REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'enseignement supérieur et de la recherche scientifique

Projet de fin d'études en vue de l'obtention du

Diplôme de Docteur Vétérinaire

ETUDE DE LA DYNAMIQUE SAISONNIERE DES TIQUES

Présenté par : AIT YOUCEF SELMA

Devant le jury :

Présidente: AOURAGH HAYET MAA ISV- Blida 1

Examinatarice: DJERBOUH AMEL MCB ISV - Blida 1

Promoteur: MANSEUR HAMZA MCB ISV- Blida 1

Co-promoteur: SADI MADJID MCB ISV- Blida 1

Année: 2024/2025

Résumé

Cette étude, menée dans un élevage bovin de la région d'Aghribs (Tizi-Ouzou), visait

à identifier les genres de tiques présents et à suivre leur dynamique saisonnière. Un

total de 317 tiques a été récolté en trois périodes : février, mars et début juin. Deux

genres ont été identifiés : Rhipicephalus (53,6 %) et Hyalomma (46,4 %). La répartition

saisonnière montre une prédominance de Rhipicephalus en hiver et au printemps,

inversée au profit de Hyalomma en début d'été.

L'analyse du sexe a révélé une nette dominance des femelles (89,3 %), avec un sex-

ratio mâle/femelle de 0,12. Aucun mâle n'a été collecté en juin. Ces résultats

confirment une dynamique saisonnière marquée et soulignent l'importance de

surveiller les populations de tiques dans les zones bovines pour mieux anticiper les

risques liés aux maladies vectorielles.

Mots clés: Tiques, Rhipicephalus, Hyalomma, Aghribs et saison

Abstract

This study, conducted in a cattle farm located in the Aghribs region (Tizi-Ouzou), aimed

to identify the tick genera present and to monitor their seasonal dynamics. A total of

317 ticks were collected during three periods: February, March, and early June. Two

genera were identified: Rhipicephalus (53.6%) and Hyalomma (46.4%). Seasonal

distribution showed a predominance of Rhipicephalus during winter and spring, which

was reversed in favor of *Hyalomma* in early summer.

Sex analysis revealed a clear dominance of females (89.3%), with a male-to-female

sex ratio of 0.12. No males were collected in June. These findings highlight a marked

seasonal variation and underscore the importance of monitoring tick populations in

cattle farming areas to better anticipate the risks associated with vector-borne

diseases.

Keywords: Ticks, *Rhipicephalus*, *Hyalomma*, Aghribs, season

Remerciements

Je rends tout d'abord grâce à DIEU de m'avoir accordé la force, la patience, la santé et la persévérance nécessaires pour mener à bien ce travail.

Ensuite, j'exprime ma profonde gratitude à mon encadreur, Dr SADI MADJID pour son accompagnement, ses conseils avisés et son soutien précieux tout au long de ce projet.

Mon remerciement s'adresse à mon co-promoteur MANSEUR HAMZA pour son aide pratique et son soutien durant ma préparation de ce mémoire.

Aux membres du jury, Madame AOURAGH HAYET et madame DJERBOUH AMEL pour l'honneur que vous me faites en acceptant de juger mon travail. Merci pour votre disponibilité.

Enfin, nous tenons à remercier chaleureusement toutes les personnes qui ont contribué à la réalisation de ce travail.

Dédicace :

Du profond de mon cœur, je dédie ce travail à tous ceux qui me sont chers :

A ma chère mère, quoi que je fasse ou que je dise, je ne saurai point te remercier comme il se doit. Ton affection me couvre, ta bienveillance me guide et ta présence à mes côtés a toujours été ma source de force pour affronter les différents obstacles.

A mon très cher père, tu as toujours été à mes côtés pour me soutenir et m'encourager, que ce travail traduit ma gratitude et mon affection.

A toi ma grande sœur, merci pour ta tendresse, ta patience et ton soutien constant. Ta présence m'a portée dans les instants de doute.

A toi SAID mon petit frère, ton affection et ta solidarité m'a donné la force d'avancer chaque jour avec courage.

A la mémoire de ma grand-mère maternelle et mon grand-père paternel dont les valeurs et la sagesse guident mes pas .Ce travail est dédié pour vous, vous êtes partis trop tôt j'espère que vous soyez fiers de moi là ou vous êtes, que dieu vous accueille dans son vaste paradis. Vous me manquez.

A toute ma famille mes amis (es) de près et de loin merci pour vos encouragements, vos sourires et vos énergies positives qui m'ont tant réconfortée.

Liste des tableaux :

Tableau 1 : "Les caractéristiques des genres de la sous-famille	Rhipiciphalinae"11
Tableau 2: " Températures de la région d'étude"	Error! Bookmark not defined
Tableau 3 : "Précipitions de la région d'étude"	16
Tableau 4: Représentation du nombre de bovins infestés selon le	e genre des tiques20
Tableau 5 : "Représentation du nombre de bovins infestés selon	le sexe "22

Liste des figures :

Figure 1: Répartition des principales familles sous-familles et genres des tiques (d'après Mo	С
COY et Boulanger, 2015)	3
Figure 2: représentation de l'anatomie de capitulum de la tique (Nicholson et al 2019)	4
Figure 3 : Morphologie générale des tiques	5
Figure 4: situation géographique de la région d'étude	15
Figure 5 : Photo personnelle clé d'identification (walker et al 2004 mise à jour 2014)	17
Figure 6: Pots de tiques + pince	17
Figure 7:obeservation d'un prélevement sous une loupe binoculaire	18
Figure 8: Différentes formes de rostre selon les genres d'ixodidae	19
Figure 11: Présentation graphique de la distribution des genres de tique par lot (3 saisons)	21
Figure 12: "Présentation graphique de la répartition des tiques en foction de sexe ratio au	
cours de la période d'étude dans la région de TIZI OUZOU"	23

Table des Matières

Résumé	2
Remerciements	4
Liste des tableaux :	6
Liste des figures :	7
Introduction	1
Chapitre 1 : Rappel bibliographies sur les tiques	2
1.1. Généralités sur les tiques :	2
1.2. Classification des tiques :	2
1.3. Caractères morphologiques généraux :	3
1.3.1. Le capitulum :	3
1.3.2. L'idiosoma :	4
1.4 .Description morphologique des tiques dures (ixodidae) :	5
1.4.1. Morphologie externe :	5
1.4.1.1. Le rostre :	6
1.4 .1.2. L'idiosoma :	6
1.4.2. Morphologie interne :	7
1.4.2.1. Appareil nerveux :	7
1.4.2 .2. Appareil respiratoire :	8
1.4.2.3. Système circulatoire :	8
1.4.2.4. Appareil digestif :	8
1.4.2.5. Appareil excréteur :	9
1.4.2.6. Appareil géniale :	9
Chapitre 2 : identification des tiques	10
1. Introduction :	10
2.1. Identification des Ixodidae (tiques dures) :	10
2.1.1. Identification des genres des Ixodida :	10
2.1.1.1. Ixodinae :	10
2.1.1.2. Amblyommidae :	10
2.1.1.3. Rhipicephalinae :	11
2.1.1.4. Bothriocrotinae :	
2.1.1.5 Haemanhysalinae ·	12

