. Les populations présentes au Maroc, en Algérie, en Tunisie et en Libye, autrefois classées sous Macrovipera lebetina, sont désormais réparties entre deux autres espèces du genre Daboia : Daboia mauritanica et Daboia deserti. Cependant, certains spécimens du nord de l'Algérie et de la Tunisie, conservés dans des muséums, ont été rattachés à une sous-espèce distincte nommée Macrovipera lebetina trasmediterranea, en raison de leur isolement géographique. Malgré les recherches, cette sous-espèce n'a pas été retrouvée dans son habitat naturel, ce qui soulève des questions sur son statut et sa classification actuels.

En somme, Macrovipera lebetina est une espèce emblématique des milieux désertiques algériens, dont l'étude continue de fournir des informations précieuses sur la biodiversité et les potentialités médicales liées à ses venins.

La sérothérapie:

1 Définition

Etymologiquement le terme sérothérapie est issu du latin *serum*, petit lait et du grec *thérapéia*, thérapeutique. C'est l'utilisation thérapeutique du sérum sanguin. Elle se caractérise par l'administration en injection sous-cutanée, intraveineuse, intramusculaire ou intrarachidienne, d'un sérum immun d'origine animale (provenant d'un animal vacciné contre une maladie infectieuse) ou d'origine humaine (sérum de convalescent d'une maladie infectieuse) pour protéger contre cette maladie (sérothérapie préventive) ou pour la traiter (sérothérapie curative).

La sérothérapie permet de neutraliser un antigène microbien, une bactérie, une toxine, un virus ou encore un venin. Autrement dit le sérum immunisant est un sérum sanguin contenant un anticorps ayant la capacité de réagir contre un corps étranger à l'organisme (antigène).

La sérothérapie consiste, en l'injection de sérum préparé à partir d'animaux hyperimmunisés. La sérothérapie antivenimeuse est le seul traitement spécifique des envenimations .

IV.2 Historique

Elle est découverte il y a 131 ans simultanément par Phisalix & Bertrand et Calmette en 1894, l'immunothérapie passive contre les envenimations est le seul traitement étiologique.

Fondée sur l'acquisition d'une immunité spécifique induite chez un animal après administration répétée du venin, cette propriété est transférée par injection des anticorps à une victime d'envenimation, pour neutraliser le venin.

Composition des sérums thérapeutiques

Le sérum antivenimeux renferme des immunoglobulines G ou leurs dérivés, notamment les Fab'2, qui jouent un rôle crucial dans la neutralisation des toxines. Cependant, la probabilité de subir des effets secondaires graves, comme des réactions allergiques ou un choc anaphylactique, est étroitement liée à la pureté du sérum. Des résidus d'albumine ou d'immunoglobulines G non fragmentées peuvent subsister, augmentant ainsi ces risques (Chippaux, 2006).

Processus de production de l'antisérum

L'immunisation

L'une des étapes les plus cruciales de la production de sérum antivenimeux consiste à immuniser l'animal avec un ou plusieurs venins pour induire une réponse en anticorps durable et à titre élevé contre les effets létaux et autres effets délétères des toxines immunogènes. Les zones à immuniser doivent être soigneusement nettoyées avec un désinfectant, rasées, puis désinfectées avec de l'éthanol à 70% avant l'injection de l'immunogène (venin brut ou fractions toxiques). Généralement, les sites d'immunisation doivent être situés à proximité des principaux ganglions lymphatiques, de préférence sur le cou et le dos de l'animal. L'injection doit être administrée par voie sous-cutanée pour

recruter un grand nombre de cellules présentatrices d'antigène, ce qui entraîne une réponse humorale significative. Lorsque les principales toxines d'un venin donné ont une faible masse moléculaire et n'induisent pas une réponse immunitaire suffisante lorsqu'elles sont injectées avec les autres composants du venin, il est possible d'isoler ces toxines à l'aide de procédures chromatographiques douces ou d'ultrafiltration. Ces fractions isolées peuvent ensuite être utilisées pour l'immunisation (WHO, 2016).

