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Abstract 
In the current century, electrical networks have witnessed great developments and continuous increases in the demand for 

fossil-fuel-based energy, leading to excessive rise in the total production cost and the pollutant gases emitted by thermal 

plants. Under these circumstances, energy supply from different resources became necessary, such as renewable energy 

sources (RES) as an alternative solution. These sources, however, are characterized by uncertainty in their operational 

principle, especially when the system operator needs to define the optimal contribution of each resource to ensure 

economic efficiency and enhanced grid reliability. However, even with the huge demand met, networks still face other 

problems such as power loss and voltage instability. Therefore, FACTS devices appear as an effective solution, but they 

remain expensive. This thesis addresses the growing complexity of modern power systems as they incorporate high shares 

of variable renewable energy. A unified framework is developed that couples probabilistic modelling of wind, solar, and 

hydro output using Monte Carlo simulation and specific probability density functions (Weibull distribution for wind 

speeds, lognormal distribution for solar irradiance, and Gumbel distribution for river flow) with an enhanced metaheuristic 

optimizer tailored for large-scale optimal power flow. Key developments in the Kepler Optimization Algorithm include 

a novel exploratory–exploitative search operator for deeper solution-space exploration and a non-dominated sorting 

scheme to support efficient multi-objective trade-offs. Additionally, the framework incorporates SVC and TCSC devices 

by determining their optimal sizing and placement to reinforce the transmission lines and buses that demand the most 

reactive-power support, thereby achieving a cost-effective trade-off between capital investment and operational 

performance. When validated on a large scale test system, this integrated solution enhances economic efficiency, reduces 

environmental impact, and bolsters reliability under uncertainty. By combining advanced uncertainty quantification, 

customized metaheuristics, and targeted network reinforcement, this work provides a versatile, scalable methodology for 

planning and operating resilient, low-carbon electrical grids. 

Keywords: Renewable Energy Sources, Metaheuristic Optimization Techniques, Kepler Optimization 

Algorithm, Optimal Power Flow, FACTS, Voltage Stability  

 ملخص

تطورات كبيرة وزيادات مستمرة في الطلب على الطاقة المعتمدة على الوقود الأحفوري، مما أدى إلى ارتفاع مفرط في هذا القرن  شهدت الشبكات الكهربائية  

بالإضافة إلى الغازات الملوثة المنبعثة من المحطات الحرارية. في ظل هذه الظروف، أصبح من الضروري توفير الطاقة من    ،في التكلفة الإجمالية للإنتاج

تتسم بعدم اليقين في مبدأ تشغيلها، لا سيما عندما يحتاج مشغل النظام إلى تحديد    مصادر متنوعة، مثل مصادر الطاقة المتجددة كحل بديل. إلا أن هذه المصادر

مشكلات أخرى    حتى مع تلبية الطلب الكبير، لا تزال الشبكات تواجهدية وتحسين موثوقية الشبكة. ولكن  المساهمة المثلى لكل مصدر لضمان الكفاءة الاقتصا 

تعالج هذه الرسالة التعقيد    فعّال، لكنها تظل باهظة التكلفة مثل فقدان الطاقة وعدم استقرار الجهد. لذا، تظهر أجهزة التحكم المرنة في نقل الطاقة الكهربائية كحل

لية لطاقة الرياح والطاقة المتزايد في أنظمة الطاقة الحديثة نتيجة دمج نسب عالية من الطاقة المتجددة المتغيرة. تم تطوير إطار موحد يجمع بين النمذجة الاحتما

حددة )توزيع ويبل لسرعة الرياح، وتوزيع لوغاريتمي طبيعي للإشعاع الشمسية والطاقة المائية باستخدام محاكاة مونت كارلو ودوال الكثافة الاحتمالية الم

ن ميتاهيو ريستيكي مُعزز مصمم خصيصًا لتدفق الطاقة الأمثل على نطاق واسع. تتضمن التطويرات الأساسية الشمسي، وتوزيع غومبل لتدفق الأنهار(، مع مُحسِّّ

المفاضلات متعددة    الاستغلالي لتعميق استكشاف فضاء الحلول، ونظام فرز غير مهيمن لدعم-في خوارزمية كبلر للتحسين مشغلاً جديداً للبحث الاستكشافي

وجهاز تعويض السعة المتسلسل   (Static VAR Compensator - SVC) الأهداف بكفاءة. بالإضافة إلى ذلك، يتضمن الإطار جهاز المعوّض الساكن للقدرة

من خلال تحديد الحجم الأمثل والموقع المناسب لها لتعزيز خطوط  (Thyristor Controlled Series Capacitor - TCSC) ذو التحكم عبر الثايرستور

ند  التي تحتاج إلى دعم أكبر للطاقة التفاعلية، مما يحقق توازنًا فعالًا من حيث التكلفة بين الاستثمار الرأسمالي والأداء التشغيلي. وع  يةونقاط الربط الكهربائالنقل  

في الموثوقية في ظل ظروف  ا  اختبار هذا الحل المتكامل على نظام اختبار واسع النطاق، أظهر تحسينًا في الكفاءة الاقتصادية، وتقليلًا في التأثير البيئي، وتعزيزً 

ة منهجية مرنة وقابلة  عدم اليقين. من خلال الجمع بين التقييم المتقدم لعدم اليقين، وخوارزميات التحسين المخصصة، وتعزيز الشبكة الموجهة، تقدم هذه الدراس

 .للتوسعة لتخطيط وتشغيل شبكات كهربائية مرنة ومنخفضة الكربون

  

المفتاحية أجهزةالكلمات  للطاقة،  الأمثل  التدفق  للتحسين،  كبلر  خوارزمية  الميتاهوريستيكية،  التحسين  تقنيات  المتجددة،  الطاقة  مصادر   : 

FACTSاستقرار الجهد ،
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Chapter 1 GENERAL INTRODUCTION 

1.1 Introduction  

  Background  

Electrical power systems are in a state of continuous expansion and evolution, driven by rising 

electricity demand and the quest for economic, reliable, and environmentally sustainable energy 

supply. To meet these challenges, utilities and system operators must extend and reinforce existing 

transmission and distribution networks, while also commissioning new generation units. However, 

increasing reliance on conventional thermal plants such as coal- and gas-fired units to satisfy peak 

loads leads to higher fuel costs, greater operational expenditures, and elevated greenhouse-gas 

emissions [1]. These factors require substantial capital investments in network infrastructure along 

with strategic planning to balance immediate demand requirements against long-term sustainability 

goals. 

The global transition to sustainable energy systems is crucial for mitigating climate change, 

enhancing energy security, and reducing reliance on fossil fuels [2]. (RES) including wind, solar 

photovoltaic (PV), and hydropower play a central role in this paradigm shift by lowering fuel 

expenses, cutting carbon emissions, and diversifying generation portfolios. However, their inherent 

variability and uncertainty resulting from fluctuating wind speeds, solar irradiance, and river flows 

pose significant challenges for power system stability, economic dispatch, and operational planning. 

Effectively integrating large-scale RES into existing grids demands advanced uncertainty modeling 

techniques and constrained optimization frameworks. Methods such as Monte Carlo simulation, 

scenario-based stochastic programming, and probabilistic load flow studies enable accurate 

quantification of generation variability and system risk, while comprehensive cost analyses must 

account for capital investment, integration-related balancing expenses, and long-term operational 

impacts [2]. 

Flexible AC Transmission Systems (FACTS) devices have emerged as vital components for 

augmenting grid performance in this changing landscape. Based on high-speed power-electronic 

converters, FACTS modules dynamically control line impedance, voltage magnitude, and phase angle 

to regulate power flow and maintain system stability. Shunt compensators such as Static Var 

Compensators (SVCs) utilizing Thyristor-switched capacitors/reactors, and Static Synchronous 

Compensators (STATCOMs) based on voltage-source converters inject or absorb reactive power to 

manage voltage profiles and support transient stability [3]. Series compensators, like the Thyristor-

Controlled Series Capacitor (TCSC), insert a controllable reactance into transmission lines to adjust 

power transfer capability and damp oscillations. By rapidly modulating reactive-power injection and 

series impedance, these devices reduce losses, relieve congestion, and enhance voltage regulation [4]. 

To fully harness FACTS benefits and ensure cost-effectiveness, precise determination of each 

device’s optimal location and sizing is essential; misplacement or improper rating can compromise 

voltage support and even increase overall system losses [5]. 

The Optimal Power Flow (OPF) problem is the foundational tool for optimizing generation 

dispatch and network-control settings to minimize an objective commonly fuel cost, generation cost, 

or system losses while satisfying operational constraints [6]. A full AC-OPF formulation captures 

both active and reactive power balances at each bus, voltage magnitude limits, generator capability 

curves, and thermal line-flow restrictions, resulting in a large-scale, nonlinear, and nonconvex 
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optimization problem. Typical variables include generator real/reactive outputs, bus voltages, and 

transformer tap ratios, with equality constraints enforcing Kirchhoff’s laws and inequalities 

representing equipment and security limits. Classical solution methods ranging from gradient-based 

techniques and sequential quadratic programming to interior-point and successive linear 

programming often struggle with convergence guarantees and computational tractability as network 

size grows [7]. The advent of high renewable energy source (RES) penetration introduces additional 

layers of complexity: stochastic, time-coupled constraints for forecasting error margins; reserve and 

ramping requirements; and multi-period coupling for energy storage [8]. Addressing these requires 

robust solution strategies, such as stochastic programming, chance-constrained OPF, and 

decomposition-based algorithms, to ensure reliable and economical operation under uncertainty. 

In recent years, metaheuristic optimization algorithms including Genetic Algorithms (GAs), 

Particle Swarm Optimization (PSO), Differential Evolution (DE), and Ant Colony Optimization 

(ACO) have gained widespread acceptance for tackling large-scale, nonlinear, and stochastic OPF 

problems. These population-based methods leverage mechanisms inspired by natural and social 

phenomena to navigate complex search spaces without gradient information. The exploration phase 

promotes global search by diversifying candidate solutions, while the exploitation phase intensifies 

local search around promising regions. Effective balancing of these phases is crucial: excessive 

exploration delays convergence, whereas premature exploitation risks entrapment in local optima. To 

further enhance performance, researchers increasingly employ hybrid metaheuristics that combine 

complementary strengths for instance, integrating GA’s crossover operators with PSO’s velocity-

driven update rules or embedding local search heuristics within DE frameworks. Such hybrids often 

incorporate adaptive control strategies that dynamically adjust exploration–exploitation trade-offs 

based on convergence metrics or population diversity measures. Moreover, multi-objective 

metaheuristic extensions address conflicting goals such as minimizing cost, emissions, and voltage 

deviations by generating Pareto-optimal solution sets, using techniques like the Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II) and multi-objective PSO (MOPSO) [9]. 

The application of these advanced metaheuristics to stochastic OPF involves novel formulations 

that explicitly model RES uncertainty via scenario sampling, probabilistic constraints, or chance-

constraint programming. Parallel and GPU-accelerated implementations further enable real-time or 

near-real-time optimization, making metaheuristics a viable option for modern grid operation and 

planning with high renewable penetration and FACTS device coordination [10]. 

This thesis investigates the coordinated planning and operation of modern power systems with 

high levels of renewable penetration. It focuses on optimal placement and sizing of FACTS devices, 

development of stochastic OPF formulations, and the design of advanced metaheuristic solvers to 

efficiently handle the resulting large-scale, multi-objective optimization problems. 

  The Research Gap: 

Despite advances in uncertainty-modeling techniques (e.g., Monte Carlo simulation), the increasing 

complexity of OPF with high renewable penetration, and the need to optimally size and site FACTS 

devices, there remains a critical need for: 

Robust frameworks: integrating high-fidelity RES uncertainty models (Weibull, Lognormal, 

Gumbel PDFs) with security-constrained OPF for large-scale practical systems. 
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Efficient metaheuristic algorithms capable of handling the high-dimensional, multi-objective, non-

convex optimization problems arising from RES integration, particularly when combined with 

optimal size and location of FACTS devices. 

Comprehensive assessment quantifying the joint benefits of RES and FACTS on production costs, 

emissions reduction (including carbon tax impacts), voltage stability, and power losses under 

uncertainty. 

  Thesis Objectives & Scope: 

In chapter 2, we provide a comprehensive overview of RES technologies, detailing the 

operating principles of wind turbines, photovoltaic arrays, and hydroelectric plants. We highlight the 

key stochastic parameters wind speed, solar irradiance, and river flow and discuss their impacts on 

power output and grid integration benefits. Various uncertainty‐handling methods, including Monte 

Carlo simulation (MCS), machine learning, fuzzy logic, robust optimization, and interval 

optimization, are surveyed, with an emphasis on the choice of MCS in our work. We delve into 

probability density functions (Weibull for wind, lognormal for solar, and Gumbel for hydro) and 

outline the process of scenario generation and cost quantification (direct, reserve, and penalty costs). 

In chapter 3, we introduce the classical power flow and (OPF) problems, formulating the 

objective functions, decision variables, and both equality and inequality constraints. We review 

traditional solution methods, their strengths, and limitations when faced with nonconvex, stochastic 

OPF formulations. This sets the stage for employing metaheuristic approaches. 

An extensive classification of metaheuristic algorithms is then presented covering evolutionary, 

swarm intelligence, physics‐based, and human‐inspired methods before focusing on the Kepler 

Optimization Algorithm (KOA) In chapter 4. Two enhancements are proposed: (1) a novel 

exploration exploitation operator φ that accelerates convergence by deeper neighbor searches, and (2) 

integration of a Non-dominated sorting scheme for multi-objective optimization. 

The enhanced EKOA is applied to two test systems. In Chapter 5, we optimize generation 

dispatch for a 114-bus Algerian system under renewable uncertainty, minimizing total production 

cost and carbon taxation, and compare the performance of our enhanced version EKOA to original 

KOA. Chapter 6 extends this work by incorporating FACTS devices (SVC and TCSC), optimizing 

their siting and sizing to bolster voltage stability and reduce losses, subject to investment cost 

constraints. 

Together, these contributions advance the state of the art in stochastic OPF by blending rigorous 

uncertainty modeling with powerful, tailored metaheuristic optimization, demonstrating tangible 

benefits in cost savings, emissions reduction, and system stability. 
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2.1 Introduction  

The global transition toward renewable energy systems (RES) has revolutionized power 

systems, replacing traditional deterministic generation with inherently variable sources such as wind, 

solar, and hydro [11]. While RES offer unparalleled environmental benefits, their integration 

introduces significant operational challenges. Environmental factors including fluctuating irradiance, 

stochastic wind speeds, and seasonal hydro inflows create uncertainty that propagates through power 

system planning and real-time energy markets [12]. Measurement errors and forecasting limitations 

further compound these challenges, often leading to mismatches between predicted and actual 

generation [13]. To address this, modern power systems increasingly rely on multi-source modeling 

frameworks that combine wind, solar, and hydro resources into cohesive operational strategies. These 

frameworks are critical for balancing supply-demand mismatches, mitigating curtailment risks, and 

ensuring grid stability in real-time markets [14]. 

Uncertainty in RES is not merely a technical hurdle; it directly impacts the economic and 

operational efficiency of power systems. Deterministic approaches to (OPF) and economic dispatch, 

which assume fixed generation profiles, fall short in accounting for the probabilistic nature of RES. 

This gap underscores the need for probabilistic modeling to quantify risks, optimize reserve margins, 

and enhance decision-making under uncertainty. Monte Carlo simulation (MCS) and probability 

density functions (PDFs) emerge as indispensable tools in this context [15]. By generating thousands 

of plausible scenarios based on RES variability, MCS enables system operators to evaluate the 

likelihood of extreme events, such as wind droughts or solar curtailment, while PDFs like 

the Weibull (wind speed), lognormal (solar irradiance), and Gumbel (hydro inflows) provide 

statistically rigorous representations of resource-specific uncertainties [16]. 

The chapter focuses on detailed information of the probabilistic modeling for RES uncertainty 

representation (Probability Density Functions) with computational scenario-based methods (Mont 

Carlo Simulation). This approach is structured as follows: 

• Parametric Distributions & Historical Data: Parametric PDFs (e.g., Weibull for wind speed, lognormal 

for solar irradiance, Gumbel for hydro inflow) are combined with historical weather records to synthesize 

time-correlated RES profiles  

• Monte Carlo Sampling: A large ensemble of scenarios is generated by randomly sampling each PDF 

across thousands of iterations, capturing the temporal variability of RES inputs  

• Parameter Calibration: Key PDF parameters shape, scale, and location are calibrated against site-specific 

climate data (e.g., local wind and irradiance measurements) to ensure that generated profiles reflect actual 

operating conditions 

2.2   Renewable Energy Sources 

RES such as wind, solar, hydroelectric, and bioenergy generate electricity with minimal 

greenhouse gas emissions, playing a critical role in mitigating climate change and reducing 

atmospheric CO₂ levels [17]. According to the International Renewable Energy Agency IRENA, up 

to 90 percent of global electricity could and should be supplied by renewables by 2050, underscoring 

their transformative potential [18]. Unlike fossil fuels, renewable technologies emit virtually no 

pollutants during operation, significantly lowering air and water contamination over their lifecycle 

[19]. The renewable energy sector also drives significant job creation, with IRENA reporting steady 
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global growth in clean energy employment across manufacturing, installation, and operations. By 

replacing coal and gas plants, renewables contribute to improved public health, preventing thousands 

of premature deaths each year through reductions in air pollution, particulate matter, and smog 

formation. Beyond environmental benefits, the expansion of clean energy industries supports 

economic resilience and fosters innovation in sustainable technologies. Enhanced local generation 

from wind and solar bolsters energy security by diversifying supply and reducing reliance on 

imported fuels. Cost trends reported by the International Energy Agency IEA show that solar and 

wind power are now among the cheapest sources of new electricity in many regions, making them 

economically competitive with existing fossil-fired plants. Projections indicate that renewables will 

supply nearly 46 % of global electricity by 2030, driven by policy support and technological 

advances. Community-led renewable projects further offer social benefits, enhancing local resilience 

and delivering energy access to underserved areas. Finally, transitioning to renewable systems 

reduces geopolitical and supply-chain risks associated with fossil fuel extraction, trade, and price 

volatility [18]. 

 

Figure 2-1: Modern Power System 

 Wind Power Plants   

A grid-connected wind power plant converts kinetic energy from the wind into electrical energy 

through wind turbines coupled with generators and power electronic interfaces, delivering power 

directly to the utility network while maintaining voltage and frequency standards [20]. Key 

operational variables include wind speed and direction, air density, turbine rotor dynamics, generator 

characteristics, and power‐electronic control settings. Major challenges encompass the inherent 

variability and intermittency of wind, grid stability and power quality concerns, reactive power 

support, fault ride-through capability, low system inertia, accurate forecasting, and compliance with 

stringent grid codes [21]. Addressing these issues requires advanced control strategies, robust power 

electronics, energy storage integration, and coordinated grid management to ensure reliable and 

efficient operation. 
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Figure 2-2:Wind Power System 

2.2.1.1 Operating Principle 

A grid-connected wind farm comprises one or more wind turbines, each equipped with a rotor, 

gearbox (in most designs), and generator either an induction machine or a permanent magnet 

synchronous generator (PMSG) that converts mechanical shaft power into alternating current (AC) 

[20]. Modern turbines often use variable-speed operation with power electronics back-to-back 

converters or doubly fed induction generator (DFIG) systems to decouple rotor speed from grid 

frequency, optimizing energy capture across a wide wind speed range and allowing dynamic control 

of active and reactive power [22]. The generated AC is typically stepped up via a transformer to 

medium or high voltage and synchronized to the grid, where grid-side converters regulate voltage, 

frequency, and power factor to meet utility requirements. 

2.2.1.2 Key Variables 

a) Wind Speed and Direction 

Wind power output follows a cubic relation with wind speed within the turbine’s operational 

window, making accurate measurement and control of rotor orientation critical. 

b) Air Density 

Variations in temperature, pressure, and humidity alter air density, affecting the mass flow 

through the rotor and thus the available power. 

c) Rotor and Generator Dynamics 

Blade pitch angle, rotor inertia, and generator torque control determine the mechanical-

electrical energy conversion efficiency and transient response during gusts or grid events. 
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 Solar Power Plants  

A grid-connected solar power plant converts sunlight into electrical energy using photovoltaic 

(PV) modules that generate DC power, which is then inverted to AC and synchronized with the utility 

grid for direct injection or local consumption. It relies on power electronics (inverters) to match 

voltage, frequency, and phase with grid requirements, and often includes transformers to step up 

voltage to medium or high-voltage levels for efficient transmission [23]. Advanced systems 

incorporate Maximum Power Point Tracking (MPPT) algorithms to optimize DC output under 

varying irradiance and temperature conditions, ensuring maximal energy harvest throughout the day 

[24]. 

 

Figure 2-3:Solar Power System 

2.2.2.1 Operating Principle 

A PV array absorbs solar irradiance and converts photon energy into DC electricity via the 

photovoltaic effect. This DC power is fed into an inverter typically a central, string, or module-level 

unit that employs pulse-width modulation (PWM) to synthesize grid-compatible AC voltage and 

frequency. The inverter’s control system continuously adjusts switching to maintain synchronization 

and power factor requirements, and may provide ancillary services such as reactive power support 

and low-voltage ride-through during grid disturbances. A transformer then steps the inverter’s AC 

output to the grid voltage level, and power is dispatched onto transmission or distribution lines to 

meet load demand or feedback excess energy [25]. 

2.2.2.2 Key Variables 

Solar Irradiance: Instantaneous solar insolation (W/m²) drives PV output, with short-term 

fluctuations due to cloud cover and atmospheric conditions. 
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a) Module Temperature: Cell temperature inversely affects efficiency; higher temperatures 

reduce voltage and thus power output, making thermal management critical. 

b) Tilt and Orientation: Panel tilt angle and azimuth orientation relative to sun path determine 

daily and seasonal energy capture profiles. 

c) Inverter Performance: Conversion efficiency, MPPT accuracy, and control response dictate 

how effectively DC is converted to grid-quality AC under dynamic conditions. 

d) Grid Interface Characteristics: Grid impedance, voltage level, and short-circuit ratio at the 

point of interconnection influence stability margins and reactive power needs. 

 Hydro Power Plants 

A grid-connected hydroelectric plant converts the potential energy of water stored at elevation 

into electrical energy via turbines and generators, then synchronizes this power with the utility 

network to meet demand. Key variables include the hydraulic head, flow rate, turbine-generator 

efficiency, penstock dynamics, and reservoir storage levels [26]. Major challenges span hydrological 

variability intensified by climate change, environmental and regulatory constraints, sedimentation 

impacts on hydraulic components, and grid-integration issues such as low inertia and frequency 

support [27]. 

 

Figure 2-4:Hydro Power System 

2.2.3.1 Operating Principle  

Hydroelectric plants harness gravitational potential energy: water collected in a reservoir or 

diverted in a run-of-river scheme descends through a penstock, gaining kinetic energy that drives a 

turbine coupled to an electrical generator. The turbine’s mechanical power is converted to AC 

electricity, which is stepped up in voltage via transformers and synchronized to the grid through 

excitation and governor control systems that regulate frequency and voltage Modern installations 

often include power-electronic converters or variable-speed units that provide synthetic (virtual) 
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inertia and enhanced grid-support capabilities, improving fast frequency response and flexibility in 

low-inertia systems heavily penetrated by renewables [27]. 

2.2.3.2 Key Variables 

a) Hydraulic Head: The vertical distance between the reservoir surface and turbine, determining 

the potential energy per unit volume of water. 

b) Flow Rate: Volume of water flowing through the turbine per second, directly proportional to 

output power. 

c) Turbine-Generator Efficiency: Conversion losses in the hydraulic-to-mechanical and 

mechanical-to-electrical stages, typically 85–95 % under optimal conditions. 

d) Penstock Dynamics: Fluid inertia and head losses due to friction, characterized by parameters 

of the penstock PVM (penstock-varying model) to capture transient response. 

e) Reservoir Storage: Active volume available for power generation and seasonal flow regulation, 

influencing dispatch flexibility and peaking capability. 

f) Control Systems: Governor response, excitation control, and any added power-electronic 

interfaces that adjust output to maintain grid frequency and voltage within limits  

 

2.3  Uncertainty Modeling Methods 

Uncertainty in modeling arises whenever inputs, parameters, or system behaviors cannot be 

determined with absolute precision, requiring a structured framework to characterize and manage its 

effects on model outputs. Broadly, uncertainties are classified into aleatoric inherent randomness such 

as wind speed fluctuations and epistemic stemming from limited knowledge or model form errors 

[28]. Probabilistic methods represent uncertain variables with parametric probability distributions 

(e.g., normal, Weibull, lognormal, Gumbel) calibrated from historical or experimental data. Monte 

Carlo Simulation then propagates these distributions through the model via random sampling to build 

statistical output distributions, estimating metrics like mean, variance, and confidence intervals [29]–

[31]. Bayesian inference offers a dynamic approach by updating prior distributions with new data to 

reduce epistemic uncertainty over time. When data are insufficient for full probabilistic treatment, 

non-probabilistic methods such as interval analysis and convex models use bounds on parameters to 

guarantee output ranges without assuming specific distributions. Fuzzy logic and Dumpster Shafer 

evidence theory further extend non-probabilistic frameworks to model vagueness or partial belief, 

assigning membership or belief masses to sets of outcomes. Standards like the NIST Guide to the 

Expression of Uncertainty in Measurement provide formal procedures to combine and report 

uncertainty components in a consistent manner Finally, software tools such as the NIST Uncertainty 

Machine automate uncertainty propagation often via Monte Carlo facilitating robust quantification 

and decision-making under uncertainty across engineering, environmental, and financial applications. 

 Markov Chains: 

Markov chains are stochastic models that describe systems transitioning from one state to 

another within a state space in a memoryless manner; that is, the probability of moving to the next 

state depends solely on the current state rather than on the sequence of preceding events. This 

mathematical framework handles uncertainty by representing transitions through a probability matrix, 

enabling analysts to predict the long-term behavior of complex systems by assessing the steady-state 
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distribution of outcomes. Over the decades, Markov Chains have been utilized in fields ranging from 

economics and genetics to engineering and reliability studies [32], [33] 

In renewable energy systems (RES), Markov Chains can be applied to model uncertainties such 

as weather conditions that affect solar irradiance or wind speeds. For example, in a solar power 

installation, different weather states (e.g., sunny, partly cloudy, and cloudy) can be defined as distinct 

states in a Markov model with transition probabilities estimated from historical weather data. By 

simulating the transitions between these states over time, engineers can generate probabilistic 

forecasts of solar irradiance, helping to assess the likelihood of power production levels and optimize 

the system's design and operational strategies. This approach provides valuable insights into 

performance reliability and risk management under inherently variable environmental conditions 

[34]. 

 Time Series Analysis (ARIMA) 

Time Series Analysis, particularly methods like ARIMA (Auto Regressive Integrated Moving 

Average), originated from the work of Box and Jenkins in the 1970s and has since become a 

cornerstone in forecasting and uncertainty quantification across numerous engineering and 

econometric fields. ARIMA models work by analyzing historical time-dependent data to capture 

underlying patterns such as trends, seasonality, and cycles, while also modeling random fluctuations 

through autoregressive and moving average components. By differencing the data to achieve 

stationarity, these models effectively handle non-stationary behavior, and the resulting residuals 

quantify the inherent uncertainty, enabling predictions with statistically derived confidence intervals 

[35]. 

