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Preface

The Wave and the vibration is an art that requires mastery of several disciplines
such as electricity, mechanics and physics.

The vibration has an extremely broad field of application, it concerns the study of
mechanical and electrical systems.

The waves, there are familiar kinds of waves in ropes and springs.

The present course is divided into two main parts, the first one deal with
Vibrations in four detailed chapters.

The second part of the course covers fours chapters in waves.

Through educational sequences allowing the assimilation of the expected
concepts, the present course in confined.

The content of the present support corresponds in accordance with the
framework taught in electrical engineering, it is attended for second year students in

electrical engineering.
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Part A : Vibrations



Chapter 1: generality on

vibrations



1.1. Obijectives
At the end on the present chapter, the student will be able to develop the Lagrange equations and to
identify the type of oscillation.

1.2. Introduction
The vibrations are oscillations of an object near its equilibrium point. The oscillation can be regular like the

movement of a spring or pendulum or random like the movement of a tire on a gravel path.

1.3.  Necessity
Among other things, the student need to know:
e Complex numbers.
e Total and partial derivatives (optional but useful for finding your way).

1.4. Definitions of vibrational movements
Before defining the vibrations in depth, it is useful to learn about some physical concepts such as the stable

and the unstable equilibrium point [1].

1.4.1. Stable equilibrium point
If we move away a particle placed at his equilibrium point, its movement will allow it to return to his initial

position (Fig.1)

Fig.1

1.4.2. unstable equilibrium point
If we move away a particle placed at his equilibrium point, its movement will not allow it to return to his initial

position (Fig.2)

Fig.2



1.4.3. Examples on vibratory movements
1.4.3.1.  Mass attached to spring

The system below is composed of a mass (m) connected to a spring (K) vertically [1] [2] [3].

NONONNNNN

Fig.3

The mass is attached to one end of the spring while the other end is held fixed. At rest, the mass is pulled down
and then released. The present system will go back and forth around the equilibrium position. This displacement
is called vibrational movement.

1.4.3.2.  Simple pendulum

The mass is pulled from its equilibrium position with an angle (0) and then released as can be shown in the

figure bellow.

ANAANANANANAN

o)

Fig.4

The present system will go back and forth around the equilibrium position. This displacement is called

vibrational movement.



1.4.3.3.  Disk attached to an inextensible wire
The system below consists of a disc suspended in the center with an inextensible wire. When the disc is
rotated wiht an angle (0) and then released, the system will go back and forth around the equilibrium position.

This displacement is called vibrational movement [1].

ANANANN

)

Fig.5

1.4.3.4. Electrical circuit

The system below consists of a resistance, inductance and capacitance [1].

Fig.6

1.5.  Different types of vibrations

1.5.1 Undamped free oscillation

The system in this case ensures vibrations without any external force. The movement will never attenuate, it

vibrates indefinitely.

ANANANANANANAN

Fig.7

10



1.5.2. Damped free oscillation

The energy in the present system will gradually dissipate during a period of time.

ANANANANANANAN

sl <<,

Fig.8

1.5.3. Undamped forced oscillation
The system in this case ensures vibrations through an external force which create the movement. The energy

in the present system is conserved. The movement will not attenuate.

ANANANANANANAN

Fig.9
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1.5.4. Damped forced oscillation
The system in this case ensures vibrations through an external force which create the movement. The energy

in the present system will gradually dissipate during a period of time [4].

ANANANANANANAN
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Fig.10

1.6. Methods of resolution
The study of vibrational movement is carried out through the determination of the differential equation
movement. The present methods aim to identify the oscillator system viz; position, speed, amplitude,

frequency, etc. Generally there exist three methods for the resolution including:

- The theorem of conservation of energy
- The fundamental relationship of dynamics

- The Lagrange formalism

1.6.1 Kinetic energy
The kinetic energy is an energy that related to a movement (it can be rotation or translation direction).

Mathematically we can write the following equations:
1 )
T= S mX (1)
1.4 2
T=1J6 ®)

. dx . . . 2 de . . . . . .
Where, X = s J: is the inertia moment, 8 = — is the angular velocity, X: is the direction, 0: is the angular
t dt

velocity.

a. Inertia Moment
The moment of inertia characterizes the distribution of mass around an axis of rotation. The most frequently

encountered moments are the following [1]:

12



e A bar with mass (m) and a length (1) rotates around an axis (A) (the bar rotates around its center):

J= %ml2

e A bar with mass (m) and a length (1) rotates around an axis (A) (the bar rotates on its extrimity): =
Zml?
3

e Punctual mass attached to a wire: J= ml?

e Adisk:J= mR?

e Acercle: J= mR?

1.6.2. Potential energy

The potential energy can take the following forms:
e Gravitation: U = mgh
Note : U = 0 in the reference position
e Elastic deformation: U = %kx2
e Suspended mass: U = mgl(1 — cosB) = +mgl(cosb)

1.7. Lagrange method
The Lagrangian L represents a difference between the kinetic and the potential energies. Mathematically, we

can write the following equation:
L=T-0 ©)

doL 9L , oD _

aiox Tt *)

Where,

D: is the dissipation energy , F: is the external force

13



Chapter 2: Free oscillation with

one degree of freedom



2.1. Objectives

At the end on the present chapter, the student will be able to develop the Lagrange equations for a free

oscillation for one degree of freedom.

2.2. Necessity

Generalities on vibration movements

2.3. Introduction

The free undamped oscillation is a form in which the energy is conserved, and therefore, there is no external

force which opposes the movement [1].

2.4. Free undamped oscillation

a. Mass attached to a spring

AN

Fig.1

Considering a mass attached to a spring as can be shown in the figure.1, the proposed mechanical system

could be resolved using the Lagrange equation as follows:

T = -mx?
U =-kx?
2
L=T-U

doL dL , aD _

aox T ¥

@

2

)

)

15



aox a0 ®)
oL _
ax
d oL
Such as : E&—mx
L oL
ox
mi + kx = 0 ©6)

Where, wg = % (clean pulsation or proper pulsation)
X+ wix =0 %

The above equation is simply a differential equation in second order, the final solution could be written as

follows:

x(t) = Acos(wyt + @) ©)

X(t) A

Fig.2
Where: A: is the amplitude of oscillation, : is the initial phase,

Finally, we have to use the initial condition in order to determine the initial pulsation and phase;

IC:t=0,X0=A, X0:0

X = Frie —Asin(wyt + @)

@ =2mn,,,forn=0->¢=0

16



Xo = Acos(wyty + @) = Acos(wy X 0+ 0) = A

wy = 2nf = 2 Tris the period of oscillation.
T

b. Simple pendulum

The system below contains a mass m attached to an extensible wire of a length L (the mass of the wire is

negligible). The oscillation is ensured by moving away the object from its equilibrium position with an angle 0

and then released. The system in this case will oscillates around its equilibrium position.

AMAONANNNN ANANNANNN

Whete, a = Lcos8,Z =L —a =L — Lcos6

The Lagrangian equations could be written as follows:

1.2 1 ;
T = 5]62 = Emlzez (9)
U = mgh = mgl(1 — cosB) (10)
L=T-U 11)

————+—==F (12)

— === (13)

17



[T
| 36 =m0
Such as : 4 %%= ml%@
oL .
L% = —mglsin0
ml?0 + mglsin® = 0 - 10 + gsind = 0 (14)
Where, wg = % (clean pulsation or proper pulsation)
0+w2e=0 (15)

The above equation is simply a differential equation in second order, the final solution could be written as

follows:
0(t) = Acos(wot + @) (16)

Where: A: is the amplitude of oscillation, : is the initial phase.

B(H)A

VAV

Fig.4

Finally, we have to use the initial condition in order to determine the initial pulsation and phase;
IC:t=0,0,=A,0,=0

. de .
0= Frie —Asin(wot + ¢)

@ =2mn,,,forn=0->¢=0

18



0o = Acos(wyty + @) = Acos(wy X 0+0) =A

Where, wy, = 21f = 2?“ , T:is the period of oscillation.

c. Electrical circuit (L.C)

The free undamped oscillation could be found in electrical circuit composed of inductance L and capacitor C

as can be shown the figure below.

L

Cc
Fig.5
Using the mesh equation we can found the followings:
uy+u. =0 17)
=LYy = lfidti=g=dadi_da_.
Where: u; = Ldt’uc = Cfldt,l =q=3 5 = =4
.o, 1
Lg + 4= 0 (18)
.o, 1
q+::9=0 (19)

The above equation is simply a differential equation in second order, the final solution could be written as

follows:

q(t) = Acos(wot + @) (20)
Finally, we have to use the initial condition in order to determine the initial pulsation and phase;
IC:t=0,q0=Aq=0

. _dq .
9= = —Asin(wot + @)

19



@ = 2mn,,,forn=0-¢ =0

qo = Acos(wyty + @) = Acos(wy X 0+0) =A

2.5 Free dumped oscillation
In this type of oscillation, the vibrational movement is gradually attenuates, this is due to the presence of an
external force. For a mechanical system it is called ““ a friction force” and for an electrical system we add a

resistance.