Chapitre 03 : pathogénicité	13
1. Rôle vecteur des tiques :	13
2. Rôle pathogène des tiques :	13
2.1. Rôle pathogène direct :	13
2.2. Rôle pathogène indirect :	13
3. Importance des tiques comme vecteur de maladies	14
Maladies	14
Chapitre 04 : Partie expérimentale	15
3.1. Objectif du travail:	15
3.2. Situation géographique:	
3.3. Données climatiques :	16
3.3.1. Température :	16
3.3.2. Précipitations:	16
3.4. Matériel et méthodes :	16
3.4.1.Matériel Biologique :	16
3.4.2. Matériel non biologique :	16
3.4.2.1. Matériels de collecte :	16
3.4.2.2.Matériel de laboratoires :	17
3.5. Méthode :	18
3.5.1. Méthode de collecte :	18
5.3.2. Méthodes d'étude au laboratoire :	18
5.3.2.1. Détermination morphologique :	19
3.6.Résultats et discussion :	19
3.6.1. Répartition des tiques selon la saison :	19
3.6.2. Répartition selon le sexe	22
Discussion	24
Conclusion :	26
References	27

Introduction

Les tiques sont des acariens hématophages obligatoires qui parasitent pour leur repas sanguin toutes les classes de vertébrés dans presque toutes les régions du globe et notamment en Afrique (Socolovschi et *al* ; 2008).

Les tiques jouent un rôle important en santé humaine et animale eu égard à leur impact médical et économique. Outre leur rôle pathogène direct (spoliation de sang, lésions cutanées), elles peuvent inoculer des molécules hémolysantes, anticoagulantes, voire parfois toxiques, et peuvent également intervenir comme vecteurs de nombreux pathogènes (virus, bactéries et protozoaires) responsables d'infections potentiellement graves chez plusieurs espèces animales. Elles représentent de ce fait un frein au développement et à l'amélioration de la production des élevages dans plusieurs régions du monde où elles provoquent des pertes de production : comme la diminution de la production laitière, de la croissance et des performances de reproduction; plusieurs d'entre elles peuvent même être mortelles si les animaux ne sont pas traités. De plus, le portage asymptomatique est de loin plus fréquent que les cas cliniques, induisant des pertes certes réduites mais touchant une grande partie de la population animale et s'étalant sur plusieurs mois, voire plusieurs années, sans que les éleveurs n'en soient alertés, aggravant ainsi le déséquilibre de leur trésorerie. (Dupont, J; 2022).

Pour répondre à cette problématique, une étude sera menée dans la région d'Aghribs, située dans la wilaya de Tizi-Ouzou pour plus de facilité d'accessibilité, d'observation et de prise de notes. L'objectif principal sera d'identifier les espèces de tiques présentes dans un élevage bovin, au cours d'une période d'observation s'étalant d'octobre à juin.

Chapitre 1 : Rappel bibliographies sur les tiques.

1.1. Généralités sur les tiques :

Les acariens constituent un groupe très hétérogène réunissant des arachnides dont une évolution régressive a altéré la métamère, et qui possèdent généralement un nombre de pattes variant de 06 chez les larves à 08 chez les adultes et nymphes. Ils sont en général de petite taille (0,1 à 10 mm), à l'exception des représentants de l'ordre des *lxodida* ou tiques, dont la taille est extrêmement variée (allant jusqu'à 01 cm). Elles jouent un rôle significatif dans la transmission de maladies et posent un défi croissant en matière de santé publique. Comprendre leur biologie, leur comportement et les risques associés à leur présence est essentiel pour minimiser les dangers qu'elles représentent. (Entomologie médicale et vétérinaire, chapitre 24 Les acariens non tiques (*Acari*).

Les tiques sont toutes des parasites hématophages stricts (au moins pendant une partie de leur cycle de vie). Elles ont une répartition mondiale, dans les zones plus chaudes aux régions plus froides. On dit que ce sont des ectoparasites car elles vivent à la surface de la peau de leur hôte (animal ou homme) de manière temporaire. Elles sont actives pendant les périodes les plus sèches de l'année. (Entomologie médicale et vétérinaire, chapitre 25 les tiques (Acari : *Ixodida*).

1.2. Classification des tiques :

La classification des tiques est basée sue l'étude des caractères morphologiques , la répartition géographique et les caractéristiques biologiques .

Sous embranchemant : Chelicerta .

Classe : Arachnida .

Sous classe : Acari (acariens)

Super ordre : Anactinotrichida (Parasitiformes)

Ordre : Ixodida (Metastigmata)

> Cet ordre compte environ 880 espèces, réparties en 03 familles

(figure 01)

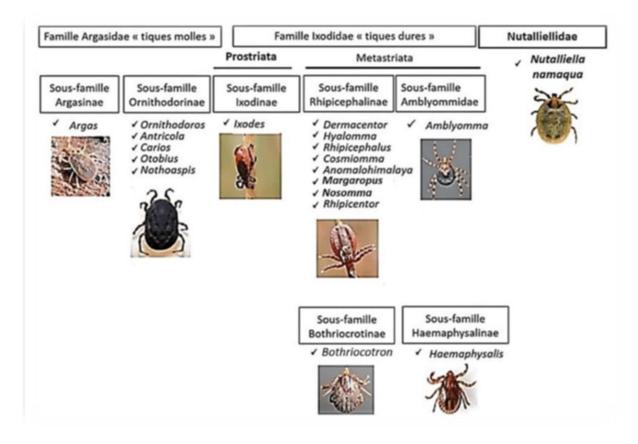


Figure 1: Répartition des principales familles sous-familles et genres des tiques (d'après Mc COY et Boulanger, 2015)

1.3. Caractères morphologiques généraux :

A tous les stades de vie les *Ixodidna* sont constitués d'un *idiosma* non segmenté et d'un *gnathosoma* (capitulum)

1.3.1. Le capitulum :

Le capitulum comporte les organes (pièces buccales) nécessaires à la fixation de la tique sur l'hôte et la succion du sang (figure 02).

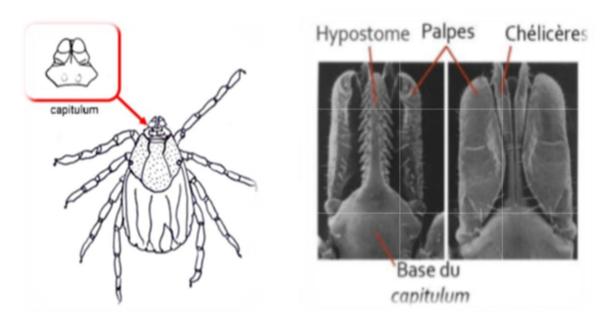


Figure 2: représentation de l'anatomie de capitulum de la tique (Nicholson et *al* 2019)

1.3.2. L'idiosoma:

C'est le corps proprement dit, sur lequel les pattes sont fixées : 4 paires pour les nymphes et les adultes ; 03 paires pour les larves.

L'idiosoma est divisé en *prosoma* (deux paires de pattes antérieures) et *métasoma* (porte les deux secondes paires de pattes) (Ripert ,2007).