In renewable energy systems (RES), ARIMA can be used to forecast critical variables like solar 

irradiance or wind speeds, which directly impact power generation. For instance, by fitting an 

ARIMA model to historical solar irradiance data, engineers can generate forecasts that predict daily 

or hourly solar output along with uncertainty bounds [36]. These forecasts inform system design and 

operational strategies by revealing potential periods of underperformance, aiding in the planning of 

energy storage, load management, or backup generation [37]. The ability to quantify and incorporate 

forecast uncertainty allows stakeholders to make more informed decisions, ultimately enhancing the 

reliability and resilience of RES installations. 

 Machine Learning (ML) Models 

Machine Learning (ML) models have evolved over several decades from early statistical pattern 

recognition techniques to modern deep learning architectures, profoundly transforming various 

engineering fields. These models learn complex relationships from data through training processes 

that adjust internal parameters. Uncertainty is handled in ML by employing approaches such as 

probabilistic modeling, ensemble methods, or Bayesian inference, which allow the generation of 

prediction intervals or confidence estimates alongside point predictions. This ability to quantify 

uncertainty helps in understanding the reliability of the predictions and in making risk-aware 

decisions[38]. 



 

13 
 

Chapter 2 RENEWABLE ENERGY SOURCES AND UNCERTAINTIES MODELING 

In renewable energy systems (RES), ML models can be used to manage uncertainty in 

forecasting energy generation. For example, a solar power plant can leverage historical irradiance 

data, weather forecasts, and operational sensor data to train an ML model that predicts daily or hourly 

power output. By integrating techniques like ensemble learning or Bayesian neural networks, the 

model not only forecasts the expected energy output but also provides uncertainty bounds that 

indicate potential variability due to changing environmental conditions. This information is crucial 

for optimizing energy storage strategies, grid integration plans, and ensuring the overall reliability 

and resilience of the renewable energy infrastructure[38]. 

 Interval Optimization 

Interval optimization is extensively utilized in engineering disciplines where uncertainties are 

inherent. In mechanical and structural engineering, it aids in tolerance analysis and ensures safety 

margins by accounting for variability in material properties and manufacturing processes. Electrical 

engineers employ interval methods to design circuits that remain functional despite component 

tolerances. Moreover, in control systems engineering, interval optimization helps in designing 

controllers that maintain performance despite model uncertainties and external disturbances [39], 

[40].  

Handling Uncertainty in Renewable Energy Systems (RES): In the realm of renewable energy, 

interval optimization plays a pivotal role in addressing the inherent uncertainties of RES outputs, such 

as fluctuations in solar irradiance and wind speeds. By representing uncertain parameters as intervals 

rather than fixed values, this method allows for the development of operational strategies that are 

robust against variability. For instance, in integrated energy systems, interval optimization can be 

used to devise operation schedules that ensure reliability and efficiency even when actual RES outputs 

deviate within expected bounds. This approach is particularly beneficial in planning and managing 

energy systems where precise predictions are challenging, ensuring that systems can adapt to a range 

of possible scenarios [41]. 

 Robust Optimization 

Robust Optimization (RO) emerged in the 1950s, rooted in decision theory and the concept of 

worst-case analysis, notably Wald's maximin model. It evolved into a distinct discipline in the 1970s, 

with developments across various scientific and technological fields. Over the years, RO has been 

applied in statistics, operations research, electrical engineering, control theory, finance, logistics, 

manufacturing, chemical engineering, medicine, and computer science [42], [43].  

In the context of RES, RO addresses the inherent variability of sources like wind and solar 

power. By considering uncertainty sets that encompass potential deviations in generation, RO 

develops strategies that ensure system performance under worst-case scenarios [44]. For example, in 

energy management, RO can optimize the operation of integrated energy systems to reduce trading 

costs while accommodating renewable generation uncertainties. Additionally, RO has been applied 

to large-scale wind–solar storage systems, considering hybrid storage and multi-energy synergy, to 

enhance system robustness. These applications demonstrate RO's critical role in ensuring the 

reliability and efficiency of renewable energy systems amidst uncertainty [45]. 
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2.4 Monte Carlo Simulation (MCS) 

Monte Carlo Simulation (MCS) is extensively utilized to address uncertainties in renewable 

energy systems (RES) by modeling variables such as solar irradiance, wind speed, and river flow as 

probabilistic variables [46]. These variables are characterized using probability distributions derived 

from historical and empirical data. For instance, solar irradiance data collected at one minute intervals 

can be modeled using a Beta probability density function (PDF) to capture its variability. Similarly, 

wind speed and river flow data are analyzed to establish appropriate statistical models that reflect 

their stochastic nature.  

Once the probability distributions are established, MCS involves generating thousands of 

random samples for each uncertain parameter. These samples are then propagated through the 

deterministic models of the RES to simulate a wide range of possible outcomes. This process results 

in a spectrum of potential energy outputs, enabling engineers to assess the probabilities of 

underperformance or over performance under various environmental conditions [47]. Such 

probabilistic analysis is crucial for designing resilient and reliable renewable energy installations, as 

it accounts for the inherent variability and uncertainty in environmental factors, leading to optimized 

system performance and risk-informed decision-making.  

 Monte Carlo Simulation Methodology and Application in Uncertainty Modeling 

2.4.1.1 System Definition and Identification of Uncertainties 

 

         The first step in applying a Monte Carlo Simulation (MCS) is to define the system or model of 

interest and identify the input parameters that exhibit uncertainty. These uncertain parameters may 

stem from environmental factors, operational variability, physical properties, or market dynamics. 

Instead of assigning fixed values, MCS treats these variables as random inputs described by 

probability distributions [48]. 

Example: In renewable energy systems, key parameters such as solar irradiance, ambient 

temperature, and wind speed are inherently uncertain. Their variability can be effectively captured 

using probability distributions developed from historical or empirical data [49]. 

2.4.1.2 Assignment of Probability Distributions 

 

Each identified uncertain parameter is assigned an appropriate probability distribution that reflects its 

statistical behavior. Common choices include normal, uniform, lognormal, and Weibull distributions. 

The selection depends on the nature of the variable and the availability of reliable data[48]. 

Example : 

• Solar irradiance is often modeled using a lognormal distribution to account for its skewed nature 

and daily variability. 

• Wind speed is typically characterized using the Weibull distribution, a well-established model in 

wind energy analysis. 
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Random Sampling Process 

 

At the heart of MCS lies the process of random sampling from the assigned distributions. The 

simulation performs a large number of iterations, each time selecting random values for the input 

variables based on their respective probability distributions[49]. 

• Iterations: For every simulation run, a new set of input values is generated. 

• Propagation: These values are then fed into the model to compute the corresponding output. 

• Repeating this process thousands (or even millions) of times builds a statistical profile of the 

system’s performance. 

2.4.1.3 Analysis of Simulation Results 

Once the simulation is complete, the resulting output data provides insights into how the 

system behaves under uncertainty. Several statistical measures can be derived from this output: 

• Probability Distributions: Assess the likelihood of various outcomes. 

• Mean and Variance: Determine the average result and the degree of variability. 

• Confidence Intervals: Define the range within which the true output is likely to fall, with a specified 

level of confidence. 

• Risk and Reliability Metrics: Quantify the likelihood of the system meeting (or failing to meet) 

performance thresholds. 

2.4.1.4 Advantages of Using MCS  

• Comprehensive Uncertainty Quantification: MCS does not just provide a single expected 

outcome but a full probability distribution, allowing for detailed risk analysis. 

• Flexibility: It can incorporate various types of uncertainties and complex system interactions that 

might be difficult to model analytically. 

• Data-Driven: The simulation directly uses historical and empirical data to characterize 

uncertainties, resulting in a model that closely reflects real-world conditions. 

2.5 Probability Density Functions for RES 

Probability density functions (PDFs) are mathematical functions describing the likelihood that 

a continuous random variable such as wind speed or solar irradiance will assume a particular value 

within its domain, enabling probabilistic forecasts that quantify uncertainty in renewable generation 

rather than merely point estimates [50]. Commonly utilized PDFs in renewable energy modeling 

include the Normal distribution for symmetric variables with low skewness, the Lognormal for 

positively skewed data, the Weibull distribution to accurately capture wind speed variability, and the 

Beta distribution for bounded parameters like solar irradiance. Selection of an appropriate PDF for a 

specific renewable resource relies on empirical data quality and quantity, the resource’s physical and 

temporal variability, and goodness-of-fit metrics. The stochastic power output of RES is derived by 

convolving the resource’s PDF with its power conversion curve, producing a probabilistic 

representation of generation profiles that informs risk-aware planning and dispatch decisions [50]. 
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 Wind Power Modeling Using Weibull Probability Density Function  

The Weibull probability density function (PDF) is widely used to model wind speed 

distributions. The probability that wind speed in (m/s) follows a Weibull distribution is given in 

Ref[51]. as: 

( )
( )1

exp 0
S S

f S for S

 




  

−

=  −   
    
    
    

                                          (2.1) 

Here,   and   represent the scale and shape parameters of the Weibull PDF, respectively. In the 

present study, the selected values of the Weibull scale  and shape  parameters are listed in Table 

3. These parameters have been realistically chosen based on the installed capacities of the power 

generation sources, with many values closely matching those used in Ref [51]. Figure 2-5 illustrates 

the Weibull fit alongside the wind speed frequency distributions, obtained through 8,000 Monte Carlo 

simulation scenarios [51]. 

 

Figure 2-5:Wind Speed Frequency For Wind Generator 

2.5.1.1 Power Model For Wind 

In this study the wind farm connected is assumed to consist of 25 identical turbines, each with 

a rated capacity of 3 MW, resulting in a total farm capacity of 75 MW. The output power from each 

wind turbine varies based on the wind speed it encounters. The relationship between the output power 

and wind speed is expressed as follows [52]: 
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                                            (2.2) 

Here, wrP  represents the rated output power of a single wind turbine. The variables in , r  and 
out  

correspond to the cut-in, rated, and cut-out wind speeds of the turbine, respectively. In this study, the 

wind speed parameters are selected as in =3 m/s , r =16 m/s, and out  =25 m/s, which are consistent 

with the specifications of the Enercon E82-E4 turbine [53]. 

2.5.1.2 Calculation of Wind Power Probabilities 

The output power from a wind turbine is discrete at certain wind speed ranges, as shown in 

Equation (34). Specifically, the power output is zero when the wind speed v is below the cut-in speed 

in  or above the cut-out speed out  . Between the rated wind r  and the cut-out speed out , the turbine 

delivers its rated power output wrP . The probabilities of wind power generation within these discrete 

operational zones are calculated using the methods described in [54]. 
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In contrast to the discrete zones, the power output of wind turbine varies continuously in the 

bounds of a specific range in r    . Thus, the probability for this region can be modelled as follows 

[54]: 
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                    (2.5) 

 Solar Photovoltaic Power Modeling Using Lognormal Probability Density Function  

In real-world scenarios, solar irradiance is influenced by a wide range of environmental factors 

including cloud cover, atmospheric conditions, geographic location, and time of day. These factors 

introduce randomness and variability that are effectively captured by the lognormal model. 

Additionally, the lognormal distribution provides mathematical convenience when integrating it into 

power system simulations and optimization models, especially when dealing with stochastic or 

probabilistic methods in renewable energy analysis. 
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The lognormal probability density function (PDF) is widely regarded as a reliable statistical 

model for representing the distribution of solar irradiance SG  ,which is the measure of solar power 

received per unit area on a surface. This preference for the lognormal distribution arises from the 

nature of solar irradiance data itself it is strictly non-negative and tends to exhibit positive skewness, 

meaning that while most values cluster around a typical range, higher values occur less frequently 

but are still possible. This behavior makes the lognormal distribution more appropriate than the 

normal (Gaussian) distribution, which assumes symmetry and allows for negative values something 

physically impossible for irradiance [51]. 
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In this study, solar irradiance SG is assumed to follow a lognormal PDF, characterized by a 

mean (μ) and a standard deviation (σ) .The functional form of this probability distribution, which 

defines the likelihood of a specific irradiance value occurring, is provided in Ref [51]. This 

formulation is crucial for accurately modeling the power output of solar photovoltaic (PV) systems, 

especially under uncertainty, and it serves as a foundation for the reserve and penalty cost evaluations 

discussed in the following sections. 

The lognormal fitting and the corresponding frequency distribution of solar irradiance, as 

shown in Figure 2-7, are derived using a Monte Carlo simulation with a sample size of 8,000. The 

resulting fit provides a visual and statistical representation of how well the lognormal model aligns 

with the simulated irradiance data [55]. 

 

Figure 2-6:Solar Irradiance Frequency For The Site 
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2.5.2.1 Generated Power Modeling in Solar Power Plant 

the process of converting solar irradiance into energy for photovoltaic plants can be expressed as 

follows [56]: 
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Here, stdG   represents the standard solar irradiance in standard environment, which is typically 

set at 1000 W/m². The parameter cR   denotes a specific reference irradiance threshold, chosen as 

120 W/m² in this study. These irradiance values are consistently applied to both solar PV plants 

connected to the system. Furthermore, srP   refers to the rated output power of a single solar PV unit, 

corresponding to the maximum power it can produce under standard test conditions. These parameters 

play a key role in determining the actual power output of the solar units based on the real-time solar 

irradiance received, as discussed in subsequent modeling and simulation sections [57]. 

 Hydropower Modeling Using Gumbel Probability Density Function  

In hydrological studies, it is well established that river flow rates particularly annual maxima 

are best described by the Gumbel (Type I extreme value) distribution. Under this model, the 

probability density function (PDF) for a given flow rate wQ  is expressed in terms of a location 

parameter   (which shifts the distribution along the flow axis) and a scale parameter   (which 

determines its spread) [58], [59]. 
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= −    

                                            (2.8) 

Figure 2-8 presents both the empirical frequency histogram of simulated flow‐rate samples and 

the fitted Gumbel curve. These samples were generated via 8,000 Monte Carlo iterations, using the 

specific parameter values listed in table 6-2. The close alignment between the histogram and the 

theoretical PDF confirms that the Gumbel distribution effectively captures the extreme‐value 

characteristics inherent in river flow data. 
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Figure 2-7:River Flow Frequency for the Site 

2.5.3.1 Generated Power Modeling in Hydro Power Plant 

In a small-hydro installation, the generated power depends on the water flow rate wQ  and the 

effective pressure head 
wH .Mathematically, the output power HP  of the small-hydro unit can be 

expressed as [57]: 

                                                         (2.9) 

In this expression,   denotes the efficiency of the turbine generator assembly,  is the water density, 

and g  represents the acceleration due to gravity.in this research study based on ref  for our 

calculations, we use the following parameter values: 

•  =0.85  

•  =1000 kg/m3 

• g =9.81 m/S2 

• wH =25 m 

2.6 Cost Evaluation Based on Scenarios Outcomes 

 Cost generation for renewable sources: 

One of the main challenges in integrating RES into the power grid is their intermittent and 

unpredictable nature. Typically, renewable energy installations like wind farms and solar PV farms 

are owned by private operators who enter into power purchase agreements with the grid or 

Independent System Operator (ISO) to deliver a specified amount of scheduled power. If these farms 

fail to generate the agreed-upon power due to the unavailability or insufficiency of renewable 

( ) . . . .H w w wP Q g Q H =
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resources, the ISO must compensate for the shortfall by maintaining spinning reserves, which 

increases overall power generation costs. This situation is referred to as an overestimation of 

renewable power. Conversely, there are instances when the actual power generated exceeds the 

scheduled amount an underestimation scenario. In such cases, the surplus power may go unused, and 

the ISO may incur penalty costs. Therefore, the total cost of renewable energy includes the direct cost 

of scheduled power, penalty costs for underestimation, and reserve costs for overestimation.  

 Direct Cost of RES Generators (DCost): 

Wind, solar, and small hydropower generators operate without the need for fossil fuels. When 

these plants are owned by the Independent System Operator (ISO), a conventional cost function may 

not apply unless the ISO chooses to attribute a payback cost for the initial investment or includes it 

as part of maintenance and renewal expenses. However, when such plants are owned by private 

operators, the ISO must pay a price proportional to the scheduled power. The scheduled output, 

agreed upon by the ISO, is a fixed amount and is jointly delivered by the solar PV and small-hydro 

units. The output of the hydropower unit depends on the river flow rate, assuming a constant head 

under a run-of-river configuration. Since the capacity and variability of the small-hydro unit are 

usually minimal compared to the overall system load, it is typically operated at full capacity. 

Consequently, the available hydropower determined by river flow combined with the solar PV output 

forms the scheduled power supply [58]. 

2.6.2.1 Direct Cost of Wind Power Units  

The Direct cost for the wind generator, referred to as ,W jDcost , can be represented as follows 

[52]: 

( ), , ,W j Sc j j Sc jDcost WP g WP=                                                  (2.10) 

Where  jg  represent the direct cost coefficients associated with j-th wind power plant and ScWP  denote 

the scheduled power from the corresponding wind power plants 

 

2.6.2.2 Direct Cost of Solar Power Units: 

Solar generator, referred to as ,S kDcost [60]. 

( ), , ,S k S k k Sc kDcost SP h SP=                                                    (2.11) 

kh  represent the direct cost coefficients associated with associated with k-th solar power plant and  

ScSP  denote the scheduled power from the corresponding solar power plants 

 

2.6.2.3 Direct Cost of Hydro Power Units: 

The Direct cost of hydro power units referred to as  ,h kDcost , can be represented as follows 

[58] : 

( ), ,h k Sh i sc iDcost hP H hP=                                                  (2.12) 

iH represent the direct cost coefficients associated with i-th hydro power plant and ,sc iP  denote the 

scheduled power from the corresponding hydro power plants 
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The mathematical expression for the DCost function of the combined solar-hydro generation 

plants is as follows [61]:                                

( ), , ,( ) .Sh k Sh sc sc k Sc k i sc iDcost ShP C SP hP h SP H hP= + = +                        (2.13) 

  Evaluation of Cost Uncertainties in RES Generators 

In uncertain conditions, two scenarios can occur: when the actual power generated from wind 

or solar sources is less than the estimated amount, known as power overestimation, necessitating the 

use of spinning reserve resources to ensure an uninterrupted power supply. The expense associated 

with activating these reserve units to make up for the overestimated power is referred to as the reserve 

cost. For wind, solar PV, and solar-hydro generators, reserve cost is mathematically expressed as 

follows [62]. 

2.6.3.1 Uncertain Wind Power Cost Evaluation 

As previously mentioned, due to the uncertain nature of wind energy, a wind farm may generate 

less power than the scheduled amount. In such cases, the Independent System Operator (ISO) must 

maintain adequate spinning reserves to meet the resulting demand. The cost associated with 

committing these reserve generating units to compensate for overestimated wind power is referred to 

as the reserve cost [63]. 

The reserve cost for a wind power plant is defined as [63]: 
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= −                                                      (2.14) 

where ,W jRK  is the penalty cost coefficient associated with 𝑗th   wind power generator, ,r j
WP  denotes 

the  output power from the corresponding wind units, Wf  is the wind power probability density 

function 

In the case of underestimation, the actual output power from the wind farm exceeds 

the scheduled amount. If this surplus power cannot be utilized such as by reducing the output 

of conventional generators it is wasted. In such scenarios, the Independent System Operator 

(ISO) incurs a penalty cost for the unutilized energy. 

The penalty cost for a wind power plant is given by[52]: 
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,W jPC is the penalty cost coefficient for the wind power plant, rWP  is rated power output from the 

plant. 
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2.6.3.2 Uncertain Solar Photovoltaic Power Cost Evaluation 

The cost evaluation approach for uncertain and intermittent solar PV power is fundamentally 

similar to that used for wind power. However, solar radiation is widely recognized to follow a 

lognormal probability distribution function (PDF). For mathematical convenience, the reserve and 

penalty cost models are developed based on the methodologies presented in [64].  

The reserve cost associated with the overestimation of solar PV power is given by [64]: 

, , , , , ,

, , , , , ,

RS k Sc k Av k S k Sc k Av k

SS k Av k Sc k Sc k Av k S k

RCost SP SP RK SP SP
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    
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=   − 

                                 (2.16)   

,S k
RK is the reserve cost coefficient associated with the solar PV plant and 

,Av k
SP is  the actual 

available power from the plant , 
, ,S Av k Sc k

f SP SP 
 
 

 is the probability of occurrence of solar power 

shortage from the scheduled power 
,Sc k

SP , and 
, ,Av k S k

E SP SP 
 
 

  represents the expectation of solar 

PV power below 
,Sc k

SP  . 

On contrary to overestimation, penalty cost for underestimation of solar PV power 

is[64]: 

( ) ( )
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                               (2.17) 

,S kPK  is the penalty cost coefficient for the solar PV plant , ( ), ,S Av k Sc kf SP SP is the probability of 

solar power being excess of the scheduled power and ( ), ,Av k Sc kE SP SP is the expectation of solar PV 

power above 
,Sc kSP . 

2.6.3.3 Cost Evaluation of Uncertain Combined Solar Photovoltaic and Small-Hydro Power   

Large hydropower plants, with their substantial reservoir capacities, are ideal sources for 

providing spinning reserves. However, in contrast, the capacity of small hydropower units is typically 

insignificant relative to total system generation and demand. As a result, the ISO may not consider 

their spinning reserve capacity meaningful. In practice, private operators of small hydropower plants 

often do not qualify for reserve or penalty payments. 

In our case, the third-generation system consists of a combination of a solar PV unit and a small-

hydro unit. The output of the small-hydro unit depends on river flow rate, which is commonly 

modeled using a Gumbel distribution [61]. 

The solar PV component is eligible for reserve and penalty payments. Since the small-hydro 

unit contributes only about 10–20% of the total power from the combined system, we treat reserve 

and penalty payments based on the total power output of the system [61]. 

The reserve cost for overestimation of the combined generation system power is: 
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 
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,SH iRK  is the reserve cost coefficient associated with ith combined solar hydro power plant 
AvShP  

represent the actual available power from the plant, ( )SH Av scf ShP ShP is The probability that the 

combined system delivers less power than the scheduled amount 
scShP and the expectation of delivered 

power below
scShP  is ( )Av scE ShP ShP . 

The penalty cost associated with the underestimation of the combined generation system's 

power occurs when the actual available power is represented as follows: 

𝑃𝐶𝑜𝑠𝑡𝑠ℎ(𝑆ℎ𝑃𝐴𝑣 − 𝑆ℎ𝑃𝑠𝑐) = 𝑃𝐾𝑆𝐻(𝑆ℎ𝑃𝐴𝑣 − 𝑆ℎ𝑃𝑠𝑐) 

= 𝑃𝐾𝑆𝐻 × 𝑓𝑆𝐻(𝑆ℎ𝑃𝐴𝑣 > 𝑆ℎ𝑃𝑠𝑐) × [𝐸(𝑆ℎ𝑃𝐴𝑣 > 𝑆ℎ𝑃𝑠𝑐) − 𝑆ℎ𝑃𝑠𝑐)]                             (2.19) 

In this context 
SHPK  represent the penalty cost coefficient related to ith combined solar-hydro 

power plan. While ( )SH Av scf ShP ShP  represents the likelihood of energy exceeding the scheduled 

power 
scShP , while ( )Av scE ShP ShP  denotes the forecast of the combined system power surpassing (

scShP ). 

2.7 Conclusion 

This chapter presented modeling of uncertainties in wind, solar, and hydro generation by fitting 

site-specific statistical distributions a Weibull distribution for wind speed variability, a lognormal 

PDF for solar irradiance fluctuations, and a Gumbel distribution to capture extreme hydro inflow 

events. We detailed the implementation of Monte Carlo simulation to propagate these uncertainties 

through system operation scenarios, highlighting sampling strategies and convergence assessment to 

ensure robust statistical characterization of renewable outputs. Cost evaluation was performed for 

direct generation costs and imbalance-related costs, including reserve procurement for under 

generation and penalty fees for over generation, based on scenario outcomes and cost coefficients 

reflective of different technologies. By linking probabilistic output distributions to economic impacts, 

this framework enables informed decision-making in renewable energy planning, supporting capacity 

expansion, scheduling, and risk mitigation; future enhancements could incorporate correlated 

sampling and variance-reduction techniques to further refine accuracy and computational efficiency. 
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3.1 Introduction  

Reliable and economical operation of modern power systems requires accurate modeling and 

efficient optimization. As electrical networks become larger, more interconnected, and increasingly 

integrated with renewable resources, system operators face the challenge of ensuring both security 

and cost-effectiveness. Fundamental to this task are two key analyses: power flow (or load flow), 

which determines the steady-state voltages, angles, and line flows for a given operating condition, 

and (OPF), which extends this analysis by optimizing control variables to minimize costs or improve 

performance while respecting system limits. 

The (OPF) is one of the most studied nonlinear optimization problems. The OPF goal is 

optimizing the production and transmission of electrical energy in distribution networks while 

considering system constraints and control limits. There is a wide diversity of OPF formulations and 

solution methods available. The nature of the OPF continues to change due to the modernization of 

electricity markets and the addition of renewable resources [65]. This chapter begins by introducing 

the fundamentals of power-flow analysis defining key state variables (bus voltages and angles) and 

control variables (generator real/reactive outputs, transformer tap settings). We then derive the AC 

OPF formulation via the Newton Raphson method, detailing how real and reactive power balance 

equations form the equality constraints, while generator capability curves, voltage limits, and line 

thermal ratings impose inequality constraints. 

Next, we systematically classify decision variables and constraints into continuous, discrete, 

linear, and nonlinear categories, and demonstrate construction of typical objective functions: 

• Fuel cost curves (quadratic or piecewise-linear) 

• Loss minimization 

• Emission cost fonctions 

• Composite indices for voltage stability or security 

We also review popular constraint-handling techniques, penalty functions, Lagrangian 

relaxation, interior-point methods, and mixed-integer programming for discrete controls. Finally, the 

chapter concludes with a concise summary of the general OPF formulation, setting the stage for the 

advanced metaheuristic and multi-objective solution methods developed in the subsequent chapters. 

3.2 Power Flow Definition and Objectives  

  Definition of Power Flow 

The power flow problem (load flow) study in an electrical network refers to the analysis and 

calculation of the variables of an electric network under normal balanced operation in steady state.  

These variables include node voltages, injected powers at nodes, and power flows in the lines. Losses 

and currents can be derived from these variables.in a given network. So, in simpler language we can 

say It involves studying and analyzing the flow of electrical power from sources (the generation 

sources such as power plants) through the transmission and distribution networks to the numerous 

loads (consumers) linked to the system. The study of power flow involves calculating the voltage 

values within an electrical network for specified ends and given conditions at bus sets, from these 
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voltages, the active and reactive power flows in each line and transformer are calculated. The set of 

equations representing the electrical network is nonlinear in nature [66]. 

 Objective 

In practical applications, power flow calculation methods utilize the network configuration and 

the equipment properties to determine the complex voltage at each node. Additionally, these methods 

assume perfect symmetry between the three phases of the three-phase system in the electrical network 

by considering these factors, accurate assessments of voltage conditions within the network can be 

obtained.  

