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ABSTRACT

Abstract

In the current century, electrical networks have witnessed great developments and continuous increases in the demand for
fossil-fuel-based energy, leading to excessive rise in the total production cost and the pollutant gases emitted by thermal
plants. Under these circumstances, energy supply from different resources became necessary, such as renewable energy
sources (RES) as an alternative solution. These sources, however, are characterized by uncertainty in their operational
principle, especially when the system operator needs to define the optimal contribution of each resource to ensure
economic efficiency and enhanced grid reliability. However, even with the huge demand met, networks still face other
problems such as power loss and voltage instability. Therefore, FACTS devices appear as an effective solution, but they
remain expensive. This thesis addresses the growing complexity of modern power systems as they incorporate high shares
of variable renewable energy. A unified framework is developed that couples probabilistic modelling of wind, solar, and
hydro output using Monte Carlo simulation and specific probability density functions (Weibull distribution for wind
speeds, lognormal distribution for solar irradiance, and Gumbel distribution for river flow) with an enhanced metaheuristic
optimizer tailored for large-scale optimal power flow. Key developments in the Kepler Optimization Algorithm include
a novel exploratory—exploitative search operator for deeper solution-space exploration and a non-dominated sorting
scheme to support efficient multi-objective trade-offs. Additionally, the framework incorporates SVC and TCSC devices
by determining their optimal sizing and placement to reinforce the transmission lines and buses that demand the most
reactive-power support, thereby achieving a cost-effective trade-off between capital investment and operational
performance. When validated on a large scale test system, this integrated solution enhances economic efficiency, reduces
environmental impact, and bolsters reliability under uncertainty. By combining advanced uncertainty quantification,
customized metaheuristics, and targeted network reinforcement, this work provides a versatile, scalable methodology for
planning and operating resilient, low-carbon electrical grids.

Keywords: Renewable Energy Sources, Metaheuristic Optimization Techniques, Kepler Optimization
Algorithm, Optimal Power Flow, FACTS, Voltage Stability
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1.1 Introduction
1.1.1 Background

Electrical power systems are in a state of continuous expansion and evolution, driven by rising
electricity demand and the quest for economic, reliable, and environmentally sustainable energy
supply. To meet these challenges, utilities and system operators must extend and reinforce existing
transmission and distribution networks, while also commissioning new generation units. However,
increasing reliance on conventional thermal plants such as coal- and gas-fired units to satisfy peak
loads leads to higher fuel costs, greater operational expenditures, and elevated greenhouse-gas
emissions [1]. These factors require substantial capital investments in network infrastructure along
with strategic planning to balance immediate demand requirements against long-term sustainability
goals.

The global transition to sustainable energy systems is crucial for mitigating climate change,
enhancing energy security, and reducing reliance on fossil fuels [2]. (RES) including wind, solar
photovoltaic (PV), and hydropower play a central role in this paradigm shift by lowering fuel
expenses, cutting carbon emissions, and diversifying generation portfolios. However, their inherent
variability and uncertainty resulting from fluctuating wind speeds, solar irradiance, and river flows
pose significant challenges for power system stability, economic dispatch, and operational planning.
Effectively integrating large-scale RES into existing grids demands advanced uncertainty modeling
techniques and constrained optimization frameworks. Methods such as Monte Carlo simulation,
scenario-based stochastic programming, and probabilistic load flow studies enable accurate
quantification of generation variability and system risk, while comprehensive cost analyses must
account for capital investment, integration-related balancing expenses, and long-term operational
impacts [2].

Flexible AC Transmission Systems (FACTS) devices have emerged as vital components for
augmenting grid performance in this changing landscape. Based on high-speed power-electronic
converters, FACTS modules dynamically control line impedance, voltage magnitude, and phase angle
to regulate power flow and maintain system stability. Shunt compensators such as Static Var
Compensators (SVCs) utilizing Thyristor-switched capacitors/reactors, and Static Synchronous
Compensators (STATCOMSs) based on voltage-source converters inject or absorb reactive power to
manage voltage profiles and support transient stability [3]. Series compensators, like the Thyristor-
Controlled Series Capacitor (TCSC), insert a controllable reactance into transmission lines to adjust
power transfer capability and damp oscillations. By rapidly modulating reactive-power injection and
series impedance, these devices reduce losses, relieve congestion, and enhance voltage regulation [4].
To fully harness FACTS benefits and ensure cost-effectiveness, precise determination of each
device’s optimal location and sizing is essential; misplacement or improper rating can compromise
voltage support and even increase overall system losses [5].

The Optimal Power Flow (OPF) problem is the foundational tool for optimizing generation
dispatch and network-control settings to minimize an objective commonly fuel cost, generation cost,
or system losses while satisfying operational constraints [6]. A full AC-OPF formulation captures
both active and reactive power balances at each bus, voltage magnitude limits, generator capability
curves, and thermal line-flow restrictions, resulting in a large-scale, nonlinear, and nonconvex
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optimization problem. Typical variables include generator real/reactive outputs, bus voltages, and
transformer tap ratios, with equality constraints enforcing Kirchhoff’s laws and inequalities
representing equipment and security limits. Classical solution methods ranging from gradient-based
techniques and sequential quadratic programming to interior-point and successive linear
programming often struggle with convergence guarantees and computational tractability as network
size grows [7]. The advent of high renewable energy source (RES) penetration introduces additional
layers of complexity: stochastic, time-coupled constraints for forecasting error margins; reserve and
ramping requirements; and multi-period coupling for energy storage [8]. Addressing these requires
robust solution strategies, such as stochastic programming, chance-constrained OPF, and
decomposition-based algorithms, to ensure reliable and economical operation under uncertainty.

In recent years, metaheuristic optimization algorithms including Genetic Algorithms (GAs),
Particle Swarm Optimization (PSO), Differential Evolution (DE), and Ant Colony Optimization
(ACO) have gained widespread acceptance for tackling large-scale, nonlinear, and stochastic OPF
problems. These population-based methods leverage mechanisms inspired by natural and social
phenomena to navigate complex search spaces without gradient information. The exploration phase
promotes global search by diversifying candidate solutions, while the exploitation phase intensifies
local search around promising regions. Effective balancing of these phases is crucial: excessive
exploration delays convergence, whereas premature exploitation risks entrapment in local optima. To
further enhance performance, researchers increasingly employ hybrid metaheuristics that combine
complementary strengths for instance, integrating GA’s crossover operators with PSO’s velocity-
driven update rules or embedding local search heuristics within DE frameworks. Such hybrids often
incorporate adaptive control strategies that dynamically adjust exploration—exploitation trade-offs
based on convergence metrics or population diversity measures. Moreover, multi-objective
metaheuristic extensions address conflicting goals such as minimizing cost, emissions, and voltage
deviations by generating Pareto-optimal solution sets, using techniques like the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) and multi-objective PSO (MOPSO) [9].

The application of these advanced metaheuristics to stochastic OPF involves novel formulations
that explicitly model RES uncertainty via scenario sampling, probabilistic constraints, or chance-
constraint programming. Parallel and GPU-accelerated implementations further enable real-time or
near-real-time optimization, making metaheuristics a viable option for modern grid operation and
planning with high renewable penetration and FACTS device coordination [10].

This thesis investigates the coordinated planning and operation of modern power systems with
high levels of renewable penetration. It focuses on optimal placement and sizing of FACTS devices,
development of stochastic OPF formulations, and the design of advanced metaheuristic solvers to
efficiently handle the resulting large-scale, multi-objective optimization problems.

1.1.2 The Research Gap:

Despite advances in uncertainty-modeling techniques (e.g., Monte Carlo simulation), the increasing
complexity of OPF with high renewable penetration, and the need to optimally size and site FACTS
devices, there remains a critical need for:

Robust frameworks: integrating high-fidelity RES uncertainty models (Weibull, Lognormal,
Gumbel PDFs) with security-constrained OPF for large-scale practical systems.
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Efficient metaheuristic algorithms capable of handling the high-dimensional, multi-objective, non-
convex optimization problems arising from RES integration, particularly when combined with
optimal size and location of FACTS devices.

Comprehensive assessment quantifying the joint benefits of RES and FACTS on production costs,
emissions reduction (including carbon tax impacts), voltage stability, and power losses under
uncertainty.

1.1.3  Thesis Objectives & Scope:

In chapter 2, we provide a comprehensive overview of RES technologies, detailing the
operating principles of wind turbines, photovoltaic arrays, and hydroelectric plants. We highlight the
key stochastic parameters wind speed, solar irradiance, and river flow and discuss their impacts on
power output and grid integration benefits. Various uncertainty-handling methods, including Monte
Carlo simulation (MCS), machine learning, fuzzy logic, robust optimization, and interval
optimization, are surveyed, with an emphasis on the choice of MCS in our work. We delve into
probability density functions (Weibull for wind, lognormal for solar, and Gumbel for hydro) and
outline the process of scenario generation and cost quantification (direct, reserve, and penalty costs).

In chapter 3, we introduce the classical power flow and (OPF) problems, formulating the
objective functions, decision variables, and both equality and inequality constraints. We review
traditional solution methods, their strengths, and limitations when faced with nonconvex, stochastic
OPF formulations. This sets the stage for employing metaheuristic approaches.

An extensive classification of metaheuristic algorithms is then presented covering evolutionary,
swarm intelligence, physics-based, and human-inspired methods before focusing on the Kepler
Optimization Algorithm (KOA) In chapter 4. Two enhancements are proposed: (1) a novel
exploration exploitation operator ¢ that accelerates convergence by deeper neighbor searches, and (2)
integration of a Non-dominated sorting scheme for multi-objective optimization.

The enhanced EKOA is applied to two test systems. In Chapter 5, we optimize generation
dispatch for a 114-bus Algerian system under renewable uncertainty, minimizing total production
cost and carbon taxation, and compare the performance of our enhanced version EKOA to original
KOA. Chapter 6 extends this work by incorporating FACTS devices (SVC and TCSC), optimizing
their siting and sizing to bolster voltage stability and reduce losses, subject to investment cost
constraints.

Together, these contributions advance the state of the art in stochastic OPF by blending rigorous
uncertainty modeling with powerful, tailored metaheuristic optimization, demonstrating tangible
benefits in cost savings, emissions reduction, and system stability.
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2.1 Introduction

The global transition toward renewable energy systems (RES) has revolutionized power
systems, replacing traditional deterministic generation with inherently variable sources such as wind,
solar, and hydro [11]. While RES offer unparalleled environmental benefits, their integration
introduces significant operational challenges. Environmental factors including fluctuating irradiance,
stochastic wind speeds, and seasonal hydro inflows create uncertainty that propagates through power
system planning and real-time energy markets [12]. Measurement errors and forecasting limitations
further compound these challenges, often leading to mismatches between predicted and actual
generation [13]. To address this, modern power systems increasingly rely on multi-source modeling
frameworks that combine wind, solar, and hydro resources into cohesive operational strategies. These
frameworks are critical for balancing supply-demand mismatches, mitigating curtailment risks, and
ensuring grid stability in real-time markets [14].

Uncertainty in RES is not merely a technical hurdle; it directly impacts the economic and
operational efficiency of power systems. Deterministic approaches to (OPF) and economic dispatch,
which assume fixed generation profiles, fall short in accounting for the probabilistic nature of RES.
This gap underscores the need for probabilistic modeling to quantify risks, optimize reserve margins,
and enhance decision-making under uncertainty. Monte Carlo simulation (MCS) and probability
density functions (PDFs) emerge as indispensable tools in this context [15]. By generating thousands
of plausible scenarios based on RES variability, MCS enables system operators to evaluate the
likelihood of extreme events, such as wind droughts or solar curtailment, while PDFs like
the Weibull (wind speed), lognormal (solar irradiance), and Gumbel (hydro inflows) provide
statistically rigorous representations of resource-specific uncertainties [16].

The chapter focuses on detailed information of the probabilistic modeling for RES uncertainty
representation (Probability Density Functions) with computational scenario-based methods (Mont
Carlo Simulation). This approach is structured as follows:

e Parametric Distributions & Historical Data: Parametric PDFs (e.g., Weibull for wind speed, lognormal
for solar irradiance, Gumbel for hydro inflow) are combined with historical weather records to synthesize
time-correlated RES profiles

e Monte Carlo Sampling: A large ensemble of scenarios is generated by randomly sampling each PDF
across thousands of iterations, capturing the temporal variability of RES inputs

e Parameter Calibration: Key PDF parameters shape, scale, and location are calibrated against site-specific
climate data (e.g., local wind and irradiance measurements) to ensure that generated profiles reflect actual
operating conditions

2.2 Renewable Energy Sources

RES such as wind, solar, hydroelectric, and bioenergy generate electricity with minimal
greenhouse gas emissions, playing a critical role in mitigating climate change and reducing
atmospheric CO: levels [17]. According to the International Renewable Energy Agency IRENA, up
to 90 percent of global electricity could and should be supplied by renewables by 2050, underscoring
their transformative potential [18]. Unlike fossil fuels, renewable technologies emit virtually no
pollutants during operation, significantly lowering air and water contamination over their lifecycle
[19]. The renewable energy sector also drives significant job creation, with IRENA reporting steady
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global growth in clean energy employment across manufacturing, installation, and operations. By
replacing coal and gas plants, renewables contribute to improved public health, preventing thousands
of premature deaths each year through reductions in air pollution, particulate matter, and smog
formation. Beyond environmental benefits, the expansion of clean energy industries supports
economic resilience and fosters innovation in sustainable technologies. Enhanced local generation
from wind and solar bolsters energy security by diversifying supply and reducing reliance on
imported fuels. Cost trends reported by the International Energy Agency IEA show that solar and
wind power are now among the cheapest sources of new electricity in many regions, making them
economically competitive with existing fossil-fired plants. Projections indicate that renewables will
supply nearly 46 % of global electricity by 2030, driven by policy support and technological
advances. Community-led renewable projects further offer social benefits, enhancing local resilience
and delivering energy access to underserved areas. Finally, transitioning to renewable systems
reduces geopolitical and supply-chain risks associated with fossil fuel extraction, trade, and price
volatility [18].
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Figure 2-1: Modern Power System

2.2.1 Wind Power Plants

A grid-connected wind power plant converts kinetic energy from the wind into electrical energy
through wind turbines coupled with generators and power electronic interfaces, delivering power
directly to the utility network while maintaining voltage and frequency standards [20]. Key
operational variables include wind speed and direction, air density, turbine rotor dynamics, generator
characteristics, and power-electronic control settings. Major challenges encompass the inherent
variability and intermittency of wind, grid stability and power quality concerns, reactive power
support, fault ride-through capability, low system inertia, accurate forecasting, and compliance with
stringent grid codes [21]. Addressing these issues requires advanced control strategies, robust power
electronics, energy storage integration, and coordinated grid management to ensure reliable and
efficient operation.
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Figure 2-2:Wind Power System

2.2.1.1 Operating Principle

A grid-connected wind farm comprises one or more wind turbines, each equipped with a rotor,
gearbox (in most designs), and generator either an induction machine or a permanent magnet
synchronous generator (PMSG) that converts mechanical shaft power into alternating current (AC)
[20]. Modern turbines often use variable-speed operation with power electronics back-to-back
converters or doubly fed induction generator (DFIG) systems to decouple rotor speed from grid
frequency, optimizing energy capture across a wide wind speed range and allowing dynamic control
of active and reactive power [22]. The generated AC is typically stepped up via a transformer to
medium or high voltage and synchronized to the grid, where grid-side converters regulate voltage,
frequency, and power factor to meet utility requirements.

2.2.1.2 Key Variables

a) Wind Speed and Direction
Wind power output follows a cubic relation with wind speed within the turbine’s operational
window, making accurate measurement and control of rotor orientation critical.

b) Air Density
Variations in temperature, pressure, and humidity alter air density, affecting the mass flow
through the rotor and thus the available power.

¢) Rotor and Generator Dynamics
Blade pitch angle, rotor inertia, and generator torque control determine the mechanical-
electrical energy conversion efficiency and transient response during gusts or grid events.
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2.2.2 Solar Power Plants

A grid-connected solar power plant converts sunlight into electrical energy using photovoltaic
(PV) modules that generate DC power, which is then inverted to AC and synchronized with the utility
grid for direct injection or local consumption. It relies on power electronics (inverters) to match
voltage, frequency, and phase with grid requirements, and often includes transformers to step up
voltage to medium or high-voltage levels for efficient transmission [23]. Advanced systems
incorporate Maximum Power Point Tracking (MPPT) algorithms to optimize DC output under
varying irradiance and temperature conditions, ensuring maximal energy harvest throughout the day
[24].

.
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Figure 2-3:Solar Power System

2.2.2.1 Operating Principle

A PV array absorbs solar irradiance and converts photon energy into DC electricity via the
photovoltaic effect. This DC power is fed into an inverter typically a central, string, or module-level
unit that employs pulse-width modulation (PWM) to synthesize grid-compatible AC voltage and
frequency. The inverter’s control system continuously adjusts switching to maintain synchronization
and power factor requirements, and may provide ancillary services such as reactive power support
and low-voltage ride-through during grid disturbances. A transformer then steps the inverter’s AC
output to the grid voltage level, and power is dispatched onto transmission or distribution lines to
meet load demand or feedback excess energy [25].

2.2.2.2 Key Variables

Solar Irradiance: Instantaneous solar insolation (W/m?) drives PV output, with short-term
fluctuations due to cloud cover and atmospheric conditions.
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a) Module Temperature: Cell temperature inversely affects efficiency; higher temperatures
reduce voltage and thus power output, making thermal management critical.

b) Tilt and Orientation: Panel tilt angle and azimuth orientation relative to sun path determine
daily and seasonal energy capture profiles.

¢) Inverter Performance: Conversion efficiency, MPPT accuracy, and control response dictate
how effectively DC is converted to grid-quality AC under dynamic conditions.

d) Grid Interface Characteristics: Grid impedance, voltage level, and short-circuit ratio at the
point of interconnection influence stability margins and reactive power needs.

2.2.3 Hydro Power Plants

A grid-connected hydroelectric plant converts the potential energy of water stored at elevation
into electrical energy via turbines and generators, then synchronizes this power with the utility
network to meet demand. Key variables include the hydraulic head, flow rate, turbine-generator
efficiency, penstock dynamics, and reservoir storage levels [26]. Major challenges span hydrological
variability intensified by climate change, environmental and regulatory constraints, sedimentation
impacts on hydraulic components, and grid-integration issues such as low inertia and frequency
support [27].

Transmission
N
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Figure 2-4:Hydro Power System

2.2.3.1 Operating Principle

Hydroelectric plants harness gravitational potential energy: water collected in a reservoir or
diverted in a run-of-river scheme descends through a penstock, gaining kinetic energy that drives a
turbine coupled to an electrical generator. The turbine’s mechanical power is converted to AC
electricity, which is stepped up in voltage via transformers and synchronized to the grid through
excitation and governor control systems that regulate frequency and voltage Modern installations
often include power-electronic converters or variable-speed units that provide synthetic (virtual)
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inertia and enhanced grid-support capabilities, improving fast frequency response and flexibility in
low-inertia systems heavily penetrated by renewables [27].

2.2.3.2 Key Variables

a) Hydraulic Head: The vertical distance between the reservoir surface and turbine, determining
the potential energy per unit volume of water.

b) Flow Rate: Volume of water flowing through the turbine per second, directly proportional to
output power.

¢) Turbine-Generator Efficiency: Conversion losses in the hydraulic-to-mechanical and
mechanical-to-electrical stages, typically 85-95 % under optimal conditions.

d) Penstock Dynamics: Fluid inertia and head losses due to friction, characterized by parameters
of the penstock PVM (penstock-varying model) to capture transient response.

e) Reservoir Storage: Active volume available for power generation and seasonal flow regulation,
influencing dispatch flexibility and peaking capability.

f) Control Systems: Governor response, excitation control, and any added power-electronic
interfaces that adjust output to maintain grid frequency and voltage within limits

2.3  Uncertainty Modeling Methods

Uncertainty in modeling arises whenever inputs, parameters, or system behaviors cannot be
determined with absolute precision, requiring a structured framework to characterize and manage its
effects on model outputs. Broadly, uncertainties are classified into aleatoric inherent randomness such
as wind speed fluctuations and epistemic stemming from limited knowledge or model form errors
[28]. Probabilistic methods represent uncertain variables with parametric probability distributions
(e.g., normal, Weibull, lognormal, Gumbel) calibrated from historical or experimental data. Monte
Carlo Simulation then propagates these distributions through the model via random sampling to build
statistical output distributions, estimating metrics like mean, variance, and confidence intervals [29]-
[31]. Bayesian inference offers a dynamic approach by updating prior distributions with new data to
reduce epistemic uncertainty over time. When data are insufficient for full probabilistic treatment,
non-probabilistic methods such as interval analysis and convex models use bounds on parameters to
guarantee output ranges without assuming specific distributions. Fuzzy logic and Dumpster Shafer
evidence theory further extend non-probabilistic frameworks to model vagueness or partial belief,
assigning membership or belief masses to sets of outcomes. Standards like the NIST Guide to the
Expression of Uncertainty in Measurement provide formal procedures to combine and report
uncertainty components in a consistent manner Finally, software tools such as the NIST Uncertainty
Machine automate uncertainty propagation often via Monte Carlo facilitating robust quantification
and decision-making under uncertainty across engineering, environmental, and financial applications.

2.3.1 Markov Chains:

Markov chains are stochastic models that describe systems transitioning from one state to
another within a state space in a memoryless manner; that is, the probability of moving to the next
state depends solely on the current state rather than on the sequence of preceding events. This
mathematical framework handles uncertainty by representing transitions through a probability matrix,
enabling analysts to predict the long-term behavior of complex systems by assessing the steady-state
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distribution of outcomes. Over the decades, Markov Chains have been utilized in fields ranging from
economics and genetics to engineering and reliability studies [32], [33]

In renewable energy systems (RES), Markov Chains can be applied to model uncertainties such
as weather conditions that affect solar irradiance or wind speeds. For example, in a solar power
installation, different weather states (e.g., sunny, partly cloudy, and cloudy) can be defined as distinct
states in a Markov model with transition probabilities estimated from historical weather data. By
simulating the transitions between these states over time, engineers can generate probabilistic
forecasts of solar irradiance, helping to assess the likelihood of power production levels and optimize
the system's design and operational strategies. This approach provides valuable insights into
performance reliability and risk management under inherently variable environmental conditions
[34].

2.3.2 Time Series Analysis (ARIMA)

Time Series Analysis, particularly methods like ARIMA (Auto Regressive Integrated Moving
Average), originated from the work of Box and Jenkins in the 1970s and has since become a
cornerstone in forecasting and uncertainty quantification across numerous engineering and
econometric fields. ARIMA models work by analyzing historical time-dependent data to capture
underlying patterns such as trends, seasonality, and cycles, while also modeling random fluctuations
through autoregressive and moving average components. By differencing the data to achieve
stationarity, these models effectively handle non-stationary behavior, and the resulting residuals
quantify the inherent uncertainty, enabling predictions with statistically derived confidence intervals
[35].

In renewable energy systems (RES), ARIMA can be used to forecast critical variables like solar
irradiance or wind speeds, which directly impact power generation. For instance, by fitting an
ARIMA model to historical solar irradiance data, engineers can generate forecasts that predict daily
or hourly solar output along with uncertainty bounds [36]. These forecasts inform system design and
operational strategies by revealing potential periods of underperformance, aiding in the planning of
energy storage, load management, or backup generation [37]. The ability to quantify and incorporate
forecast uncertainty allows stakeholders to make more informed decisions, ultimately enhancing the
reliability and resilience of RES installations.

2.3.3 Machine Learning (ML) Models

Machine Learning (ML) models have evolved over several decades from early statistical pattern
recognition techniques to modern deep learning architectures, profoundly transforming various
engineering fields. These models learn complex relationships from data through training processes
that adjust internal parameters. Uncertainty is handled in ML by employing approaches such as
probabilistic modeling, ensemble methods, or Bayesian inference, which allow the generation of
prediction intervals or confidence estimates alongside point predictions. This ability to quantify
uncertainty helps in understanding the reliability of the predictions and in making risk-aware
decisions[38].
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In renewable energy systems (RES), ML models can be used to manage uncertainty in
forecasting energy generation. For example, a solar power plant can leverage historical irradiance
data, weather forecasts, and operational sensor data to train an ML model that predicts daily or hourly
power output. By integrating techniques like ensemble learning or Bayesian neural networks, the
model not only forecasts the expected energy output but also provides uncertainty bounds that
indicate potential variability due to changing environmental conditions. This information is crucial
for optimizing energy storage strategies, grid integration plans, and ensuring the overall reliability
and resilience of the renewable energy infrastructure[38].

2.3.4 Interval Optimization

Interval optimization is extensively utilized in engineering disciplines where uncertainties are
inherent. In mechanical and structural engineering, it aids in tolerance analysis and ensures safety
margins by accounting for variability in material properties and manufacturing processes. Electrical
engineers employ interval methods to design circuits that remain functional despite component
tolerances. Moreover, in control systems engineering, interval optimization helps in designing
controllers that maintain performance despite model uncertainties and external disturbances [39],
[40].

