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ABSTRACT

Let G = (V, E) be a simple graph. A Roman dominating function (RDF for short) on G is
a function f : V — {0, 1,2} satisfying the condition that every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2. The weight w (f) of an RDF f is defined as
w(f) = ,ev f(w). The minimum weight of an RDF on a graph G is called the Roman domination
number of G, denoted yr(G).
A double Roman dominating function (DRDF) of a graph G is a function f: V — {0,1,2,3} for

which the following conditions are satisfied.

i) If f(v) = 0, then the vertex v must have at least two neighbors assigned 2 under f or one

neighbor assigned 3 under f.

ii) If f(v) = 1, then the vertex v must have at least one neighbor u with f(u) > 2.

The weight w (f) of an DRDF f is the value w(f) = >, oy f(u). The minimum weight of an

DRDF on a graph G is called the double Roman domination number of G, denoted yar(G).

In this thesis, we will extend the study of double Roman domination by presenting new results on
the Nordhaus-Gaddum type inequality and providing a characterization of all graphs G satisfying
var (G) = 27r (G) — 1. We will also explore the concept of criticality, and solve some problems

from various papers in this area.



RESUME

Soit G = (V, E) un graphe simple. Une fonction de domination romaine (RDF) sur G est
une fonction f : V. — {0, 1,2} vérifiant la condition suivante: chaque sommet u pour lequel
f(u) = 0 est adjacent & au moins un sommet v tel que f(v) = 2. Le poids w (f) d’une fonction
de domination romaine f est la valeur w(f) = > ., f(u). Le poids minimal d’une fonction de

domination romaine de G est appelé le nombre de domination romaine de G, noté yr(G).

Une fonction de domination romaine double (DRDF) d’un graphe G est une fonction f : V —

{0,1,2,3} vérifiant les conditions suivantes:

i) Si f(v) =0, alors le sommet v doit avoir au moins deux voisins uy, us tels que f(uy) = f(uz) = 2

ou un voisin u tel que f(u) = 3.

ii) Si f(v) = 1, alors le sommet v doit avoir au moins un voisin u tel que f(u) > 2.

Le poids w (f) d'une fonction de domination romaine double f est la valeur w(f) = >, o, f(u).
Le poids minimal d’une fonction de domination romaine double de G est appelé le nombre de

domination romaine double de G, noté v4r(G).

Dans cette these, nous étendrons I'étude de la domination romaine double en présentant de
nouveaux résultats sur 'inégalité de type Nordhaus-Gaddum et en fournissant une caractérisation
de tous les graphes G satisfisant 745 (G) = 27g (G) — 1. Nous explorerons également le concept de

criticité et résoudrons certains problémes tirés de divers articles dans le domaine.
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INTRODUCTION

raph theory is a prominent area of discrete mathematics, encompassing both theoretical
Gdevelopments and practical applications. Its origins trace back to 1736 when Euler ad-
dressed the Konigsberg bridge problem [34], exploring whether it was possible to traverse each of
the seven bridges exactly once. Graphs provide a powerful framework for modeling and simpli-
fying a wide range of problems by reducing them to the study of vertices and edges. In recent
years, computer scientists have driven many advancements in graph theory, particularly due to the

growing importance of algorithmic aspects.

Among the fundamental concepts in graph theory is domination in graphs. Historically, the first
domination-type problems emerged from chess. For instance, the chess master C.F. de Jaenisch [49]
and other chess enthusiasts studied how pieces like queens could be placed on an n x n chessboard
such that every square either contains a queen or is attacked by a queen. For example, five queens
are required to dominate an 8 x 8 chessboard (four queens leave at least two squares unattacked).
It has been observed by Yaglom and Yaglom [83] that there are exactly 4860 such placements of

five queens (such as placing them along the main diagonal at squares al, ¢3, €5, {6, and g7).

The formal study of domination in graphs is often attributed to Claude Berge in 1958 [16], who
introduced the concept of the domination number (though he did not use this term). In 1962,
Opystein Ore published Theory of Graphs [68], the first graph theory book in English, where he
formally coined the term "domination". This marked the beginning of domination as a theoretical
area of graph theory. However, it was not until 1977, with the publication of the seminal survey
paper Towards a Theory of Domination in Graphs by Cockayne and Hedetniemi, that the field

experienced significant growth. Since 1998, research in domination has expanded rapidly, with

11



Introduction

over 4,000 papers published to date.

Another intriguing concept is graph protection, which involves placing mobile guards on graph
vertices to defend against attacks. This idea has historical roots in the military strategies of the
Roman Empire. Modern research on graph protection began in the late 20th century, inspired by
four publications referencing the strategies of Emperor Constantine the Great (274 — 337 AD). Ian
Stewart’s paper Defend the Roman Empire! in Scientific American [76] was particularly influential,

responding to C. S. ReVelle’s question, Can you protect the Roman Empire?