Power flow studies are used for planning the construction and expansion of electrical networks, 

as well as for their operation and control the result of a power flow problem informs the operator or 

network planner about how the network lines are loaded, what the voltages are at different bus sets, 

how much generated power is lost, and where the limits are exceeded.  

In power flow calculation, a bus bar is defined by four parameters which are classified are follows 

 Classification of Bus Bars According to Their Specifications 

We can classify bus bars into three categories based on the specifications of the variables used. 

For each bus bar, two variables need to be specified beforehand, and the other two variables are to be 

calculated. 

• Reference bus bar (slack bus): It’s a generator bus bar that can be classified based on two specified 

variables: the voltage magnitude (V) and the phase angle (𝛿). The power values (P and Q) at this 

bus bar are initially unknown and need to be determined through calculations. 

To establish a reference point for voltage angles, the reference bus bar is selected from the generator 

bus bars with the highest active power. This reference bus bar serves as the benchmark for 

determining the voltage angles at other bus bars in the system. 

• Load bus bar: This bus bar supplies a load characterized by its active power P and reactive power 

Q. Therefore, (P, Q) are specified, while (V, 𝛿) are to be calculated. 

• Generator bus bar: This bus bar is connected to a generator that delivers an active power P under 

a constant voltage V controlled by an Automatic Voltage Regulator (AVR). Therefore, (P, V) are 

specified, while (Q, 𝛿) are to be calculated.     

Table 3-1:Classification of bus bars according to their specifications 

Types of bus bars Known variables Unknown variables 

Reference bus bar (V 𝛿 ) V, δ P, Q 

 Generator bus bar (PV) P, V Q, δ 

Load bus bar (PQ) P, Q V, δ 
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 Formulation of Power Flow Equations 

The study of power flow involves calculating the voltages of the electrical network for specified 

endpoints and given conditions at the buses, such as capacitive or inductive loads that need to be 

supplied, generated powers, and voltage magnitudes at all buses. From these values, the currents in 

the transmission lines, power flows, and power losses can be obtained. The nodal currant and voltage 

equations of an electrical network with N buses are written in the following matrix form: 

[

𝐼1

𝐼2

⋮
𝐼𝑁

] = [

𝑌11 𝑌12 ⋯ 𝑌1𝑁

𝑌21 𝑌22 ⋯ 𝑌2𝑁

⋮ ⋮ ⋱ ⋮
𝑌𝑁1 𝑌𝑁1 ⋯ 𝑌𝑁𝑁

] ∗ [

𝑉1

𝑉2

⋮
𝑉𝑁

]                                             (3.1) 

Where:  

     𝐼𝐵𝑈𝑆 = 𝑌𝐵𝑈𝑆 ∗ 𝑉𝐵𝑈𝑆                                                   (3.1) 

 𝐼𝐵𝑈𝑆 = [𝐼1, 𝐼2, … 𝐼𝑁]ᵀ : The vector of currents injected into each bus bar represents the external source 

currents. The current flowing from bus bar i to bus bar j is considered positive, while the current 

flowing in the opposite direction is considered negative. 

𝑉𝐵𝑈𝑆 = [𝑉1, 𝑉2, … 𝑉𝑁]ᵀ : The vector of complex voltages at each bus bar and Y_BUS represents the 

nodal admittance matrix of the system, which has a size of (N * N), where N is the number of bus 

bars in the system. 

𝑌𝑖𝑖 : The diagonal element of the admittance matrix represents the sum of all the components 

connected to that particular bus bar. This can be expressed mathematically by the following equation: 

𝑌𝑖𝑖 = ∑ 𝑦𝑖𝑘
𝑁
𝑖=0
𝑖≠𝑘

                                                              (3.2) 

𝑦𝑖𝑘 : The off-diagonal element 𝑖, 𝑘 of the admittance matrix represents the negative sum of all the 

components connected between bus bar i and bus bar j. In other words, it can be expressed as follow: 

 𝑌𝑖𝑘 = − ∑ 𝑦𝑖𝑘𝑘≠𝑖                                                            (3.3) 

According to equation (1.1), the net injected current at bus bar i can be expressed as follows: 

𝐼1 = ∑ 𝑌𝑖𝑘 ∗ 𝑉𝑘
𝑁
𝑘=1  i = 1, 2 … . , N                                              (3.4) 

Where: 

𝑌̅𝑖𝑘 = 𝐺𝑖𝑘 + 𝑗 ∗ 𝐵𝑖𝑘 = 𝑌𝐼𝐾(𝑐𝑜𝑠δ𝑖𝑘 + 𝑗𝑠𝑖𝑛δ𝑖𝑘)                                  (3.5) 

𝑉̅𝑘 = 𝑅𝐸𝑘 + 𝑗 ∗ 𝐼𝑚𝑘 = 𝑉𝐾(𝑐𝑜𝑠δ𝑘 + 𝑗𝑠𝑖𝑛δ𝑘)                                   (3.6) 

𝐺𝑖𝑘 , 𝐵𝑖𝑘 are respectively the conductance and susceptance of 𝑌̅𝑖𝑘  ; 𝑅𝐸𝑘and 𝐼𝑚𝑘   are respectively the 

real and imaginary parts of 𝑉̅𝑘 ;δ𝑘 is the phase of the voltage at the busbar k; 

δ𝑖𝑘  : the phase of the element ik; 
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The expression of the injected apparent power 𝑆𝑖̅ at a busbar can be written as follows: 

𝑆𝑖
∗ = 𝑃𝑖 − 𝑗𝑄𝑖 = 𝑉𝑖

∗ ∗ ∑ 𝑌̅𝑖𝑘
𝑁
𝑘=1 ∗ 𝑉̅𝑘                                         (3.7) 

𝑃̅𝑖,𝑄̅𝑖 : where 𝑃̅𝑖 and 𝑄̅𝑖 are the active and reactive powers at busbar i. By substituting equations (3.5) 

and (3.6) into equation (3.7), we obtain: 

𝑃𝑖 = ∑ 𝑉𝑖
𝑁
𝑘=1 𝑉𝑘𝑌𝑖𝑘 cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)    𝑖 = 1,2, … , 𝑁                            (3.8) 

𝑄𝑖 = ∑ 𝑉𝑖
𝑁
𝑘=1 𝑉𝑘𝑌𝑖𝑘 sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)    𝑖 = 1,2, … , 𝑁                           (3.9) 

The equations (1.9) and (1.10) represent the power flow equations as follows: 

𝑃𝑖 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖                                                           (3.10) 

𝑄𝑖 = 𝑄𝐺𝑖 − 𝑄𝐷𝑖                                                          (3.11) 

Where 𝑃𝐺𝑖, 𝑄𝐺𝑖are the active and reactive powers generated, respectively.  

 𝑃𝐷𝑖, 𝑄𝐷𝑖are the active and reactive powers demanded at the bus i, respectively.  

 Power Flow Problem Solution Methods 

Generally, the method used to solve this problem is Newton-Raphson due to its fast 

convergence and reduced number of iterations compared to other methods (such as Gauss-Seidel). 

The Taylor series expansion is given by: 

[
ΔP
ΔQ

] = J ∗ [
Δδ
ΔQ

] ⇒ [
ΔP
ΔQ

] = [
J1 J2

J3 J4
] ∗ [Δδ

Δv
]                                   (3.12) 

𝐽1 =
𝜕𝑃𝑖

𝜕δ𝐾
, 𝐽2 =

𝜕𝑃𝑖

𝜕𝑉𝐾
, 𝐽3 =

𝜕𝑄𝑖

𝜕δ𝐾
, 𝐽4 =

𝜕𝑉𝑖

𝜕𝑉𝐾
                                      (3.13) 

Where: ΔP and ΔQ represent the differences between the specified and calculated active powers, and 

the differences between the specified and calculated reactive powers. 

 ΔӨ and Δv represent the differences between the specified and calculated angles, and the differences 

between the specified and calculated voltages; J is the Jacobian matrix. 

ΔP𝑖 = 𝑃𝑖
𝑠𝑝é − 𝑃𝑖

𝑐𝑎𝑙                                                        (3.14) 

ΔQ𝑖 = 𝑄𝑖
𝑠𝑝é − 𝑄𝑖

𝑐𝑎𝑙                                                       (3.15) 

For a network with N buses, with NG generator buses, there are 2(N - 1) - NG equations to solve. 

Consequently, there are (N - 1) equations for active power and (N - 1 - NG) equations for reactive 

power, resulting in a Jacobian matrix of size (2N - 2 - NG) x (2N - 2 - NG) elements. 

The calculation of the Jacobian matrix elements is done as follows: 

The diagonal and off-diagonal elements of J1 are: 
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𝜕𝑃𝑖

𝜕δ𝑖
= ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                                    (3.16) 

𝜕𝑃𝑖

𝜕δ𝑘
= −|𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)   𝐾 ≠ 𝑖                              (3.17) 

The diagonal and off-diagonal elements of J2 are: 

𝜕𝑃𝑖

𝜕𝑉𝑖
= 2|𝑌𝑖𝑖||𝑉𝑖| cos(δ𝑖𝑖) + ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                (3.18) 

𝜕𝑃𝑖

𝜕𝑉𝑖
= |𝑉𝑖𝑗||𝑉𝑖| cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)   K ≠ i                                     (3.19) 

The diagonal and off-diagonal elements of J3 are: 

𝜕𝑄𝑖

𝜕δ𝑖
= ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| cos(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                                     (3.20) 

𝜕𝑄𝑖

𝜕𝑉𝑖
= −2|𝑌𝑖𝑖||𝑉𝑖| sin(δ𝑖𝑖) + ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                      (3.21) 

The diagonal and off-diagonal elements of J4 are: 

𝜕𝑄𝑖

𝜕𝑉𝑖
= −2|𝑌𝑖𝑖||𝑉𝑖| sin(δ𝑖𝑖) + ∑ |𝑉𝑘||𝑌𝑖𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)𝑘≠1                     (3.22) 

𝜕𝑄𝑖

𝜕𝑉𝑘
= −|𝑉𝑘||𝑉𝑖| sin(δ𝑖𝑘 + δ𝑘 − δ𝑖)   K ≠ i                                       (3.23) 

 

3.3 Optimal Power Flow  

Optimal Power Flow is a mathematical optimization problem in the field of electrical power 

systems, it is widely regarded as a fundamental tool in this field and has been the subject of wide 

research since it was introduced by Carpentier in 1962. The objective of the OPF problem is to 

identify the optimal settings for a given power system network in order to optimize a specific 

objective function, while satisfying the power flow equations, system security, and operational limits 

of equipment. This involves manipulating various control variables, including generator real power 

outputs, voltages, transformer tap settings, phase shifters, switched capacitors, and reactors, to 

achieve an optimal network configuration based on the defined problem formulation. Moreover, OPF 

can offer valuable support to operators in addressing various challenges encountered in the planning, 

operation, and control of power networks [67]. 

The primary objective of OPF is to minimize a cost function or maximize a performance index 

while ensuring that the power system operates within specified limits. The performance index can be 

related to efficiency, voltage stability, system reliability, or any other desired system performance 

parameter. The most utilized objective function in OPF is the minimization of overall fuel cost. 

However, other traditional objectives such as minimizing active power loss, bus voltage deviation, 

emissions from generating units, the number of control actions required, and load shedding. With the 

deregulation of the electric power industry. One of the major challenges in the OPF problem lies in 
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the nature of the control variables, as some are continuous (such as real power outputs and voltages), 

while others are discrete (such as transformer tap settings, phase shifters, and reactive injections) [67]. 

The application domains of OPF can be classified as follows  

• Minimization of fuel cost. 

• Minimization of losses. 

• Improvement of voltage profile and stability. 

• Maximization of power transfer capability  

 Problem Formulation Optimal Power Flow Model 

The main objective in solving OPF problems is to identify the optimal values for control 

variables, which involves minimizing a specific objective function while adhering to all physical and 

security constraints. Mathematically, the OPF problem can be expressed as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑢)                                                                  (3.24) 

Subject to:      

G(𝑥, 𝑢) = 0                                                             (3.25) 

h(𝑥, 𝑢) ≤ 0                                                             (3.26) 

Where: 

( , )F x u presents the objective function; 

x represents the state variables vector of a power system network; 

u represents the control variables vector; 

( , )g x u  represents the equality constraints; 

( , )h x u  represents inequality constraints, where, ℎmax and ℎmin are the upper and lower boundary limits  

 Optimal Power Flow Variables Classification 

In optimization problems, two main types of variables are considered: independent variables, 

also known as control or decision variables, and dependent variables, also known as state variables. 

The optimization process involves first determining the optimal values for the control variables and 

then calculating the corresponding values for the state variables based on those optimal control values. 

In the OPF problem, control variables may include: 

• Active power generation of all generator buses except slack bus; 
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• Voltage of all generator buses; 

• Tap setting of all transformers; 

• Reactive power injection of shunt capacitor banks; 

• Moreover, state variables may also include; 

• Active power output of the slack bus; 

• Load bus voltages ; 

• Reactive power generated from generators; 

• Transmission line loadings ; 

It is important to note that the number of control variables determines the dimensionality of the 

solution space. In other words, a problem with n control variables will result in an n-dimensional 

solution space [68].  

 Constraints Formulation  

OPF Constraints in the OPF problem are typically classified into two types: equality constraints 

and inequality constraints. These conditions define the feasible region of the problem, and any 

solution must fall within this region in order to satisfy all the constraints. 

 Equality Constraints 

The equality constraints in load flow analysis are derived from the physical laws that govern 

the behavior of an electrical network. These constraints are expressed as nonlinear equations in the 

power flow equations, which ensure that the net injection of active and reactive powers at each bus 

is equal to zero. 

1

1

cos( ) sin( ) 0

sin( ) cos( ) 0

NB

Gi di i j ij ij ij ij

j

NB

Gi di i j ij ij ij ij

j

P P V V G B

Q Q V V G B

 

 

=

=


 − − + =  



  − − − = 




              (3. 27) 

Where: 

NB is the total number of busses of the power system; 

GiP  is the active power of generation; 

GiQ  is the reactive power of generation; 

diP  is the active power of demand; 
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diQ is the reactive power of demand; 

ijG  the conductance of the corresponding lines between the (i, j) buses; 

ijB  the susceptance of the corresponding lines between the (i, j) buses. 

 Inequality Constraints 

In the context of the OPF problem, inequality constraints typically impose limitations on 

various physical components in the electrical system. These components can include generators, tap-

changing transformers, and phase-shifting transformers. Additionally, system security requirements 

and reactive power compensation limits contribute to the set of inequality constraints. Specifically, 

when considering generators, these constraints are concerned with maintaining active and reactive 

power levels within acceptable boundaries. 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥                                                      (3.28) 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥                                                      (3.29) 

The inequality constraints for load tap-changing transformers involve maximum and minimum 

tap positions, which determine the voltage level relative to the nominal voltage. These constraints are 

utilized to adjust voltage magnitudes and regulate reactive power flows. On the other hand, phase-

shifting transformers have maximum and minimum phase angle shifts to control voltage phases and 

regulate active power flows. These specific constraints are considered for both types of transformers. 

𝑇𝑖𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑖𝑘 ≤ 𝑇𝑖𝑘

𝑚𝑎𝑥                                                      (3.30) 

𝛼𝑖𝑘
𝑚𝑖𝑛 ≤ 𝛼𝑖𝑘 ≤ 𝛼𝑖𝑘

𝑚𝑎𝑥                                                      (3.31) 

Reactive power compensators such as Batteries, reactors, etc. have limits defined by minimum 

and maximum values, which determine their operating range. These limits ensure that the devices 

operate within acceptable bounds and can effectively compensate for reactive power in the system. 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥                                                    (3.32) 

Bounds on the apparent power flow in power transformers and transmission lines are set to 

uphold network security and avoid issues such as instability or thermal losses in conductors. These 

limits ensure that the power flow in these components remains within safe operating conditions, 

avoiding excessive heating and potential damage to the system. 

|𝑆𝑖𝑘|2 ≤ |𝑆𝑖𝑘
𝑚𝑎𝑥|2                                                      (3.33) 

To preserve the quality of system security and electrical service, it is essential to limit 

violations on voltage constraints, which must remain within their tolerable limits. 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥                                                   (3.34) 
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 Constraint Handling (CH) Methods 

Constraint handling is a crucial aspect of meta-heuristic optimization algorithms, especially for 

solving constrained engineering problems such as (OPF) and Optimal Reactive Power Dispatch 

(ORPD). Numerous techniques have been developed, which can generally be classified into the 

following six categories 

1) Preserving Feasible Solution Method:  The key concept of this approach is to place the solutions 

into feasible research-space and keeping within by updating process that produces only feasible ones 

[69]. 

2) Penalty Function Method: In this technique a penalty terms is added to the objective function 

once any constraint violation happens [70]. 

3) Rejection of Infeasible Solutions: Also called death penalty, in which rejects any infeasible 

solution as soon as they are generated. In addition, it has an efficient computational, because with any 

violate solution, it is assigned a fitness of zero [69]. 

4) Superiority of Feasible Solutions Method: This approach is based on the assumption of the 

superiority of feasible points over infeasible ones [52].  

5) Stochastic Ranking Method: first introduced by Runarsson and Yao in 2000: In this technique a 

control factor Pf (0 < P < 1) is predefined by the user to check a balance between objective 

optimization value (feasibility) and whole of constraint violation (infeasibility points). The process is 

to determine whether the objective function value or the all constraint violation is used to rank a 

solution. The ranking process is performed as follow: 

If both solutions are feasible or rand < Pf, rank is performed only on the objective value. 

Otherwise, rank is conducted on the constraint violations only [71]. 

Since the selecting of the suitable constraint handling method is highly depending on the 

problem's nature. The problem formulation treating in this dissertation confirm that both of penalty 

function (PF) method and superiority of feasible solutions (SF) method are more appropriate than 

other ones. In other words, due to their relative success and the most commonly used ones in the 

power system optimization. To this context, we give more detail of these methods, and how to 

handling with different formulation of OPF and ORPD problems in guarantying the feasibility of 

solutions.  

3.3.4.1 Penalty Function Method (PF) 

Penalty function method is the simplest and oldest handling technique which transform a 

constrained problem into an unconstrained one throughout discarding infeasible solutions during the 

search process even after sufficient number of feasible solutions. Also known as static penalty 

function method, values of the penalty factors are chosen by trial and error process. Because this 

method requires proper adjustment of the penalty factors, a small penalty factors over-explores the 

infeasible region, thus delaying the process of finding feasible solutions, and may prematurely 

converge to an infeasible solution. On the other hand, large penalty factors may not explore the 

infeasible region properly, thereby resulting in premature convergence. For this reason, it is preferable 

to choose the trial to start with the small values of factors until the suitable coefficients will be 

properly selected that ensure at the same time the convergence rate with feasibility of solution [71]. 
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Among different formulations of the penalty method, the Powell-Skolnik method where incorporates 

all the constraints with feasibility: 

( )
( )  ( )

( )

1 1

1 max 0, if not feasible

if feasible

= =

  
+ +  

=   



 
N M

i i

j i

h x g x
x

f x




                 
(3.35) 

Where the constant 0  is fixed, so this approach is a static penalty method. 

The penalty-based method transforms the objective function ( )f x  to a modified objective function 

mF in the following from, 

( ) ( )  ( ) mF objective Penaltyx f x P x= +                                (3.36) 

Where the penalty term ( )P x  may take different forms, depending on the actual ways or variants of 

constraint handling techniques. For instance, 

( ) ( ) ( ) 
22

1 1

max 0,
= =

= + 
M N

i i j i

i j

P x g x k h x                                (3.37) 

Where 0i and 0ik are penalty factors. In order to avoid too many penalty factors, a single 

penalty constant λ > 0 can be used as follows:  

( ) ( ) ( ) 
22

1 1

max 0,
= =

 
= + 

 
 
M N

i i

i j

P x g x h x                                (3.38) 

Where λ is fixed factor, independent of iteration t, this basic form of penalty is the well-known static 

penalty method. Some studies show that it may be beneficial to vary λ over the course of iterations, 

( )= t


 
                                                     

(3.39) 

Where 0.5=  and 1.2=  

In short, there are other forms of penalty approaches such as adaptive penalty and death penalty. 

3.4 Objective Function  

In OPF, the objective function signifies the objective or target to be reached when optimizing 

the operation of a power system. The objective function is usually defined mathematically and 

measures the system's performance or cost. 

Typically, the most commonly utilized objective in the OPF problem formulation is the 

minimization of the overall cost associated with the active power generation from real energy 

production units. The cost of each production unit is assumed to be solely dependent on the active 

power generated and is represented by quadratic curves. Consequently, the total objective function of 

the electrical system can be expressed as the sum of the quadratic cost models for all generators 

involved. By minimizing this objective function, the OPF algorithm aims to optimize the operation 

of the system by determining the optimal values for the control variables that minimize the total 

generation cost. 

Minimise      

           𝐹 = ∑ 𝑓𝑖 = ∑ 𝑎𝑖𝑃2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖
𝑁𝐺
𝑖=1

𝑁𝐺
𝑖=1  ($/h)                                      (3.46) 
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Or 

𝑃𝐺𝑖 𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖 𝑚𝑎𝑥                                                   (3.46) 

𝑃𝐺𝑖 = 𝑃𝐷𝑖 + 𝑃𝐿𝑖                                                          (3.47) 

Where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 signify the cost coefficients of the 𝑖-th generation unit, and 𝑃𝐷𝑖, 𝑃𝐿𝑖 are the 

demanded power and the active transport losses, respectively. 

 Classical Methods Applied to The Optimal Power Flow Problem 

There are several classical optimization techniques that have been applied to solve (OPF) 

problems. Here are six categories of these techniques, along with a brief description of each and their 

application statistics:   

• Newton's Method: in general, these are nonlinear equations that need to be solved using iterative 

methods. The Newton method is particularly preferred because of its quadratic convergence 

properties [73]. 

• Linear Programming; Linear programming is a mathematical optimization technique used to 

solve problems that involve linear constraints and an objective function. In this method, both the 

objective function and constraints are represented as linear equations or inequalities, and the 

variables are required to be non-negative [74]. 

• Quadratic Programming; Quadratic programming is a specific type of nonlinear programming 

where the objective function is quadratic, and the constraints are either linear or linearized [74]. 

• Nonlinear Programming: Nonlinear programming (NLP) is a branch of optimization that 

focuses on solving problems with nonlinear objective functions and constraints. In NLP, the 

constraints can be either from equalities or inequalities or both. The inequality constraints can be 

bounded, meaning they have specified upper and lower limits. This allows for more flexibility in 

defining the feasible region and finding optimal solutions [75]. 

• Interior Point Method:  The interior point method, which has recently been rediscovered, offers 

a faster and potentially superior alternative to the conventional simplex algorithm for solving 

linear programming problems. Furthermore, this method has been extended to tackle nonlinear 

programming (NLP) and quadratic programming (QP) problems, showing remarkable qualities 

and yielding promising results. By introducing nonnegative slack variables, the interior point 

methods transform inequality constraints into equalities. A logarithmic barrier function, 

incorporating the slack variables, is subsequently added to the objective function, multiplied by 

the barrier parameter. Throughout the solution process, this parameter is gradually reduced to 

zero, ensuring convergence within the feasible region [75].        

Limitations of Classical Methods 

Addressing optimization problems using classical or traditional techniques can be challenging 

due to various factors depending on the nature of the problem. Difficulties arise when dealing with 

problems that have multiple local optima, involve discontinuities, exhibit changes in optimal 
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solutions over time, or have constraints within the search space. Additionally, classical search 

techniques often struggle with problems that have large and complex exploration or search spaces, 

limiting their ability to thoroughly explore all potential solutions. Large-scale problems may be 

computationally expensive to solve using classical methods.  

Overall, these limitations highlight the need for alternative approaches, such as metaheuristic 

optimization methods, in complex optimization scenarios. These methods will be discussed in the 

second chapter of this thesis. 

3.5 Conclusion  

This chapter has developed a comprehensive framework for modeling power systems and 

solving the Optimal Power Flow (OPF) problem using classical methods. We began by formulating 

the nonlinear power flow equations that govern real and reactive power balances across buses, 

emphasizing their role as equality constraints in OPF formulations. Classical solution techniques were 

then reviewed, ranging from early gradient and Newton–Raphson approaches to modern interior-

point algorithms. Key OPF objectives including generation cost minimization, loss reduction, and 

voltage profile improvement were shown to influence the choice of optimization algorithms and 

impact practical dispatch decisions. The chapter also detailed the structure of equality constraints 

(power balance and network equations) and inequality constraints (generator output limits, bus 

voltage bounds, and line flow ratings), and surveyed traditional constraint-handling methods that 

enforce feasibility while ensuring efficient convergence. However, due to the inherent limitations of 

these classical methods, more advanced optimization techniques are needed to address increasing 

system complexity and uncertainty topics that will be explored in the next chapter.    
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4.1 Introduction  

Metaheuristic optimization algorithms are high level strategies designed to find near optimal 

solutions for hard (often NP-hard) problems where classic methods fail, by balancing global 

exploration and local exploitation across a search space. These methods draw inspiration from diverse 

sources biological evolution, collective animal behavior, physical laws, and human social processes 

and can be grouped accordingly into four main classes: evolutionary, swarm-intelligence, physics-

based, and human-related techniques. Each class differs in its metaphor (what real-world process it 

mimics), its algorithmic operators (e.g. genetic crossover vs. velocity update), and its typical balance 

of exploration vs. exploitation [76]. Metaheuristic algorithms are general-purpose, problem-

independent strategies for finding high-quality solutions to complex optimization problems, 

especially those with nonlinear, multimodal, or combinatorial search spaces that defeat exact 

methods. They operate as “black-box” optimizers: they do not require gradient information or 

problem convexity, and can handle discrete, continuous, noisy, or dynamic objective functions. Two 

central principles guide their design [77]. 

Exploration: Exploration refers to the capability of a metaheuristic algorithm to investigate 

broadly across diverse and unvisited regions of the solution space, thereby reducing the chance of 

becoming trapped in local optima and increasing the likelihood of finding the global optimum. By 

generating varied candidate solutions and sampling uncharted areas, exploration mechanisms 

maintain population diversity and ensure the algorithm does not prematurely converge on suboptimal 

regions. Techniques such as random perturbations, large neighborhood jumps, and high-temperature 

acceptance in Simulated Annealing enable metaheuristics to escape local traps and discover 

promising basins in multimodal landscapes. In population-based methods like Genetic Algorithms, 

exploration is further enhanced through elevated mutation rates and diverse crossover operations, 

which introduce new genetic material and facilitate sampling of previously unexplored search-space 

regions. Effective exploration strategies are particularly critical in high-dimensional or noisy problem 

domains, where the search landscape contains numerous peaks and valleys, as they significantly 

improve the algorithm’s ability to locate the true global optimum [76]. 