Handling Uncertainty in Renewable Energy Systems (RES): In the realm of renewable energy,
interval optimization plays a pivotal role in addressing the inherent uncertainties of RES outputs, such
as fluctuations in solar irradiance and wind speeds. By representing uncertain parameters as intervals
rather than fixed values, this method allows for the development of operational strategies that are
robust against variability. For instance, in integrated energy systems, interval optimization can be
used to devise operation schedules that ensure reliability and efficiency even when actual RES outputs
deviate within expected bounds. This approach is particularly beneficial in planning and managing
energy systems where precise predictions are challenging, ensuring that systems can adapt to a range
of possible scenarios [41].

2.3.5 Robust Optimization

Robust Optimization (RO) emerged in the 1950s, rooted in decision theory and the concept of
worst-case analysis, notably Wald's maximin model. It evolved into a distinct discipline in the 1970s,
with developments across various scientific and technological fields. Over the years, RO has been
applied in statistics, operations research, electrical engineering, control theory, finance, logistics,
manufacturing, chemical engineering, medicine, and computer science [42], [43].

In the context of RES, RO addresses the inherent variability of sources like wind and solar
power. By considering uncertainty sets that encompass potential deviations in generation, RO
develops strategies that ensure system performance under worst-case scenarios [44]. For example, in
energy management, RO can optimize the operation of integrated energy systems to reduce trading
costs while accommodating renewable generation uncertainties. Additionally, RO has been applied
to large-scale wind—solar storage systems, considering hybrid storage and multi-energy synergy, to
enhance system robustness. These applications demonstrate RO's critical role in ensuring the
reliability and efficiency of renewable energy systems amidst uncertainty [45].
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2.4 Monte Carlo Simulation (MCS)

Monte Carlo Simulation (MCS) is extensively utilized to address uncertainties in renewable
energy systems (RES) by modeling variables such as solar irradiance, wind speed, and river flow as
probabilistic variables [46]. These variables are characterized using probability distributions derived
from historical and empirical data. For instance, solar irradiance data collected at one minute intervals
can be modeled using a Beta probability density function (PDF) to capture its variability. Similarly,
wind speed and river flow data are analyzed to establish appropriate statistical models that reflect
their stochastic nature.

Once the probability distributions are established, MCS involves generating thousands of
random samples for each uncertain parameter. These samples are then propagated through the
deterministic models of the RES to simulate a wide range of possible outcomes. This process results
in a spectrum of potential energy outputs, enabling engineers to assess the probabilities of
underperformance or over performance under various environmental conditions [47]. Such
probabilistic analysis is crucial for designing resilient and reliable renewable energy installations, as
it accounts for the inherent variability and uncertainty in environmental factors, leading to optimized
system performance and risk-informed decision-making.

2.4.1 Monte Carlo Simulation Methodology and Application in Uncertainty Modeling
2.4.1.1 System Definition and Identification of Uncertainties

The first step in applying a Monte Carlo Simulation (MCS) is to define the system or model of
interest and identify the input parameters that exhibit uncertainty. These uncertain parameters may
stem from environmental factors, operational variability, physical properties, or market dynamics.
Instead of assigning fixed values, MCS treats these variables as random inputs described by
probability distributions [48].

Example: In renewable energy systems, key parameters such as solar irradiance, ambient
temperature, and wind speed are inherently uncertain. Their variability can be effectively captured
using probability distributions developed from historical or empirical data [49].

2.4.1.2 Assignment of Probability Distributions

Each identified uncertain parameter is assigned an appropriate probability distribution that reflects its
statistical behavior. Common choices include normal, uniform, lognormal, and Weibull distributions.
The selection depends on the nature of the variable and the availability of reliable data[48].

Example :
e Solar irradiance is often modeled using a lognormal distribution to account for its skewed nature
and daily variability.

e Wind speed is typically characterized using the Weibull distribution, a well-established model in
wind energy analysis.
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Random Sampling Process

At the heart of MCS lies the process of random sampling from the assigned distributions. The
simulation performs a large number of iterations, each time selecting random values for the input
variables based on their respective probability distributions[49].

« [terations: For every simulation run, a new set of input values is generated.

 Propagation: These values are then fed into the model to compute the corresponding output.
 Repeating this process thousands (or even millions) of times builds a statistical profile of the
system’s performance.

2.4.1.3 Analysis of Simulation Results

Once the simulation is complete, the resulting output data provides insights into how the
system behaves under uncertainty. Several statistical measures can be derived from this output:

e Probability Distributions: Assess the likelihood of various outcomes.

e Mean and Variance: Determine the average result and the degree of variability.

« Confidence Intervals: Define the range within which the true output is likely to fall, with a specified
level of confidence.

e Risk and Reliability Metrics: Quantify the likelihood of the system meeting (or failing to meet)
performance thresholds.

2.4.1.4 Advantages of Using MCS

e Comprehensive Uncertainty Quantification: MCS does not just provide a single expected
outcome but a full probability distribution, allowing for detailed risk analysis.

e Flexibility: It can incorporate various types of uncertainties and complex system interactions that
might be difficult to model analytically.

e Data-Driven: The simulation directly uses historical and empirical data to characterize
uncertainties, resulting in a model that closely reflects real-world conditions.

2.5 Probability Density Functions for RES

Probability density functions (PDFs) are mathematical functions describing the likelihood that
a continuous random variable such as wind speed or solar irradiance will assume a particular value
within its domain, enabling probabilistic forecasts that quantify uncertainty in renewable generation
rather than merely point estimates [50]. Commonly utilized PDFs in renewable energy modeling
include the Normal distribution for symmetric variables with low skewness, the Lognormal for
positively skewed data, the Weibull distribution to accurately capture wind speed variability, and the
Beta distribution for bounded parameters like solar irradiance. Selection of an appropriate PDF for a
specific renewable resource relies on empirical data quality and quantity, the resource’s physical and
temporal variability, and goodness-of-fit metrics. The stochastic power output of RES is derived by
convolving the resource’s PDF with its power conversion curve, producing a probabilistic
representation of generation profiles that informs risk-aware planning and dispatch decisions [50].
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2.5.1 Wind Power Modeling Using Weibull Probability Density Function

The Weibull probability density function (PDF) is widely used to model wind speed
distributions. The probability that wind speed in (m/s) follows a Weibull distribution is given in
Ref[51]. as:

for(5)= (ﬁ)(ﬁj(ﬁ_l) 3 exp—(%jﬁ for 0<8 <oo @.1)

a o

Here, f and o represent the scale and shape parameters of the Weibull PDF, respectively. In the
present study, the selected values of the Weibull scale S and shape « parameters are listed in Table
3. These parameters have been realistically chosen based on the installed capacities of the power
generation sources, with many values closely matching those used in Ref [51]. Figure 2-5 illustrates

the Weibull fit alongside the wind speed frequency distributions, obtained through 8,000 Monte Carlo
simulation scenarios [51].
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Figure 2-5:Wind Speed Frequency For Wind Generator

2.5.1.1 Power Model For Wind

In this study the wind farm connected is assumed to consist of 25 identical turbines, each with
a rated capacity of 3 MW, resulting in a total farm capacity of 75 MW. The output power from each
wind turbine varies based on the wind speed it encounters. The relationship between the output power
and wind speed is expressed as follows [52]:

16



Chapter 2

RENEWABLE ENERGY SOURCES AND UNCERTAINTIES MODELING
0, for v(v, and v)v,,
V-V,
P (v)= PW( = J for v, <v<v, (2.2)
Vr - Vin

P, for v, <v<vy,

ut

Here, P, represents the rated output power of a single wind turbine. The variables V,,, V, and v,

correspond to the cut-in, rated, and cut-out wind speeds of the turbine, respectively. In this study, the

wind speed parameters are selected as V;,=3m/s , V. =16 m/s, and V,,, =25 m/s, which are consistent
with the specifications of the Enercon E82-E4 turbine [53].

2.5.1.2 Calculation of Wind Power Probabilities

The output power from a wind turbine is discrete at certain wind speed ranges, as shown in
Equation (34). Specifically, the power output is zero when the wind speed v is below the cut-in speed

V,, or above the cut-out speed V,,, . Between the rated wind Vv, and the cut-out speed V,,, , the turbine
delivers its rated power output P, . The probabilities of wind power generation within these discrete

operational zones are calculated using the methods described in [54].

Vin | | Vou /]
fw (PW){PW _O}—I—GXP{—(;] _+€Xp_—[7j | (2 3)
B B 5
fw(pw){l?w:PW,}:l—eXpl:—(ﬁj +exp _(ﬂj
ol L 2.4)

In contrast to the discrete zones, the power output of wind turbine varies continuously in the
bounds of a specific range V,, SV <V, . Thus, the probability for this region can be modelled as follows
[54]:

Btww)|
B(v.—v,, P, A1 Vi, + Pv:vr V.=V,
fw(pw) a(ﬂ*Pwr)|:Vin+Igwr(Vr_Vin):| eXp| — a

(2.5)

2.5.2 Solar Photovoltaic Power Modeling Using Lognormal Probability Density Function

In real-world scenarios, solar irradiance is influenced by a wide range of environmental factors
including cloud cover, atmospheric conditions, geographic location, and time of day. These factors
introduce randomness and variability that are effectively captured by the lognormal model.
Additionally, the lognormal distribution provides mathematical convenience when integrating it into
power system simulations and optimization models, especially when dealing with stochastic or
probabilistic methods in renewable energy analysis.

17



Chapter 2

RENEWABLE ENERGY SOURCES AND UNCERTAINTIES MODELING

The lognormal probability density function (PDF) is widely regarded as a reliable statistical
model for representing the distribution of solar irradiance G ,which is the measure of solar power

received per unit area on a surface. This preference for the lognormal distribution arises from the
nature of solar irradiance data itself it is strictly non-negative and tends to exhibit positive skewness,
meaning that while most values cluster around a typical range, higher values occur less frequently
but are still possible. This behavior makes the lognormal distribution more appropriate than the
normal (Gaussian) distribution, which assumes symmetry and allows for negative values something
physically impossible for irradiance [51].

B 1 —(In Gy — p)’
f(Gy)= —Gsow/ﬂ exp {—20_1 }for Gg >0

In this study, solar irradiance G,is assumed to follow a lognormal PDF, characterized by a

(2.6)

mean () and a standard deviation (o) .The functional form of this probability distribution, which
defines the likelihood of a specific irradiance value occurring, is provided in Ref [51]. This
formulation is crucial for accurately modeling the power output of solar photovoltaic (PV) systems,
especially under uncertainty, and it serves as a foundation for the reserve and penalty cost evaluations
discussed in the following sections.

The lognormal fitting and the corresponding frequency distribution of solar irradiance, as
shown in Figure 2-7, are derived using a Monte Carlo simulation with a sample size of 8,000. The
resulting fit provides a visual and statistical representation of how well the lognormal model aligns
with the simulated irradiance data [55].
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Figure 2-6:Solar Irradiance Frequency For The Site
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2.5.2.1 Generated Power Modeling in Solar Power Plant

the process of converting solar irradiance into energy for photovoltaic plants can be expressed as
follows [56]:

GZ
P, for 0<G <R,
"G R

std " e

P(G)=

2
P (G ]forGZRL,
G

sr
std

2.7)

Here, G, represents the standard solar irradiance in standard environment, which is typically
set at 1000 W/m?. The parameter R, denotes a specific reference irradiance threshold, chosen as

120 W/m? in this study. These irradiance values are consistently applied to both solar PV plants
connected to the system. Furthermore, P, refers to the rated output power of a single solar PV unit,

corresponding to the maximum power it can produce under standard test conditions. These parameters
play a key role in determining the actual power output of the solar units based on the real-time solar
irradiance received, as discussed in subsequent modeling and simulation sections [57].

2.5.3 Hydropower Modeling Using Gumbel Probability Density Function

In hydrological studies, it is well established that river flow rates particularly annual maxima
are best described by the Gumbel (Type I extreme value) distribution. Under this model, the
probability density function (PDF) for a given flow rate O, is expressed in terms of a location

parameter A (which shifts the distribution along the flow axis) and a scale parameter » (which
determines its spread) [58], [59].

£,(0,)= l exp [Mj exp [_ exp (w__lﬂ
v Y v (2.8)

Figure 2-8 presents both the empirical frequency histogram of simulated flow-rate samples and
the fitted Gumbel curve. These samples were generated via 8,000 Monte Carlo iterations, using the
specific parameter values listed in table 6-2. The close alignment between the histogram and the
theoretical PDF confirms that the Gumbel distribution effectively captures the extreme-value
characteristics inherent in river flow data.
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2.5.3.1 Generated Power Modeling in Hydro Power Plant
In a small-hydro installation, the generated power depends on the water flow rate Q, and the

effective pressure head /1 .Mathematically, the output power P, of the small-hydro unit can be

expressed as [57]:

P, 0,)=n.pg0,H, (2.9)

In this expression, 77 denotes the efficiency of the turbine generator assembly, pis the water density,
and g represents the acceleration due to gravity.in this research study based on ref for our

calculations, we use the following parameter values:

e 1n=0.85

e p=1000 kg/m3
e £-9.81 m/s?

e H =25m

2.6 Cost Evaluation Based on Scenarios Outcomes

2.6.1 Cost generation for renewable sources:

One of the main challenges in integrating RES into the power grid is their intermittent and
unpredictable nature. Typically, renewable energy installations like wind farms and solar PV farms
are owned by private operators who enter into power purchase agreements with the grid or
Independent System Operator (ISO) to deliver a specified amount of scheduled power. If these farms
fail to generate the agreed-upon power due to the unavailability or insufficiency of renewable
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resources, the ISO must compensate for the shortfall by maintaining spinning reserves, which
increases overall power generation costs. This situation is referred to as an overestimation of
renewable power. Conversely, there are instances when the actual power generated exceeds the
scheduled amount an underestimation scenario. In such cases, the surplus power may go unused, and
the ISO may incur penalty costs. Therefore, the total cost of renewable energy includes the direct cost
of scheduled power, penalty costs for underestimation, and reserve costs for overestimation.

2.6.2 Direct Cost of RES Generators (DCost):

Wind, solar, and small hydropower generators operate without the need for fossil fuels. When
these plants are owned by the Independent System Operator (ISO), a conventional cost function may
not apply unless the ISO chooses to attribute a payback cost for the initial investment or includes it
as part of maintenance and renewal expenses. However, when such plants are owned by private
operators, the ISO must pay a price proportional to the scheduled power. The scheduled output,
agreed upon by the ISO, is a fixed amount and is jointly delivered by the solar PV and small-hydro
units. The output of the hydropower unit depends on the river flow rate, assuming a constant head
under a run-of-river configuration. Since the capacity and variability of the small-hydro unit are
usually minimal compared to the overall system load, it is typically operated at full capacity.
Consequently, the available hydropower determined by river flow combined with the solar PV output
forms the scheduled power supply [58].

2.6.2.1 Direct Cost of Wind Power Units

The Direct cost for the wind generator, referred to as Dcost,, ;, can be represented as follows

[52]:
Deost,, (WP, ;) =g, x WP, , (2.10)
Where g, represent the direct cost coefficients associated with j-th wind power plant and WP, denote

the scheduled power from the corresponding wind power plants

2.6.2.2 Direct Cost of Solar Power Units:

Solar generator, referred to as Dcost; , [60].
Dost , (SP,,, )= h, xSP,, (2.11)

h, represent the direct cost coefficients associated with associated with k-th solar power plant and

SP,, denote the scheduled power from the corresponding solar power plants

2.6.2.3 Direct Cost of Hydro Power Units:

The Direct cost of hydro power units referred to as Dcost, , , can be represented as follows
[58]:
Dcost, , (hPy,) = H, xhP, (2.12)

sc,i

H  represent the direct cost coefficients associated with i-th hydro power plant and P, denote the

scheduled power from the corresponding hydro power plants
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The mathematical expression for the DCost function of the combined solar-hydro generation
plants is as follows [61]:
Dcost, , (ShP,

Sh

)=C(SP,.+hP,) = h,.SP,

Sc.k

+H,hP,, (2.13)
2.6.3 Evaluation of Cost Uncertainties in RES Generators

In uncertain conditions, two scenarios can occur: when the actual power generated from wind
or solar sources is less than the estimated amount, known as power overestimation, necessitating the
use of spinning reserve resources to ensure an uninterrupted power supply. The expense associated
with activating these reserve units to make up for the overestimated power is referred to as the reserve
cost. For wind, solar PV, and solar-hydro generators, reserve cost is mathematically expressed as
follows [62].

2.6.3.1 Uncertain Wind Power Cost Evaluation

As previously mentioned, due to the uncertain nature of wind energy, a wind farm may generate
less power than the scheduled amount. In such cases, the Independent System Operator (ISO) must
maintain adequate spinning reserves to meet the resulting demand. The cost associated with
committing these reserve generating units to compensate for overestimated wind power is referred to
as the reserve cost [63].

The reserve cost for a wind power plant is defined as [63]:

wp

Av,j)

RCost,, (WP

Se,j

~WP,,,)=RK, (WP,

Se.j

ZRKWJ- OPWJ (WpSc,j - WP]) Jw (WRj)deJ (2 14)

where RK), ; is the penalty cost coefficient associated with jth wind power generator, WP, denotes

the output power from the corresponding wind units, f,, is the wind power probability density

function

In the case of underestimation, the actual output power from the wind farm exceeds
the scheduled amount. If this surplus power cannot be utilized such as by reducing the output
of conventional generators it is wasted. In such scenarios, the Independent System Operator
(ISO) incurs a penalty cost for the unutilized energy.

The penalty cost for a wind power plant is given by|[52]:

PC,, (WP

>, — WP, ) =PK, (WPA WP, )

vij

=PK, L WP, —WFs ;) Jw \WE, )dpy.,
RN UL 15

PC, ;is the penalty cost coefficient for the wind power plant, WP, is rated power output from the

plant.
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2.6.3.2 Uncertain Solar Photovoltaic Power Cost Evaluation

The cost evaluation approach for uncertain and intermittent solar PV power is fundamentally
similar to that used for wind power. However, solar radiation is widely recognized to follow a
lognormal probability distribution function (PDF). For mathematical convenience, the reserve and
penalty cost models are developed based on the methodologies presented in [64].

The reserve cost associated with the overestimation of solar PV power is given by [64]:

RCost

RS,k (SPSc,k - SPAv,k) = RKS,k (SPSc,k - SPAv,kJ

(2.16)
=RK % f [SPAV,k < SPSC,kJ x {SP&,’,{ - E[SPAV,k <SP, H

RK . is the reserve cost coefficient associated with the solar PV plant and SP, , is the actual

available power from the plant, f (SPAV p <SP kj is the probability of occurrence of solar power

shortage from the scheduled power SP_,, and E (SP o <SP kj represents the expectation of solar

PV power below SP_, .

On contrary to overestimation, penalty cost for underestimation of solar PV power
1s[64]:

PCy (SPA,k _SPSC,/C) =PKg, (SPAv,k _SPSc,k) 2.17)
=PKg; x fs (SPAv,k > SPs. ) x [E(SPAv,k > Py ) - SPSc,k] ‘

PK, is the penalty cost coefficient for the solar PV plant , f (SPAv,k > SPSCJC) is the probability of

solar power being excess of the scheduled power and E(SPAV’,{ > SP;. . ) is the expectation of solar PV

power above SP;,, .

2.6.3.3 Cost Evaluation of Uncertain Combined Solar Photovoltaic and Small-Hydro Power

Large hydropower plants, with their substantial reservoir capacities, are ideal sources for
providing spinning reserves. However, in contrast, the capacity of small hydropower units is typically
insignificant relative to total system generation and demand. As a result, the ISO may not consider
their spinning reserve capacity meaningful. In practice, private operators of small hydropower plants
often do not qualify for reserve or penalty payments.

In our case, the third-generation system consists of a combination of a solar PV unit and a small-
hydro unit. The output of the small-hydro unit depends on river flow rate, which is commonly
modeled using a Gumbel distribution [61].

The solar PV component is eligible for reserve and penalty payments. Since the small-hydro
unit contributes only about 10-20% of the total power from the combined system, we treat reserve
and penalty payments based on the total power output of the system [61].

The reserve cost for overestimation of the combined generation system power is:
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RCost,,(ShP, —ShP,)) = RK y, (ShP, — ShP,,)

= Ky * Sy (ShPy, < SHP,) %[ Py ~ E(SHP,, < SHE,)] (2.18)

RK,, is the reserve cost coefficient associated with ith combined solar hydro power plant ShP,,
represent the actual available power from the plant, £, (ShP, <ShP,)is The probability that the
combined system delivers less power than the scheduled amount SiP, and the expectation of delivered
power below ShP, is E(ShP, < ShP.,) .

The penalty cost associated with the underestimation of the combined generation system's
power occurs when the actual available power is represented as follows:

PCostg,(ShPy, — ShP;.) = PKsy(ShPy, — ShP;.)
= PKsy X fou(ShPay > ShPye) X [E(ShPyy > ShPy) — ShP,.)] (2.19)

In this context PK, represent the penalty cost coefficient related to ith combined solar-hydro
power plan. While £, (ShP,, > ShP,) represents the likelihood of energy exceeding the scheduled
power ShP,, while E(ShP,, >ShP,) denotes the forecast of the combined system power surpassing (
Sh])vc )'

2.7 Conclusion

This chapter presented modeling of uncertainties in wind, solar, and hydro generation by fitting
site-specific statistical distributions a Weibull distribution for wind speed variability, a lognormal
PDF for solar irradiance fluctuations, and a Gumbel distribution to capture extreme hydro inflow
events. We detailed the implementation of Monte Carlo simulation to propagate these uncertainties
through system operation scenarios, highlighting sampling strategies and convergence assessment to
ensure robust statistical characterization of renewable outputs. Cost evaluation was performed for
direct generation costs and imbalance-related costs, including reserve procurement for under
generation and penalty fees for over generation, based on scenario outcomes and cost coefficients
reflective of different technologies. By linking probabilistic output distributions to economic impacts,
this framework enables informed decision-making in renewable energy planning, supporting capacity
expansion, scheduling, and risk mitigation; future enhancements could incorporate correlated
sampling and variance-reduction techniques to further refine accuracy and computational efficiency.
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3.1 Introduction

Reliable and economical operation of modern power systems requires accurate modeling and
efficient optimization. As electrical networks become larger, more interconnected, and increasingly
integrated with renewable resources, system operators face the challenge of ensuring both security
and cost-effectiveness. Fundamental to this task are two key analyses: power flow (or load flow),
which determines the steady-state voltages, angles, and line flows for a given operating condition,
and (OPF), which extends this analysis by optimizing control variables to minimize costs or improve
performance while respecting system limits.

The (OPF) is one of the most studied nonlinear optimization problems. The OPF goal is
optimizing the production and transmission of electrical energy in distribution networks while
considering system constraints and control limits. There is a wide diversity of OPF formulations and
solution methods available. The nature of the OPF continues to change due to the modernization of
electricity markets and the addition of renewable resources [65]. This chapter begins by introducing
the fundamentals of power-flow analysis defining key state variables (bus voltages and angles) and
control variables (generator real/reactive outputs, transformer tap settings). We then derive the AC
OPF formulation via the Newton Raphson method, detailing how real and reactive power balance
equations form the equality constraints, while generator capability curves, voltage limits, and line
thermal ratings impose inequality constraints.

Next, we systematically classify decision variables and constraints into continuous, discrete,
linear, and nonlinear categories, and demonstrate construction of typical objective functions:

e Fuel cost curves (quadratic or piecewise-linear)

e Loss minimization

e Emission cost fonctions

o Composite indices for voltage stability or security

We also review popular constraint-handling techniques, penalty functions, Lagrangian
relaxation, interior-point methods, and mixed-integer programming for discrete controls. Finally, the
chapter concludes with a concise summary of the general OPF formulation, setting the stage for the
advanced metaheuristic and multi-objective solution methods developed in the subsequent chapters.

3.2 Power Flow Definition and Objectives
3.2.1 Definition of Power Flow

The power flow problem (load flow) study in an electrical network refers to the analysis and
calculation of the variables of an electric network under normal balanced operation in steady state.
These variables include node voltages, injected powers at nodes, and power flows in the lines. Losses
and currents can be derived from these variables.in a given network. So, in simpler language we can
say It involves studying and analyzing the flow of electrical power from sources (the generation
sources such as power plants) through the transmission and distribution networks to the numerous
loads (consumers) linked to the system. The study of power flow involves calculating the voltage
values within an electrical network for specified ends and given conditions at bus sets, from these
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voltages, the active and reactive power flows in each line and transformer are calculated. The set of
equations representing the electrical network is nonlinear in nature [66].

3.2.2 Objective

In practical applications, power flow calculation methods utilize the network configuration and
the equipment properties to determine the complex voltage at each node. Additionally, these methods
assume perfect symmetry between the three phases of the three-phase system in the electrical network
by considering these factors, accurate assessments of voltage conditions within the network can be
obtained.