2.5.1. Mass attached to a spring and damper (shock absorber)

ANANANANANANAN

sl <X,

Fig.6

Considering a mass attached to a spring and a damper as can be shown in the figure.6 the Lagrangian

equations could be written as follows:

T = ~mx? 21)

U = k2 22)
1,5.2

D =% (23)

L=T-U (24)

doL 9L , oD _

dtox  ox ax_F (25)

20



doL oL , aD _

dtox  ox | 0% 0 (26)

doL _

) dt ax
Such as : 1 L

0x
aD )
L 5 = Bx

m¥ + Px + kx = 0 @7)
Where, w3 = % and 2\ = % (damping coefficient)

X+ 2A%x+ wix =0 (28)
Here, we suppose that: x = Ae™, x = Are™, % = ArZe'™

The above equation is simply a differential equation in second order with a constant coefficient. The solution

is based on the discriminant A" of the following characteristic equation:
rZ4+2xr+wi=0 (29)
The discriminant could be written as follows: A’ = A2 — w}
Here, there exist three possible solution:
e A >0=A%*> wj: strong damping (hypercritical)
Here, there are two real roots: Ty, = —A + B
Where: B = VA" = /A2 — w2
In this situation, the damping is strong (heavy), the oscillation stops rapidly after a short period of time.

Finally, we have the following solution:
x(t) = e (A et 4+ Aje"2Y) (30)
e AN =0=2A%= wj: critical damping (critical)

r=-—»\A

21



Finally, we have the following solution:
x(t) = e™(a + bt) (31)

Critical damping; quickest return to equilibrium position without oscillation

e A< 0= A%< wj: low damping (pseudo-periodic)
Here, there are two complex roots: T = —A £ jw
Where: w = W
In this situation, the damping is low (light), the oscillation weakens after a good period of time.

Finally, we have the following solution:
x(t) = Ae Acos(wt — @) (32)

The representation of three cases of study is illustrated in the figure.8.

X() —pseudo-periodic
hypercritic

__._ critic

Fig.7
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2.5.1. Logarithmic decrement
The logarithmic decrement § is parameter which indicates the rate of decrease in amplitude of two successive

oscillations (Ap, An+1) [4]-

Aty _ —Ath
A, Ae""ncos(wty, ©®) e _ Mtanmt) — gAY

Any1  AeMnricos(Wtyyq — @) e Man

n+1

n

Ay
In = A(A0) = In " =T

n+1 n+1

Note :
Mathematically, we can inverse the operation as follows :

Any1 _ AeMrticos(Wtpyy — @) e Man

_ — e~ Mnt1 At — g=Atns1-t) — o—A(AD)
Ap Ae Mncos(wt, — @) e Atn

In Ant1 = lne~*4Y

n

n+1 n+1
1 = —A(AD) =1 = —AT
n 5 A(At) = In _

Where, T is the period between two consecutive amplitude

Finally, we can write the logarithmic decrement expression as follows:

=AT = (33)

We can generalise the above expression for two amplitudes (A, Atynt) by the lowing

1 A
§ ==-In——
n  At4nT

= AT (34)

23



X(t)A T

Fig.8

b. Electrical circuit (RLC)
The free damped oscillation could be found in electrical circuit composed of inductance L , resistor R and

capacitor C as illustrated in the figure below [4].

R L
—C
Fig.9
Here, we can use the mesh equation we found the followings:
uy+tug+u =0 (35)
o8 _lpea i o _da di _dlq_ .
Where: u = L—, uc = Cfldt,uR =Ri, i=q=,,5=7=4
lg+Rq+7q=0 (36)

Where, wi = é (clean pulsation or proper pulsation), 2A = %(A is called stock absorber coefficient)

4+ 2Aq+ wiq =0 (37)

24



2.6.  Analogy of mechanical-electrical systems

The table.1 shows the main parameters for a free oscillation systems

Mechanical system

Electrical system

X q
. oL
wo = |— VvLC
K C
B R
M L
F e

Table.1 analogy of mechanical-electrical systems
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Chapter 3: Forced oscillation

with one degree of freedom



3.1 Obijectives

At the end on the present chapter, the students will be able to develop the Lagrange equations for forced

oscillation with one degree of freedom.

3.2. Necessity

Resolve the equations of mechanical-electrical systems for the second chapter.

3.3. Introduction

The damped oscillation is a form in which an external force (friction force) is applied to the system at hand.

3.4. Forced dumped oscillation

a. Mass attached to a spring and shock absorber with an external force

In this type of vibration, a frictional force is applied to the system as can be shown the figure.1.

ANAANNAR AN

sl K

m _IF v
X

tig.1

The Lagrangian equations could be written as follows:

T =~ mx? (1)
U = kx? @)
D = - Bx? 3)
Wexe = Fx @
L=T-U )

27



doL 0L , D _ Weyxt ©

dtox 0dx 0% 0x

— = mx
0x
doL
dtox
JL
Such as : < = =kx
0x
aD .
— BX

[1):e
Wext —
\ 0x

mX +pBx+kx=F (7

®)

3&+27\X+ng=£

The equation.8 is a differential equation in second order with a second member. The solution X(t) is a sum of

a general solution without a second member X4 (t), and a particular solution X, (t) [2].

Here, we make the following suppositions:
X = X,/ WHP) 1 = jwx, el WH®) § = —w2x,el(WHe) F = f elWt
The above variables are placed in the equation.8 as follows:
—w2x,ed(WH®) 4 2)jwxgelWHO) 4 w2x,el(WHe) = £ it
(—W?xq + 2Ajwx, + Wixo)elWH®) = f elwt
(w2 + W2 + 24w )xpe/WHe) = felWt

j(arctang(n—w>)
-w2+w3 Xoej((wt+cp) — fOejwt

(\/(—w2 + wg)? + 422w? e

. 2AwW
](arctang< > 2+wt+(p>) :
—wW+w, — wt
0 = fye!

(\/(—w2 + wi)2 + 422w2 )xge

Where:
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fo

XO =
\/(—w2+w%)2+4)\2w2 )
2AwW
¢ = —arctang ==

Note:
|z| = Va? + b2

j(arctg(g)) b
¢ = arctg(>)

e Fora complex number: Z = a + jb = |z|e

eaeb — ea1+b

o Variation of Xg:

fo
J(—w? + w2)? + 4)2w?

Xo(W) =

dx

d d
w=0=—((-w?+ wd)? +42%w?) = 0= (W - 2wiwi + wg + 4A%w?) =0

4w3 — 4w wj + 8\ *w =O=>W2—W§+27\2=0:>W2‘/Wg_ZAZ

Where, W is the resonance pulsation (pulse) and we can write the following formulas:

wW=w, = ’WS—ZAZ

By replacing the wy in the equation. 9 we found:

fo
V(w2 + w2)? + 422w2

Xo(w) =

(W) L
XolW) =
° J—WZ + 202 + w22 + 4X2(WZ — 2A2)
f
xo(W) = =

J(=W2 + 202 + w2)? + 422w2 — 8%
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f f
Xo(w) = d > = d >
VAN +402w2 — 8\t [ —4At + 42w

Finally:

fo

XoW) = —F———
20 wg — A2
Where, W' = 4/ W(Z) — A% and we can write the following formulas:

fo

Xomax = 2}\ w’

X, (@)

Characteristics:

e Bandwidth: the bandwidth is defined as Aw = w, — w;.

e Quality factor : the quality factor Q is inversely proportional to the friction coefficient. Note that more
the friction coefficient increases, the value of the resonance pulsation W, moves away from the

proper pulsation wy.

30



b. Mechanical impedance

Mechanical impedances are known for mechanical systems (subjected to a force that varies sinusoidally) [1].

m¥ + fx + kx = F

Here, we make the followings:

. dv ..
( XZEZV,XZV,XZIth
v = v e WHe) — v = ¥ elWt where, vV, = v,e?
dv —
.o av . jwt
V=—=jwv
] a _ JWVo€
v .
[vdt = 2wt
Jw
\ F = foeth

these variables will be placed in the differential equation as follows:

dv

T

+ Bv + kj vdt = fysin(wt)

ST AWt = Ljwt Vo jwt jwt
mjwv,el"t + Bvy et + k—e"t = fe
jw

ijVo"‘BVo_]'W‘_’o = fy
s, <
B+ j(mw w) Vo =1y

Finally,

fO = Voz (11)

Where, Z : is the mechanical impedance (ohm), the module and the phase are given as follows:

( 2
[Z] =\/BZ+(mw—%>

mw — W
¢ = arctg(T)

(10)
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c. Electrical impedance

For an electrical system carried by a sinusoidal current we distinguish an electrical impedance.