Exploitation: Exploitation emphasizes the intensification of the search around high-quality 

solutions to refine and improve them through local search operations, thereby accelerating 

convergence toward optima. This process focuses computational effort on the neighborhoods of 

promising solutions by performing small, directed moves such as greedy improvement steps or 

tabu-guided exchanges to fine-tune solution quality. In Particle Swarm Optimization, for example, 

exploitation is realized by biasing particle velocities toward their personal-best and the global-best 

positions, causing the swarm to sample more intensively in regions that have already demonstrated 

superior performance. Trajectory-based metaheuristics like Iterated Local Search and Tabu Search 

explicitly exploit local neighborhoods via systematic descent heuristics or memory-based forbidding 

of recent moves to climb toward local optima. However, excessive exploitation characterized by 

overly small perturbations can limit exploration and increase the risk of premature convergence to 

suboptimal basins if diversity mechanisms are not maintained [76]. 
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4.2 Classification of Metaheuristic Algorithms 

A common taxonomy divides metaheuristics into four main families based on their source of 

inspiration and operational paradigm: 

Evolutionary Techniques: draw on biological evolution, typically population-based with operators 

like crossover and mutation. 

Swarm Intelligence Techniques: model collective behaviors of decentralized agents (e.g., ant 

colonies, bird flocks). 

Physics-based Techniques: mimic natural physical processes (e.g., annealing, gravity, 

electromagnetism). 

Human-related Techniques: simulate social, cognitive, or organizational behaviors (e.g., teaching, 

brainstorming). 

 Evolutionary Techniques: 

Evolutionary algorithms (EAs) simulate the principles of biological evolution notably selection, 

crossover (recombination), mutation, and survival of the fittest to iteratively improve a population of 

candidate solutions toward better fitness levels. These methods are inherently population-based and 

derivative-free, making no assumptions about continuity or differentiability in the underlying 

objective function. Their generality and applicability make them robust across diverse optimization 

challenges, ranging from engineering design to scheduling and power system optimization. One 

comprehensive review covering these characteristics including algorithm classes, operators, 

exploration–exploitation balance, and problem applicability is provided by Eiben & Smith in their 

foundational text on evolutionary computing [78]. 

Mechanisms: 

Evolutionary techniques follow a generational cycle comprising six main steps: 

1. Initialization: A population of candidate solutions is randomly generated to uniformly sample the 

search space’s diverse regions. 

2. Evaluation: Each individual’s fitness is computed by assessing the objective function, providing 

a scalar measure of solution quality. 

3. Selection: Candidates are probabilistically chosen as parents based on fitness higher-fitness 

individuals have a greater chance to reproduce thereby enforcing survival of the fittest. 

4. Crossover (Recombination): Pairs of parents exchange segments of their encoding to create 

offspring, combining successful traits from both and pro moting exploration of new regions. 

5. Mutation: Random perturbations are applied to offspring to introduce novel genetic material and 

maintain population diversity, guarding against stagnation. 

6. Replacement: A new generation is formed by selecting among parents and offspring often 

retaining elite individuals to balance retention of good solutions with introduction of new ones. 
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Genetic Algorithms (GAs): 

Genetic Algorithms (GAs) encode candidate solutions as fixed-length strings typically binary 

vectors or real-valued arrays and iteratively evolve them using biologically inspired operators. In each 

generation, a population’s fitness is evaluated, parents are probabilistically selected based on fitness, 

and offspring are generated through crossover (one-point, two-point, uniform) and mutation (bit-

flipping or real-value perturbations). Elitism preserves the best individuals directly into the next 

generation, ensuring no loss of high-quality solutions. GAs are derivative-free, require no continuity 

or differentiability assumptions, and can seamlessly handle discrete, continuous, and mixed-integer 

problems.A comprehensive review detailing genetic operators, population dynamics, exploration-

exploitation balance, and inheritance mechanisms is available in ref [79]. 

 Swarm-intelligence (SI): 

Swarm-intelligence algorithms are population-based metaheuristics inspired by the collective 

behavior of social organisms ants, bees, birds that self-organize through local interactions to perform 

tasks beyond the capability of any individual agent. They rely on simple behavioral rules at the agent 

level such as movement, sensing, and updating internal states and on indirect or direct communication 

stigmergy or information sharing to produce coherent, intelligent global search patterns without any 

central coordinator. Core emergent properties include robustness (tolerance to agent failures), 

adaptability (response to dynamic landscapes), and scalability (performance with increasing agent 

numbers), which together enable SI methods to maintain diversity and avoid premature convergence 

in complex, multimodal search spaces [80]. 

Mechanisms 

Three fundamental mechanisms drive SI search dynamics: 

1. Decentralized control: each agent follows local rules without a global leader, enabling parallel 

exploration and fault tolerance. 

2. Indirect communication: agents modify shared environmental markers (e.g., pheromone trails) 

that influence subsequent agent behaviors, creating positive and negative feedback loops to balance 

intensification and diversification. 

3. Iterative adjustment:  agents iteratively update their positions or solution components based on 

personal experience (memory of past successes) and communal information (global or neighborhood 

best), which dynamically steers the swarm toward high-fitness regions while still exploring new areas. 

Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) represents candidate solutions as particles moving through 

the search space. Each particle’s velocity is adjusted based on its personal best position (pbest) and 

the global best position (gbest) discovered by the swarm. This mechanism effectively blends 

individual learning with social influence, enabling PSO to converge toward optimal regions without 

relying on gradient information or continuity assumptions [81]. 
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 Physics-Based Techniques 

Physics-based metaheuristics translate optimization variables into physical quantities and 

leverage well-understood natural laws such as thermodynamics, gravity, and electromagnetism to 

drive search dynamics toward minima or equilibria. By modeling solution candidates as particles, 

masses, or charges, these algorithms exploit analogues of energy minimization or force interactions 

to balance global exploration and local exploitation. Some operate on a single trajectory (e.g., 

Simulated Annealing), while others maintain a population of interacting agents (e.g., Gravitational 

Search), but all share the principle of mapping problem structure onto physical processes to guide 

search adaptively [82]. 

Core Principles 

1. Physical Mapping: Each solution is encoded as a physical entity (e.g., a particle with mass or 

charge), and its “fitness” determines a corresponding physical property (mass magnitude, energy 

level, temperature). 

2. Interaction Laws: Agents interact according to laws such as Newton’s law of gravitation or 

Coulomb’s law of electrostatics, inducing movements that bias the search toward high-fitness regions 

while still permitting exploration via weaker forces or thermal fluctuations. 

3. Control Schedules: Parameters analogous to temperature schedules or force attenuation functions 

govern the transition from exploration (high energy/weak forces) to exploitation (low energy/strong 

forces), ensuring convergence properties can be tuned or guaranteed under certain conditions. 

Gravitational Search Algorithm (GSA) 

In GSA, each agent is assigned a “mass” proportional to its fitness; masses attract one another 

via a gravitational constant, so that heavier (better) masses exert stronger pull, guiding lighter agents 

toward promising regions. Over time, the gravitational constant is decreased to shift focus from 

exploration to exploitation [83]. 

 Human-related Techniques 

Human-related metaheuristics emulate social interactions, cognitive behaviors, and 

organizational processes to generate and refine solutions. They may be population-based (teams, 

crowds) or hybrid, integrating human-inspired operators with classical heuristics [84]. 

Mechanisms:  

Idea exchange: Pooling and recombining individual insights (e.g., brainstorming, teaching). 

Role-based interaction: Teachers and students (TLBO), leaders and followers (MLO). 

Game-theoretic dynamics: Competition (War Strategy Optimization) or cooperation (Teamwork 

Optimization). 

Learning and adaptation: Individuals improve via practice (Skill Optimization Algorithm) or 

advice (Mother Optimization Algorithm). 
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Teaching–Learning-Based Optimization (TLBO) 

Teaching–Learning-Based Optimization frames the search process as a classroom where the 

“teacher” (the current best solution) guides the entire population of “learners” toward improved 

performance by shifting the mean solution vector, while subsequent peer-to-peer interactions among 

learners foster further refinement and diversity in the search space. This dual-phase mechanism 

teacher phase for global intensification and learner phase for local exploration eliminates 

algorithm-specific parameters and leverages simple yet effective knowledge transfer to achieve rapid 

convergence without extensive tuning [85]. 

   Differences Between Classes: 

Source of Inspiration: biological evolution vs. social swarms vs. physical laws vs. human behaviors. 

Population Structure: evolutionary and swarm algorithms are strictly population-based; physics-

based may be single-solution (SA) or multi-agent (GSA); human-related can blend both paradigms. 

Operators: evolutionary methods use genetic operators; swarm intelligence uses movement and 

pheromone rules; physics-based use energy/force dynamics; human-related use interaction and 

learning metaphors. 

Exploration vs. Exploitation: physics-based often rely on temperature or force schedules, 

evolutionary on diversity maintenance, swarm on social learning, and human-related on role 

transitions and knowledge sharing. 

Table 4-1:Metaheuristic Algorithms Classification 

Aspect Evolutionary Swarm Intelligence Physics-Based Human-Related 

Inspiration 
Natural selection, 

genetics 

Collective 

animal/insect 

behavior 

Physical 

laws/phenomena 

Human teaching, 

learning, social 

processes 

Population vs. 

trajectory 

Population of 

solutions 

Population with local 

interactions 

Either population 

(GSA) or single-

solution trajectory 

(SA) 

Population with 

social/knowledge 

exchanges 

Key operators 
Selection, 

crossover, mutation 

Velocity/position 

updates, pheromone 

laying, attraction 

Temperature 

schedule, force 

calculations 

Teacher–learner 

updates, knowledge 

sharing 

Exploration 

mechanism 

Mutation, diverse 

mating 

Randomness in 

movement, 

pheromone 

evaporation 

High “temperature,” 

low attraction 

Random peer 

interactions, 

brainstorming 

Exploitation 

mechanism 

Selection pressure, 

elitism 

Attraction to best 

peers or global best 

Cooling schedule, 

increasing force 

focus 

Teacher guidance, 

knowledge aggregation 
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Aspect Evolutionary Swarm Intelligence Physics-Based Human-Related 

Memory usage 
Global and parent 

population 

Personal best, global 

best, pheromone map 

Current state (e.g. 

temperature), agent 

masses 

Shared knowledge 

pool, teacher’s record 

4.3 Kepler Optimization Algorithm (KOA): 

 Inspiration  

In ancient times, it was widely believed that the Earth was the center of the universe, with the 

Sun, planets, stars, and moons revolving around it. This geocentric view persisted until 1543, when 

the Polish astronomer Nicolaus Copernicus challenged it by proposing the heliocentric theory that 

the Earth and other planets orbit the Sun. Although Copernicus lacked the means to prove his theory, 

it laid the foundation for future discoveries. In 1609, German astronomer Johannes Kepler confirmed 

the heliocentric model through extensive calculations. He formulated three fundamental laws that 

describe the motion of planets around the Sun. These laws, known as Kepler’s laws of planetary 

motion, are outlined below [86], [87]: 

Kepler’s First Law: 

All planets travel in elliptical orbits with the Sun located at one of the two foci. This law defines 

the shape of planetary orbits as ellipses rather than perfect circles, as illustrated in Figure 4-1. An 

ellipse resembles an oval and has two focal points; the Sun occupies one of these. The eccentricity of 

an ellipse, represented by e, quantifies how elongated the shape is. It is calculated by dividing the 

distance from the center of the ellipse to a focus by the length of the semi-major axis. When e = 0, 

the orbit is a perfect circle; when e = 1, it becomes a straight line. Figure 4-2 shows examples of 

various elliptical shapes. 

Kepler’s Second Law: 

A line segment connecting a planet to the Sun sweeps out equal areas during equal intervals of 

time. This law explains the changing speed of a planet in its orbit. A planet travels more quickly when 

it is closer to the Sun and more slowly when it is farther away. Despite these changes in speed, the 

imaginary line from the planet to the Sun covers equal areas over equal time periods, maintaining a 

consistent areal velocity. The velocity of a planet around the Sun can be calculated as follows [88]: 

2
2 1

( )( )SV M m
R a


 

= + − 
 

                                                       (4.1) 

SM and m  denote the mass of the Sun and a planet, respectively,𝑅 is the Euclidean distance between 

the Sun and a planet at this time,  is the gravitational constant and a  is the semi major axis of the orbit. 
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Figure 4-1:The trajectory of planets   motion[86] 

 
Figure 4-2:Different Ellipse Shapes[86] 

Kepler’s Third Law: 

For any planet, the square of its orbital period is proportional to the cube of the semi-major axis 

of its orbit. In simpler terms, planets that are farther from the Sun take longer to complete one orbit, 

and this relationship follows a precise mathematical pattern. This law can be expressed as: 

2
2 34

( )S

T a
M m





 
=  

+ 
                                                                      (4.2) 

Here, T is the orbital period, a  the semi-major axis,   the gravitational constant, SM  the 

Sun’s mass, and m  the planet’s mass. Most solar system bodies rotate counterclockwise, but 

exceptions like Venus rotate clockwise likely due to early collisions. Four key factors influence a 

planet’s orbit: position, mass, gravitational force, and orbital velocity. These form the foundation of 

the mathematical model behind the proposed algorithm. Kepler’s laws enable predicting a planet’s 

position and velocity at any moment directly inspiring KOA.  
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Figure 4-3:2D Dimension Of Planets Motion[86] 

 

Figure 4-4:3D Dimension Of Planets Motion[86]. 

 Mathematical model of Kepler optimization algorithm (KOA): 

This section presents a new optimization algorithm inspired by Kepler’s laws of planetary 

motion [88]. In our proposed algorithm, Kepler’s first law is simulated as follows. The Sun and the 

planets (or objects) revolving around it in (imaginary) elliptical orbits can be used to represent the 

search space, as shown in Fig 4-3. In KOA, the planets (candidate solutions) are under different 

situations from the Sun (the best solution) at various times, and thus, the search space is explored and 

exploited more efficiently. Fig 4-4 illustrates how the position of an object, its mass, the force of 

attraction between the object and the Sun, and the velocity with which it orbits the Sun change its 

position around the best solution, i.e., the Sun. The figure also depicts the rotation of most objects in 

a clockwise direction.  

Fig. 4-4 can also be used to explain how the searcher’s position changes in 3D space. Similar 

to other metaheuristic population-based algorithms, KOA starts the search process with an initial set 
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of objects (candidate solutions) with stochastic orbitals. Each object is initialized with its random 

position in orbit during this stage. After evaluating the fitness of the initial set, KOA runs in iterations 

until the termination condition is met. In the current study, we use the term “time” instead of 

“iteration” because it is a common term in solar system theory and cosmology. During optimization, 

the following rules are applied to KOA. 

 • The orbital period of a planet (the candidate solution) is chosen randomly in accordance with the 

normal distribution. 

 • The eccentricity of a planet’s orbit is selected at random from a range of 0 to 1. 

 • The fitness of a solution is calculated on the basis of the objective function. 

 • The best solution, in iteration, is the central star (the Sun). 

 • The distance between the Sun and the planet is changed in accordance with the current time. 

 The rest of this section presents the mathematical model of KOA. In brief, the pseudocode and 

flowchart of KOA are presented in Fig 4-6, respectively. The time complexity of the steps listed in 

this algorithm is of O(𝑁𝑇𝑚𝑎𝑥), where 𝑁 represents the population size, and 𝑇𝑚𝑎𝑥 is the termination 

criteria of the proposed KOA based on the maximum number of function evaluation. Theoretically, 

KOA can be considered a global optimization algorithm because it includes exploration and 

exploitation phases. Mathematically, the processes of the proposed KOA are described in detail as 

follows. 

Phase 1: Initialization process 

 In this process, a number of planets equal to N, referred to as the population size, will be 

randomly distributed in d-dimensions, representing the decision variables of an optimization problem, 

in accordance with the following formula: 

                                     ( )  1,2,......., .

, , 1,2,......., .0,1
,j j j j i N

i i low i up low j dX X rand X X =

== +  −                                      (4.3) 

where 
iX indicates the i th planet (candidate solution) in the search space; 𝑁 represents the number 

of solution candidates in search space; 𝑑 represents the dimension of the problem to be optimized; 

,

j

i upX and j

lowX  represent the upper and lower bounds, respectively, of the j -th decision variable; and 

𝑟𝑎𝑛𝑑[0,1] is a number generated randomly between 0 and 1. 

The orbital eccentricity (𝑒) for each ith object is initialized using equation eq.(4) : 

                                                   ( )  0,1
, 1,......,e rand i N= =                                                        (4.4)  

Where    0,1
rand    is  a random value generated within interval[0,1].finaly,the orbital period (T) for 

each i -th object is initialized using Eq. (5): 

                                                        | |, 1,......,iT r i N= =                                                              (4.5) 

where 𝑟 is the number generated randomly on the basis of the normal distribution. 
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Step 2: Defining the gravitational force (𝐅)  

The Sun is the main element of the solar system; it represents the largest object in the solar 

system and controls the movement of the group through its gravity [89]. The primary reason why 

planets orbit the Sun is because the Sun’s gravity keeps them in their orbit. If the Sun does not exist, 

then planets will move in a straight line toward infinity, however, the Sun’s gravity constantly 

changes direction to enable planets to move around it in an elliptical shape. Gravity is known as the 

fundamental force that controls the orbits of planets around the Sun. Each planet has its own gravity 

that is proportional to its size. Notably, the velocity of a planet depends on the gravity of the Sun. The 

closer a planet is to the Sun, the greater its orbital velocity, and vice versa. The attraction force of the 

Sun 𝑋s and any planet 𝑋𝑖 is given by the universal law of gravitation, which is defined as 

                                          12
( ) ( )

i

i

i

i

Ms m
Fg t e t r

R





=   +

+
                                                     (4.6) 

where Ms and im denote the normalized values of 𝑀𝑠 and 𝑚𝑖 , which represent the mass of 𝑋s and 

𝑋𝑖 , respectively, and given by Eqs. (4.8) and (4.9); 𝜀 is a small value; μ is the universal gravitational 

constant; 
ie is the eccentricity of a planet’s orbit, which is a value between 0 and 1 that was proposed 

to endow a stochastic characteristic to KOA; 1r  is a value that is generated randomly between 0 and 

1 to give more variation to the gravitation values within the optimization process; and R 𝑖 is the 

normalized value of 𝑅𝑖 that represents the Euclidian distance between 𝑋s and 𝑋𝑖 , and is defined as 

                                   2
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= − = −                                     (4.7) 

2
( ) ( )iXs t X t− represents the Euclidean distance between the dimensions of 𝑋s and these of 𝑋𝑖 . The 

mass of the Sun and object i at time t is simply calculated using the fitness evaluation as follows 

(consideringa minimization problem): 
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                                              min( ) ( ) { 1,2, , } ( )s kfit t best t k N fit t= =                                        (4.10) 

                                                  max( ) { 1, 2, , } ( )kworst t k N fit t=                                                           (4.11) 

where 2r is a number generated randomly between 0 and 1 to diverge the mass values for various 

planets. 𝜇(𝑡) is a function that exponentially decreases with time (t) to control search accuracy and is 

defined as follows : 

max( ) { 1, 2, , } ( )kworst t k N fit t=                                                      (4.12) 
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where 𝛾 is a constant; 
0 is an initial value; and 𝑡 and maxT  are the current iteration number and 

maximum number of iterations, respectively. 

Phase 3: Calculating an object’ velocity  

The velocity of an object depends on its position relative to the Sun. That is, a planet’s velocity 

increases if it is close to the Sun and decreases if it is far from it. If an object is close to the Sun, then 

the Sun’s gravity is considerably strong, and the planet attempts to increase its speed to avoid being 

pulled toward the Sun. However, if an object is far from the Sun, then its velocity will slow down 

because the Sun’s gravity is weak. Mathematically, this behavior is formulated in Eq. (4.13) to 

compute the velocity of an object around the Sun according to the vis-viva equation. This equation is 

twofold. The first fold determines the velocities of planets close to the Sun by multiplying the distance 

between the current solution and a randomly selected solution, or the distance between two solutions 

that are randomly selected from the current population. This helps KOA diversify its search strategies. 

However, the diversity of the population’s solutions during the optimization process may be 

minimized, and thus, velocity may be minimized in cases wherein a planet is close to the Sun. 

Accordingly, another step size based on the distance between the lower and upper bounds of the 

optimization problem is integrated into the first fold to assist in preserving the velocity of planets 

throughout the optimization process and avoiding being stuck in local minima. Second, on the basis 

of the proposition that planets are far from the Sun, the equation computes the velocity of the planet 

in accordance 

with the distance between a randomly selected solution and the current solution to reduce the 

velocity of planets compared with the first fold. The major shortcoming in the second fold is the lack 

of diversity between solutions, which may minimize the opportunity for KOA to escape local optima 

because changes in the current solution are too small. To address this flaw, a second step size based 

on the distance between the lower and upper bounds of the optimization issue is incorporated into the 

second fold 
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where ( )iv t


represents the velocity of object i at time 𝑡 iX


represent object i, 
3r  and 

4r  are randomly 

generated numerical values at interval [0, 1], and 5r


 and 6r


 are two vectors that include random 

values between 0 and 1. aX


and bX


represent solutions that are selected at random from the 

population; 
sM  and im  represent the mass of sX  and 

iX , respectively; 𝜇(𝑡) represents the universal 

gravitational constant; 𝜀 is a small value for preventing a divide-by-zero error; 𝑅𝑖(𝑡) represents the 

distance between the best solution sX  and the object 
iX  at time t; and 𝑎𝑖 represents the semimajor 

axis of the elliptical orbit of object i at time t, and it is defined by Kepler’s third 

law mentioned in eq 4.24 as follows: 

                                       
1
3

2

( ) ( )2

3 4
( ) S it M m

i ia t r T




 + =                                                                         (4.24) 

where 
iT represents the orbital period of object i and is determined by Eq. (4.25). In our proposed 

algorithm, the semimajor axis of the elliptical orbit of object i is assumed to decrease gradually with 

generations wherein the solutions move toward the promising region in which the global best solution 

is likely to be found. ( )i normR t− represents normalizing the Euclidian distance between sX  and 
iX  , 

and it is defined as follows: 

                                         
( )

( )
max( ( )) min( ( ))

i i norm
i norm

R R t
R t

R t R t

−
−

−
=

−
                                                       (4.25) 

The purpose of Eq. (4.16) is to calculate the percentage of steps that each object will change. 

If ( )i normR t− ≤ 0.5, then the object is close to the Sun and will increase its speed to prevent drifting 

toward the Sun because of the latter’s tremendous gravitational force. Otherwise, the object will slow 

down 

 

 

Figure 4-5:Exploration And Exploitation Regions In The Search Space[86] 
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Step 4: Escaping from the local optimum 

In the solar system, most objects revolve counterclockwise around the Sun, and they all rotate 

on their owns axes, however, some objects revolve around the Sun in a clockwise direction. The 

proposed algorithm uses this behavior to escape from local optimum regions. The proposed KOA 

simulates this behavior by using a flag ℱ that changes the search direction such that agents have a 

good chance of scanning the search space accurately. 

Step 5: Updating objects’ positions 

As mentioned earlier, objects revolve around the Sun in their own elliptical orbits. During 

rotation, objects move closer to the Sun for a certain time and then move away from it. The proposed 

algorithm simulates this behavior through two major phases: the exploration and exploitation phases. 

KOA explores objects far from the Sun to find new solutions, while using solutions close to the Sun 

more accurately as it searches for new places near the best solutions. Fig 4-5 shows the regions of 

exploration and exploitation around the Sun. The exploration and exploitation phases are 

subsequently described in detail. In the exploration phase, the objects are far from the Sun, indicating 

that the proposed algorithm explores the entire search area more efficiently. In accordance with the 

previous steps, a new position of each object far from the Sun is updated using Eq. (4.26): 

                          ( 1) ( ) ( ( ) ) ( ( ) ( ))i i s ii iX t X t v Fg t r U X t X t+ = +   +   −


F                         (4.26) 

where ( 1)iX t +


is the new position of object i at time t+1, ( )iv t


is the velocity of object i required to 

reach the new position, sX  (𝑡) is the best position of the Sun found thus far, and ℱ is used as a flag 

to change search direction. Eq. (4.26) simulates the gravitational force of the Sun to the planets, where 

this equation employs 

another step size on the basis of calculating the distance between the Sun and the current planet 

multiplied by the gravitational force of the Sun to help KOA explore the regions around the best-so-

far solution and find better outcomes in less number of function evaluations. In general, the velocity 

of planets will represent the exploration operator of KOA when a planet is far from the Sun. However, 

this velocity is affected by the gravitational force of the Sun, which helps the current planet slightly 

exploit regions near the optimal solution. Meanwhile, when a planet approaches the Sun, its velocity 

increases dramatically, allowing it to escape the Sun’s gravitational pull. In such case, velocity 

represents local optimum avoidance if the best-so-far solution, referred to as the sun, is local minima, 

and the Sun’s gravitational pull represents the exploitation operator to assist KOA in attacking the 

best-so-far solution to find better solutions 

Step 6: Updating distance with the Sun 

To further improve the exploration and exploitation operators of planets, we attempt to mimic 

the typical behavior of the distance between the Sun and planets, which naturally varies over time. 

When planets are close to the Sun, KOA will focus on optimizing the exploitation operator; when the 

Sun is far, KOA will optimize the exploration operator. These rules depend on the value of the 

regulating parameter h. When this value is large, the exploration operator is employed to expand 

planetary orbital separation from the Sun; conversely, when this value is small, the exploitation 

operator is used to exploit the regions around the best-so-far solution if the distance between the Sun 
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and planets is small. This principle is randomly exchanged with Eq. (4.26) to improve the exploration 

and exploitation operators of KOA further, as listed in Algorithm 1. The mathematical model of this 

principle is described as follows: 

 

                 ( )( )( ) ( )
1 1 3.0 3.0

( 1) ( ) (1 ) ( )i a i as sX t X X X t X X
i i bX t X t U U h X t

+ + + +
+ =  + −  +  −


       (4.27) 

where ℎ is an adaptive factor for controlling the distance between the Sun and the current planet at 

time t, as defined below: 

                                                            1
re

h =                                                                      (4.28) 

where 𝑟 is a number that is generated randomly on the basis of the normal distribution, while 𝜂 is a 

linearly decreasing factor from 1 to −2, as defined below: 

                                                       
2 4( 1) 1a r = −  +                                                          (4.29) 

where 2a  is a cyclic controlling parameter that is decreasing gradually from -1 to −2 for T  cycles 

within the whole optimization process as defined below: 

                                                        
max

max
2 1 1

T

T

T

T

t
a 

 
= − −  

 

                                                (4.30) 

    Step 7: Elitism  

This step implements an elitist strategy to ensure the best positions for planets and the Sun. 

This procedure is summarized using Eq. (4.31): 

                                                 ( 1), ( ( 1) ( ))
,

( ),
( 1) i i i

i

X t if f X t X t
i new

X t else
X t + + + =






                                (4.31) 
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Figure 4-6: Flowchart of (KOA) 

Initialize the population of 

objects by assigning random 

values for their positions, 

orbital eccentricities, and 

orbital periods. 

Evaluate the fitness values 

for the initial-position. 

Identify the global best 

solution ( sX ) by considering 

the sun as the reference 

point. 

Determine the velocity of 

each objects. 

Compute the gravitational-

force between the sun and each 

object. 

Compute the Euclidean 

distance between the sun 

and each object. 

Generate random- numbers, r and r1 

within the range of 0 and 1. 