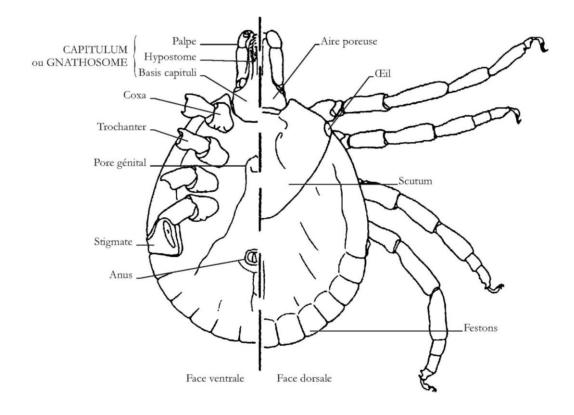


Figure 3 : Morphologie générale des tiques.

1.4 .Description morphologique des tiques dures (ixodidae) :

Ce sont des Acariens ectoparasites hématophages obligatoires. Ces tiques dures se distinguent des autres Acariens par leur morphologie et leur biologie.

1.4.1. Morphologie externe:

En effet, les tiques dures sont dites les < géants > car elles ont une plus grande taille (2-30 mm) (Socolovshi, 2008). Leur corps pendant tout stade évolutif est globuleux, piriforme, aplati dorso-ventralement à jeune et plus ovoïde après repas sanguin. Ce corps ovalaire est issu de la soudure du céphalothorax appelé *gnathosoma* et de l'abdomen appelé *idiosoma* (Guigen et Degheith ; 2001).

Le *gnathosoma* constitue la partie antérieure terminale du corps. Il comprend un rostre qui repose sur une base très sclérifiée dite : le capitulum ou base du rostre, elle présente plusieurs formes : rectangulaire, triangulaire, trapézoïdale, pentagonale, ou hexagonale. Cette base du rostre est très développée chez les adultes.

1.4.1.1. Le rostre :

Le rostre est un élément essentiel à la détermination des espèces de tiques dures ainsi que à la compréhension du rôle pathogène : on distingue des tiques longirostre (un rostre nettement plus long que large) et des tiques brévirostre (rostre s'inscrivant grossièrement dans un carré) (Bussiéras et Chermette ; 1991). Il est constitué de différentes pièces :

-un hypostome : pièce impaire situé medio-ventralement, résultant de la fusion de deux éléments pairs, portant des denticules rétrogrades (permettant la fixation solide de tiques sur leur hôte, plus développés chez la femelle). Leur disposition est utilisée pour la systématique.

- Les chélicères : organes paires, dorsaux, en lames, mobiles, portées sur 2 baguettes intervenant dans la lésion de fixation par dilacération des tissus pendant la pénétration du rostre. Ils se terminent par des crochets dirigés latéralement portant 3 denticules. L'ensemble forme une sorte du doigt articulé mû par des muscles qui permettent la rétraction des chélicères dans une gaine.

-Les pédipalpes : organes paires latéraux formés de 4 articles (parfois plus ou moins soudes, généralement inégaux), non mobiles, avec terminaison sensoriel tactile (Guigen et Degheith ; 2001).

Note : Chez la femelle, on note la présence de 2 aires poreuses sur la face dorsale du capitulum.

1.4 .1.2. L'idiosoma :

L'idiosoma correspondant à la partie postérieure du reste du corps est couvert par une cuticule dont la face dorsale présente une plaque chitinisée appelée le scutum ou aussi écusson dorsale, de couleur généralement brun rougeâtre ou présentant parfois des taches émaillées colorées chez certaines espèces des genres *Amblyomma* et *Dermacentor*. La cuticule est constituée de chitine, de protéines et de lipides ainsi que des glandes dermiques permettant la stabilité de l'équilibre hydrique du corps d'ixode même devant le risque de dessiccation lors de la phase libre (Knülle et Rudolphe ;1982). L'écusson dorsal est réduit chez la femelle et les stases immatures, ce qui permet à la cuticule de se distendre largement lors du repas sanguin, favorisant

le stockage d'une quantité extrême du sang suffisante pour l'ovogenèse et la ponte. Tandis que chez le mâle ce scutum recouvre toute la face dorsale d'idiosoma et il est parfois accompagné par des plaques ventrales dans certaines espèces. Le scutum est parfois divisé par différents sillons (cervicale, scapulaire, médiodorsal, latérale, caudal) et son bord postérieur est généralement découpé en neufs à onze festons plus ou moins fusionnés ou même parfois absents (Bourdeau, P; 1993). Dans certains genres, il existe une paire d'yeux, encastrés sur les côtés du scutum au niveau des pattes II, alors que certains d'autres sont dépourvus d'ocelles (Bussiéras et Chermette; 1991).

La face ventrale d'idiosoma porte les pattes, divers orifices (anale et génitale), les écussons ventraux et les organes sensoriels. Les quatre paires de pattes, formées de 5 articles, sont de l'intérieur à l'extérieur : la hanche ou coxa, le trochanter, la patelle ou *genua*, le tibia et le tarse qui se termine par une ventouse et deux griffes. Le coxa I (de la première paire de pattes) peut porter 1 ou 2 épines plus ou moins longues intervenant dans la diagnose des genres d'ixodes. Les tarses I possèdent un organe sensoriel dit : organe de Haller (organe possédant des soies sensorielles qui permettent de déceler une présence par détection de gaz carbonique). Les tiques possèdent deux orifices : un orifice anal, appelé également uro-pore, situé un peu en arrière des hanches IV souvent contourné par un sillon anal, qui passe soit en avant de l'anus Ixodidae (type Prostriata), soit en arrière chez les Amblyommidae (type *Metastriata*) ; et un orifice génital ou gonopore, se trouvant en position postéro-ventrale (entre les hanches I et II), et contourné par un sillon génital ; on trouve aussi une paire de stigmates, qui s'ouvrent latéralement en arrière des hanches IV, entourés d'une plaque perforée ou péritème qui prend la forme ovalaire chez les Ixodidae ou en virgule chez les Amblyommidae. Ces stigmates représentent le débouchement de la trachée qui constitue le système respiratoire aérien des tiques (Rodhain et Perez ; 1985, Bussiéras et Chermette ; 1991).

1.4.2. Morphologie interne:

1.4.2.1. Appareil nerveux :

Le système nerveux se concentre en une masse unique, de couleur blanche, en région antérieure de l'idiosome, en position péri-œsophagienne, et appelée ganglion cérébroïde ou synganglion. Il n'y a pas, chez les tiques, de séparation du cerveau ni

de chaîne nerveuse ou ganglionnaire (Roshdy et Marzouk ; 1984 ; Roma et *al* ; 2012). Relativement peu de travaux ont porté sur l'étude du système nerveux des tiques mais, récemment, il a été démontré que le synganglion produisait un certain nombre de composés biologiquement actifs déjà identifiés chez d'autres arthropodes (Christie ; 2008 ; Simo et *al* ; 2009 ; Donohue et *al* ; 2010). Ces neuropeptides sont supposés être impliqués dans le contrôle de l'ensemble des fonctions vitales de la tique, comme cela a été démontré pour l'innervation des glandes salivaires (Simo et *al* ; 2009) ou du tube digestif (Simo et Park ; 2014).

1.4.2 .2. Appareil respiratoire :

Le système respiratoire est formé chez les adultes et les nymphes par un nombre très important de trachées constituant une arborescence qui se termine par une tubulure de plus grande taille s'ouvrant vers l'extérieur par les stigmates situés latéralement sous la quatrième paire de pattes. De telles structures n'existent pas chez les larves chez lesquelles la respiration se fait à travers la cuticule (Sonenshine ,1970 ;ROSHDY et *al* ;1982) .