R L

Y Y

)

Fig.3

The RLC circuit with a sinusoidal generator source, the Kirchhoff Voltage Law is written as follows:

Ri + L% + %f idt = Egcos(wt) (12)
where:
(i = 1,6/t = | = e/t where, I, = Iel®
2 = jWioeth
] at - (13)
[idt = 2wt
jw
\ e(t) = et
RI e/t 4 jLwl,elWt + jciwfoej""t = eoe/Wt 14)
RI e/t 4 jLwl,elWt — ifoej""t = e e/t (15)
: 1\]=
[R+j(Lw—=)]Tp = e (16)
Finally,
ep = IoZ 17)

Where, Z : is the electrical impedance (ohm), the module and the phase are given as follows:

[Z| = \/RZ + (Lw - i)z

Lw

1
¢ = arctg(—=*)

(18)
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Chapter 04 : Oscillation with

two degrees of freedom
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4.1 Obijectives

At the end on the present chapter, the students will be able to develop the Lagrange equations for systems

with two degrees of freedom.

4.2. Necessity

Able to resolve the equations of mechanical-electrical systems

4.3. Introduction
In the present chapter, the degree of freedom in the systems is two. This means that there exist two independent

variables in the system.
In this type of systems, the coupling can take generally three forms namely, inertia, elasticity or capacity.
4.4. Forced undumped oscillation

a. Mass attached to a spring with an external force
considering the mechanical system as shown in the figure.1, the system contains two masses (INy, M) with a

translation on (X,y) respectively. Three springs (Kq, K, k3) and an external force applied to the mass my [4]

ANAVANAANARAN

NANANNVANN

Fig.1
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The Lagrangian equation could be written as follows:

T =-myi? + - myy? )

U =2k (0= %)% + 2k (x = y)? + 2 ka(y — 0)? @

D=0 )

Wext = FX 4)

L=T-U ®)

L =2 myi + 2 my5? — Ky (0 — 0% — sk, (x — y)? — >ka(y — 0)?
2 2 2 2 2

doL_ oL 0D _ wex
dtdx odx 9x  ox
ddL AL | 8D _ Wext

dtay oy ' ay  dy

mlii + (kl + kz)X - kzy == F 6
mzy_k2X+(k2+k3)y:O ()

N
QD
—

Such as :




Here, we make the following simplifications :

k1:k2:k3:k
m1=m2=m

X = o0V % = jwx,eWh % = —w?x,e/Wt

— jwt o _ jwt o 2 jwt

y =y y = jwye™, § = —wiyel™
F = foeJWt

Then, we replace the above simplification to the equation.6 as follows:

—mw?xe/"t + (k; + ky)x0eWt — k,y eVt = felWt
—mwzyOeth - kzXOEth + (kz + k3)Y0€th = 0

)

K K
(—w? + ZE)XO —Yo= fo

k ) ko, —
—;X0+( w +2m)yO—0

k
fo _a
k k
. 0 (-w?+22) 6 (-w?+24)
o~ k k N k k
(—w?+22) -0 (—w? + 222 = ()?
_% (_WZ + 25)
(w2 +25) f,
_k 0 £, X
Yo = K kK | ko K
(—w?+25) -5 (—w? +2)% = ()°
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b. Electrical circuit
Considering an electrical circuit (see the figure.3). Each cell in the proposed electrical circuit contains an
inductance and a capacity. Between the first and the second cells a capacity is placed. The generator delivers

energy in the first cell.

L1 C1 L1
. C2 c3
E(t) C‘
Fig.2
Here, we can use the mesh equation we found the followings:
For the first cell:
Uy + Uep + U = E(Y) )
Ligy +—qq +35%2 = uycos(wt) )
Cy Cy
For the second cell:
Uz + Uiz +ue, =0 (10)
Ly + a2 + 2 =0 (11)
3 2
& L _pei_ . _da di _ d%q _
Where: uj = L—, uc = Cfldt,uR =R, i=q=3,3=@ =
By making the following simplifications:
( L1 = LZ = L

C1=C=c3=cC
J q; = AeIYt g, = jwA eV, §; = —w2AeWt
qu = A", g, = jwA "', §, = —w2Ael"!
E = e e/t
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1 q1 — 92
LC

= ugcos(wt)

dz2 —q1
et TIc

=0

_1
€o LC
2 2
—2 il — w2 il
0w Eo (-w? +77)
) N A VRS p
(—w*+ ) rc| W tge) - (o)
1 L, 2
E (W +E)
2
_W2+E) eO
1 1
_ —E 0 _ eom
o e 2 T > 2. (1
(—w*+ 1) rc| (W tge) - (o

I 72
IC (—w*+ )



Part B: Waves
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Chapter 01: Propagation

phenomena
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1.1 Introduction

A mechanical wave is a phenomenon of propagation of a disturbance in an environment without transporting

matter [5] [6] [7] [1]-

1.2 Mechanical wave characteristics
» The wave propagates from a source and in all directions.
» 'The propagation allows the transport of energy.

> A wave can be longitudinal or transversal

e The amplitude
The amplitude "A" is the maximum value of an oscillation around its equilibrium position. The unit of the

amplitude is a meter [m].

e The wavelength
The wavelength "A" is the distance between two successive points on the wave over a petiod. The unit of the

wavelength is a meter [m].

e The number of wave

. 21Ty . - .
The number of wave is defined as "k = - ", its unit is radian per meter [rad/m]

e The period

The period "T" is the time required to complete one cycle. Its unit is a second [s]

X () ‘

tig.1
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e The phase
The phase "@" represents the instantaneous position of the periodic wave in the period. Therefore, the phase

shift "A¢@" appears in the case where several waves are plotted in the same curve.

x(t) A

05

[ l‘.P

fig.2

e The frequency

The frequency "f" is related to the period by the following equation: f = = [Hz]

1
T
e The pulsation

The pulsation w is trelated to the frequency by the following equation: w = 2mf [rad/s]

1.3 Mathematical wave expression

A sinusoidal wave may spreads in two direction ways namely, the positive and the negative one.

When the propagation takes the positive direction, the wave is called progressive, and we can write the

following equation [4]:
y = Asin(wt — kx + @) 1)

When the propagation takes the negative direction, the wave is called regressive, and we can write the

following equation:

y = Asin(wt + kx + @) 2)
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1.4 Phase speed and group speed

The phase speed v, is the speed displacement of a point in the wave. The mathematical expression of the

. w
phase speed relate the pulsation and the number of wave as follows: v, = P

A
x(t)

Vo

fig.3

The group speed vy is the propagation speed of the group packet, the group speed exist for the case of two or

dw

more waves. we can write the following equation: v, = T

x(t) /

Vg

Il
U

—— |
(-
¥

tig.4
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1.5 Propagation equation
In several branches of physics, the evolution in time and space is described by a partial differential equation.

Mathematically, we can write the following equation [3] [8]:

92s 1 82%s
o o 3)

Where:

s(t, x): is a function of time and space variables. It can be a displacement, electric or magnetic field

component,.. etc.
c: is the cerility or the speed constant.
The above equation is called “Alembert” equation and it is a one-dimensional wave equation.

1.5.1 Alembert equation resolution
In order to solve the Alembert equation, we need to change some variables. The main objective of this change
is to pass from s(t, x) to s(a, f). Mathematically we can write the following equation:
a=t—=
4
54t @

(o

e To begin with, we can write the followings:

(95 _ 05 day | 9 9B
dx dx (aa) + ox (6,8)
ds _ 95 day | 0s 98
ax  da (ax) + ap (ax

5)
das as 1 ds 1 (
ox ~ 00D Top @

das 1 das as

\acaaﬁ

Note:

. . oa 1 0 1 .. . .
Using the equation.4: Pyl and £ == and replace it in the third step of the equation.5.
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( s _ 9 (9
9x2  0x “ox
Ps 2 (Z)o, 0 (2)%
dx2 ~ 9x \ox) da = ax \ax/ ap
Ps_ 2 (2)20, 0 (2)05
dx2  da \dx/ dx = 9B \ox/ ax
=G+ 5E0
4 x2  da \dx c ap \ox/ \c 6)
d%s o (1 ds | 0s 1 2 (1 ds = 0s 1
22+ 2)) (D -2+2)O)
R 19 ds = 0s 10 ds | 0s
7= wa (ot Yaar (ot o)

P _ 1% s, ol

\ ax2 ~ c2 ‘9aZ ' 9p2 6116[5’)

Note:
. . ds 1 ds ds - .
Using the equation.5: — = — (— Fy ﬁ) and replace it in the fifth step of the equation.6.
e Likewise,
@ ds Oa ds 0B
(5=5CD+5GD
ds _ as oa as aﬁ
15 =5 G+ 3G o
| o e, o
k at ap
Note:

Using the equation.2: Z—O: =1and % = 1 and replace it in the second step of the equation.5.

