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 ملخص

 

ة على استقرار السدود وسلامة  ات خطثر سببه من تأثثر
ُ
ي تثثر القلق، لما قد ت

 الفيضانات المفاجئة من أكثر الظواهر الطبيعية الت 
ّ
عَد

ُ
ت

ي المناطق المجاورة. تهدف هذه الدراسة إلى فهم مدى هشاشة 
السدود أمام هذه الظاهرة، من خلال استخدام تقنيات حديثة ف 

ي هارون كحالة دراسة
. وقد تم اختيار سد بت  الهدف الرئيسي هو تحليل المخاطر الهيدرولوجية والتنبؤ بمدى تعرض  .التعلم الآلىي

ات مناخية وهيكلية ا على مؤشر
ً
 .السد للخطر اعتماد

 Randomوالمعطيات المتعلقة بتصميم السد. وقد تم تطوير نماذج تعلم آلىي مثل " ار بيانات متنوعة مثل كميات الأمطتم جمع 
Forest" ،"Gradient Boosting"، "XGBoost"  و"CatBoost"   بهدف تحديد كميات الأمطار وتدريبها باستخدام بيانات ،

ا على شدة الفيضانات والتنبؤ بدقة بمستوى الضعف ً  .العوامل الأكثر تأثثر

ي هارون. ونجحت أظهرت 
ي تحديد خطر الفيضانات على سد بت 

النتائج أن بعض العوامل المناخية والهيكلية تلعب دورًا رئيسيًا ف 
ي التنبؤ بالحدود الحرجة للفيضانات

ي دعم اتخاذ القرار. النماذج المطورة ف 
 ، ما يساهم ف 

ي تحليل مخاطر الف
ي دعم سلامة السدود وتعزيز الجاهزية تؤكد هذه الدراسة على فعالية تقنيات التعلم الآلىي ف 

يضانات، ودورها ف 
 .لمواجهة الظواهر المناخية القصوى

ي هارون: الكلمات المفتاحية
، النمذجة الهيدرولوجية، سد بت   .خطر الفيضانات، ضعف السدود، التعلم الآلىي
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Résumé 

 

Les crues figurent parmi les phénomènes naturels les plus redoutés, capables d’affecter 
sérieusement la stabilité des barrages et la sécurité des zones voisines. Cette étude cherche à 
comprendre dans quelle mesure les barrages peuvent être vulnérables face aux crues, en utilisant 
des techniques modernes d’apprentissage automatique. Le barrage de Beni Haroun a été choisi 
comme cas d’étude. L’objectif principal est d’analyser les aléas hydrologiques et de prédire la 
vulnérabilité du barrage à partir d’indicateurs climatiques et structurels. 

Pour cela, différentes données ont été collectées, notamment les précipitations et les 
caractéristiques structurelles du barrage. Des modèles d’apprentissage automatique, tels que 
Random Forest, Gradient Boosting, XGBoost et CatBoost ont été développés et entraînés à partir 
de données pluviométrique. Ces modèles ont permis d’identifier les facteurs les plus influents sur 
les risques de crue et de prédire avec précision les niveaux de vulnérabilité. 

Les résultats révèlent que certains facteurs hydrologiques et structurels ont un impact significatif 
sur le risque d’inondation au niveau du barrage de Beni Haroun. Les modèles développés se sont 
montrés efficaces pour anticiper les seuils critiques d’inondation et orienter les décisions. 

Cette recherche met en avant l’efficacité de l’apprentissage automatique dans l’analyse des 
risques d’inondation et son utilité pour renforcer la sécurité des barrages face aux événements 
climatiques extrêmes. 

Mots-clés: Risque d’inondation, vulnérabilité des barrages, apprentissage automatique, 
modélisation hydrologique, barrage de Beni Haroun. 
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Abstract 

 

Flood events are among the most concerning natural phenomena due to their potential to 
seriously impact dam stability and nearby communities. This study aims to explore how vulnerable 
dams can be to such events by applying modern machine learning techniques. The Beni Haroun 
Dam was selected as a case study. The primary goal is to analyze flood hazards and predict the 
dam's susceptibility based on hydrological and structural indicators. 

To accomplish this, diverse datasets were collected, including rainfall records and dam design 
parameters. Machine learning models such as Random Forest, Gradient Boosting, XGBoost and 
CatBoost were developed and trained using rainfall data. These models aimed to identify key 
variables influencing flood impact and accurately predict vulnerability levels. 

Results showed that certain climatic and structural factors significantly affect flood risk at Beni 
Haroun Dam. The trained models effectively identified critical flood thresholds and provided 
meaningful predictions to support decision-making. 

This work demonstrates the power of machine learning in analyzing flood risks and highlights its 
potential in supporting dam safety and preparedness for extreme weather events. 

Keywords: Flood risk, dam vulnerability, machine learning, hydrological modeling, Beni Haroun 
Dam. 
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General introduction 

 

In recent decades, the frequency and intensity of flood events have increased significantly due to 
the combined effects of climate change, urbanization, and environmental degradation. These 
extreme events pose serious threats to water infrastructure, particularly dams, which are essential 
for water storage, energy generation, flood control, and irrigation. Ensuring the proper functioning 
and safety of dams is therefore critical for protecting downstream communities and supporting 
socio-economic development. [1] 

One of the key challenges in dam management today is the rising risk of extreme hydrological 
events that may exceed design capacities and expose structural vulnerabilities. This highlights the 
urgent need for advanced methods to assess dam vulnerability under various flood scenarios—
not only to prevent potential failures but also to enhance decision-making in risk management and 
emergency planning. [2] 

In this context, machine learning techniques are proving highly valuable in the fields of hydrology 
and civil engineering. These methods can model complex, non-linear relationships and deliver 
reliable predictions based on large and diverse datasets. Their predictive capabilities offer new 
opportunities to assess flood risks and understand the behavior of dams under extreme 
conditions. [3] 

This study focuses on the Beni Haroun Dam, the largest dam in Algeria and a critical element of 
the country’s hydraulic infrastructure. Given its role in supplying water to several wilayas, 
evaluating its vulnerability to flood events is of utmost importance. Yet, few studies have 
thoroughly explored this issue using modern predictive approaches based on machine learning, 
leaving a gap that this research aims to address. 

Dams are critical components of water resource management systems, serving essential functions 

such as water supply, irrigation, flood control, and hydroelectric power generation. However, 

these structures are increasingly exposed to hydrological extremes due to climate variability and 

land use changes. In particular, intense and unpredictable flood events pose serious threats to the 

structural safety and operational efficiency of dams. [4] 

The main objective of this study is to assess flood risks and analyze dam vulnerability using hydrological 

approaches and machine learning (ML) techniques, focusing on the Beni Haroun Dam. This research aims 

to improve flood prediction accuracy and optimize dam risk management.  
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Research questions 

1. How can ML improve flood risk predictions? 
2. Which of the selected models performs best in classifying flood risk levels based on 

predictive accuracy and other performance metrics?  
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Methodology overview 

The methodology adopted in this study is structured around four principal stages, aimed at 
assessing the vulnerability of dams to flood risks using Machine Learning techniques. The approach 
focuses on data integration, hydrological modeling, and predictive analytics to understand and 
evaluate flood behavior in the context of dam safety. 

 

1. Data collection and preparation 

The first stage involves assembling relevant datasets from hydrological, climatological, structural, 
and environmental sources: 

 Hydrological and climatological data: Includes average and peak discharges and rainfall data 
from past episodes. Time series over multiple years are used to capture hydrological 
trends. 

 Dam-related data: Covers the structural characteristics of the dam, historical records of 
water releases during flood periods. 

 
2. Machine Learning, modeling approaches and data preparation 

The third phase centers on the use of machine learning techniques to quantify relationships 
between variables and forecast flood risks: 

 Data preparation: A tabular dataset is constructed from the climate, hydrological. 
Standardization is applied to prevent bias in model training. 

 Modeling techniques: 
1. Random Forest 
2. XGBoost 
3. Gradient Boosting 
4. CatBoost 

 Validation: The dataset is split into 70% training and 30% testing sets. Cross-validation 
techniques are used to ensure model robustness and reliability.  
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3. Expected results 

The methodology aims to yield the following outcomes: 

 A predictive model capable of estimating the probability and severity of flood events under 
varying climatic conditions. 

 Identification of critical thresholds for the dam, including its maximum capacity before 
overtopping. 

 Strategic recommendations to improve flood management practices and reduce dam 
vulnerability.  
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Chapter I 

 

 

Theoretical Background 
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I.1 Flood risk, type and factor 

I.1.1 Definition of flood risk 

“Flood risk” is a combination of the probability and the potential consequences of flooding. Areas 
at risk of flooding are those at risk of flooding from any source, now or in the future. Sources 
include rivers and the sea, direct rainfall on the ground surface, rising groundwater, overwhelmed 
sewers and drainage systems, reservoirs, canals and lakes and other artificial sources. [5] 
 

I.1.2 Factors 

I.1.2.1 physical factors 

Prolonged rainfall 

After prolonged rainfall, soil becomes saturated, causing an increase in surface runoff. As rainfall 
can no longer infiltrate the soil, more water enters the river channel, increasing the likelihood of 
flooding. [6] 

Heavy rainfall 

Heavy rainfall can result in water arriving too quickly to infiltrate the soil. This increases surface 
run-off, leading water to reach the river channel quicker, resulting in a greater risk of flooding. [6] 

Geology 

Impermeable surfaces such as clay and granite do not allow infiltration, leading to greater surface 
run-off. The risk of flooding increases as water reaches the river channel quickly, increasing 
discharge and the risk of flooding. [6] 

Relief 

Water can move swiftly downhill in regions with steep terrain, such as mountains. The steeper the 
slope, the more rapid the water flow into a river channel, increasing the risk of flooding. [6] 

I.1.2.2 human factors 

Landuse 

Urban development affects water movement as well. Hard, non-absorbent surfaces like concrete, 
asphalt, and drainage systems can speed up water flow to rivers. Plus, the scarcity of greenery 
means less rainwater is absorbed or evaporated. Drains also increase water flow into surrounding 
rivers, increasing the flood risk. 
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Agricultural practices can influence how water moves. For instance, fields without crops, especially 
during winter when soils are wet, can quickly channel water. Also, ploughing down slopes can form 
small channels that accelerate water flow directly to rivers. [6] 

Deforestation 

Vegetation, including trees, intercepts rainfall, slowing its movement. Some of this water is stored 
before evaporation returns moisture to the atmosphere. Trees also absorb water from the soil, 
allowing greater infiltration into the soil and reducing surface run-off. When vegetation is 
removed, infiltration and interception are reduced and surface run-off increases. Without trees, 
more water flows directly to rivers, raising the potential for flooding. This leads to a greater risk of 
flooding as more water reaches the river channel. [6] 

 

I.1.3 Types of flood risks 

I.1.3.1 Fluvial 

A fluvial or river flood is a flood that occurs in and around lakes, streams, or rivers. Fluvial flooding 
can either be overbank flooding—when the water level rises over the edges of a river, stream, or 
lake—or flash flooding—where there is a high volume of water moving at a high velocity in an 
existing riverbed with little advance notice. 

While the amount, accumulation, and duration of precipitation are the main contributing factors 
to fluvial flooding, soil water saturation and the area’s terrain also impact the likelihood of a fluvial 
flood. In flatter areas, floodwaters rise more slowly but stick around for days. While in more sloping 
and mountainous areas, the floods tend to happen more quickly and move faster. [7] 

I.1.3.2 Pluvial 

Pluvial flooding occurs when increased rainfall creates a flood independent of an existing body of 
water. These floods can occur in any location, even without nearby water bodies. Like fluvial 
flooding, pluvial floods come in two forms: surface water floods and flash floods. Surface water 
floods occur when a drainage system is overwhelmed. Flash floods, in this case, are just like fluvial 
flash floods; however, they are not contained to a river system. These flash floods are triggered 
by immense rainfall in a short period near low-lying terrain. [7]  
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I.1.3.3 Coastal 

Coastal flooding is the inundation of land along the coast by seawater. It can be caused by high 
tides, storm surge, and tsunamis. 

High-tide flooding is generally defined as a coastal water level reaching or exceeding a median 
height of 0.5 to 0.65 meters above the long‐term average daily highest tide. The number of days 
with minor high tide flooding 

Storm surge is the abnormal rise in seawater levels during a tropical cyclone, or hurricane, and is measured 

as the height of the water above the normal predicted tide. The magnitude of storm surge depends on the 

orientation of the coast with the track of the hurricane; the hurricane’s strength, size, and speed; and 

coastal and underwater topography. Whether the hurricane hits during high or low tide can matter for the 

resulting magnitude of flooding. [7] 

 

I.2 Dam flood risk, vulnerability, safety and importance 

I.2.1 Dam-Specific flood risks 

A dam failure is a catastrophic type of failure characterized by the sudden, rapid and uncontrolled 

release of impounded water accompanied by the trapped silt and debris that erode and 

accumulate additional debris along the way. [8] 

The most common cause of dam failure is flood or dam overtopping. The next common cause is 

piping or seepage. Different causes attributable to the structural failure comprise the third most 

common category. Sometimes a dam may even fail due to the failure of its spillway gate, 

earthquake or even poor design/construction. The many types of dam failures may be summarised 

using five failures scenarios/events: hydrologic, geologic, structural, seismic, and human-

influenced. [9]  
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I.2.2 Challenges of dam vulnerability to floods 

Dams are susceptible to floods due to several factors, including extreme rainfall, climate change, 
and structural weaknesses. 