If r< r1 

Update distance between the 

sun and each object 

Update the new-position of the 

object  

Implement an elitist strategy  

 

Evaluate the fitness-values for the 

sun and each object 

Determine the global-best-solution ( sX ) by considering the 

sun as the reference 

termination 

Stop 
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4.4 Enhanced Kepler Optimization Algorithm  

It is recognized that the performance of meta-heuristic technique can be ameliorated by 

fulfilling the suitable equilibrium between the two opposing phases. The initial phase, focused on 

local search, referred to as exploitation, while the subsequent phase, which aims to search globally, 

is known as exploration. The global minima can be guaranteed, and reducing the search space through 

these phases helps prevent the technique from becoming trapped in local minima. A slight 

modification to this technique is introduced to generate a substantial exploration through a deeper 

search for new neighbor solutions in the search space. Hence, an operator phi is suggested to strike a 

better balance between the exploration and exploitation stages. More precisely, this operator also acts 

significantly on the acceleration of algorithm convergence rate. This operator decreases linearly 

during iterations from 1 to 0.5 using the subsequent equation [62]: 

t
0.75 0.25 cos

Tmax
 

 
= +   

 
                                                              (4.32) 

Where Tmax is the basic stopping criterions and t is the Instant iteration. The operator   is 

combined with the equation 4.27. 

 

Figure 4-7: ψ variation with iteration 

1. Early iterations (t ≈ 0 → ψ ≈ 1.0): h·ψ ≈ h, ψ(t) = 1. Planets make big jumps → they spread 

widely across This phase = Exploration. 

2. Middle iterations (→ ψ ≈ 0.75): ψ(t) has decreased smoothly to about 0.75. Exploration is 

moderated: jumps are smaller, but still large enough to search new regions. Balance between 

exploration and exploitation: algorithm explores, but also starts to refine. 

3. Late iterations (→ ψ ≈ 0.5): h·ψ < h , ψ(t) reaches its minimum value 0.5. Exploration is reduced 

by half compared to the start. Planets make small jumps around the best-known regions. Focus shifts 

to exploitation: fine-tuning around optimal solutions, ensuring convergence 
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4.5 Non-Dominated Sorting Kepler Optimization Algorithm (NSKOA) 

In the original version of the Kepler optimization algorithm (KOA), the algorithm was designed 

to solve mono-objective optimization problems, where a single global best solution was determined 

as the “Sun” (𝑋𝑆) based on fitness values. The algorithm updated the positions and velocities of the 

objects (planets) accordingly, aiming to improve their fitness relative to this singular objective. 

To extend KOA into a multi-objective framework, the key modification was the integration of the 

non-dominated sorting procedure, allowing the algorithm to handle multiple conflicting objectives 

simultaneously [90]. The key changes are as follows: 

 Non-Dominated Sorting Principle  

This mechanism is essential for navigating trade-offs in multi-objective problems by ranking 

solutions based on Pareto dominance. In the modified version, after initializing the population and 

calculating the objective functions, non-dominated sorting is performed to assign ranks to solutions. 

Non-dominated solutions, which are not outperformed in all objectives, receive a rank of 1, while 

subsequent ranks are assigned iteratively to solutions that are dominated by others. This ranking 

system helps preserve a diverse set of optimal solutions, ensuring that different trade-offs between 

objectives are explored [91]. 

  Concept of Dominance  

In the Pareto sense, 

𝑈1 𝑑𝑜𝑚𝑖𝑛𝑒 𝑈2 𝑖𝑓 

∀ 𝑖 ∈ [1, 2] ,  𝐹𝑖(𝑈1) ≤ 𝐹𝑖(𝑈2) 

and  ∃ 𝑖 ∈ [1, 2], 𝐹𝑖(𝑈1) < 𝐹𝑖(𝑈2) 

 

Figure 4-8: Concept Of Dominance [91] 

Example: The point  dominates squares, is dominated by triangles, and is not comparable with 

circles. 

  classification of the population  

We classify the population using non-domination. This returns two columns for each object. These 

are the rank and the crowding distance corresponding to their position in the front. 

3.7.1 Rank: 

• Undominated →  rank 1 

• Dominated except by rank 1 →  rank 2 

•  
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 Crowding Distance (CD)  

An important aspect of this approach is the calculation of crowding distance, which measures 

the proximity of solutions to their neighbors in the objective space. A higher crowding distance 

indicates a less crowded region, helping to maintain diversity among solutions and favoring those 

that are well-distributed along the Pareto front. 

 

Figure 4-9: Crowding Distance[91]. 

By evaluating solutions based on both rank and crowding distance, the algorithm ensures a 

balance between convergence toward the Pareto front and the preservation of solution diversity across 

the front. This process ensures that, instead of converging to a single global best solution, a set of 

non-dominated solutions is maintained, offering multiple viable options that address different trade-

offs between the conflicting objectives. 

 

 Elitism and Population Combination 

In this Algorithm, the current population (Pt) of size N and a new population (Qt) of size N are 

assembled to form a population (Rt = Pt ∪ Qt), as shown in Figure 4-9. This assembly ensures elitism. 

The population of size (2N) is then sorted according to the non-dominance criterion to identify the 

different fronts F1, F2, etc. The best individuals will end up in the first front(s). A new parent 

population (Pt + 1) is formed by adding the fronts in full (first front F1, second front F2, etc.) as long 

as they do not exceed N. If the number of individuals present in (Pt + 1) is less than N, a crowding 

procedure is applied on the first edge following Fi not included in (Pt + 1). 

The goal of this operator is to insert the N − |𝑃𝑡+1|  best individuals that are missing in the 

population (Pt + 1). The individuals in this front are used to calculate the crowding distance between 

two neighboring solutions. 
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Figure 4-10:Non-Dominated Selection [91] + 

 

Figure 4-11: Crowding Distance [91] 

   

   

  Best Compromise Solution (BCS) 

Fuzzy set theory is frequently employed to effectively select a candidate Pareto-optimal solution from 

numerous options along the Pareto front. Given the inherent irrationality of decision-makers, the i th−  

objective function of a solution within the Pareto-optimal set, denoted as if , is expressed through a 

membership function i  [92], defined as : 

min

max
min max

max min
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1

0

i i

i i
i i i

i i

i i

i

f f

f f
f f f

f f

f f
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−
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−
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=                                            (4.33) 

where max

if  and min

if  represent the maximum and minimum values of the i th−  objective function, 

respectively. 

The normalized membership function 
k  is calculated for each non-dominated solution k as follows: 

1

1 1

Nof k

ik i

M Nof j

ij i






=

= =

=


 
                                                            (4.34) 

Where the number of non-dominated solutions is denoted as M. The best  compromise solution is determined 

as the one with the highest value of 
k . By organizing all solutions in descending order based on their 

membership function, a priority list of non-dominated solutions is generated. This prioritized list serves as 

guidance for the decision-maker, aiding in navigating through the current operational circumstances. 
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4.6 Conclusion: 

This chapter delved into the foundational principles of metaheuristic algorithms, emphasizing 

the critical balance between exploration and exploitation that underpins their efficacy in solving 

complex optimization problems. A systematic classification of metaheuristic frameworks was 

presented, highlighting the core mechanisms of distinct algorithmic classes (e.g., swarm intelligence, 

evolutionary algorithms). We then introduced the Kepler Optimization Algorithm (KOA) whose 

astrophysics-inspired dynamics were analyzed in depth, particularly its ability to model celestial 

mechanics for navigating search spaces. To address limitations in KOA’s exploratory capabilities, 

a novel equation was introduced, enhancing its diversity-seeking behavior during the initial search 

phases. This modification ensures a more rigorous exploration of the solution space, reducing 

premature convergence risks while maintaining computational efficiency. 

Building on this enhanced KOA, the chapter further proposed a multi-objective adaptation of 

the algorithm through the integration of non-dominated sorting. By hierarchically ranking solutions 

based on Pareto dominance and employing crowding distance metrics, the revised framework (MO-

KOA) efficiently balances competing objectives. The inclusion of a best compromise 

solution mechanism leveraging decision-maker preferences or objective weighting provides a 

practical pathway to select optimal trade-offs in multi-objective landscapes. In the next chapter, the 

enhanced KOA (EKOA) will be applied to solve the (SOPF) problem in the presence of (RES) and 

its performance will be compared with the original KOA to evaluate the proposed improvements.
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5.1 Introduction: 

Modern electrical networks are undergoing profound transformations to meet rising demand for 

fossil-fuel–based energy, contain escalating production costs, and mitigate the environmental impact 

of pollutant emissions from thermal power plants. These pressures have driven a shift toward cleaner, 

more sustainable energy sources and more sophisticated grid‐management strategies pivotal among 

them is the (OPF) problem, first formulated over half a century ago, remains a central, large‐scale, 

nonlinear optimization task in power‐system research. Its objective is to minimize total generation 

cost by selecting optimal settings for control variables real‐power outputs, generator bus voltages, 

transformer tap positions, and so on while enforcing power‐balance equations and respecting 

equipment limits (generator capabilities, line thermal ratings, voltage bounds). Traditionally focused 

on dispatching controllable thermal units, OPF must now accommodate intermittent (RES) such as 

wind and solar, whose variable outputs introduce stochasticity into generation scheduling. Early OPF 

solutions relied on classical techniques Newton Raphson programming, quadratic and nonlinear 

programming, interior‐point methods, and linear programming. While effective for small, well‐

behaved problems, these approaches often stall at local optima, struggle with high nonlinearity, and 

incur heavy computational burdens as system size and complexity grow. Their sensitivity to initial 

conditions further complicates convergence to a global solution. To overcome these limitations, 

metaheuristic and hybrid algorithms have gained traction. By enhancing population diversity and 

combining complementary search strategies, these methods reduce the risk of stagnation and improve 

exploration–exploitation balance. In particular, recent studies have explored hybridizations and 

modifications of evolutionary, swarm‐intelligence, and physics‐inspired techniques to better handle 

the stochastic OPF (SOPF) challenge presented by high RES penetration [93]. 

This chapter introduces power flow analyses in the presence of (RES) and examines their 

impact on power production and pollutant gas emissions. It also presents a novel Enhanced Kepler 

Optimization Algorithm (EKOA) specifically designed for Stochastic Optimal Power Flow (SOPF). 

By embedding advanced exploration–exploitation operators, EKOA effectively navigates complex 

search spaces, avoids local optima, and balances competing objectives such as economic cost, system 

losses, voltage stability, and environmental impact. The uncertainty of RES is modeled using Weibull 

distributions for wind and lognormal distributions for solar irradiance. Extensive simulations on 

large-scale test systems demonstrate both the impact of RES integration and EKOA’s superior 

convergence, solution quality, and computational efficiency compared to existing methods. 

• A detailed formulation of SOPF with RES uncertainty and classical OPF constraints 

• Critique of traditional optimization approaches and their limitations in stochastic, large‐scale 

settings 

• Development of the Enhanced Kepler Optimization Algorithm (EKOA) with augmented 

exploration–exploitation mechanisms 

 

• Application of appropriate probability models (Weibull, lognormal, Gumbel) for RES output 

• Statistical validation of EKOA’s performance against benchmark algorithms 

By combining rigorous uncertainty quantification, tailored metaheuristics, and robust constraint 

handling, this work lays a scalable foundation for integrating renewable energies into future resilient 

and low‐carbon power grids. 
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5.2 Optimal Power Flow Problem Formulation: 

The optimization problem in this paper aims to solve the (OPF) for a power system that includes 

thermal and stochastic wind and solar PV power generations. The primary goal is to optimize power 

system variables and determine the optimal settings for control in power system components. This is 

achieved by minimizing selected objective functions while ensuring that all the equality and 

inequality constraints are satisfied, formulated Mathematically as-follows [94]: 

                                         ( )Minimize ,OF d c                                                                                (5.1) 

                                      Subject to    ( )
( )

( )

, 0
,

, 0

g d c
g d c

h d c

 =




                                                                    (5.2) 

Where ( ),OF d c  denotes the objective function, ( ),g d c the equality constraints, ( ),h d c  define 

inequality constraints, d and c are the dependent variables vector and the control variables vector 

respectively. Maintaining system security and achieving optimal solutions in an electric power system 

necessitates the adherence to limits on dependent variables. These limits are vital for preserving 

feasibility, ensuring system stability, and striking a balance between optimization and operational 

constraints. 

Where: 

- ( ),OF d c  denotes the objective function that needs to be minimized. The specific form of this 

objective function would depend on the objectives identified in the paper. 

- ( ),g d c represents the collection of equality constraints that must be fulfilled. These constraints 

ensure     that the power flow equations and other system requirements are met. 

- c represents the vector of decision variables, which includes the control settings for power system 

components, and d represent the vector of state variables which represent states of the power system, 

these variables describe the system's dynamic behavior 

 

 Optimization Problems: 

5.2.1.1 Cost of Generation for Thermal Units: 

The fuel cost function for multiple thermal generator units can be modeled as a convex and 

differentiable quadratic function. It can be represented by the equation (5.3): 

                                                               ( ) 2

1

TGN

i i iTH TG TGi TGi
i

C P a b P c P
=

= + +                                                  (5.3) 

However, the mentioned above model ignores the valve point loading, which introduces 

oscillations or fluctuations to the actual input-output curve, can be addressed by modifying the 

equation (5.3). This modification involves the addition of an extra sin term to capture the valve point 

effects [95]. 

                                   ( ) ( )2 min

1

sin
TGN

i i i i iTH TG TGi TGi TG TG
i

TC P a b P c P d e P P
=

 
 
 

= + + +  −                         (5.4) 
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, , , ,andi i i i ia b c d e coefficients represent the cost coefficients for the 𝑖-th thermal generator, indicating 

the relationship between power output and fuel cost. The system consists of ThGN  thermal generators, 

and min

ThGP is the minimum rated power of the conventional thermal generator.  

5.2.1.2 Emission and Carbon Tax: 

The adverse environmental impact of conventional energy sources is well acknowledged, 

particularly in terms of emitting harmful gases. The release of sulfur oxide (SOx) and nitrogen oxide 

(NOx) tends to escalate with the rise in power generation from thermal power generators, as 

illustrated by the correlation outlined in Equation (5.5). The emission level, quantified in tons per 

hour (t/h), can be computed using the following equation [96]:    

( ) ( )2

1

0.01 exp
TGN

i i i i iTGi TGi TGi
i

E P P P    
=

 
  

= + +  +                                 (5.5)                                    

Where ωi, µi , ,i i i    signifies emission-coefficients related to the i-th generator. These 

coefficients represent the emissions intensity or emission rate of specific gases, such as SOx or NOx, 

per unit of power generated by that particular generator.    

 

In recent years, to tackle the global warming, numerous countries have been exerting 

significant pressure on the entire energy industry to minimize carbon emissions. a carbon tax taxC  is 

imposed on emitted greenhouse gases. The emission cost is calculated by multiplying the carbon tax 

rate taxC  by the emissions (E) in $/h. This encourages investment in cleaner power sources like wind 

and solar and addresses the environmental impact of emissions. The cost of emission in ($/h) is 

represented as [51]: 

 

                                  Emission cost:         taxEm C E=                                                       (5.6) 

5.2.1.3  Real Power Losses: 

In the (OPF) problem, additional system parameters such as the power loss in the network 

transmission. These parameters are crucial indicators of system efficiency and stability. Power loss 

in the transmission system is an inherent outcome, primarily stemming from the resistance within the 

transmission lines. The commonly employed equation for calculating network loss is as follows[97]:                                         

2 2

( )

1

2 cos( )
nl

q ij i j i j i j

q

pl G V V VV  
=

 = + − −                                                   (5.7) 

Where nl is the total number of transmission lines, ( )q ijG is the conductance of the branch i-j, iV and jV

are the voltages at bus i and j respectively, ij i j  = − , is the difference in voltage angles between 

them. 
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5.2.1.4 Voltage Deviation: 

Voltage deviation is a parameter used to evaluate the quality of voltage in a network. It 

represents the cumulative difference between the voltages of all load buses (PQ buses) and the 

nominal value of 1 per unit (p.u.). Mathematically, it is calculated as the sum of the deviations of each 

load bus voltage from the nominal value. The voltage deviation is expressed by the following 

equations [98]: 

                                                          
1

1
NL

p

p

VD VL
=

 
= − 
 
                                                    (5.8) 

 Objective Functions 

5.2.2.1 Minimization of Total Generation Cost 

The first objective function formulates the cost of energy production taking into account 

presence of (RES), whereby all the cost-functions above-mentioned are involved. This objective aims 

to minimize the total generation cost of all types of generators in the system, including thermal, wind, 

and solar sources. It can be mathematically expressed as: 
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                            (5.9) 

Where  
SGN and  

WGN represent the number of PV solar and wind generators in the grid.  

5.2.2.2 Minimization of Emission Gases with Carbon Tax 

In this case, the carbon tax taxC  was considered as penalty implemented through minimizing 

the emission and power generation costs, which can be expressed mathematically as follows: 

                                                   2 1
taxOF OF C Em= +                                                (5.10) 

                                                      the carbon tax taxC   is equal to 20 ($/h). 

5.2.2.3 Minimization of The Real Power Losses 

The equation (17) used for minimizing the overall real power losses of the network is as 

follows:  

                                         
3 2 2

( )

1

2 cos( )
nl

q ij i j i j i j

q

OF ploss G V V VV  
=

 = = + − −                           (5.11) 

5.2.2.4 Minimization of The Voltage Deviation 

The equation (14) used for minimizing the voltage deviation on all buses of the network as 

follows: 
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                                                        4

1

1
NL

p

p

OF VD VL
=

 
= = − 

 
                                           (5.12) 

  System Constrains 

5.2.3.1 Equality-Constraints 

The equality constraints in power systems consist of the power balance equations, which 

require that the total active power and reactive power generated within the power system is equal to 

the total demand and losses in the network. 
min max , 1,2.....TGi TGi TGi TGP P P i N  =                        (5.13) 

                                                  min max , 1,2.....Wsj Wsj Wsj WG
P P P j N  =                               (5.14) 

                                                 min max
, , ,

1,2.....
SGSG k SG k SG k

P P P k N  =                                  (5.15) 

                                                min max ,TGi TGi TGiQ Q Q                                                                    (5.16) 

min max , 1,2.....Wsj Wsj WsjQ Q Q i N  =                                        (5.17) 

min max
, , , SGSG k SG k SG k

Q Q Q k N                                            (5.18) 

min max
Ci Ci Ci CQ Q Q i N                                             (5.19) 

min max ,Gi Gi GiV V V                                                                       (5.20) 

     min max
Li Li LiV V V i NLB                                                   (5.21) 

 

5.2.3.2 Security Constraints 

 

min max
k k kT T T k NT                                                   (5.22) 

max
i iS S i LN                                                   (5.23) 

 

Equations (5.13) - (5.15) establish the active power constraints for thermal power plants, wind 

power generators, and solar PV power generators respectively. Equations (5.16) - (5.19) represent the 

reactive power capabilities of thermal power plants, wind and solar PV generators, and shunt reactive 

power sources. Equation (5.20) outlines the generator voltage, while Equation (5.21) define the 

voltage limits for load buses, where NLB represents the number of load buses. Security constraints 

related to tap changing transformers and line capacities are expressed in Equations (5.22) and (5.23) 

respectively, with LN denoting the number of lines in the electric grid. 

When dealing with constraints, the static-penalty function method has been widely used, 

typically involving a trial-and-error process. However, selecting inappropriate penalty coefficients 

can lead to constraint violations. To address this issue, a technique of constraint handling known as 

the Superiority of Feasible Solutions is employed to ensure the feasibility of solutions. more details 

are given in [52]. 
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Table 5-1: EKOA Process Dealing With OPF 

Step 1 

 

 

 

• Read KOA input and data of the test system  

• Read input data: Line-data, Bus-data, transformers-data and generation-data. 

• Dimension (dim =12 for 30-bus, 60 for 114-bus) 

• Population size: N  ( N  = 30 for and N = 60 for 30 bus and 114-bus respectively ) 

• Stopping criteria  (TMAX) the iterations maximum number  

• Min and Max control variables values  
Step 2 • Specify  objective functions (

1OF , 2OF ,…..) 

Step 3 

 
• Calculate the anticipated -output power of WG and SPV generators. 

 

Step 4 
• create the initial population of  N  individuals in the range [ LB ,UB ] 

Step 5 
• Execute power-flow (runpf) for every updated individual within the population, assess the 

fitness of all individuals, and subsequently evaluate constraint the  functions along with 

constraint violations. 

Step 6 
• Apply the KOA update equations to generate a new population.        

Step 7 

• During the selection phase, individuals are substituted in the next population if they 

demonstrate improved values in the objective function, following every update, any new 

individual will be considered better if they yield negligible or zero constraint violations 

compared to the corresponding individual in the old population. Otherwise, the previous 

individuals are maintained. 

Step 8 
• Repeat the  steps 5 and 7 until (TMAX) the iterations maximum number is reached. 

Step 9 
• Present the optimal results corresponding to the best pathfinder, along with its fitness value  

 

5.3 Simulation Results   

for the purpose of proving the effectiveness and practicality of the EKOA for addressing 

stochastic OPF problems that incorporate solar pv and wind power generators, we conducted an 

analysis on the modified IEEE 30 bus network and the Algerian electricity network DZA 114bus. 

Table 5-1 represent the process of EKOA dealing with the optimization data. Various objective 

functions were considered during the examination. The implementation of the proposed algorithm 

was carried out using the MATLAB software, and the simulations were performed on a personal 

computer equipped with an Intel Core™ i7-8300H 2.22 GHz processor and 8.00 GB RAM. In order 

to determine an appropriate population size for the Kepler Optimization (KOA) algorithm, empirical 

tests were conducted by executing the algorithm with varied population sizes, such as 20, 40, 60, and 

80. The specific results of these tests are not provided in this document; however, we only mention 

the population sizes that yielded the best outcomes. Consequently, for all simulation cases, a 

population size of 30 individuals was selected for the IEEE 30-bus network, while 60 individuals 
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were chosen for the DZA 114-bus system. Furthermore, the iterations maximum number was set to 

300 for the IEEE 30-bus network 400 and for the practical 114-bus power system. To ensure an 

equitable comparison, the control variables of the two test systems were treated as continuous 

variables. 

 Test System 1: Modified IEEE 30 Bus Power System  

With the aim of demonstrating the effectiveness of the Enhanced Kepler optimization 

algorithm, a series of case studies were conducted on the IEEE-30 bus system, which was modified 

by incorporating two wind generators at buses 5 and 11, as well as a solar PV generator at bus 13. 

The configuration of the system represented in Figure 5-1. Detailed data can be found in reference 

[64]. The deterministic (OPF) scenarios for the modified system configuration were analyzed, 

specifically excluding the wind turbine generators (WT) and photovoltaic (PV) units. Four different 

cases were examined, each with their respective objective functions as outlined in the previous 

section. The findings of the case studies utilizing the Kepler algorithm are presented in a tabulated 

format, along with corresponding explanations provided in this section. 

 

 

Figure 5-1: Modified IEEE 30 Bus System Configuration [51] 
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Table 5-2:Emission And Cost Coefficients Of Thermal Generators Of IEEE 30 Bus Network[62] 

 

     

Table 5-3:PDF Parameter Of Wind And Solar Pv Units[51] 

 

 

Figure 5-2:Speed Of Wind Frequency For Wind Generator At  Bus 5 

Generator 

 

Bus a 

 

b 

 

c 

 

d 

 

e 

 

    γ 

 

 

  

 

  

ThG1 1 0 2 0.0038 18 0.037 0.04091 -0.05554 0.06490 0.0002 6.667 

ThG2 2 0 1.75 0.0175 16 0.038 0.02543 -0.06047 0.05638 0.0005 3.333 

ThG3 8 0 3.25 0.0083 12 0.045 0.05326 -0.03550 0.03380 0.0020 2.000 

Wind-power generating farm 

Position of 

Windfarm 

No of 

turbines 

Rated power, 𝑃𝑤𝑟 

(MW) 

Weibull PDF 

parameters 

Weibull mean, 𝑀𝑤𝑏𝑙 

Bus # 5 25 75 c = 9 k = 2 v = 7.976 m/s 

Bus #11 20 60 c = 10 k = 2 v = 8.862 m/s 

Photovoltaic power plant 

Position of Solar 

system 

Rated power, 𝑃𝑟𝑣 (MW) Lognormal PDF  

parameters 

Lognormal mean 

Bus #13 50 µ= 6,  r = 0.6 G = 483 W/m2 
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Figure 5-3:Wind Speed Frequency For Wind Plant At Bus 11 

 

 

Figure 5-4:Lognormal PDF Of Solar Irradiance For SPV Bus 13 
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Figure 5-5:Aviable Real Power From Solar PV Unit 

 

5.3.1.1 Case 1: Total Generation Cost Minimization  

In the first case, the main objective is to minimize the total generation cost, taking into account 

the contributions from wind, solar. Where these last two both have the direct, penalty and reserve 

costs, the results obtained are based on the parameters of Weibull, lognormal probability density 

functions (PDFs). The specific PDF parameters for the RES can be found in Table 5-2, which is 

referenced in [51]. The fitting of the Weibull distribution and the frequency distribution of wind 

speeds are depicted in Figure 5-2, generated via the simulation of 8000 Monte-Carlo scenarios. 

Additionally, Figure 5-4 displays the fitting of the lognormal distribution and the frequency 

distribution of solar irradiance, obtained from the simulation of a sample size of 8000 Monte Carlo 

scenarios. The selection of optimal sites for wind farms and PV power generation is influenced by 

various factors, including wind speed and solar radiation [29]. 
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Figure 5-6:Voltage Profile Of 30 BUSS With And Without RES 

            

The results indicate that among the compared optimizers, EKOA consistently achieves the 

lowest generation cost. as demonstrated in Table 5-3. The optimal generation cost attained by EKOA 

is 780.939 and 781.18 MW by the KOA, while other optimization techniques, such as PSO (Particle 

Swarm Optimization), yield 784.3400 $/h, TLBO (Teaching-Learning-Based Optimization) results 

in 782.676 ($/h), SHADE-SF (Shade-based Success-History Feedback) generates 782.50 $/h, 

jellyfish optimization produces 781.638 ($/h),the  artificial ecosystem optimizer achieves 781.521( 

$/h), the hunger games search obtains 781.86 ($/h),, orca predation algorithm generates 782.076 

($/h),and the gorilla troops optimizer (GTO) obtains 781.26 ($/h),,( GBLCSBO) 781.80 ($/h), and 

slim mould algorithm (SMA) 781.07($/h). 

Based on the literatures and the simulation results presented in Table 5-3, It can be inferred that 

the integration of (RES) leads to a decrease in the total power production cost. The initial reference 

cost of thermal power production is about 800.00 $/h reduced to 780.939$/h, resulting in a cost 

reduction of approximately 19.06 $/h. To put it more precisely, if this cost-saving rate of 19.06 $ per 

hour is maintained throughout the operating time of 7500 hours per year, the proposed optimizer 

EKOA can save a total of 142950 $ annually. This clearly indicates that the incorporation of solar PV 

power plants and wind generators substantially contributes to decreasing the total generation cost 

when compared to the initial system configuration without renewable energy sources. For further 

comparison and statistical analysis for the case 1 of the EKOA algorithm with other algorithms, please 

refer to Table 5-4. 