( d%s 9 ,0s
oz = ot
9%s 9 (0s\O0a . 0 [ds\9fB
ﬁ—a(a—)aﬁa(a) op
9%s 9 (9s\da , 8 (9s\9pB
o a(—)Wﬁ(—t)at
] 9%s _ 9 9 (s ®)
m-a(zﬁﬁ(t)
d9%s d (ds . Os 0 (ds = 0Os
ﬁ—a(anﬁ)Jfﬁ(aJﬁ)
92%s 9%s = 9%s 9%s
\ ﬁ_(ﬁ-l'ﬁ"_zaaaﬁ)
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Note:

Using the equation.4: Z—(Z =1and % = 1 and replace it in the fourth step of the equation.8.

Using the third line of the equation.7: g =249 0nd replace it in the fifth step of the equation.8.

d
da ' 9B
e Discussion:

* The main results are the followings:

d%s 1 (0%s 0°%s d%s
0x?  ¢?

= 2\3a2 T 352 " “5avp

d%s B d%s N d%s o d%s
oz~ Gaz Y apz T 2 oa0p

2 2
By replacing the above equation in the equation.1 (272 = CLZ%), we obtain the following equation:
d%s  0%s d%s 0%s 0 0s
- = -2 =0o——=0->=—(=) =
dadf Odadf dadf dadf da "0f

. 0s . . . . . . .
* The quantity 582 function of f§ only since its derivative with respect to & is zero,

and we can write the following equation: (g—; = k(B)

® The general solution of the Alembert equation is written as follow:
@B) = f(t=2)+g(t+>)
s(a, B) = - = -
Cc g Cc

Whetre:

f (t - %) represents the shape of the shaking at t time, with a progressive propagation in the positive

direction as can be shown in the figure.5

—

=

tig.5

v
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f (t + %) represents the shape of the shaking at t time, with a regressive propagation in the negative direction

as can be shown in the figure.6

v

fig.6

1.5.2 Physical interpretation of the Alembert equation solutions

We note that at the moment t and the abscise x, we can express the function as f (t - ;) as shown in the

Fig.5. The next values at t + At and x + Ax , the new function could be expressed as f ((t + At) — (x-l-CAx)).

 J

the shaking at t the shaking at t + At

Fig.7

e Discussion:

X\ . . . . . .
= f (t - Z) is a progressive function with one dimension

* The figure.3 allows to see the propagation phenomena of the function (f (t - f))

Cc

without deformation and with a celerity through an increasing way.

* The propagation phenomena without deformation and with a celerity through a

decreasing way is expressed by the following function (f (t + E))
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Chapter 02: Vibrating Strings



2.1. Introduction

This chapter aims to establish the equations of the vibrating string basing on the Alembert theorem.

2.2.  Vibrating rope (string)
Considering an extensible rope with a mass p (a mass per unit length). The rope is subjected to a force T

(where Trepresents the constant intensity, T is greater than the gravity force) Fig.1.

When we move the rope from its horizontal equilibrium position, the PQ element finds itself subjected to

three forces, namely [4]:

* The weight: dp = pgdx (p = mgh)
* The tangential force: —?(t, x) at the P point

* The tangential force: T(t, X + dx) at the Q point

T(t,x + dx)
Q a(t,x + dx)

y(t, x + dx)

. rax >
Fig.1
By using the fundamental dynamic relationship, we can write the following equation:
T(t,x + dx) — T(t,x) = pdxy 7
The projection of the vectors of the equation.7 along the axis OX and OY gives the following equations:
IT(t, x + dx)|cosa(t,x + dx) — |T (¢, x)|cosa(t,x) = 0 (8)
IT(t, x + dx)|sina(t, x + dx) — |T(t, x)|sina(t,x) = udxg% )

The equation.8 makes the cosa(t, x + dx) and cosa(t, x) equal to 1 since the angle @ is very weak (very

small) and the displacement of the rope element is vertical. This allows to write from equation.8 the following:
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|7(t,x + dx)| — |7(t,x)| =0-T(tx+dx) = ?(t,x) =cte=T

By replacing the eqution.10 into the equation.9 we found the following:

2
|Tsina(t,x + dx)| — |Tsina(t, x)| = udeTZ (11)

, i 2
sina(t,x+dx) sma(t,x)) _ Ha_y (12)

T( dx at2

Finally,

sina(t,x+dx)—sina(t,x) 9%y

T( dx ) - at2

(sina(t,x+dx)—sina(t,x)

62
> ) =9 (13)

According to the figure.2,

_ y(t,x+dx)-y(t,x) _ A_y _ a_y (14)

tg a dx Ax ox

Since the angle & is very small, we can make sina = tga and by derivation we found the following:

= tga (15)

And by using the result of the equation.14 into the equation.15 we found:

dsina
ox

0 0%y
= atga = ﬁ (16)

Finally, from the equation.13 and 16 we obtain:

Py _wdy 0%y Ty

ax2 T at2  9t2  pox? a7

Comparing the equation.17 and the equation.1, we found that the celerity is equation to ¢ = " for this

example.

6_252 1 9%s _)623/_&623/

o 2oz U SaaTrae A7)

(10)
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Discussion:

e The equation.17 represents a wave propagation along a rope.

e The functiony = f (t - %) represents the propagation in a positive direction (fig.2)

v

fig.2

e The functiony = f (t + %) represents the propagation in a negative direction (fig.3).

<t—

=

fig.3

e For a general case, where the wave propagates in all direction with a function wave is s(x,y, z), the

equation of wave propagation is written as follows:

2
As—222- (18)

c2 0t?

. . 92 92 92
Where: the Laplacian A is equal to P + 372 + Py

1.5.3 Impedance characteristic
The impedance characteristic of a mechanical wave is related to a force T and the celerity ¢. We can write the

following expression: Z = g
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For the example studied in the above section (rope, from where, ¢ = \E ), the impedance could be expressed

T TVE
as follows:Z———W—,/Tu

c
Where, p is a linear mass (mass per length unit)

1.5.4 Progressive wave energy
During the moving shaking, the kinetic and the potential energies can contribute. The kinetic energy is due to
the movement and the potential energy is due to the force of the rope. Mathematically, the system could be

written as follows [1]:

1 0
Ec = Zn[Gpidx

E, =37 [(D)%dx = 2pc? [()?dx w
The total energy could be expressed as follows:
E; = Ec+ E, = 2/ (%)2 dx + ¢ [ (g—z)z dx] 20)
1.5.5 Energy transport
Considering a sinusoidal wave in a string of the following form:
y = Asin(wt — kx) 21)

The kinetic and the potential energies are expressed using the equation (19), where:

ay\2 )?
(a_stf) = A2w2cos?(wt — kx), (a_i) = A%k?cos?(wt — kx)

By replacing the above considerations in the kinetic and the potential energies, we found the followings:

E, = %uf(g_f)zdx = %quzwzcosz(wt — kx)dx

1 ay 1 (22)
E, = ETf(a)zdx = Ep_cz fAZkZCOSZ(Wt — kx)dx

E.= %LJ,AZWZ [ cos?(wt — kx)dx

%uczAzkz [ cos?(wt — kx)dx

23
B, - (23)
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Note:

{COSZ(X) + sin?(X) =1 = sin?(X) = 1 — cos?(X)
cos (2X) = cos?(X) — sin?(X)

= cos (2X) = cos?(X) — 1 + cos?(X) = cos (2X) = 2cos?(X) — 1 = cos?(X) =

cos (2X)

2 12

Using the final expression of cos?(X), and by replacing the variable (X) by (wt — kx). The new expression

of the kinetic and the potential energy is expressed as follows:

E HAZ 2 ( (M )dx
c
Ep chAzkz f(cos (2(wt kx)) +;)dx

Here, we can use the following simplification:
w
o (vp=c=-=>w=ck)
e theintegral of cosX in a period of time is equal to zero

Finally,

Ec = pA ‘w? | (—COS (e k) 2) x = %MAZWZA

2
_ 2 2 421,2 cos (Z(Wt—kx)) l _ l 2.2
Ep—zpcAkfo(—2 +)dx =S pA’w?a

(24)

(25)

Basing on the results of the equation.25, the total energy is finally expressed by the following expression:

E = E, + E, = 2 pA?w?)