1.4.2.3. Système circulatoire :

Chez les tiques, le système circulatoire est très rudimentaire, lacunaire, avec parfois un vaisseau dorsal renflé en cœur et un sinus qui permet de propulser l'hémolymphe, liquide qui peut s'apparenter au sang des vertébrés. Les organes présents dans la cavité interne des tiques (l'hémocoèle) baignent dans cette hémolymphe qui draine toutes les substances liées au métabolisme des tiques. L'hémolymphe contient les cellules du système immunitaire des tiques (les hémocytes) qui, avec la synthèse de peptides antimicrobiens, représentent le principal mécanisme de défense immunitaire* innée de ces arthropodes (Kuhn, 1996; Kopacek et *al*; 1999; Lai et *al*; 2004; Ssimser et *al*; 2004; Hynes et *al*; 2005; Kopacek et *al*; 2010).

1.4.2.4. Appareil digestif:

L'appareil digestif est constitué par la juxtaposition des chélicères et de l'hypostome lors du repas. Il se compose du pharynx qui fait suite au rostre, de l'œsophage, puis de l'intestin moyen qui est composé de diverticules ou cæcums reliés à un estomac central). Celui-ci est raccordé au sac rectal ou intestin postérieur. Chez les tiques, il

n'existe ni de canal salivaire ni de canal alimentaire individualisé, le sang de l'hôte et la salive de la tique sont alternativement aspirés pour l'un et émise pour l'autre par un canal commun. La portion moyenne du tube digestif est très développée et occupe la quasi-totalité de la cavité cœlomique. C'est au niveau des cæcums qu'a lieu la digestion du sang qui se traduit par la dégradation de l'hémoglobine et des protéines, la destruction des fragments cellulaires et l'extraction de l'eau qui sera évacuée. Contrairement aux insectes, la digestion du sang est ici intracellulaire et se déroule dans les cellules de l'intestin moyen (Tarnowski et Coons, 1989; Agyei et Runham, 1995; Sojka et *al*; 2013). Cela explique sans doute la surface très importante de l'épithélium digestif, favorisée par l'existence de très nombreux diverticules.

1.4.2.5. Appareil excréteur :

Le système excréteur est composé de tubes de Malpighi. Ces canaux, reliés au sac rectal, recueillent les produits du catabolisme circulant dans l'hémolymphe. Ces déchets sont ensuite évacués par l'anus. L'évacuation de l'eau au moment de la concentration et de la digestion du repas sanguin va se faire, quant à elle, via les glandes salivaires chez les tiques dures (Lees ; 1946).

1.4.2.6. Appareil géniale :

Les tiques sont des animaux à reproduction sexuée obligatoire. Le système reproducteur du mâle est composé de deux testicules tubulaires rejoignent une vésicule séminale via deux canaux différents, à sa partie postérieure on trouve un complexe de glandes accessoires et il est composé aussi d'un canal éjaculateur qui relie la vésicule séminale avec gonopore.

La femelle quant à elle, elle possède un ovaire médian volumineux en forme de chapelet (fer à cheval) qui va se développer au fur et à mesure du repas sanguin. L'ovaire se prolonge par deux oviductes qui s'unissent à un utérus. Cet utérus est en contact avec le port génital via le vagin, et avec un réceptacle séminal qui servira à stocker les spermatozoïdes. Il y a la présence d'un organe de Gené, constitue d'une glande abouchant au niveau des aires poreuses. Cet organe permettra lors de la ponte de recouvrir les œufs d'une cire lipidique pour éviter la déshydratation. (Morel, P.C; 1976).

Chapitre 2: identification des tiques.

1. Introduction:

L'identification des genres de tiques est une étape fondamentale en parasitologie, en particulier pour la surveillance épidémiologique et le contrôle des maladies transmises par ces arthropodes. (Wall, R et Shearer, D; 2001).

L'identification des genres se base sur plusieurs critères morphologiques :

- -La forme du corps (ovale, aplatie, arrondie).
- -Le scutum (présent chez les *Ixodidae*, absent chez les *Argasidae*).
- -La position et la forme du capitulum (trompe).
- La structure des pattes (nombre, coxae, présence de crochets).
- -Le peritreme (forme et position des stigmates respiratoires).
- La présence de festons, d'yeux ou de plaques ornementales.

(Benali; 2021)

2.1. Identification des Ixodidae (tiques dures) :

2.1.1. Identification des genres des Ixodida :

2.1.1.1. Ixodinae:

Regroupe "les ixodes" caractérisé par :

- a) Absence des yeux.
- b) Présence de sillon pré-anal.
- c) Base de capitulum est rectangulaire en vue dorsale.
- d) Un rostre long.
- e) Ecusson uniforme.
- f) Absence des festons.
- g) Péritrème est circulaire.

Hoogstraal, H 1985

2.1.1.2. Amblyommidae:

Représentée par le genre "Amblyomma" caractérisé par :

- a) Présence des yeux.
- b) Capitulum de forme rectangulaire.
- c) Longirostre possède un hypostome.

- d) Ecusson chitineux.
- e) Péritrème virgulaire /ovalaire.

2.1.1.3. Rhipicephalinae:

Représentée par plusieurs genres et parmi eux :

Tableau 1 : "Les caractéristiques des genres de la sous-famille Rhipiciphalinae".

	Dermacentor	Hyalomma	Rhipicephalus
Yeux	+	+	+
Sillon	+ sillon postérieur	+ sillon postérieur	+ sillon postérieur
anal	+ des festons		+ des festons
Base de capitulum En vue dorsale	Rectangulaire	Rectangulaire	Hexagonale
Rostre	Court	Long	Court
Ecusson	Très ornementé	Uniforme	Male porte des écussons adanaux et adanaux accessoires
Coxa I	Bifide	Bifide	Bifide
Autre différence anatomique	Male ne porte pas des écussons adanaux et adanaux accessoires	Les pattes portent souvent des anneaux blancs et le deuxième article des palpes est 2 fois plus long que large	Péritrème est en virgule

- > Il existe un sous-genre "Boophilus", caractérisée par :
 - a) Présence des yeux.
 - b) Absence de sillon anal et de festons.
 - c) Rostre court.
 - d) Base de capitulum est hexagonale en vue dorsale.
 - e) Male porte des écussons adanaux et adanaux accessoires.
 - f) Coxa I est bifide.
 - g) Péritrème est arrondi ou ovale.

2.1.1.4. Bothriocrotinae:

Genre : *Bothriocrotron*, ce sont des tiques de petite taille avec un corps ovale et aplatie. Elles ont une trompe sur le bord avant, utilisée pour se fixer .Elles sont retrouvées en Australie et en Nouvelle-Guinée.

2.1.1.5. Haemaphysalinae:

Genre : Haemaphysalis, est caractérisé par :

- a) Absence des yeux.
- b) Présence de sillon anal postérieur et de festons.
- c) Base du capitulum est carrée.
- d) Un rostre court.
- e) Ecusson uniforme.
- f) Coxa I n'est pas bifide.
- g) Péritrème est ovale.

Hoogstraal, H;1956.

Chapitre 03 : pathogénicité.