- Extreme Rainfall: Dams are built to withstand specific flood levels, but sometimes, extreme 
rainfall can exceed their limits, causing them to overflow or even fail. A real example of this 
happened in Libya in 2023 when two dams collapsed due to the intense rainfall brought by 
Storm Daniel, a powerful Mediterranean cyclone. [10] 
 

- Climate Change: Research in the US has also indicated an increased risk of dam failure due 
to a changing climate. Analysis of rainfall sequences and events associated with recent 
hydrologic failures of 552 dams across the country, suggests intensifying precipitation may 
contribute to increasing failures of dams by overtopping. [10] 

The decadal rate of dam failures has been increasing since the 1970s, and with over 90,000 ageing 
dams still in service, the increasing likelihood of intense rainfall is leading to increased concern 
about future dam failures. [11] 

- Structural Weaknesses: Many manmade structures including dams, bridges and buildings 
were not built to withstand the extreme rainfall events happening today. Advancing age 
makes dams more susceptible to failure. [11] 
 

- Inadequate Spillway Capacity: The extreme rainfall event will cause increased stream flows 
resulting in the water level in the reservoir to rise to heights that the dam may have never 
previously experienced. And, if the dam and spillway system are not equipped to safely 
pass an extreme rainfall event, the reservoir level will rise and water will go over the dam 
itself. This is called “overtopping.” [12] 
 

- Poor Reservoir Management: The management of reservoir systems is a very complex issue 
and is often considered a wicked problem. In order to understand the wickedness of 
reservoir management, one needs first to understand what a wicked problem is: as a class 
of social system problems that are ill-formulated, where the information is confusing, 
where there are many clients and decision makers with conflicting values, and where the 
ramifications in the whole system are thoroughly confusing. [13] 
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I.2.3 Dam Safety 

Water stored behind a dam represents potential energy which can create a hazard to life and 

property located downstream of a dam. In order for a dam to safely fulfill its intended function, it 

must be constructed, operated and maintained properly. 

The risks associated with the storage of water must be minimized at all times. The height of a dam, 

its maximum impoundment capacity, the physical characteristics of the dam site and the location 

of downstream facilities should be assessed to determine the appropriate hazard classification. 

The functions of the Dam Safety Section include: safety inspection of dams; technical review of 

proposed dam construction or modification; monitoring of remedial work for compliance with 

dam safety criteria; and emergency preparedness. [14] 
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I.2.4 Importance of assessing dam vulnerability 

Comprehensive evaluation of dams is a vital process that involves assessing the safety, stability, 

and overall performance of dams. It evaluates various aspects of the dam, 

including structural integrity, hydraulic efficiency, environmental impact, and risk 

management.[15] 

Assessing dam vulnerability is crucial for several reasons: 

1. Ensuring structural integrity: The primary objectives of comprehensive evaluation of dams 

are to assess their structural integrity and efficiency. They also aim to identify any existing 

or potential issues, such as dam deterioration, seepage, or vulnerability to natural hazards. 

The potential environmental impact of the dam and its reservoir, including potential 

effects on water quality, wildlife habitats, and downstream ecosystems are also evaluated. 

As the dam is assessed, engineers consider the dam’s location and vulnerabilities to 

develop effective risk management strategies. [15] 

 

2. Adapting to environmental changes: With global climate change resulting in unpredictable 

and extreme patterns of rainfall, heavily aged dams are at an even greater risk of 

succumbing to the effects of extreme weather. As such, dam failure has become a 

prevalent issue, endangering communities located underneath the infrastructure. This 

helps in understanding how these factors impact dam stability and guides necessary 

adaptations. [16] 

 

3. Protecting downstream communities: The purpose of this guide is to outline a procedure 

for identifying and assessing the potential consequences of dam failure at the community 

level using readily available information. A good assessment will establish the potential 

short- and long-term economic, social, and environmental effects of dam failure that will 

inform planning efforts. [17] 

 

4. Informing risk management strategies: are short-term actions that the Corps can take to 

reduce risk, based on information gathered during risk assessments or inspections. We 

implement these to reduce risk while we study potential dam safety issues further, 

perform maintenance actions, or pursue long-term modifications. Examples of interim risk 

reduction measures include structural measures, increased inspection and monitoring, 

dam safety training, stockpiling of emergency materials, operational changes or 

restrictions, updating and exercising Emergency Action Plans, and increased risk 

communication and coordination. [18] 

 

  

https://damtoolbox.org/wiki/Stability
https://damtoolbox.org/wiki/Structural
https://damtoolbox.org/wiki/Environmental
https://damtoolbox.org/wiki/Risk_Management
https://damtoolbox.org/wiki/Risk_Management
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I.3 Machin Learning and natural disaster 

Amidst the continually changing climate and the rise in natural disasters, it is crucial to strengthen 

resilience against these calamities. This chapter explores the dynamic intersection of machine 

learning and natural disasters, revealing how advanced technologies reshape disaster 

management. In the face of escalating challenges posed by earthquakes, floods, and wildfires, 

machine learning emerges as an innovative solution, offering proactive approaches beyond 

conventional reactive methods. The narrative unfolds by tracing the evolution of disaster 

management, highlighting the transformative impact of machine learning on early warning 

systems. It explores predictive analytics and risk assessment, elucidating how machine learning 

algorithms leverage historical data and real-time information to deepen our understanding of 

disaster vulnerabilities. Beyond prediction, the discourse extends to the pivotal role of machine 

learning in optimizing response and recovery efforts—efficiently allocating resources and 

fostering recovery planning. A critical dimension of this integration emerges in the analysis of 

remote sensing and satellite imagery, where machine learning algorithms enable more accurate 

and timely disaster monitoring. The exploration extends further, unraveling the 

interconnectedness of various hazards and emphasizing how machine learning facilitates a holistic 

understanding. The synergy between machine learning and traditional knowledge systems comes 

to the forefront, recognizing the significance of integrating local wisdom into predictive models. 
[19] 

 

I.3.1 ML and DL applications in disaster management 

I.3.1.1 Disaster and hazard prediction 

Disaster and hazard prediction utilizing ML (Machine Learning) and DL (Deep Learning) involve the 

development of models that analyze historical data and real-time information to forecast potential 

disasters. This approach proves instrumental in situations where timely predictions can mitigate 

risks and protect vulnerable communities. [19] 

 Increased Predictive Accuracy: ML and DL models enhance the accuracy of disaster 

predictions, allowing for more reliable forecasting. 

 Proactive Risk Mitigation: Early identification of potential hazards enables proactive 

measures, reducing the impact on communities. 

 Adaptability to Various Disasters: ML and DL models can be adapted to predict a wide range 

of disasters, including floods, earthquakes, wildfires, hurricanes, and more. 
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I.3.1.2 Risk and vulnerability assessment 

ML and DL technologies contribute significantly to risk and vulnerability assessment, offering 

nuanced insights into susceptibilities in specific regions. This application is particularly useful in 

situations where targeted mitigation strategies are required. [19] 

 Precision in identifying vulnerabilities: DL models process vast datasets to pinpoint 

vulnerabilities accurately, aiding in the formulation of targeted mitigation strategies. 

 Adaptability to varied regions: ML applications in risk assessment can be tailored to 

different geographical regions, ensuring relevance in diverse contexts. 

 Comprehensive analysis: The capacity to analyze various factors contributes to a 

comprehensive understanding of disaster risks. 

 

I.3.1.3 Disaster detection 

ML applications in disaster detection focus on swiftly identifying events like floods and wildfires, 

enabling rapid response in critical situations. [19] 

 Swift event identification: ML algorithms can quickly identify disasters, facilitating timely 

responses to minimize damage. 

 Adaptive algorithms: ML models can adapt to different disaster scenarios, enhancing their 

versatility. 

 Real-time monitoring: The integration of real-time data allows for continuous monitoring 

and detection of evolving disaster situations. 

 

I.3.1.4 Early warning systems 

ML and DL play a pivotal role in optimizing early warning systems, offering timely alerts and 

fostering community resilience. [19] 

 Timely alert generation: ML algorithms process data rapidly, enabling the generation of 

timely alerts for at-risk communities. 

 Community-centric approach: Early warning systems become more effective by 

incorporating community voices and experiences through ML applications. 

 Integration with various data sources: ML models can integrate data from diverse sources, 

enhancing the comprehensiveness of early warnings. 
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I.4 Conclusion 

Chapter I establishes a comprehensive foundation on flood risks, their causes, and the critical 

role of dam safety, particularly in the context of increasing environmental challenges. It begins 

by defining flood risk as a combination of both the probability of flooding and the magnitude 

of its consequences. The chapter systematically explores both natural (physical) and human-

induced factors contributing to flooding. Prolonged and intense rainfall, impermeable 

geological surfaces, and steep slopes are shown to accelerate runoff into river systems, while 

urbanization, agriculture, and deforestation further exacerbate the problem by altering 

natural water absorption and flow patterns. 

The chapter distinguishes among three main types of flood risks—fluvial, pluvial, and coastal—

highlighting their distinct causes and behaviors. This classification emphasizes the need for 

multi-faceted flood management strategies, particularly as extreme weather events become 

more frequent. 

In addressing dam-specific flood risks, the chapter brings focus to vulnerabilities associated 

with structural failures, overtopping, and poor management practices. Real-world examples, 

such as the catastrophic dam failures in Libya due to Storm Daniel, illustrate the devastating 

potential of extreme weather compounded by aging infrastructure and design limitations. 

A significant portion of the chapter is dedicated to assessing dam safety. It stresses the 

importance of inspections, emergency preparedness, and structural monitoring, while also 

underlining how climate change and increased rainfall intensify the risks faced by aging dams. 

The chapter highlights that dam safety is not a one-time concern but an ongoing responsibility 

involving hydrological, structural, and management considerations. 

Finally, the integration of Machine Learning (ML) into disaster risk management is introduced. 

ML is presented as a transformative tool in flood prediction, detection, and risk assessment. 

From early warning systems to real-time monitoring and vulnerability analysis, ML offers 

promising methods for enhancing both preparedness and response strategies. The synergy 

between data-driven models and traditional engineering practices is proposed as a powerful 

approach to managing increasingly complex flood risks in the modern era.  
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Chapter II 

 

 

Overview of Beni Haroun Dam  
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II.1 Beni Haroun dam 

II.1.1 Situation 

The Beni Haroun Dam is a large strategic hydraulic complex in Algeria. 

The dam site is located in the Wilaya of Mila, in northeastern Algeria, on the Oued El Kebir, about 

forty kilometers from its mouth in the Mediterranean Sea. 

The reservoir created by the dam is located to the south of it. It is situated approximately 40 km 

North / North-West of the city of Constantine and 350 km east of Algiers. 

The dam is positioned at the upstream end of the limestone-marl gorge of Beni Haroun and about 

4 km from the confluence of the Oued Rhumel and the Oued Enndja. 

The total basin of the Oued Kebir at the dam site covers an area of about 7,725 km². 

Considering that part of the Rhumel basin is regulated by the Hammam Grouz Dam, the area 

relevant to the Beni Haroun Dam is 6,595 km². [20] 

Figure 1. Location of Beni Haroun dam 

 

II.1.2 Importance 

The eastern region of Algeria is characterized by a low water demand in the north, despite 

abundant water resources. In contrast, in the southern high plateaus, water resources are limited, 

while the demand for drinking water is rapidly increasing, and there are large areas of irrigable 

agricultural land. [21] 
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II.1.3 Objective 

The Beni Haroun transfer project aims to transfer the water resources mobilized by the Beni 

Haroun and Bou Siaba dams (partially) to six Wilayas: Batna, Khenchela, Mila, Oum El Bouaghi, 

Constantine, and Jijel (El Milia region). [21] 

 

II.1.4 Geology of the dam site 

II.1.4.1 General description 

The dam site is characterized by an Eocene limestone ridge approximately 100 meters thick, with 

a general East-West orientation, resting on Paleocene black marls downstream and overlain by 

Eocene marls upstream. 

This uplift of the limestone ridge results in a reduction of its outcrop surface from the right bank 

to the left bank. 

The direction of the stratification shifts from N80° to 90°E on the right bank to N35°E on the left 

bank. 