(26)

53



Chapter 03: Longitudinal waves

in fluids
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1.3. Characteristics of longitudinal wave
e In this type of wave, the direction of disturbance is parallel to the direction of the movement of the
wave. For instance: we grip manually a few turns of a spring and release them quickly (fig.1).

e In fluids, only longitudinal vibrations can propagate, the existence of viscosity which dissipates the

energy does not allow the transversal wave to be maintained.

fig.1

1.3 Propagation of waves in a fluid
Considering a perfect and homogenous fluid. The wave surfaces are planes perpendicular to the direction of

propagation as can be shown in (Fig.2) [1].

x
\M x + dx x4+ dx + s(x + dx)
fig.2
Mathematically we can write the following equation:
99 = S((x + dx) — x) = sdx (1)

Where:

- Uy is the volume limited between P; and P,

- S s the plan section
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The wave propagates by pressure variation. The propagation of the wave causes along the 0x axis a
displacement s(x) at point x, and a displacement s(x + dx) at point X + dx. The new expression of the

volume could be written as follows:

Y =S([x+dx+s(x+dx)] —[x+sx)]) =S(dx +s(x +dx) — s(x)) @)
Knowing that:
s(x+dx) —s(x) = Z—;dx (3)

By replacing the equation.3 in the equation.2 we found the following expression:
ds
Y = S(dx +£dx) “)
During its passage, the wave causes a pressure variation given as follows:

P(x.t)=p—po=—§ ©)

Where, X and 0 are respectively the compressibility and the expansion volume.

A9 A
=" =5 ©)
Where,
AY =9 -9, @

According to the equation.4 and equation.1 we can write the following equation:
A9 = S(dx + = dx) — sdx ®)
Finally:
A9 =SZd 9
=55,a4x ©)

According to the equation.6, the expansion volume could be modified (basing on the results of the equations 8
and 1) as follows:
A9 Sg—idx

p==2

Yo T sdx <1O)
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Finally:

ds
0 =5

Using the above results, the pressure variation of equation.5 is modified as follows:

10s
P(X,t) = ~ X%

(11)

(12)

Basing on the fundamental relationship of dynamic (whete: m = pov = poSdx, py: is the density of fluid) we

can write the following expression:

S[P(x) = P(x + dx)] = poSdx 22

Knowing that:

P(x) —P(x +dx) = —Z—idx

By replacing the equation.14 in the equation.13 we found the following expression:

opr 9%s
S[—adX] = pOSde
_op_ 9%
oz Poge2
o*s _ _op
Pogez = ~ox

According to the equation.12, the first derivative gives the followings:

aP(x,t) _ 19%s
dx  Nox2?

By replacing the equation.18 into the equation.17, we found:

0% _10%
09tz ™ xox2

Finally,

9%s 92s
ax2 Po atz

9%s 9%s
oz PS5z

(13)

(14

(15)

(16)

(17)

(18)

(19)

(20)

(21)

57



The present equation represents a propagation of longitudinal wave in fluid.

1.3.1. Characteristics

e The speed of the propagation wave in fluid is given as: ¢ = ﬁ
0

e The solution of the equation of the propagation is given as:
X X
S=f(t-3)+gt+5

1.4 Wave propagation in a cylindrical pipe

(22)

Considering a cylindrical pipe (with length L and section S) containing a fluid as can be shown in the figure.3.

Fig.3

The propagation of the mechanical wave results a pressure vatiation. This leads to a displacement S(x, t) with

a speed Vf (x,t). Mathematically we can write the following equation:

as
1.4.1 characteristics

e The fluid is characterized by its flow:

D = [V;ds
e The acoustic impedance is defined as follows: Za (x) = %
Where: P(x) = Pe /v, V,(x) = Ve /7
e The impedance characteristic is defined as follows: Z, = %

(23)

(24)

58



1.5 Doppler effect

When a fixed source emits a sound wave of a speed V' in a homogenous fluid at rest, a fixed observer receives

a frequency fy of that wave. However, if the source and/or the observer are not fixed, we distinguish a new

frequency called apparent frequency f,. This change in frequency amounts to the movement of the source or

the observer or both of them.

Observer

Source

Fig.4
Where:
Vso: is the speed of the source
Vop: is the speed of the observer
O5,: is the angle between the source and the displacement vector X
O,p: is the angle between the observer and the displacement vector X
Mathematically, the apparent frequency is expressed as follows:

Yob
1+—2cos(8,p)
fo= forda e 25)

4
+%cos(950)
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Chapter 04: Electromagnetic

waves
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4.1 Mathematical operators
4.1.1 Gradient

The gradient of a function S is expressed as follows:

gradf = V(f)
Where ﬁ is called “nabla”.
9f
(5) (
— of 7 of
gradf = | p | and V() = |\_

of
0z

4.1.2 Divergence

The divergence is the scalar product application of V to a vector.

div(V) = V.

4.1.3 Rotational

The rotational operator is applied only to vectors.

Fot(V) = T AV

©)

l

<

1
—
NMERISELE
S~—

@)

3)

0 v, 0%
/&\ v /ay 02\
— d x | I
rot(V)zla—i/\ Vy = %_%
y Vv 0z 0x
a/ z v, av,
9z dx 0y
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4.1.4 Laplacian

The Laplacian is used in electromagnetic field propagation equation. It could be applied to a vector (A\_/)) or

function (Af).

For a vector we can write the following equation:

0%V, n 0%V, n 0%V,
0x2 dy? 0z2
2 2 2
o%vy, 3%y, 9%V, | @
0x2 dy? 0z2
62VZ+62VZ+82VZ/

0x2 dy? 9z2

AV =

For a function we can write the following equation:

Af =| 5= | )

4.2 Propagation equation of an electromagnetic wave

The propagation equation of an electromagnetic wave could be expressed as follows:

02%E 1 92E
o o ©)

Such as : Ciz = Yoo

Where,

E: s the electromagnetic field

Ho: is the magnetic permeability

&o: is the permittivity

Using the above operators, the propagation equation of an electromagnetic wave is modified as follows:

- 2F
AE =L2°F ™)

c2 9t?
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Applications
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part A

Chapter 01: Generality on vibrations

Exercise 01

Considering the below systems. Which of them represent an oscillatory movement?

1. A Disc moving in one direction 2. A Disc moving in two directions

— > <—=

SHUNT AN SO ANAN AN AN

3. A disc moving in a curved way 4. A disc moving in an inclined plane
s —>
ANV AVANAVANVANANA

Correction:

2 and 3 represent oscillatory movement
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Exercise 02

Find the inertia moment of the following systems:

1. A bar (M, 1) fixed to its center 2. Abar (M,1]) fixed to its extremity
M.
AV |
3. A point mass attached to a simple wire 4. A point mass attached to a bar (M, )
5. Adisc (M, R) fixed at his center 6. A circle (M, R) fixed at his center
M.R M,R

S )

Cotrection;
. A2 mi?
1. Abar (M, 1) fixed to its center: J, = [ x*dm = A [?, x%dx = PERirTY
2
. 2 m12 2 mlz
Using the Huygens: : Jpar center = Jo + md= = - tm 0 = =
2 2
2. Abar (M, 1) fixed to its extremity: Jo = Jo +md? =T~ + m(;)? = "
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3. A point mass attached to a simple wire: J,,, = ml?

4. A point mass attached to a bar:
]mass_bar =Jm +]bar_center =Jm+ Uc + mbdz)
[? [?
]mass_bar =ml* + ( 12 +m, Z )

— 2
]mass_bar =ml +

MR?
5. Jaisc = 2

6. Jeircte = MR?

Exercise 03

Considering the following oscillatory system:

AN

Find the differential equation of the movement basing on:

1. The fundamental relationship of dynamic

2. The Lagrangian method
Correction:

1. YE=mi=>—-kx=mi=>mi+kx=0

2. L=T-U
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T—Emfcz, = —kx?
L=T-U
doL oL _
dtax  oax
(% s
| %~ MX
d oL
Such as: 4——:
ucn a dt 9% mx
L oL
ox
mx+kx=0

Where, wi = % (clean pulsation or proper pulsation)
X+ wix=0

The above equation is simply a differential equation in second order, the final solution could be written as

follows:

x(t) = Acos(wot + @)

67



Exercise 04

Considering the following oscillatory systems:

1

MNAAMANR NN NN NN

k1

k2 k1

k2

T

NN NN NN

Find the differential equation of the movement basing on the Lagrangian method

Cotrection:
First case:
1
T = —mx?
me
1 1
U= 5 k,(0 —x)2 +E k,(0 —x)2
L=T-U
don_ oL
dtax  ox
( oL |
ox X
d JL B
dtox X
JL
L& = k]_X + kzx
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mi‘l‘ (kl +k2)X: O

kqi+ky

Where, Wg =

X+wix =0

Second case:
1

T = —mx?
2

1 1
U=35 ki(0 =)+ ko(x — 0)

L=T-U
doL_ oL _
dtax  9ax

mX + (kq + ky)x=10

(clean pulsation or proper pulsation)

(oL
ox X
doL
drox X

oL

L&—kl)(‘i'kzx

ki+k . .
Where, wi = f (clean pulsation or proper pulsation)

X+ wix=0
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Exercise 05

Considering the following torsion pendulum:

AN

1. Find the differential equation of the movement basing on the Lagrangian method

2. find the solution of the differential equation (6(0) = g , 6(0) = 0)
Correction:

11 .
T =2Jmi6 + 5 )26 = J6° = ma®?