During the third century, the Roman Empire dominated much of Europe, North Africa, and the
Near East. Its defense relied on a forward strategy, with approximately fifty legions securing even
the most remote regions. However, by the fourth century, the empire’s power waned, and the
number of legions decreased significantly. According to E. N. Luttwak’s The Grand Strategy of
the Roman Empire [72], Emperor Constantine devised a new strategy to address this decline.
He decreed that no more than two legions should be stationed in any city, and any city without
stationed legions must be within proximity of a city with two legions. This ensured that one legion

could be moved to defend an attacked city.

At the time, the empire’s connectivity resembled Figure [I, and Constantine faced the challenge
of allocating only four legions to defend the entire empire. He stationed two legions in Rome
and two in Constantinople, the empire’s capitals. While this deployment secured most regions,
it left Britain vulnerable, and it was eventually the first to be lost. Modern analyses suggest
alternative solutions, such as deploying one legion in Britain, two in Rome, and one in Asia Minor.
This historical context inspired the mathematical concept of Roman domination, which involves

protecting a graph through strategic resource allocation.

While the classical problem remains relevant in military operations research [10], it can also be
applied to model and solve issues requiring time-critical assistance needs to be provided with some
reserve. For example, first-aid services should not deploy their entire team for a single emer-
gency call. Studying these types of domination problems is crucial for optimizing and efficiently

organizing emergency services.

12



Introduction
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Figure 1: The Roman Empire, fourth century AD.

This thesis is organized as follows:

Chapter 1 introduces fundamental definitions and illustrative examples essential for the subsequent

chapters.

Chapter 2 explores Roman domination further, surveying its various extensions and discussing

associated challenges.

Chapter 3 focuses on double Roman domination, a stronger version of Roman domination where

three legions can be deployed at a single location, and presents improvements to existing results.

Chapter 4 extends the concept of supercriticality to double Roman domination, building on studies

initiated by Sumner and Blitch (1983) [78], and addresses open problems in the field.

Finally, the thesis ends with a conclusion summarizing the main contributions and outlining pos-

sible directions for future research.

13



Chapter 1

Basic concepts and notation in graphs

In this chapter, we need to define some terminology and notation for the purpose of this thesis.
Additional terms will be introduced whenever necessary. Several illustrative examples are provided
to help the reader understand the ideas more clearly. Unless stated otherwise, the notation and

definitions follow those in Haynes, Hedetniemi, and Henning [44] [45].

1.1 Fundamental definitions on graphs

A graph G is an ordered pair (V(G), E(G)) consisting of a set of vertices V = V(G) together with
a set & = E(G) of unordered pairs of vertices called edges. For notational simplicity, we write
the edge wv for the unordered pair {u,v}. We denote the numbers of vertices and edges in G by
n=n(G) = |V| and m = m(G) = | E|; these two basic parameters are called the order and size of
G, respectively (Note that there are many numbers, referred to as parameters, associated with a
graph ). We will assume that all graphs are simple, i.e. there is at most one edge between any
two distinct vertices, and no edge connects a vertex to itself. If e = uv is an edge in a graph G,
we say that v and v are adjacent in GG. In this case, we say that each of v and v is incident with
the edge e. Two edges are adjacent if they have a common vertex. Two vertices in a graph G are
independent if they are not adjacent. Similarly, two edges are independent if they are not adjacent.

A neighbor of a vertex v in G is a vertex that is adjacent to v. For every vertex v € V, the open

14



Chapter 1. Basic Terminology and Notation in graphs

neighborhood of v in G is the set Ng(v) = {u € V(G) : wv € E(G)} and the closed neighborhood
of v is the set Ng[v] = Ng(v) U {v}. For a set of vertices S C V', the open neighborhood of S is
the set Ng(S) = U,esN(v) and its closed neighborhood is the set Ng [S] = |J,cgN(v) U S. The
degree degq(v) of a vertex v is the number of neighbors v has in G, that is, deg,(v) = |Ng(v)|.
For a subset of vertices S C V, the degree of v in 5, denoted degg(v), is the number of vertices in
S adjacent to the vertex v. In particular, if S =V, then degg(v) = degs(v). An isolated vertex is
a vertex of degree 0 in G. A leaf is a vertex of degree one, while its neighbor is a support vertex.
A support vertex with two or more leaf neighbors is called a strong support vertex. A weak support
vertex is a support vertex that is not a strong support. When there is no ambiguity, we omit the
subscript G from graph-theoretic symbols, and write, for example, N(v), N[v], N(S), N [S] and
deg(v) instead of N¢(v), Ng[v], No(S), Ng [S] and deg(v), respectively.

A graph is isolate-free if it does not contain an isolated vertex. Any graph with just one vertex
is referred to as trivial. All other graphs are nontrivial. By A(G) = A and 6(G) = 6 we denote
the mazimum degree and the minimum degree of GG, respectively. The set of leaves is denoted by

L(G) and the set of support vertices is denoted by S(G).

Two graphs G and H are isomorphic, denoted G = H, if there exists a bijection ¢ : V(G) — V(H)
such that two vertices u and v are adjacent in G if and only if the two vertices p(u) and ¢(v) are

adjacent in H (see Figure [1.1)).

Figure 1.1: Two isomorphic graphs.