L'induction de la réponse immunitaire primaire est souvent facilitée par l'ajout d'immunostimulants tels que l'adjuvant de Freund. Cet adjuvant ralentit l'élimination de l'antigène et favorise sa capture et sa présentation aux lymphocytes, augmentant ainsi l'immunogénicité. Il permet d'amplifier la réponse immunitaire en stimulant non spécifiquement les macrophages, qui sécrètent certaines cytokines (Révillard, 1998). Une élévation maximale du titre d'anticorps est due à l'induction d'une réponse immunitaire secondaire par le même antigène (Hames et al., 2000).

Collecte des plasmas

Le plasma est préféré au sérum comme matière de départ, principalement parce que les érythrocytes peuvent être retournés à l'animal, évitant ainsi l'anémie et l'hypovolémie chez l'animal donneur, et permettant des prélèvements plus fréquents. Certains laboratoires ont rapporté que l'utilisation du plasma permet une meilleure récupération des anticorps et qu'il est moins contaminé par l'hémoglobine que le sérum. De plus, la séparation du plasma du sang anticoagulé est beaucoup plus rapide que celle du sang coagulé (WHO, 2016).

Lorsque l'animal immunisé a développé un titre d'anticorps anti-venin conforme aux spécifications requises, il peut être saigné, à condition qu'il soit en bon état clinique et que ses paramètres sanguins et biochimiques soient dans les limites acceptables. Le saignement des animaux se fait par ponction veineuse de la veine jugulaire externe. La zone autour du site de ponction doit être rasée, nettoyée et désinfectée avec un désinfectant approprié avant le saignement. Il ne faut pas toucher ni palper la zone désinfectée avant l'insertion de l'aiguille. L'identité de l'animal doit être vérifiée immédiatement avant la ponction veineuse, et les étiquettes sur tous les flacons ou sacs de sang ou de plasma doivent porter le numéro d'identification unique de l'animal. De plus, un document consignant toutes les étapes de la production du lot de plasma doit être conservé pour assurer la traçabilité du processus (WHO, 2016). La plasmaphérèse est généralement réalisée à l'aide de machines permettant la collecte automatique de plasma. Cette méthode s'est révélée être un investissement précieux dans certaines installations, car elle garantit que l'animal ne devienne pas hypovolémique, améliore le rendement et la pureté du plasma, et réduit les risques d'erreurs de manipulation, notamment lors de la réinjection des érythrocytes chez le donneur. Dans ces procédures, le plasma est séparé des composants cellulaires du sang, qui sont renvoyés à l'animal à travers une série de cycles de collecte, séparation et retour. Le plasma est séparé des globules rouges par centrifugation, filtration ou une combinaison des deux méthodes. Les sacs ou les flacons de plasma doivent être conservés dans une pièce

réfrigérée (2–8 °C) à l'abri de la lumière jusqu'à ce que le processus de purification commence (WHO, 2016).

Purification et formulation de l'antisérum

Les antivenins sont élaborés à partir du pool de plasma initial en utilisant diverses méthodes pour obtenir les éléments actifs suivants : molécules d'IgG intactes, fragments F(ab')2, et fragments Fab. Lors de la préparation des fragments, il est possible d'utiliser du sulfate d'ammonium, du sulfate de sodium ou de l'acide caprylique. En général, les procédures de fractionnement ne doivent pas altérer l'activité neutralisante des anticorps. Elles doivent produire un produit ayant des caractéristiques physico-chimiques et une pureté acceptable, avec une faible teneur en agrégats protéiques, apyrogène, et permettant une bonne récupération de l'activité des anticorps. Si possible, le processus doit être simple (avec peu d'étapes) et économique.

Les caractéristiques d'un lot de plasma purifié doivent être clairement établies. Les méthodes utilisées pour purifier la substance active et les contrôles en cours de fabrication doivent être décrites en détail dans des procédures opérationnelles normalisées (SOP) (Figure 1.4) (WHO, 2016).

Les difficultés de production de sérums antivenimeux

L'un des grands défis pour la fabrication des sérums antivenimeux est de préparer l'agent immunogène qui convient. Actuellement, très peu de pays produisent des venins d'une qualité suffisante pour la production des sérums, et de nombreux fabricants dépendent de sources commerciales communes. Celles-ci peuvent ne pas prendre suffisamment en compte la diversité géographique des venins pour certaines espèces très répandues. En outre, l'insuffisance des moyens réglementaires de contrôle des sérums antivenimeux, dans les pays où le problème des morsures des serpents est important, entraîne une incapacité d'évaluer la qualité et l'adaptation des sérums.