Upstream of this limestone bed, Eocene marls (Em) are detected overlying the limestone, while 

downstream, beneath the limestones, dark Paleocene marls (Pm), more or less fractured, can be 

distinguished. In the marls, gypsum striations and some pyrite appear, particularly in the upper 

layers. 

In the valley bottom and on the right bank, the contact between the downstream Paleocene marls 

and the Eocene limestones is conformable. The transition occurs gradually through an increase in 

the number and thickness of the limestone beds. This transition zone is between 5 and 15 meters 

thick. 

Upstream of the limestone ridge, the contact with the Eocene marls is more tectonized. It is 

marked by a transition from marl-limestone to black schistose marls, with a transitional zone about 

15 meters thick alternating yellowish limestone beds (20 to 40 cm thick) and dark marl beds. The 

dip of the marl layers shows relatively tight folding with dips that are nearly vertical or even 

overturned as one moves away from the limestones. In this area, several blocks with slickensided 

surfaces—indicating shear movements in these layers—are visible, and it is possible that 

significant limestone lenses may also be observed there. 

The limestone ridge itself is crossed by numerous joints and fractures—some filled with clay and 

showing signs of shearing or slipping, others filled with calcite—and by karstic dissolution features. 

These have developed mainly along certain nearly vertical joints. The thickness of these karstified 

zones can reach 30 to 50 centimeters and appears as a clayey or brecciated infill, recemented by 

calcite. 
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In the limestones, three facies have been identified: an upper section of marly limestones (Eml) 

about 30 to 40 meters thick, an intermediate section of limestones with flint nodules about 30 

meters thick, and a lower section of black limestones with a thickness of 70 to 100 meters. [21] 

 

II.1.4.2 Lithology 

The various formations observed in the dam area, from oldest to most recent, are as follows: 

Paleocene Marls (Pm) 

They outcrop on the slopes and in excavations downstream of the site. They were identified 

through several boreholes during the early project phases. 

These marls are more or less calcareous and slightly pyritiferous. Locally, traces of gypsum and 

calcite can be seen filling joints. Septaria are frequently found in these marls. 

In their upper part, over a thickness of about 5 meters, there is an alternation of marls and 

limestone beds forming the transition to the overlying layers. [21] 

Eocene Limestones attributed to the Ypresian (El) 

Detailed geological mapping of the site has made it possible to distinguish three subdivisions of 

the limestone ridge forming the foundation of the dam: 

 Marly limestones (Eml) 

 Limestones with flint (Elf) 

 Basal limestones (Ebl) 

Overall, these rocks appear in decimetric to metric layers of fine-grained limestone, dark gray to 

black, hard and resistant. Some limestone beds are extremely hard due to dolomitization or 

silicification, while others contain black flint. This flint appears as small nodules (1–3 cm in 

diameter) and thin bands (2 to 15 cm thick). Thin interbedded layers of calcareous shale (up to 30 

cm) are also present. 

The limestone formation is relatively resistant to weathering and erosion, but locally shows signs 

of dissolution. 

As the limestones weather, they typically become pale gray to beige. [21] 

Eocene Marls (Em) (Lutetian age) 

The limited outcrops of this formation show compacted shales, dark gray to black, with a 

lithology that appears almost identical to the facies of the Paleocene marls. 

The presence of small septaria allows them to be distinguished. 
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In most outcrops, the marl is highly deformed by tectonic activity and has subsequently undergone 

surface weathering. [21] 

Colluvium and Scree (C and S) 

On the right abutment, slope deposits or colluvium are observed, consisting of angular limestone 

stones, sometimes slightly cemented or containing a clayey matrix. 

Their thickness can reach up to 20 meters. 

On the left bank, colluvial deposits of stones, limestone blocks, and marls are found. 

In general, the upstream and downstream marls are, in many places, covered by these weathering 

products—either in place or displaced by sliding. [21] 

Alluvial Terrace (T) 

In the lower part of the right bank, there is an alluvial terrace with its base located around 

elevations 138–140. It is composed of gravel and large blocks within a sandy matrix, transitioning 

to pebbles in a more clayey matrix further into the slope. 

The thickness can reach up to 20 meters and decreases downstream and toward the right 

abutment. This terrace features several intermediate levels. [21] 

Alluvium (A) 

These are mainly gravels, large blocks, and alluvial sands from the riverbed (oued). [21] 

Embankments (E) 

The main embankments are those of the cofferdams and structures within the riverbed, as well as 

those covering the former thalweg of the right abutment. They are more than 20 meters thick 

between the dam abutment and that of the viaduct. [21]  
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II.2 Dam Characteristics 

II.2.1 Structural specifications of the dam 

II.2.1.1 Main characteristics of the RCC dam 

The dam is a straight gravity-type structure made of roller-compacted concrete (RCC) resting on a 

limestone rock foundation. 

The normal retention level (NR), which is also the crest of the free-flow spillway, is at elevation 

200. 

This corresponds to a structure with a maximum height from the foundation of 118 meters and a 

crest length of 710 meters. [21] 

The design of the dam and its auxiliary structures was guided by the goal of: 

 Minimizing the quantities of conventional concrete 

 Ensuring good continuity of the RCC construction site 

 Concentrating as much as possible the structures that require the use of traditional 

concrete. 
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Figure 2. Spillway cross-section [21] 
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Figure 3. Cross-section of non-overflow block [21]  
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The basic profile of the dam is a triangle with the following characteristics: 

• Apex at elevation 214.80 m, maximum water level (M.W.L.) 

• Vertical upstream face 

• Downstream face inclined at 0.8 horizontal for 1 vertical 

The non-overflow section has a crest 8 m wide, leveled at elevation 216.30 m, which provides a freeboard 

of 1.5 m above the highest water level. 

The downstream face of this section changes slope above elevation 196, which enhances earthquake 

resistance and allows the installation of a roadway. 

The surface spillway, of the "free overflow" type, is economically built, as in all concrete dams, by shaping 

the central part of the dam as an overflow section. 

It is 124 m long, divided into 6 bays topped by a road bridge. 

The spillway crest is extended by a chute connected to a ski jump, positioned above the highest water 

level. The spillway capacity is 13,230 m³/s at a water level of 214.74 m, which corresponds to the 

maximum flow released after attenuation of the probable maximum flood (PMF) of 16,640 m³/s. 

The valley floor has been widened by cutting into the right bank for about 100 meters to ensure a solid 

foundation for the part of the dam affected by the spillway and bottom outlet. 

The bottom outlet, located next to the spillway, is installed on the right bank at elevation 140. 

It consists of two conduits designed to discharge a flow of 670 m³/s (335 m³/s per conduit) below the 

normal reservoir level, ending in a ski jump. 

During construction, river diversion was ensured during the dry season (May–October) by the two 

diversion tunnels on the left bank, as planned in the original rockfill solution. During the rainy season, 

these tunnels were also sufficient, and although the overflow of the central part of the dam could have 

been used to pass major floods, it was not necessary. 

Three galleries, distributed over 3 levels and located near the upstream face of the dam, are used for 

injection and drainage operations within the dam body and foundation. 

Positioned at elevations 100 m, 140 m, and 175.10 m, they are located 4.00 m from the upstream face for 

the lower gallery and 6.50 m for the two upper ones. These galleries extend into the abutments over 

distances ranging from 70 to 130 m. 

An additional rock gallery, at elevation 120.00 m, reinforces drainage on the right bank. [21] 
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Figure 4. Plan view [21]  
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The gallery system described above allows for the collection of drainage water from the dam body, 

foundation, and slopes. It also enables monitoring of the dam’s behavior and facilitates maintenance and 

any necessary repair operations. 

Beneath the dam, the waterproofing barrier consists of a multi-row grout curtain (generally 3 rows) with 

a depth ranging from 40 to 120 meters. Deeper control borings were also carried out. 

Grouting to consolidate the foundation rock was performed across the entire dam footprint to a depth of 

8 meters, using a square grid with 4-meter spacing. 

A drainage curtain with a maximum depth of 40 meters was constructed from the inspection gallery at 

the dam's base. 

The aggregates for the RCC (Roller-Compacted Concrete) were sourced from the processing of alluvial 

deposits in the nearby wadi. [21] 

 

II.2.1.2 Main characteristics of the management 

Reservoir [21] 

Table 1. Main characteristics of the reservoir 

Normal Level (NL) 200.00 m 

Maximum Water Level (HWL) 214.80 m 

Minimum Operating Level (MOL) 172.00 m 

Dead Storage Volume (110-172) 240 106 m3 

Useful Storage Volume (172 - 200) 723 106 m3 

Total Storage Volume (110-200) 963 106 m3 
 

Dam [21] 

Table 2. Main characteristics of the dam 

Type Roller-Compacted Concrete (RCC) Gravity Dam 

Maximum Height: 
- Above the natural ground 
- Above the foundations 

 
107 m 
118 m 

Crest Length 710 m 

Crest Width 8 m 

Maximum Width at the function level 93 m 

Upstream face slope Vertical 

Downstream face slope 08H/1V 

Crest Elevation 216.30 m 
 

 



26 
 

Flood spillway [21] 

Table 3. Main characteristics of the flood spillway 

Type 
Free-Flow Surface Spillway - Channel and Ski-
Jump 

Location Central Part of the Dam 

Crest Elevation 200 m 

Elevation of the downstream ski-jump lip Ranging from 124.00 m to 126.00 m 

Total Length of the Spillway at the Crest 124 m 

Effective Length of the Spillway at the Crest 114 m distributed over 6 spans of 19 m each 

Length of the Bucket 130 m 

Maximum Flow 13,230 m³/sec for HWL at 214.74 m 
 

Half-Depth Drainage [21] 

Table 4. Main characteristics of the half-depth drainage 

Type 2 armored outlets in the body of the dam with ski-jump 

Location Right bank 

Entrance Positioning 140.0 m 

Section of the Outlets (3.0 m x 4.10 m) x 2 

Gates 
2 sluice gates upstream 
2 segment gates downstream 

Maximum Flow 
670 m³/sec below NL 200 
> 700 m³/sec below NL > 200 

 

Injection and drainage of the foundation [21] 

Table 5. Main characteristics of the injection and drainage of the foundation 

Injection curtain 
Vertical multifilar aligned with the upstream 
footer gallery, depth from 40 to 120 m 

Drainage curtain 1 drilled curtain from the upstream footer gallery 
 

Diversion structure [21] 

Table 6. Main characteristics of the diversion structure 

2 underground galleries 
∅ 8 m (solution galleries "rock-fill 
embankment") 
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II.3 Conclusion 

Chapter II provides a detailed and technical overview of the Beni Haroun Dam, positioning it as 

one of Algeria’s most significant hydraulic infrastructures. Strategically located in the Wilaya of 

Mila and serving several eastern Algerian provinces, the dam plays a vital role in water storage, 

distribution, and inter-regional transfer, particularly addressing the imbalanced demand between 

the northern and southern regions. 

The geological characterization of the dam site reveals a complex stratigraphy dominated by 

Eocene limestones and Paleocene marls, intersected by numerous fractures and karstic features. 

This heterogeneity demands careful engineering to ensure foundation stability. The presence of 

tectonic deformation, weathered materials, and varying lithological units illustrates the 

geotechnical challenges addressed during design and construction. 

The dam itself is a straight gravity structure made of roller-compacted concrete (RCC) with a 

maximum height of 118 meters and a crest length of 710 meters. The technical specifications 

reflect advanced engineering tailored to optimize durability, minimize conventional concrete use, 

and enhance seismic resistance. Key safety components, such as the multi-bay spillway, ski-jump 

discharge, bottom outlets, and drainage galleries, demonstrate the dam's robust flood 

management capacity. 

Detailed operational parameters are also highlighted, including normal and maximum water 

levels, reservoir volumes, and outlet capacities, which are essential for understanding the dam’s 

performance under various hydrological conditions. The RCC structure is supported by a grout 

curtain and drainage systems that ensure effective seepage control and structural integrity. 

What stands out is the dam’s dual role: it is both a vital water resource infrastructure and a critical 

point of vulnerability. Its capacity to withstand high inflow events—especially amid changing 

climate conditions—is central to regional water security and flood protection. As such, the chapter 

emphasizes not only the engineering prowess behind Beni Haroun Dam but also the importance 

of continuous monitoring and proactive management to adapt to future environmental 

challenges. 

Moreover, climatic variability—amplified by the global trend of climate change—is emerging as a 

significant challenge. The recurrence of intense rainfall events and shifting seasonal patterns raises 

the stakes for dam safety and water resource management. In dry years, low inflows could 

jeopardize the dam’s primary purpose of supplying water to multiple wilayas. In wet years, 

unanticipated surges in runoff could overwhelm spillway and drainage systems if not properly 

anticipated and managed. 