Les tiques jouent un rôle significatif dans la transmission des maladies et pose un défi de santé publique :

1. Rôle vecteur des tiques :

Selon l'organisation mondiale de la santé, un vecteur est défini comme un arthropode hématophage, qui assure la survie, la transformation, parfois la multiplication et la transmission d'un agent pathogène infectieux ou parasitaire (Savary De Beauregard, 2003). Le rôle pathogène des tiques résulte de l'étroite interaction hôte-parasite bien spécifique à cette famille. Par le repas de sang, les tiques transmettent toutes sortes d'endoparasites, de bactéries ou de virus. Ils sont prélevés sur un premier hôte, puis ils se multiplient dans les glandes salivaires et les ovaires des tiques, permettant ainsi une transmission intergénérationnelle et aux prochains hôtes (Berthomier; 2010; Savary De Beauregard; 2003). Il existe aussi 2 voies secondaires de transmission d'agents pathogènes entre tiques, qui sont : La contamination des tiques par conutrition lors d'un repas commun sur le même hôte. Ainsi, une tique infectée peut transmettre l'agent pathogène à une tique saine sans infecter l'hôte qui ne joue, dans ce cas, qu'un rôle de support.

Les tiques peuvent aussi se contaminer par ingestion de fèces, de salive infectée ou du contenu intestinal laissé sur l'hôte par une autre tique (Schmitt ; 2014).

2. Rôle pathogène des tiques :

2.1. Rôle pathogène direct :

L'infestation d'un hôte par des tiques lui provoque des lésions dermatologiques au point de fixation, et des désordres hématologiques dus à la spoliation sanguine. Les dermatites se manifestent par une inflammation locale avec prurit, un érythème local et la formation de nodule. Cette action mécanique des tiques favorise les infections cutanées, en particulier à staphylocoque, les myiases, par développement de larves de mouches sur les plaies causées par le décrochement de la tique. L'action spoliatrice est plus importante, notamment chez les jeunes animaux, en raison de la concentration du sang, et de l'absence de résistance ce qui favorise des infestations massives. Enfin, une autre action préjudiciable est celle due aux substances toxiques de la salive, elle provoque la paralysie ascendante à tiques (Savary De Beauregard, 2003).

2.2. Rôle pathogène indirect :

Certains germes peuvent être transmis par certaines tiques. Les tiques jouent alors un rôle de pathogène indirect, une espèce de tique pouvant être le vecteur de germes spécifiques : virus, bactéries, de protozoaires et même d'helminthes. Ce rôle pathogène indirect est de loin le plus important. Le caractère de vecteur est défini par (Jongejan et Uilenberg ,2004) ; la tique doit se nourrir sur un hôte vertébré infecté, être capable de capter ce pathogène lors du gorgement, de le maintenir à travers un ou plusieurs stades du cycle et de l'inoculer à d'autres hôtes lorsqu'elle se nourrit à nouveau.

3. Importance des tiques comme vecteur de maladies

Les principales vectrices de maladies sur la planète sont les tiques après les moustiques, Elles sont vectrices d'une centaine de pathologies au niveau mondial, dont beaucoup sont encore mal connues ou inconnues : près de la moitié des fièvres qui suivent une morsure de tique sont d'étiologie incertaine. La plupart de ces maladies sont des zoonoses, touchant à la fois l'animal qui en est souvent le réservoir et l'homme qui reste un hôte accidentel de la tique (Cassier. P et *al* ; 1998) (Georges J.-C ; 2011).

Les tiques sont à l'origine de pertes substantielles de la production animale dues aux mortalités causées par leur action directe, à la baisse de fertilité et aux maladies qu'elles transmettent (Laamri, 2012). Par ailleurs Mbah (1982) estime que près de 63% des mortalités bovines sont dues aux tiques et aux maladies qu'elles transmettent. Les tiques en se nourrissant prélèvent des quantités relativement importantes de sang et transmettent une grande d'agents pathogènes responsables des maladies telles que (Lefévre, P.C. (2003). Dans le tableau suivant : Elles sont énumérées dans les publications de (Chermette ; 2010), Barré et Uilenberg (2010) et Boulouis (2007- 2008).

Tableau 02: Principales maladies transmis par les tiques.

		Moladia da Lyma
		-Maladie de Lyme.
	-Anaplasmose.	
l le l		-Echrlichiose.
	rien	
	Bactérienne	-La fièvre pourprée des montagnes Rocheuses.
	ä	-Tularémie.
		-la borréliose récurrente.
		-Encéphalite à tiques.
Maladies		-Fièvre hémorragique de Crimée-Congo.
adi	-virus du Powassan .	
l al	ses	-viius uu i owassaii.
_	Viroses	-Heartland virus.
		-Alkhurma hemorrhagic fever virus.
		-louping ill.
		-Babésioses.
ses	-Theilériose.	
	Protozooses	-Cytauxzoonose.
	rotc	
	<u> </u>	-Hepatozoonose.

Chapitre 04 : Partie expérimentale

3.1. Objectif du travail:

Notre étude a été menée dans une ferme située dans la région d'Aghribs, dans la wilaya de Tizi-Ouzou. Elle s'est déroulée en trois périodes distinctes : en hiver (février), au printemps (mars) et au début de l'été (juin).

Dans le cadre de notre travail, nous avons procédé à la diagnose des tiques récoltées sur des bovins, en identifiant leur genre. L'objectif de cette étude était d'apporter une contribution à la connaissance de la dynamique saisonnière des tiques en Algérie, et plus particulièrement dans la wilaya de Tizi-Ouzou.

3.2. Situation géographique:

Le prélèvement des échantillons a été effectué dans la région d'Aghribs, située au nord de la wilaya de Tizi-Ouzou.

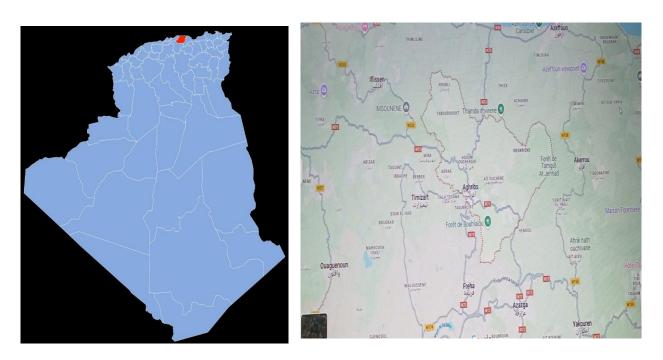


Figure 4: situation géographique de la région d'étude .

3.3. Données climatiques :

3.3.1. Température :

Selon Dreux (1980), la température constitue un facteur écologique majeur influençant la répartition géographique des espèces.

Tableau 2: Températures de la région d'étude.

Mois	Température moyenne (°C)	Min	Max (°C)
Février	9.1	4.4	14.1
Mars	11.9	6.7	17.1
Juin	22.7	16.4	28.4

3.3.2. Précipitations:

Selon Barbault (1997) la disponibilité en eau du milieu et l'hygrométrie atmosphérique jouent un rôle essentiel dans l'écologie des organismes terrestres. Les valeurs mensuelles de la pluviométrie durant la période d'étude :

Tableau 3 : Précipitions de la région d'étude.

Mois	Précipitation (mm)	Jours de pluie
Février	51	~13,4 jours
Mars	52	~14,9 jours
Juin	12	~2 jours

3.4. Matériel et méthodes :

3.4.1.Matériel Biologique:

Un effectif de bovin mâles et femelles de la race locale ont été examinés sur 03 collectes : Février (lot 01) ; Mars (Lot 02) et Juin (lot 03).