Une combinaison de facteurs a abouti à la crise actuelle. Le manque de données sur le nombre et le type de morsures de serpent a rendu difficile l'estimation des besoins, et les politiques de distribution inadéquates ont amené les fabricants à réduire ou à arrêter la production ou à augmenter le prix des antivenins. Les insuffisances en matière de réglementation et la commercialisation d'antivenins inadaptés ou de mauvaise qualité ont également sapé la confiance des cliniciens, des responsables de la santé et des patients dans les sérums existants, ce qui a encore affaibli la demande.

Countries with no local antivenom production The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoower on the part of the World Health Organization concerning the legal status Data Source: World Health Organization Map Production: Control of Neglected World Health

Figure 10: Les pays producteur de sérums thérapeutiques anti-venin (L'Algérie est l'un des rares pays africain qui produit le sérum thérapeutique anti-venin) OMS 2014

Intérêt de l'utilisation du cheval pour la production du sérum thérapeutiques:

Grande taille et volume sanguin important

Le cheval possède un volume sanguin élevé (environ 8 % de sa masse corporelle, soit jusqu'à 40 litres), ce qui permet de **prélever des quantités importantes de plasma** sans nuire à sa santé, tout en assurant une production à grande échelle de sérum (José María Gutiérrez et al 2017).

Bonne tolérance aux injections répétées d'antigènes

Le système immunitaire du cheval répond efficacement aux injections répétées d'antigènes (toxines ou venins), **générant des anticorps puissants** et en quantités suffisantes pour un usage thérapeutique (José María Gutiérrez et al 2017).

Longue durée de vie et bonne docilité

Le cheval est facile à manipuler, relativement docile et peut être utilisé pendant plusieurs années, ce qui réduit les coûts liés au renouvellement des animaux donneurs (José María

Gutiérrez et al 2017).

Moins de risques de zoonoses majeures

Comparé à d'autres espèces, le cheval **transmet moins de maladies infectieuses à l'humain** via les sérums, une fois ceux-ci purifiés, ce qui augmente la sécurité pour les patients (José María Gutiérrez et al 2017).

Historique et efficacité éprouvée

Depuis le XIXe siècle, le cheval a été utilisé avec succès pour produire des sérums antitoxiques (diphtérie, tétanos, venins de serpents...). L'efficacité de ces produits est clairement démontrée dans la littérature et dans l'expérience clinique (José María Gutiérrez et al 2017).

Partie expérimentale

L'immunisation des chevaux avec du venin peut entraîner plusieurs effets sur leur santé. Certains effets peuvent être bénins, tandis que d'autres peuvent être plus graves conduisant éventuellement à la perte de l'animal.

1/ Objectifs:

Dans le but de suivre et de déterminer les effets de l'immunisation des chevaux utilisées dans la production desSérums antivipérin sur les fonctions vitales (cardiaque, rénale et hépatique), les objectifs suivants ont été assignés.

- 1. La comparaison des paramètres biochimiques et hématologiques entre 24 chevaux de production de sérums thérapeutiques (20 SAS et 4 SAV) avec 12 chevaux témoins cliniquement sains afin de détecter les effets de l'immunisation sur ses paramètres.
- 2. Étudier la corrélation des variations biologiques avec l'état clinique des chevaux de production.

Matériel et méthode

2.1. Matériel biologique (Animaux):

<u>A/Animaux de production:</u> chevaux pour la production des sérums thérapeutiques antivipérin (les renseignements relatifs aux animaux (race, age) se trouvent en partie annexe).

B/Animaux témoins:

Des chevaux cliniquement sains suivis régulièrement doivent être exempts de tous signes de maladies, un questionnaire a été destiné aux propriétaires comportant (signes de maladies, maladies antécédentes ou administration des médicaments) un examen clinique a été réalisé avant, durant et après le jour de prélèvement.

Ces chevaux sont classés en une seule catégorie d'âges, ils sont âgés entre 6 et 10 ans,

Seulement les mâles sont retenus pour cette étude par rapport au sexe des chevaux de production.