Therefore, while Beni Haroun Dam stands as a robust engineering feat, its performance and long-

term sustainability are intimately tied to hydrological, meteorological, and climatic factors. These 

factors must be continuously monitored. 
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Chapter III 

 

 

Machine Learning, Modeling Approaches, Data Preparation 

and modeling 
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III.1 Machine Learning 

The basic concept of machine learning in data science involves using statistical learning and 

optimization methods that let computers analyze datasets and identify patterns. Machine learning 

techniques leverage data mining to identify historic trends and inform future models. [22] 

The typical supervised machine learning algorithm consists of roughly three components: 

1. A decision process: A recipe of calculations or other steps that takes in the data and 

“guesses” what kind of pattern your algorithm is looking to find. 

2. An error function: A method of measuring how good the guess was by comparing it to 

known examples (when they are available). Did the decision process get it right? If not, 

how do you quantify “how bad” the miss was? 

3. An updating or optimization process: A method in which the algorithm looks at the miss 

and then updates how the decision process comes to the final decision, so next time the 

miss won’t be as great. 

For example, if you’re building a movie recommendation system, you can provide information 

about yourself and your watch history as input. The algorithm will take that input and learn how 

to return an accurate output: movies you will enjoy. Some inputs could be movies you watched 

and rated highly, the percentage of movies you’ve seen that are comedies, or how many movies 

feature a particular actor. The algorithm’s job is to find these parameters and assign weights to 

them. If the algorithm gets it right, the weights it used stay the same. If it gets a movie wrong, the 

weights that led to the wrong decision get turned down so it doesn’t make that kind of mistake 

again. 

Since a machine learning algorithm updates autonomously, the analytical accuracy improves with 

each run as it teaches itself from the data it analyzes. This iterative nature of learning is both 

unique and valuable because it occurs without human intervention — empowering the algorithm 

to uncover hidden insights without being specifically programmed to do so. [22] 

 

III.1.2 Types of Machine Learning 

There are many types of machine learning models defined by the presence or absence of human 

influence on raw data — whether a reward is offered, specific feedback is given, or labels are used. 

 Supervised learning: The dataset being used has been pre-labeled and classified by users 

to allow the algorithm to see how accurate its performance is. 

 Unsupervised learning: The raw dataset being used is unlabeled and an algorithm identifies 

patterns and relationships within the data without help from users. 
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 Semi-supervised learning: The dataset contains structured and unstructured data, which 

guides the algorithm on its way to making independent conclusions. The combination of 

the two data types in one training dataset allows machine learning algorithms to learn to 

label unlabeled data. 

 Reinforcement learning: The dataset uses a “rewards/punishments” system, offering 

feedback to the algorithm to learn from its own experiences by trial and error. 

Finally, there’s the concept of deep learning, which is a newer area of machine learning that 

automatically learns from datasets without introducing human rules or knowledge. This requires 

massive amounts of raw data for processing — and the more data that is received, the more the 

predictive model improves. [22] 

 

III.1.3 Commonly used Machine Learning algorithms 

The purpose of machine learning is to use machine learning algorithms to analyze data. By 

leveraging machine learning, a developer can improve the efficiency of a task involving large 

quantities of data without the need for manual human input. Around the world, strong machine 

learning algorithms can be used to improve the productivity of professionals working in data 

science, computer science, and many other fields. 

There are a number of machine learning algorithms that are commonly used by modern 

technology companies. Each of these machine learning algorithms can have numerous 

applications in a variety of educational and business settings. [22]  
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III.1.3.1 Linear regression 

Linear regression is an algorithm used to analyze the relationship between independent input 

variables and at least one target variable. This kind of regression is used to predict continuous 

outcomes — variables that can take any numerical outcome. For example, given data on the 

neighborhood and property, can a model predict the sale value of a home? Linear relationships 

occur when the data relationship being observed tends to follow a straight line overall — and as 

such, this model can be used to observe whether a data point is increasing, decreasing, or 

remaining the same relative to some independent variable, such as time elapsed or position. 

Machine learning models can be employed to analyze data in order to observe and map linear 

regressions. Independent variables and target variables can be input into a linear regression 

machine learning model, and the model will then map the coefficients of the best fit line to the 

data. In other words, the linear regression models attempt to map a straight line, or a linear 

relationship, through the dataset. [22] 

 

III.1.3.2 Logistic regression 

Logistic regression is a supervised learning algorithm that is used for classification problems. 

Instead of continuous output like in linear regression, a logistic model predicts the probability of a 

binary event occurring. For example in dam risk management, logistic regression can be used to 

classify whether a specific inflow event will lead to a flood risk or not. 

For instance, based on input variables such as: 

 Monthly inflow (m³/s) 

 Maximum daily rainfall (mm) 

 End-of-month reservoir volume (hm³) 

 Volume change compared to previous month (hm³) 

The logistic regression model can be trained to predict the probability that the dam will enter a 

"flood alert" status (1) or remain in "normal operation" (0). 

So the output is binary: 

 1 → Flood risk present 

 0 → No flood risk 

The dam operator can then use this prediction to trigger early warning systems or initiate 

preventive release protocols. 
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Machine learning algorithms can use logistic regression models to determine categorical 

outcomes. When given a dataset, the logistic regression model can check any weights and biases 

and then use the given dependent categorical target variables to understand how to correctly 

categorize that dataset. [22] 

 

III.1.3.3 Neural networks 

Neural networks are artificial intelligence algorithms that attempt to replicate the way the human 

brain processes information to understand and intelligently classify data. These neural network 

learning algorithms are used to recognize patterns in data and speech, translate languages, make 

financial predictions, and much more through thousands, or sometimes millions, of 

interconnected processing nodes. Data is “fed-forward” through layers that process and assign 

weights, before being sent to the next layer of nodes, and so on. 

Crucially, neural network algorithms are designed to quickly learn from input training data in order 

to improve the proficiency and efficiency of the network’s algorithms. As such, neural networks 

serve as key examples of the power and potential of machine learning models. [22] 

 

III.1.3.4 Decision trees 

Decision trees are data structures with nodes that are used to test against some input data. The 

input data is tested against the leaf nodes down the tree to attempt to produce the correct, 

desired output. They are easy to visually understand due to their tree-like structure and can be 

designed to categorize data based on some categorization schema. 

Decision trees are one method of supervised learning, a field in machine learning that refers to 

how the predictive machine learning model is devised via the training of a learning algorithm. [22] 

 

III.2 Modeling approaches 

III.2.1 RF (Random Forest) 

Random forest is a commonly-used machine learning algorithm, trademarked by Leo Breiman and 

Adele Cutler, that combines the output of multiple decision trees to reach a single result. Its ease 

of use and flexibility have fueled its adoption, as it handles both classification and regression 

problems. [23] 
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III.2.1.1 Random Forest works 

Random forest algorithms have three main hyperparameters, which need to be set before 

training. These include node size, the number of trees, and the number of features sampled. From 

there, the random forest classifier can be used to solve for regression or classification problems. 

The random forest algorithm is made up of a collection of decision trees, and each tree in the 

ensemble is comprised of a data sample drawn from a training set with replacement, called the 

bootstrap sample. Of that training sample, one-third of it is set aside as test data, known as the 

out-of-bag (oob) sample, which we’ll come back to later. Another instance of randomness is then 

injected through feature bagging, adding more diversity to the dataset and reducing the 

correlation among decision trees. Depending on the type of problem, the determination of the 

prediction will vary. For a regression task, the individual decision trees will be averaged, and for a 

classification task, a majority vote—i.e. the most frequent categorical variable—will yield the 

predicted class. Finally, the oob sample is then used for cross-validation, finalizing that prediction. 
[23] 

 

Figure 5. Random Forest diagram [23] 
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III.2.2 XGBoost 

XGBoost short form for eXtreme Gradient Boosting is an advanced machine learning algorithm 

designed for efficiency, speed and high performance. 

It is an optimized implementation of Gradient Boosting and is a type of ensemble learning method 

that combines multiple weak models to form a stronger model. [24] 

 XGBoost uses decision trees as its base learners and combines them sequentially to 

improve the model’s performance. Each new tree is trained to correct the errors made by 

the previous tree and this process is called boosting. 

 It has built-in parallel processing to train models on large datasets quickly. XGBoost also 

supports customizations allowing users to adjust model parameters to optimize 

performance based on the specific problem. 

 

 

 

Figure 6. XGBoost diagram [24]  
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III.2.2.1 XGBoost Works 

It builds decision trees sequentially with each tree attempting to correct the mistakes made by the 

previous one. The process can be broken down as follows: [24] 

1. Start with a base learner: The first model decision tree is trained on the data. In regression 

tasks this base model simply predicts the average of the target variable. 

2. Calculate the errors: After training the first tree the errors between the predicted and 

actual values are calculated. 

3. Train the next tree: The next tree is trained on the errors of the previous tree. This step 

attempts to correct the errors made by the first tree. 

4. Repeat the process: This process continues with each new tree trying to correct the errors 

of the previous trees until a stopping criterion is met. 

5. Combine the predictions: The final prediction is the sum of the predictions from all the 

trees.  
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III.2.3 Gradient Boosting 

Gradient boosting is an ensemble learning algorithm that produces accurate predictions by 

combining multiple decision trees into a single model. This algorithmic approach to predictive 

modeling, introduced by Jerome Friedman, uses base models to build upon their strengths, 

correcting errors and improving predictive capabilities. By capturing complex patterns in data, 

gradient boosting excels at diverse predictive modeling tasks. [25] 

 

III.2.3.1 Ensemble learning and boosting 

Ensemble learning is a machine learning approach that combines multiple models or methods to 

boost predictive performance. It often employs techniques such as bagging and boosting. Bagging 

involves training numerous models on different data subsets with some randomness, which helps 

reduce variance by averaging out individual errors. A great example of this approach is random 

forests. 

In contrast, boosting is an ensemble technique that iteratively trains models to correct previous 

mistakes. It gives more weight to misclassified instances in subsequent models, allowing them to 

focus on challenging data points and ultimately enhancing overall performance. AdaBoost, widely 

regarded as the first applicable boosting algorithm, is a classic illustration of this method. Both 

bagging and boosting optimize the bias variance tradeoff in models, leading to more robust 

performance. 

These techniques are extensively used in machine learning to improve model accuracy, especially 

when dealing with complex or noisy datasets. By combining multiple perspectives, ensemble 

learning provides a way to overcome the limitations of individual models and achieve improved 

optimization. [25] 
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Figure 7. Gradient Boosting diagram [25] 

 

III.2.4.2 Gradient Boosting works 

Gradient boosting is a machine learning technique that combines multiple weak prediction models 

into a single ensemble. These weak models are typically decision trees, which are trained 

sequentially to minimize errors and improve accuracy. By combining multiple decision tree 

regressors or decision tree classifiers, gradient boosting can effectively capture complex 

relationships between features. [25] 
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III.2.4 CatBoost 

CatBoost, short for “Category Boosting” is an open-source gradient boosting library developed by 

Yandex. It’s specifically designed to work with categorical variables straight out of the box. Unlike 

other machine learning algorithms that require categorical variables to be converted into 

numerical format through one-hot encoding or similar techniques, CatBoost can process these 

variables natively, which significantly simplifies the data preparation process and enhances model 

performance. [26] 

 

III.2.4.1 CatBoost algorithm works 

CatBoost is a supervised machine learning method that is used by the Train Using AutoML tool and 

uses decision trees for classification and regression. As its name suggests, CatBoost has two main 

features, it works with categorical data (the Cat) and it uses gradient boosting (the Boost). Gradient 

boosting is a process in which many decision trees are constructed iteratively. Each subsequent 

tree improves the result of the previous tree, leading to better results. CatBoost improves on the 

original gradient boost method for a faster implementation. 

CatBoost overcomes a limitation of other decision tree-based methods in which, typically, the data 

must be pre-processed to convert categorical string variables to numerical values, one-hot-

encodings, and so on. This method can directly consume a combination of categorical and non-

categorical explanatory variables without preprocessing. It preprocesses as part of the algorithm. 

CatBoost uses a method called ordered encoding to encode categorical features. Ordered 

encoding considers the target statistics from all the rows prior to a data point to calculate a value 

to replace the categorical feature. 

Another unique characteristic of CatBoost is that it uses symmetric trees. This means that at every 

depth level, all the decision nodes use the same split condition. 