Power flow studies are used for planning the construction and expansion of electrical networks,
as well as for their operation and control the result of a power flow problem informs the operator or
network planner about how the network lines are loaded, what the voltages are at different bus sets,
how much generated power is lost, and where the limits are exceeded.

In power flow calculation, a bus bar is defined by four parameters which are classified are follows
3.2.3 Classification of Bus Bars According to Their Specifications
We can classify bus bars into three categories based on the specifications of the variables used.

For each bus bar, two variables need to be specified beforehand, and the other two variables are to be
calculated.

e Reference bus bar (slack bus): It’s a generator bus bar that can be classified based on two specified
variables: the voltage magnitude (V) and the phase angle (&). The power values (P and Q) at this
bus bar are initially unknown and need to be determined through calculations.

To establish a reference point for voltage angles, the reference bus bar is selected from the generator
bus bars with the highest active power. This reference bus bar serves as the benchmark for
determining the voltage angles at other bus bars in the system.

e Load bus bar: This bus bar supplies a load characterized by its active power P and reactive power
Q. Therefore, (P, Q) are specified, while (V, §) are to be calculated.

e Generator bus bar: This bus bar is connected to a generator that delivers an active power P under
a constant voltage V controlled by an Automatic Voltage Regulator (AVR). Therefore, (P, V) are
specified, while (Q, &) are to be calculated.

Table 3-1:Classification of bus bars according to their specifications

Types of bus bars Known variables Unknown variables
Reference bus bar (V §) V, 8 P,Q
Generator bus bar (PV) P,V Q,8
Load bus bar (PQ) P,Q V, 8

27



Chapter 3

POWER SYSTEM AND POWER FLOW MODELING

3.2.4 Formulation of Power Flow Equations

The study of power flow involves calculating the voltages of the electrical network for specified
endpoints and given conditions at the buses, such as capacitive or inductive loads that need to be
supplied, generated powers, and voltage magnitudes at all buses. From these values, the currents in
the transmission lines, power flows, and power losses can be obtained. The nodal currant and voltage
equations of an electrical network with N buses are written in the following matrix form:

Il Y11 Y12 YlN Vl
12 — Y21 Y22 YZN * VZ (3 1)
IN YNl YNl YNN VN
Where:
Igys = Ygus * Vaus (3.1)

Igys = [I1, 15, ... Iy]" : The vector of currents injected into each bus bar represents the external source
currents. The current flowing from bus bar i to bus bar j is considered positive, while the current
flowing in the opposite direction is considered negative.

Vsus = [V1, Vs, ... Vy]T : The vector of complex voltages at each bus bar and Y BUS represents the
nodal admittance matrix of the system, which has a size of (N * N), where N is the number of bus
bars in the system.

Y;; : The diagonal element of the admittance matrix represents the sum of all the components
connected to that particular bus bar. This can be expressed mathematically by the following equation:

Yi = X0 Vi (3.2)

i*k

Vik . The off-diagonal element i, k of the admittance matrix represents the negative sum of all the
components connected between bus bar i and bus bar j. In other words, it can be expressed as follow:

Yie = — Xk=i Vi (3.3)

According to equation (1.1), the net injected current at bus bar i can be expressed as follows:

L= Yu*V,i=12..,N (3.4)

Where:
Yie = Gy +j * By = Yig(cosdy + jsinSy,) (3.5)
Vi = Rgx + J * Imy, = Vi (cos8y + jsind,) (3.6)

Gix , By are respectively the conductance and susceptance of Y;;, ; Rgrand Im,, are respectively the
real and imaginary parts of V, ;8 is the phase of the voltage at the busbar k;

O;k : the phase of the element ik;
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The expression of the injected apparent power S; at a busbar can be written as follows:
S{=Pi—jQi =V * i1 Yy * Vi (3.7)

P;,Q; : where P; and Q; are the active and reactive powers at busbar i. By substituting equations (3.5)
and (3.6) into equation (3.7), we obtain:

P, =YN_ViVYycos(By +8,—8) i=12,..,N (3.9)
Qi =XN_ViViViysin(§;, + 6, —8;) i=12,..,N (3.9)
The equations (1.9) and (1.10) represent the power flow equations as follows:
P; = Pg; — Pp; (3.10)
Qi = Qgi — Qi (3.11)
Where Pg;, Qgiare the active and reactive powers generated, respectively.
Pp;, Qp;are the active and reactive powers demanded at the bus i, respectively.
3.2.5 Power Flow Problem Solution Methods

Generally, the method used to solve this problem is Newton-Raphson due to its fast
convergence and reduced number of iterations compared to other methods (such as Gauss-Seidel).
The Taylor series expansion is given by:

ol =1+[aol = [acl = [} 11128 e
S o e (3.13)

Where: AP and AQ represent the differences between the specified and calculated active powers, and
the differences between the specified and calculated reactive powers.

A® and Av represent the differences between the specified and calculated angles, and the differences
between the specified and calculated voltages; J is the Jacobian matrix.

AP, = PP — pga (3.14)

AQ; = Q¢ — Qf* (3.15)

l

For a network with N buses, with NG generator buses, there are 2(N - 1) - NG equations to solve.
Consequently, there are (N - 1) equations for active power and (N - 1 - NG) equations for reactive
power, resulting in a Jacobian matrix of size (2N - 2 - NG) x (2N - 2 - NG) elements.

The calculation of the Jacobian matrix elements is done as follows:

The diagonal and off-diagonal elements of J1 are:
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6Pi )

%, Y1 Vel Yie[|V; | sin(8;x + 8 — ;) (3.16)
0P; . .
a5, = ~WVillYal Vil sin(8yc + 8, — 8,) K # (3.17)

The diagonal and off-diagonal elements of J2 are:

0P;
oy = 21¥il Vil cos(8) + Tien Vil 1Y Vil cos (8 + 81 = ) (3.18)
g—‘};z= |Vij||Vi|COS(6ik+8k—8i) K+#i (319)

The diagonal and off-diagonal elements of J3 are:

9Q;

oo = ZiatlVil 1Y Vil cos(8ye + 84 = 8)) (3.20)
0Q; . .
%% — 1Yy IVl sin(8y;) + Tpewr Vie e [V sin(8yc + 8 — 8, (3.21)

av;

The diagonal and off-diagonal elements of J4 are:

dQ; . .
o = 2Vl Vil sin(8i) + Ticea Vil [ ¥ie Vil sin(Sisc + 8 — 5) (322)
o = ~|Vil Vil sin(8y. + 8 — 8,) K # 1 (3.23)

3.3 Optimal Power Flow

Optimal Power Flow is a mathematical optimization problem in the field of electrical power
systems, it is widely regarded as a fundamental tool in this field and has been the subject of wide
research since it was introduced by Carpentier in 1962. The objective of the OPF problem is to
identify the optimal settings for a given power system network in order to optimize a specific
objective function, while satisfying the power flow equations, system security, and operational limits
of equipment. This involves manipulating various control variables, including generator real power
outputs, voltages, transformer tap settings, phase shifters, switched capacitors, and reactors, to
achieve an optimal network configuration based on the defined problem formulation. Moreover, OPF
can offer valuable support to operators in addressing various challenges encountered in the planning,
operation, and control of power networks [67].

The primary objective of OPF is to minimize a cost function or maximize a performance index
while ensuring that the power system operates within specified limits. The performance index can be
related to efficiency, voltage stability, system reliability, or any other desired system performance
parameter. The most utilized objective function in OPF is the minimization of overall fuel cost.
However, other traditional objectives such as minimizing active power loss, bus voltage deviation,
emissions from generating units, the number of control actions required, and load shedding. With the
deregulation of the electric power industry. One of the major challenges in the OPF problem lies in
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the nature of the control variables, as some are continuous (such as real power outputs and voltages),
while others are discrete (such as transformer tap settings, phase shifters, and reactive injections) [67].

The application domains of OPF can be classified as follows
e Minimization of fuel cost.

e Minimization of losses.

e Improvement of voltage profile and stability.

e Maximization of power transfer capability

3.3.1 Problem Formulation Optimal Power Flow Model

The main objective in solving OPF problems is to identify the optimal values for control
variables, which involves minimizing a specific objective function while adhering to all physical and
security constraints. Mathematically, the OPF problem can be expressed as follows:

Minimize f(x,u) (3.24)
Subject to:
G(x,u) =0 (3.25)
h(x,u) <0 (3.26)
Where:

F(x,u) presents the objective function;

x represents the state variables vector of a power system network;

u represents the control variables vector;

g(x,u) represents the equality constraints;

h(x,u) represents inequality constraints, where, imax and smin are the upper and lower boundary limits

3.3.2 Optimal Power Flow Variables Classification

In optimization problems, two main types of variables are considered: independent variables,
also known as control or decision variables, and dependent variables, also known as state variables.
The optimization process involves first determining the optimal values for the control variables and
then calculating the corresponding values for the state variables based on those optimal control values.

In the OPF problem, control variables may include:

e Active power generation of all generator buses except slack bus;
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e Voltage of all generator buses;

e Tap setting of all transformers;

e Reactive power injection of shunt capacitor banks;
e Moreover, state variables may also include;

e Active power output of the slack bus;

e Load bus voltages ;

e Reactive power generated from generators;

e Transmission line loadings ;

It is important to note that the number of control variables determines the dimensionality of the
solution space. In other words, a problem with n control variables will result in an n-dimensional
solution space [68].

3.3.3 Constraints Formulation

OPF Constraints in the OPF problem are typically classified into two types: equality constraints
and inequality constraints. These conditions define the feasible region of the problem, and any
solution must fall within this region in order to satisfy all the constraints.

3.3.3.1.1 Equality Constraints

The equality constraints in load flow analysis are derived from the physical laws that govern
the behavior of an electrical network. These constraints are expressed as nonlinear equations in the
power flow equations, which ensure that the net injection of active and reactive powers at each bus
is equal to zero.

NB

=By =V.3V, [ G, cos(8,)+ B, sin(5,) | =0

J=1
NB

O =04 — V:ZV/ [Gij Sin(é‘y’) _Bij Cos(é‘lj)] =0
=l

Where:
NB s the total number of busses of the power system;
P, is the active power of generation;

O, 1s the reactive power of generation;

P, 1s the active power of demand;
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0, 1s the reactive power of demand;
G, the conductance of the corresponding lines between the (i, j) buses;
B, the susceptance of the corresponding lines between the (i, j) buses.

3.3.3.1.2 Inequality Constraints

In the context of the OPF problem, inequality constraints typically impose limitations on
various physical components in the electrical system. These components can include generators, tap-
changing transformers, and phase-shifting transformers. Additionally, system security requirements
and reactive power compensation limits contribute to the set of inequality constraints. Specifically,
when considering generators, these constraints are concerned with maintaining active and reactive
power levels within acceptable boundaries.

pmin < p.. < pmax 3.28
Gi Gi

QU™ < Qg < QU™ (3.29)

The inequality constraints for load tap-changing transformers involve maximum and minimum
tap positions, which determine the voltage level relative to the nominal voltage. These constraints are
utilized to adjust voltage magnitudes and regulate reactive power flows. On the other hand, phase-
shifting transformers have maximum and minimum phase angle shifts to control voltage phases and
regulate active power flows. These specific constraints are considered for both types of transformers.

THE™ < Ty < TR (3.30)

min max
Qe < < gy (3.31)

Reactive power compensators such as Batteries, reactors, etc. have limits defined by minimum
and maximum values, which determine their operating range. These limits ensure that the devices
operate within acceptable bounds and can effectively compensate for reactive power in the system.

QMM < Q¢ < QU (3.32)

Bounds on the apparent power flow in power transformers and transmission lines are set to
uphold network security and avoid issues such as instability or thermal losses in conductors. These
limits ensure that the power flow in these components remains within safe operating conditions,
avoiding excessive heating and potential damage to the system.

|Sic? < IS (3.33)

To preserve the quality of system security and electrical service, it is essential to limit
violations on voltage constraints, which must remain within their tolerable limits.

ymin <y, < ymax (3.34)
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3.3.4 Constraint Handling (CH) Methods

Constraint handling is a crucial aspect of meta-heuristic optimization algorithms, especially for
solving constrained engineering problems such as (OPF) and Optimal Reactive Power Dispatch
(ORPD). Numerous techniques have been developed, which can generally be classified into the
following six categories

1) Preserving Feasible Solution Method: The key concept of this approach is to place the solutions
into feasible research-space and keeping within by updating process that produces only feasible ones
[69].

2) Penalty Function Method: In this technique a penalty terms is added to the objective function
once any constraint violation happens [70].

3) Rejection of Infeasible Solutions: Also called death penalty, in which rejects any infeasible
solution as soon as they are generated. In addition, it has an efficient computational, because with any
violate solution, it is assigned a fitness of zero [69].

4) Superiority of Feasible Solutions Method: This approach is based on the assumption of the
superiority of feasible points over infeasible ones [52].

5) Stochastic Ranking Method: first introduced by Runarsson and Yao in 2000: In this technique a
control factor Pf (0 < P < 1) is predefined by the user to check a balance between objective
optimization value (feasibility) and whole of constraint violation (infeasibility points). The process is
to determine whether the objective function value or the all constraint violation is used to rank a
solution. The ranking process is performed as follow:

If both solutions are feasible or rand < Pf, rank is performed only on the objective value.
Otherwise, rank is conducted on the constraint violations only [71].

Since the selecting of the suitable constraint handling method is highly depending on the
problem's nature. The problem formulation treating in this dissertation confirm that both of penalty
function (PF) method and superiority of feasible solutions (SF) method are more appropriate than
other ones. In other words, due to their relative success and the most commonly used ones in the
power system optimization. To this context, we give more detail of these methods, and how to
handling with different formulation of OPF and ORPD problems in guarantying the feasibility of
solutions.

3.3.4.1 Penalty Function Method (PF)

Penalty function method is the simplest and oldest handling technique which transform a
constrained problem into an unconstrained one throughout discarding infeasible solutions during the
search process even after sufficient number of feasible solutions. Also known as static penalty
function method, values of the penalty factors are chosen by trial and error process. Because this
method requires proper adjustment of the penalty factors, a small penalty factors over-explores the
infeasible region, thus delaying the process of finding feasible solutions, and may prematurely
converge to an infeasible solution. On the other hand, large penalty factors may not explore the
infeasible region properly, thereby resulting in premature convergence. For this reason, it is preferable
to choose the trial to start with the small values of factors until the suitable coefficients will be
properly selected that ensure at the same time the convergence rate with feasibility of solution [71].
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Among different formulations of the penalty method, the Powell-Skolnik method where incorporates
all the constraints with feasibility:

p(x)= 1+,u[imax{0,h[ (x )}+g|g[ (x)|| if not feasible (3.39)

j=1
f(x) if feasible
Where the constant g > 0 is fixed, so this approach is a static penalty method.
The penalty-based method transforms the objective function / (x ) to a modified objective function

F in the following from,
F, (x) =/ (x)[objective]+ P(x)[Penalty] (3.36)

Where the penalty term P (x ) may take different forms, depending on the actual ways or variants of

constraint handling techniques. For instance,
M N
P(x)=z,uigi2(x)+2kj maX{O,hi (x )}2 (3.37)
i=1 j=1

Where g >0and k, >Oare penalty factors. In order to avoid too many penalty factors, a single
penalty constant A > 0 can be used as follows:
M N
P(x)=2]Y g (x )+ max {0,/ (x )} (3.38)
i=l j=l
Where A is fixed factor, independent of iteration t, this basic form of penalty is the well-known static
penalty method. Some studies show that it may be beneficial to vary A over the course of iterations,
A=(ar) (3.39)
Where o =0.5 and f=1.2
In short, there are other forms of penalty approaches such as adaptive penalty and death penalty.

3.4 Objective Function

In OPF, the objective function signifies the objective or target to be reached when optimizing
the operation of a power system. The objective function is usually defined mathematically and
measures the system's performance or cost.

Typically, the most commonly utilized objective in the OPF problem formulation is the
minimization of the overall cost associated with the active power generation from real energy
production units. The cost of each production unit is assumed to be solely dependent on the active
power generated and is represented by quadratic curves. Consequently, the total objective function of
the electrical system can be expressed as the sum of the quadratic cost models for all generators
involved. By minimizing this objective function, the OPF algorithm aims to optimize the operation
of the system by determining the optimal values for the control variables that minimize the total
generation cost.

Minimise
F = Zliszl i = inGl al-Pz + biPi + Ci ($/h) (346)
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Or
PGimin < PGL' < PGimax (3~46)

PGi == PDi + PLi (347)

Where ai, bi, ci signify the cost coefficients of the i-th generation unit, and PDi, PLi are the
demanded power and the active transport losses, respectively.

3.4.1 Classical Methods Applied to The Optimal Power Flow Problem

There are several classical optimization techniques that have been applied to solve (OPF)
problems. Here are six categories of these techniques, along with a brief description of each and their
application statistics:

e Newton's Method: in general, these are nonlinear equations that need to be solved using iterative
methods. The Newton method is particularly preferred because of its quadratic convergence
properties [73].

e Linear Programming; Linear programming is a mathematical optimization technique used to
solve problems that involve linear constraints and an objective function. In this method, both the
objective function and constraints are represented as linear equations or inequalities, and the
variables are required to be non-negative [74].

¢ Quadratic Programming; Quadratic programming is a specific type of nonlinear programming
where the objective function is quadratic, and the constraints are either linear or linearized [74].

e Nonlinear Programming: Nonlinear programming (NLP) is a branch of optimization that
focuses on solving problems with nonlinear objective functions and constraints. In NLP, the
constraints can be either from equalities or inequalities or both. The inequality constraints can be
bounded, meaning they have specified upper and lower limits. This allows for more flexibility in
defining the feasible region and finding optimal solutions [75].

e Interior Point Method: The interior point method, which has recently been rediscovered, offers
a faster and potentially superior alternative to the conventional simplex algorithm for solving
linear programming problems. Furthermore, this method has been extended to tackle nonlinear
programming (NLP) and quadratic programming (QP) problems, showing remarkable qualities
and yielding promising results. By introducing nonnegative slack variables, the interior point
methods transform inequality constraints into equalities. A logarithmic barrier function,
incorporating the slack variables, is subsequently added to the objective function, multiplied by
the barrier parameter. Throughout the solution process, this parameter is gradually reduced to
zero, ensuring convergence within the feasible region [75].

Limitations of Classical Methods

Addressing optimization problems using classical or traditional techniques can be challenging
due to various factors depending on the nature of the problem. Difficulties arise when dealing with
problems that have multiple local optima, involve discontinuities, exhibit changes in optimal
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solutions over time, or have constraints within the search space. Additionally, classical search
techniques often struggle with problems that have large and complex exploration or search spaces,
limiting their ability to thoroughly explore all potential solutions. Large-scale problems may be
computationally expensive to solve using classical methods.

Overall, these limitations highlight the need for alternative approaches, such as metaheuristic
optimization methods, in complex optimization scenarios. These methods will be discussed in the
second chapter of this thesis.

3.5 Conclusion

This chapter has developed a comprehensive framework for modeling power systems and
solving the Optimal Power Flow (OPF) problem using classical methods. We began by formulating
the nonlinear power flow equations that govern real and reactive power balances across buses,
emphasizing their role as equality constraints in OPF formulations. Classical solution techniques were
then reviewed, ranging from early gradient and Newton—Raphson approaches to modern interior-
point algorithms. Key OPF objectives including generation cost minimization, loss reduction, and
voltage profile improvement were shown to influence the choice of optimization algorithms and
impact practical dispatch decisions. The chapter also detailed the structure of equality constraints
(power balance and network equations) and inequality constraints (generator output limits, bus
voltage bounds, and line flow ratings), and surveyed traditional constraint-handling methods that
enforce feasibility while ensuring efficient convergence. However, due to the inherent limitations of
these classical methods, more advanced optimization techniques are needed to address increasing
system complexity and uncertainty topics that will be explored in the next chapter.

37



Chapter 4: METAHEURISTIC
OPTIMIZATION TECHNIQUES

38



Chapter 4

METAHEURISTIC OPTIMIZATION TECHNIQUES

4.1 Introduction

Metaheuristic optimization algorithms are high level strategies designed to find near optimal
solutions for hard (often NP-hard) problems where classic methods fail, by balancing global
exploration and local exploitation across a search space. These methods draw inspiration from diverse
sources biological evolution, collective animal behavior, physical laws, and human social processes
and can be grouped accordingly into four main classes: evolutionary, swarm-intelligence, physics-
based, and human-related techniques. Each class differs in its metaphor (what real-world process it
mimics), its algorithmic operators (e.g. genetic crossover vs. velocity update), and its typical balance
of exploration vs. exploitation [76]. Metaheuristic algorithms are general-purpose, problem-
independent strategies for finding high-quality solutions to complex optimization problems,
especially those with nonlinear, multimodal, or combinatorial search spaces that defeat exact
methods. They operate as “black-box™ optimizers: they do not require gradient information or
problem convexity, and can handle discrete, continuous, noisy, or dynamic objective functions. Two
central principles guide their design [77].

Exploration: Exploration refers to the capability of a metaheuristic algorithm to investigate
broadly across diverse and unvisited regions of the solution space, thereby reducing the chance of
becoming trapped in local optima and increasing the likelihood of finding the global optimum. By
generating varied candidate solutions and sampling uncharted areas, exploration mechanisms
maintain population diversity and ensure the algorithm does not prematurely converge on suboptimal
regions. Techniques such as random perturbations, large neighborhood jumps, and high-temperature
acceptance in Simulated Annealing enable metaheuristics to escape local traps and discover
promising basins in multimodal landscapes. In population-based methods like Genetic Algorithms,
exploration is further enhanced through elevated mutation rates and diverse crossover operations,
which introduce new genetic material and facilitate sampling of previously unexplored search-space
regions. Effective exploration strategies are particularly critical in high-dimensional or noisy problem
domains, where the search landscape contains numerous peaks and valleys, as they significantly
improve the algorithm’s ability to locate the true global optimum [76].

Exploitation: Exploitation emphasizes the intensification of the search around high-quality
solutions to refine and improve them through local search operations, thereby accelerating
convergence toward optima. This process focuses computational effort on the neighborhoods of
promising solutions by performing small, directed moves such as greedy improvement steps or
tabu-guided exchanges to fine-tune solution quality. In Particle Swarm Optimization, for example,
exploitation is realized by biasing particle velocities toward their personal-best and the global-best
positions, causing the swarm to sample more intensively in regions that have already demonstrated
superior performance. Trajectory-based metaheuristics like Iterated Local Search and Tabu Search
explicitly exploit local neighborhoods via systematic descent heuristics or memory-based forbidding
of recent moves to climb toward local optima. However, excessive exploitation characterized by
overly small perturbations can limit exploration and increase the risk of premature convergence to
suboptimal basins if diversity mechanisms are not maintained [76].
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4.2 Classification of Metaheuristic Algorithms

A common taxonomy divides metaheuristics into four main families based on their source of
inspiration and operational paradigm:

Evolutionary Techniques: draw on biological evolution, typically population-based with operators
like crossover and mutation.

Swarm Intelligence Techniques: model collective behaviors of decentralized agents (e.g., ant
colonies, bird flocks).

Physics-based Techniques: mimic natural physical processes (e.g., annealing, gravity,
electromagnetism).

Human-related Techniques: simulate social, cognitive, or organizational behaviors (e.g., teaching,
brainstorming).

4.2.1 Evolutionary Techniques:

Evolutionary algorithms (EAs) simulate the principles of biological evolution notably selection,
crossover (recombination), mutation, and survival of the fittest to iteratively improve a population of
candidate solutions toward better fitness levels. These methods are inherently population-based and
derivative-free, making no assumptions about continuity or differentiability in the underlying
objective function. Their generality and applicability make them robust across diverse optimization
challenges, ranging from engineering design to scheduling and power system optimization. One
comprehensive review covering these characteristics including algorithm classes, operators,
exploration—exploitation balance, and problem applicability is provided by Eiben & Smith in their
foundational text on evolutionary computing [78].

Mechanisms:
Evolutionary techniques follow a generational cycle comprising six main steps:

1. Initialization: A population of candidate solutions is randomly generated to uniformly sample the
search space’s diverse regions.

2. Evaluation: Each individual’s fitness is computed by assessing the objective function, providing
a scalar measure of solution quality.

3. Selection: Candidates are probabilistically chosen as parents based on fitness higher-fitness
individuals have a greater chance to reproduce thereby enforcing survival of the fittest.

4. Crossover (Recombination): Pairs of parents exchange segments of their encoding to create
offspring, combining successful traits from both and pro moting exploration of new regions.

5. Mutation: Random perturbations are applied to offspring to introduce novel genetic material and
maintain population diversity, guarding against stagnation.

6. Replacement: A new generation is formed by selecting among parents and offspring often
retaining elite individuals to balance retention of good solutions with introduction of new ones.