1.2 Special families of graphs

Certain types of graphs play prominent roles in graph theory, so it is necessary to mention some

of them, which we will also need throughout this thesis.
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Chapter 1. Basic Terminology and Notation in graphs

Let V(H), E(H), V(G) and E(G) be the vertex set and the vertex edge set of H and G, respectively.
If V(H) CV(G) and E(H) C E(G), then we say that H is a subgraph of G. A subgraph H of a
graph G is called a spanning subgraph of G if V(H) = V(G). If U # () is a subset of V(G), then
the subgraph of G induced by U, denoted G[U], is defined to be the graph having vertex set U
and edge set consisting of those edges of G that have both ends in U. If S C V is a set of vertices,
then we write G — S for the subgraph of G induced by V — S. Also, if S = {z} then we write
G —x instead of G —{x}. If ' C E'is a set of edges then we write G — F = (V,E—F). If F = {e}

then we write G' — e instead of G — {e}.

In a graph, a path of length k from vertex vy to vertex vy is a collection of edges, denoted with
P = vgvy...v5_10. A cycle is a closed path where vy = vi. A path (cycle) of order n is denoted by
P, (C,). A cycle Cj is often called a triangle. A graph G is called a cactus graph if each edge of
(G is contained in at most one cycle. A unicyclic graph is a graph with exactly one cycle.

The complement graph G of G is the graph defined in the same vertex set of G, where an edge

belongs to G if and only if it does not belong to G. The cycle Cg and its complement are shown

in Figure|1.2

Figure 1.2: The cycle Cg (on the left) and its complement C (on the right).

A graph G is connected if for any two distinct vertices, there is a path between them. The
components of G are the maximal connected subgraphs of GG. Let u and v be two vertices of G.
If uw and v are in the same component of GG, we define the distance between v and v, denoted by
d(u,v), to be the length of a shortest u — v path. The diameter of a graph G, denoted diam (G),
is the greatest distance between two vertices of (G. A connected graph and a disconnected graph

are shown in Figure [I.3]

A graph G is complete if every two distinct vertices of G are adjacent. A complete graph of order

n is denoted by K.

A vertex v of GG is called a cut vertex of G if G — v has more components than GG. A block of a

16



Chapter 1. Basic Terminology and Notation in graphs

(a) (b)

Figure 1.3: (a) A connected graph, and (b) a disconnected graph.

graph is a maximal induced subgraph without cut vertex. A block graph is a graph all blocks of

which are complete.

A graph G is called bipartite, if V' can be partitioned into two subsets X and Y such that each
edge uwv € F (G) connects a vertex of X and a vertex of Y. A bipartite graph G is complete, if
| X|=p, |Y|=¢,and uwv € E(G) for all w € X and v € Y, and it is denoted by K, .

A tree is a connected graph with no cycles. A star K, for p > 1, is a tree of order p + 1 having
at least p leaves. For r,s > 1, a double star S(r,s) is a tree with exactly two adjacent vertices
that are not leaves, one of which has r leaf neighbors and the other has s leaf neighbors. Figure

shows a complete graph, a complete bipartite graph and a double star.

(a) (b) (c)
Figure 1.4: (a) The complete graph Kj, (b) the complete bipartite graph K33 and (c) the double
star S(3,2).

A graph G of order at least two is called regular if its vertices have the same degree and semireqular
if A(G) —6(G) = 1. We say that, a graph G is r-regular if §(G) = A(G) = r. A 3-regular graph
is also referred to as a cubic graph. For example, the graph K, is cubic graph.

Let H be any graph. A graph G is called H-free if it does not contain H as an induced subgraph.
This idea helps define types of graphs by saying which subgraphs are not allowed. For example,
trees are graphs with no cycles, and claw-free graphs do not contain the claw, which is the graph

K173.

A planar graph is a graph that can be drawn on a plane without any of its edges crossing each

17



Chapter 1. Basic Terminology and Notation in graphs

other. In other words, it is possible to place the graph on a flat surface such that no two edges

intersect except at their endpoints.

For classes of graphs not defined here, we refer the reader to the survey [20] by Brandstadt, Le,

and Spinrad.

1.3 Basic graph operations

Let Gy = (U, Ey) and Gy = (Us, E2) be two graphs. The union of G; and G written as G U Gy
is the graph G = (Uy U Uy, E1 U E3). In particular, if G is a disjoint union of k copies of a graph
H, we write G = kH. The join of G; and G5, denoted G V G, is a graph formed from disjoint
copies of GG7 and G5 by connecting each vertex of Gy to each vertex of G5. The Cartesian product
of G1 and Gs, denoted G100G3, is the graph with vertex set {(u,v) : u € G1,v € Go}. Two vertices
(v1,u1) and (vg, uz) are adjacent in G100G, if and only if one of the following is true: u; = uy and
vy is adjacent to ve in Go or v; = vy and wu; is adjacent to us in GGy. In particular, the Cartesian
product P,,[1P, is called the m x n grid graph and is denoted by G, ,,. Figure shows the graph

cartesian product C4[1P3;.The corona cor(G) of a graph G is the graph obtained from G by adding

Figure 1.5: The graph Cy[JP;.

for each vertex v € V a new vertex v’ and the edge vv'. Figure shows the corona of Cj.