Méthodes:

Les conditions suivantes doivent être respectées (tableau 2)

Tableau 2: condition de prélèvement des chevaux

<u>chevaux témoins</u>	chevaux de production
-assurer la bonne santé des chevaux par un suivi (avant, le jour et après le prélèvement) et un questionnaire a été adressé aux propriétaires (signes de maladie ou administration des médicaments) seuls les chevaux cliniquement sains ont été retenus pour faire un examen clinique a été réalisé Avant et durant et après le jour de prélèvement	-chevaux SAV: effectuer le prélèvement le 2éme jour après l'immunisation
-l'âge: il faut que les chevaux soient au même âge que les chevaux de production la même fourchette d'âge	

A/ Matériel non biologique (consommable et instrument):

Il consiste en :

- -Stéthoscope
- -Thermomètre
- -Alcool chirurgical
- -Coton
- -Seringues 50 mL
- -Tubes EDTA
- -Tubes citratés
- -Tubes hépariné
- -Tubes secs
- -Glacières
- -Portoire de tubes
- -Centrifugeuse
- -Automate d'hématologie
- -Automate de biochimie
- Automate d'hémostase

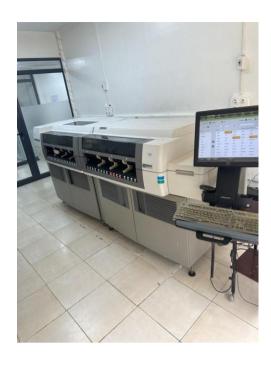
1.1 Population cible:

Notre étude a été effectué sur quatre chevaux de production dont l'âge varie entre 6 et 9 ans au niveau de l'unité de production des sérums thérapeutiques de l'IPA a Dely Brahim, ces chevaux ont été suivis durant trois cycle (après trois immunisation) donc un total de 12 prélèvements, pour les chevaux témoins le nombre est 6 dont l'âge correspond à celui des chevaux de production.

1.2 Les prélèvements du sang:

Au cours de cette étude nous avons réalisé un total de 18 prélèvements (12 provenant des 4 chevaux de production suivis pendant 3 cycles et 6 des chevaux témoins), ces chevaux ont étés prélevés au niveau de la veine jugulaire en utilisant une seringue de 50 cc pour remplir les tubes de prélèvement (EDTA, hépariné, sec et citraté) en double, pour conserver le deuxième échantillon qui n'est pas utilisés pour l'exploration ultérieure. la conservation des tubes sec, hépariné est à 4°C par contre celle des tubes citraté est faite au congélateur, ensuite les prélèvements sont conservés dans une glacière pour être acheminés vers le laboratoire de biologie médicale de l'IPA a El Hamma

1.3 Méthodes:


1.3.1 Analyse hématologique : la formule de numération sanguine ainsi que le taux des plaquettes ont été réalisés le jour des prélèvements à l'aide d'un automate d'hématologie

les tubes EDTA ne sont ni centrifugés ni déplasmatisés pour l'analyse NFS par contre ils sont bien homogénéisés manuellement avant l'analyse.

Figure 11: Automate de NFS (Photo personnelle)

- **1.3.2 Centrifugation et déplasmatisation:** les tubes Hépariné, Sec et Citraté sont d'abord centrifugé à 3000 tours/min pendant 3 min ensuite déplasmatisé avec des micropipettes dans des tubes sec avant d'être analysés.
- **1.3.3 Analyse biochimique:** tous les paramètres biochimiques (Bili I, Bili D, Bili T, ALAT, ASAT, GGT, PAL, PT, ALBUMINE, UREE, CREATININE, LDH, CK, LIPASE, GLYCEMIE, CHOL, TRIGLYCERIDE, HDL, LDL CALCUL, CALCUIM T, PHOSPHORE, MAGNESIUM) réalisés ont été analysés par un seul automate.

Figure 12: automate de biochimie (Photo personnelle)

1.3.3 Analyse de l'hémostase: deux paramètres ont été analysés pour cette exploration en utilisant un automate.

Figure 13 : automate d'hémostase

(Photo personnelle)

1.3.3 Analyse statistique: la moyenne et l'écart type des paramètres des chevaux producteurs des sérums thérapeutiques et les chevaux de contrôle ont été calculés et classés comme indiqué dans le tableau 3

Ensuite, le test de Mann-Whitney test statistique non paramétrique. l'intérêt d'utiliser ce test est d'abord, la taille d'effectif (n=18) qui est inférieure à 30, comparer les deux groupes de chevaux indépendants (production et témoin) et parce que les données ne suivent pas une distribution normale. Ce test évalue si les distributions des deux groupes sont similaires ou si l'un des groupes tend à avoir des valeurs plus élevées que l'autre.

paramètres biochimiques sont présentés dans le tableau 3.