3.4.2. Matériel non biologique :

3.4.2.1. Matériels de collecte :

- Blouse blanche - Etiquettes

- Gants - marqueur

- Tubes / pots - Alcool pour la conservation des

tiques

- Pinces

3.4.2.2.Matériel de laboratoires :

- Clé d'identification dichotomique (Walker et al 2004).
- Pinces souples.
- Boites de pétri.
- Loupe binoculaire.

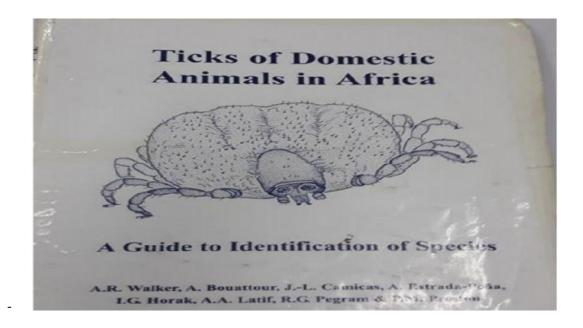


Figure 5 : Photo personnelle clé d'identification (walker et al 2004 mise à jour 2014)

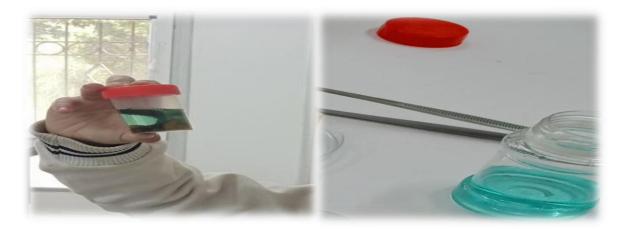


Figure 6: Pots de tiques + pince.

Figure 7:obeservation d'un prélevement sous une loupe binoculaire.

3.5. Méthode :

3.5.1. Méthode de collecte :

Consiste en premier lieu à maitriser l'animal, puis à examiner les parties sensibles d'être parasitées par les tiques comme, la partie périnéale, les mamelles.... Les tiques collectées sont placées dans des pots sur lesquels on indique : la race, le sexe et l'âge des bovins, le lieu et la date de la collecte. A la fin ces tubes sont mis dans un sachet en plastique et acheminés au laboratoire pour identification sous loupe binoculaire.

5.3.2. Méthodes d'étude au laboratoire :

Préparation des tiques : Afin de limiter la contamination par les micro-organismes présents à la surface des paillasses, les tiques collectées sont immergées dans de l'alcool à 70°. Ensuite, avec une pince on procède au prélèvement des tiques une par une pour les déposer dans la boite de pétri afin de les examiner à l'aide d'une loupe binoculaire pour faire l'identification du genre en utilisant la clé d'identification déjà précitée (figure 07).

5.3.2.1. Détermination morphologique :

Chaque tique a été identifiée et déterminée à la loupe binoculaire grâce à la clé d'identification taxonomique standard des tiques adultes (Walker et al 2004 mise à jour en 2014). Nous avons pris en considération les caractéristiques morphologiques à savoir : le rostre, les pattes, les faces dorsale et ventrale du corps. Ainsi que le dimorphisme sexuel qui est apparent chez les tiques dures.

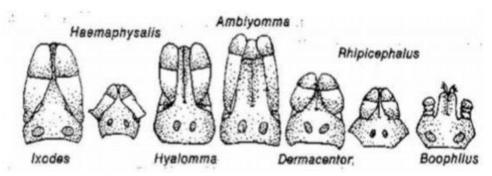


Figure 8: Différentes formes de rostre selon les genres d'ixodidae (selon Sonenshine , 1991)

3.6.Résultats et discussion :

3.6.1. Répartition des tiques selon la saison :

Sur un total de 317 tiques récoltées au cours de notre étude, l'identification morphologique a permis de distinguer deux genres principaux : *Rhipicephalus* et Hyalomma.

Figure 9: résultats obtenus du genre *Hyalomma* et *Rhipiciphalus*.

Tableau 4: Représentation du nombre de bovins infestés selon le genre des tiques

Genres	Rhipiciphalus	Hyalomma	Total
Lot 01 (février)	38 (55,9%)	30 (44,1%)	68
Lot 02 (mars)	105 (60%)	45 (30%)	150
Lot 03 (début juin)	27 (27,3%)	72 (72,7%)	99
Total	170 (53.6%)	147 (46.4%)	317

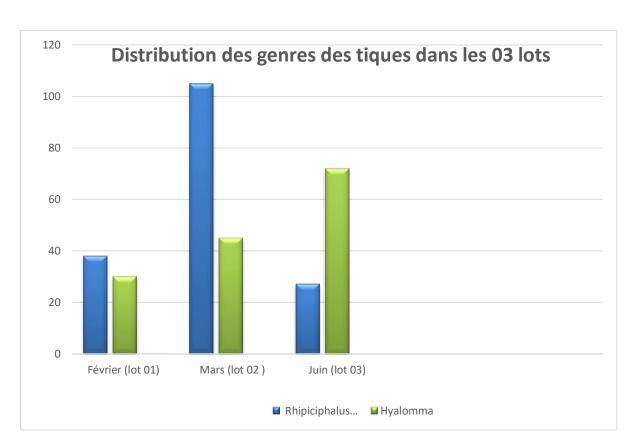


Figure 10: Présentation graphique de la distribution des genres de tique par lot (3 saisons)

L'analyse des 317 tiques récoltées au cours des trois périodes d'étude a permis d'identifier deux genres : *Rhipicephalus* (53,6%) et *Hyalomma* (46.4%) . La répartition de ces genres selon les périodes de collecte révèle des variations saisonnières notables.

Ainsi, au cours du premier lot, prélevé en février, 68 tiques ont été recensées, dont 38 (55,9%) appartenaient au genre *Rhipicephalus* et 30 (44,1%) au genre *Hyalomma*. Cette première période hivernale montre donc une légère prédominance de *Rhipicephalus*.

Durant le deuxième lot, prélevé en mars, cette dynamique se poursuit. Sur les 150 tiques collectées, 105 (60%) étaient du genre *Rhipicephalus*, contre seulement 45 (30%) *Hyalomma*.

En revanche, un renversement de tendance est observé au cours du troisième lot, collecté au début du mois de juin. Sur 99 tiques prélevées, 72 (72,7%) appartenaient à *Hyalomma* contre 27 (27,3%) à *Rhipicephalus*, traduisant une nette domination de ce genre en début d'été.

Globalement, si *Rhipicephalus* représentait 55,9 % des tiques en février, et 60% au printemps, sa proportion a progressivement diminué, au profit de *Hyalomma*, qui devient largement prédominant en été avec un taux de 72,%.

3.6.2. Répartition selon le sexe

Et sur les 317 tiques, nous avons trouvé 283 femelles et 34 mâles :

Tableau 5 : "Représentation du nombre de bovins infestés selon le sexe ".