1
U==C0H?
2
L=T-U

d oL 6L_0
dtad 90
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— = 2ma?6
a0
d dL 5
——=2ma“0
dt 00
oL co
.08
2ma?d +Co =0
Where, w3 = < (clean pulsation or proper pulsation)

2ma?

B+wi0=0

o(t) = z ¢ t
_3COS( 2ma? )

Exercise 06

Considering the following mechanical system, where it is formed by a pulley fixed at her center and free to

rotate around its fixation point. Two springs (kq, k;) are placed to the system with distances (R and a).

IaIrrrny i

ks

1. Extract the energies of the proposed system
2. Establish the differential equation using the Lagrangian method

3. Deduce the solution
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Correction:

1 .1 .
—_7p2=_ 242
T =2Jy6% =5 MR*6

1 1
U= E k1R292 +§ k2a202

L=T-U
doL_oL_
dtab 90
( oL )

06

d JL .

—_— Y = MRZO

dt 06

oL 5 5

k% = (klR + kza )9

MR?0 + (kyR? + kpa®)0 =0

Wh 2 _ (k1R2+k2a2 1 l . l .
ere, Wo = " (clean pulsation or proper pulsation)

D+w2o=0

B (k1R? + k,a?
o(t) = Acos(\/ TE t)

Exercise 07
Considering the following mechanical system, where it is formed by two pulleys (glued) fixed at the center and

free to rotate around the fixation point. A mass m is placed to the system through an extensible wire.

BSSsY

™

NIy
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1. Extract the energies of the proposed system
2. Establish the differential equation using the Lagrangian method
3. Deduce the solution

Cotrection:

1 .01 1 .1
T = E]pez +me2 = EMRZH2 +§ma292

1 1 1 1
U= 5 k,R?0% —mgh = 5 k,R?60% —mgx = > k R?6% — mgasinf = 5 k R?60% — mga@

L=T-U
doL_ oL _
dtab 90
( OL .
— = (MR? + ma?)6
00

<daL— MR? + ma?)6
dtaé_( ma<)

oL _ k R26
\ 00

(MR? + ma®)® + kR?6 =0

2

0

Where, wi = VRZimaz (clean pulsation or proper pulsation)
0+w2e=0
o(t) =A kR” t
= ACOoS T ra———
( MR? + ma? )
. _2m _ MR?+ma?
The period: T = W, 2n R?

Exercise 08
Considering an electrical circuit composed of inductance L and a capacitor C (placed in serial). We inject a

quantity of charge q rapidly and then we stop.

1. Give the detailed electrical circuit model.

2. Establish the differential equation.
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u1+uC=0

g M 1o dg di _ d’q_
Where.ul—Ldtyuc_cfldt’l_q_dt’dt_dt2_q
Li+-q=0
qrcza=
. 1
G+a=0

q(t) = Acos(wot + @)

. _2m _
The petiod: T = W, = 2mVLC



Exercise 09

Find the kinetic energy, the potential energy and solve the system using the Lagrangian method

1. A point mass attached to a simple wire 2. A simple mass attached to a bar (M, 1)
AAANANANANAN AANNANN

bW

|

|

|

: m
3. A sphere (m, R) attached to simple wire 4. A sphere (mm, R) attached to a bar (M, )

a L a L
m,R
m,R

5. A circle (M, R) moves without friction 6. A disc (M, R) moves without friction

—
MR \/ MR ?

TVIRTRNNTY TUSSANNNR

Correction
- A point mass attached to a simple wire

1 .. 1 .
T =5]6%=5ml*6?

2
U = mgh = mgl — mglcos6
L=T-U
d L oL

dtab 90



JdL
\00
ml?6 +mglf = 0

= mglsinf = mglo

Where, w3 = % (clean pulsation or proper pulsation)
0+wZe=0

A simple mass attached to a bar (M, [)

1[MI12 M lzl . ) 1

- 2
2 212+46

1 . 1 . 1 .
—_702 4+ = 2 — —.m]202
| 2]9 +2]b9 ml“6 +< >

l l
U =mgh+mg—cosd =mgl —mglcos@ —mg —cosO

2 2
L=T-U
doL_ oL _
dtoo a8
( oL (12+M12)9
— = m s
a6 3
) d oL lZ+Mlz 5
dtaé_(m 3)
oL ) [ . l
— =mglsinf + mgzsme =mglo + Mgzé?

\06
2 M_lz . i _
(ml° + 3)9+(mgl+Mg2)9 0

0+w2o=0

A sphere (m, R) attached to simple wire
1 . 1 .

T = 5]92 = Em(l + R)?62

U=mgh=mg(l+R)—mg(l+ R)cosb

L=T-U
d JL dL
a8 6 0

=-ml?6? +

1 MI?
2 3

9'2
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% m@t+ R
69-—(771( )%)

4oL _ [+ R)?)0
dtaé_(m( ")

=mg(l + R)sind = mg(l+ R)0O

oL
\90
(m(+R))HB+mg(l+R)E =0
0+w2e=0

- A sphere (m, R) attached to bar
MI?

1 .01 .. 1 . 1MIZ,
—71p2 4= 2 _ 2092 4 2
T =5]6%+5), 0% = sm(l+R)?6% +5——0

l l
U=mgh+ mgzcose =mg(l+ R) —mg(l+ R)cosO — mgzcose

L=T-U
doL oL _
dtad ae
( oL ( (l+R)2+Mlz)9
— = (m -
96 3
3 doL_ l+R2+Mlzé
dtaé_(m( ) 3
oL . l L
¥rin mg(l + R)sinf + mgzsme =mg(l+R)0 + Mgzé’

2.
(m(+R)? + =8 + (mg(l+ R) + Mg )6 = 0
0+w2o=0
- Acircle (M, R) moves without friction
1 . 1 .
T==J0*=T ==MR?6?
2] 2
- Adisc (M, R) moves without friction

1 MR?
2 2

- T=5]6*=T= 62
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Exercise 10

Considering the bellow mechanical system. The bar of length 21 and negligible mass. On its ends ate fixed the

masses (M, and m,) and springs (k1 , k, and k3). At the equilibrium position, the bar was horizontal

(6(0) = 0).

1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method and find the solution

3. Give an equivalent electrical circuit

Cotrection

1 . 1 . 1 . 1 .
T'=7lm 0 + §]m292 = Emllz 0% + Emzl2 62

1
U= E(kl + k2 + kg)lz 62 + mlgh - ngh

1
U= E(kl + ky + k3)I? 0% + myglsind — m,glsind

1
U= E(kl + k2 + kg)lz 62 + mlgle - ngle
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L=T-U
1

. 1 . 1
L == _mllz 92 +_m212 92 _E(kl + kz + k3)lz 92

2 2
doL_ 4oL
dtod 00
(L (4120
— = (m m
69 1 2
. 4oL _ + m,)1%0
dt o0 (my + my)
oL ,
((my + mu)I2)0 + (kg + ky + k3)126 = 0
0+w2e=0

Exercise 11

Considering the above mechanical system.

K3

6 ¢

LT

L1 1
3
W

A
N

K4

1. Extract the energies of the proposed system
2. Establish the differential equation using the Lagrangian method and find the solution

3. Give an equivalent electrical circuit

Correction

1
T = —m x2
Smx

1
U=§(k1+k2+k3+k4)x2

D_1 ¢2
_zﬁx



L=T-U

1 .1
L=me2—§(k1+k2+k3+k4)xz
doL_oL_ _op
dtox odx 0%
( oL |
ox X
] don_
dtox X
oL
k&:(kl‘l‘kz‘l‘kg)x

¥+ wéx=0

Exercise 12

Considering the above mechanical system.