 

 

 

1 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15

V
o

lt
ag

e 
(p

u
)

 

 

Without res With res



 

71 
 

Chapter 5 POWER FLOW ANALYSES IN PRESENCE OF RENEWABLE ENERGY SOURCES 

Table 5-4:Optimal results for variables and objective function in Case 1 

Variables Min Max SHADE

-SF[51]   

PSO 

[64] 

JS  

[99] 

GTO 

[60] 

TLBO 

[52] 

SMA 

[52] 

GBLCSB

O[100] 
KOA EKOA 

PTG1 50 140 134.908 134.90 134. 905 134.907 134.843 134.91 134.9079 134.909 134.91 

PTG2 20 80 28.564 28.037 29.0226 28.1779 29.0639 29.4961 28.955 28.8857      27.47 

PWG1 0 75 43.774 43.744 43.9696 43.2909 44.045 42.2527 43.9896 43.7583      43.36 

PTG3  10 35 10 10.000 10.0006 10.0000 10.0606 10.0034 10 10.0004 10.00 

PWG2 0 60 36.949 37.193 37.0193 36.5917 36.6258 37.1432 37.1254 37.1741 36.32 

PSG1 0 50 34.976 35.303 34.2532 36.1438 34.5823 35.3402 34.1873 34.3757 37.0.5 

V1 0.95 1.1 1.072 1.0815 1.07725 1.0725 1.0756 1.07226 1.0724 1.0743

  

1.073 

V2 0.95 1.1 1.057 0.9500 1.05698 1.0578 1.0587 1.0590 1.0575 1.0584 1.057 

V5 0.95 1.1 1.035 1.1000 1.03507 1.0374 1.0411 1.0349 1.0354 1.0365 1.035 

V8 0.95 1.1 1.04 1.1000 1.03705 1.0395 1.0353 1.0396 1.0398 1.0383 1.040 

V11 0.95 1.1 1.1 1.1 1.0983 1.1000 1.0874 1.100 1.0988 1. 0959 1.100 

V13 0.95 1.1 1.055 1.0626 1.04571 1.0548 1.0359 1.0511 1.0543 1.0439 1.056 

QTG1 -20 150 -1.903 15.679 -0.6835 -2.6423 4.51 -4.5670 -1.8791 1.08 -1.0644 

QTG2 -20 60 13.261 - 20 11.0011 12.5121 12.0447 17.6960 13.2879 13.15 11.5386 

QWG4 -30 35 23.181 35.00 22.6673 4.65643 29.9474 1.9840 23.1688 3.89 2.8333 

QTG3 -15 40 35.101 40.00 40.0 32.0473

0 

30.7341 32.6825 35.1479 32.30 32.7563 

QWG5 -25 30 30 27.85 30 29.7031

3 

27.9642 29.9006 30 29.15 29.6765 

QSG6 -20 25 17.346 17.73 14.0246 16.0907

3 

11.8604 14.7003 17.2537 12.61 16.3878 

TCost ($/h) 782.503 781.90 781.638 781.262 782.676 781.078 781.80 781.189 780.939 

VD(pu) / / 0.4421 0.4838 / 0.4701 0.4627 0.45932 0.4852 

PLoss (MW) / / 5.7738 5.7117 / 5.7117 5.7653 5.6977 5.7019 
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Table 5-5:Statistical Analysis For Case 1 Of EKOA With Other Algorithms 

Algorithm Minimum ($/h) Maximum ($/h) Mean ($/h) Std 

PSO       [64]       781.9047      794.4220    784.904776       2.52e + 00 

GOA      [64]   785.7109 823.4731     804.016837    9.52e + 00 

ALO       [64]   781.6562 791.9234    784.325274    2.49e + 00 

GWO     [64]   781.6645 783.3359    783.041218   2.75e - 01 

GSA       [64]   782.2237  794.8995    785.860254    2.43e + 00 

BMO      [64]    781.6519  783.5283  781.81867       3.44e - 01 

MFO      [64]        781.6928  783.9304  782.49197      4.77e - 01 

SMA       [52]       781.07 782.990      781.9726    4.53e - 01 

HGS        [52]       781.86   782.9445      782.4106     3.649e - 01 

AEO       [52]     781.3979    782.8744      781.8199  3.095e - 01 

GTO       [60]    781.2626 782.7022      782.082      3.77e - 01 

CSBO      [100]    782.2169 783.2244      782.8519      9.1e-01 

TLBO      [100]     782.3418 783.6428      782.6428      1.48e+00 

SOA         [100]    785.6410 782.5584    783.8291      3.37e+00 

MVO       [100]    782.6425 786.1347    783.9558 4.15e+00 

GBL 

CSBO     [100] 
      781.8010 

782.0075       781.9034 
     8.00e-2 

KOA    781.1895 
783.0159       782.1351 

     4.44e - 01 

EKOA    780.9396 
782.3084       781.7237 

     4.13e-01 
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Figure 5-7:Convergence Curve For Case 1 30-Bus System 

5.3.1.2 Case 2 Minimizing the Total Cost with Emission-Carbon Tax 

In the second case, the minimization of the quadratic emission and total power production 

cost functions was conducted, taking into account the carbon tax referred to as (Ct) applied to 

thermal power generators. The specified carbon tax value is set at 20 $/ton. The introduction of 

the carbon tax notably increases the level of (RES) penetration, as evident in the simulation 
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results listed in Table 5-6. The penetration ratio of RES in the optimal generation schedule is 

determined by the emission rate, influenced by carbon tax value. The primary objective is 

scheduling more power from the (RES) to keep the emission volume at minimum level. 

Table 5-6:Optimal Results For Variables And Objective Function In Case 2 

Variables 

 

SHADE-SF 

     [51]             

MFO [64] BMO [64] JS [99] SMA[52] GTO[60] 

 

GBLCSB

O[100] 

 

KOA 

 

EKOA 

PTG1 123.020    123.637 123.127 123.572 123.6670 123.3721 123.1690 123.37 123.28 

PTG2 33.047 33.2996 31.947 33.1626 33.5199 32.7853 33.1017 32.5293 32.5222 

PWG1 46.021 46.1099 45.402 46.0806 46.2945 45.8351 45.5216 45.7033 45.7553 

PTG3  10.00 10.0000 10.000 10.00 10.000 10.00 10 10.00 10.00 

PWG2  38.748 38.8443 38.270 38.8011 39.2413 38.5999 38.3516 38.5416 38.5304 

PSG1 37.336 36.7199 39.865 37.0628 35.9774 38.0833 39.5323 38.4039 38.4683 

V1 1.071 1.0782 1.0777 1.07066 1.0731 1.0702 1.0703 1.0765 1.0703 

V2 1.057 1.0645 1.0640 1.05715 1.0589 1.0569  1.0568 1.0626 1.0567 

V5 1.036 1.0432 1.0426 1.03604 1.0378 1.0357 1.0357 1.0410 1.0354 

V8 1.04 1.0473 1.0471 1.04038 1.0414 1.0403 1.0403 1.0451 1.0396 

V11 1.099 1.1000 1.1000 1.0983 1.0980 1.0985 1.0999 1.100 1.1000 

V13 1.056 1.0591 1.0602 1.05575 1.0581 1.0580 1.0566 1.0588 1.0552 

QTG1 -2.678      - 1.738 - 1.8489 -2.6666 2.4424 -3.24025 -2.7561 -1.4312 -2.6159 

QTG2 12.319 12.565 12.4064 12.3540 17.9378 12.55509 12.2171 11.6961 11.8523 

QWG4 35.27 22.889 22.9177 35.2538 25.9879 22.83972 23.0089      2.1329    2.4963 

QTG3 22.964 35.847 35.6862 22.9990 39.5619 34.9987 35.1591    33.3865    32.8828 

QWG5 30 28.500 28.5058 30.00 29.8480 30.00 30.00    28.1412   29.9101  

QSG6 17.779 16.659 17.0942 17.7114 18.5039 18.50504 18.0477      15.   16.3490 

TCost ($/h) 810.346 811.422 810.7982 810.120 810.3875 810.4412 810.5507 810.1167 809.89 

Emission 

(t/h)   

 

0.891 

 

         / 

 

0.88338 

 

0.8937 
0.8986 0.8836 

 

0.87348 

 

0.8836 

 

0.8812 

 

5.3.1.3  Case 3:  Optimized Cost Vs the Reserve Cost  

In this case, all parameters remain unchanged from case 1, except for the reserve-cost 

coefficients. Specifically, the coefficients of solar PV and wind units were incrementally 

adjusted in discrete steps of 1, commencing from 4 and reaching 6. Specifically, we considered 

three cases: (RK)=4 (case3-1), RK= 5 (case3-2), and up to RK= 6 (case3-3). However, the 

coefficients of penalty-cost for all (RES) remain unchanged from case 1. The optimal power 

schedules of the generators are depicted with a bar graph in Figure 5-8, allowing for a comparison 

with the schedules obtained in the base case (case 1).   
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When examining this case study, it was Noticed that as the reserve cost coefficient 

increased, the participation of the wind and solar PV generators gradually decreased as shown in 

figure (5-8,5-9), leading to a shortfall in the scheduled power. Consequently, an immediate 

provision of spinning reserve became necessary to address this deficit. The compensatory 

measure involved thermal generators, which consequently raised the thermal power generation 

cost due to the amplified output power, in contrast the cost of solar PV wind units decreases as 

depicted in Figure 5-10. 

 

Figure 5-8:Variation Of The Scheduled Active Power Vs The Reserve Cost 
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Figure 5-9:Variation Of The Scheduled Reactive Power Vs The Reserve Cost Coefficients 

 

 

 

Figure 5-10:Variation Of Production Cost Against Reserve Cost Coefficients 
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5.3.1.4 Case 4:  Optimized Cost vs the Penalty Cost  

In the fourth case, the reserve cost parameters remain unchanged from case 1, with the 

exception of the penalty cost coefficients. Specifically, the penalty-cost coefficients for all wind 

generators and the photovoltaic power plant are elevated from 4 to 6 in a sequential order: PK = 4 

(case 4-1), PK = 5 (case 4-2), and PK= 6 (case 4-3). Figure 5-11 and 5-12 presents a bar graph 

showing the optimal active and reactive power schedules respectively for the six generators in 

comparison to those obtained in case 1, also shown in the same figure. When figure 5-13 shows the 

different production costs variations with the variation of penalty cost. 

In the fourth scenario, the reserve cost parameters remain consistent with those of case 1, with 

the exception of the penalty cost coefficients. Specifically, the penalty-cost coefficients for all wind 

generators and the photovoltaic power plant are elevated from 4 to 6 in a sequential order. 

 

 

Figure 5-11:Variation Of The Scheduled Active Power Vs The Penalty Cost Coefficients 
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Figure 5-12:Variation Of The Scheduled Reactive Power Vs The Penalty Cost Coefficients 

 

 

Figure 5-13:Variation Of Production Cost Against Penalty Cost Coefficients 
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As the penalty cost coefficient increases, the participation of solar PV and wind and generators 

has gradually increased, leading to an increase in the power scheduled from (RES) generators. As a 

result, there is a non-uniform decrease in the output of thermal generating units, as shown in Figure 

5-13. The economic dispatch analysis among 3 thermal generators indicates that a significant portion 

of the power is dispatched to the lowest production cost generator. Conversely, the scheduled output 

of all (RES) also exhibits non-uniform patterns. This variation can be attributed to the inherently 

nonlinear relationship between the probability density function (PDF) and the reserve and penalty 

cost associated with solar PV and wind generators. It is worth noting that the cost of thermal 

generators, decreases while an overall steady increase in the total generation cost is observed. 

5.3.1.5 Case 5:  Minimization of the Real Power Losses 

Case 5 pertains to minimizing the real power losses in transmission lines. MATPOWER is 

employed to calculate the overall power loss following the execution of the power flow program. 

Table 5-7 presents a comprehensive overview of the statistical indicators for various algorithms. 

Notably, the proposed EKOA stands out for its effectiveness and superiority in comparison to KOA 

and other methods, particularly in terms of power loss results. Table 5-7 reveals that the EKOA 

consistently produces the lowest values for power losses, underscoring its efficiency in minimizing 

transmission-related power losses. 
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Table 5-7:Optimal Results For Variables And Objective Function In Case 5 

Variables Min Max 

 

TLBO 

   [100] 

 

MVO 

  [100] 

 

 SOA 

  [100] 

 

GWO 

  [100] 

 

CSBO 

   [100] 

 

GBLCSB

O[100] 

 

  KOA 

 

  EKOA 

PTG1 50 140 50.0016 51.3281 50.0004 50.2938 50.0216 50 50.02 50.01 

PTG2 20 80 30.178 22.6655 32.5101 35.0292 23.4727 25.089 27.0293 24.86 

PWG1 0 75 74.9997 74.9287 74.999 72.7486 74.959 75 74.993 74.99 

PTG3  10 35 34.9989 34.8759 34.998 32.1645 34.882 35 34.923 35 

PWG2 0 60 59.9987 59.1338 59.998 58.6623 59.9708 60 59.985 60 

PSG1 0 50 40.5396 44.3954 40.5396 36.7714 42.172 40.3852 38.453 40.54 

V1 0.95 1.1   0.9779 1.0072 0.6909 1.052 1.0574 1.0581 1.0580 1.058 

V2 0.95 1.1 1.0546 1.0463 1.0546 1.0505 1.0517 1.0527 1.0522 1.052 

V5 0.95 1.1 1.0455 1.0195 1.0456 1.036 1.0427 1.0435 1.0431 1.044 

V8 0.95 1.1 1.0784 1.062 1.0836 1.0333 1.0509 1.0995 1.0481 1.049 

V11 0.95 1.1 1.0999 1.0984 1.0991 1.0989 1.0982 1.0968 1.0991 1.099 

V13 0.95 1.1 1.0629 1.0888 1.0628 1.0756 1.0622 1.0567 1.0659 1.060 

QTG1 -20 150 -20 -20 -20 -11.159 -5.3287 -5.2711 -4.613 -4.93 

QTG2 -20 60 19.058 317607 18.9776 22.9157 5.1685 6.4460 5.1021 5.93 

QWG4 -30 35 20.7905 4.2009 20.9343 20.5827 20.2985 20.4997 0.2937 0.48 

QTG3 -15 40 40 40 40 22.8676 39.6359 40 33.423 30.74 

QWG5 -25 30 30 30 30 30 30 30 29.8864 30 

QSG6 -20 25 19.4794 25 19.4167 25 19.6931 17.6558 19.9608 17.93 

              TCost ($/h) 898.692 887.071 905.958 875.682 880.749 880.638 879.792 880.733 

emssion(t/h)   0.09766 0.10032 0.09718 0.09703 0.09943 0.09894 0.09842 0.09900 

PLoss (MW) 2.1038 2.2604 2.1038 2.2699 2.0780 2.0741 2.0005 1.9962 

VD(pu) 0.5458 0.4502 0.5452 0.4496 0.52872 0.50841 0.5776 0.55507 

 

5.3.1.6  Case 6:  Minimization of Voltage Deviation  

Taking into account the importance of voltage in power system analyses, Case 6 is dedicated 

to minimizing of the voltage deviation of the power system buses. The outcomes of simulations are 

detailed in Table 5-8, the results underscore the superiority of the EKOA method compared to the 

KOA and other counterparts, particularly in achieving the minimum voltage deviation. This affirms 

the efficacy of the EKOA approach. 
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Table 5-8: Optimal Results For Variables And Objective Function In Case 6 

Variables 
Min Max 

 

TLBO 

[100] 

 

MVO 

[100] 

 

SOA 

[100] 

 

GWO 

[100] 

 

CSBO 

[100] 

 

GBLCSB

O[100] 

 

KOA 

 

EKOA 

PTG1 50 140 74.984 91.002 72.940 82.944 75.208 76.143 84.41 94.60 

PTG2 20 80 79.998 79.173 79.421 76.164 79.999 80.00 79.9903 80.00 

PWG1 0 75 74.998 66.035 74.978 72.397 74.999 75.00 68.244 59.5025 

PTG3  10 35 34.998 33.602 34.871 32.946 34.999 35.0 34.6914 34.9047 

PWG2 0 60 22.812 21.708 27.498 24.093 22.588 22.0151 20.6375 19.5340 

PSG1 0 50 0.0004 1.5117 0.2815 0.6766 0.0002 0 0.0676 0.0315 

V1 0.95 1.1 1.0347 1.0119 1.002 0.9996 1.0375 1.0609 1.0462 1.0486 

V2 0.95 1.1 1.0956 1.0687 1.0901 1.0729 1.0937 1.0999 1.0458 1.0484 

V5 0.95 1.1 0.996 0.994 0.9938 0.9951 0.9961 0.9502 0.9932 0.9924 

V8 0.95 1.1 1.098 1.0942 1.0729 1.0451 1.0955 1.0999 1.0247 1.0264 

V11 0.95 1.1 1.0931 1.0992 1.0993 1.0949 1.0965 1.0962 1.0885 1.0905 

V13 0.95 1.1 1.0626 1.098 1.0892 1.0763 1.0598 1.0997 1.0556 1.0573 

QTG1 -20 150 -20 -20 -20 -20 -20 -8..5837 -16.935 -19.910 

QTG2 -20 60 60 60 60 60 60 60 45.921 50.4937 

QWG4 -30 35 -19.66 -17.97 -19.76 -18.95 -19.63 -30 -29.873 -29.871 

QTG3 -15 40 40 40 40 40 40 40 39.9057 39.9916 

QWG5 -25 30 30 30 30 30 30 30 29.877 29.9977 

QSG6 -20 25 25 25 25 25 25 25 240999 24.9541 

TCost ($/h) 960.86 956.34 963.97 951.40 960.61 963.205 952.616 942.601 

Emssion(t/h)   0.1347 0.1993 0.1298 0.1574 0.1352 0.1376 0.1652 0.2254 

PLoss(MW) 4.4405 4.9777 4.3441 4.6582 4.4496 4.7582 4.6413 5.1692 

VD(pu) 0.375 0.3779 0.3766 0.3772 0.3757 0.3752 0.3396 0.3382 
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 Test-system 2: The Modified Algerian DZA 114-BUS Power System  

To showcase the efficacy of the suggested EKOA in a real-world practical, large-scale network, 

the Algerian DZA 114-bus electricity power system has been chosen as the test system the testing 

ground with some changes in the original configuration. This system encompasses 175 transmission 

lines with 15 generators, including 16 branches equipped with transformers tap changers. The 

aggregate power demand stands at (3727 + j 2070) per unit (p.u) with a 100 MVA base. 

The 4th bus serves as the slack-bus in the power system. As part of the modification, 2 wind 

generators have been added to buses 52 and 83, and a solar PV generator has been installed at bus 

109. All the necessary data for the test system, in "MATPOWER format," is freely available only to 

referees. This optimization problem involves a total of 46 variables, which include the active power 

of 15 generators, also the voltage magnitudes of 15 generators, and adjustments for 16 tap-changers. 

Additionally, the power system experiences voltage drops at certain buses, posing challenges in 

ensuring the feasibility of solutions, particularly with regard to reactive power generators. The 

maximum and the minimum operating limits of the control variables can be found in the table 8. 

In this case, only three objective functions were considered, which are the total power 

production cost minimization and the minimization of the real power losses, and the base case that 

denotes the total cost generation for the conventional DZA 114 bus system without considering 

renewable energy sources. These are important cases taken into consideration in both applied aspects 

and techno-economic studies. 

 

 

Figure 5-14:Algerian Electricity Grid Topology- DZA 114-Bus [52] 
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Figure 5-15:Convergence Curve For Case 1 DZA 114-Bus System 

 

Figure 5-16:Voltage Profile Of DZA 114- Load Buses For Case 1 

Table 5-9 presents the maximum and minimum operating limits of control variables, along 

with the outcomes of various objective functions explored in this case. Notably, the proposed (EKOA) 

stands out for its remarkable effectiveness and superiority compared to the (KOA). 
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Figure 5-17:Generators Reactive Power For Case 1 

In practical system studies, it becomes crucial to demonstrate the advantages resulting from the 

integration of the (RES), particularly in techno-economic analyses. In the case of the conventional 

DZA 114-bus system, there is a substantial contrast in the cost of energy production 19,080.9613 

($/h) before RES integration and $16,701.773 ($/h) after integration, reflecting a difference of 

$2,379.18 ($/h), Which makes the profit significant in the long term. This underscores the substantial 

economic benefits of incorporating wind generators and solar power plants, leading to a notable 

reduction in the total generation cost compared to the original configuration of system without 

renewable energy sources. For the technical standpoint, figure 16 and figure 17 show the effect of 

integrating the RES on the voltage profile load buses and generators reactive power respectively in 

the both configurations.  

Examining the convergence curves in Figure 5-15 which reveals that EKOA converges more 

rapidly in the initial iterations, reaching a superior solution compared to KOA. The results from the 

studies conducted on the two test systems affirm the efficacy of the EKOA approach in effectively 

addressing numerous large scale optimization problems within the realm of power system studies. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-100

0

100

200

300

400
Q

 (
M

v
a
r)

 a
t 
G

e
n

e
ra

to
r 

b
u

se
s 

 

 
Min Q Max Q Without RES With  RES



 

84 
 

Chapter 5 POWER FLOW ANALYSES IN PRESENCE OF RENEWABLE ENERGY SOURCES 

 

 

Table 5-9: Objective Functions of Test System 2 

Control 

variable

s 

Limits 
BASE 

CASE 

 

CASE 1 

 

CASE 5 

MIN MAX 
 

EKOA 

 

KOA 

 

EKOA 

 

KOA 

 

EKOA 

PTG4 135 1350 423.4175 402.69 410.25 543.641 554.57 

PTG5 135 1350 436.2501 425.2704 419.39 38 426.712 454.6359 

PTG11 10 100 93.1889 99.9266 99.9996 95.767 99.2740 

PTG15 30 300 197.0996 169.6806 174.657 180.792 143.6250 

PTG17 135 1350 440.6231 391.676 395.7364 488.1685 604.6042 

PTG19 34.5 345 187.2718 161.7523 166.8785 194.637 179.8764 

PTG22 34.5 345 196.5769 159.1196 168.2786 217.616 117.7340 

PWG52 0 345 228.2173 345.00 345.0000 146.717 130.7846 

PTG80 34.5 345 215.1279 180.1062 157.9774 230.024 254.7381 

PWG83 0 300 203.825 299.7106 299.9999 151.303 209.0530 

PTG98 30 300 179.4664 165.1998 158.2814 231.569 251.0583 

PTG100 60 600 600.00 599.1959 600.0000 500.029 390.2614 

PTG101 20 200 200.000 199.826 199.999 190.967 199.0806 

PTG109 0 100 93.7766 99.8056 99.992 92.582 99.1006 

PTG111 10 100 99.1202 99.9419 99.9990 98.411 99.6812 

VG4 0.9 1.1 1.0746 1.0980 1.0975 1.0864 1.0443 

VG5 0.9 1.1 1.0618 1.0855 1.0907 1.0764 1.0340 

VG11 0.9 1.1 1.0640 1.0918 1.0998 1.0755 1.0344 

VG15 0.9 1.1 1.0784 1.0940 1.0998 1.0795 1.0426 

VG17 0.9 1.1 1.0786 1.0984 1.0995 1.0783 1.0533 

VG19 0.9 1.1 1.0014 1.0123 1.0521 0.993 0.9753 

VG22 0.9 1.1 1.0240 1.0182 1.061 0.991 0.9774 

VG52 0.9 1.1 1.0344 1.0484 1.086 1.0029 0.9804 

VG80 0.9 1.1 1.0190 1.0939 1.0560 1.0397 1.0421 

VG83 0.9 1.1 1.0659 1.1000 1.0994 1.0752 1.0789 

VG98 0.9 1.1 1.0718 1.0938 1.0898 1.0854 1.0672 

VG100 0.9 1.1 1.0871 1.1000 1.0999 1.0963 1.0895 

VG101 0.9 1.1 1.0925 1.1000 1.0910 1.0972 1.0585 

VG109 0.9 1.1 1.0497 1.0621 1.0408 1.0959 1.0785 

VG111 0.9 1.1 1.0761 1.1000 1.0750 1.0593 1.0181 

TCost ($/h) 
19080.9613 16730.907 16701.773 18992.604 19524.435 

VD (p.u) 
3.4224 4.40771 4.6987 4.454 3.22006 

Ploss (MW) 
66.9613 72.0597 69.4451 61.943 61.0737 
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5.4 Conclusion 

This research presents the development and application of two novel metaheuristic 

algorithms—the Kepler Optimization Algorithm (KOA) and its enhanced version (EKOA) for 

solving the (OPF) problem under uncertainty introduced by (RES). The proposed EKOA incorporates 

an additional operator and cosine-based function to strengthen the exploration process and prevent 

premature convergence. Both algorithms were implemented on the IEEE 30-bus and the practical 

DZA 114-bus power systems to evaluate performance across diverse operating conditions for various 

objective functions. Results demonstrate that EKOA consistently outperforms the original KOA and 

other optimization methods from the literature, achieving faster convergence, higher solution 

accuracy, and reduced computational effort. Furthermore, the integration of RES within the OPF 

framework leads to significant economic and environmental benefits, including reductions in 

generation cost and pollutant emissions. To further enhance system performance, voltage stability, 

and operational reliability under high renewable penetration, the next stage of this work introduces 

Flexible AC Transmission System (FACTS) devices as an integral component of the optimization 

framework. 
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6.1  Introduction: 

The Flexible AC Transmission Systems (FACTS) devices are crucial for enhancing system 

performance because of their capability to manipulate system parameters such as transmission-line 

impedance, voltage magnitudes, and phases, as well as power flow through the lines. Several works 

have explored the use of FACTS devices in power flow optimization, demonstrating their potential 

in enhancing system performance. For instance, the SVC provides reactive power compensation, 

which helps regulate voltage levels on the transmission line. The TCSC can adjust the effective 

reactance of the transmission line, allowing for better control of power flow. These can help to reduce 

the power losses, increase the transmission capacity of the line, and mitigate voltage instability. They 

can improve voltage stability and reduce voltage fluctuations. Several works have explored the use 

of FACTS devices in power flow optimization, demonstrating their potential in enhancing system 

performance [101]. 

 

This study aims to investigate the importance of integrating RESs and FACTS devices within 

contemporary power systems. The focal point of this investigation involves determining the optimal 

location and size of the TCSC and SVC installations. This optimization aims to minimize overall 

system costs while concurrently reducing real power losses (RPL) and total voltage deviation (TVD), 

and improving the voltage stability index (VSI). Despite potential additional costs associated with 

FACTS technology implementation, integrating RES offers a promising solution. By decreasing the 

base cost of energy production and mitigating toxic gas emissions, this integrated approach aligns 

with environmental and economic sustainability objectives, showcasing a comprehensive strategy to 

tackle the challenges and seize the opportunities within modern power systems. 

• This chapter introduces a novel non-dominating sorting KOA referred to as NSKOA, to tackle 

SOPF problems. 

• It addresses the OPF problem by incorporating RESs, namely solar PV, wind, and hydro power 

systems and FACTs devices such as the SVC and TCSC. 

• It optimizes the size and location to maximize the benefits of FACTS devices for the power system. 