Let uwv be an edge of G. By subdividing the edge uv we mean removing it, and adding a new
vertex, say x, along with two new edges ux and zxv. In this case, we say that the edge uv has
been subdivided. Now, for a positive integer ¢, a healthy spider is a star K;; with all its edges

subdivided. A wounded spider is a star K;, with at most ¢ — 1 of its edges subdivided.

18



Chapter 1. Basic Terminology and Notation in graphs

Figure 1.6: The cor(Cs).

1.4 Domination in graphs

In 1977, Cockayne and Hedetniemi [32] published a survey paper, in which the notation v(G) was
first used for the domination number of a graph G. Since the publication of this paper, domination
in graphs has been studied extensively and several additional research papers have been published

on this topic.

Now, we present the definition of dominating sets in graphs. Let G = (V, E) be a simple graph. A
subset S C V is a dominating set of GG if every vertex in V' — .S has a neighbor in S. The domination
number ¥(G) is the minimum cardinality of a dominating set of G. A minimum dominating set
with such cardinality is called v(G)-set. Every graph has a dominating set, since S = V' is such a
set, and so 7(G) < n. We note that a graph G can have several v(G)-sets.

For example in the graph K3 in Figure [1.7, {a,b} and {a,z} are examples of v(K>3)-sets, and
thus y(Ks3) = 2.

x Yy z

Figure 1.7: The graph Ks 3.

The concept of domination, in both theoretical and applied sense, has received the attention of
many researchers. It has been used to study the optimal location of facilities such as radar stations,
hardware or software resources, and communication networks. The practical utility of domination
often prompts the development of additional parameters. Many domination parameters have

arisen when an additional condition is imposed on domination. This condition can be internal to
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Chapter 1. Basic Terminology and Notation in graphs

the dominating set, external to the dominating set, or both internal and external simultaneously.

In the following chapters, we focus on some of these parameters.

The decision problem to determine the domination number of a graph is known to be N'P-complete
(see [38]). Hence, researchers are interested in exploring simple upper and lower bounds that are
easy to verify. Characterizing the graphs for which these bounds are attained becomes essential.
Also, they aim to establish inequalities between certain parameters and identify conditions under

which equality is achieved.

In 1975, Cockayene et al. [33] introduced the first linear algorithm to determine the domination

number in trees.

In the literature, there is another way that domination and the domination number of a graph G has
been looked: A dominating function (abbreviated DF') on a graph G is a function f : V — {0, 1}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v
for which f(v) = 1. The weight w (f) of a dominating function f is the value w(f) = >, ., f(u).
The minimum weight of a dominating function on a graph G is called the domination number of
G, denoted by 7(G). It can be readily seen that a DF f, generates two sets S and V' — S such that
S={veV(G): flv)=1}and V — S ={v € V(G) : f(v) =0}. Thus w(f)=|9].

Moreover, some researchers have studied domination functions with codomains other than {0, 1},

which led to new domination parameters.
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Chapter 2

A survey of selected Roman domination

parameters

The concept of domination is extended to Roman domination, a topic that has garnered significant
attention in recent research. This chapter will focus on providing a brief overview on the various
parameters related to Roman domination, rather than an exhaustive examination of each one.
However, before we can explore these parameters, it is essential to first define Roman domination

and provide some results related to it.

2.1 Roman domination

A Roman dominating function (abbreviated RDF') on a graph G is a function f: V — {0,1,2}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex
v for which f(v) = 2. The weight w (f) of a Roman dominating function f is the value w(f) =
> wey f(w). The minimum weight of an RDF on a graph G is called the Roman domination
number of G, denoted by vr(G) (see Figure[2.1). It can be readily seen that an RDF f, generates
three sets Vp, Vi, V, such that V; = {v € V(G) : f(v) =i} for i € {0,1,2}. We can equivalently
write f = (Vp, Vi, V). Moreover, we observe that w(f) = |Vi| + 2|Va|. The concept of Roman

domination was introduced by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [31I]. For more
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details, see [25], 26] and the survey [27].

It is mentioned in [31] that the Roman domination problem on trees can be solved in linear time
and it remains N P-complete when restricted to split graphs, bipartite graphs, and planar graphs

(see [57]). Applications of Roman domination is also shown in [24].

0 1
0 2 0
[ ] 0

Figure 2.1: A graph G with vz(G) = 3.

The Roman domination number can be determined for certain graph families, as shown in the

following result.

Proposition 2.1.1 ([31]) For the classes of paths P,,, cycles C,, and the grid graph Ga,, Yr(P,) =

Yr(Cr) = [3] and vr(Gap) = n+ 1.

Since 2004, research on Roman domination has grown rapidly. Summarizing key results and

highlighting open problems would benefit the community.

2.1.1 Bounds on Roman domination number

An upper bound on the Roman domination number for connected graphs in terms of their order
was established by Chambers et al. [24]. They also characterized the graphs that achieve this
upper bound. Let H be denote the family of connected graphs GG of order n constructed from a

connected graph H such that each vertex of H is identified with the central vertex of a Ps.