1. Extract the energies of the proposed system
2. Establish the differential equation using the Lagrangian method and find the solution

3. Give an equivalent electrical circuit
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Correction

1 .
T = EmIZHZ

1
U= Ekazez + mgl — mglcos@

1 .
D =— 202
Zﬁbe
L=T-U
1 . 1
— 2n2 _ 202
L—2m19 2ka6’
dou_on_ _op
dtae 48~ 9o
( oL
—.=ml29
00
d oL 5
———=ml“8
) dt 90
aL—k29+ 1o
Fri a mg
D _ pr
(6 F

m1%26 + Bb%0 + (ka? + mgl)h =0
6 +220 +w2h =0
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Exercise 13

Considering the above mechanical system:

1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method

Correction:
T=T,
U = Ukl + UkZ
( - 1 "
=3 mx

1 1 1 1
lU = Eklbze2 + Ekzaze = Eklx2 +§k2y2

b6,y = ab >
X = , = 5> —-—=-— = —
y a y b
1
T == mx?
me
1, 1 a*
U=§k1x +§k2—2

1 .2 2
L=T-U=-mx*—-x (k1 + +k;—)
doL oL _
dtox ox
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Exercise 14

Considering the above mechanical system:

1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method

Correction:

T = Tpirotation + Tm
U = Uk

(J+mR?>) 0 +kr?6=0

6+WE6=0



Exercise 15

Considering the above mechanical system. Its consists of a solid pulley (Mp, R), where a bar (Mp, [)is connected

to the center of the pulley and a mass m is connected

‘ =
: E
i Q/U
ol
ks

T

Sl
t
~— =
1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method
Correction:
T = Tpirotation + Tpar + Tim
U = Ukl + UkZ + Uk3 + Um + Ubar
D = DB
1 . 1 ) 1 )
T = E]plez + E]barez + Emlzez

(
1 oz 1o S 5 1 l
U =§k1R 0 +Ek2a 0 +§k3a 0° +mglcos +Mbg§cost9

1 .
D = -BR%°
2
( T_lMpR2+1Mbl2é2+1 1262
“2° 2 23 2™
1 202 1 912 1 yo2 l
U:EklR 0 +Ek2a9 +§k3a9 +mglcosH+Mbg§cose

1.
D = BR?§
L 25

_ 1IMR* IM% ., 1

_22+23 2

doL 9L _ 9D

the extremity of the

. 1 1 1 l
6% + —ml?6? —EklRZBZ — §k2a292 —5k3a292 —mglcos® — Mbgzcosg

.. . l
+ ml2> 0 + BR?0 + (kiR? + kya? + kza®? —mlg — Mng)H =0
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6+210 +WE6 =0

Leq R

— Y Y VY

Exercise 16
Considering the above mechanical system. Its consists of a solid pulley (M, R), where the spring k3 is

subjected to a forced displacement d(t) = Acos(wt) .

-1

~.
g Q) 5 ~
N . =
~J 1 S~
N R p N
~J »nY
~ S~
N \ =
~ e
~J M~
N
~.J a
N
~
S SIS C T T DAt

kz k3

1. Extract the energies of the proposed system
2. Establish the differential equation using the Lagrangian method and find the solution

3. Give the final expression of the pulsation corresponding to the maximum angle of rotation.
Correction

2
_lMR -

T =
2 2

1 1 1
U= Ekleez + Ekzazez + §k3(a9 - d)z

1
D ==pR?§?
Zﬁ



L=T-U

1MR? . 1 1 1
— 2 _ 2n2 _ 2pn2 _ _ 2
L_2 > 0 2k1R6 2k2a9 2k3(a9 d)
1MR? . 1 1 1 1
L = E 2 92 — EklRZBZ - Ekzazgz - Ek3a202 + k3a9d - Ek3ad2
doL_oL_ _op
dtod 40 00
2
6 + BR?*6 + (kyR? + kya? + k3a?)0 — kzad =0
2 e .
2 9 + BRZH + (klRZ + kzaz + k3a2)6 = k3ad

2

6 + BR%*0 + (kyR? + k,a? + k3a?)8 = kyaAcos(wt)

6 +2M0 + w26 = Fycos(wt)

( Fy
90 =
J V(w2 + w2)? + 422w2
k (@ = —arctang Wt W
2p B
2\ = ﬁ > A= M
,  2(kiR* + kya® + kza?)
WO =

M R?

2(k,R? + kya? + ksa?) B
W=Wr=4/W§—27\2:J M R? ~ 22

Exercise 17
Considering the above mechanical system. Its consists of a solid pulley (My, R), where a bar (Mp, [) is

connected to the center of the pulley and a mass M; in connected to the extremity of the pulley through an

extensible wire.



1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method and find the solution

Correction
T = Tpirotation * Tpar + T;m + Ty
U:Uk1+Uk2+Uk3+Um+UbaT+UM
D=DB
1 . 1 . 1 . 1 .
( T = = I8 + 5 Jpar0? +5mI20% + = My R262
1 902 1 912 1 b2 l
U=Ek1R 0 +§k2a9 +Ek3a6 +mglcosB+Mbg§c050+MlgR9
1 .2
D = —BR?0
l Ly
[ po AR AME p L 62 4 L 260
~272 273 2™ 2
1 202 1 202 1 22 l
U=Ek1R 0 +§k2a9 +§k3a9 +mglcosH+Mbg§cosﬁ
1 .2
D = =BR?*0
\ 5P
1M,R?> 1MyI*. 1 o1 o1 1 1
L=T-U=——2—4+ 22024 _mi?0% + = M;R?6% — Zk,R?6% — —k,a%0?% — = k;a%0?
272 273 2™ 2 2" 2 2¢ 2 3¢

l
—mglcosd — Mg Ecos@
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doL oL 4D

M,R*  M,l? 5 S\ s )i 5 5 5 !
> +T+ml + MR ) 8+ BR*0 + (kyR* + kya® + k3a —mlg—Mng)9=0

§+220° +W2o=0

Leq R

. C€Q

Exercise 18
Considering the above mechanical system. Its consists of a solids pulley (M, R), which ensures translation

and rotation movement. The spring k4 is subjected to a forced displacement d(t) = Acos(wt) .

1T ka

1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method and find the solution

Correction

T = Trotation + Ttranslation + Tm
U:Uk1+Uk2+Um
D = DB
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1 . 1 1 .
T ==J62+-Mx?+-m(2R)?6?
2] +2 x +2m( )

(
|
1 1
{ U= Ekl(d — 2R6)? + EkZ((R —a)8)? — (mgl — mglcos®)
|
\

1 .
D =3B(R - @)y’

( 1 3MR?
T==(
2% 2

1 1
U =>ki(d ~2RO) + k> (R — a)8)? + mglcost

+ m4R?)6?

1 .
| D =ZB((R— @)p)?

1(3MR? Ny 1 1 2
L:T—U:E > + m4R? | 6 —Zkl(d—ZRG)Z—EkZ((R—a)B) — mglcos6

doL oL D
dtog 00 96

3MR? N .
+m4R? ) 8+ B(R — a)® + (4k R? + k,(R —a) —mgl)8 = 2k,Rd

3M R? " .
< 3 + m4R2> 0+ B(R—a)d + (4k,R?> + k;(R — a) —mgl)8 = 2kiRAcos(wt)

6 +2M0 + w20 = Fycos(wt)

f‘9 B F,
J 0 V(w2 + w2)? + 422w2

. 22w
= —arctang ————
L ¢ g—w2 + wg

R-— R-—
5+ m4R? 2(——+ m4R%)
, _ 4kyR? + (ky(R — @) —mgl)
Wq =

3M R?
2

+ m4R?



4k, R* + (k. (R — a) — mgl R —
W:Wrzlwg_z}\z: 1 (zg ) g)_z( ,6’(2 a) )2
3MR 3MR

> + m4R? 2(—; + m4R?)

6+210 +WE9 =0

Exercise 19

Considering the above mechanical system.