40



Chapter 4

METAHEURISTIC OPTIMIZATION TECHNIQUES

Genetic Algorithms (GAs):

Genetic Algorithms (GAs) encode candidate solutions as fixed-length strings typically binary
vectors or real-valued arrays and iteratively evolve them using biologically inspired operators. In each
generation, a population’s fitness is evaluated, parents are probabilistically selected based on fitness,
and offspring are generated through crossover (one-point, two-point, uniform) and mutation (bit-
flipping or real-value perturbations). Elitism preserves the best individuals directly into the next
generation, ensuring no loss of high-quality solutions. GAs are derivative-free, require no continuity
or differentiability assumptions, and can seamlessly handle discrete, continuous, and mixed-integer
problems.A comprehensive review detailing genetic operators, population dynamics, exploration-
exploitation balance, and inheritance mechanisms is available in ref [79].

4.2.2 Swarm-intelligence (SI):

Swarm-intelligence algorithms are population-based metaheuristics inspired by the collective
behavior of social organisms ants, bees, birds that self-organize through local interactions to perform
tasks beyond the capability of any individual agent. They rely on simple behavioral rules at the agent
level such as movement, sensing, and updating internal states and on indirect or direct communication
stigmergy or information sharing to produce coherent, intelligent global search patterns without any
central coordinator. Core emergent properties include robustness (tolerance to agent failures),
adaptability (response to dynamic landscapes), and scalability (performance with increasing agent
numbers), which together enable SI methods to maintain diversity and avoid premature convergence
in complex, multimodal search spaces [80].

Mechanisms
Three fundamental mechanisms drive SI search dynamics:

1. Decentralized control: each agent follows local rules without a global leader, enabling parallel
exploration and fault tolerance.

2. Indirect communication: agents modify shared environmental markers (e.g., pheromone trails)
that influence subsequent agent behaviors, creating positive and negative feedback loops to balance
intensification and diversification.

3. Iterative adjustment: agents iteratively update their positions or solution components based on
personal experience (memory of past successes) and communal information (global or neighborhood
best), which dynamically steers the swarm toward high-fitness regions while still exploring new areas.

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) represents candidate solutions as particles moving through
the search space. Each particle’s velocity is adjusted based on its personal best position (pbest) and
the global best position (gbest) discovered by the swarm. This mechanism effectively blends
individual learning with social influence, enabling PSO to converge toward optimal regions without
relying on gradient information or continuity assumptions [81].
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4.2.3 Physics-Based Techniques

Physics-based metaheuristics translate optimization variables into physical quantities and
leverage well-understood natural laws such as thermodynamics, gravity, and electromagnetism to
drive search dynamics toward minima or equilibria. By modeling solution candidates as particles,
masses, or charges, these algorithms exploit analogues of energy minimization or force interactions
to balance global exploration and local exploitation. Some operate on a single trajectory (e.g.,
Simulated Annealing), while others maintain a population of interacting agents (e.g., Gravitational
Search), but all share the principle of mapping problem structure onto physical processes to guide
search adaptively [82].

Core Principles

1. Physical Mapping: Each solution is encoded as a physical entity (e.g., a particle with mass or
charge), and its “fitness” determines a corresponding physical property (mass magnitude, energy
level, temperature).

2. Interaction Laws: Agents interact according to laws such as Newton’s law of gravitation or
Coulomb’s law of electrostatics, inducing movements that bias the search toward high-fitness regions
while still permitting exploration via weaker forces or thermal fluctuations.

3. Control Schedules: Parameters analogous to temperature schedules or force attenuation functions
govern the transition from exploration (high energy/weak forces) to exploitation (low energy/strong
forces), ensuring convergence properties can be tuned or guaranteed under certain conditions.

Gravitational Search Algorithm (GSA)

In GSA, each agent is assigned a “mass” proportional to its fitness; masses attract one another
via a gravitational constant, so that heavier (better) masses exert stronger pull, guiding lighter agents
toward promising regions. Over time, the gravitational constant is decreased to shift focus from
exploration to exploitation [83].

4.2.4 Human-related Techniques

Human-related metaheuristics emulate social interactions, cognitive behaviors, and
organizational processes to generate and refine solutions. They may be population-based (teams,
crowds) or hybrid, integrating human-inspired operators with classical heuristics [84].

Mechanisms:
Idea exchange: Pooling and recombining individual insights (e.g., brainstorming, teaching).
Role-based interaction: Teachers and students (TLBO), leaders and followers (MLO).

Game-theoretic dynamics: Competition (War Strategy Optimization) or cooperation (Teamwork
Optimization).

Learning and adaptation: Individuals improve via practice (Skill Optimization Algorithm) or
advice (Mother Optimization Algorithm).
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Teaching—Learning-Based Optimization (TLBO)

Teaching—Learning-Based Optimization frames the search process as a classroom where the
“teacher” (the current best solution) guides the entire population of “learners” toward improved
performance by shifting the mean solution vector, while subsequent peer-to-peer interactions among
learners foster further refinement and diversity in the search space. This dual-phase mechanism
teacher phase for global intensification and learner phase for local exploration eliminates
algorithm-specific parameters and leverages simple yet effective knowledge transfer to achieve rapid
convergence without extensive tuning [85].

4.2.5 Differences Between Classes:

Source of Inspiration: biological evolution vs. social swarms vs. physical laws vs. human behaviors.

Population Structure: evolutionary and swarm algorithms are strictly population-based; physics-
based may be single-solution (SA) or multi-agent (GSA); human-related can blend both paradigms.

Operators: evolutionary methods use genetic operators; swarm intelligence uses movement and
pheromone rules; physics-based use energy/force dynamics; human-related use interaction and
learning metaphors.

Exploration vs. Exploitation: physics-based often rely on temperature or force schedules,
evolutionary on diversity maintenance, swarm on social learning, and human-related on role
transitions and knowledge sharing.

Table 4-1:Metaheuristic Algorithms Classification

Key operators

crossover, mutation

updates, pheromone
laying, attraction

schedule, force
calculations

Aspect Evolutionary Swarm Intelligence Physics-Based Human-Related
. Collecti . H teaching,
.. Natural selection, 0. e I.Ve Physical um?n cac ‘mg
Inspiration ) animal/insect learning, social
genetics ; laws/phenomena
behavior processes
Either population ) .
. . . . Populat th
Population vs. |[Population of Population with local [[(GSA) or single- Op,u ation wi
. . . . . ) social/knowledge
trajectory solutions Interactions solution trajectory
exchanges
(SA)
Selection, Velocity/position Temperature Teacher—learner

updates, knowledge
sharing

Randomness in

Random peer

focus

Exploration Mutation, diverse |movement, High “temperature,” ||. .

) . ) interactions,
mechanism mating pheromone low attraction ) )

. brainstorming
evaporation
e L ) ) Cooling schedule, )

Exploitation  |Selection pressure, ||Attraction to best ) g Teacher guidance,

. .. increasing force .
mechanism elitism peers or global best knowledge aggregation

43




Chapter 4 METAHEURISTIC OPTIMIZATION TECHNIQUES

Aspect Evolutionary Swarm Intelligence Physics-Based Human-Related

Current state (e.g.
temperature), agent
masses

Global and parent ||Personal best, global
population best, pheromone map

Shared knowledge

Memory usage
y usag pool, teacher’s record

4.3 Kepler Optimization Algorithm (KOA):

4.3.1 Inspiration

In ancient times, it was widely believed that the Earth was the center of the universe, with the
Sun, planets, stars, and moons revolving around it. This geocentric view persisted until 1543, when
the Polish astronomer Nicolaus Copernicus challenged it by proposing the heliocentric theory that
the Earth and other planets orbit the Sun. Although Copernicus lacked the means to prove his theory,
it laid the foundation for future discoveries. In 1609, German astronomer Johannes Kepler confirmed
the heliocentric model through extensive calculations. He formulated three fundamental laws that
describe the motion of planets around the Sun. These laws, known as Kepler’s laws of planetary
motion, are outlined below [86], [87]:

Kepler’s First Law:

All planets travel in elliptical orbits with the Sun located at one of the two foci. This law defines
the shape of planetary orbits as ellipses rather than perfect circles, as illustrated in Figure 4-1. An
ellipse resembles an oval and has two focal points; the Sun occupies one of these. The eccentricity of
an ellipse, represented by e, quantifies how elongated the shape is. It is calculated by dividing the
distance from the center of the ellipse to a focus by the length of the semi-major axis. When e = 0,
the orbit is a perfect circle; when e = 1, it becomes a straight line. Figure 4-2 shows examples of
various elliptical shapes.

Kepler’s Second Law:

A line segment connecting a planet to the Sun sweeps out equal areas during equal intervals of
time. This law explains the changing speed of a planet in its orbit. A planet travels more quickly when
it is closer to the Sun and more slowly when it is farther away. Despite these changes in speed, the
imaginary line from the planet to the Sun covers equal areas over equal time periods, maintaining a
consistent areal velocity. The velocity of a planet around the Sun can be calculated as follows [88]:

- [u(MS (- ﬂ @

M ;and m denote the mass of the Sun and a planet, respectively,R is the Euclidean distance between

the Sun and a planet at this time, £/ is the gravitational constant and @ is the semi major axis of the orbit.

44



Chapter 4

METAHEURISTIC OPTIMIZATION TECHNIQUES

Figure 4-1:The trajectory of planets motion[86]

Figure 4-2:Different Ellipse Shapes[86]

Kepler’s Third Law:

For any planet, the square of its orbital period is proportional to the cube of the semi-major axis
of its orbit. In simpler terms, planets that are farther from the Sun take longer to complete one orbit,
and this relationship follows a precise mathematical pattern. This law can be expressed as:

2 47 3
=|——|a 4.2)
UM +m)

Here, 7T is the orbital period, a the semi-major axis, g the gravitational constant, M ¢ the

Sun’s mass, and m the planet’s mass. Most solar system bodies rotate counterclockwise, but
exceptions like Venus rotate clockwise likely due to early collisions. Four key factors influence a
planet’s orbit: position, mass, gravitational force, and orbital velocity. These form the foundation of
the mathematical model behind the proposed algorithm. Kepler’s laws enable predicting a planet’s
position and velocity at any moment directly inspiring KOA.
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Velocity of planet LV

Gravitational force _.~4..

Figure 4-3:2D Dimension Of Planets Motion[86]

Y
Velocity of planet

Gravitational force _5.

Figure 4-4:3D Dimension Of Planets Motion[86].

4.3.2 Mathematical model of Kepler optimization algorithm (KOA):

This section presents a new optimization algorithm inspired by Kepler’s laws of planetary
motion [88]. In our proposed algorithm, Kepler’s first law is simulated as follows. The Sun and the
planets (or objects) revolving around it in (imaginary) elliptical orbits can be used to represent the
search space, as shown in Fig 4-3. In KOA, the planets (candidate solutions) are under different
situations from the Sun (the best solution) at various times, and thus, the search space is explored and
exploited more efficiently. Fig 4-4 illustrates how the position of an object, its mass, the force of
attraction between the object and the Sun, and the velocity with which it orbits the Sun change its
position around the best solution, i.e., the Sun. The figure also depicts the rotation of most objects in
a clockwise direction.

Fig. 4-4 can also be used to explain how the searcher’s position changes in 3D space. Similar
to other metaheuristic population-based algorithms, KOA starts the search process with an initial set
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of objects (candidate solutions) with stochastic orbitals. Each object is initialized with its random
position in orbit during this stage. After evaluating the fitness of the initial set, KOA runs in iterations
until the termination condition is met. In the current study, we use the term “time” instead of
“iteration” because it is a common term in solar system theory and cosmology. During optimization,
the following rules are applied to KOA.

¢ The orbital period of a planet (the candidate solution) is chosen randomly in accordance with the
normal distribution.

e The eccentricity of a planet’s orbit is selected at random from a range of 0 to 1.

¢ The fitness of a solution is calculated on the basis of the objective function.

e The best solution, in iteration, is the central star (the Sun).

e The distance between the Sun and the planet is changed in accordance with the current time.

The rest of this section presents the mathematical model of KOA. In brief, the pseudocode and
flowchart of KOA are presented in Fig 4-6, respectively. The time complexity of the steps listed in
this algorithm is of O(NTmax), where N represents the population size, and Tmax is the termination
criteria of the proposed KOA based on the maximum number of function evaluation. Theoretically,
KOA can be considered a global optimization algorithm because it includes exploration and
exploitation phases. Mathematically, the processes of the proposed KOA are described in detail as
follows.

Phase 1: Initialization process

In this process, a number of planets equal to N, referred to as the population size, will be
randomly distributed in d-dimensions, representing the decision variables of an optimization problem,
in accordance with the following formula:

X/ =X/

i,low

j j =12,y N.
+ rand[o,l] x (Xz{up - Xli)w)’ { = -0 (4.3)
where X, indicates the ith planet (candidate solution) in the search space; N represents the number
of solution candidates in search space; d represents the dimension of the problem to be optimized;

X/, and X/

low

represent the upper and lower bounds, respectively, of the j-th decision variable; and

rand[0,1] is a number generated randomly between 0 and 1.

The orbital eccentricity (e) for each ith object is initialized using equation eq.(4) :

(e) = mnd[o’l],i =1,....N (4.4)

Where rand[ i1s a random value generated within interval[0,1].finaly,the orbital period (T) for

0,1]

each i -th object is initialized using Eq. (5):
T=rli=1,...,N (4.5)

where r is the number generated randomly on the basis of the normal distribution.
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Step 2: Defining the gravitational force (F)

The Sun is the main element of the solar system; it represents the largest object in the solar
system and controls the movement of the group through its gravity [89]. The primary reason why
planets orbit the Sun is because the Sun’s gravity keeps them in their orbit. If the Sun does not exist,
then planets will move in a straight line toward infinity, however, the Sun’s gravity constantly
changes direction to enable planets to move around it in an elliptical shape. Gravity is known as the
fundamental force that controls the orbits of planets around the Sun. Each planet has its own gravity
that is proportional to its size. Notably, the velocity of a planet depends on the gravity of the Sun. The
closer a planet is to the Sun, the greater its orbital velocity, and vice versa. The attraction force of the
Sun Xs and any planet Xi is given by the universal law of gravitation, which is defined as

Fe,(0) = e, x p(t) < 2y (4.6)
Ri+¢

where Msand m; denote the normalized values of Ms and mi , which represent the mass of Xs and
X1, respectively, and given by Eqgs. (4.8) and (4.9); ¢ is a small value; p is the universal gravitational
constant; e, is the eccentricity of a planet’s orbit, which is a value between 0 and 1 that was proposed

to endow a stochastic characteristic to KOA; r is a value that is generated randomly between 0 and

1 to give more variation to the gravitation values within the optimization process; and R i is the
normalized value of Ri that represents the Euclidian distance between Xs and Xi , and is defined as

R.(t) =] Xs(t) - X;(1)], = \/ZZI (Xs(t) - X, (1))’ 4.7

| Xs(2) - X, (2)], represents the Euclidean distance between the dimensions of Xs and these of Xi . The

mass of the Sun and object 1 at time t is simply calculated using the fitness evaluation as follows
(consideringa minimization problem):
M = NﬁtS (t) —worst(t) 4.8)
D it (6) = worst(2))

fit, (£) = worst(?) .
> (it (1)= worst(t)) :

m,=r,

fit. (t) =best(t) =k € {""1,2,..., N} fit, (t) (4.10)
worst(t) =k € {"™1,2,..., N} fit, (1) 4.11)

where r,is a number generated randomly between 0 and 1 to diverge the mass values for various

planets. u(t) is a function that exponentially decreases with time (t) to control search accuracy and is
defined as follows :

worst(t) =k e {"™1,2,...,N} fit, (1) (4.12)
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where y is a constant; g, 1is an initial value; and ¢t and 7 max are the current iteration number and

maximum number of iterations, respectively.
Phase 3: Calculating an object’ velocity

The velocity of an object depends on its position relative to the Sun. That is, a planet’s velocity
increases if it is close to the Sun and decreases if it is far from it. If an object is close to the Sun, then
the Sun’s gravity is considerably strong, and the planet attempts to increase its speed to avoid being
pulled toward the Sun. However, if an object is far from the Sun, then its velocity will slow down
because the Sun’s gravity is weak. Mathematically, this behavior is formulated in Eq. (4.13) to
compute the velocity of an object around the Sun according to the vis-viva equation. This equation is
twofold. The first fold determines the velocities of planets close to the Sun by multiplying the distance
between the current solution and a randomly selected solution, or the distance between two solutions
that are randomly selected from the current population. This helps KOA diversify its search strategies.
However, the diversity of the population’s solutions during the optimization process may be
minimized, and thus, velocity may be minimized in cases wherein a planet is close to the Sun.
Accordingly, another step size based on the distance between the lower and upper bounds of the
optimization problem is integrated into the first fold to assist in preserving the velocity of planets
throughout the optimization process and avoiding being stuck in local minima. Second, on the basis
of the proposition that planets are far from the Sun, the equation computes the velocity of the planet
in accordance

with the distance between a randomly selected solution and the current solution to reduce the
velocity of planets compared with the first fold. The major shortcoming in the second fold is the lack
of diversity between solutions, which may minimize the opportunity for KOA to escape local optima
because changes in the current solution are too small. To address this flaw, a second step size based
on the distance between the lower and upper bounds of the optimization issue is incorporated into the
second fold

v(0)=0x (21, X, = X,)+ p(X, = X,)+ (1= R_,,.(O)xFxU (X, —X,,,.) (4.13)
if R_,. (1) <05
else
X Lx(X, = X)+ (=R, (O)xFxUx(nX,, = X,,,) (4.14)
¢=UxMxL, (4.15)
L=[uO)x (Mg +m) 2] (4.16)
M= x(1-r)+r) (4.17)
U :{]0 5 (4.18)
F={0 & (4.19)
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p:(l—a)xMxL (4.20)
M=(r,x(1—r)+7rs) 4.21)
u={ (4.22)
u,={} (4.23)

where ;i(t) represents the velocity of object i at time t)?irepresent object 1, r, and 7, are randomly

generated numerical values at interval [0, 1], and rs and re are two vectors that include random
values between 0 and 1. X.and X represent solutions that are selected at random from the
population; M and m, represent the mass of X and X, respectively; u(t) represents the universal
gravitational constant; € is a small value for preventing a divide-by-zero error; Ri(t) represents the
distance between the best solution X and the object X, at time t; and ai represents the semimajor

axis of the elliptical orbit of object 1 at time t, and it is defined by Kepler’s third

law mentioned in eq 4.24 as follows:

a, )= A x|:];2 XM]E (4.24)
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where T represents the orbital period of object 1 and is determined by Eq. (4.25). In our proposed

algorithm, the semimajor axis of the elliptical orbit of object i is assumed to decrease gradually with
generations wherein the solutions move toward the promising region in which the global best solution
is likely to be found. R, , .. (¢) represents normalizing the Euclidian distance between X and X, ,

and it is defined as follows:

R-R_. ()

—norm

" max(R(t)) — min(R(?))

R (1) (4.25)

The purpose of Eq. (4.16) is to calculate the percentage of steps that each object will change.
If R, ()< 0.5, then the object is close to the Sun and will increase its speed to prevent drifting

toward the Sun because of the latter’s tremendous gravitational force. Otherwise, the object will slow
down

4

In the region, In the region,

+~— the object is

exploring.

the object is
exploiting.

Figure 4-5:Exploration And Exploitation Regions In The Search Space[86]
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Step 4: Escaping from the local optimum

In the solar system, most objects revolve counterclockwise around the Sun, and they all rotate
on their owns axes, however, some objects revolve around the Sun in a clockwise direction. The
proposed algorithm uses this behavior to escape from local optimum regions. The proposed KOA
simulates this behavior by using a flag & that changes the search direction such that agents have a
good chance of scanning the search space accurately.

Step 5: Updating objects’ positions

As mentioned earlier, objects revolve around the Sun in their own elliptical orbits. During
rotation, objects move closer to the Sun for a certain time and then move away from it. The proposed
algorithm simulates this behavior through two major phases: the exploration and exploitation phases.
KOA explores objects far from the Sun to find new solutions, while using solutions close to the Sun
more accurately as it searches for new places near the best solutions. Fig 4-5 shows the regions of
exploration and exploitation around the Sun. The exploration and exploitation phases are
subsequently described in detail. In the exploration phase, the objects are far from the Sun, indicating
that the proposed algorithm explores the entire search area more efficiently. In accordance with the
previous steps, a new position of each object far from the Sun is updated using Eq. (4.26):

Xi(t+1)= X:(0)+F xv; x (Fg,(6) +]r))xUx (X (1)~ X (2)) (4.26)

where X (z+1)is the new position of object i at time t+1, v, (¢)is the velocity of object i required to
reach the new position, X, (t) is the best position of the Sun found thus far, and Z'is used as a flag

to change search direction. Eq. (4.26) simulates the gravitational force of the Sun to the planets, where
this equation employs

another step size on the basis of calculating the distance between the Sun and the current planet
multiplied by the gravitational force of the Sun to help KOA explore the regions around the best-so-
far solution and find better outcomes in less number of function evaluations. In general, the velocity
of planets will represent the exploration operator of KOA when a planet is far from the Sun. However,
this velocity is affected by the gravitational force of the Sun, which helps the current planet slightly
exploit regions near the optimal solution. Meanwhile, when a planet approaches the Sun, its velocity
increases dramatically, allowing it to escape the Sun’s gravitational pull. In such case, velocity
represents local optimum avoidance if the best-so-far solution, referred to as the sun, is local minima,
and the Sun’s gravitational pull represents the exploitation operator to assist KOA in attacking the
best-so-far solution to find better solutions

Step 6: Updating distance with the Sun

To further improve the exploration and exploitation operators of planets, we attempt to mimic
the typical behavior of the distance between the Sun and planets, which naturally varies over time.
When planets are close to the Sun, KOA will focus on optimizing the exploitation operator; when the
Sun is far, KOA will optimize the exploration operator. These rules depend on the value of the
regulating parameter h. When this value is large, the exploration operator is employed to expand
planetary orbital separation from the Sun; conversely, when this value is small, the exploitation
operator is used to exploit the regions around the best-so-far solution if the distance between the Sun

51



Chapter 4

METAHEURISTIC OPTIMIZATION TECHNIQUES

and planets is small. This principle is randomly exchanged with Eq. (4.26) to improve the exploration
and exploitation operators of KOA further, as listed in Algorithm 1. The mathematical model of this
principle is described as follows:

Xi(t+1)= X:(t)x U +(1—ﬁl)x(y"‘”+@+hx(w—)a(t))) 4.27)
where 4 is an adaptive factor for controlling the distance between the Sun and the current planet at
time t, as defined below:

h=-L (4.28)

o

where 7 is a number that is generated randomly on the basis of the normal distribution, while 7 is a
linearly decreasing factor from 1 to —2, as defined below:

n=(a,—1)xr,+1 (4.29)

where a, is a cyclic controlling parameter that is decreasing gradually from -1 to —2 for T cycles

within the whole optimization process as defined below:

— _1-1x [’X ],u (4.30)
T

Step 7: Elitism

This step implements an elitist strategy to ensure the best positions for planets and the Sun.
This procedure is summarized using Eq. (4.31):

3 Xi(t+1), 1 Xi(t+D)<Xi
X (4 1) = { Lo SO0 (4.31)
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4.4 Enhanced Kepler Optimization Algorithm

It 1s recognized that the performance of meta-heuristic technique can be ameliorated by
fulfilling the suitable equilibrium between the two opposing phases. The initial phase, focused on
local search, referred to as exploitation, while the subsequent phase, which aims to search globally,
is known as exploration. The global minima can be guaranteed, and reducing the search space through
these phases helps prevent the technique from becoming trapped in local minima. A slight
modification to this technique is introduced to generate a substantial exploration through a deeper
search for new neighbor solutions in the search space. Hence, an operator phi is suggested to strike a
better balance between the exploration and exploitation stages. More precisely, this operator also acts
significantly on the acceleration of algorithm convergence rate. This operator decreases linearly
during iterations from 1 to 0.5 using the subsequent equation [62]:

7% :O.75+0.25><cos(7z j (4.32)

Tmax

Where Tmax is the basic stopping criterions and t is the Instant iteration. The operator y 1is

combined with the equation 4.27.

Cosine y(t) Schedule (Tmax = 300 iterations)
1.0}

0.6

0 50 100 150 200 250 300
Iteration (t)

Figure 4-7: y variation with iteration

1. Early iterations (t = 0 — y = 1.0): h-y = h, y(t) = 1. Planets make big jumps — they spread
widely across This phase = Exploration.

2. Middle iterations (— y = 0.75): y(t) has decreased smoothly to about 0.75. Exploration is
moderated: jumps are smaller, but still large enough to search new regions. Balance between
exploration and exploitation: algorithm explores, but also starts to refine.

3. Late iterations (— y = 0.5): h-y <h , y(t) reaches its minimum value 0.5. Exploration is reduced
by half compared to the start. Planets make small jumps around the best-known regions. Focus shifts
to exploitation: fine-tuning around optimal solutions, ensuring convergence
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4.5 Non-Dominated Sorting Kepler Optimization Algorithm (NSKOA)

In the original version of the Kepler optimization algorithm (KOA), the algorithm was designed
to solve mono-objective optimization problems, where a single global best solution was determined
as the “Sun” (XS) based on fitness values. The algorithm updated the positions and velocities of the
objects (planets) accordingly, aiming to improve their fitness relative to this singular objective.