Let H be the family of connected graphs G of order n (a multiple of 5), constructed from ¢ copies

of Ps by adding a connected subgraph induced by the central vertices of these paths.

Theorem 2.1.1 ([24]) If G is a connected graph of order n, then yr(G) < %n, with equality if
and only if G € HU{C5}.
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This bound has been improved for graphs with minimum degree at least 2 or 3, as shown by the

following three results. Let B = {Cy, C5, Cs, H1, Ho}, where H; and H, are the graphs illustrated
in Figure

Figure 2.2: Graphs H; (on the left) and Hs (on the right).

Theorem 2.1.2 ([24]) If G is a graph of n vertices with §(G) > 2 and G ¢ B, then yx(G) < 52.

Moreover, if n > 9, then vr(G) = 2 if and only if

1. Ifn =11, then G is isomorphic to F (see Figure[2.3) plus a subset of one of {y1y3, Y1y1, Y2ys, Y2ya},

{wz1,y1?/3jyly4}; or {wzl>w2’37?le3} added as edges.

2. If n > 11, then G consists of disjoint copies of the graphs F, F + wzy, and F + wz, + wzs

with additional edges connecting copies of w.

Ty )

Y1 Y2 Y3 Ya

21 22 z3 24

Figure 2.3: The graph F'.

Bermudo [I4] improved the previous bound by considering graphs with order at least 15 and

minimum degree at least two.

Theorem 2.1.3 ([14]) Let G be a graph of order n > 15, with 6(G) > 2, which does not contain

any induced subgraph isomorphic to Fy or Fy (see Figure . Then, vr(G) < 112—7"
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Fy Fy

Figure 2.4: Graphs I} and F3.

Bermudo [14] provided an infinite family of connected graphs that achieve the previous bound.
Consider the graph G° = (V*, E') of order 17 shown in Figure 2.5, where vg(G?) = 12. Now,
consider a connected graph Gy = (V}, Ey) such that V;, = UF_ |V E, = UE  E°U M, where M C
{vi,v; : 1 <i<j<k}. It can be checked that Gj with minimum degree two, without induced
subgraph isomorphic to Fy or Fy and yg(Gy) = 12k. For example, G, = (VIUV?2 E*UE?U{v v0})
and Yr(Gy) = 24.

(%)

Figure 2.5: The graph G°.

Theorem 2.1.4 ([58]) If G is a graph of order n with 6(G) > 3, then vr(G) < 2.

Liu and Chang [58] provided an infinite family of connected graphs G of order n with vg(G) = 2.

For any integer ¢ > 3, construct graph H; from the union of two disjoint 3t-cycles x1, xo, ..., X3, 21
and Y1, Y2, ..., Yat, y1 by adding edges x;y;, for 1 <i < 3¢, where j; =i if ¢ = 1(mod 3), j; = ¢+ 1 if
i =2(mod 3) and j; =i — 1 if i = 0(mod 3); Figure [2.6[ shows the graph Hj.

Figure 2.6: A graph Hj with yz(Hj3) = 12.
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It is natural to expect a relationship between vz(G) and v(G) for a graph G. In what follows, we

present some results in this direction.
Proposition 2.1.2 ([31]) For any graph G, v(G) < vr(G) < 29(G).

To see the sharpness of the bounds in Proposition [2.1.2] consider the following examples. If G is
a nontrivial star K, 1, then 7z(G) = 27(G) = 2. On the other hand, the empty graphs K, are
the only graphs for which vz(G) = v(G) = n. Moreover, a graph G with v(G) = 27(G) is called

a Roman graph. This raises the following interesting problem:
Problem 2.1.1 ([31]) Can you find some classes of Roman graphs?

Henning [47] characterized Roman trees, but a characterization Roman graphs remains open.

Cockayne et al. [31] characterized the connected graphs G with vz(G) € {v(G) + 1,v(G) + 2}.
Proposition 2.1.3 ([31]) If G is a connected graph of order n, then:

1. vr(G) =v(GQ) + 1 if and only if there is a vertex v € V(G) of degree n — v(G).

2. vr(G) =~(G) + 2 if and only if

a. G does not have a vertex v € V(G) of degree n — v(G);
b. either G has a vertex of degree n — v(G) — 1 or G has two vertices v and w such that

IN [v]UN [w]| =n—~(G) + 2.

Xing, Chen and Chen [82] presented the following theorem as a solution to the open question posed

in [31].

Theorem 2.1.5 ([82]) Let G be a connected graph of order n with v(G) > 2. If k is an integer
such that 2 < k < v(G), then vr(G) = v(G) + k if and only if:

a. for any integer s with 1 < s < k —1, G does not have a set Uy of t (1 <t < s) vertices such

that |Uyep, N [v]| =n —v(G) — s + 2t;
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b. there exists an integer with 1 <1 < k, and G has a set W; of | vertices such that |Uyew, N [v]| =

n—~(G)—k+2l.