CatBoost can also be faster than other methods such as XGBoost. It retains certain features—such 

as cross-validation, regularization, and missing value support—from the prior algorithms. This 

method performs well with both small data and large data. [27] 
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Figure 8. Structure of CatBoost algorithm [28]  
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III.3 Data Preparation for modeling 

III.3.1 Historical floodwater release data [29] 

 

Table 7. Historical floodwater release data, spill (hm3) 

Months/Years 2009 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2024 

January 0.00 0.00 0.00 122.33 419.86 106.69 0.00 0.00 299.996 106.958 17.782 0.00 

February 0.00 292,53 200.93 0.00 673.25 100.40 142.13 0.00 356.24 40.517 58.779 1.79 

March 168.33 357.16 259.44 0.00 690.63 278.15 44.72 177.6 183.707 94.601 36.568 303.88 

April 0.00 131.89 101.05 121.24 253.26 156.96 2.28 165.628 139.906 84.25 28.69 6.42 

May 0.00 56.77 57.25 29.40 116.86 110.06 0.00 119.045 52.253 33.93 0.00 0.00 

June 0.00 40.15 6.90 34.70 69.65 1.80 0.00 31.841 13.535 0.00 0.00 0.00 

July 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.443 0.00 0.00 0.00 

August 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

September 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

October 0.00 9.44 0.00 0.00 28.40 0.00 0.00 29.902 0.00 0.00 0.00  

November 0.00 0.00 110.88 0.00 55.99 0.00 0.00 44.979 108.309 0.00 0.00  

December 0.00 0.00 121.20 0.00 83.96 0.00 0.00 27.617 216.077 0.00 0.00  

 

 

III.3.2 End-of-month volume 

 

Figure 9. Clustered column of end-of-month volume 
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III.3.3 Monthly inflow 

 

Figure 10. Histogram of monthly inflow 
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III.3.4 Variable of volume 

 

Figure 11. Variable of volume 
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III.3.5 Max daily rainfall 

 

Figure 12. Max daily rainfall 
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III.4 Modeling 

The quality and structure of input data are critical in developing robust machine learning models. 

In this study, data preparation was conducted using systematic methods to ensure model 

accuracy, generalizability, and relevance for predicting flood risk at Beni Haroun Dam. 

III.4.1 Feature selection and engineering 

The initial dataset comprised a wide range of hydrological and operational variables. Based on 

domain relevance and correlation analysis, the following key features were selected for modeling: 

 Monthly Inflow 

 Max Daily Rainfall 

 Monthly Rainfall 

 End of Month Volume 

 Volume Change 

These variables represent a combination of direct hydrological inputs and reservoir state 

indicators, both of which influence flood occurrence. 

 

III.4.2 Target variable construction 

To frame the task as a classification problem, flood risk labels were created from the variable 

Flood_Risk_Combined, which integrates expert-defined thresholds from two sub-indices: 

Flood_Risk_1 and Flood_Risk_2. This combined label was converted into three classes (e.g., Low, 

Medium, High), to serve as the target output in multi-class classification models. 

 

III.4.3 Handling missing or anomalous data 

Initial exploratory analysis involved checking for missing values, duplicates, and anomalies. 

Imputation was not necessary, as the dataset was clean, with no null values. However, extremely 

low or high values (outliers) in inflow and rainfall were reviewed and retained, considering their 

physical plausibility and importance in flood scenarios. 

III.4.4 Normalization and scaling 

Because tree-based ensemble models (Random Forest, XGBoost, CatBoost, Gradient Boosting) are 

not sensitive to feature scaling, normalization or standardization was not applied. These 

algorithms naturally handle data in its raw units, preserving interpretability and improving training 

efficiency. 
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III.4.5 Data Splitting: training and testing 

To evaluate model performance reliably, the dataset was split into training and testing sets, 

typically using an 80/20 ratio. This ensures that the model learns from one subset and is evaluated 

on unseen data, simulating real-world deployment. 

Additionally, cross-validation (e.g., 5-fold) was applied during model training to reduce overfitting 

and validate generalizability. 

 

III.4.6 Encoding and labeling 

Since the selected features were all numerical, categorical encoding was not required. The target 

classes were encoded into integers (e.g., Low = 0, Medium = 1, High = 2) for compatibility with 

classification algorithms. 

 

III.4.7 Performance evaluation criteria 

To assess model effectiveness, a combination of classification metrics was used: 

 Accuracy: Overall correctness of predictions. 

 Precision, Recall, F1-score (macro-averaged): To evaluate performance across all classes 

equally. 

 AUC (Area Under the Curve): Particularly useful for distinguishing high-risk flood events 

from others. 

 Confusion Matrix: To visualize class-specific prediction strengths and weaknesses. 

 Feature Importance Scores: Extracted from models to interpret which variables had the 

most predictive power. 

These metrics provided both a global and class-specific understanding of model performance. 
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III.5 Conclusion 

Chapter III delves into the application of machine learning (ML) techniques in the context of 

natural disaster management, with a specific focus on flood prediction and dam vulnerability 

assessment. It begins by laying the groundwork for understanding how ML systems function—

using algorithms to learn patterns from data, adapt autonomously, and improve their predictive 

accuracy over time. 

The chapter systematically introduces the four main types of machine learning—supervised, 

unsupervised, semi-supervised, and reinforcement learning—while also distinguishing deep 

learning as a powerful subset that requires large datasets and minimal human intervention. These 

foundational concepts are crucial for appreciating how ML moves beyond traditional, reactive 

disaster management toward proactive, data-driven strategies. 

A single family of widely used machine learning algorithms is explained in accessible terms, 

including decision tree-based ensemble methods such as Random Forest, XGBoost, Gradient 

Boosting, and CatBoost, which are known for their interpretability, accuracy, and effectiveness in 

classification tasks. 

The chapter then transitions into a more specialized discussion of modeling techniques used for 

flood risk prediction, specifically focusing on four high-performing ensemble models: 

1. Random Forest (RF) 

2. XGBoost (eXtreme Gradient Boosting) 

3. Gradient Boosting 

4. CatBoost (Category Boosting) 

Each method is described in detail—outlining how it builds on decision trees, handles data, 

improves accuracy, and adapts to classification tasks. Special attention is given to boosting 

methods, which iteratively focus on correcting previous prediction errors, thereby enhancing the 

model’s performance on complex datasets. 

By integrating these models into flood risk analysis, particularly for infrastructures like Beni Haroun 

Dam, the chapter illustrates how ML empowers engineers and decision-makers to: 

 Anticipate high inflow conditions, 

 Optimize emergency responses, 

 Enhance early warning systems, 

 And ultimately reduce the risk of dam failure during extreme weather events. 
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In parallel, the chapter emphasizes that successful ML implementation hinges not only on 

algorithm selection but also on rigorous data preparation. This included selecting hydrologically 

relevant variables—such as monthly inflow, rainfall patterns, and reservoir volume metrics—

based on domain knowledge and statistical analysis. The target variable was constructed by 

combining flood risk indicators into a multi-class label, enabling more granular risk classification. 

Given that tree-based models are robust to varying data scales, normalization was not necessary. 

Instead, efforts were focused on ensuring data integrity, managing outliers, and applying 

intelligent splitting strategies for model training and evaluation. An 80/20 training-testing split was 

used alongside k-fold cross-validation to validate model stability. Performance metrics such as 

accuracy, precision, recall, F1-score, AUC, and confusion matrices provided a comprehensive 

evaluation framework, while feature importance scores offered insight into the hydrological 

drivers of flood risk. 

In essence, Chapter III shows that effective flood prediction is achieved through the synergy of 

advanced machine learning models and well-prepared, contextually meaningful data. This dual 

emphasis ensures that predictive outcomes are both technically sound and practically useful for 

dam safety and disaster risk reduction.  
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Chapter IV 

 

 

Results, discussion and Comparison 
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IV.1 Predictive model outcomes 

IV.1.1 Random Forest (RF) 

Among the models used, Random Forest served as a strong starting point for flood risk 

classification due to its reliability, ability to handle complex feature interactions, and resistance to 

overfitting. The model works by constructing a large number of decision trees and combining their 

outputs to improve predictive accuracy. Before training the Random Forest model, it was essential 

to first verify that the input variables did not exhibit problematic multicollinearity, which could 

distort the results. This was done through an analysis of Variance Inflation Factor (VIF) and 

tolerance values. 

 

IV.1.1.1 VIF and tolerance statistics 

Table 8. VIF and tolerance statistics of RF 

Variable VIF Tolerance 

Monthly Rainfall 3.830721 0.261047 

Max Daily Rainfall 2.976299 0.335988 

Monthly Inflow 1.358036 0.736358 

Volume Change 1.292619 0.773623 

End of Month Volume 1.042016 0.959678 
 

Before model training, input variables were assessed for multicollinearity using Variance Inflation 

Factor (VIF) and tolerance values. All variables showed acceptable levels of collinearity, with no 

VIF exceeding the commonly accepted threshold of 5. Monthly Rainfall exhibited the highest VIF 

(3.83), while End of Month Volume had the lowest (1.04), indicating no significant redundancy or 

distortion among predictors. These results confirm the statistical reliability of the input data used 

to predict flood-related inflow behavior. 

  



50 
 

IV.1.1.2 Model metrics 

Accuracy               : 0.92 

Precision (macro): 0.87 

Recall (macro)      : 0.88 

F1-score (macro) : 0.88 

AUC (macro)         : 0.98 

 

The Random Forest model achieved an overall accuracy of 92%, indicating a high level of predictive 

reliability. This level of accuracy suggests that the model is well-suited for forecasting inflow levels 

that contribute to flood risk at Beni Haroun Dam. Furthermore, a macro-averaged Area Under the 

Curve (AUC) value of 0.98 demonstrates the model’s excellent ability to distinguish between 

different inflow conditions, including potentially hazardous ones. 

 

IV.1.1.3 Classification report 

Table 9. Classification report of RF 

 Precision Recall F1-score Support 

Low 0.87 0.81 0.84 16 

Medium 0.75 0.86 0.80 14 

High 1.00 0.98 0.99 45 

 

Class-specific performance results revealed that the model was particularly strong in detecting 

high inflow conditions—the most critical category for dam vulnerability assessment. The high 

inflow class was predicted with near-perfect scores, achieving a precision of 1.00, recall of 0.98, 

and F1-score of 0.99. For the medium inflow class, the model maintained a strong recall of 0.86 

despite a slightly lower precision of 0.75, yielding an F1-score of 0.80. The low inflow class also 

showed solid results, with a precision of 0.87, recall of 0.81, and F1-score of 0.84. These outcomes 

highlight the model’s ability to reliably identify extreme inflow events, which are directly 

associated with periods of elevated flood risk and operational stress on the dam. 
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IV.1.1.4 Confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Confusion matrix of RF 

 

The confusion matrix provides a summary of the classification performance of the Random Forest 

model by comparing actual inflow classes with those predicted by the model. In this matrix, each 

row represents the actual class, while each column represents the predicted class. 

The RF model showed particularly strong performance in predicting high inflow levels, with most 

actual high inflow instances correctly classified. A small number of misclassifications occurred 

between the medium and low inflow classes, indicating some overlap in the feature patterns of 

these two categories. However, the overall structure of the matrix demonstrates a strong 

alignment between actual and predicted values, particularly for the high-risk (flood-prone) 

category, which is most critical for dam vulnerability analysis.  
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IV.1.1.5 Normalized confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Normalized confusion matrix of RF 

 

The normalized confusion matrix refines the raw confusion matrix by expressing values as 

proportions or percentages, allowing for a clearer comparison of classification effectiveness across 

classes regardless of sample size. 

From the normalized matrix, it is evident that the high inflow class achieved a near-perfect 

classification rate, with over 98% of high inflow cases correctly identified by the model. The low 

inflow class also showed a high true positive rate, while the medium inflow class had a slightly 

lower precision due to some confusion with the low inflow class. This suggests that while the 

model is highly effective in distinguishing flood-risk conditions (high inflows), it is slightly more 

challenged by transitional inflow states that lack clear distinguishing features.  
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IV.1.1.6 ROC curve – multi-class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Multi-class ROC curve of RF 

 

The multi-class ROC (Receiver Operating Characteristic) curve for the Random Forest model offers 

a clear visualization of the classifier’s ability to distinguish between the three inflow categories: 

low, medium, and high. This is achieved using the One-vs-Rest (OvR) strategy, in which a separate 

ROC curve is plotted for each class by comparing it against the combined set of the other two 

classes. 

The ROC analysis confirms that the Random Forest model performs exceptionally well in multi-

class classification, particularly in the context of flood risk prediction at Beni Haroun Dam: 

 The high inflow class—the most crucial category for dam safety and flood preparedness—

achieved an AUC (Area Under the Curve) value of 1. This indicates that the model has an 

perfect ability to distinguish flood-prone inflow conditions from normal or low-risk 

scenarios. Such performance is vital for triggering timely warnings and preventive actions 

during periods of elevated hydrological stress. 

 The medium inflow class also exhibited a high AUC, demonstrating the model’s 

competence in handling transitional inflow cases. Although this class is often more difficult 
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to classify due to overlaps with neighboring classes, the Random Forest model maintained 

a strong true positive rate while limiting false positives. 

 The low inflow class likewise showed a strong AUC, confirming the model’s reliability in 

identifying dry or non-flood conditions. Accurate identification of these periods is also 

important for optimizing water storage and release operations. 