To extend KOA into a multi-objective framework, the key modification was the integration of the
non-dominated sorting procedure, allowing the algorithm to handle multiple conflicting objectives
simultaneously [90]. The key changes are as follows:

4.5.1 Non-Dominated Sorting Principle

This mechanism is essential for navigating trade-offs in multi-objective problems by ranking
solutions based on Pareto dominance. In the modified version, after initializing the population and
calculating the objective functions, non-dominated sorting is performed to assign ranks to solutions.
Non-dominated solutions, which are not outperformed in all objectives, receive a rank of 1, while
subsequent ranks are assigned iteratively to solutions that are dominated by others. This ranking
system helps preserve a diverse set of optimal solutions, ensuring that different trade-offs between
objectives are explored [91].

4.5.2 Concept of Dominance
In the Pareto sense,
U, domine U, if
vie[1,2], F(Uy) < F(U,)
and 3i € [1,2],F;(U;y) < F;(Uy)

min £,

min f;
Figure 4-8: Concept Of Dominance [91]

Example: The point ® dominates squares, is dominated by triangles, and is not comparable with
circles.

4.5.3 classification of the population

We classify the population using non-domination. This returns two columns for each object. These
are the rank and the crowding distance corresponding to their position in the front.

3.7.1 Rank:

e Undominated — rank 1
¢ Dominated except by rank 1 — rank 2
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4.5.4 Crowding Distance (CD)

An important aspect of this approach is the calculation of crowding distance, which measures
the proximity of solutions to their neighbors in the objective space. A higher crowding distance
indicates a less crowded region, helping to maintain diversity among solutions and favoring those
that are well-distributed along the Pareto front.

- Crowding

distance

'y Lj.

Figure 4-9: Crowding Distance[91].

By evaluating solutions based on both rank and crowding distance, the algorithm ensures a
balance between convergence toward the Pareto front and the preservation of solution diversity across
the front. This process ensures that, instead of converging to a single global best solution, a set of
non-dominated solutions is maintained, offering multiple viable options that address different trade-
offs between the conflicting objectives.

4.5.5 Elitism and Population Combination

In this Algorithm, the current population (Pt) of size N and a new population (Qt) of size N are
assembled to form a population (Rt =Pt U Qt), as shown in Figure 4-9. This assembly ensures elitism.
The population of size (2N) is then sorted according to the non-dominance criterion to identify the
different fronts F1, F2, etc. The best individuals will end up in the first front(s). A new parent
population (Pt + 1) is formed by adding the fronts in full (first front F1, second front F2, etc.) as long
as they do not exceed N. If the number of individuals present in (Pt + 1) is less than N, a crowding
procedure is applied on the first edge following Fi not included in (Pt + 1).

The goal of this operator is to insert the N — |P;,4| best individuals that are missing in the
population (Pt + 1). The individuals in this front are used to calculate the crowding distance between
two neighboring solutions.
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Figure 4-10:Non-Dominated Selection [91] + Figure 4-11: Crowding Distance [91]

4.5.6 Best Compromise Solution (BCS)

Fuzzy set theory is frequently employed to effectively select a candidate Pareto-optimal solution from
numerous options along the Pareto front. Given the inherent irrationality of decision-makers, the i —zA

objective function of a solution within the Pareto-optimal set, denoted as f;, is expressed through a

membership function g, [92], defined as :

1 _](; < f;min
fmax _f min max
p=]L TS i e p (4.33)
VA

where £™ and f™" represent the maximum and minimum values of the i—zA objective function,

respectively.

The normalized membership function z* is calculated for each non-dominated solution k as follows:

Nof  k
k D (4.34)

H =T ~nvog 7

Zilzﬁf 'uij

Where the number of non-dominated solutions is denoted as M. The best compromise solution is determined
as the one with the highest value of £* . By organizing all solutions in descending order based on their

membership function, a priority list of non-dominated solutions is generated. This prioritized list serves as
guidance for the decision-maker, aiding in navigating through the current operational circumstances.
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4.6 Conclusion:

This chapter delved into the foundational principles of metaheuristic algorithms, emphasizing
the critical balance between exploration and exploitation that underpins their efficacy in solving
complex optimization problems. A systematic classification of metaheuristic frameworks was
presented, highlighting the core mechanisms of distinct algorithmic classes (e.g., swarm intelligence,
evolutionary algorithms). We then introduced the Kepler Optimization Algorithm (KOA) whose
astrophysics-inspired dynamics were analyzed in depth, particularly its ability to model celestial
mechanics for navigating search spaces. To address limitations in KOA’s exploratory capabilities,
a novel equation was introduced, enhancing its diversity-seeking behavior during the initial search
phases. This modification ensures a more rigorous exploration of the solution space, reducing
premature convergence risks while maintaining computational efficiency.

Building on this enhanced KOA, the chapter further proposed a multi-objective adaptation of
the algorithm through the integration of non-dominated sorting. By hierarchically ranking solutions
based on Pareto dominance and employing crowding distance metrics, the revised framework (MO-
KOA) efficiently balances competing objectives. The inclusion of abest compromise
solution mechanism leveraging decision-maker preferences or objective weighting provides a
practical pathway to select optimal trade-offs in multi-objective landscapes. In the next chapter, the
enhanced KOA (EKOA) will be applied to solve the (SOPF) problem in the presence of (RES) and
its performance will be compared with the original KOA to evaluate the proposed improvements.
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5.1 Introduction:

Modern electrical networks are undergoing profound transformations to meet rising demand for
fossil-fuel-based energy, contain escalating production costs, and mitigate the environmental impact
of pollutant emissions from thermal power plants. These pressures have driven a shift toward cleaner,
more sustainable energy sources and more sophisticated grid-management strategies pivotal among
them is the (OPF) problem, first formulated over half a century ago, remains a central, large-scale,
nonlinear optimization task in power-system research. Its objective is to minimize total generation
cost by selecting optimal settings for control variables real-power outputs, generator bus voltages,
transformer tap positions, and so on while enforcing power-balance equations and respecting
equipment limits (generator capabilities, line thermal ratings, voltage bounds). Traditionally focused
on dispatching controllable thermal units, OPF must now accommodate intermittent (RES) such as
wind and solar, whose variable outputs introduce stochasticity into generation scheduling. Early OPF
solutions relied on classical techniques Newton Raphson programming, quadratic and nonlinear
programming, interior-point methods, and linear programming. While effective for small, well-
behaved problems, these approaches often stall at local optima, struggle with high nonlinearity, and
incur heavy computational burdens as system size and complexity grow. Their sensitivity to initial
conditions further complicates convergence to a global solution. To overcome these limitations,
metaheuristic and hybrid algorithms have gained traction. By enhancing population diversity and
combining complementary search strategies, these methods reduce the risk of stagnation and improve
exploration—exploitation balance. In particular, recent studies have explored hybridizations and
modifications of evolutionary, swarm-intelligence, and physics-inspired techniques to better handle
the stochastic OPF (SOPF) challenge presented by high RES penetration [93].

This chapter introduces power flow analyses in the presence of (RES) and examines their
impact on power production and pollutant gas emissions. It also presents a novel Enhanced Kepler
Optimization Algorithm (EKOA) specifically designed for Stochastic Optimal Power Flow (SOPF).
By embedding advanced exploration—exploitation operators, EKOA effectively navigates complex
search spaces, avoids local optima, and balances competing objectives such as economic cost, system
losses, voltage stability, and environmental impact. The uncertainty of RES is modeled using Weibull
distributions for wind and lognormal distributions for solar irradiance. Extensive simulations on
large-scale test systems demonstrate both the impact of RES integration and EKOA’s superior
convergence, solution quality, and computational efficiency compared to existing methods.

* A detailed formulation of SOPF with RES uncertainty and classical OPF constraints
* Critique of traditional optimization approaches and their limitations in stochastic, large-scale
settings

* Development of the Enhanced Kepler Optimization Algorithm (EKOA) with augmented
exploration—exploitation mechanisms

 Application of appropriate probability models (Weibull, lognormal, Gumbel) for RES output
» Statistical validation of EKOA’s performance against benchmark algorithms

By combining rigorous uncertainty quantification, tailored metaheuristics, and robust constraint
handling, this work lays a scalable foundation for integrating renewable energies into future resilient

and low-carbon power grids.
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5.2 Optimal Power Flow Problem Formulation:

The optimization problem in this paper aims to solve the (OPF) for a power system that includes
thermal and stochastic wind and solar PV power generations. The primary goal is to optimize power
system variables and determine the optimal settings for control in power system components. This is
achieved by minimizing selected objective functions while ensuring that all the equality and
inequality constraints are satisfied, formulated Mathematically as-follows [94]:

Minimize OF (d,c) (51)
. dc)=0
Subject t d, g(d. 52
uojectto & C){h(d,c)so (5-2)

Where o (a.c) denotes the objective function, g(d,c)the equality constraints, h(d,c) define

inequality constraints, d and c¢ are the dependent variables vector and the control variables vector
respectively. Maintaining system security and achieving optimal solutions in an electric power system
necessitates the adherence to limits on dependent variables. These limits are vital for preserving
feasibility, ensuring system stability, and striking a balance between optimization and operational
constraints.

Where:

- OF (d.c) denotes the objective function that needs to be minimized. The specific form of this

objective function would depend on the objectives identified in the paper.
- g(d,c)represents the collection of equality constraints that must be fulfilled. These constraints

ensure that the power flow equations and other system requirements are met.

- ¢ represents the vector of decision variables, which includes the control settings for power system
components, and d represent the vector of state variables which represent states of the power system,
these variables describe the system's dynamic behavior

5.2.1 Optimization Problems:
5.2.1.1 Cost of Generation for Thermal Units:

The fuel cost function for multiple thermal generator units can be modeled as a convex and
differentiable quadratic function. It can be represented by the equation (5.3):

Nrg

Cru (PTG) = Zl a; + b, P, +CiPT2Gi (5.3)

However, the mentioned above model ignores the valve point loading, which introduces
oscillations or fluctuations to the actual input-output curve, can be addressed by modifying the
equation (5.3). This modification involves the addition of an extra sin term to capture the valve point
effects [95].

Nyg
TCpy (Prg)= Z:‘: a; +b, P, + ¢, Pre, + ‘dl. x sin[ei (Pngin — P, )j‘ (5.4)
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a;,b,,c,d,,and e, coefficients represent the cost coefficients for the i™ thermal generator, indicating

1

the relationship between power output and fuel cost. The system consists of Np,; thermal generators,

and pmi is the minimum rated power of the conventional thermal generator.
5.2.1.2 Emission and Carbon Tax:

The adverse environmental impact of conventional energy sources is well acknowledged,
particularly in terms of emitting harmful gases. The release of sulfur oxide (SOx) and nitrogen oxide
(NOx) tends to escalate with the rise in power generation from thermal power generators, as
illustrated by the correlation outlined in Equation (5.5). The emission level, quantified in tons per
hour (t/h), can be computed using the following equation [96]:

Nrg

E =3[ (a+ BB+ 7Py %001+ @, exp (44, Frg; ) | (5.5)
i=l
Where w;, u: @, f, 7 signifies emission-coefficients related to the i* generator. These

coefficients represent the emissions intensity or emission rate of specific gases, such as SOx or NOx,
per unit of power generated by that particular generator.

In recent years, to tackle the global warming, numerous countries have been exerting
significant pressure on the entire energy industry to minimize carbon emissions. a carbon tax C, is
imposed on emitted greenhouse gases. The emission cost is calculated by multiplying the carbon tax
rate C

fax

by the emissions (E) in $/h. This encourages investment in cleaner power sources like wind

and solar and addresses the environmental impact of emissions. The cost of emission in ($/h) is
represented as [51]:

Emission cost: Em=C_ xE (5.6)
5.2.1.3 Real Power Losses:

In the (OPF) problem, additional system parameters such as the power loss in the network
transmission. These parameters are crucial indicators of system efficiency and stability. Power loss
in the transmission system is an inherent outcome, primarily stemming from the resistance within the
transmission lines. The commonly employed equation for calculating network loss is as follows[97]:

nl
pl =ZIGM[V£+V£—2W, cos(6,-5,) (5.7)

Where #n/is the total number of transmission lines, Gq(ij) is the conductance of the branch i-j, V, and V]

are the voltages at bus i and j respectively, 517 = 5, -0 ;i , 18 the difference in voltage angles between

them.
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5.2.1.4 Voltage Deviation:

Voltage deviation is a parameter used to evaluate the quality of voltage in a network. It
represents the cumulative difference between the voltages of all load buses (PQ buses) and the
nominal value of 1 per unit (p.u.). Mathematically, it is calculated as the sum of the deviations of each
load bus voltage from the nominal value. The voltage deviation is expressed by the following
equations [98]:

VD = (f\VLP —10 (5.8)

5.2.2 Objective Functions
5.2.2.1 Minimization of Total Generation Cost

The first objective function formulates the cost of energy production taking into account
presence of (RES), whereby all the cost-functions above-mentioned are involved. This objective aims
to minimize the total generation cost of all types of generators in the system, including thermal, wind,
and solar sources. It can be mathematically expressed as:

OF' = TG, (PTG ) + Nir: _CW’]. (WPS” ) " RCWJ (WPGJ - WPAM )}

Jj=

+PC,, (wp,,,-WP, )

(5.9)

Nsg CS,k (SPSc,k )+ Rcs,k (SBsc,k - Sf)Av,k )
k=1 _+PCS,k (SPAv,k - SPsl:,k)

Where n . and w,, represent the number of PV solar and wind generators in the grid.
5.2.2.2 Minimization of Emission Gases with Carbon Tax

In this case, the carbon tax C_ was considered as penalty implemented through minimizing

the emission and power generation costs, which can be expressed mathematically as follows:

OF? = OF'"' + C,,. < Em (5.10)

tax

the carbon tax C, 1is equal to 20 ($/h).

5.2.2.3 Minimization of The Real Power Losses

The equation (17) used for minimizing the overall real power losses of the network is as
follows:

nl
OF = ploss =" G, [ V2 +V} =20V, cos(8,-5)) | (5.11)
q=1

5.2.2.4 Minimization of The Voltage Deviation

The equation (14) used for minimizing the voltage deviation on all buses of the network as
follows:
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OF* =VD=(§:‘VLP—1‘] (5.12)
p=1

5.2.3 System Constrains
5.2.3.1 Equality-Constraints

The equality constraints in power systems consist of the power balance equations, which
require that the total active power and reactive power generated within the power system is equal to
the total demand and losses in the network.

PRin < P, S PR, i=12....Ny; (5.13)
Bt < By <BPX, J=12...Ny (5.14)
Pgn < Py, < P k=12...Ng; (5.15)
i < Oy SO, (5.16)
Opin < Q. <O, i=1,2....N (5.17)
Osen. < Oy S O5 keNg, (5.18)
orin < Q,, < Omax ie N, (5.19)
yoin <y <y (5.20)
ymin <y, <y ie NLB (5.21)
5.2.3.2 Security Constraints
™ < T, <T™ ke NT (5.22)
S, < §max ieLN (5.23)

Equations (5.13) - (5.15) establish the active power constraints for thermal power plants, wind
power generators, and solar PV power generators respectively. Equations (5.16) - (5.19) represent the
reactive power capabilities of thermal power plants, wind and solar PV generators, and shunt reactive
power sources. Equation (5.20) outlines the generator voltage, while Equation (5.21) define the
voltage limits for load buses, where NLB represents the number of load buses. Security constraints
related to tap changing transformers and line capacities are expressed in Equations (5.22) and (5.23)
respectively, with LN denoting the number of lines in the electric grid.

When dealing with constraints, the static-penalty function method has been widely used,
typically involving a trial-and-error process. However, selecting inappropriate penalty coefficients
can lead to constraint violations. To address this issue, a technique of constraint handling known as
the Superiority of Feasible Solutions is employed to ensure the feasibility of solutions. more details
are given in [52].
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Table 5-1: EKOA Process Dealing With OPF

Step 1 e Read KOA input and data of the test system

e Read input data: Line-data, Bus-data, transformers-data and generation-data.

e Dimension (dim =12 for 30-bus, 60 for 114-bus)

e Population size: ¥ (N =30 for and N = 60 for 30 bus and 114-bus respectively )

e Stopping criteria (TMAX) the iterations maximum number

e Min and Max control variables values

Step 2 e Specify objective functions (OF' ,0F .....)
Step 3
e Calculate the anticipated -output power of WG and SPV generators.
Step 4 e create the initial population of » individuals in the range [ LB ,UB ]
ep
e Execute power-flow (runpf) for every updated individual within the population, assess the
Step 5 fitness of all individuals, and subsequently evaluate constraint the functions along with
constraint violations.
Step 6 e Apply the KOA update equations to generate a new population.
¢ During the selection phase, individuals are substituted in the next population if they
demonstrate improved values in the objective function, following every update, any new
Step 7 individual will be considered better if they yield negligible or zero constraint violations
compared to the corresponding individual in the old population. Otherwise, the previous
individuals are maintained.
Step 8 e Repeat the steps 5 and 7 until (TMAX) the iterations maximum number is reached.
Step 9

e Present the optimal results corresponding to the best pathfinder, along with its fitness value

5.3 Simulation Results

for the purpose of proving the effectiveness and practicality of the EKOA for addressing
stochastic OPF problems that incorporate solar pv and wind power generators, we conducted an
analysis on the modified IEEE 30 bus network and the Algerian electricity network DZA 114bus.
represent the process of EKOA dealing with the optimization data. Various objective

functions were considered during the examination. The implementation of the proposed algorithm
was carried out using the MATLAB software, and the simulations were performed on a personal
computer equipped with an Intel Core™ 17-8300H 2.22 GHz processor and 8.00 GB RAM. In order
to determine an appropriate population size for the Kepler Optimization (KOA) algorithm, empirical
tests were conducted by executing the algorithm with varied population sizes, such as 20, 40, 60, and
80. The specific results of these tests are not provided in this document; however, we only mention
the population sizes that yielded the best outcomes. Consequently, for all simulation cases, a
population size of 30 individuals was selected for the IEEE 30-bus network, while 60 individuals
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were chosen for the DZA 114-bus system. Furthermore, the iterations maximum number was set to
300 for the IEEE 30-bus network 400 and for the practical 114-bus power system. To ensure an
equitable comparison, the control variables of the two test systems were treated as continuous
variables.

5.3.1 Test System 1: Modified IEEE 30 Bus Power System

With the aim of demonstrating the effectiveness of the Enhanced Kepler optimization
algorithm, a series of case studies were conducted on the IEEE-30 bus system, which was modified
by incorporating two wind generators at buses 5 and 11, as well as a solar PV generator at bus 13.
The configuration of the system represented in Figure 5-1. Detailed data can be found in reference
[64]. The deterministic (OPF) scenarios for the modified system configuration were analyzed,
specifically excluding the wind turbine generators (WT) and photovoltaic (PV) units. Four different
cases were examined, each with their respective objective functions as outlined in the previous
section. The findings of the case studies utilizing the Kepler algorithm are presented in a tabulated
format, along with corresponding explanations provided in this section.

28

@ Thermal units

At -
'S
~— Transformers

1
/‘\ Wind generator é

m Photovoltaic {(PV) array

Figure 5-1: Modified IEEE 30 Bus System Configuration [51]
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Table 5-2:Emission And Cost Coefficients Of Thermal Generators Of IEEE 30 Bus Network[62]

Generator Bus a b c d e a ﬂ v 0] u

ThG1 1 0 2 0.0038 18 0.037 0.04091 -0.05554 0.06490 0.0002 6.667
ThG2 2 0 1.75 0.0175 16 0.038 0.02543 -0.06047 0.05638 0.0005 3.333
ThG3 8 0 3.25 0.0083 12 0.045 0.05326 -0.03550 0.03380 0.0020 2.000

Table 5-3:PDF Parameter Of Wind And Solar Pv Units[51]

Wind-power generating farm

Position of No of Rated power, B, Weibull PDF Weibull mean, M, p,;
Windfarm MW)
turbines parameters
Bus #5 25 75 c=9k=2 v=7.976 m/s
Bus #11 20 60 c=10k=2 v =28.862 m/s

Photovoltaic power plant

Position of Solar Rated power, B, (MW) Lognormal PDF Lognormal mean
system
parameters
Bus #13 50 u=6, r=0.6 G =483 W/m?
800 T T T T T T
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B [&)]
o o
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w
o
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Wind speed (m/s) for wind generator at bus 5

Figure 5-2:Speed Of Wind Frequency For Wind Generator At Bus 5
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Figure 5-3:Wind Speed Frequency For Wind Plant At Bus 11
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Figure 5-4:Lognormal PDF Of Solar Irradiance For SPV Bus 13
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Figure 5-5:Aviable Real Power From Solar PV Unit

5.3.1.1 Case 1: Total Generation Cost Minimization

In the first case, the main objective is to minimize the total generation cost, taking into account
the contributions from wind, solar. Where these last two both have the direct, penalty and reserve
costs, the results obtained are based on the parameters of Weibull, lognormal probability density
functions (PDFs). The specific PDF parameters for the RES can be found in Table 5-2, which is
referenced in [51]. The fitting of the Weibull distribution and the frequency distribution of wind
speeds are depicted in Figure 5-2, generated via the simulation of 8000 Monte-Carlo scenarios.
Additionally, Figure 5-4 displays the fitting of the lognormal distribution and the frequency
distribution of solar irradiance, obtained from the simulation of a sample size of 8000 Monte Carlo
scenarios. The selection of optimal sites for wind farms and PV power generation is influenced by
various factors, including wind speed and solar radiation [29].
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Figure 5-6:Voltage Profile Of 30 BUSS With And Without RES

The results indicate that among the compared optimizers, EKOA consistently achieves the
lowest generation cost. as demonstrated in Table 5-3. The optimal generation cost attained by EKOA
is 780.939 and 781.18 MW by the KOA, while other optimization techniques, such as PSO (Particle
Swarm Optimization), yield 784.3400 $/h, TLBO (Teaching-Learning-Based Optimization) results
in 782.676 ($/h), SHADE-SF (Shade-based Success-History Feedback) generates 782.50 $/h,
jellyfish optimization produces 781.638 ($/h),the artificial ecosystem optimizer achieves 781.521(
$/h), the hunger games search obtains 781.86 ($/h),, orca predation algorithm generates 782.076
($/h),and the gorilla troops optimizer (GTO) obtains 781.26 ($/h),,( GBLCSBO) 781.80 ($/h), and
slim mould algorithm (SMA) 781.07($/h).