Sexe Lot	Femelle		Mâles	
Lot 1	Η	28	Н	02
LOU	R	30	R	08
Lot 2	Η	36	Н	09
	R	90	R	15
Lot 3	Η	72	Н	00
LOI 3	R	27	R	00
Total	/	283	/	34

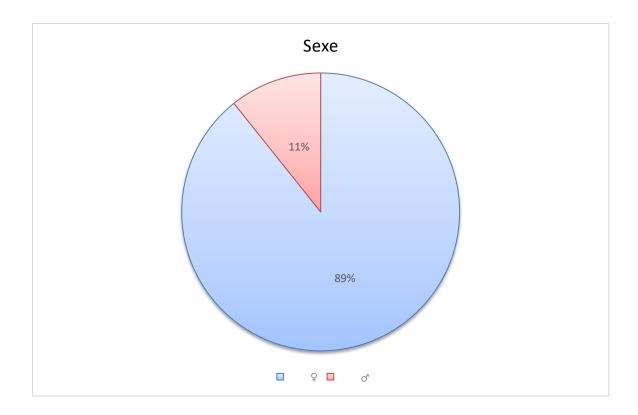


Figure 11: "Présentation graphique de la répartition des tiques en foction de sexe ratio au cours de la période d'étude dans la région de TIZI OUZOU".

Les résultats montrent que sur toutes les tiques récoltées (317) pendant cette étude une dominance des femelles 283 par rapport au male 34 avec un sexe ration de 0.12%;

Discussion

Pendant la période d'étude qui s'est étalé sur trois saison (hiver / printemps / début été) dans la région de Tizi Ouzou, nous avons prélevé au total 317 individus d'Ixodina dont 10.73% mâle et 89.27% femelles sur un élevage de bovins (race locale). L'étude morphotaxsonomique des 317 individus récoltés a permis l'identification de 02 genres qui sont *Hyalomma* (65.3%) et *Rhipicephalus* (34,7 %). Dans de futures études, une identification d'espèces, des tiques devrait être envisagée.

Ces résultats diffèrent notablement de ceux rapportés par Boularias et al. (2021), dont l'étude a été menée dans une zone géographiquement proche — la plaine de la Kabylie — et sous des conditions climatiques relativement similaires. Ces auteurs ont identifié trois genres : *Rhipicephalus* (61,2 %), *Hyalomma* (36,9 %) et *Ixodes* (1,8 %), avec une nette prédominance de *Rhipicephalus*.

La divergence observée entre les deux études, malgré la proximité régionale et climatique, pourrait s'expliquer par plusieurs facteurs. Il est possible que la période exacte de prélèvement, le type d'élevage, les pratiques sanitaires, ou encore les méthodes de collecte aient influencé la composition spécifique des tiques recensées. La dominance marquée de *Hyalomma* dans notre étude pourrait ainsi refléter une dynamique saisonnière plus ciblée ou une particularité locale du microenvironnement étudié.

Une autre étude, menée dans la région de Constantine entre mai 2008 et avril 2009, a montré une importante diversité spécifique de tiques chez les bovins, avec l'identification de sept espèces réparties en quatre genres. Parmi celles-ci, *Rhipicephalus bursa* était largement prédominant (48,5 %), suivi du groupe *R. sanguineus* (26,6 %) et de *Hyalomma marginatum* (11 %). Des espèces moins fréquentes telles que *Haemaphysalis punctata*, *Hyalomma lusitanicum*, *H. scupense* et *Ixodes ricinus* ont également été identifiées à des proportions variables.

Ces résultats, obtenus dans un contexte agro-climatique subhumide et à deux altitudes différentes (500 m et 1000 m), confirment l'influence des conditions environnementales sur la répartition des tiques. Comparés à notre étude, réalisée dans la région d'Aghribs (Tizi-Ouzou), ces travaux montrent à la fois des similitudes et des divergences dans la

structure des populations de tiques, notamment en ce qui concerne la fréquence des genres *Hyalomma* et *Ixodes*

Dans notre étude, le sex-ratio (mâles/femelles) calculé sur un total de 317 tiques récoltées est de 0,12, traduisant une nette prédominance des femelles (89,3 %) par rapport aux mâles (10,7 %).

À l'inverse, l'étude de Bedouhene et al. (2022), menée dans le massif du Djurdjura, a rapporté un sex-ratio de 1,66, indiquant une dominance des mâles sur les femelles dans sa population échantillonnée.

Cette divergence marquée entre les deux études pourrait s'expliquer par plusieurs facteurs : la période de prélèvement (cycle de reproduction des tiques), l'écologie des espèces identifiées, le type d'hôtes parasités, ou encore les techniques de prélèvement. Il est également connu que certaines espèces, comme *Rhipicephalus sanguineus*, présentent souvent un excès de mâles lors de leur phase de quête, tandis que les femelles restent plus longtemps fixées sur l'hôte, ce qui augmente leur chance d'être capturées dans certains contextes.

Conclusion:

Cette étude, réalisée dans la région d'Aghribs (Tizi-Ouzou), a permis d'identifier deux genres de tiques chez les bovins : *Hyalomma* (65,3 %) et *Rhipicephalus* (34,7 %). Une dynamique saisonnière claire a été observée, avec une prédominance de *Rhipicephalus* en hiver et au printemps puis de *Hyalomma* en début d'été.

La population était majoritairement composée de femelles (89,3 %), avec un sex-ratio de 0,12, ce qui contraste avec certaines études antérieures dans des zones voisines.

Ces résultats mettent en évidence l'influence des facteurs saisonniers et écologiques sur la structure des populations de tiques. Ils soulignent également l'intérêt de poursuivre ce type de surveillance dans une approche intégrée One Health.

En perspective, une approche combinée, associant l'identification des genres et des espèces de tiques ainsi que la détection des agents pathogènes qu'elles transmettent (TBP), serait fortement recommandée.

References

- -Barré, N. et Uilenberg, G. (2010): Pathogenicity and control of ticks. In: P.C. Lefèvre, J., Blancou, R. Chermette et G. Uilenberg (Eds): Infection and Parasitic Diseases of Livestock. Bacterial Disease Fungal Disease Parasitic Disease. Lavoisier, TEC & Doc, Editions: Médicales Internationales. Paris, 125-136
- -Bedouhene, A., Kelanemer, R., Medrouh, B., Kernif, T., Saidi, F., Tail, G., & Ziam, H. (2022). Seasonal dynamics and predilection sites of ticks (Acari: Ixodidae) feeding on cows in the western parts of the Djurdjura, Algeria. *Frontiers in Tropical Diseases*, 3, 856179.
- -BERTHOMIER. F. (2010): Parasites externes des chevaux, maladies vectorisées et moyens de lutte. Thèse de Doctorat en Pharmacie. Université de Nantes. 218p
- -Boularias, G.; Azzag, N.; Galon, C.; Šimo, L.; Boulouis, H.-J.; Moutailler, S. High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. *Pathogens* **2021**, *10*, 362. https://doi.org/10.3390/pathogens10030362
- -Boulouis, H.J. (2007-2008) : Bactériologie Systématique, Première année S6, École Nationale Vétérinaire d'Alfort, Unité de pathologie générale, microbiologie, immunologie, 158pp. 28
- -Bonnet, S., Huber, K., Joncour, G. et al; 2015. Biologie des tiques. In: Tiques et maladies des tiques. Chapitre 2, pp.53–84.
- -Bourdeau, P., 1993. Les tiques d'importance vétérinaire et médicale. 1ere partie : principales caractéristiques morphologiques et biologiques et leurs conséquences. Le Point Vétérinaire, 25(151), pp.13–26.
- -Boulanger, N. et McCoy, K., [s.d.]. Les tiques (Acari : Ixodida). In : Roy, L. et Izri, A., eds. Entomologie médicale et vétérinaire. Chapitre 25, pp.553–596.
- -Bussiéras, J. et Chermette, R., 1991. Abrégé de parasitologie vétérinaire. Fascicule IV : Entomologie vétérinaire. Maisons-Alfort : Service de parasitologie, École nationale vétérinaire d'Alfort, 164 p. ISBN 2-900793-01-7.
- -Cassier P., Brugerolle G., Combes C. Le parasitisme, un équilibre dynamique.