The ROC curves for all three classes were consistently skewed toward the top-left corner of the 

plot, which reflects a combination of high sensitivity and specificity. This shape indicates that the 

model is not only effective at correctly classifying each inflow category, but also maintains a low 

rate of false alarms—particularly important in operational dam settings where overreaction can 

lead to unnecessary releases, while underreaction may result in flood damage. 
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IV.1.1.7 Feature importance 

Table 10. Variable and importance of RF 

Variable Importance 

Monthly Inflow 0.495830 

Volume Change 0.179827 

End of Month Volume 0.130346 

Monthly Rainfall 0.102944 

Max Daily Rainfall 0.091053 
 

An analysis of feature importance showed that Monthly Inflow was the most influential predictor, 

contributing nearly 50% of the model’s total decision-making weight. Volume Change and End of 

Month Volume were the next most important variables, accounting for 17.98% and 13.03% 

respectively. Meanwhile, rainfall variables—including Monthly Rainfall and Max Daily Rainfall—

played a secondary yet relevant role. This ranking reflects the physical reality of flood generation 

and reservoir behavior, underscoring the model’s ability to extract hydrologically meaningful 

patterns that inform flood vulnerability analysis. 
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IV.1.1.8 Temporal flood risk map 

 

Figure 16. Temporal flood risk map of RF 

 

The temporal risk map generated using Random Forest classification results provides a month-by-

month visualization of predicted inflow categories over a multi-year period. This visualization 

highlights temporal patterns in flood risk and allows stakeholders to track the historical evolution 

of inflow conditions. 

Analysis of the map shows clear seasonal trends, with high inflow levels clustering around the rainy 

seasons—typically in the winter and spring months. These repeated peaks confirm the model’s 

ability to capture seasonal flood dynamics. The map serves as a valuable operational tool, allowing 

dam managers at Beni Haroun to identify recurring high-risk periods and plan preventive actions 

in advance, such as adjusting storage levels or reinforcing monitoring during vulnerable months. 
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IV.1.1.9 Annual trend of monthly inflow 

 

 

Figure 17. Annual trend of monthly inflow of RF 

 

The annual trend plot illustrates how the classification of inflow levels has varied year by year. This 

long-term perspective is critical for understanding whether the frequency or intensity of flood-

prone conditions is increasing, decreasing, or remaining stable. 

The chart indicates that certain years experience significantly more high inflow events, which may 

correlate with observed regional climatic anomalies or extreme rainfall years. For example, peaks 

in high inflow frequency during specific years highlight periods of elevated flood risk. This insight 

supports strategic reservoir planning, risk communication, and investment in adaptive 

infrastructure. Moreover, the trend chart could serve as a reference point for climate impact 

studies and long-term water resource management at Beni Haroun Dam. 
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IV.1.2 XGBoost 

Following the Random Forest model, XGBoost was implemented to further explore flood risk 

classification. Known for its high speed, accuracy, and ability to handle imbalanced or noisy 

datasets, XGBoost improves model performance by building trees sequentially—each one 

correcting the errors of the previous. Its efficiency and flexibility make it particularly effective for 

structured data like hydrological records. As with the previous model, a critical first step involved 

evaluating the predictor variables for multicollinearity. This was assessed using Variance Inflation 

Factor (VIF) and tolerance values to ensure that the input data would not introduce redundancy 

or instability during model training. 

 

IV.1.2.1 VIF and tolerance statistics 

Table 11. Vif and tolerance statistics of XGBoost 

Variable VIF Tolerance 

Monthly Rainfall 3.830721 0.261047 

Max Daily Rainfall 2.976299 0.335988 

Monthly Inflow 1.358036 0.736358 

Volume Change 1.292619 0.773623 

End of Month Volume 1.042016 0.959678 
 

Prior to training, the predictor variables were evaluated for multicollinearity using Variance 

Inflation Factor (VIF) and tolerance values. All variables were found to be within acceptable 

statistical thresholds, with no VIF exceeding the limit of 5. The highest VIF was associated with 

Monthly Rainfall (3.83), while End of Month Volume had the lowest (1.04), paired with a high 

tolerance of 0.96. These results confirm the absence of problematic multicollinearity and validate 

the use of all input variables in the model for flood risk classification. 

  



59 
 

IV.1.2.2 Model metrics 

Accuracy               : 0.93 

Precision (macro): 0.90 

Recall (macro)      : 0.91 

F1-score (macro) : 0.90 

AUC (macro)         : 0.98 

 

The XGBoost classifier demonstrated excellent predictive performance. It achieved an overall 

accuracy of 93%, correctly classifying the majority of inflow levels associated with potential flood 

scenarios. Macro-averaged values for precision, recall, and F1-score were all close to or above 

0.90, indicating a well-balanced model capable of minimizing both false positives and false 

negatives. The macro-averaged Area Under the Curve (AUC) was 0.98, reinforcing the model’s 

ability to effectively separate inflow levels associated with various degrees of flood risk. 

 

IV.1.2.3 Classification report 

Table 12. Classification report of XGboost 

 Precision Recall F1-score Support 

Low 0.93 0.81 0.87 16 

Medium 0.76 0.93 0.84 14 

High 1.00 0.98 0,99 45 
 

The model performed strongly across all inflow categories, with particularly high reliability in 

identifying high inflow events — the most critical category for flood risk management and dam 

vulnerability assessment. The high inflow class was predicted with perfect precision (1.00) and 

near-perfect recall (0.98), meaning that the model successfully identified nearly all extreme inflow 

events with no false alarms. The medium inflow class was also well captured, with a recall of 0.93 

and a slightly lower precision of 0.76, indicating occasional overlap with other classes. Low inflow 

events were classified with a precision of 0.93 and a recall of 0.81. These results highlight the 

model’s strong discriminative ability, particularly its effectiveness in detecting flood-prone 

conditions at Beni Haroun Dam.  
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IV.1.2.4 Confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Confusion matrix of XGBoost 

 

The confusion matrix of the XGBoost classifier presents a comprehensive view of the model’s 

ability to distinguish between low, medium, and high inflow levels. It compares the predicted 

classifications to the actual observed values. 

The matrix shows very high accuracy in predicting high inflow events, with minimal 

misclassification. This confirms that the model reliably identifies flood-prone scenarios, which are 

most critical for dam safety and flood preparedness. A few misclassifications were observed 

between medium and low inflow levels, suggesting some overlap in feature patterns for those two 

classes. However, this does not significantly detract from the overall performance, as the majority 

of predictions align closely with true inflow categories.  
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IV.1.2.5 Normalized confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Normalized confusion matrix of XGBoost 

 

The normalized confusion matrix displays the proportion of correct and incorrect predictions 

across the three inflow categories. 

The model achieved a perfect or near-perfect classification rate for high inflow, with 

approximately 98% of true high inflow events correctly predicted. This high recall rate is essential 

for flood risk assessment, as it ensures that most potentially hazardous inflow events are 

successfully identified. The medium inflow category had slightly more variability, with some cases 

misclassified as low inflow. Nonetheless, the general distribution shows that the XGBoost classifier 

maintains strong class discrimination, especially where it matters most — in high inflow (flood) 

conditions.  
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IV.1.2.6 ROC curve – multi-class 

 

Figure 20. Multi-class ROC curve of XGBoost 

 

The multi-class ROC curve for the XGBoost model provides a comprehensive evaluation of the 

classifier's ability to distinguish between the three inflow categories: low, medium, and high. This 

analysis was performed using the One-vs-Rest (OvR) strategy, where the model evaluates each 

class independently against the other two combined. 

The ROC curves produced for each inflow class exhibit excellent shape and spread, with results 

concentrated near the top-left corner of the plot—indicative of a high true positive rate and a low 

false positive rate. This reflects a strong ability to differentiate between classes, which is further 

supported by high AUC (Area Under the Curve) values: 

 The high inflow class—which is the most critical for flood risk detection and dam 

vulnerability—achieved an AUC of 1, confirming XGBoost's exceptional sensitivity and 
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precision in predicting flood-prone conditions. This means the model is highly effective at 

identifying high inflow events with minimal misclassification, making it a reliable 

component for early warning and emergency preparedness systems. 

 The medium inflow class also demonstrated a high AUC, though slightly lower than the 

high inflow class. This suggests the model is competent at detecting transitional inflow 

events, although there may be minor overlap with low inflow periods—an expected 

challenge given the subtle boundary between the two. 

 The low inflow class exhibited strong classification performance, with an AUC that also 

reflects high confidence in distinguishing dry or low-risk inflow periods from more 

hazardous conditions. 

Overall, the ROC curve analysis confirms that XGBoost is not only accurate in its classifications but 

also highly discriminative, which is critical for operational decision-making. 
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IV.1.2.7 Feature importance 

Table 13. Variable and importance of XGBoost 

Variable Importance 

Monthly Inflow 0.800303 

Volume Change 0.100573 

Max Daily Rainfall 0.041564 

End of Month Volume 0.032578 

Monthly Rainfall 0.024981 
 

XGBoost’s internal feature importance analysis revealed that Monthly Inflow was by far the most 

influential predictor, contributing around 80% to the model's decisions. This was followed by 

Volume Change with a moderate contribution, while Max Daily Rainfall, End of Month Volume, 

and Monthly Rainfall had comparatively smaller influence. This distribution of importance is 

consistent with the physical dynamics of dam operations, where sustained inflows and storage 

changes are more indicative of impending flood conditions than short-term rainfall variations. The 

dominance of inflow and volume-based variables reflects the model's alignment with hydrological 

processes that drive flood risk at Beni Haroun Dam. 
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IV.1.2.8 Temporal flood risk map 

 

Figure 21. Temporal flood risk map of XGBoost 

 

The temporal risk map produced by the XGBoost model illustrates the distribution of predicted 

inflow levels over time, allowing for the identification of flood-prone periods and seasonal risk 

patterns. 

The map reveals that high inflow classifications are concentrated during specific months of the 

year, particularly those corresponding to seasonal rainfall peaks. This consistency demonstrates 

the model’s ability to capture the temporal behavior of inflow variability, making it a valuable tool 

for forecasting flood risk windows. The clear identification of high-risk periods supports dam 

operators in adjusting reservoir operations and preparing mitigation strategies in anticipation of 

peak inflows.  
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IV.1.2.9 Annual trend of monthly inflow 

 

Figure 22. Annual trend of monthly inflow of XGBoost 

 

The annual trend analysis tracks the frequency and distribution of predicted inflow categories 

across multiple years. It offers insight into how inflow behavior evolves over time, which is crucial 

for identifying long-term changes in flood risk. 

The trend line shows that certain years experienced a greater number of high inflow classifications, 

reflecting either exceptionally wet years or changes in upstream catchment behavior. Such annual 

variations are important for strategic reservoir management and may also indicate emerging 

patterns related to climate variability. For the Beni Haroun Dam, these findings provide a solid 

foundation for long-term planning and adaptive policy development in response to changing 

hydrological regimes. 
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IV.1.4 Gradient Boosting 

The Gradient Boosting model was also employed to assess its ability to classify flood risk based on 

the same set of hydrological indicators. This technique builds models in a sequential manner, 

where each new tree attempts to correct the prediction errors made by the previous ones. Its 

strength lies in capturing complex, non-linear relationships and improving performance through a 

gradual refinement process. Before training the model, it was important to verify that the selected 

input variables did not suffer from multicollinearity. As with the other models, this was done by 

calculating Variance Inflation Factor (VIF) and tolerance values to ensure that each variable 

contributed meaningful and independent information to the learning process. 

 

IV.1.4.1 VIF and tolerance statistics 

Table 14. VIF and tolerance statistics of Gradient Boosting 

Variable VIF Tolerance 

Monthly Rainfall 3.830721 0.261047 

Max Daily Rainfall 2.976299 0.335988 

Monthly Inflow 1.358036 0.736358 

Volume Change 1.292619 0.773623 

End of Month Volume 1.042016 0.959678 
 

As with the other models, input variables were assessed for multicollinearity using Variance 

Inflation Factor (VIF) and tolerance values. All variables met acceptable thresholds. Monthly 

Rainfall exhibited the highest VIF at 3.83, while End of Month Volume had the lowest VIF (1.04) 

and the highest tolerance value, indicating minimal redundancy and high independence among 

predictors. This confirms the statistical soundness of the input dataset and its suitability for 

modeling flood-related inflow behavior. 
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IV.1.4.2 Model metrics 

Accuracy               : 0.93 

F1-score (macro) : 0.90 

Precision (macro): 0.90 

Recall (macro)     : 0.91 

AUC (macro)        : 0.99 

 

The Gradient Boosting classifier demonstrated excellent predictive performance, with an overall 

accuracy of 93%. This high level of precision in classifying inflow levels indicates the model’s 

reliability in operational forecasting scenarios related to flood risk. The macro-averaged F1-score 

was 0.90, with macro precision and recall values of 0.90 and 0.91, respectively. These metrics show 

a strong balance between sensitivity and specificity, critical for distinguishing inflow patterns that 

may indicate flood threats to Beni Haroun Dam. The model also achieved an exceptionally high 

macro-average Area Under the Curve (AUC) of 0.99, underscoring its superior ability to separate 

inflow levels across multiple classes. 