Based on the literatures and the simulation results presented in Table 5-3, It can be inferred that
the integration of (RES) leads to a decrease in the total power production cost. The initial reference
cost of thermal power production is about 800.00 $/h reduced to 780.939%/h, resulting in a cost
reduction of approximately 19.06 $/h. To put it more precisely, if this cost-saving rate of 19.06 $ per
hour is maintained throughout the operating time of 7500 hours per year, the proposed optimizer
EKOA can save a total of 142950 $ annually. This clearly indicates that the incorporation of solar PV
power plants and wind generators substantially contributes to decreasing the total generation cost
when compared to the initial system configuration without renewable energy sources. For further
comparison and statistical analysis for the case 1 ofthe EKOA algorithm with other algorithms, please
refer to Table 5-4.
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Table 5-4:Optimal results for variables and objective function in Case 1

Variables | Min | Max | SHADE | PSO JS GTO | TLBO | SMA | GBLCSB | KOA | EKOA
-SF[51] | [64] [99] [60] [52] [52] 0O[100]
Prct 50 140 134908 | 134.90 | 134.905 | 134.907 | 134.843 | 13491 | 134.9079 | 134.909 | 13491
Prc2 20 80 28.564 | 28.037 | 29.0226 | 28.1779 | 29.0639 | 29.4961 | 28.955 | 28.8857 | 27.47
Pwcl 0 75 43774 | 43.744 | 43.9696 | 43.2909 | 44.045 | 422527 | 43.9896 | 43.7583 | 43.36
Pras 10 35 10 10.000 | 10.0006 | 10.0000 | 10.0606 | 10.0034 10 10.0004 | 10.00
Pwa2 0 60 36.949 | 37.193 | 37.0193 | 36.5917 | 36.6258 | 37.1432 | 37.1254 | 37.1741 | 36.32
Psci 0 50 34.976 | 35303 | 34.2532 | 36.1438 | 34.5823 | 353402 | 34.1873 | 343757 | 37.0.5
Vi 0.95 1.1 1.072 | 1.0815 | 1.07725 | 1.0725 | 1.0756 | 1.07226 | 1.0724 | 1.0743 1.073
V2 0.95 1.1 1.057 | 0.9500 | 1.05698 | 1.0578 | 1.0587 | 1.0590 | 1.0575 1.0584 | 1.057
Vs 0.95 1.1 1.035 | 1.1000 | 1.03507 | 1.0374 | 1.0411 | 1.0349 | 1.0354 | 1.0365 | 1.035
Vs 0.95 1.1 1.04 1.1000 | 1.03705 1.0395 1.0353 1.0396 1.0398 1.0383 1.040
Vi 0.95 1.1 1.1 1.1 1.0983 | 1.1000 | 1.0874 | 1.100 1.0988 | 1.0959 | 1.100
Vis 0.95 1.1 1.055 | 1.0626 | 1.04571 | 1.0548 | 1.0359 | 1.0511 1.0543 | 1.0439 | 1.056
Qrai 20 150 -1.903 | 15.679 | -0.6835 | -2.6423 | 4.51 45670 | -1.8791 1.08 | -1.0644
Qra 20 60 13.261 =20 | 11.0011 | 125121 | 12.0447 | 17.6960 | 13.2879 | 13.15 | 11.5386
Qwas -30 35 23.181 | 35.00 | 22.6673 | 4.65643 | 29.9474 | 1.9840 | 23.1688 3.89 2.8333
Qra: -15 40 35101 | 40.00 40.0 | 32.0473 | 30.7341 | 32.6825 | 35.1479 | 3230 | 32.7563
0
Qwes -25 30 30 27.85 30 29.7031 | 27.9642 | 29.9006 30 29.15 29.6765
3
Qscs -20 25 17346 | 17.73 | 14.0246 | 16.0907 | 11.8604 | 14.7003 | 17.2537 | 12.61 | 16.3878
3
Tcost ($/h) 782503 | 781.90 | 781.638 | 781262 | 782.676 | 781.078 | 781.80 781.189 | 780.939
VD(pu) / / 04421 | 0.4838 / 04701 | 04627 | 0.45932 | 0.4852
PLoss (MW) / / 57738 | 5.7117 / 57117 | 57653 | 5.6977 | 5.7019

71




Chapter 5 POWER FLOW ANALYSES IN PRESENCE OF RENEWABLE ENERGY SOURCES

Table 5-5:Statistical Analysis For Case 1 Of EKOA With Other Algorithms

Algorithm Minimum ($/h) | Maximum ($/h) Mean ($/h) Std
PSO  [64] 781.9047 794.4220 784.904776 2.52e + 00
GOA  [64] 785.7109 823.4731 804.016837 9.52¢ +00
ALO [64] 781.6562 791.9234 784.325274 2.49¢ + 00
GWO [64] 781.6645 783.3359 783.041218 2.75e - 01
GSA  [64] 782.2237 794.8995 785.860254 2.43e + 00
BMO  [64] 781.6519 783.5283 781.81867 3.44e - 01
MFO  [64] 781.6928 783.9304 782.49197 4.77e - 01
SMA  [52] 781.07 782.990 781.9726 4.53e-01
HGS [52] 781.86 782.9445 782.4106 3.649¢e - 01
AEO  [52] 781.3979 782.8744 781.8199 3.095e-01
GTO  [60] 781.2626 782.7022 782.082 3.77e-01
CSBO  [100] 782.2169 783.2244 782.8519 9.1e-01
TLBO [100] 782.3418 783.6428 782.6428 1.48e+00
SOA [100] 785.6410 782.5584 783.8291 3.37e+00
MVO [100] 782.6425 786.1347 783.9558 4.15e+00
GBL 782.0075 781.9034
CSBO  [100] 781.8010 8.00e-2
KOA 781.1895 783.0159 782.1351 4.44e-01
EKOA 780.9396 782.3084 781.7237 4.13e-01
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Figure 5-7:Convergence Curve For Case 1 30-Bus System

5.3.1.2 Case 2 Minimizing the Total Cost with Emission-Carbon Tax

In the second case, the minimization of the quadratic emission and total power production
cost functions was conducted, taking into account the carbon tax referred to as (Ct) applied to
thermal power generators. The specified carbon tax value is set at 20 $/ton. The introduction of
the carbon tax notably increases the level of (RES) penetration, as evident in the simulation

72



Chapter 5 POWER FLOW ANALYSES IN PRESENCE OF RENEWABLE ENERGY SOURCES

results listed in Table 5-6. The penetration ratio of RES in the optimal generation schedule is
determined by the emission rate, influenced by carbon tax value. The primary objective is
scheduling more power from the (RES) to keep the emission volume at minimum level.

Table 5-6:Optimal Results For Variables And Objective Function In Case 2

Variables |SHADE-SF MFO [64] | BMO[64] | JS[99] | SMA[52] | GTO[60] | GBLCSB KOA EKOA
[51] 0[100]
Prci 123.020 123.637 123.127 | 123572 | 123.6670 | 123.3721 | 123.1690 123.37 123.28
Prc2 33.047 33.2996 31.947 33.1626 33.5199 | 327853 | 33.1017 32.5293 32.5222
Pwat 46.021 46.1099 45.402 46.0806 46.2945 | 458351 | 455216 | 45.7033 457553
Prc3 10.00 10.0000 10.000 10.00 10.000 10.00 10 10.00 10.00
Pwc2 38.748 38.8443 38.270 38.8011 39.2413 | 385999 | 383516 38.5416 38.5304
Psci 37.336 36.7199 39.865 37.0628 359774 | 38.0833 | 39.5323 38.4039 38.4683
Vi 1.071 1.0782 1.0777 1.07066 1.0731 1.0702 1.0703 1.0765 1.0703
Va2 1.057 1.0645 1.0640 1.05715 1.0589 1.0569 1.0568 1.0626 1.0567
Vs 1.036 1.0432 1.0426 1.03604 1.0378 1.0357 1.0357 1.0410 1.0354
Vs 1.04 1.0473 1.0471 1.04038 1.0414 1.0403 1.0403 1.0451 1.0396
Vu 1.099 1.1000 1.1000 1.0983 1.0980 1.0985 1.0999 1.100 1.1000
Vis 1.056 1.0591 1.0602 1.05575 1.0581 1.0580 1.0566 1.0588 1.0552
Qra1 -2.678 -1.738 - 1.8489 -2.6666 24424 | -3.24025 | -2.7561 -1.4312 -2.6159
Qrc: 12.319 12.565 12.4064 | 123540 17.9378 | 12.55509 | 12.2171 11.6961 11.8523
Qwas 3527 22.889 229177 | 352538 | 25.9879 | 22.83972 | 23.0089 2.1329 2.4963
Qras 22.964 35.847 35.6862 | 22.9990 | 39.5619 | 34.9987 | 35.1591 33.3865 32.8828
Qwas 30 28.500 28.5058 30.00 | 29.8480 | 30.00 30.00 28.1412 | 29.9101
Qscs 17.779 16.659 17.0042 | 17.7114 | 185039 | 18.50504 | 18.0477 15. 16.3490
Tcost ($/h) | 810346 811.422 810.7982 | 810.120 | 810.3875 | 810.4412 | 810.5507 | 810.1167 | 809.89
Emission
(t/h) 0.891 / 088338 | ogo37 | 086 | 0886 ogzaug | ggg36 | 0.8812

5.3.1.3 Case 3: Optimized Cost Vs the Reserve Cost

In this case, all parameters remain unchanged from case 1, except for the reserve-cost
coefficients. Specifically, the coefficients of solar PV and wind units were incrementally
adjusted in discrete steps of 1, commencing from 4 and reaching 6. Specifically, we considered
three cases: (RK)=4 (case3-1), RK= 5 (case3-2), and up to RK= 6 (case3-3). However, the
coefficients of penalty-cost for all (RES) remain unchanged from case 1. The optimal power
schedules of the generators are depicted with a bar graph in Figure 5-8, allowing for a comparison
with the schedules obtained in the base case (case 1).
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When examining this case study, it was Noticed that as the reserve cost coefficient
increased, the participation of the wind and solar PV generators gradually decreased as shown in
figure (5-8,5-9), leading to a shortfall in the scheduled power. Consequently, an immediate
provision of spinning reserve became necessary to address this deficit. The compensatory
measure involved thermal generators, which consequently raised the thermal power generation
cost due to the amplified output power, in contrast the cost of solar PV wind units decreases as
depicted in Figure 5-10.
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Figure 5-8:Variation Of The Scheduled Active Power Vs The Reserve Cost
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Figure 5-9:Variation Of The Scheduled Reactive Power Vs The Reserve Cost Coefficients
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Figure 5-10:Variation Of Production Cost Against Reserve Cost Coefficients
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5.3.1.4 Case 4: Optimized Cost vs the Penalty Cost

In the fourth case, the reserve cost parameters remain unchanged from case 1, with the
exception of the penalty cost coefficients. Specifically, the penalty-cost coefficients for all wind
generators and the photovoltaic power plant are elevated from 4 to 6 in a sequential order: PK =4
(case 4-1), PK = 5 (case 4-2), and PK= 6 (case 4-3). Figure 5-11 and 5-12 presents a bar graph
showing the optimal active and reactive power schedules respectively for the six generators in
comparison to those obtained in case 1, also shown in the same figure. When figure 5-13 shows the
different production costs variations with the variation of penalty cost.

In the fourth scenario, the reserve cost parameters remain consistent with those of case 1, with
the exception of the penalty cost coefficients. Specifically, the penalty-cost coefficients for all wind
generators and the photovoltaic power plant are elevated from 4 to 6 in a sequential order.
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Figure 5-11:Variation Of The Scheduled Active Power Vs The Penalty Cost Coefficients
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Figure 5-12:Variation Of The Scheduled Reactive Power Vs The Penalty Cost Coefficients
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Figure 5-13:Variation Of Production Cost Against Penalty Cost Coefficients
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As the penalty cost coefficient increases, the participation of solar PV and wind and generators
has gradually increased, leading to an increase in the power scheduled from (RES) generators. As a
result, there is a non-uniform decrease in the output of thermal generating units, as shown in Figure
5-13. The economic dispatch analysis among 3 thermal generators indicates that a significant portion
of the power is dispatched to the lowest production cost generator. Conversely, the scheduled output
of all (RES) also exhibits non-uniform patterns. This variation can be attributed to the inherently
nonlinear relationship between the probability density function (PDF) and the reserve and penalty
cost associated with solar PV and wind generators. It is worth noting that the cost of thermal
generators, decreases while an overall steady increase in the total generation cost is observed.

5.3.1.5 Case 5: Minimization of the Real Power Losses

Case 5 pertains to minimizing the real power losses in transmission lines. MATPOWER is
employed to calculate the overall power loss following the execution of the power flow program.
Table 5-7 presents a comprehensive overview of the statistical indicators for various algorithms.
Notably, the proposed EKOA stands out for its effectiveness and superiority in comparison to KOA
and other methods, particularly in terms of power loss results. Table 5-7 reveals that the EKOA
consistently produces the lowest values for power losses, underscoring its efficiency in minimizing
transmission-related power losses.
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Table 5-7:Optimal Results For Variables And Objective Function In Case 5

Variables | Min | Max | TLBO | MVO SOA GWO CSBO 81[311;((3)8],13 KOA EKOA
[100] [100] [100] [100] [100]
Prat 50 140 | 50.0016 | 51.3281 | 50.0004 | 50.2938 | 50.0216 50 50.02 50.01
Prcz 20 80 30.178 | 22.6655 | 32.5101 | 35.0292 | 23.4727 | 25.089 | 27.0293 24.86
Pwcl 0 75 74.9997 | 74.9287 | 74.999 | 72.7486 | 74.959 75 74.993 74.99
Pras 10 35 34.9989 | 34.8759 | 34.998 | 32.1645 | 34.882 35 34.923 35
Pwez 0 60 | 59.9987 | 59.1338 | 59.998 | 58.6623 | 59.9708 60 59.985 60
Psai 0 50 | 40.5396 | 44.3954 | 40.5396 | 36.7714 | 42.172 | 403852 | 38.453 40.54
Vi 0.95 1.1 0.9779 | 1.0072 | 0.6909 1.052 1.0574 1.0581 1.0580 1.058
vV, 0.95 1.1 1.0546 | 1.0463 | 1.0546 | 1.0505 | 1.0517 1.0527 1.0522 1.052
Vs 0.95 1.1 1.0455 | 1.0195 | 1.0456 1.036 1.0427 1.0435 1.0431 1.044
Vs 0.95 1.1 1.0784 1.062 1.0836 | 1.0333 | 1.0509 1.0995 1.0481 1.049
Vit 0.95 1.1 1.0999 | 1.0984 | 1.0991 | 1.0989 | 1.0982 1.0968 1.0991 1.099
Via 0.95 1.1 1.0629 | 1.0888 | 1.0628 | 1.0756 | 1.0622 1.0567 1.0659 1.060
Qrai 20 150 20 20 20 -11.159 | -5.3287 | -5.2711 -4.613 -4.93
Qraz 20 60 19.058 | 317607 | 18.9776 | 22.9157 | 5.1685 6.4460 5.1021 5.93
Qwas -30 35 20.7905 | 42009 | 20.9343 | 20.5827 | 20.2985 | 20.4997 | 0.2937 0.48
Q1cs -15 40 40 40 40 22.8676 | 39.6359 40 33.423 30.74
Qwas 25 30 30 30 30 30 30 30 29.8864 30
Qscs 20 25 19.4794 25 19.4167 25 19.6931 | 17.6558 | 19.9608 17.93
Tcost ($/h) 898.692 | 887.071 | 905.958 | 875.682 | 880.749 | 880.638 | 879.792 | 880.733
emssion(t/h) 0.09766 | 0.10032 | 0.09718 | 0.09703 | 0.09943 | 0.09894 | 0.09842 | 0.09900
PLoss W) 2.1038 | 22604 | 2.1038 | 2.2699 | 2.0780 2.0741 2.0005 1.9962
VD(pu) 0.5458 | 0.4502 | 0.5452 | 0.4496 | 0.52872 | 0.50841 0.5776 | 0.55507

5.3.1.6 Case 6: Minimization of Voltage Deviation

Taking into account the importance of voltage in power system analyses, Case 6 is dedicated
to minimizing of the voltage deviation of the power system buses. The outcomes of simulations are
detailed in Table 5-8, the results underscore the superiority of the EKOA method compared to the
KOA and other counterparts, particularly in achieving the minimum voltage deviation. This affirms

the efficacy of the EKOA approach.
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Table 5-8: Optimal Results For Variables And Objective Function In Case 6

) Min | Max | TEBO | MVO | SOA | GWO | CSBO | GBLCSB | KOA | EKOA
Variables 0[100]
[100] [100] [100] [100] [100]

Prci 50 140 | 74.984 | 91.002 | 72.940 | 82.944 | 75208 | 76.143 84.41 94.60
Prca 20 80 | 79.998 | 79.173 | 79.421 | 76.164 | 79.999 80.00 | 79.9903 | 80.00
Pwcl 0 75 | 74998 | 66.035 | 74.978 | 72.397 | 74.999 75.00 68.244 | 59.5025
Prcs 10 35 | 34998 | 33.602 | 34.871 | 32.946 | 34.999 35.0 34.6914 | 34.9047
Pwe: 0 60 | 22.812 | 21.708 | 27.498 | 24.093 | 22.588 | 22.0151 | 20.6375 | 19.5340
Psa1 0 50 | 0.0004 | 1.5117 | 0.2815 | 0.6766 | 0.0002 0 0.0676 | 0.0315
Vi 0.95 1.1 | 1.0347 | 1.0119 | 1.002 | 0.9996 | 1.0375 | 1.0609 1.0462 | 1.0486
V2 0.95 11 | 1.0956 | 1.0687 | 1.0901 | 1.0729 | 1.0937 | 1.0999 1.0458 | 1.0484
Vs 0.95 1.1 0.996 | 0.994 | 0.9938 | 0.9951 | 0.9961 | 0.9502 | 0.9932 | 0.9924
Vs 0.95 1.1 1.098 | 1.0942 | 1.0729 | 1.0451 | 1.0955 | 1.0999 1.0247 | 1.0264
Vi 0.95 L1 | 1.0931 | 1.0992 | 1.0993 | 1.0949 | 1.0965 | 1.0962 1.0885 | 1.0905
Vis 0.95 1.1 | 1.0626 | 1.098 | 1.0892 | 1.0763 | 1.0598 | 1.0997 1.0556 | 1.0573
Qrai -20 150 -20 -20 -20 -20 -20 -8.5837 | -16.935 | -19.910
Qre: -20 60 60 60 60 60 60 60 45921 | 50.4937
Qwas -30 35 | -19.66 | -17.97 | -19.76 | -18.95 | -19.63 -30 -29.873 | -29.871
Qres -15 40 40 40 40 40 40 40 39.9057 | 39.9916
Qwas -25 30 30 30 30 30 30 30 29.877 | 29.9977
Qsas -20 25 25 25 25 25 25 25 240999 | 24.9541
Tcost ($/h) 960.86 | 956.34 | 963.97 | 95140 | 960.61 | 963205 | 952.616 | 942.601
Emssion(t/h) 0.1347 | 0.1993 | 0.1298 | 0.1574 | 0.1352 | 0.1376 | 0.1652 | 0.2254
PLossw) 4.4405 | 49777 | 43441 | 4.6582 | 4.4496 | 47582 | 4.6413 | 5.1692

VD(pu) 0375 | 03779 | 0.3766 | 0.3772 | 03757 | 0.3752 | 0.3396 | 0.3382
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5.3.2 Test-system 2: The Modified Algerian DZA 114-BUS Power System

To showcase the efficacy of the suggested EKOA in a real-world practical, large-scale network,
the Algerian DZA 114-bus electricity power system has been chosen as the test system the testing
ground with some changes in the original configuration. This system encompasses 175 transmission
lines with 15 generators, including 16 branches equipped with transformers tap changers. The
aggregate power demand stands at (3727 + j 2070) per unit (p.u) with a 100 MVA base.

The 4™ bus serves as the slack-bus in the power system. As part of the modification, 2 wind
generators have been added to buses 52 and 83, and a solar PV generator has been installed at bus
109. All the necessary data for the test system, in "MATPOWER format," is freely available only to
referees. This optimization problem involves a total of 46 variables, which include the active power
of 15 generators, also the voltage magnitudes of 15 generators, and adjustments for 16 tap-changers.
Additionally, the power system experiences voltage drops at certain buses, posing challenges in
ensuring the feasibility of solutions, particularly with regard to reactive power generators. The
maximum and the minimum operating limits of the control variables can be found in the table 8.

In this case, only three objective functions were considered, which are the total power
production cost minimization and the minimization of the real power losses, and the base case that
denotes the total cost generation for the conventional DZA 114 bus system without considering
renewable energy sources. These are important cases taken into consideration in both applied aspects
and techno-economic studies.
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Figure 5-14:Algerian Electricity Grid Topology- DZA 114-Bus [52]

81



Chapter 5 POWER FLOW ANALYSES IN PRESENCE OF RENEWABLE ENERGY SOURCES

x105
F F
8 — EKOA
= 7 — KOA
8 x10°
(e 6 45
.2 .
§ 5 35 _I
0]
g, 4 e S
s 3 2 T
8 1.5
= 5 )
L‘ 0 50 100 150 200 250 300 350 400
1 |
.
0 50 100 150 200 250 300 350 400
Iterations
Figure 5-15:Convergence Curve For Case 1 DZA 114-Bus System
T With RES Without RES : T
_ .1+ A
é 1.08
£ o]
Z ol
g 1.00+~
o 0.98 -
£ 0.96-
S 0.94
0.92+
0.9 ‘ ) ) ; ; ; ‘ ) - :
0 10 20 30 40 50 60 70 80 90 99

Load Buses
Figure 5-16:Voltage Profile Of DZA 114- Load Buses For Case 1

Table 5-9 presents the maximum and minimum operating limits of control variables, along
with the outcomes of various objective functions explored in this case. Notably, the proposed (EKOA)
stands out for its remarkable effectiveness and superiority compared to the (KOA).
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Figure 5-17:Generators Reactive Power For Case 1

In practical system studies, it becomes crucial to demonstrate the advantages resulting from the
integration of the (RES), particularly in techno-economic analyses. In the case of the conventional
DZA 114-bus system, there is a substantial contrast in the cost of energy production 19,080.9613
($/h) before RES integration and $16,701.773 ($/h) after integration, reflecting a difference of
$2,379.18 ($/h), Which makes the profit significant in the long term. This underscores the substantial
economic benefits of incorporating wind generators and solar power plants, leading to a notable
reduction in the total generation cost compared to the original configuration of system without
renewable energy sources. For the technical standpoint, figure 16 and figure 17 show the effect of
integrating the RES on the voltage profile load buses and generators reactive power respectively in
the both configurations.

Examining the convergence curves in Figure 5-15 which reveals that EKOA converges more
rapidly in the initial iterations, reaching a superior solution compared to KOA. The results from the
studies conducted on the two test systems affirm the efficacy of the EKOA approach in effectively
addressing numerous large scale optimization problems within the realm of power system studies.
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Table 5-9: Objective Functions of Test System 2

L BASE
Control Limits CASE CASE 1 CASE 5
variable
S
MIN | MAX EKOA KOA EKOA KOA EKOA
Prcs 135 1350 423.4175 402.69 410.25 543.641 554.57
Prcs 135 1350 436.2501 4252704 | 4193938 426.712 454.6359
Prcit 10 100 93.1889 99.9266 99.9996 95.767 99.2740
Prcis 30 300 197.0996 169.6806 174.657 180.792 143.6250
Prciy 135 1350 440.6231 391.676 395.7364 488.1685 604.6042
Praio 345 345 187.2718 161.7523 166.8785 194.637 179.8764
Prcn 34.5 345 196.5769 159.1196 168.2786 217.616 117.7340
Pwas2 0 345 228.2173 345.00 345.0000 146.717 130.7846
Prcso 34.5 345 215.1279 180.1062 157.9774 230.024 254.7381
Pwass 0 300 203.825 299.7106 299.9999 151.303 209.0530
Prcos 30 300 179.4664 165.1998 158.2814 231.569 251.0583
Prcio 60 600 600.00 599.1959 600.0000 500.029 390.2614
Prcion 20 200 200.000 199.826 199.999 190.967 199.0806
Prcioo 0 100 93.7766 99.8056 99.992 92.582 99.1006
Prciii 10 100 99.1202 99.9419 99.9990 98.411 99.6812
Vs 0.9 1.1 1.0746 1.0980 1.0975 1.0864 1.0443
Vas 0.9 1.1 1.0618 1.0855 1.0907 1.0764 1.0340
Ve 0.9 1.1 1.0640 1.0918 1.0998 1.0755 1.0344
Vais 0.9 1.1 1.0784 1.0940 1.0998 1.0795 1.0426
AV 0.9 1.1 1.0786 1.0984 1.0995 1.0783 1.0533
Varo 0.9 1.1 1.0014 1.0123 1.0521 0.993 0.9753
Ven 0.9 1.1 1.0240 1.0182 1.061 0.991 0.9774
Vs 0.9 1.1 1.0344 1.0484 1.086 1.0029 0.9804
Vso 0.9 1.1 1.0190 1.0939 1.0560 1.0397 1.0421
Vass 0.9 1.1 1.0659 1.1000 1.0994 1.0752 1.0789
Vos 0.9 1.1 1.0718 1.0938 1.0898 1.0854 1.0672
Vi 0.9 1.1 1.0871 1.1000 1.0999 1.0963 1.0895
Vaein 0.9 1.1 1.0925 1.1000 1.0910 1.0972 1.0585
Voo 0.9 1.1 1.0497 1.0621 1.0408 1.0959 1.0785
Vi 0.9 1.1 1.0761 1.1000 1.0750 1.0593 1.0181
19080.9613 | 16730.907 | 16701.773 | 18992.604 | 19524.435
Tcost ($/h)
3.4224 4.40771 4.6987 4.454 3.22006
VD (p.u)
66.9613 72.0597 69.4451 61.943 61.0737
Ploss (MW)
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5.4 Conclusion

This research presents the development and application of two novel metaheuristic
algorithms—the Kepler Optimization Algorithm (KOA) and its enhanced version (EKOA) for
solving the (OPF) problem under uncertainty introduced by (RES). The proposed EKOA incorporates
an additional operator and cosine-based function to strengthen the exploration process and prevent
premature convergence. Both algorithms were implemented on the IEEE 30-bus and the practical
DZA 114-bus power systems to evaluate performance across diverse operating conditions for various
objective functions. Results demonstrate that EKOA consistently outperforms the original KOA and
other optimization methods from the literature, achieving faster convergence, higher solution
accuracy, and reduced computational effort. Furthermore, the integration of RES within the OPF
framework leads to significant economic and environmental benefits, including reductions in
generation cost and pollutant emissions. To further enhance system performance, voltage stability,
and operational reliability under high renewable penetration, the next stage of this work introduces
Flexible AC Transmission System (FACTS) devices as an integral component of the optimization
framework.
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6.1 Introduction:

The Flexible AC Transmission Systems (FACTS) devices are crucial for enhancing system
performance because of their capability to manipulate system parameters such as transmission-line
impedance, voltage magnitudes, and phases, as well as power flow through the lines. Several works
have explored the use of FACTS devices in power flow optimization, demonstrating their potential
in enhancing system performance. For instance, the SVC provides reactive power compensation,
which helps regulate voltage levels on the transmission line. The TCSC can adjust the effective
reactance of the transmission line, allowing for better control of power flow. These can help to reduce
the power losses, increase the transmission capacity of the line, and mitigate voltage instability. They
can improve voltage stability and reduce voltage fluctuations. Several works have explored the use
of FACTS devices in power flow optimization, demonstrating their potential in enhancing system
performance [101].