Remark 2.1.1 The proof of Theorem contains a gap that has been corrected in [81)] by Wu

and Xing.

Wu [80] and Favaron et al. [35] also provided relations involving vz (G) and (G) for any connected
graph as follows. We recall that R is the family of graphs GG obtained from a connected graph H
such that each vertex of H is identified with the central vertex of a Ps or with an internal vertex

of a path P, where the |V (H)| paths are vertex-disjoint.

Theorem 2.1.6 ([80]) For any graphs G and H, vgp(GOH) > ~v(G)y(H).

~—

Theorem 2.1.7 ([35]) For any graph G of order n > 3, yr(G) + @ < n, with equality if and

only if G is Cy, Cs,cor (Cy) or G € R.
In [I5], Bermudo et al. stated the following conjecture, which is still open.

Conjecture 2.1.1 ([15]) If G is a graph of order n with §(G) > 3, then yr(G) + v(G) < n.

2.1.2 Nordhaus-Gaddum type results for Roman domination

A Nordhaus—Gaddum-type result provides either a lower or an upper bound on the sum (or product)
of a parameter of a graph and its complement in terms of the number of vertices, honoring the
classic paper by Nordhaus and Gaddum (1956). Since then, similar types of relations have been

proposed for various other graph invariants, including domination (see the survey [I]).

Firstly, Chambers et al. [24] proved the Nordhaus—-Gaddum inequalities for yg.

Theorem 2.1.8 ([24]) If G is a graph of order n > 3, then 5 < Yg(G) + Yr(G) < n+ 3. The
lower bound is achieved if and only if G (or G) contains a verter of degree n — 1 and G (or G)

contains a vertex of degree n — 2. The upper bound is achieved if and only if G or G is either Cs

or 5 K.

26



Chaptre 2. A survey of selected Roman domination parameters

Furthermore, they proved the following result.

Theorem 2.1.9 ([24]) if n > 160, then yr(G) - Yr(G) < &, with equality if and only if G or G

S.n
18 305

Subsequently, Jafari Rad and Rahbani [51] also investigated Nordhaus-Gaddum type bounds for
Roman domination. In the following, a cycle C,, is represented by vjvs, ..., v,v1, where V(C,,) =
{v1, va, ..., v, }. Furthermore by C,, + v;v;, where |v; — v;| > 1, we mean a graph obtained from C,,
by adding the chord v;v;. Similarly, C,, +v;v; +vyv; and Cy, 4 v;v; + vyvjy +vpvjn denote C), with

two or three such chords added, respectively. Now, we will recall some relevant families of graphs:

e Gy. The class of all graphs G of order n > 2 with A(G) =n — 1 and 6(G) > n — 2.

® gl. The class Ofgraphs Pi+3K2 (3 S 1 S 5,8 Z O), 2K3, 03+K2, 03+2K2, O4+K2,C4+Cg,
Cs + K», Cs, Cg, Cs + 1305, Cg + v305, Cg + v306 + V104, C7, C7 + 0105, C7 + 0105 + 0906, C7 +

V4 Vg + V3U7 -+ V3VUs, Cg, Cg + V1Vs5, Cg + V1Vs -+ Vo Vg.

e G,. The class of seven specific graphs depicted in Figure

Let G = Go UGy UGs.

Theorem 2.1.10 ([51]) For a graph G of order n > 2, Yr(G) + vr(G) = n + 2 if and only if
GeGorGeg.

G4 G5 GG G7

Figure 2.7: The Family Gs.
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Before studying Nordhaus-Gaddum type bounds for another Roman domination parameter, we
must report an error in the previous characterization, as stated in Theorem [2.1.10l This will
lead us to inquire about the validity of the results presented by the authors and which have been

published.
Yr(G1) +r(G1) = Yr(Ga) + Yr(Gy) =5 +4 < 9 +2.
Yr(Gs) +r(Gs) =4 +4 < T+2.

Yr(Ga) +Yr(G1) = Yr(Gs) + vr(G5) = 7r(Gs) + 7r(Gs) =5+ 4 < 8+ 2.

’7R<C7 + V4Vg + V3U7 + 1)31)5) + ’)/R(C'y + V4Vg -+ V3U7 + U31)5) =4 + 4<7 + 2.

In the same year, Bouchou et al. [I9] also independently provided a characterization of extremal

graphs of a Nordhaus-Gaddum bound for v5(G) + vr(G) = n + 2.

Theorem 2.1.11 ([19]) For a graph G of order n > 3, Yr(G) + yr(G) = n + 2 if and only if

G or G € {K,} UHyUH;UH,UHs, where:

H() = {067 07, Cg, CZ U Cj, where Z,j S {3, 4, 5}}

Hy = {pK1UqK;:p>1,¢>1and p+2q=n}.

Hy ={qK> U H with 2¢ + |V(H)| = n, where H € {P3, Py, P5,C3,Cy,Cs} if ¢ # 0 and
H € {Pg,P4,P5} lfq:()}

Hs = {Fi, F5, My, M,}, (shown in Figure [2.8).

Fy Fy M, M

Figure 2.8: The Family Hs.