Tableau 3: Résultats des paramètres biochimiques

Paramètres	Témoins	Chevaux de production	Valeurs de référence	Valeur P
BILI I mg/L	10,83 ± 4,62	8,25 ± 3,79		0,40
BILI D mg/L	3,83 ± 0,98	3,91 ± 0,99	2,3-7,5	0,84
BILI T mg/L	14,66±3,88	12,16±3,15	8-28	0,12
ALAT U/L	6 ± 1,67	6,41 ± 1,24	5–50	0,66
ASAT U/L	247,5 ± 64,49	225,75 ± 27,21	160–412	0,88
GGT U/L	20 ± 10,52	16,16 ± 4,58	6–32	0,54
PAL U/L	132,33 ± 16,10	133,25 ± 28,54	10–326	0,74
ALBUMINE g/L	19,95 ± 7,57	16,18 ± 5,25	26–41	0,20

PROTÉINE TOTALE g/L	62,61 ± 6,16	58,14 ± 12,12	56–76	0,89
URÉE	0,3 ± 0,10	0,21 ± 0,15	0,26-0,45	0,08
CRÉATININE mg/L	14,70 ± 2,06	13,88 ± 2,54	8,3-14,6	0,51
LDH U/L	264,5 ± 143,45	247,5 ± 95,59	112–456	0,88
CK U/L	128,33 ± 64,73	98,33 ± 54,53	130-372	0,38
LIPASE U/L	23,33 ± 9,50	22,33 ± 6,38	11-19	0,74
GLYCÉMIE g/L	0,68 ± 0,21	0,72 ± 0,24	0,8-1,6	0,81
CHOL g/L	0,85 ± 0,30	0,65 ± 0,21	0,6-1,4	0,05
TRIGLY g/L	0,25 ± 0,12	0,23 ± 0,11	0,2-0,61	0,70
HDL g/L	0,58 ± 0,20	0,60 ± 0,22	0,29–0,64	0,54
LDL CALCUL g/L	0,21 ± 0,09	0,08 ± 0,03	1,2-2,2	<mark>0,01*</mark>
CALCIUM T mg/L	99,5 ± 28,97	87,66 ± 24,24	98–109	0,06
PHOSPHORE mg/L	29,16 ± 9,66	27,25 ± 8,29	31,5-67,6	0,63
MAGNÉSIUM mg/L	15,5 ± 4,76	13,66 ± 3,82	17,2-21,6	0,18

La **fonction hépatique** est conservée : bilirubines et enzymes hépatiques (ALAT, ASAT, GGT, PAL) sont dans les normes.

Cependant, une **hypoalbuminémie** modérée est notée, plus marquée chez les chevaux de production, pouvant refléter une **inflammation chronique ou un déficit nutritionnel**

La **fonction rénale** reste normale, avec une créatinine stable. L'urée plus basse (p = 0,08) chez les chevaux de production pourrait refléter **une bonne hydratation ou un faible catabolisme**.

Les **enzymes musculaires** (CK, LDH) sont légèrement plus basses, suggérant **l'absence d'effort musculaire intense** récent.

sur le plan **glucido-lipidique**, la **glycémie légèrement basse** pourrait être liée à un prélèvement à jeun .

La baisse significative du cholestérol total (p = 0.05) et du LDL (p = 0.01) chez les chevaux de production indique une probable mobilisation lipidique accrue,

Le calcium est plus bas chez les chevaux de production comme le phosphore le magnésium.