This study aims to investigate the importance of integrating RESs and FACTS devices within
contemporary power systems. The focal point of this investigation involves determining the optimal
location and size of the TCSC and SVC installations. This optimization aims to minimize overall
system costs while concurrently reducing real power losses (RPL) and total voltage deviation (TVD),
and improving the voltage stability index (VSI). Despite potential additional costs associated with
FACTS technology implementation, integrating RES offers a promising solution. By decreasing the
base cost of energy production and mitigating toxic gas emissions, this integrated approach aligns
with environmental and economic sustainability objectives, showcasing a comprehensive strategy to
tackle the challenges and seize the opportunities within modern power systems.

e This chapter introduces a novel non-dominating sorting KOA referred to as NSKOA, to tackle
SOPF problems.

e It addresses the OPF problem by incorporating RESs, namely solar PV, wind, and hydro power
systems and FACTs devices such as the SVC and TCSC.

e [t optimizes the size and location to maximize the benefits of FACTS devices for the power system.
e Using lognormal, Weibull, and Gumbel Probability Density Functions (PDFs) to effectively model
and characterize the RES uncertainties within the system.

e A statistical analysis is performed to confirm the effectiveness of the proposed NSKOA and to
highlight the advantages gained from integrating RES and FACTS devices.

6.2 Problem Formulation

The problem presented in this paper aims to solve the SOPF for a power system that
incorporates thermal generation as well as stochastic wind and solar PV power generations. The main
objective is to determine the optimal settings for control variables in various power system
components, while maintaining adherence to all equality and inequality constraints. The mathematical
formulation of this problem is as follows:

Minimize
OF (d,c) = {OF,(d,c),0F,(d,c),OF,(d0).....,OF),,(d.c)} 6.1)

Subject to
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g(d,c) =0
g(d’c){h(d,c) <0 6.2)

Ensuring both system security and optimal outcomes within an electrical network requires strict
adherence to constraints placed on control variables. These limits serve as fundamental safeguards,
essential for upholding feasibility, guaranteeing system stability.

- OF (d.c) denotes the objective function that needs to be minimized.
- g(d,c) represents the collection of equality constraints that must be fulfilled.
- ¢ represents the vector of decision variables, and d represent the vector of state variables.

6.2.1 Optimization Problem
6.2.1.1 Cost of Generation for Thermal Units

The fuel cost associated with thermal generator units can be represented as a smooth and
convex quadratic function. This mathematical representation is denoted by Equation (3):

Crir (Pro) =NZ': a; +b, Py, +c; Pre, (6.3)

The model described above ignores valve point loading; however, when valve point effects

are considered, an additional sinusoidal term is incorporated into the equation to capture the

oscillations or fluctuations introduced by the valve points. This modification accounts for the non-

linearity in the input—output curve of thermal generators and provides a more accurate representation

of the fuel cost function in power system optimization. The valve point-effect can be modeled
mathematically using Equation (4) [15]:

N.
TCpy (Pro )= 3" @, +b,Proy +¢, Py + ‘d,, x sin(e,. (Prin — P, ))‘ (6.4)
i=1

a,,b,,c.d ,ande; are the cost coefficients for the i thermal generator . The system comprises Ny

conventional generators, and P; represents the minimum rated power of these generators.

6.2.1.2 The Investment Cost of FACTS Modeling
6.2.1.2.1 SVC Modeling

The static var compensator (SVC) can exhibit two distinct characteristics: inductive or
capacitive. In the former, it absorbs reactive power, while in the latter, it injects reactive power. The
SVC is composed of a series capacitor bank that is shunted by a thyristor-controlled reactor, as
illustrated in Figure 6-1. According to, the investment cost of static var compensators (SVCs) varies
linearly depending on the reactive power of the SVC to be installed. Therefore, the cost at node I is
expressed as follows [93]:

Cype; =0.0003x Qg > —0.3051x Oy, +127.38 (6.5)

The total investment cost is given as follows:

NSVC

Coe = z (O.OOO3><QSVCi2 —0.3051x Qg +127.38) (6.6)

i=1
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e e e —

AC Transmission System

Figure 6-1:SVC Model and Configuration.

where Oy, represent the reactive power generated by i-th SVC while Cyyc; represents its associated

cost. The total investment cost for all SVC devices is referred to as Cy, and v, is the total number
of SVC devices.

6.2.1.2.2 TCSC Modeling

The thyristor-controlled series compensator (TCSC) is a series compensation device
comprising a series capacitor bank shunted by a thyristor-controlled reactor. The primary concept
behind power flow control using the TCSC is to adjust the overall effective series transmission
impedance of the lines, either decreasing or increasing it by introducing capacitive or inductive
reactive components, respectively. The TCSC is represented as a variable impedance, as illustrated in

Figure 6-2.
m X, n
Y | |

LNVL '\/I/I J m Rmn‘ijmH T}"XRT S n

1 l I )/rv |
X g ‘ L
N
Figure 6-2:TCSC Configuration Figure 6-3:Schematic Diagram Of TCSC

The total investment cost of TCSCs is a quadratic function of the reactive power to be installed,
expressed as follows [93]:

N TCSC

Crese = z ((0.0015x% QZTCSCI_ —-0.7130 x
i1

Oresc, | +153.75)x1000% Oy, ) (6.7)

where Q. represents the reactive power generated by the i-th TCSC. The total investment cost for

the all TCSC devices is referred to as Cc, and w, . is the total number of TCSC devices.

TCSC
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6.2.2  Objective Functions
6.2.2.1 Minimization of Power Production Cost

The first objective function represents the total cost of energy production, incorporating the
presence of RESs and all their relevant cost functions. Mathematically, it can be expressed as follows:

Nig

TGeost = TCy, (B )+ Y. [CW’/ (wP,.,)+RC, (WP, ,~WP, )+ PC, (WP, ,~WP, , )}

Av,j Av,j

=

+ i[CS,k (S})SC,k ) + RCs.k (SPSC.,/; - Sva,l; ) + PCS,/: (SPAv,k - SPSCJ‘ )} (6.8)
k=1
Ny

+ [y, (ShP, )+ RC (SP, ~ShP,,)+ PCy, (ShE,, ~ShP.,) ]

i=1

where NW , N sG> and N spc represent the number of wind, solar PV, and solar-hydro power

generators, respectively, in the grid.

6.2.2.2 Real Power Losses (RPLs)

In the context of the OPF problem, it is important to consider additional network parameters,
including the power loss incurred during system transmission. These parameters play a critical role
in assessing the efficiency and stability of the system. The calculation of the (TPL) is expressed
through the following equation:

nl

RPL:ZIGC,W[V[Z +V] =2VV, c0s(5,-5))] (6.9)

where G

. 1s the conductance of the branch, »/ is the number of transmission lines, V; and V, are

the voltages at bus 7 and j, respectively, and 6, =J,-9; is the difference in voltage angles between

them.
6.2.2.3 Total Voltage Deviation (TVD)

Voltage deviation is an indicator used to assess the quality of voltage within a power network.
It quantifies the total variation between the voltages at all load buses (PQ buses) and the standard
nominal value of one per unit (p.u.). This parameter is determined by summing the absolute
differences between the voltage at each load bus and the nominal value. The mathematical expression
for calculating voltage deviation is as follows:

VD = [§|VLP - 1|) (6.10)
6.2.2.4 Voltage Stability Index (VSI)

The importance of monitoring and controlling power networks has grown significantly within
the operation of contemporary electrical power systems, particularly with regards to enhancing
voltage stability amid the increasing integration of renewable energies. To better understand voltage
drops, the operational range of index L has been defined as (0, 1) Consequently, the third objective
function, aimed at minimizing the voltage stability index within the transmission branches, can be
modeled as follows:
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Min(VSI) = min(max(L;))

where (L,) of the j-th bus is calculated using the following equation:

Ngb

=- ZF ><— {9 +(8,-6,}|j=12..N, (6.11)
F =0, v, =Wle. v, =)o, (6.12)
F =—[r]" x[%.] (6.12)

V. and V; represent the voltage magnitudes at bus i and ;.

i

g, signifies the voltage angle difference

between bus i and j. Ngb and N,, stand for the number of generator and load buses, respectively.

Y, Y, Y, and Y, represent the sub-matrices of the system Ybus, obtained through the rearrangement

of the generator and load bus parameters as shown in Equation (6.12).

|:[gb:|={y1 Y2j|x|:ng:| (612)
Ilb Y3 Y4 Vlb

6.2.3 Constraints

6.2.3.1 Equality Constraints

In this study, the specific equality constraints represent the fundamental power balance in the
system, ensuring that the total power generation equals the total demand plus transmission losses.
This is critical for maintaining a stable and balanced power system. Mathematically, this is expressed
as the sum of power generated at all buses being equal to the load demand plus losses. These
constraints ensure the continuous supply of power and the reliable operation of the network, which is
essential in both traditional and RES-integrated systems.

P < P <P i=1,2...N,, (6.14)
Pt < P, <P, j=12...Ny, (6.15)
RYI;urIiSRS'Sk SPSTL k=12.. NSG (6.16)

6 < Ori <Ori » (6.17)

o <Q,, <Om™, i=12...N (6.18)
oM <Q,, <o keNg, (6.19)
on" <Q,, <O ieN, (6.20)

o<y <Y, (6.21)
yim<y, <y ieNL (6.22)
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b;;z S bSVC Sb;n;é’ uec NSVC (623)

X;uégc < Xpese SXpese, W e Nyese (6.24)
6.2.3.2 Security Constraints

The inequality constraints, on the other hand, include operational limits such as generator output
limits, voltage limits at buses, and thermal limits of transmission lines. These constraints ensure that
the system operates within safe and efficient boundaries.

™ < T, <T™ keNT (6.25)

S < S, <S™ ieNL (1.26)

In this context, max and min are the upper and lower boundaries, Ny;, Ny;, Ny, and Ny, refer

to the number of thermal, wind, solar PV, and solar—hydro generators, and NL is the number of load
buses the superiority of feasible solutions technique used in this study to ensure solution feasibility.

Algorithm 1: Pseudocode of NSKOA

Step 1:

e Define input power system data (line data p bus data) and identify the control variable limits and
number of variables.

o Set KOA parameters N, Tmax, and /.
Step 2:

o Initialize objects population with random position, orbital eccentricities, and orbital periods
using Equations (43), (44), and (45), respectively.
Step 3:

e Run a power flow algorithm based on the Newton Raphson method to calculate the value of the
objective functions for the initial population.

Step 4: Perform non-dominated sorting:

e (Calculate ranks (RK) and crowding distance (CD) using the eq() of population using the
proposed PFA with the sorting and crowding distance calculation procedure.

e (Calculate the best compromise solution (BCS) using Equation (73).
Step 5:

While (t < Tmax):

e Updatee;...1=1,2, ..., N, best(t), worst(t), and u(t), using Equations (50), (51), and (52),
respectively.

Step 6:

Fori=1: N P; = population
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e (alculate the gravitational force between the Sun and the object i using Equation (46).
e (alculate the Euclidian distance between the Sun and the object i using Equation (48).
e (Calculate the velocity of the object Xi using Equation (53).
e Generate two random numbers r and r1 between 0 and 1.

Ifr>r1

e Update the position of the planet.
e Update the object position using Equation (66).
Else

e Update the distance between the planet and the Sun.
e Update the object position using Equation (67).
End if

Step 7:

e Run power flow algorithm based on the Newton Raphson algorithm to calculate the objective
functions values for the new population (Npi).
e Combine new population (Npi) with previous population (Pi) to form Upi
Upi = Npi U Pi.
Step 8: Perform non dominated sorting:

e (Calculate ranks (RK) and crowding distance (CD) of population using the proposed PFA with
the sorting and crowding distance calculation procedure.
Step 8:

e Extract N elitist objects from Up;.
Step 9:

e Generate the Pareto optimal front and extract the best compromise solution.
End for

End while

6.3 Results and Discussion

To address stochastic OPF problems, an analysis was conducted on both the conventional (base
case) and the modified IEEE 57-bus network. The base case was simulated using the mono-objective
KOA to demonstrate the effects of RES and FACTs on the system. To determine the optimal control
variables, sizing, and location of SVC and TCSC, 17 tap changers, as well as the power and voltage
of generators, were used as control variables. SVC placement was considered among 50 load buses,
and TCSC could be situated across 81 branches, totaling 161 control variables as represented in Table

6-1
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Table 6-1:Control Variables Of The Test System

Elements IEEE 57-Bus Test System
No of buses 57
No of branches 81
No of generators 07
No of thermal generators 04
No of RES generators 03
No of load buses 50
No of control variables 161
Initial active and reactive load demand 1250.80 MW; 336.40 Mvar

The proposed algorithm was implemented using MATLAB software and simulations were
conducted on a personal computer with an Intel Core™ 17-8300H 2.22 GHz processor. To determine
the optimal population size for the NSKOA algorithm, empirical tests were conducted with different
population sizes, taking into account the search space complexity and the number of control variables.
Population sizes of 100, 200, and 300 were tested. Although specific test results are not provided
here, the best outcomes were achieved with a population size of 200 individuals, which was then used
for all simulation cases. For equitable comparison, the control variables of the test system were treated
as continuous variables.

6.3.1 Test-System: Conventional and Modified IEEE 57 BUS Network

The IEEE 57-bus test system consists of seven power plants installed at buses 1, 2, 3, 6, 8, 9,
and 12; eighty transmission lines of which 17 are equipped with tap changer transformers, and three
parallel compensators are installed at buses 18, 25, and 53, respectively. The complete data are
available in [23]. The modified IEEE-57 bus system consists of a combined production of a solar—
hydro power generator replacing a thermal power plant at bus 6 and a solar PV generator at bus 9, as
well as wind generators at bus 12. The parameters of the probability density function (PDF) and the
cost coefficients of the RES are detailed in Table 6-2 [61].

The study was conducted using three scenarios:

e Base Case Scenario: In this case, the conventional IEEE 57 bus was simulated in order to show
the impact of RESs and FACTs devices on the four optimization cases (cost, power losses, voltage
deviation, and voltage stability index) in the next two scenarios.

e Scenario number 1: This study was conducted on the modified IEEE 57 system after the
integration of RES sources.

e Scenario number 2: This study was conducted on the modified IEEE 57 system after the
integration of RES sources and FACTs devices.

The findings of the case studies are presented in a tabulated format. Figures 5—8 exhibit the
characteristics of the probabilities of RESs, while Figures 9—12 represent the available real power at
the RES units.
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Table 6-2:PDF parameters of renewable generators

Wind-power unit
No. of turbines Rated power, B,,,, (MW) Weibull PDF parameters
25 75 1=9;p=2
Photovoltaic plant
Rated power, Py, (MW) Lognormal PDF parameters
50 n=520c=0.6
Combined solar and small hydro power
Photovoltaic rated power Py, (MW) Lognormal PDF parameters
45 n=500=0.6
Small hydro rated power Pp,. (MW) Gumbel PDF parameters
5 A=15y=12
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Figure 6-4:Distribution of wind speed at bus 12
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6.3.1.1 Case 1: Total Generation Cost and the Investment Cost of FACTS Optimization

A comprehensive investigation into the OPF for the IEEE 57-bus system was undertaken,
examining three distinct scenarios. Initially, the conventional configuration of the system was
analyzed, followed by two additional cases: one integrating (RESs) and the other involving RES
integration alongside Flexible Alternating Current Transmission System (FACTS) devices. The
primary objective was to minimize the cost of power production in the conventional IEEE 57 system
designed as the base case scenario, and then with the integration of RES designated as scenario 1,
while simultaneously considering the investment cost associated with FACTS devices, defined as
scenario 2.

In the base case scenario, the production cost was recorded at 5570.956 (USD/h), with an
emission rate of 234.75 tons/h. Upon the integration of RESs into the system, the production cost
decreased to 5217.635 (USD/h) saving 353.32 (USD/h), approximately 6.34% of the power
production cost, alongside a reduction in emissions by approximately 22.76%, to 181.294 tons per
hour (scenario 1). The subsequent deployment of FACTS devices further reduced the production cost
to 5208.97 (USD/h), saving approximately 8.8 (USD /h) representing a marginal saving of
approximately 0.17% compared to the RES-integrated scenario. However, this enhancement incurred
an additional cost of 288.973 (USD/h) for FACTS deployment, yielding a total cost of 5497.94
(USD/h), but still saving 73 (USD/h) from the total cost compared to the base case.

Notably, the best compromise solution (BCS) yielded a production cost of 5211.722 (USD /h),
and a FACTS cost of 82.5115 (USD /h), with a total cost of 5294.231 (USD/h) reflecting savings of
approximately 4.98% compared to the base case.

Figure 5-12 shows the Pareto front of case 1, where NSKOA provides a well-distributed front,
with the BCS solution positioned almost in the center, while the optimal result and control variables
of case 1 are represented in Table 6-3. The results show that the placement of SVC devices at buses
13,16, 21, 35, 52, and 54 played a significant role in managing reactive power and stabilizing voltage
profiles. The addition of SVCs helped improve voltage levels, particularly in buses with high reactive
power demand, ensuring more efficient power flow across the network. Similarly, the installation of
TCSC devices on transmission lines (21-22), (30-31), (13-49), (29-52), (56-42), and (38-49)
optimized power transfer capability by reducing line reactance and enhancing reactive power
compensation, leading to more stable voltage regulation and an overall reduction in power losses.
The combination of SVCs and TCSCs helped balance reactive power more effectively, improving
voltage profiles and reducing strain on power generation units by minimizing unnecessary reactive
power generation, thereby contributing to cost optimization. Figures 5-13 and 5-14 illustrate the
voltage profile in the load buses and the generated reactive power, respectively, in the same case. All
values are within their limits, indicating that the constraints are completely satisfied. Importantly, the
combination of RES integration and FACTS deployment not only reduced power production costs
and emissions but also enhanced the voltage stability index, significantly mitigating power losses and
voltage deviations. This synergy underscores the potential for designing and operating future power
systems that ensure a reliable and sustainable electricity supply.
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Figure 6-12:Pareto Front Of Case 1
Table 6-3:Optimal Result And Control Variables Of Case 1
Control variable Fitness values
Base case Scenario 1 Scenario 2 BCS Base case
Pg;  331.516 Pg;  552.331 Pgi  550.564 Pgi 551.9723 Cost ($/h) 5570.956
Pe  99.986 Pg 100.000 | Pg 100.000 Pz 100.000 o
Pg;  76.635 Pe;  76.6229 | Pgy 766240 | Pg;  76.6183 Emission (ton/h) 234.75
Pgs  99.997 Pgs  100.000 | Pge 100.000 | Pgs  99.9995 Ry (MW) 43.958
Pgs  53.916 Pgs  50.5657 | Pgs  50.8772 Pgs  50.0453
Pgo 160.173 Pgoy  199.9998 Pgo  200.000 Pgo 199.999 TVD(pu) 1.4994
Pgi,  209.847 Pgi,  210.000 Pgi»  209.999 Pgi,  209.998
Vg 1.100000 Ve 1.09983 | Vg 1.099983 | Vg 1.099990 | VSI(pw) 0.2899
Vg, 1.095161 Vg, 1.092973 Vg, 1.093325 Vg 1.093092 Scenario 1
Vegs  1.079965 Ve;  1.070328 | Vgs  1.071347 | Vg 1.070841 EE—
Vge 1.065115 Vge 1.04371 Vgs  1.040434 Vge 1.040998 TGceost ($/h)  5217.635
Vg 1.064082 Vgs 1.034728 | Vgs  1.029753 | Vgs  1.031650
Vgy  1.050054 Vgg  1.027750 | Vgy 1.032134 | Vgo  1.028320 Emission (ton/h) 181.294
Vg, 1.06068 Vg, 1.03707 | Vg, 103637 | Vg, 1.03660
RPL(MW 38.7203
Tugs) 1.0539 Taisy 1.0084 | Tuisy 10507 | Taus 1.0724 L(MW)
Tass 0.9958 Tais) 09868 | Ty 09727 | Ty 0.9664 TVD (pu) 15821
T(zl,zo) 1.0538 T(21,20) 1.0122 T(21,2o) 1.0010 T(21,20) 1.0133
T(24,25) 0.9601 Teaps)y 0.939 Teapsy 0.9495 T(24,25) 0.9457 VSI (pu) 0.2757
T(24,25) 1.0158 T(24,25) 0.9375 T(24,25) 0.9622 T(24,25) 0.9585
Scenario 2
Tea26 1.0020 Ta26) 0.9820 T@a26) 0.9787 Ta26) 0.983
T29) 10006 Toao) 09599 | Taas 09659 | Taae) 0.9634 TGeost($/h)  5208.97
T@aagy 09717 T@azzy 0.9184 T@as) 09135 T@az2) 0.9107
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T(11,41) 0.9220 T(11,41) 0.9000 T(11,41) 0.9158 T(11,41) 0.9123 TFcost ($/h) 288.973
Tasas) 0.9835 Tasas) 0.9887 Tasas) 1.0014 Tasas) 0.9959
Tiads) 0.9744 Taaas) 0.9648 | Teiaas 0.9800 Toaas) 0.9744 Emission(ton/h) 180.125
T(10,51) 0.9978 T(10,51) 0.9723 T(10,51) 0.9782 T(10,51) 0.9775 RPL(MW) 37.263
T340 0.9503 Ta349) 0.9331 T340y 0.9784 Ta3a9) 0.9771
Tai43 0.9997 Ta143 0.9591 Tai143) 0.9872 Tai43 0.9776 TVD(p.u) 1.9347
Twose) 1.0168 Twos6) 0.9861 Twoss) 0.9509 Twoss) 0.9432
Taosn 0.9744 Taos7 0.9549 Taosn 0.9577 Taosn 0.9617 VSI(p.u) 0.248
Tess 0.9922 Twss5 0.9643 Tess5 0.97113 Twes5 0.9679 BCS
Optimal size and location of SVC-TCSC -
TGeost ($/h) 5211.722
sveasy  50.000 svcaz) 0.7796
svcisy 24.050 svcasy 6.5088 TFcost ($/h) 82.5115
svcery  7.135 svcpry  3.5401 L.
sveps) 15038 sveps) 12.438 Emission(ton/h) 181.06
svciz)  5.825 sveisz)  0.6752 RPL(MW) 37.833
SVC(54) 2.567 SVC(54) 1.5976
Tescaiz 0.0377 / TVD(p.u) 1.6739

S~ TS T T T T Y Y Y Y

S~ TS T T T T T Y T T

Tesc@oszy 0.3976
TCSC(13,49) 0.1260
Tescpos2) 0.1393
TCSC(56,42) 0.1939
Tescagao) 0.0332

Tesczozy 0.3588
TCSC(13,49) 0.1184
Tescos2) 0.1430
TCSC(56,42) 0.2421
Tescaga) 0.0138

VSI(p.u) 0.2533

Pci (MW), Vg (p-u.), Tay) (p-u.),Q sveigy (MVAr), X Tescq,j) (p-u.).
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Table 6-4 represents a statistical comparison of the proposed method with six other methods used in
case | and case 2 for the first scenario, for instance, the barnacles mating optimizer (BMO), moth-
flame optimization algorithm (MFO), particle swarm optimization (PSO), efficient optimization
algorithm based on weighted mean of vectors optimization (INFO), and artificial ecosystem-based
optimization (AEO).

Table 6-4:Statistical Comparison Of Case 1 And Case 2 For The First Scenario

Case 1 Case 2
Algorithms Results ($/h) Algorithms Results (MW)
BMO [61] 5300.457 ($/h) BMO [61] 20.785 (MW)
MFO [61] 5316.14 ($/h) MFO [61] 21.3031 (MW)
PSO [61] 5417.538 ($/h) PSO [61] 21.3621 (MW)
GTO [63]  5260.0009 ($/h) GTO [63] 19.7703 (MW)
AEO [63]  5260.2497 ($/h) AEO [63] 19.7633 (MW)
INFO [63] 5259.2040 ($/h) INFO [63] 19.7040 (MW)
NS-KOA 5217.635 ($/h) NS-KOA 16.836 (MW)

Bold indicates the best solutions found so far.
6.3.1.2 Case 2: Real Power Loses and the Investment Cost of FACTS Optimization

In a parallel investigation, the optimization of real power losses (RPLs) within the same system
configurations was pursued. In the base case scenario, RPL stood at 18.022 MW, which decreased to
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17.729 MW following the integration of RESs, achieving a reduction of approximately 1.62%
(Objective 1). Subsequent intervention with FACTS devices further diminished RPL to 16.398 MW,
demonstrating an additional reduction of approximately 9.05% compared to the base case and 7.45%
compared to the RES-integrated scenario. However, this enhancement incurred an additional cost of
227.86 (USD/h) due to FACTS deployment (scenario 2). Conversely, the base case scenario led to an
RPL of 16.836 MW, with a FACTS cost of 68.945 (USD/h).