 

IV.1.4.3 Classification report 

Table 15. Classification report of Gradient Boosting 

 Precision Recall F1-score Support 

Low 0.93 0.81 0.87 16 

Medium 0.76 0.93 0.84 14 

High 1.00 0,98 0.99 45 
 

The model exhibited strong classification capability across all inflow categories, with a particular 

strength in identifying high inflow events—those most associated with flood risk. The high inflow 

class was predicted with perfect precision and a recall of 0.98, resulting in a near-perfect F1-score 

of 0.99. For the medium inflow class, the model reached a recall of 0.93 and a precision of 0.76, 

indicating accurate identification with some degree of misclassification from other categories. The 

low inflow class achieved a precision of 0.93 and a recall of 0.81, yielding a strong F1-score of 0.87. 

These results demonstrate the Gradient Boosting model’s well-rounded classification strength and 

its reliability in identifying potentially hazardous flood scenarios.  
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IV.1.4.4 Confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Confusion matrix of Gradient Boosting 

 

The confusion matrix generated by the Gradient Boosting model presents the actual versus 

predicted inflow classifications. It allows a direct assessment of the model's prediction reliability 

for each inflow category. 

The matrix reveals that the high inflow class was predicted with near-perfect accuracy, reflecting 

the model’s strength in identifying potentially hazardous flood conditions. Some minor 

misclassifications occurred between medium and low inflow categories, which is expected due to 

their intermediate and often overlapping characteristics. Nevertheless, the matrix structure 

confirms that the Gradient Boosting classifier performs exceptionally well in distinguishing the 

most critical inflow cases related to flood risk and dam vulnerability.  
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IV.1.4.5 Normalized confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Normalized confusion matrix of Gradient boosting 

 

The normalized confusion matrix highlights the percentage of correct and incorrect predictions 

for each inflow class, allowing for performance comparison on a proportional basis. 

The model demonstrated a very high true positive rate for the high inflow class, with over 98% of 

high inflow events correctly classified. Medium inflow cases showed a strong recall rate but slightly 

lower precision due to occasional misclassification from neighboring classes. Low inflow cases 

were also well detected, with a true positive rate above 80%. These results demonstrate that 

Gradient Boosting not only identifies flood-prone conditions with great accuracy but also performs 

reliably across all inflow levels, reinforcing its robustness as a predictive tool in dam risk 

management. 
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IV.1.4.6 ROC curve – multi-class 

 

Figure 25. Multi-class ROC curve of Gradient Boosting 

 

The Receiver Operating Characteristic (ROC) curve in a multi-class classification context offers a 

visual and quantitative evaluation of how well the model distinguishes between different inflow 

levels: low, medium, and high. For the Gradient Boosting model, the ROC curve was generated 

using the One-vs-Rest (OvR) approach, where each class is compared against the combination of 

the other two. 

The results show that the Gradient Boosting model exhibits excellent class separability, particularly 

for the most critical category—high inflow—which is directly associated with flood risk and dam 

vulnerability: 

 The AUC (Area Under the Curve) for the high inflow class reached an exceptional value of 

1, confirming the model’s perfect ability to detect flood-prone events with minimal 
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misclassification. This performance aligns with the model’s high recall and precision values 

reported in the classification report and confusion matrices. 

 The medium inflow class also achieved a high AUC, although slightly lower than that of the 

high inflow class. This indicates strong, though slightly less consistent, discriminative 

power, which is understandable given the transitional nature of medium inflow conditions. 

 The low inflow class also demonstrated high AUC performance, confirming that the model 

can reliably distinguish low inflow periods from riskier conditions. 

The ROC curves themselves are skewed toward the top-left corner of the plot for all three classes, 

signifying high sensitivity (true positive rate) and low false positive rates. This visual behavior 

supports the conclusion that Gradient Boosting is highly capable of correctly classifying inflow 

levels across all risk categories. 
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IV.1.4.7 Feature importance 

Table 16. Variable and importance of Gradient Boosting 

Variable Importance 

Monthly Inflow 0.160000 

Volume Change 0.109333 

Max Daily Rainfall 0.037333 

End of Month Volume 0.026667 

Monthly Rainfall 0.013333 
 

An evaluation of feature importance revealed that Monthly Inflow had the strongest influence on 

the model’s predictions, followed by Volume Change. The remaining features—Max Daily Rainfall, 

End of Month Volume, and Monthly Rainfall—played smaller but still relevant roles. The 

importance pattern is consistent with hydrological understanding: sustained inflows and volume 

variations serve as more reliable indicators of flood potential than isolated rainfall events. This 

feature hierarchy aligns with dam operations, where cumulative and stored water levels are crucial 

to risk assessment.  
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IV.1.4.8 Temporal flood risk map 

 

 

Figure 26. Temporal flood risk map of Gradient Boosting 

 

The temporal risk map created using the Gradient Boosting model shows the distribution of 

predicted inflow categories over time, providing valuable insight into seasonal and monthly flood 

risk variations. 

The visual pattern confirms that high inflow events are concentrated around the known rainy 

seasons, reflecting seasonal hydrological behavior. This consistency supports the model’s 

credibility and practical utility in helping dam operators at Beni Haroun anticipate high-risk 

periods. The risk map can serve as an operational planning tool, enabling early interventions, such 

as adjusting reservoir levels or preparing emergency protocols during months with high inflow 

predictions.  
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IV.1.4.9 Annual trend of monthly inflow 

 

Figure 27. Annual trend of monthly inflow 

 

The annual trend graph offers a broader view of how the frequency of each inflow class changes 

over multiple years. This long-term perspective is essential for understanding flood vulnerability 

in the context of evolving climatic and catchment conditions. 

The trend line indicates that some years experienced an increased number of high inflow events, 

suggesting periods of intensified flood risk. These peaks may correspond to extreme weather 

patterns or above-average seasonal rainfall. For dam safety and water resource management, 

recognizing such trends is critical to designing adaptive strategies. This trend analysis allows Beni 

Haroun Dam managers to refine reservoir operations and supports forward-looking flood 

preparedness policies.  
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IV.1.5 CatBoost 

CatBoost was the final model applied in this study, chosen for its ability to handle categorical 

features efficiently and its strong performance with relatively small or structured datasets. 

Although all input variables in this case were numerical, CatBoost still offered advantages in terms 

of accuracy, speed, and reduced overfitting. Like the other models, CatBoost relies on decision 

trees and boosting techniques, but with enhanced processing of feature distributions. To ensure 

a reliable foundation for training, the dataset was first examined for multicollinearity by calculating 

VIF and tolerance values—confirming that the variables provided distinct and meaningful 

contributions to the model. 

 

IV.1.5.1 VIF and tolerance statistics 

Table 17. VIF and tolerance statistics of CatBoost 

Variable VIF Tolerance 

Monthly Rainfall 3.830721 0.261047 

Max Daily Rainfall 2.976299 0.335988 

Monthly Inflow 1.358036 0.736358 

Volume Change 1.292619 0.773623 

End of Month Volume 1.042016 0.959678 
 

To ensure the reliability of the model inputs, multicollinearity among predictors was assessed 

using Variance Inflation Factor (VIF) and tolerance values. All five variables demonstrated 

acceptable levels of multicollinearity, with VIF values well below the conventional threshold of 5. 

Monthly Rainfall had the highest VIF at 3.83, while End of Month Volume recorded the lowest 

(1.04), with a correspondingly high tolerance. These results confirm that the selected predictors 

are sufficiently independent and suitable for use in the CatBoost model for flood-related inflow 

classification. 
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IV.1.5.2 Model metrics 

Accuracy               : 0.91 

F1-score (macro) : 0.86 

Precision (macro): 0.86 

Recall (macro)     : 0.88 

AUC (macro)        : 0.97 

 

The CatBoost classifier achieved a high overall accuracy of 91%, indicating that the model correctly 

predicted inflow levels in the majority of cases. The macro-averaged precision and F1-score were 

both 0.86, and the macro recall was 0.88, reflecting strong balance in detecting and classifying 

inflow categories. A macro-average Area Under the Curve (AUC) of 0.97 further confirmed the 

model’s capability to accurately distinguish between inflow conditions that may signal different 

levels of flood risk at Beni Haroun Dam. 

 

IV.1.5.3 Classification report 

Table 18. Classification report of CatBoost 

 Precision Recall F1-score Support 

Low 0.87 0.81 0.84 16 

Medium 0.71 0.86 0.77 14 

High 1.00 0,96 0.98 45 
 

Class-specific evaluation revealed that CatBoost performed especially well in identifying high 

inflow events—those most critical to flood risk monitoring and dam vulnerability assessment. The 

model achieved perfect precision (1.00) and a recall of 0.96 for the high inflow class, resulting in 

an F1-score of 0.98. For the medium inflow class, the model reached a recall of 0.86 and a precision 

of 0.71, suggesting that while most medium inflow cases were correctly identified, some 

misclassifications occurred from other classes. The low inflow class was predicted with a precision 

of 0.87 and recall of 0.81. These results demonstrate CatBoost’s strong and balanced classification 

performance, particularly in high inflow conditions that pose the greatest risk to dam safety.  
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IV.1.5.4 Confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Confusion matrix of CatBoost 

 

The confusion matrix produced by the CatBoost model offers a detailed view of how well the 

model distinguishes between actual and predicted inflow levels. It highlights the model’s 

classification effectiveness for each of the three inflow categories: low, medium, and high. 

The matrix reveals exceptional performance in detecting high inflow events, with nearly all high 

inflow instances accurately predicted. A small number of misclassifications occurred between the 

medium and low inflow categories, which is consistent with the transitional nature of those inflow 

conditions. This strong performance in identifying high inflow cases is especially valuable, as these 

are directly associated with flood risk and operational vulnerability for the dam.  
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IV.1.5.5 Normalized confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Normalized confusion matrix of CatBoost 

 

The normalized confusion matrix expresses classification results as percentages, providing a 

clearer picture of how each class was handled by the model. 

The high inflow class achieved a precision of 100% and a recall of 96%, demonstrating that the 

model correctly identified nearly all flood-prone events, with no false positives. The medium inflow 

class showed a recall of 86% but a lower precision (71%) due to misclassifications from adjacent 

classes. The low inflow class also showed strong detection, with over 80% correct identification. 

Overall, the normalized results reinforce CatBoost’s reliability in high-stakes inflow prediction, 

making it a solid tool for flood warning applications.  
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IV.1.5.6 ROC curve – multi-class 

 

Figure 30. Multi-class ROC curve of CatBoost 

 

The Receiver Operating Characteristic (ROC) curve for the CatBoost model in a multi-class setting 

provides an important visual and quantitative assessment of the model’s ability to distinguish 

between the three inflow categories: low, medium, and high. In this case, CatBoost was evaluated 

using a One-vs-Rest (OvR) approach, where a separate ROC curve is plotted for each inflow class 

against the combination of the remaining classes. 

The ROC curves for all three inflow classes demonstrate excellent separation: 

 The high inflow class achieved a near-perfect AUC (Area Under the Curve) value of 1, 

indicating that the model is perfectly capable of correctly identifying high inflow events—

critical for flood risk detection and dam safety planning. This reflects the model’s high 

precision and recall for the flood-prone category. 
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 The medium inflow class also showed a strong AUC, although slightly lower than the high 

inflow class. This is consistent with earlier classification results, where some overlap was 

observed between medium and low inflow levels. 

 The low inflow class demonstrated a similarly high AUC, confirming the model’s reliability 

in distinguishing between dry, moderate, and wet hydrological conditions. 

The shape of the ROC curves—concentrated toward the top-left corner—indicates a high true 

positive rate and a low false positive rate across all classes. This behavior confirms the robustness 

of the CatBoost classifier in a multi-class environment, where accurate classification across all 

inflow levels is essential.  
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IV.1.5.7 Feature importance 

Table 19. Variable and importance of CatBoost 

Variable Importance 

Monthly Inflow 0.59424227 

Volume Change 0.17111426 

Max Daily Rainfall 0.10869699 

End of Month Volume 0.06503956 

Monthly Rainfall 0.06090693 

 

The CatBoost model’s feature importance ranking showed that Monthly Inflow had the greatest 

impact on classification outcomes, contributing approximately 60% of the total decision-making 

weight. Volume Change followed with about 17%, while Max Daily Rainfall, End of Month Volume, 

and Monthly Rainfall had smaller but still relevant contributions. This distribution aligns with 

hydrological reasoning, where sustained inflows and changes in reservoir volume are primary 

indicators of flood potential. CatBoost’s ability to extract meaningful patterns from these core 

variables reinforces its suitability for dam safety assessments under flood risk conditions.  
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IV.1.5.8 Temporal flood risk map 

 

Figure 31. Temporal flood risk map of CatBoost 

 

The temporal risk map created using the CatBoost model visualizes the monthly classification of 

inflow levels over multiple years. This allows for the identification of recurring flood risk periods 

and helps reveal the seasonal nature of high inflow conditions. 