Masson, Paris, 1998, 366 p

-Christie, J ; 2008. Prevention of tick-borne diseases. Annual Review of Entomology, 53, pp.323–343.

- -Donohue, K., 2010 likely referring to James Donohue's 2010 paper, titled "Using the PhD thesis introduction as a heuristic device for supporting the writing of a thesis," published in Writing & Pedagogy 1(2), pages 195–226.
- D'Cotta, H., Fostier, A. & Guiguen, Y., 2001. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Molecular Reproduction and Development, 59(3), pp.265–276.
- Gadallah, A.I., Khalil, G.M., Dees, W.H., Roshdy, M.A., Marzouk, A.S. and Main, A.J., 1989. Biochemical effects of juvenile hormone III on the tick, Argas (Persicargas) arboreus (Acari : Argasidae), during embryogenesis. Journal of Medical Entomology, 26(6), pp.510–514.
- -Georges J.-C. Données sur les maladies dues aux tiques. Disponible sur : (Page consultée en 10/2011).
- -Guglielmone, A.A., Robbins, R.G., Apanaskevich, D.A., Petney, T.N., Estrada-Peña, A. & Horak, I.G., 2010. Ticks (Ixodida) of the world: a systematic checklist
- -Hynes, W.L., Ceraul, S.M., Todd, S.M., Seguin, K.C. & Sonenshine, D.E., 2005. A defensin-like gene expressed in the black-legged tick, Ixodes scapularis (Acari : Ixodidae). Medical and Veterinary Entomology, 19(4), pp.339–344. doi:10.1111/j.1365-2915.2005.00579.x.
- -Jongejan F. Recueil taxonomique de données sur les tiques connues dans le monde. Disponible sur (Page consultée en 10/2011).
- -kamouche ,Nahla ;2023. Etude rétrosptive des tiques en ALGERIE (2022-2023) Mémoire en vue d'obtention du diplôme de Master université fréres Mentouri Constantine .
- -Kopáček, P., Vogt, R., Jindrák, L., Weise, C. & Šafařík, I., 1999. Purification and characterization of the lysozyme from the gut of the soft tick Ornithodoros moubata. Insect Biochemistry and Molecular Biology, 29(5), pp.989–997. Doi: 10.1016/S0965-1748(99)00075-2.
- -kopáček, P; Hajdušek, O., Burešová, V. & Daffre, S., 2010. Tick innate immunity. In: Söderhäll, K., ed. Invertebrate Immunity. Austin: Landes Bioscience and Springer Science+Business Media, pp.137–162. Doi: 10.1007/978-1-4419-8059-5_8.
- -kuhn, K. –H; 1996. Mitotic activity of the hemocytes in the tick Ixodes ricinus (Acari: Ixodidae). Parasitology Research, 82, pp.511–517. Doi: 10.1007/s004360050154.
- Laamri M., Kharrim K. El, Mrifag R., Boukbal M., et Belghyti D. 2012. "Dynamique des populations de tiques parasites des bovins de la région du Gharb au Maroc." Revue d'élevage et de médecine vétérinaire des pays tropicaux 65 :57-62

- -Lees, A.D., 1946a. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology, 37(1–2), pp.1–20. Doi: 10.1017/S0031182000013093.
- -Lefévre, P.C. (2003): Principales maladies infectieuses et parasitaires du bétail Europe et région chaudes: 1ére Edition: Généralités maladies virales. Editions TEC et DOC. Paris: Lavoisier, 325p
- -Morel, P.C; 1976.Les tiques: Morphologie Biologie Écologie. ORSTOM, Paris.
- -Ripert, C; 2007. Épidémiologie des maladies parasitaires : arthropodes et affections qu'ils provoquent ou transmettent (Tome 4). Cachan : Technique & Documentation Lavoisier, 581 p. ISBN 978-2-7430-0990-8.
- -Rodhain, F. et Perez-Eid, C., 1985. Précis d'entomologie médicale et vétérinaire : notions d'épidémiologie des maladies à vecteurs. Paris : Maloine, 458 p. ISBN 2 -224 01041 -9.
- -Roma, G; et al; 2012.
- -Roshdy, M.A. & Banaja, A.A; 1982. The subgenus Persicargas (Ixodoidea: Argasidae: Argas). 34. Larval respiratory system structure and spiracle formation in pharate nymphal Argas (P.) arboreus. Journal of Medical Entomology, 19(6), pp.665–670. doi:10.1093/jmedent/19.6.665.
- -Roy, L. et Izri, A., [s.d.]. Les acariens non tiques (Acari). In : Roy, L. et Izri, A., eds. Entomologie médicale et vétérinaire. Chapitre 24, pp.523–551.
- -Rudolph, D. & Knülle, W., 1982. Novel uptake systems for atmospheric water among insects. Journal of Experimental Zoology, 222, pp. 321–333.
- -Savary-DE-Beauregard. B. (2003) Contribution à l'étude épidémiologique des maladies vectorielles bactériennes observées chez le chat dans le Sud de la France. Thèse de Doctorat. Université de Toulouse. 156p.
- -Shmitt. M-E. (2014) Importance du parasitisme du chien par les tiques dures en France Métropolitaine. Etude expérimentale de l'efficacité d'une approche préventive en milieu naturel. Thèse de Doctorat Vétérinaire. Campus vétérinaire de Lyon. 159p
- -Simser, J.A., Macaluso, K.R., Mulenga, A. & Azad, A.F., 2004. Immune-responsive lysozymes from hemocytes of the American dog tick (Dermacentor variabilis) and an embryonic cell line of the Rocky Mountain wood tick (D. andersoni). Insect Biochemistry and Molecular Biology, 34(12), pp.1235–1246. doi:10.1016/j.ibmb.2004.07.003.
- -Šimo, L., Žitňan, D. et Park, Y., 2009. Two novel neuropeptides in innervation of the salivary glands of the black-legged tick, Ixodes scapularis: Myoinhibitory peptide and SIFamide. Journal of Comparative Neurology, 517(5), pp.551–563.

- -Šimo, L., Koči, J., Kim, D.H. et Park, Y; 2014. Invertebrate-specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis. Journal of Comparative Neurology, 522(9), pp.2038–2052.
- -Socolovshi, C; 2008.
- -Sonenshine, D.E; 1970. Biology of Ticks. Vol. I. New York: Oxford University Press, 472 p. ISBN 0195059107.
- -Tarnowski, B.I. & Coons, L.B., 1989. Ultrastructure of the midgut and blood meal digestion in the adult tick Dermacentor variabilis. Experimental and Applied Acarology, 6(4), pp.263–289. Doi: 10.1007/BF01193300.
- -Wall, R. and Shearer, D., 2001. Veterinary Ectoparasites: Biology, Pathology and Control. 2nd ed. Oxford: Blackwell Science.