• Using lognormal, Weibull, and Gumbel Probability Density Functions (PDFs) to effectively model 

and characterize the RES uncertainties within the system. 

• A statistical analysis is performed to confirm the effectiveness of the proposed NSKOA and to 

highlight the advantages gained from integrating RES and FACTS devices. 

 

6.2 Problem Formulation 

The problem presented in this paper aims to solve the SOPF for a power system that 

incorporates thermal generation as well as stochastic wind and solar PV power generations. The main 

objective is to determine the optimal settings for control variables in various power system 

components, while maintaining adherence to all equality and inequality constraints. The mathematical 

formulation of this problem is as follows: 

 

Minimize 

 1 2 3( , ) ( , ), ( , ), ( , ),....., ( , )NobjOF d c OF d c OF d c OF d c OF d c=                                    (6.1) 

Subject to 
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( )
( )

( )

, 0
,

, 0

g d c
g d c

h d c

 =




                                                                         (6.2) 

Ensuring both system security and optimal outcomes within an electrical network requires strict 

adherence to constraints placed on control variables. These limits serve as fundamental safeguards, 

essential for upholding feasibility, guaranteeing system stability. 

- ( ),OF d c  denotes the objective function that needs to be minimized. 

- ( ),g d c  represents the collection of equality constraints that must be fulfilled. 

- c  represents the vector of decision variables, and d represent the vector of state variables. 

 Optimization Problem 

6.2.1.1 Cost of Generation for Thermal Units 

The fuel cost associated with thermal generator units can be represented as a smooth and 

convex quadratic function. This mathematical representation is denoted by Equation (3): 

( ) 2

1

TGN

i i iTH TG TGi TGi
i

C P a b P c P
=

= + +
                                                     (6.3) 

The model described above ignores valve point loading; however, when valve point effects 

are considered, an additional sinusoidal term is incorporated into the equation to capture the 

oscillations or fluctuations introduced by the valve points. This modification accounts for the non-

linearity in the input–output curve of thermal generators and provides a more accurate representation 

of the fuel cost function in power system optimization. The valve point-effect can be modeled 

mathematically using Equation (4) [15]: 

( ) ( )2 min

1

sin
TGN

i i i i iTH TG TGi TGi TG TG
i

TC P a b P c P d e P P
=

 
 
 

= + + +  −                        (6.4) 

, , , ,andi i i i ia b c d e  are the cost coefficients for the 𝑖th thermal generator . The system comprises ThGN  

conventional generators, and 
,in

ThGP  represents the minimum rated power of these generators. 

6.2.1.2 The Investment Cost of FACTS Modeling 

 SVC Modeling 

The static var compensator (SVC) can exhibit two distinct characteristics: inductive or 

capacitive. In the former, it absorbs reactive power, while in the latter, it injects reactive power. The 

SVC is composed of a series capacitor bank that is shunted by a thyristor-controlled reactor, as 

illustrated in Figure 6-1. According to, the investment cost of static var compensators (SVCs) varies 

linearly depending on the reactive power of the SVC to be installed. Therefore, the cost at node I is 

expressed as follows [93]: 

20.0003 0.3051 127.38SVCi SVC SVCi i
C Q Q=  −  +                                  (6.5) 

The total investment cost is given as follows: 

2

1

(0.0003 0.3051 127.38)
SVCN

SVC SVC SVC

i
i i

C Q Q
=

=  −  +                          (6.6)  
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Figure 6-1:SVC Model and Configuration. 

where SVCi
Q  represent the reactive power generated by i-th SVC while SVCiC  represents its associated 

cost. The total investment cost for all SVC devices is referred to as SVCC , and 
SVC

N  is the total number 

of SVC devices. 

 TCSC Modeling 

 The thyristor-controlled series compensator (TCSC) is a series compensation device 

comprising a series capacitor bank shunted by a thyristor-controlled reactor. The primary concept 

behind power flow control using the TCSC is to adjust the overall effective series transmission 

impedance of the lines, either decreasing or increasing it by introducing capacitive or inductive 

reactive components, respectively. The TCSC is represented as a variable impedance, as illustrated in 

Figure 6-2. 

 

 

 

 

 

 

 

 

 

 

 

The total investment cost of TCSCs is a quadratic function of the reactive power to be installed, 

expressed as follows [93]: 

2

1

((0.0015 0.7130 153.75) 1000 )
TCSCN

TCSC TCSC TCSC TCSC

i
i i i

C Q Q Q
=

=  −  +                   (6.7)  

where 
iTCSCQ  represents the reactive power generated by the i-th TCSC. The total investment cost for 

the all TCSC devices is referred to as TCSCC , and 
TCSC

N  is the total number of TCSC devices. 

 

 

XL 

Xe n m 

 

Figure 6-2:TCSC Configuration 

 

 

 

Figure 6-3:Schematic Diagram Of TCSC 
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   Objective Functions 

6.2.2.1 Minimization of Power Production Cost 

The first objective function represents the total cost of energy production, incorporating the 

presence of RESs and all their relevant cost functions. Mathematically, it can be expressed as follows:  

( ) ( ) ( ) ( )

( ) ( ) ( )

, , , , , , , ,

1

, , , , , , , ,

1

, ,

1

TGcost

   

( ) ( ) ( )  

WG

SG

ShG

N

Th TG W j Sc j W j G j Av j W j Av j Sc j

j

N

S k Sc k S k Sc k Av k S k Av k Sc k

k

N

Sh i sc SH sc Av Sh i Av sc

i

TC P C WP RC WP WP PC WP WP

C SP RC SP SP PC SP SP

C ShP RC ShP ShP PC ShP ShP

=

=

=

 = + + − + −
 

 + + − + −
 

 + + − + − 





   

               (6.8) 

 where WGN , SGN , and ShG
N  represent the number of wind, solar PV, and solar–hydro power 

generators, respectively, in the grid. 

 

6.2.2.2 Real Power Losses (RPLs) 

In the context of the OPF problem, it is important to consider additional network parameters, 

including the power loss incurred during system transmission. These parameters play a critical role 

in assessing the efficiency and stability of the system. The calculation of the (TPL) is expressed 

through the following equation: 

2 2

( )

1

2 cos( )
nl

q ij i j i j i j

q

RPL G V V VV  
=

 = + − −                                         (6.9) 

where ( )q ijG  is the conductance of the branch, nl  is the number of transmission lines, iV  and jV  are 

the voltages at bus i and j, respectively, and ij i j  = −  is the difference in voltage angles between 

them. 

6.2.2.3 Total Voltage Deviation (TVD) 

Voltage deviation is an indicator used to assess the quality of voltage within a power network. 

It quantifies the total variation between the voltages at all load buses (PQ buses) and the standard 

nominal value of one per unit (p.u.). This parameter is determined by summing the absolute 

differences between the voltage at each load bus and the nominal value. The mathematical expression 

for calculating voltage deviation is as follows: 

1

1
NL

p

p

VD VL
=

= −
 
 
 
                                                                    (6.10)  

6.2.2.4 Voltage Stability Index (VSI) 

The importance of monitoring and controlling power networks has grown significantly within 

the operation of contemporary electrical power systems, particularly with regards to enhancing 

voltage stability amid the increasing integration of renewable energies. To better understand voltage 

drops, the operational range of index L has been defined as (0, 1) Consequently, the third objective 

function, aimed at minimizing the voltage stability index within the transmission branches, can be 

modeled as follows: 
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Min(VSI) = min(max( jL )) 
 

where (
jL ) of the j-th bus is calculated using the following equation: 

 
1

1 ( 1,2.....
Ngb

i

j ij ij i j lb

i j

V
L F j N

V
  

=

= −   + − =    (6.11) 

, ,ij ij i i i j j jF V V V V  = = =  (6.12) 

   
1

1 2ijF Y Y
−

= −   (6.12) 

iV  and jV  represent the voltage magnitudes at bus i and j. ij  signifies the voltage angle difference 

between bus i and j. Ngb  and lbN  stand for the number of generator and load buses, respectively. 

1Y , 2Y , 3Y , and 4Y  represent the sub-matrices of the system Ybus, obtained through the rearrangement 

of the generator and load bus parameters as shown in Equation (6.12). 

1 2

3 4

gb gb

lb lb

I VY Y

Y YI V

    
=     
    

                                                               (6.12) 

 Constraints 

6.2.3.1 Equality Constraints 

In this study, the specific equality constraints represent the fundamental power balance in the 

system, ensuring that the total power generation equals the total demand plus transmission losses. 

This is critical for maintaining a stable and balanced power system. Mathematically, this is expressed 

as the sum of power generated at all buses being equal to the load demand plus losses. These 

constraints ensure the continuous supply of power and the reliable operation of the network, which is 

essential in both traditional and RES-integrated systems. 

min max ,TGi TGi TGiP P P          1,2..... TGi N=    (6.14) 

min max ,wsj wsj wsjP P P          1,2..... WGj N=  (6.15) 

min max

, , , ,SS k SS k SS kP P P         1,2..... SGk N=  (6.16) 

min max ,TGi TGi TGiQ Q Q   (6.17) 

min max ,wsj wsj wsjQ Q Q         1,2.....i N=  (6.18) 

min max

, , ,ss k ss k ss kQ Q Q          SGk N  (6.19) 

min max

Ci Ci CiQ Q Q           Ci N  (6.20) 

min max ,Gi Gi GiV V V   (6.21) 

min max

Li Li LiV V V            i NL  (6.22) 
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min max ,SVC SVC SVCb b b         
SVCu N  (6.23) 

min max ,TCSC TCSC TCSCX X X     
TCSCW N  (6.24) 

6.2.3.2 Security Constraints 

The inequality constraints, on the other hand, include operational limits such as generator output 

limits, voltage limits at buses, and thermal limits of transmission lines. These constraints ensure that 

the system operates within safe and efficient boundaries. 

min max
k k kT T T          k NT  (6.25) 

min max
i i iS S S         i NL  (1.26) 

In this context, max and min are the upper and lower boundaries, TGN , WGN , SGN , and ShGN  refer 

to the number of thermal, wind, solar PV, and solar–hydro generators, and NL  is the number of load 

buses the superiority of feasible solutions technique used in this study to ensure solution feasibility.  

 

Algorithm 1: Pseudocode of NSKOA 

Step 1:  

• Define input power system data (line data þ bus data) and identify the control variable limits and 

number of variables. 

• Set KOA parameters 𝑁, 𝑇𝑚𝑎𝑥, and 0 . 

Step 2: 

• Initialize objects population with random position, orbital eccentricities, and orbital periods 

using Equations (43), (44), and (45), respectively.  

Step 3: 

• Run a power flow algorithm based on the Newton Raphson method to calculate the value of the 

objective functions for the initial population. 

Step 4: Perform non-dominated sorting:  

• Calculate ranks (RK) and crowding distance (CD) using the eq() of population using the 

proposed PFA with the sorting and crowding distance calculation procedure.  

 

• Calculate the best compromise solution (BCS) using Equation (73). 

Step 5: 

While (𝑡 < 𝑇𝑚𝑎𝑥): 

• Update 𝑒i … i = 1,2, …, 𝑁, 𝑏𝑒𝑠𝑡(𝑡), 𝑤𝑜𝑟𝑠𝑡(𝑡), and 𝜇(𝑡), using Equations (50), (51), and (52), 

respectively. 

Step 6: 

For i = 1: 𝑁 Pi = population 
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• Calculate the gravitational force between the Sun and the object i using Equation (46). 

• Calculate the Euclidian distance between the Sun and the object i using Equation (48). 

• Calculate the velocity of the object 𝑋𝑖 using Equation (53). 

• Generate two random numbers 𝑟 and 𝑟1 between 0 and 1. 

If 𝑟 > 𝑟1 

• Update the position of the planet. 

• Update the object position using Equation (66). 

Else 

• Update the distance between the planet and the Sun. 

• Update the object position using Equation (67). 

End if  

Step 7: 

• Run power flow algorithm based on the Newton Raphson algorithm to calculate the objective 

functions values for the new population (Npi). 

• Combine new population (Npi) with previous population (Pi) to form Upi 

Upi = Npi U Pi. 

Step 8: Perform non dominated sorting:  

• Calculate ranks (RK) and crowding distance (CD) of population using the proposed PFA with 

the sorting and crowding distance calculation procedure.  

Step 8: 

• Extract N elitist objects from Upi.   

Step 9: 

• Generate the Pareto optimal front and extract the best compromise solution.  

   End for 

End while 

 

6.3 Results and Discussion 

To address stochastic OPF problems, an analysis was conducted on both the conventional (base 

case) and the modified IEEE 57-bus network. The base case was simulated using the mono-objective 

KOA to demonstrate the effects of RES and FACTs on the system. To determine the optimal control 

variables, sizing, and location of SVC and TCSC, 17 tap changers, as well as the power and voltage 

of generators, were used as control variables. SVC placement was considered among 50 load buses, 

and TCSC could be situated across 81 branches, totaling 161 control variables as represented in Table 

6-1 
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Table 6-1:Control Variables Of The Test System 

Elements IEEE 57-Bus Test System 

No of buses 57 

No of branches  81 

No of generators 07 

No of thermal generators 04 

No of RES generators 03 

No of load buses 50 

No of control variables 161 

Initial active and reactive load demand 1250.80 MW; 336.40 Mvar 

The proposed algorithm was implemented using MATLAB software and simulations were 

conducted on a personal computer with an Intel Core™ i7-8300H 2.22 GHz processor. To determine 

the optimal population size for the NSKOA algorithm, empirical tests were conducted with different 

population sizes, taking into account the search space complexity and the number of control variables. 

Population sizes of 100, 200, and 300 were tested. Although specific test results are not provided 

here, the best outcomes were achieved with a population size of 200 individuals, which was then used 

for all simulation cases. For equitable comparison, the control variables of the test system were treated 

as continuous variables. 

 Test-System: Conventional and Modified IEEE 57 BUS Network 

The IEEE 57-bus test system consists of seven power plants installed at buses 1, 2, 3, 6, 8, 9, 

and 12; eighty transmission lines of which 17 are equipped with tap changer transformers, and three 

parallel compensators are installed at buses 18, 25, and 53, respectively. The complete data are 

available in [23]. The modified IEEE-57 bus system consists of a combined production of a solar–

hydro power generator replacing a thermal power plant at bus 6 and a solar PV generator at bus 9, as 

well as wind generators at bus 12. The parameters of the probability density function (PDF) and the 

cost coefficients of the RES are detailed in Table 6-2 [61]. 

The study was conducted using three scenarios: 

• Base Case Scenario: In this case, the conventional IEEE 57 bus was simulated in order to show 

the impact of RESs and FACTs devices on the four optimization cases (cost, power losses, voltage 

deviation, and voltage stability index) in the next two scenarios. 

• Scenario number 1: This study was conducted on the modified IEEE 57 system after the 

integration of RES sources. 

• Scenario number 2: This study was conducted on the modified IEEE 57 system after the 

integration of RES sources and FACTs devices. 

The findings of the case studies are presented in a tabulated format. Figures 5–8 exhibit the 

characteristics of the probabilities of RESs, while Figures 9–12 represent the available real power at 

the RES units. 

 

 

 



 

95 
 

Chapter 6 VOLTAGE STABILITY IMPROVEMENT IN PRESENCE OF RENEWABLE ENERGY SOURCES AND 

FACTS DEVICES 

Table 6-2:PDF parameters of renewable generators 

 

Figure 6-4:Distribution of wind speed at bus 12 

 

Figure 6-5:The Rate Of River Flow For The Site 

Wind-power unit 

No. of turbines Rated power, 𝑃𝑤𝑟 (MW) Weibull PDF parameters 

25 75 l = 9; p = 2 

Photovoltaic plant 

Rated power, 𝑷𝒔𝒓 (MW) Lognormal PDF parameters 

50 μ = 5.2 σ = 0.6 

Combined solar and small hydro power 

Photovoltaic rated power 𝑷𝒔𝒓 (MW) Lognormal PDF parameters 

45 μ = 5.0 σ = 0.6 

Small hydro rated power 𝑷𝒉𝒓 (MW) Gumbel PDF parameters 

5 λ = 15 γ = 1.2 
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Figure 6-6:Solar Irradiance For The Site 

 

Figure 6-7:Solar Irradiance For Solar PV Generator 
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Figure 6-8:Available Real Power At Bus 9 

 

Figure 6-9:Available Real Power For Combined Solar–Hydro Power 
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Figure 6-10:Available Real Power For Solar PV Unit 

 

Figure 6-11:Available Real Power For Hydro Unit 
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6.3.1.1 Case 1: Total Generation Cost and the Investment Cost of FACTS Optimization 

A comprehensive investigation into the OPF for the IEEE 57-bus system was undertaken, 

examining three distinct scenarios. Initially, the conventional configuration of the system was 

analyzed, followed by two additional cases: one integrating (RESs) and the other involving RES 

integration alongside Flexible Alternating Current Transmission System (FACTS) devices. The 

primary objective was to minimize the cost of power production in the conventional IEEE 57 system 

designed as the base case scenario, and then with the integration of RES designated as scenario 1, 

while simultaneously considering the investment cost associated with FACTS devices, defined as 

scenario 2. 

In the base case scenario, the production cost was recorded at 5570.956 (USD/h), with an 

emission rate of 234.75 tons/h. Upon the integration of RESs into the system, the production cost 

decreased to 5217.635 (USD/h) saving 353.32 (USD/h), approximately 6.34% of the power 

production cost, alongside a reduction in emissions by approximately 22.76%, to 181.294 tons per 

hour (scenario 1). The subsequent deployment of FACTS devices further reduced the production cost 

to 5208.97 (USD/h), saving approximately 8.8 (USD /h) representing a marginal saving of 

approximately 0.17% compared to the RES-integrated scenario. However, this enhancement incurred 

an additional cost of 288.973 (USD/h) for FACTS deployment, yielding a total cost of 5497.94 

(USD/h), but still saving 73 (USD/h) from the total cost compared to the base case. 

Notably, the best compromise solution (BCS) yielded a production cost of 5211.722 (USD /h), 

and a FACTS cost of 82.5115 (USD /h), with a total cost of 5294.231 (USD/h) reflecting savings of 

approximately 4.98% compared to the base case. 

Figure 5-12 shows the Pareto front of case 1, where NSKOA provides a well-distributed front, 

with the BCS solution positioned almost in the center, while the optimal result and control variables 

of case 1 are represented in Table 6-3. The results show that the placement of SVC devices at buses 

13, 16, 21, 35, 52, and 54 played a significant role in managing reactive power and stabilizing voltage 

profiles. The addition of SVCs helped improve voltage levels, particularly in buses with high reactive 

power demand, ensuring more efficient power flow across the network. Similarly, the installation of 

TCSC devices on transmission lines (21–22), (30–31), (13–49), (29–52), (56–42), and (38–49) 

optimized power transfer capability by reducing line reactance and enhancing reactive power 

compensation, leading to more stable voltage regulation and an overall reduction in power losses. 

The combination of SVCs and TCSCs helped balance reactive power more effectively, improving 

voltage profiles and reducing strain on power generation units by minimizing unnecessary reactive 

power generation, thereby contributing to cost optimization. Figures 5-13 and 5-14 illustrate the 

voltage profile in the load buses and the generated reactive power, respectively, in the same case. All 

values are within their limits, indicating that the constraints are completely satisfied. Importantly, the 

combination of RES integration and FACTS deployment not only reduced power production costs 

and emissions but also enhanced the voltage stability index, significantly mitigating power losses and 

voltage deviations. This synergy underscores the potential for designing and operating future power 

systems that ensure a reliable and sustainable electricity supply. 
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Figure 6-12:Pareto Front Of Case 1 

Table 6-3:Optimal Result And Control Variables Of Case 1 

Control variable       Fitness values  

      Base case        Scenario 1        Scenario 2             BCS  Base case 

Cost ($/h)           5570.956 

Emission (ton/h) 234.75 

RPL (MW)            43.958 

TVD(pu)              1.4994 

VSI (pu)               0.2899 

Scenario 1 

TGcost ($/h)      5217.635 

Emission (ton/h) 181.294 

RPL(MW)           38.7203 

TVD (pu)              1.5821 

VSI (pu)               0.2757 

Scenario 2 

TGcost ($/h)      5208.97 

Pg1      331.516   Pg1         552.331  Pg1        550.564  Pg1          551.9723  

Pg2       99.986    Pg2      100.000   Pg2        100.000  Pg2          100.000  

Pg3       76.635      Pg3       76.6229  Pg3       76.6240  Pg3        76.6183  

Pg6       99.997    Pg6         100.000 Pg6      100.000  Pg6       99.9995 

Pg8       53.916    Pg8         50.5657    Pg8         50.8772   Pg8          50.0453  

Pg9       160.173  Pg9         199.9998 Pg9         200.000   Pg9          199.999  

Pg12      209.847 Pg12      210.000  Pg12       209.999 Pg12      209.998  

Vg1        1.100000    Vg1      1.09983   Vg1     1.099983   Vg1          1.099990  

Vg2      1.095161    Vg2      1.092973   Vg2      1.093325   Vg2       1.093092  

Vg3      1.079965    Vg3        1.070328   Vg3     1.071347   Vg3          1.070841  

Vg6      1.065115    Vg6      1.04371   Vg6      1.040434   Vg6       1.040998  

Vg8      1.064082    Vg8     1.034728   Vg8      1.029753   Vg8          1.031650  

Vg9      1.050054    Vg9      1.027750   Vg9     1.032134   Vg9       1.028320  

Vg12     1.06068      Vg12      1.03707   Vg12      1.03637     Vg12      1.03660   

T(4,18)    1.0539     T(4,18)     1.0084    T(4,18)     1.0507     T(4,18)      1.0724  

T(4,18)    0.9958     T(4,18)     0.9868    T(4,18)     0.9727     T(4,18)      0.9664    

T(21,20)   1.0538   T(21,20)    1.0122    T(21,20)    1.0010   T(21,20)      1.0133  

T(24,25)   0.9601   T(24,25)    0.939    T(24,25)    0.9495   T(24,25)      0.9457  

T(24,25)   1.0158   T(24,25)    0.9375  T(24,25)    0.9622   T(24,25)      0.9585  

T(24,26)   1.0020   T(24,26)    0.9820  T(24,26)   0.9787   T(24,26)   0.983    

T(7,29)     1.0006   T(7,29)    0.9599    T(7,29)      0.9659     T(7,29)   0.9634    

T(34,32)   0.9717   T(34,32)   0.9184  T(34,32)   0.9135   T(34,32)   0.9107  
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T(11,41)   0.9220   T(11,41)   0.9000  T(11,41)   0.9158   T(11,41)   0.9123  TFcost ($/h)       288.973 

Emission(ton/h)  180.125 

RPL(MW)             37.263 

TVD(p.u)              1.9347 

VSI(p.u)                0.248 

BCS 

TGcost ($/h)     5211.722 

TFcost ($/h)       82.5115 

Emission(ton/h)    181.06 

RPL(MW)          37.833 

TVD(p.u)          1.6739 

VSI(p.u)           0.2533 

T(15,45)   0.9835   T(15,45)   0.9887  T(15,45)   1.0014   T(15,45)   0.9959  

T(14,46)   0.9744   T(14,46)   0.9648  T(14,46)   0.9800   T(14,46)   0.9744 

T(10,51)   0.9978   T(10,51)   0.9723  T(10,51)   0.9782   T(10,51)   0.9775  

T(13,49)   0.9503   T(13,49)   0.9331  T(13,49)   0.9784   T(13,49)   0.9771  

T(11,43)   0.9997   T(11,43)   0.9591  T(11,43)   0.9872   T(11,43)   0.9776  

T(40,56)   1.0168   T(40,56)   0.9861  T(40,56)   0.9509   T(40,56)   0.9432  

T(39,57)   0.9744   T(39,57)   0.9549  T(39,57)   0.9577   T(39,57)   0.9617  

T(9,55)     0.9922   T(9,55)   0.9643    T(9,55)   0.97113   T(9,55)   0.9679    

                       Optimal size and location of  SVC-TCSC   

/ / svc(13)      50.000  svc(42)    0.7796  

/ / svc(16)    24.050 svc(44)    6.5088  

/ / svc(21)       7.135   svc(21)    3.5401  

/ / svc(35)    15.038 svc(35)   12.438  

/ / svc(52)     5.825   svc(52)       0.6752 

/ / svc(54)     2.567   svc(54)       1.5976 

/ / Tcsc(21,22)   0.0377 / 

/ / Tcsc(30,31)   0.3976 Tcsc(30,31)  0.3588  

/ / Tcsc(13,49)   0.1260   Tcsc(13,49)  0.1184  

/ / Tcsc(29,52)   0.1393 Tcsc(29,52)  0.1430  

/ / Tcsc(56,42)   0.1939 Tcsc(56,42)  0.2421  

/ / Tcsc(38,49)   0.0332 Tcsc(38,49)  0.0138  

PGi (MW), Vgi (p.u.), T(I,j) (p.u.),Q svc(i) (MVAr), X Tcsc(I,j) (p.u.). 

 

Figure 6-13:Load Bus Voltage Profile For Case 1 
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Table 6-4 represents a statistical comparison of the proposed method with six other methods used in 

case 1 and case 2 for the first scenario, for instance, the barnacles mating optimizer (BMO), moth-

flame optimization algorithm (MFO), particle swarm optimization (PSO), efficient optimization 

algorithm based on weighted mean of vectors optimization (INFO), and artificial ecosystem-based 

optimization (AEO). 

Table 6-4:Statistical Comparison Of Case 1 And Case 2 For The First Scenario 

             Case 1             Case 2 

Algorithms  Results ($/h) Algorithms  Results (MW) 

BMO  [61]        5300.457   ($/h) BMO  [61] 20.785  (MW) 

MFO  [61]         5316.14    ($/h) MFO   [61] 21.3031 (MW) 

PSO   [61]        5417.538   ($/h) PSO    [61] 21.3621 (MW) 

GTO   [63]       5260.0009   ($/h)  GTO   [63] 19.7703 (MW) 

AEO   [63]       5260.2497   ($/h) AEO   [63] 19.7633 (MW) 

INFO  [63]        5259.2040   ($/h) INFO  [63] 19.7040 (MW) 

NS-KOA           5217.635   ($/h) NS-KOA 16.836  (MW) 

Bold indicates the best solutions found so far. 

6.3.1.2  Case 2: Real Power Loses and the Investment Cost of FACTS Optimization 

In a parallel investigation, the optimization of real power losses (RPLs) within the same system 

configurations was pursued. In the base case scenario, RPL stood at 18.022 MW, which decreased to 

Figure 6-14:Generator’s Reactive Power For Case 1 
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17.729 MW following the integration of RESs, achieving a reduction of approximately 1.62% 

(Objective 1). Subsequent intervention with FACTS devices further diminished RPL to 16.398 MW, 

demonstrating an additional reduction of approximately 9.05% compared to the base case and 7.45% 

compared to the RES-integrated scenario. However, this enhancement incurred an additional cost of 

227.86 (USD/h) due to FACTS deployment (scenario 2). Conversely, the base case scenario led to an 

RPL of 16.836 MW, with a FACTS cost of 68.945 (USD/h). 