1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method and find the solution

Correction

T=Tm1+Tm2
U:Uk+Um1+Um2

. 1 .
T = Emllzglz + Emzlzgzz

1
LU = Ek (16, — 16,)% + (my gl — my glcosb, ) + mygl — m,glcos6,

90



1 . 1 .
( T = Emllzglz +Em2l2922

1
< U= Ek (16, — 16,)* — m, glcos§; —m,glcos6,

1 . 1 . 1
L=T-U= Emllzelz + §m212922 — Ek (161 — 16,)? + my glcosf; + m,glcos6,

m1l2 él + (k lz+mgl)91 - klzgz = 0
myl? 6, + (k 1?+mgD)0, — kI?6, = 0

By taking the following simplification: m; = m, = m

y k g k . k g k
91+(_+_)91—_92:0 91:—(_+_)01+_92:0
m 1 m N m 1 m
o k g k o k k g
32+(_+_)92—_91:0 92:_91—(_"'_)92:0
m m m m
Step01: Extracting matrix
k g k ‘|
él] m 1 m [91] [él] [el]
.= =>|.1=1|A
[92 l k _E_g‘ 621 1o, 4],
m m 1
Step02: Compute the Eigen values
det(A—AI) =0
k g k k g k
A_M_H‘T m }_[A 0] - N
_l k kog| lo Al™ k k g
m m m m
k k
-
. _ m m _
det(A — AI) = 0 = det K kg =0
- === A
m m 1
k k\2 k k k k
(———Q—A)Z—(—) =0:>(———g—,1——) SRS
m m m m m m



k
/1=—g—2— and /1=—g
l m l
Step03: compute the Eigen vectors V{(ap B1), Vz)(az, B2)
For:/1=—%—2%:
N lf—f—%+%+zE k 1|a
1] m m m 1]
[A_M][ﬁ1]_0:>| k kg g k|[31]_0
| — —— =S4Tt 2—|
m m | 1 m
k k
_ a1y m m|[ren _
[A — Al Bl]_0=> i [ﬁl]_o
m m
k k _
;a1+—,31—0 {(X1+ﬁ1—0_)a1 _ﬁlﬁa—lﬁ— 1
k k g +p=0—>a =— 1= P =
L +5B, =0 1+ B 1 B
For:/1=—%
k k
a _E_%Jr% m a
2] _ 2] _
[a-an[g]=0= « N 5=
m m [ 1
k k
_ a, _ _; a a, _
[A ,11][/),2]_0: &k [[)'2]_0
m

92



Step04: resolution system basing on the Eigen vectors

?1 =l . I =
$2 = A2 éz"‘(%"‘za)ﬁl)z:o ¢, = Acos( ’%+2%t+(p2)

Step05: resolution system basing on the initial base(f4, ;)

{ .. ( (ﬁ1+%¢1:0 ( ¢1=AC05(\/%15+(P1)

0 () ¢ 01 = a,¢ (0]
o= |9 =[s g5 =16 2 s he

{91 = a,Acos(wit + @1) + a,Bcos(wyt + @,)
0, = B1Acos(wyt + @) + BaBcos(wyt + @3)

p
_ g g, k
0, = Acos Tt+<p1 + Bcos( 7+2Et+<p2)
_ g g, k
0, = —Acos| |=t+ @, |+ Bcos( [=+2—t+ ¢;)
L l [ m
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Exercise 20

Considering the above mechanical system.

1. Extract the energies of the proposed system

2. Establish the differential equation using the Lagrangian method and find the solution

Correction
T=Ty+Tmni+Tme
U = Ukl + Uk2 + ng + Uml + Um2
( 1 . 1 . 1 )
! T = EMRZH2 +§m1r262 +Em2x2

1 1 1
lU = Ekl R292 +§k2 (T9 _X)z +§k3 x2 —m1glr9 —mygx

( 1 .1 1
T =§MR292 +§m1r262 +Em2x2

1 1 1
LU = Ekl R292 +§k2 (T'9 _x)z +Ek3 xz
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1 .1 o1 1 1 1
L=T-U= EMRZGZ +§m1r292 +Em2x2 _Ekl R?6? _Ekz (rf —x)? —§k3 x?
1 . 1 . 1 . 1 1 1 1
L =§MR292 +§m1r292 +§m2x2 _Ekl R?6? —§k2r292+k2r9x—§k2x2 —§k3 x?
doL oL
dtod 090
doL oL
dtdx Ox

(MR? + myr?)8 + (ky R?+k,12)8 —k,rx = 0
mzjé — kzre + (kz + k3)x =0

By taking the following simplification: my = M ,m, = 2M, k; =k, =k, ks = 2k

(MR?> + M1r*)8 + (kR*+kr?)0 — krx = 0
2Mx — kr@ + (k + 2k)x =0

By taking the following simplification: R = v2r

(Mr? + M1r®)0 + (k2r®+kr?)0 — krx = 0
2Mx — kr0 + (k+ 2k)x =0

. 3kr? kr
6 + 29— 2x=0
2Mr 2Mr
. kr 3k
k X———0+—x =
2M 2M

. kr 3k .
X———0+—x = k xX=—0

. 3k k ) 3k k

{9 +—0 ———x = {9=——9+—x

2M ~ 2Mr 2M " 2Mr
=

TRy
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Step01: Extracting matrix

3k k
01_| 2m 2mr
X kr 3k
2M 2M
Step02: Compute the Eigen values

det(A—AI) =0

=[] =[]

3k k 3k
oM 2mr| A o1_| oM
A-Al= kr 3k 0 A kr
2M 2M 2M
3k k
— 2M 2Mr
det(A — Al) = 0 = det K 3k
-——=1
2M 2M
3k , (kY 3k k 3k
Cor = (am) 0= (a2 zm)
2M 2M 2M 2M 2M
k
A=-2— and A=-——
M
Step03: compute the Eigen vectors 71)(6(1, B, Vz)(az, B2)
For: 1 = —2%
M
3k k k
a, 2M M 2Mr a,
[4 = Ai] [ﬁl]‘o k 3k k (1B,
2M 2M M
k k
1 2M  2Mr|[%®1
[A_’U][ﬁ]_():[kr Kk [/31]—0
2M  2M
k k 1
M 1+_2Mr'81 =0 . 0‘1"‘;31 =0—>a=—=-p
kr k 1
ﬁal-i_ﬁﬁl_o a1r+ﬁ1_0_)a1__;ﬁl
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Vi(1,-7)

For: A = ——
M
3k+k k
a 2ZM M ZMT'
[A—,U][b,z]_o | p |[
2M ZM M
Lk ]
ayy | 2M  2mr |
[A_/U][ﬂz]_ozl kr k |[B2] 0
2M ZM
k LS k 8, =0 +1ﬁ 0 1ﬁ
oy %2 2 = —Ay T —pr=U—7" a0 =02
i]:[ ZM = r Tosa=1p=r
maz—mﬁ’z:() ar—f=0—>a=—p,
V(1,7

Step04: resolution system basing on the initial base(61, 8;)

o] = w3 =[5 Bl5 = {6 2 e

{91 = a,Acos(wit + @1) + a,Bcos(wyt + @,)
0, = B1Acos(wyt + @) + BaBcos(wyt + @3)

:
’ k k
6, = Acos Zﬁt+q)1 +Bcos(\/;t+<.02)
]
k k
k¢92 = —rAcos Zﬁt + @4 |+ 1rBcos( Mt + ¢;)
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Exercise 21

Considering the above mechanical system. It is composed of two pulleys (M, R).

61
N
\
0 0
ky k;
1T 111

1. Describe the model
2. Extract the energies of the proposed system

3. Establish the differential equation using the Llagrangian method and find the solution

Cotrection:

T = Tplrotation + Tpltranslation + Terotation + sztranslation
U= Ukl + Uk2 + Uk3

1 L1 1 L1
T = =MiR?67 +-M;R*%{ +-M,R*05 +=M,R*%5

( 2 2 2 2
|
\

1 2n2 1 2 1 2n2
UziklR 91 +§k2(R91_R92) +Ek34‘R 92
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1 . 1MR? .. 1 . 1M,R? .
{( T=EM1R2912 +57912 +EM2R2922 +§TQZZ
1 1 1
tU = Ekleglz +Ek2R2012 - k2R29192 + k2R2922 +§k34R2922
3 202 3 202 1 2n2 1 2n 2 2 2n2 1 202
L=T—U=7MR*} +M;R*03 —ZIsR*07 — - I;R20,% + kpR2616, — kpR263 — - Ies 4R263
doL oL
dtog 06

3 ..
EMlRZ 91 + (klRZ + k2R2)91 - k2R292 = 0

3 .
EMlRZez + (k,R? + k34R?*)0, — k,R?6, = 0
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Part B

Exercise 01

The function that describe the propagation wave along a rope is given by the following expression:
y = 15c0s(0.25x + 75¢t)

1. Extract the following parameters: the amplitude, number of wave, the pulse, the wave length, the
frequency, the period, the speed

2. Give the type of the wave, justify your choice

Exercise 02

Considering the following wave function y(x,t) = Ae~(@x+3)*

1. Find the type of direction? Justify your choice

Exercise 03

Prove that the bellow function waves are the solutions of the propagation wave equation:

1. y(x,t) = AedWt+kx)
2. y(x,t) = Asin2nf (t — %)

3. y(x,t) = Asin(kx + ko y + ksz — wt)
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