Résultats des paramètres hématologiques

Les résultats des paramètres hématologiques sont présentés dans le tableau 4. **Tableau 4:** paramètres hématologiques des chevaux

Paramètres	Témoins	Chevaux de production	Valeurs de référence	Valeur P
GB 10^3/μL	8,36 ± 2,00	10,38 ± 1,85	6,1-11,3	0,11
LYM 10^3/μL	3,61 ± 0,84	3,84 ± 0,79	1,0 – 4,0	0,60
MON 10^3/μL	3,03 ± 1,38	3,33 ± 1,23	0 -1,0	0,63
GRA 10^3/μL	1,71 ± 1,17	3,20 ± 0,56	4,0 – 8,0	<mark>0,02*</mark>
GR 10^6/μL	9,09 ± 1,15	9,99 ± 0,73	6.0-10.4	0,10
HB. g/dL	13,4 ± 2,07	14,96 ± 1,11	10,3-15,6	0,12
HT %	39,8 ± 7,34	46,54 ± 4,63	31,4-40,8	0,09
PLA 10^3/μL	138 ± 49,64	133,83 ± 32,45	89-171	0,96

Les paramètres hématologiques restent globalement dans les normes. Les chevaux de production présentent une légère élévation des globules blancs et une augmentation significative des granulocytes (p = 0,02), suggérant une possible stimulation immunitaire modérée liée à l'effort ou au stress. Les monocytes, très au-dessus des normes dans les deux groupes, pourraient refléter un état inflammatoire chronique latent. Les lymphocytes sont stables, sans anomalies notables.

Tableau 5: Résultats des paramètres d'hémostase

TP %	99% ± 0,01	98% ± 0,07	70-100%	0,27
TCK sec	45,06 ± 2,17	44,25 ± 1,42	35.8 – 48.6	0,75

Discussion des paramètres biochimiques
1. Fonction hépatique
Les valeurs des bilirubines (indirecte, directe, totale) sont toutes dans les normes. Les chevaux de production présentent une légère baisse des valeurs de bilirubine, pouvant
refléter une moindre mobilisation des lipides. Les enzymes hépatiques (ALAT, ASAT, GGT, PAL) sont normales dans les deux groupes,

Aucune anomalie présente du bilan d'hémostase, TP et TCK dans les normes.

2. Protéines plasmatiques

suggérant une fonction hépatique intacte.

L'albumine est en dessous des normes de référence, plus marquée chez les chevaux de production. Cela pourrait être dû à une faible synthèse hépatique, un déficit nutritionnel ou une inflammation chronique. (Sawyer et al 2022) (Paula et al 2021)

-Les protéines totales restent dans les normes, sans différence significative entre les groupes.

3. Fonction rénale

L'urée est légèrement plus basse chez les chevaux de production, proche de la limite inférieure (p = 0,08), ce qui pourrait indiquer une bonne hydratation ou un faible catabolisme.

La créatinine est dans les normes chez les deux groupes, indiquant une fonction rénale préservée.

4. Enzymes musculaires

Les valeurs de LDH et CK sont légèrement plus basses chez les chevaux de production. CK est sous les normes dans les deux groupes, ce qui pourrait refléter un manque d'effort musculaire intense ou une variabilité individuelle normale.

5. Métabolisme glucido-lipidique

La glycémie est légèrement inférieure aux normes dans les deux groupes, ce qui pourrait être lié à un prélèvement à jeun ou à une bonne adaptation métabolique (M M Sloet van Oldruitenborgh-Oosterbaan et al 2002)

Le cholestérol est significativement plus bas chez les chevaux de production (p = 0.05), et le LDL est très significativement réduit (p = 0.01). Cela pourrait refléter une meilleure efficacité métabolique ou une mobilisation lipidique accrue. (Veronica et al 2013)

HDL et triglycérides sont dans les normes et sans variation significative.

6. Équilibre minéral

Le calcium est plus bas chez les chevaux de production, proche de la limite inférieure (p = 0,06).

Le phosphore et le magnésium sont également inférieurs aux valeurs de référence dans les deux groupes. Cela suggère un déséquilibre minéral modéré, possiblement lié à l'alimentation ou à l'effort physique. (Fatemeh et al 2023)

Discussion des paramètres hématologiques

1. Globules blancs (GB)

Les deux groupes d'animaux présentent des valeurs dans la norme $(6,1-11,3 \times 10^3/\mu L)$. Les chevaux de production ont une moyenne plus élevée $(10,38 \times 8,36)$, sans différence significative (p = 0,11).