Figure 6-15 shows the Pareto front of case 2, where NSKOA provides a well-distributed front, 

with the BCS solution positioned almost in the center, as shown in Table 6-5. The strategic placement 

of SVCs and TCSCs significantly influenced power loss reduction by optimizing reactive power flow. 

Notably, buses 50 and 53 were equipped with SVCs, highlighting their critical role in reactive power 

support and reducing power losses. Similarly, the results show that in the IEEE 57 BUS network, the 

branches (9–12) and (13–49) are the regions that need TCSC device installation to effectively control 

line impedance and improve power flow efficiency, which reduces power losses in these regions by 

reducing line reactance. The presence of TCSCs on these repeated branches indicates their importance 

in minimizing congestion and reducing transmission losses, making them key points for reactive 

power compensation and power loss mitigation. These findings underscore the efficacy of FACTS 

deployment in significantly mitigating real power losses within the system, even with an added 

expense, presenting a nuanced trade-off between loss reduction and investment expenses. Figures 5-

16 and 5-17 illustrate the voltage profile in the load buses and the generated reactive power, 

respectively, in the same case. All values are within their limits, indicating that the constraints are 

completely satisfied. 

 

Figure 6-15:Pareto Front of case 2 



 

104 
 

Chapter 6 VOLTAGE STABILITY IMPROVEMENT IN PRESENCE OF RENEWABLE ENERGY SOURCES AND 

FACTS DEVICES 

 

Figure 6-16:Load Bus Voltage Profile For Case 2 

Table 6-5:Optimal Result And Control Variables For Case 2 

                                                Control variables       Fitness values  

    Base case    Scenario 1   Scenario 2      BCS  Base case 

 

TGcost ($/h)  10979.12 

RPL (MW)     18.7160 

TVD (pu)      1.5782 

VSI (pu)       0.2766 

 

 

Scenario 1 

TGcost ($/h)  10154.82 

RPL (MW)     17.7299 

TVD (pu)      1.5298 

VSI (pu)       0.2759 

 

 

Scenario 2 

TGcost ($/h)  10269.41 

TFcost ($/h)   227.869 

RPL (MW)     16.3981 

TVD(pu)       1.9708 

VSI(pu)        0.2468 

 

 

BCS 

TGcost ($/h)  10198.18 

Pg1       198.3536  Pg1    301.5189  Pg1      297.4671    Pg1      299.6088    

Pg2     19.6385   Pg2     8.424944  Pg2      7.759523  Pg2      8.143402  

Pg3      136.582   Pg3      140.000    Pg3      139.9811  Pg3      139.962    

Pg6      94.5306   Pg6      99.9969    Pg6     99.9978    Pg6     99.9930    

Pg8      319.912   Pg8      308.590    Pg8      311.9925  Pg8        309.931    

Pg9      199.070   Pg9      199.999    Pg9      199.999    Pg9     200.000    

Pg12    209.994  Pg12     209.998   Pg12     210.000   Pg12      209.997   

Vg1   1.074194       Vg1   1.075784      Vg1   1.073172      Vg1    1.075249      

Vg2   1.067047       Vg2   1.068157      Vg2   1.066069      Vg2    1.067677      

Vg3   1.061879       Vg3   1.064005      Vg3   1.063692      Vg3    1.063580      

Vg6   1.063364       Vg6   1.059364      Vg6   1.059340      Vg6    1.059306      

Vg8   1.075176       Vg8   1.061550      Vg8   1.064236      Vg8    1.064473      

Vg9   1.051757       Vg9   1.043234      Vg9   1.051782      Vg9    1.047636      

Vg12   1.040481     Vg12   1.037484   Vg12   1.037586    Vg12   1.038832    

T(4,18)  1.042820    T(4,18)   0.964453    T(4,18)  0.955661    T(4,18)  0.950783    

T(4,18)  0.969822    T(4,18)   1.026266    T(4,18)  1.035669    T(4,18)  1.040006    

T(21,20)   1.00078    T(21,20)   1.019229  T(21,20)  1.006507  T(21,20)  1.014671  

T(24,25)   0.946581  T(24,25)   0.937832  T(24,25)  0.960908  T(24,25)  0.954601  

T(24,25)   0.962140  T(24,25)   0.971551  T(24,25)  0.975584  T(24,25)  0.972877  

T(24,26)   1.025195  T(24,26)   1.013087  T(24,26)  1.009955  T(24,26)  1.016856  

T(7,29)   0.991647    T(7,29)   0.983174    T(7,29)  0.990604    T(7,29)  0.986726    

T(34,32)   0.943693  T(34,32)  0.927002  T(34,32)  0.929053  T(34,32)  0.932515  

T(11,41)   0.922844  T(11,41)   0.900000  T(11,41)  0.930783  T(11,41)  0.919565  

T(15,45)  0.982334  T(15,45)   0.983402  T(15,45)  0.993976  T(15,45)  0.984972  
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T(14,46)   0.963354  T(14,46)   0.963000  T(14,46)  0.984149  T(14,46)  0.975964  TFcost ($/h)    68.945 

RPL (MW)     16.8366 

TVD (pu)      1.6799 

VSI (pu)       0.2593 

T(10,51)  0.975757  T(10,51)   0.969271  T(10,51)  0.986212  T(10,51)  0.977325  

T(13,49)   0.937087  T(13,49)  0.936787  T(13,49)  0.991151  T(13,49)  0.980100  

T(11,43)  0.975505  T(11,43)   0.977018  T(11,43)  0.988254  T(11,43)  0.982823  

T(40,56)  1.003564  T(40,56)   1.006911  T(40,56)  0.958281  T(40,56)  0.960962  

T(39,57)  0.962797  T(39,57)   0.968382  T(39,57)  0.957930  T(39,57)  0.969004  

T(9,55)  0.988405    T(9,55)    0.986404    T(9,55)  0.991583    T(9,55)  0.984642    

Optimal size and location of  SVC-TCSC 

/ / svc(13)   17.3838   svc(35)   8.28284   

/ / svc(14)   11.2275   svc(38)    6.5553     

/ / svc(35)   12.2902   svc(50)   2.08968   

/ / svc(38)    16.354     svc(53)    1.7785    

/ / svc(50)    11.123     svc(54)    0.6111    

 / svc(53)     6.240       / 

/ / Tcsc(9,12)  0.0573  Tcsc(9,12)  0.0269    

/ / Tcsc(1,16)  0.0308  Tcsc(1,16)  0.0042    

/ / Tcsc(30,31)  0.3034  Tcsc(47,48)  0.0039  

/ / Tcsc(47,48)  0.0175  Tcsc(13,49)  0.1356  

/ / Tcsc(13,49)  0.1465  Tcsc(56,42)  0.0228  

/ / Tcsc(38,48)  0.0371  Tcsc(38,48)  0.0347  

PGi (MW), Vgi (p.u.), T(I,j) (p.u.), Q svc(i) (MVAr), X Tcsc(I,j) (p.u.). 

6.3.1.3 Case 3: Total Voltage Deviation and the Investment Cost of FACTS Optimization 

In a comprehensive analysis encompassing the optimization of total voltage deviation (TVD) 

within the same system configurations, notable improvements were observed. In the base case 

scenario, TVD registered at 0.7029 per unit (p.u.), which decreased to 0.6842 p.u. following the 

integration of RESs, marking a reduction of approximately 2.66% for scenario 1 (Objective 1). 

Subsequent intervention with FACTS devices yielded a significant improvement, reducing TVD to 

0.2138 p.u., reflecting a substantial enhancement of approximately 69.5% compared to the 

conventional configuration of the IEEE 57 bus and 68.79% compared to the RES-integrated scenario. 

However, this advancement incurred an additional cost of 237.38 (USD/h) due to FACTS 

deployment. Conversely, the base case scenario led to TVD of 0.3435 p.u., with a FACTS cost of 73 

(USD/h). 

Figure 6-18 shows the Pareto front for case 3, where NSKOA provides a well-distributed front, 

with the best compromise solution (BCS) positioned near the center. Figures 6-19 and 6-20 present 

the voltage profile at the load buses and the generated reactive power, respectively, for the same case. 

All values remain within permissible limits, confirming that the constraints are fully satisfied. The 

numerical results presented in Table 6-6 illustrate that the deployment of SVCs and TCSCs effectively 

reduced voltage deviation, enhancing voltage stability across the network. SVCs were installed at 

buses 14, 21, 35, 44, 53, and 54, providing crucial reactive power support to improve voltage profiles 

at these locations. Notably, in the IEEE 57-bus network, bus 35 required a significant SVC 

installation, which played a key role in reducing voltage deviation by supplying or absorbing reactive 

power as needed. This capability helps maintain voltage levels within desired limits, especially during 

fluctuations in load. 

The TCSCs installed on branches (19–20), (21–22), (37–39), and (13–49) facilitated better 

control of line reactance and optimized the flow of reactive power, which mitigated voltage drops 
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along transmission lines, contributing to improved voltage levels and further aiding voltage 

regulation. The consistent presence of SVC at bus 35 and TCSC on branch (13–49) illustrates their 

pivotal role in mitigating voltage deviations and ensuring stable reactive power management 

throughout the IEEE 57-bus network. These findings highlight the efficacy of FACTS deployment in 

reducing total voltage deviation within the system, underscoring the trade-off between improved 

voltage stability and FACTS deployment cost. 

 

Figure 6-17:Pareto Front Of Case 3 

 

Figure 6-18:Load Bus Voltage Profile For Case 3 
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Table 6-6:Optimal result and control variables for case 3 

Control variables Fitness values 

    Base case      Scenario 1    Scenario 2      BCS      

Base case 

TGcost ($/h)  10979.12 

RPL (MW)    17.7160 

TVD (pu)      1.5782 

VSI (pu)       0.2766 

 

Scenario 1 

TGcost ($/h) 8102.0217 

RPL (MW)     37.4701 

TVD (pu)      0.6842 

VSI (pu)      0.29440 

 

Scenario 2 

TGcost ($/h)  7546.581 

TFcost ($/h)   237.380 

RPL (MW)     26.0637 

TVD (pu)      0.2138 

VSI (pu)       0.2945 

 

BCS 

TGcost ($/h) 8671.4377 

TFcost ($/h)   73.0604 

RPL (MW)     36.0721 

TVD (pu)      0.3436 

VSI (pu)      0.29601 

Pg1       198.3536  Pg1    545.1541  Pg1      425.9918    Pg1      519.1516    

Pg2     19.6385   Pg2      42.6645  Pg2       39.6999  Pg2        57.4019 

Pg3      136.582   Pg3     110.9823    Pg3     118.1849 Pg3      96.2114    

Pg6      94.5306   Pg6       14.0295    Pg6     58.4176 Pg6      0.0000    

Pg8      319.912   Pg8      239.4711    Pg8      224.5698 Pg8       262.5789    

Pg9     199.070   Pg9     171.4433    Pg9     199.999    Pg9    182.9161    

Pg12    209.994  Pg12    164.5253   Pg12    209.999   Pg12    168.6121   

Vg1   1.074194       Vg1    1.04032      Vg1   1.02062 Vg1   1.02712  

Vg2   1.067047       Vg2    1.02816      Vg2   1.01073 Vg2   1.02244  

Vg3   1.061879       Vg3    1.02422     Vg3   1.00583 Vg3   1.02102  

Vg6   1.063364       Vg6    1.00302      Vg6   1.00025 Vg6    1.00153  

Vg8   1.075176       Vg8    1.02873      Vg8   1.02203 Vg8   1.03107  

Vg9   1.051757       Vg9    1.01095      Vg9   1.01148 Vg9   1.01119  

Vg12   1.040481     Vg12   1.01479   Vg12   1.00556 Vg12   1.00799  

T(4,18)  1.042820    T(4,18)   0.97587    T(4,18)  0.955661    T(4,18)  0.97037    

T(4,18)  0.969822    T(4,18)   1.04991    T(4,18)  1.05236 T(4,18)  1.04938    

T(21,20)  1.00078    T(21,20)   0.96580  T(21,20)  0.96297 T(21,20)  0.96335  

T(24,25)   0.946581  T(24,25)   0.96748  T(24,25)  0.96883 T(24,25)  0.97148  

T(24,25)   0.962140  T(24,25)   0.96013  T(24,25)  0.98919 T(24,25)  0.98409  

T(24,26)   1.025195  T(24,26)   1.03451  T(24,26)  1.02960 T(24,26)  1.03335  

T(7,29)   0.991647    T(7,29)    0.95720    T(7,29)   0.96383 T(7,29)   0.95958    

T(34,32)   0.943693  T(34,32)  0.92014  T(34,32)  0.95538 T(34,32)   0.95523 

T(11,41)   0.922844  T(11,41)   0.900000  T(11,41)  0.92422 T(11,41)   0.90000 

T(15,45)  0.982334  T(15,45)   0.93812  T(15,45)  1.02301 T(15,45)   0.98128 

T(14,46)   0.963354  T(14,46)   0.98081  T(14,46)  1.00294 T(14,46)   0.99451 

T(10,51)  0.975757  T(10,51)   0.99571  T(10,51)  0.99637 T(10,51)   0.99666 

T(13,49)   0.937087  T(13,49)  0.90023  T(13,49)  0.90764 T(13,49)   0.90000 

T(11,43)  0.975505  T(11,43)   0.97609  T(11,43)  1.00385 T(11,43)   1.00178   

T(40,56)  1.003564  T(40,56)   1.02057  T(40,56)  0.92593 T(40,56)   0.94376   

T(39,57)  0.962797  T(39,57)   0.90000  T(39,57)  0.94573 T(39,57)   0.95405   

T(9,55)  0.988405    T(9,55)    0.98505 T(9,55)  1.01831 T(9,55)   0.98132   

Optimal size and location of  SVC-TCSC 

/ / svc(14)   21.585   / 

/ / svc(21)   12.785   / 

/ / svc(35)   30.907   svc(35)    28.511   

/ / svc(44)    7.757     / 

/ / svc(53)    5.156     / 

/ / svc(54)    9.580       / 

/ / Tcsc(19,20)  0.3155  Tcsc(19,20)  0.3472   

/ / Tcsc(21,22)  0.0936  Tcsc(21,22)  0.0657   

/ / Tcsc(37,39)  0.0303  Tcsc(37,39)  0.0216   

/ / Tcsc(36,40)  0.0373  Tcsc(36,40)  0.0199   

/ / Tcsc(56,42)  0.1961  / 

/ / Tcsc(38,49)  0.1416  / 

PGi (MW), Vgi (p.u.), T(I,j) (p.u.),Q svc(i) (MVAr), X Tcsc(I,j) (p.u.). 
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Figure 6-19:Generator’s Reactive Power For Case 3 

 

6.3.1.4 Case 4: Voltage Stability Index and the Investment Cost of FACTS Optimization 

In this phase, the focus shifted towards optimizing and enhancing the voltage stability index 

within the examined system configurations. The base case exhibited a voltage stability index of 

0.2757 p.u., which notably improved to 0.2018 p.u. following the integration of both RESs and 

FACTS technologies, representing a significant improvement of approximately 26.80%. However, 

this improvement came at an additional cost of USD 62.04 per hour due to FACTS deployment. 

Interestingly, in the BCS, the voltage stability index of 0.2074 p.u. was achieved with a significantly 

lower FACTS cost of USD 10.38 per hour, showcasing comparable performance with substantial 

savings of approximately USD 52 per hour, equivalent to approximately 83.78% in investment 

expenses of FACTS. 

Figure 6-21 shows the Pareto front for case 4, where NSKOA provides a well-distributed front, 

with the best compromise solution (BCS) positioned near the center. Table 6-7 shows that the 

integration of SVCs and TCSCs significantly influenced the voltage stability index. Notably, the 

SVCs at buses 16, 21, 28, and 54 provided vital reactive power compensation, especially at bus 28, 

crucial for keeping the voltage profile at the desired levels. This ability reduces the risk of voltage 

collapse and improves the voltage stability index as shown in Figures 6-22 and 6-23, which present 

the voltage profile at the load buses and the generated reactive power where all values remain within 

permissible limits. 
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The results indicate that branches (18–19) and (24–25) required larger TCSCs due to high reactive 

power demand, which directly impacted voltage stability, by enhancing power transfer capability, 

helping to stabilize voltage levels, and preventing conditions that could lead to instability. The 

placement of TCSCs on branches (30–31) and (37–38) further emphasizes their crucial role in 

optimizing voltage stability across the IEEE 57 network. The branches (18–19) and (24–25) 

demonstrated the need for larger TCSCs as these lines were under significant reactive power demand, 

directly impacting voltage stability. TCSCs improve the power transfer capability of lines, which can 

help stabilize voltage levels and prevent conditions leading to voltage instability. The TCSCs on 

branches (30–31) and (37–38) underscore their critical role in optimizing voltage stability across the 

IEEE 57 network. These findings underscore the effectiveness of FACTS deployment in enhancing 

voltage stability while highlighting the importance of cost considerations in optimizing system 

performance. 

 

Figure 6-20:Pareto Front Of Case 4 



 

110 
 

Chapter 6 VOLTAGE STABILITY IMPROVEMENT IN PRESENCE OF RENEWABLE ENERGY SOURCES AND 

FACTS DEVICES 

 

Figure 6-21:Load Bus Voltage Profile For Case 4 

 

Figure 6-22:Generator’s Reactive Power For Case 4 
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Table 6-7:Optimal Result And Control Variables For Case 4 

                      CONTROLE VARIABLES      Fitness values  

      Base case      Scenario 1      Scenario 2       BCS  

    

      Base case  

 

Cost ($/h)       9193.49 

RPL (MW)      29.635 

TVD (p.u)      1.4720 

VSI (p.u)       0.2757 

      Scenario 1 

 

TGcost ($/h)    5217.74 

 

RPL (MW)        38.719 

TVD (p.u)        1.5869 

VSI (p.u)          0.2757 

 

      Scenario 2 

 

TGcost ($/h)   9748.93 

TFcost ($/h)    62.045 

RPL (MW)      24.645 

TVD (p.u)      1.4312 

VSI (p.u)       0.2018 

 

        BCS 

 

TGcost ($/h)   6993.24 

TFcost ($/h)     10.38 

RPL(MW)      38.404 

TVD (p.u)      1.3522 

VSI (p.u)       0.2074 

Pg1   320.9496  Pg1   552.3335    Pg1   402.9396   Pg1    516.5286    

Pg2   44.2970    Pg2   100.000    Pg2   32.0975   Pg2    93.31830  

Pg3   70.9802    Pg3   76.6229    Pg3   135.201   Pg3    92.04518  

Pg6   49.1657    Pg6   99.9997    Pg6   0.45037   Pg6    0.000000  

Pg8   271.1674  Pg8   50.5656    Pg8   295.800   Pg8    196.9922  

Pg9   197.0577  Pg9   199.998    Pg9   200.000   Pg9    180.3202  

Pg12   152.410  Pg12   209.999   Pg12   208.955  Pg12    210.000   

Vg1   1.076947       Vg1   1.099834      Vg1   1.037665      Vg1    1.038911      

Vg2   1.064682       Vg2   1.092973      Vg2   1.021399      Vg2    1.029121      

Vg3   1.040932       Vg3   1.070328      Vg3   1.021756      Vg3    1.021645      

Vg6   1.035024       Vg6   1.043710      Vg6   1.008789      Vg6    1.006930      

Vg8   1.050021       Vg8   1.034728     Vg8   1.031409      Vg8    1.029410      

Vg9   1.030837       Vg9   1.027750      Vg9   1.014471      Vg9    1.011513      

Vg12   1.023650     Vg12   1.037090    Vg12   1.018090    Vg12    1.014264    

T(4,18)  0.9726    T(4,18)   1.008410    T(4,18)   1.022652    T(4,18)   1.017152    

T(21,20)  1.07613  T(4,18)   0.986867    T(4,18)   0.901523    T(4,18)   0.922051    

T(24,25)  0.98528  T(21,20)   1.012262  T(21,20)   1.069454  T(21,20)   1.017742  

T(24,25)  0.96546  T(24,25)   0.939723  T(24,25)   0.998648  T(24,25)   1.007304  

T(24,26)  1.04711  T(24,25)   0.937514  T(24,25)   0.992255  T(24,25)   0.997993  

T(7,29)  0.959181    T(24,26)   0.982061  T(24,26)   1.054628  T(24,26)   1.084371  

T(34,32)  0.90985  T(7,29)   0.959973    T(7,29)    0.939237  T(7,29)    0.931607  

T(11,41)  0.95951  T(34,32)   0.918400  T(34,32)   0.900827  T(34,32)   0.900019  

T(15,45)  0.97504  T(11,41)   0.900000  T(11,41)   0.900589  T(11,41)   0.900000  

T(14,46)  0.95079 T(15,45)   0.988708  T(15,45)   0.955885  T(15,45)   0.954432  

T(10,51)  0.95684 T(14,46)   0.964576  T(14,46)   0.935021  T(14,46)   0.934472  

T(13,49)  0.90762  T(10,51)   0.970265  T(10,51)   0.941255  T(10,51)   0.939803 

T(11,43)  0.95171  T(13,49)   0.934064  T(13,49)   0.900053  T(13,49)   0.900661  

T(40,56)  0.98339  T(11,43)   0.95915 T(11,43)   1.053052  T(11,43)   0.975194  

T(39,57)  1.09573  T(40,56)   0.986130  T(40,56)   1.083148  T(40,56)   1.058040 

T(9,55)  1.032468    T(39,57)   0.954959  T(39,57)   1.012770  T(39,57)   1.037772  

 T(9,55)   0.964379    T(9,55)   0.989115    T(9,55)    0.988271 

Optimal size and location of  SVC-TCSC 

/ / svc(16)    0.75793   / 

/ / svc(21)    0.66050   svc(32)    0.39169   

/ / svc(28)     0.01766   svc(28)      0.00171   

/ / svc(54)    0.0710    svc(54)    0.00202   

/ / Tcsc(18,19)  0.5480  Tcsc(18,19)  0.4040  

/ / Tcsc(24,25)  0.9840  Tcsc(24,25)  0.9840  

/ / Tcsc(25,30)  0.1616  Tcsc(25,30)  0.1616  

/ / Tcsc(30,31)  0.3952  Tcsc(30,31)  0.3964  

/ / Tcsc(37,38)  0.0807  Tcsc(37,38)  0.0807  

/ / Tcsc(11,41)  0.5992  Tcsc(11,41)  0.1752  
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6.4 Conclusion 

This chapter presents a comprehensive study on the optimization of power flow through an 

exploration of a multi-objective optimization strategy that can simultaneously address a range of 

critical objectives using the non-dominated sorting Kepler optimization algorithm (NSKOA), 

focusing on the integration of (RESs) and FACTS devices into the electrical network. The proposed 

NSKOA has demonstrated its effectiveness in achieving significant improvements in several key 

performance indicators. Notably, the integration of RESs and FACTS devices resulted in a 6.49% 

reduction in power production costs, a 9.05% reduction in real power losses (RPLs), a 69.5% decrease 

in voltage deviations (TVDs), and a 26.80% improvement in the voltage stability index (VSI). The 

approach also achieved a substantial 22.76% reduction in emissions, contributing to environmental 

sustainability. These results illustrate the robustness of the NSKOA in optimizing power system 

performance under various operational conditions and its effectiveness in addressing multi-objective 

problems. It underscores the potential of these approaches in managing the complexities of power 

systems. It is true that the regulation of control variables, such as generation voltages and transformer 

tap ratios, ensures the operability of the power system but remains technically insufficient. This 

highlights the practical implications of RES and FACTS device integration into the design and 

operation of future power systems, paving the way for a more efficient, reliable, and sustainable 

electricity supply. 
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This thesis has addressed the multifaceted technical, financial, and environmental challenges 

confronting modern electrical networks both in upgrading aging infrastructure and deploying new 

systems. While recent advancements in grid technologies and optimization techniques offer 

significant benefits, they also introduce new operational complexities, particularly with regard to 

tuning parameters and ensuring system stability. A central focus of this work has been the integration 

of (RES), which despite their undeniable environmental and economic advantages introduce inherent 

variability due to fluctuating wind, solar irradiance, and hydrological conditions. These uncertainties 

complicate reliable system operation, especially under high RES penetration. 

To capture the impact of RES variability, this work first identified and characterized key 

stochastic variables associated with wind, solar, and hydro power generation. Probabilistic modeling 

techniques, including Monte Carlo simulation and probability density functions, were used to 

quantify uncertainty and assess the economic implications of generation shortfalls or surpluses. The 

study then progressed to deterministic power flow and (OPF) models aimed at minimizing generation 

costs, power losses, and pollutant emissions. However, traditional optimization techniques often fall 

short when applied to large-scale networks with high renewable integration. 

To overcome these limitations, the thesis explored a wide range of metaheuristic optimization 

techniques including evolutionary, swarm-based, physics-inspired, and human-based algorithms with 

a particular focus on their ability to balance global exploration and local exploitation. Building on 

this foundation, the Kepler Optimization Algorithm (KOA) was selected and further enhanced 

through the development of two key improvements: an exploratory exploitative operator φ designed 

to intensify neighborhood search and accelerate convergence, and a non-dominated sorting scheme 

tailored for effective multi-objective optimization. 

These improvements were applied to the optimal generation dispatch of a 114-bus Algerian 

power system under RES uncertainty. Results showed that the enhanced KOA achieved a 49% 

reduction in emissions, significantly lowered generation costs, and reduced carbon tax liabilities. 

However, despite increased generation diversity and capacity, the system remained vulnerable to 

power losses and voltage instability. To address this, the study expanded to incorporate Flexible AC 

Transmission Systems (FACTS) devices, which, though effective in enhancing power flow and 

voltage profiles, come with high capital costs. 

A multi-objective optimization framework was then implemented to jointly minimize 

investment in FACTS devices while maximizing operational benefits, including cost savings, loss 

reduction, voltage stability, and emission cuts. The optimized solution yielded a 6.49% reduction in 

production costs (1.31% net of FACTS investment), a 9.05% drop in real power losses, a 69.5% 

improvement in voltage deviation, a 26.8% boost in voltage stability index, and a 22.76% reduction 

in total emissions. 

Overall, the enhanced KOA approach demonstrated strong performance and adaptability in 

managing the complex interplay between renewable uncertainty, grid optimization, and cost-effective 
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infrastructure upgrades. The results of this thesis affirm the growing importance of robust, intelligent 

optimization strategies in guiding the evolution of modern power systems toward more sustainable, 

resilient, and economically efficient operation. 

 

FUTURE WORK  

In future work, we will extend our stochastic optimization framework to capitalize on surplus 

renewable energy that arises under under-estimation scenarios by diverting excess generation into 

green hydrogen production rather than incurring penalty fees. Specifically, we will integrate an 

electrolyzer model into the dispatch algorithm so that any power exceeding forecasted demand is 

automatically allocated to hydrogen synthesis. By co-optimizing generation scheduling and hydrogen 

production, the system can transform what would have been a curtailment penalty into a 

revenue-generating process, effectively doubling the economic value of surplus energy. We will 

quantify this benefit by comparing baseline penalty costs against combined revenues from avoided 

fees and hydrogen sales, while also tracking the volume of green hydrogen produced. This approach 

promises not only to reduce operational risk and improve system profitability, but also to contribute 

to decarbonization by creating a low-carbon fuel stream from otherwise wasted renewable output.
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