28



Chaptre 2. A survey of selected Roman domination parameters

2.1.3 Critical concepts for Roman Domination

When investigating a graph parameter i, it is often useful to study a more restricted class of graphs
known as critical graphs. In these graphs, the addition of a set of edges or the removal of a set of
vertices/edges can either increase or decrease p, or leave p unchanged. The study of criticality in
graphs is a very active area in graph theory. In the following, we present some important results
where vr changes when removing a vertex or removing/adding an edge of the graph. A good

compilation of the criticality properties can be found in [73].

Vertex removal

Jafari Rad and Volkmann [53] proved the following result.

Theorem 2.1.12 ([53]) Let v be a vertex of a graph G. Then vr(G —v) < vr(G) if and only if
there is a yp-function f on G such thatv € V. If yp(G—v) < vg(G) then yr(G—v) = yx(G)—1.

If yr(G —v) > vr(G) then for every yg-function f on G, f(v) = 2.

According to the effects of vertex removal on the Roman domination number of a graph G, we say
that G is Roman domination vertex critical, or just yg-vertez critical, if for any vertex v of V(G),
Yr(G —v) < vr(G). If G is yg-vertex critical and vg(G) = k, then we call G a k-yg-vertex critical

graph. Similarly, we say that G is y-vertex critical, if for any vertex v of V(G), v(G —v) < v(G).
Proposition 2.1.4 ([43]) For any vertex v in a yg-vertex critical graph G, yr(G—v) = yr(G)—1.
Theorem 2.1.13 ([43]) A block graph G is yg-vertex critical if and only if G = K.

Theorem 2.1.14 ([53]) A graph G of order n > 4 is 3-yg-vertez critical if and only if n is even,

and G is an (n — 2)-reqular graph.

Theorem 2.1.15 ([53]) For any yg-vertex critical graph G, diam(G) < {%W

The authors in [53] conjectured that every ~-vertex critical graph is yg-vertex critical. However,

Blidia and Chellali [18] disproved this conjecture by providing the following counterexample.
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Let G}, be a family of connected cactus graphs obtained by n > 2 disjoint cycles C); sharing a
common vertex, say x (the graph Gy is shown in Figure 2.9). The authors demonstrated that
v(G,) =n+1,v(G, —x) =n, yr(G,) = n+ 2 and vg(G, — =) = 2n. Therefore, G,, is y-vertex

critical but not yr-vertex critical.

Figure 2.9: Connected cactus graph Gy.

The characterization of the connected ~yg-vertex critical unicyclic graphs was given in [42]. Let &
be the class of all graphs G which either G = cor(C,,), where m = 1(mod3) or G = C,,, where
n =1 (mod3) or n = 2 (mod 3).

Theorem 2.1.16 ([42]) A connected unicyclic graph G is yg-vertex critical if and only if G € £.

Edge removal

It has already been mentioned that the removal of an edge from G cannot decrease yr(G), however,

it can increase it by at most one as shown in [53].
Proposition 2.1.5 ([53]) If e is an edge of a graph G, then yr(G) < vr(G —e) < vr(G) + 1.

In [53], it was indicated that if G is a graph with A(G) < 1, then there does not exist any edge

such that vz(G — €) > vr(G), and the following theorem was also presented.

Theorem 2.1.17 ([53]) Let G be a graph with A(G) > 2. Then vr(G —€) = yr(G) + 1 for each
edge e € E(G) if and only if G is a forest in which each component is an isolated vertex or a star

of order at least 3.

Corollary 2.1.1 ([53]) RcverN Reer # 0, where Rovr and Rogpr are the classes of graphs G
such that yr(G —v) # Yr(G) and yr(G —e) # Yr(G), respectively, for allv € V(G) and e € E(G),

respectively.
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Edge addition

We begin by recalling the following results of Hansberg, Jafari Rad and Volkmann:

Theorem 2.1.18 Let G be a graph and x and y be non-adjacent vertices of G. Then yr(G)—1 <
Yr(G + zy) < vr(G). Moreover, yr(G + xy) = vr(G) — 1 if and only if there is a yr-function f

on G such that {f(z), f(y)} = {1,2}.

Now, we say that G is Roman domination edge critical, or just Yg-edge critical, if for any e € E(G);

Yr(G + ) < yr(G).

Proposition 2.1.6 ([43]) Let G be a yg-edge critical graph, and let e € E(G). Then vz(G+e) =
r(G) — 1.

The authors in [43] provided a characterization of yz-edge critical trees. Let Ps be the path v; -
Vg U3 - Uy - U5 — Vg. We add two new vertices x and y, and join x to vz, and join y to vy, to obtain
a tree T'. Let H; be a tree obtained from T by adding a vertex x; and joining x; to x. Also let H,

be a tree obtained from H; by adding a new vertex y; and joining y; to y.
Theorem 2.1.19 ([43]) A tree T is yr-edge critical if and only if T € {H;, Hy}.

Indeed, the authors in [42] provided a characterization of the connected -yr-edge critical unicyclic

graphs.