Cette augmentation peut indiquer une stimulation immunitaire modérée (effort, stress ou exposition environnementale).

2. Lymphocytes (LYM)

Moyennes comparables et dans les normes $(1,0-4,0 \times 10^3/\mu L)$, sans différence significative (p = 0,60). Aucun signe de lymphocytose ou de lymphopénie marquée.

3. Monocytes (MON)

Les valeurs observées sont largement supérieures à la norme $(0-1,0 \text{ x}10^3/\mu\text{L})$ dans les deux groupes. Cela pourrait indiquer un état inflammatoire chronique ou une réponse à un stress tissulaire prolongé. (Wood et al 2025)

Aucune différence significative entre les groupes (p = 0.63).

4. Granulocytes (GRA)

Les chevaux de production ont des valeurs significativement plus élevées (3,20 vs 1,71 $\times 10^3/\mu$ L, p = 0,02), mais restent en dessous des normes (4,0–8,0).

Cette augmentation pourrait représenter une activation de l'immunité innée (inflammation, travail physique). (R. Darren Wood et al 2025)

Toutefois, le fait que les deux groupes soient sous les normes suggère un besoin de vérification de l'étalonnage ou des conditions d'échantillonnage.

Discussion des paramètres d'hémostase

Le Temps de Prothrombine (TP) est normal dans les deux groupes (99% et 98%), et la différence est non significative (p = 0.27).

Le Temps de Céphaline Kaolin (TCK) est également dans les normes (35,8 - 48,6 s), sans différence significative entre les groupes (p = 0,75). Ces résultats indiquent une fonction de coagulation normale, sans signe d'anomalie de la voie intrinsèque ou extrinsèque.

Aucun trouble de l'hémostase n'est suspecté chez les chevaux de production ou témoins.

Conclusion

L'analyse des paramètres hématologiques, biochimiques et de coagulation comparant les chevaux témoins aux chevaux de production révèle un état de santé globalement conservé dans les deux groupes. Quelques observations notables méritent d'être soulignées :

Les paramètres hépatiques (bilirubines, enzymes) et rénal (urée, créatinine) restent dans les

normes, indiquant une bonne fonction hépatique et rénale.

Le profil lipidique des chevaux de production montre une diminution significative du LDL et une baisse marginale du cholestérol total, suggérant une adaptation métabolique favorable ou une mobilisation lipidique accrue.

Sur le plan hématologique, une augmentation significative des granulocytes chez les chevaux de production peut refléter une activation immunitaire modérée (exposition à un stress, activité physique ou environnement). Les autres lignées restent stables. La présence d'une monocytose dans les deux groupes, bien au-delà des valeurs de référence, pourrait traduire une réponse inflammatoire chronique, à approfondir selon le contexte clinique.

L'albumine, le calcium, le phosphore et le magnésium sont en tendance basse, surtout chez les chevaux de production, ce qui peut refléter des besoins nutritionnels accrus ou une légère déplétion à surveiller.

-Aucun trouble de la coagulation n'a été observé, avec des valeurs de TP et TCK normales et comparables entre les groupes.

En résumé, les chevaux de production présentent une bonne adaptation physiologique, avec un profil biochimique et hématologique généralement favorable. Cependant, une attention particulière doit être portée à l'équilibre nutritionnel minéral et protéique, ainsi qu'au suivi immunitaire si nécessaire.

Références bibliographiques

Lehmann P., Steppan K. (2000). Cheval dictionnaire historique du monde. CRZ– 15RA. 24, 109–116.

Georges FAFOURNOUX, Académicien de la Dombes

www.academiedeladombes.fr/L-histoire-du-Cheval.

Berber Naima. (2016). [Thèses Doctorat]. Constitution d'une biothéque d'ADN équin.

Caractérisation génétique des Breeds équines en Algérie par l'étude des microsatellites.

Eisemann K.L. (1980) Domestication Features in Animals as Functions of Human Society. Agricultural History Society. 29, 137–146.

Vigneron S.B. (1968) Essai de mise au point sur la place du cheval dans l'Antiquité tardive. Actes des Journées internationals d'étude. 12, 15–23.

Chevaux de Camargue, mustangs d'Amérique du Nord. Universalis.