The map clearly shows clusters of high inflow predictions during the wettest months, particularly 

in the late winter and spring seasons. These patterns confirm the model’s sensitivity to seasonal 

flood dynamics and offer an evidence-based guide for timing operational adjustments at Beni 

Haroun Dam. With this tool, dam managers can plan reservoir levels and water releases in advance 

of expected flood events.  
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IV.1.5.9 Annual trend of monthly inflow 

 

Figure 32. Annual trend of monthly inflow of CatBoost 

 

The annual trend analysis illustrates how the frequency of low, medium, and high inflow 

classifications varies from year to year. This long-term perspective supports strategic planning and 

the assessment of whether flood risk is increasing, decreasing, or remaining stable over time. 

The trend line indicates interannual variability, with some years showing a higher number of high 

inflow predictions, possibly linked to exceptional rainfall or hydrological anomalies. This insight is 

important for dam operators and policymakers, as it supports the development of climate-resilient 

reservoir management strategies. Understanding how inflow behavior evolves across years 

enables more proactive and adaptive dam safety planning.  
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IV.2 Comparative analysis of Machine Learning models for flood risk classification 

To support the analysis of the vulnerability of Beni Haroun Dam to flood risks, a comparative 

analysis was conducted between four top-performing machine learning models: XGBoost, 

Gradient Boosting, Random Forest, and CatBoost. These models were chosen due to their 

outstanding classification accuracy, their consistent performance in detecting high inflow events, 

their interpretability through feature importance, and their practical potential for informing flood 

risk prediction and dam safety strategies. 

 

IV.2.1 Overall model performance 

A review of classification metrics across the four models shows strong and consistent 

performance. XGBoost, Gradient Boosting, and Random Forest each achieved an accuracy of 93%, 

while CatBoost followed closely with 91%. These figures highlight the models' ability to correctly 

classify inflow levels that contribute to different levels of flood risk. 

In addition to accuracy, macro-averaged evaluation metrics confirmed the robustness of these 

models. XGBoost and Gradient Boosting both reached macro F1-scores of 0.90, indicating a high 

level of performance across all classes. Random Forest achieved a macro F1-score of 0.88, and 

CatBoost followed with 0.86. The macro-averaged Area Under the Curve (AUC) was above 0.97 for 

all models, underlining their strong capability to distinguish between flood-related inflow classes. 

 

IV.2.2 Detection of high inflow events 

Given the objective of assessing dam vulnerability to flooding, the detection of high inflow events 

is of critical importance. These events represent potential flood scenarios that demand early 

warning and timely intervention. 

All four models demonstrated excellent performance in identifying high inflow conditions. 

XGBoost, Gradient Boosting, and CatBoost achieved perfect or near-perfect precision (1.00) and 

recall values above 0.96, while Random Forest achieved a precision of 1.00 and recall of 0.98. 

These metrics confirm the effectiveness of the selected models in recognizing periods of elevated 

hydrological risk, supporting their use in flood preparedness and dam management operations at 

Beni Haroun. 

While some challenges remained in classifying medium and low inflow levels, all models 

maintained their strength in detecting the most critical class — high inflow — which directly aligns 

with flood risk scenarios. 
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IV.2.3 Feature importance and model transparency 

Another key advantage of these models is their ability to provide clear insights into the importance 

of predictor variables, which enhances their interpretability and practical usefulness. 

In all cases, Monthly Inflow was the dominant feature, contributing up to 80% in XGBoost and 

approximately 60% in CatBoost. This was followed by Volume Change and End of Month Volume, 

both of which reflect reservoir storage dynamics—critical indicators of dam vulnerability. Rainfall 

variables, though less dominant, added value in identifying variations linked to storm-driven 

inflow. 

The ability to interpret these relationships ensures that the models are not just accurate, but also 

actionable. Decision-makers can understand why a certain classification is made, allowing greater 

trust in model outputs and more confident flood risk planning. 

 

IV.2.4 Temporal risk mapping and operational utility 

Each model was also used to generate temporal risk maps and examine the annual trend of inflow 

levels. These outputs are essential for visualizing seasonal flood patterns, assessing long-term 

inflow behavior, and identifying high-risk periods. 

Among the four, Gradient Boosting and CatBoost produced particularly consistent and high-

resolution trend outputs. These visualizations help dam managers anticipate inflow surges, 

optimize reservoir operations, and plan emergency actions more effectively. By integrating these 

models into real-time monitoring systems, Beni Haroun Dam’s flood risk management framework 

can be strengthened significantly. 

 

IV.3 Conclusion 

The comparison between XGBoost, Gradient Boosting, Random Forest, and CatBoost 

demonstrates that these four models each offer strong potential for classifying flood risk in the 

context of dam vulnerability analysis. Their high accuracy, ability to detect high inflow events. 

Additionally, the interpretability of feature importance across models provided valuable insights 

into the most influential hydrological factors driving flood risk. While each model has its own 

strengths, the results suggest that tree-based ensemble methods can serve as reliable tools for 

supporting early warning systems and improving dam safety planning. 

Of these, XGBoost and Gradient Boosting stand out as the most balanced in terms of performance 

and interpretability. Their application can significantly improve early warning systems, support 

flood response planning, and enhance the overall safety and resilience of Beni Haroun Dam. 
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IV.4 Recommendations 

Based on the outcomes of the machine learning analysis for flood risk classification and dam 

vulnerability assessment, a set of recommendations is proposed to strengthen the flood 

preparedness and operational safety of Beni Haroun Dam. These recommendations address both 

short-term risk mitigation measures and long-term improvements to the dam’s monitoring, 

forecasting, and emergency response systems. Emphasis is placed on leveraging the insights 

generated by the machine learning models, particularly the high-performing ones such as 

XGBoost, Gradient Boosting, Random Forest, and CatBoost, to enhance data-driven decision-

making. 

 

IV.4.1 Flood risk mitigation strategies 

Effective flood risk mitigation begins with the accurate identification of potential flood events and 

the timely implementation of response measures. Based on the classification results of the 

selected models, the following strategies are recommended: 

 Implementation of a flood early warning system (FEWS): The high classification accuracy of 

the models—especially in detecting high inflow events—can be used to trigger automated 

warnings when inflow thresholds are exceeded. Integrating these predictions with real-

time monitoring of rainfall, reservoir level, and river inflow will improve response times. 

 Seasonal flood forecasting and preparedness planning: The temporal trend analyses 

provided by the models offer a basis for forecasting flood-prone periods on a seasonal or 

monthly basis. These forecasts should be incorporated into reservoir operation plans, 

guiding pre-emptive storage adjustments during the rainy season to create buffer capacity 

for anticipated inflows. 

 Strengthening communication protocols: Alerts generated by predictive models should be 

linked to local authorities, dam management teams, and downstream communities. 

Communication protocols should be standardized to ensure clear and timely dissemination 

of flood warnings. 

 Monitoring of contributing catchment areas: Given the role of upstream rainfall and runoff 

in generating high inflow events, it is important to enhance monitoring of contributing sub-

basins. This includes installing additional rain gauges and integrating remote sensing data 

to track changes in catchment hydrology that influence inflow to Beni Haroun Dam. 
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IV.4.2 Proposed improvements for dam flood management 

In addition to risk mitigation, structural and operational improvements can be made to support 

long-term dam resilience in the face of future flood events. Based on the findings of this study, the 

following enhancements are proposed: 

 Integration of machine learning models into reservoir decision support systems: The 

predictive models used in this research have demonstrated strong performance and 

interpretability. Embedding them into the dam’s management software will allow 

operators to simulate scenarios, optimize release schedules, and prioritize safety-driven 

decisions based on inflow predictions. 

 Development of a dynamic reservoir operation policy: Rather than relying on static rules for 

water release, a dynamic policy informed by real-time inflow classifications and forecasts 

would allow more flexible and adaptive responses. This could reduce the risk of 

overtopping while maintaining water supply and power generation objectives. 

 Regular updating and retraining of models with new data: As hydrological conditions evolve 

due to climate variability and land use changes, it is important to update the machine 

learning models with the latest data. Continuous learning will help maintain the accuracy 

and relevance of the predictions over time. 

 Investment in dam infrastructure and instrumentation upgrades: Physical improvements, 

such as increasing spillway capacity or modernizing gate control systems, can enhance the 

dam’s ability to respond to extreme flood events. In parallel, upgrading instrumentation—

such as installing automated sensors for flow, rainfall, and sediment—will provide more 

accurate inputs to the forecasting models. 

 Capacity-building and training for dam operators: Effective use of predictive models 

depends not only on the technology but also on the people using it. Training programs 

should be conducted to ensure dam personnel understand how to interpret model outputs 

and integrate them into operational protocols. 
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General conclusion 

 

The present study examined the application of machine learning techniques to assess the 

vulnerability of dams to flood risks, using Beni Haroun Dam as a case study. In light of increasing 

hydrological extremes and the operational challenges faced by large hydraulic infrastructures, the 

development of reliable, data-driven prediction tools is essential for enhancing dam safety and 

flood preparedness. This research addressed that need by evaluating the effectiveness of machine 

learning models in classifying inflow levels that correspond to different degrees of flood risk. 

Four high-performing models were selected for detailed analysis: Random Forest, XGBoost, 

Gradient Boosting, and CatBoost. Among these, ensemble-based methods such as XGBoost and 

Gradient Boosting demonstrated superior performance, achieving classification accuracies above 

90% and displaying high sensitivity in detecting high inflow events — the most critical category for 

flood risk. These models also offered strong interpretability through feature importance rankings, 

with variables such as Monthly Inflow and Volume Change consistently emerging as the most 

influential in predicting flood-prone conditions. 

In addition to static classification, the models enabled the generation of temporal risk maps and 

trend analyses, which added significant operational value. These outputs support dam operators 

in identifying seasonal patterns and anticipating critical periods, contributing to more proactive 

and informed reservoir management. 

Building on these findings, a series of recommendations were proposed, including the integration 

of machine learning models into real-time decision support systems, the development of dynamic 

reservoir operation policies, and the implementation of early warning protocols based on inflow 

classification results. These strategies aim to improve flood preparedness and reduce the 

vulnerability of Beni Haroun Dam under both current and future hydrological conditions. 

In conclusion, the study demonstrates the potential of advanced machine learning models to 

support more accurate flood risk assessment and strengthen dam management practices. 

Continued model refinement, periodic retraining with updated data, and closer integration with 

on-ground monitoring systems are recommended to sustain and enhance the practical impact of 

these tools in safeguarding critical water infrastructure.  
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Perspectives 

 

While this study has demonstrated the effectiveness of machine learning in classifying flood-

related inflow levels and assessing dam vulnerability, several promising directions remain open for 

future exploration and development. 

One important perspective is the integration of real-time data streams into the predictive models. 

Incorporating live measurements from rainfall sensors, river gauges, and satellite data would 

enable near-instant model updates and improve the responsiveness of early warning systems. 

Such real-time integration could allow the models not only to predict but also to adapt dynamically 

to changing hydrological conditions. 

Another avenue is the extension of the modeling framework to include hydrodynamic simulations 

or coupling with physically based models. While machine learning offers high accuracy, it functions 

as a data-driven black box. Combining it with traditional hydrological models could improve 

physical interpretability and enhance its credibility among engineers and water resource 

managers. 

Additionally, expanding the spatial scale of analysis beyond a single dam—such as applying the 

methodology across a network of dams or within an entire river basin—would make the approach 

more comprehensive. This would also allow decision-makers to prioritize interventions at a 

regional level and allocate resources more efficiently. 

From a technical standpoint, there is room to explore deep learning architectures, such as 

recurrent neural networks (RNNs) or long short-term memory (LSTM) networks, which are well-

suited for time series prediction. These could offer enhanced capabilities in capturing temporal 

dependencies in inflow data, particularly in multi-step ahead flood forecasting. 

Finally, future work should emphasize institutional adoption and operational implementation. 

Building user-friendly interfaces, integrating the models into dam management platforms, and 

training local operators in their use will be crucial for transitioning this research from academic 

insight to practical application. 

Overall, this work lays the foundation for more intelligent, adaptive, and data-informed dam risk 

management systems. Continued collaboration between researchers, engineers, and decision-

makers will be key to realizing the full potential of machine learning in protecting critical 

infrastructure from the growing threat of floods.  
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