Figure 6-15 shows the Pareto front of case 2, where NSKOA provides a well-distributed front,
with the BCS solution positioned almost in the center, as shown in Table 6-5. The strategic placement
of SVCs and TCSC:s significantly influenced power loss reduction by optimizing reactive power flow.
Notably, buses 50 and 53 were equipped with SVCs, highlighting their critical role in reactive power
support and reducing power losses. Similarly, the results show that in the IEEE 57 BUS network, the
branches (9-12) and (13—49) are the regions that need TCSC device installation to effectively control
line impedance and improve power flow efficiency, which reduces power losses in these regions by
reducing line reactance. The presence of TCSCs on these repeated branches indicates their importance
in minimizing congestion and reducing transmission losses, making them key points for reactive
power compensation and power loss mitigation. These findings underscore the efficacy of FACTS
deployment in significantly mitigating real power losses within the system, even with an added
expense, presenting a nuanced trade-off between loss reduction and investment expenses. Figures 5-
16 and 5-17 illustrate the voltage profile in the load buses and the generated reactive power,
respectively, in the same case. All values are within their limits, indicating that the constraints are
completely satistfied.
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Figure 6-15:Pareto Front of case 2
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Figure 6-16:Load Bus Voltage Profile For Case 2

50

Control variables

Fitness values

Base case Scenario 1 Scenario 2 BCS
Pg:  198.3536 Pg: 301.5189 Pgi 2974671 Pgi  299.6088
Pg, 19.6385 Pg, 8.424944 Pg, 7.759523 Pg, 8.143402
Pgy  136.582 Pgy;  140.000 Pg; 1399811 Pgs  139.962
Pgs 94.53006 Pgs  99.9969 Pgs  99.9978 Pgs  99.9930
Pgg 319912 Pggs  308.590 Pgg  311.9925 Pgs  309.931
Pgo  199.070 Pgo  199.999 Pgo  199.999 Pgo  200.000
Pgio  209.994 Pgio  209.998 Pgi»  210.000 Pgin  209.997
Vg1 1.074194 Vg1 1.075784 Vg1 1.073172 Vg 1.075249
Vg, 1.067047 Vg, 1.068157 Vg, 1.066069 Vg, 1.067677
Vgz 1.061879 Vgz 1.064005 Vgz 1.063692 Vgz 1.063580
Vgs 1.063364 Vgs 1.059364 Vgs 1.059340 Vgs 1.059306
Vgg 1.075176 Vgg 1.061550 Vgg 1.064236 Vgg  1.064473
Vgo 1.051757 Vgo 1.043234 Vgo 1.051782 Vgo 1.047636
Vg 1.040481 Vg, 1.037484 Vg2 1.037586 Vg, 1.038832

T8 1.042820
T, 0.969822
T@i20) 1.00078
Ta2s5) 0.946581
T(2425) 0.962140
T(24,26) 1.025195
T729) 0.991647
T3432) 0.943693
Tai41) 0.922844

T(s4s) 0.982334

T, 0.964453
Tw,18) 1.026266
Te120) 1.019229
T425 0.937832
Ta25 0.971551
T426 1.013087
T720) 0.983174
T@3a32) 0.927002
Ta141) 0.900000
Tasas) 0.983402

T, 0.955661
T, 1.035669
T120) 1.006507
Ta2s5) 0.960908
T425) 0.975584
T426) 1.009955
T(720) 0.990604
T@3a32) 0.929053
Ta141) 0.930783
Tasas) 0.993976
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Tw,18) 0.950783
T8 1.040006
Ti20) 1.014671
Ta25) 0.954601
Ta2s) 0.972877
Ta26) 1.016856
T7209) 0.986726
T@a32) 0.932515
Ta141) 0.919565
Tas4s5) 0.984972

Base case

TGeost ($/h) 10979.12

RPL(MW) 18.7160
TVD (pu) 1.5782
VSI (pu) 0.2766

Scenario 1
TGcost ($/h) 10154.82

RPL(MW) 17.7299
TVD (pu)  1.5298
VSI (pu)  0.2759

Scenario 2

TGeost ($/h) 10269.41
TFcost ($/h) 227.869

RP. (MW)  16.3981
TVD(pu)  1.9708
VSI(pu)  0.2468

BCS

TGecost ($/h) 10198.18
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Taazs6) 0.963354
Taos1) 0.975757
Ta3za49 0.937087
Tai43) 0.975505
Tos6 1.003564
Taos7) 0.962797
T;s5 0.988405

Ta46) 0.963000
Taos1) 0.969271
Ta349) 0.936787
Ta143) 0.977018
Tos56 1.006911
Taos7) 0.968382
Ts5 0.986404

Tqas6) 0.984149
Taos1) 0.986212
Ta3za49 0.991151
Ta143) 0.988254
Twos6) 0.958281
T@aos7) 0.957930
T,;s5 0.991583

Ta46) 0.975964
Taosy 0.977325
T349 0.980100
Ta143) 0.982823
Two56) 0.960962
T@3957) 0.969004
T,55 0.984642

Optimal size and loc

ation of SVC-TCSC

S~ T~ Y~~~

S~ T~ T~ Y

/

S~ TN T T T T T Y Y Y

SVC(13) 17.3838
svcasy 11.2275
SVC(35) 12.2902
svciasy 16.354
SVC(50) 11.123
svcissy  6.240
TCSC(9,12) 0.0573
Teseq,i6 0.0308
TCSC(30,31) 0.3034
Tescar48) 0.0175
Tesciz49) 0.1465
TCSC(38,48) 0.0371

SVC(35) 8.28284
SVC(38) 6.5553
SVC(50) 2.08968
sveissy  1.7785
SVC(54) 0.6111
/
TCSC(9,12) 0.0269
Tesca,i6) 0.0042
TCSC(47,48) 0.0039
Tesc(i349) 0.1356
Tescsea2) 0.0228
TCSC(38,43) 0.0347

TFcost ($/h) 68.945

RPL (MW) 16.8366
TVD (pu) 1.6799
VSI (pu)  0.2593

Pgi (MW), Vg (p.u.), Tayj (p-u.), Q svci (MVAr), X Teseq,j) (p-u.).

6.3.1.3 Case 3: Total Voltage Deviation and the Investment Cost of FACTS Optimization

In a comprehensive analysis encompassing the optimization of total voltage deviation (TVD)

within the same system configurations, notable improvements were observed. In the base case
scenario, TVD registered at 0.7029 per unit (p.u.), which decreased to 0.6842 p.u. following the
integration of RESs, marking a reduction of approximately 2.66% for scenario 1 (Objective 1).
Subsequent intervention with FACTS devices yielded a significant improvement, reducing TVD to
0.2138 p.u., reflecting a substantial enhancement of approximately 69.5% compared to the
conventional configuration of the IEEE 57 bus and 68.79% compared to the RES-integrated scenario.
However, this advancement incurred an additional cost of 237.38 (USD/h) due to FACTS
deployment. Conversely, the base case scenario led to TVD of 0.3435 p.u., with a FACTS cost of 73

(USD/h).

Figure 6-18 shows the Pareto front for case 3, where NSKOA provides a well-distributed front,
with the best compromise solution (BCS) positioned near the center. Figures 6-19 and 6-20 present

the voltage profile at the load buses and the generated reactive power, respectively, for the same case.
All values remain within permissible limits, confirming that the constraints are fully satisfied. The
numerical results presented in Table 6-6 illustrate that the deployment of SVCs and TCSCs effectively
reduced voltage deviation, enhancing voltage stability across the network. SVCs were installed at
buses 14, 21, 35, 44, 53, and 54, providing crucial reactive power support to improve voltage profiles
at these locations. Notably, in the IEEE 57-bus network, bus 35 required a significant SVC
installation, which played a key role in reducing voltage deviation by supplying or absorbing reactive
power as needed. This capability helps maintain voltage levels within desired limits, especially during

fluctuations in load.

The TCSCs installed on branches (19-20), (21-22), (37-39), and (13-49) facilitated better
control of line reactance and optimized the flow of reactive power, which mitigated voltage drops

105




Chapter 6

VOLTAGE STABILITY IMPROVEMENT IN PRESENCE OF RENEWABLE ENERGY SOURCES AND
FACTS DEVICES

along transmission lines, contributing to improved voltage levels and further aiding voltage
regulation. The consistent presence of SVC at bus 35 and TCSC on branch (13—49) illustrates their
pivotal role in mitigating voltage deviations and ensuring stable reactive power management
throughout the IEEE 57-bus network. These findings highlight the efficacy of FACTS deployment in
reducing total voltage deviation within the system, underscoring the trade-off between improved
voltage stability and FACTS deployment cost.
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Figure 6-18:Load Bus Voltage Profile For Case 3
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Table 6-6:Optimal result and control variables for case 3

Control variables

Fitness values

T8 1.042820
T, 0.969822
Tei20) 1.00078
Ta2s5) 0.946581
T(425) 0.962140
T(24,26) 1.025195
T729) 0.991647

T,18) 0.97587
T8 1.04991
Te120) 0.96580
T425) 0.96748
T425) 0.96013
Ts26) 1.03451
T209) 0.95720

Tuas) 0.955661
T(4,18) 1.05236
Tai0 0.96297
Tu2s) 0.96883
Tu2s) 0.98919
Tszs 1.02960
Ta29) 0.96383

Base case Scenario 1 Scenario 2 BCS

Pgi  198.3536 Pgi 545.1541 Pgi 4259918 Pg,  519.1516
Pg, 19.6385 Pg, 42.6645 Pg,  39.6999 Pg, 57.4019
Pgy  136.582 Pgs 110.9823 Pg; 118.1849 Pgs 96.2114
Pgs  94.5306 Pgs  14.0295 Pgs 58.4176 Pgs  0.0000
Pgg  319.912 Pgg 239.4711 Pgs  224.5698 Pgs  262.5789
Pgo  199.070 Pgo 171.4433 Pgo 199.999 Pgo 182.9161
Pgio  209.994 Pgin 164.5253 Pgi>  209.999 Pgin 168.6121
Vg 1.074194 Vg 1.04032 Vg 1.02062 Vg 1.02712
Vg, 1.067047 Vg, 1.02816 Vg, 1.01073 Vg, 1.02244
Vgz 1.061879 Vgs 1.02422 Vgz 1.00583 Vgz 1.02102
Vgs 1.063364 Vgs 1.00302 Vge 1.00025 Vgs 1.00153
Vgs 1.075176 Vgs 1.02873 Vgs 1.02203 Vgg 1.03107
Vgo 1.051757 Vgo 1.01095 Vgo 1.01148 Vgo 1.01119
Vg1 1.040481 Vg, 1.01479 Vg2 1.00556 Vg2 1.00799

T8y 0.97037
T8 1.04938
T120) 0.96335
Ta2s5) 0.97148
T2425) 0.98409
Ta26) 1.03335
T20) 0.95958

T4 0.943693 | Taazy 0.92014 | Taazy 0.95538 | Taazn 0.95523
Taran 0.922844 | Taran 0.900000 | Taian 0.92422 | Taran 0.90000
Tasasy 0.982334 | Tasas) 0.93812 | Tasas) 1.02301 | Tasas) 0.98128
Taage6) 0.963354 T(1446) 0.98081 Taas) 1.00294 Taagss) 0.99451
Taosn 0.975757 | Taosy 0.99571 | Taosy 0.99637 | Taosy 0.99666
Ta349) 0.937087 T349) 0.90023 Ta349) 0.90764 Ta349) 0.90000
Ta143) 0.975505 Ta143 0.97609 Ta143 1.00385 Ta143 1.00178
Twuose) 1.003564 | Tuose) 1.02057 Twos6) 0.92593 Twuoss) 0.94376
T@aos7) 0.962797 T@3o57) 0.90000 T@aos7) 0.94573 T@aos7) 0.95405
T,55) 0.988405 Tess) 0.98505 Tws5 1.01831 Tws5 0.98132
Optimal size and location of SVC-TCSC

/ / SVC(14) 21.585 /

/ / SVC21) 12.785 /

/ / SVC(35) 30.907 SVC(35) 28.511

/ / SVC(44) 7.757 /

/ / SVC(53) 5.156 /

/ / SVC(54) 9.580 /

/ / TCSC(19,20) 0.3155 TCSC(19,20) 0.3472

/ / TCSC(21,22) 0.0936 TCSC(2|,22) 0.0657

/ / TCSC(37,39) 0.0303 TCSC(37,39) 0.0216

/ / Tescaea0) 0.0373 | Teseisan) 0.0199

/ / TCSC(56,42) 0.1961 /

/ / Tescisa) 0.1416 /

Base case
TGcost ($/h) 10979.12
RPL (MW) 17.7160
TVD (pu) 1.5782
VSI(pu)  0.2766
Scenario 1
TGcost ($/h) 8102.0217
RPL(MW) 37.4701
TVD (pu)  0.6842
VSI(pu)  0.29440
Scenario 2

TGeost ($/h) 7546.581

TFcost ($/h) 237.380

RP.(MW)  26.0637
TVD (pu)  0.2138
VSI (pu)  0.2945

BCS

TGcost ($/h) 8671.4377

TFcost ($/h) 73.0604

RPL(MW) 36.0721
TVD (pu)  0.3436
VSI (pu)  0.29601

Pgi (MW), Vg (p.u.), Tajj (p-u.),Q svea (MVAr), X Teseqy) (p.u.).
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Figure 6-19:Generator’s Reactive Power For Case 3

6.3.1.4 Case 4: Voltage Stability Index and the Investment Cost of FACTS Optimization

In this phase, the focus shifted towards optimizing and enhancing the voltage stability index
within the examined system configurations. The base case exhibited a voltage stability index of
0.2757 p.u., which notably improved to 0.2018 p.u. following the integration of both RESs and
FACTS technologies, representing a significant improvement of approximately 26.80%. However,
this improvement came at an additional cost of USD 62.04 per hour due to FACTS deployment.
Interestingly, in the BCS, the voltage stability index of 0.2074 p.u. was achieved with a significantly
lower FACTS cost of USD 10.38 per hour, showcasing comparable performance with substantial
savings of approximately USD 52 per hour, equivalent to approximately 83.78% in investment
expenses of FACTS.

Figure 6-21 shows the Pareto front for case 4, where NSKOA provides a well-distributed front,
with the best compromise solution (BCS) positioned near the center. Table 6-7 shows that the
integration of SVCs and TCSCs significantly influenced the voltage stability index. Notably, the
SVCs at buses 16, 21, 28, and 54 provided vital reactive power compensation, especially at bus 28,
crucial for keeping the voltage profile at the desired levels. This ability reduces the risk of voltage
collapse and improves the voltage stability index as shown in Figures 6-22 and 6-23, which present
the voltage profile at the load buses and the generated reactive power where all values remain within
permissible limits.
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The results indicate that branches (18—19) and (24-25) required larger TCSCs due to high reactive
power demand, which directly impacted voltage stability, by enhancing power transfer capability,
helping to stabilize voltage levels, and preventing conditions that could lead to instability. The
placement of TCSCs on branches (30-31) and (37-38) further emphasizes their crucial role in
optimizing voltage stability across the IEEE 57 network. The branches (18—19) and (24-25)
demonstrated the need for larger TCSCs as these lines were under significant reactive power demand,
directly impacting voltage stability. TCSCs improve the power transfer capability of lines, which can
help stabilize voltage levels and prevent conditions leading to voltage instability. The TCSCs on
branches (30-31) and (37-38) underscore their critical role in optimizing voltage stability across the
IEEE 57 network. These findings underscore the effectiveness of FACTS deployment in enhancing
voltage stability while highlighting the importance of cost considerations in optimizing system
performance.

70 T T T T T

@

60

50

40

30

s @® @o® O @

FACTS Cost($/h)

20

10

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28
voltage stability index

Figure 6-20:Pareto Front Of Case 4
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Table 6-7:Optimal Result And Control Variables For Case 4

CONTROLE VARIABLES Fitness values
Base case Scenario 1 Scenario 2 BCS
Pgi 320.9496 Pg; 552.3335 Pg1 402.9396 Pg; 516.5286
Pg, 44.2970 Pg, 100.000 Pg, 32.0975 Pg, 93.31830
Pgz; 70.9802 Pgs 76.6229 Pg; 135.201 Pgz 92.04518
Pge 49.1657 Pge 99.9997 Pge 0.45037 Pge  0.000000
Pgg 271.1674 Pgg 50.5656 Pgs 295.800 Pgs 196.9922
Pgy 197.0577 Pgy 199.998 Pgo 200.000 Pgy 180.3202
Pg12 152.410 Pglz 209.999 Pg12 208.955 Pg12 210.000 Base case
Vg 1.076947 Vg 1.099834 Vg 1.037665 Vg 1.038911
Vg, 1.064682 | Vg 1.092973 Vg, 1.021399 Vg, 1.029121 Cou(S/) 919349
Vg3 1.040932 Vg3 1.070328 Vg3 1.021756 Vg3 1.021645 RPL(MW)  29.635
Vge 1.035024 | Vg 1.043710 Vgs 1.008789 Vgs 1006930 TVD (pu) 14720
Vgs 1.050021 Vgs 1.034728 Vgg 1.031409 Vgs 1.029410 VSI (p.u) 02757
Vgo 1.030837 Vgo 1.027750 Vgo 1.014471 Vgo 1.011513 )
Vg, 1.023650 | Vein 1.037090 Vg, 1.018090 Vg, 1.014264 Scenario 1
Twu,18) 0.9726 T8 1.008410 T8 1.022652 T8 1.017152
Toiao 107613 | Taus 0.986867 | Taus 0901523 | Tuus 0922051 | TGeost($/h) 5217.74
Ta2s5) 0.98528 Tei20) 1.012262 Tei20) 1.069454 Tei20) 1.017742
Taszs) 0.96546 | Taas) 0939723 | Tazs)y 0.998648 | Tpans) 1.007304 | RPL(MW)  38.719
Tosze) 1.04711 | Toans) 0.937514 | Taans) 0.992255 | Toans) 0.997993 | TVD (pu)  1.5869
T720) 0.959181 Ta26) 0.982061 T426) 1.054628 Ta26 1.084371 VSI (p.u) 0.2757
T@a32) 0.90985 T20 0.959973 T720) 0.939237 T@29) 0.931607
Taian 0.95951 T@a32) 0.918400 T@az2) 0.900827 T@az2 0.900019 Scenario 2
Tasas) 0.97504 | Tia 0.900000 | Tarany 0.900589 | Taian 0.900000
Taases) 0.95079 Tasas) 0.988708 Tasas) 0.955885 Tasas) 0.954432 TGcost ($/h) 9748 93
Taosny 095684 | Taass 0964576 | Tase 0935021 | Taase 0.934472 | TFeost ($/h) 62.045
T(13,49) 0.90762 T(]o,51) 0.970265 T(10,51) 0.941255 T(10,51) 0.939803 RPL(MW) 24.645
Tai43) 0.95171 Tasza9 0.934064 Taza9 0.900053 Taza9) 0.900661 TVD (pu)  1.4312
T(40,56) 0.98339 T(11,43) 0.95915 T(11,43) 1.053052 T(11,43) 0.975194 VSI (p.ll) 0.2018
Taosn 1.09573 Tuose) 0.986130 Tuose) 1.083148 Tuosey 1.058040
Ts5 1.032468 T@os7) 0.954959 T@aos7y 1.012770 T@osy 1.037772 BCS
T(9,55) 0.964379 T(9,55) 0.989115 T(9,55) 0.988271 -
Optimal size and location of SVC-TCSC
TGecost ($/h) 6993.24
/ / sveae 075793 / TFcost ($/h)  10.38
/ / svceny  0.66050 | sveazy 0.39169 RPL(MW)  38.404
/ / SVC(28) 0.01766 SVC(28) 0.00171 TVD (p'u) 13522
/ / SVC(54) 0.0710 SVC(54) 0.00202 VSI (p.ll) 0.2074
/ / TCSC(lg,lg) 0.5480 TCSC(18,19) 0.4040
/ / Tcscas) 0.9840 | Tescansy 0.9840
/ / TCSC(25,30) 0.1616 TCSC(25,30) 0.1616
/ / Tesczoz) 0.3952 | Tescsozry 0.3964
/ / TCSC(37,38) 0.0807 TCSC(37,38) 0.0807
/ / TCSC(11,41) 0.5992 TCSC(11,41) 0.1752
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6.4 Conclusion

This chapter presents a comprehensive study on the optimization of power flow through an
exploration of a multi-objective optimization strategy that can simultaneously address a range of
critical objectives using the non-dominated sorting Kepler optimization algorithm (NSKOA),
focusing on the integration of (RESs) and FACTS devices into the electrical network. The proposed
NSKOA has demonstrated its effectiveness in achieving significant improvements in several key
performance indicators. Notably, the integration of RESs and FACTS devices resulted in a 6.49%
reduction in power production costs, a 9.05% reduction in real power losses (RPLs), a 69.5% decrease
in voltage deviations (TVDs), and a 26.80% improvement in the voltage stability index (VSI). The
approach also achieved a substantial 22.76% reduction in emissions, contributing to environmental
sustainability. These results illustrate the robustness of the NSKOA in optimizing power system
performance under various operational conditions and its effectiveness in addressing multi-objective
problems. It underscores the potential of these approaches in managing the complexities of power
systems. It is true that the regulation of control variables, such as generation voltages and transformer
tap ratios, ensures the operability of the power system but remains technically insufficient. This
highlights the practical implications of RES and FACTS device integration into the design and
operation of future power systems, paving the way for a more efficient, reliable, and sustainable
electricity supply.
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GENERAL CONCLUSION

This thesis has addressed the multifaceted technical, financial, and environmental challenges
confronting modern electrical networks both in upgrading aging infrastructure and deploying new
systems. While recent advancements in grid technologies and optimization techniques offer
significant benefits, they also introduce new operational complexities, particularly with regard to
tuning parameters and ensuring system stability. A central focus of this work has been the integration
of (RES), which despite their undeniable environmental and economic advantages introduce inherent
variability due to fluctuating wind, solar irradiance, and hydrological conditions. These uncertainties
complicate reliable system operation, especially under high RES penetration.

To capture the impact of RES variability, this work first identified and characterized key
stochastic variables associated with wind, solar, and hydro power generation. Probabilistic modeling
techniques, including Monte Carlo simulation and probability density functions, were used to
quantify uncertainty and assess the economic implications of generation shortfalls or surpluses. The
study then progressed to deterministic power flow and (OPF) models aimed at minimizing generation
costs, power losses, and pollutant emissions. However, traditional optimization techniques often fall
short when applied to large-scale networks with high renewable integration.

To overcome these limitations, the thesis explored a wide range of metaheuristic optimization
techniques including evolutionary, swarm-based, physics-inspired, and human-based algorithms with
a particular focus on their ability to balance global exploration and local exploitation. Building on
this foundation, the Kepler Optimization Algorithm (KOA) was selected and further enhanced
through the development of two key improvements: an exploratory exploitative operator ¢ designed
to intensify neighborhood search and accelerate convergence, and a non-dominated sorting scheme
tailored for effective multi-objective optimization.

These improvements were applied to the optimal generation dispatch of a 114-bus Algerian
power system under RES uncertainty. Results showed that the enhanced KOA achieved a 49%
reduction in emissions, significantly lowered generation costs, and reduced carbon tax liabilities.
However, despite increased generation diversity and capacity, the system remained vulnerable to
power losses and voltage instability. To address this, the study expanded to incorporate Flexible AC
Transmission Systems (FACTS) devices, which, though effective in enhancing power flow and
voltage profiles, come with high capital costs.

A multi-objective optimization framework was then implemented to jointly minimize
investment in FACTS devices while maximizing operational benefits, including cost savings, loss
reduction, voltage stability, and emission cuts. The optimized solution yielded a 6.49% reduction in
production costs (1.31% net of FACTS investment), a 9.05% drop in real power losses, a 69.5%
improvement in voltage deviation, a 26.8% boost in voltage stability index, and a 22.76% reduction
in total emissions.

Overall, the enhanced KOA approach demonstrated strong performance and adaptability in
managing the complex interplay between renewable uncertainty, grid optimization, and cost-effective

113



GENERAL CONCLUSION

infrastructure upgrades. The results of this thesis affirm the growing importance of robust, intelligent
optimization strategies in guiding the evolution of modern power systems toward more sustainable,
resilient, and economically efficient operation.

FUTURE WORK

In future work, we will extend our stochastic optimization framework to capitalize on surplus
renewable energy that arises under under-estimation scenarios by diverting excess generation into
green hydrogen production rather than incurring penalty fees. Specifically, we will integrate an
electrolyzer model into the dispatch algorithm so that any power exceeding forecasted demand is
automatically allocated to hydrogen synthesis. By co-optimizing generation scheduling and hydrogen
production, the system can transform what would have been a curtailment penalty into a
revenue-generating process, effectively doubling the economic value of surplus energy. We will
quantify this benefit by comparing baseline penalty costs against combined revenues from avoided
fees and hydrogen sales, while also tracking the volume of green hydrogen produced. This approach
promises not only to reduce operational risk and improve system profitability, but also to contribute
to decarbonization by creating a low-carbon fuel stream from otherwise wasted renewable output.
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