Salwa S., Abdel L., Soheir W et al. (2003) Efficacy of IgG, Fab, and F(ab')2 fragments of horse antivenom in the treatment of local symptoms. African Journal of Biotechnology. 2, 189–193.

Klasset J. (2006) Le lait de jument. Revue de presse éditée par Lactarium Parallèle Vitale. 2, 5 – 8

Sevestre et Rosier. (1991). Dr Jacques Sevestre et Nicole Agathe Rosier (préf. Pierre lJonquères d'Oriola), Le Cheval, Larousse, 1991 (1re éd. 1983),380 p. (ISBN 9782035171184 et2-03-517118-0).

Alimen H. (1955). Le cheval in : Préhistoire de l'Afrique. Edition Bondé et Cie, Paris. 35–40. Chaid–Saoudi Y. (1988). La préhistoire du cheval en Afrique du Nord. Maghreb vétérinaire. 3,14,

Rahal K., Guedioura A., Oumouna M. (2009). Paramètres morpho métriques du cheval barbe de Chaouchaoua. Rev Méd Vét. 160, 586–589.

MINISTERESE DE 2016

VALEURS USUELLES EN BIOCHIMIE SERIQUE CHEZ LE CHEVAL SELLE FRANÇAIS : DONNEES DU LABORATOIRE BIOCHIMIQUE DE L'ENVA.THESE Pour le DOCTORAT VETERINAIRE Présentée et soutenue publiquement devant LA FACULTE DE MEDECINE DE CRETEIL par Julie CORNUS

ALB / LOUISOT P. Catabolisme des protéines et métabolisme des amino-acides. *In : Biochimie générale et médicale, structurale, métabolique sémiologique*.

TENNANT B.C, CENTER S.A. Hepatic function. In KANEKO J.J, HARVEY J.W, BRUSS M.L. Clinical biochemistry of domestics animals, 6th ed., San Diego, 2008, 379-412.

THOMAS J.S. Overview of plasma proteins. In: Schalm's veterinary haematology 5th ed. Philadelphia 2000, 891-897.

ALAT/ COFFMAN J.R. *Equine clinical chemistry and pathophysiology,* Bonner Spring, 1981, 275p.

Morris DD. Diseases associated with blood loss or haemostatic dysfunction. In: Large Animal Internal Medicine. Smith BP, ed. Mosby, Saint Louis. 2002:1039-1048.

CK/ REECE W.O. Muscle. *In: physiology of domestic animals*. Philadelphia, Lea and Febiger, 1991, 64-80.

Interprétation et valeurs usuelles des paramètres sanguins en biochimie clinique vétérinaire Sylvain Bellier

Intérêt de la troponine sérique en tant que marqueur d'une atteinte du myocarde en médecine vétérinaire (SANDERSEN et al 2008)

https://www.equideos.fr/sports/blog/bilan-sanguin-chevaux?srsltid=AfmBOors0OaI5If-U5rDDk4gTPU95Vjx5AJGs5n0Z8YpNHb-i6UWv0XC

Bullous amyloidosis in a horse: first description in veterinary medicine Devin Fussell

Equine Inflammatory Markers in the Twenty-First Century A Focus on Serum Amyloid A <u>Alicia</u> Long ¹, Rose Nolen-Walston ¹,*

Isolation, characterization, and quantitative analysis of C-reactive protein from horses (M Takiguchi et al 1990)

Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primer.

https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming

Chippaux JP. Venins de serpent et envenimations. IRD Editions; 2002. 296 p.

https://pmc.ncbi.nlm.nih.gov/articles/PMC9559287/

https://pmc.ncbi.nlm.nih.gov/articles/PMC9179197/

https://pubmed.ncbi.nlm.nih.gov/12405655/

https://www.researchgate.net/publication/271126051_Effect_of_Physical_Activity_and_Oth er_Factors_on_Serum_Levels_of_Total_Cholesterol_and_Triglycerides_in_Horses_in_Colima _Mexico

https://pubmed.ncbi.nlm.nih.gov/37466035/

https://liphookequinehospital.co.uk/wp-content/uploads/The-inflammatory-horse-investigation.pdf

https://eclinpath.com/hematology/leukogram-changes/leukogram-patterns

https://www.merckvetmanual.com/circulatory-system/leukocyte-disorders/leukogram-abnormalities-in-animals

.