Theorem 2.1.20 ([42]) A connected unicyclic graph G is yg-edge critical if and only if G €
{O4a C(57 H17 H2,7 H37 H47 H57 HG} (866 Figure .

Definition 2.1.1 A matching in a graph G is a subset of pair-wise non-incident edges. A matching

M is said to be perfect if | M| = @
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A A

Hl H2 3
Hy Hs Hg

Figure 2.10: Connected ygr-edge critical unicyclic graphs.

Let H be the graph constructed from Ks, as follows: Label the vertices of Ky, as uq,us,..., U,
w1, Wa, ..., w,, and remove from K, the perfect matching u;w; where 1 < i <r. Let F be the class
of all graphs G constructed as follows: Start with a complete graph K,, (where m > 2) and join
each vertex of K,,to every vertex of H. Then, add a path P,by connecting one of its end vertices

to every vertex in H. Figure [2.11] shows the smallest example of a graph belonging to F.

Chellali et al. [28] provided a characterization of yg-edge critical graphs G where vz(G) = 4 and
diam(G) = 3.

Theorem 2.1.21 ([28]) If G is a connected 4-yr-edge critical graph, then diam(G) < 3, with

equality if and only if G € F.

Figure 2.11: A graph G € F.

Remark 2.1.2 The authors in [28] did not mention the existence of a yr-edge critical connected
graph G with ygr(G) = 4 and diam(G) = 2. Therefore, it is necessary to provide an example of a
graph G, and let it be K3 3.
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The concepts of criticality and the Nordhaus-Gaddum inequality, among others, are also prominent
in various parameters of Roman domination. However, we will refrain from discussing them further
here, as they have already been addressed in the context of Roman domination, which we believe
provides sufficient understanding.

The value of each of the following Roman domination parameters is defined as the minimum weight

of a function of the given type, where the weight w ( f) of such a function f is the sum of all assigned

values, w(f) = >,y f(u).

2.2 Total Roman domination

A total Roman dominating function of a graph G with no isolated vertex (TRDF), is a Roman
dominating function f on G with the additional property that every vertex x € V for which
f(z) > 1is adjacent to at least one vertex y € V such that f(y) > 1. The total Roman domination
number is yr(G), let Vi = {v € V': f(v) = i} where 0 < i < 2, and V;" = V; UV;. Thus, we write
f= Vo, V1, V5). A TRDF of G with weight v,z(G) is called a v;z(G)-function. As a new variant
of the Roman domination, the concept of the total Roman domination was introduced by Liu and

Chang [57].

Ahangar et al. [5] showed that for any graph G without isolated vertices,
29(G) < wr(G) < 39(G), (2.1)

and had established an upper bound on the total Roman domination number in terms of the

Roman domination number.

Theorem 2.2.1 ([5]) IfG is a graph of order n with no isolated vertex, then vir(G) < 2yr(G)—1.
Further, vir(G) = 2vr(G) — 1 if and only if A(G) =n — 1.

Also, they raised the following problems.

Problem 2.2.1 ([5]) Characterize the graphs G satisfying vir(G) = 2v(G).
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Problem 2.2.2 ([5]) Characterize the graphs G satisfying vir(G) = 37(G).

Jafar Amjadi et al. [6] provided a constructive characterization of trees T whith vz(T") = 2v(T)
and vg(T) = 3v(T), resolving the problems mentioned earlier for trees. However, the problems
remain unsolved in general.

Cabrera Martinez et al. [2I] improved the lower and upper bounds given in inequality chain
2.1l For this purpose, they used the following variant of the concept of domination. A semitotal
dominating set of a graph G without isolated vertices, is a dominating set D of GG such that every
vertex in D is within distance two of another vertex of D. The semitotal domination number,

denoted by 712(G), is the minimum cardinality among all semitotal dominating sets of G (see [41]).

Theorem 2.2.2 ([21]) For any graph G with neither isolated vertex nor components isomorphic

to Ko, 712(G) +7(G) < vir(G) < vr(G) +7(G).
They then presented the following conjecture.

Conjecture 2.2.1 ([21]) Let G be a graph with no isolated vertex. Then vir(G) = 3v(G) if and
only if r(G) = Yr(G) +7(G).

Note that according to the bound v;z(G) < vr(G) +~(G) and Proposition [2.1.2) we conclude that

the conjecture only requires proving the sufficiency part.

Ahangar [2] proved Conjecture for nontrivial trees. However, the Conjecture remains unsolved

in general.

2.3 QOuter-independent Roman Domination

Ahangar et al. [3] combined Roman domination with vertex independence and introduced the
outer independent Roman domination. The Roman dominating function f is an outer-independent
Roman dominating function (OIRDF) on G if the set of vertices labeled with zero under f is an
independent set. The outer-independent Roman domination number is v,r(G). An OIRDF of

minimum weight is called a ~,;z-function.
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After the paper [3] was published, the topic attracted many researchers. Poureidi et al. [70]
proposed an algorithm to compute v,;z(G) in O (|V]) time. Martinez et al. [22] obtained some
bounds on 7,;z(G) in terms of other parameters. Nazari-Moghaddam et al. [62] provided a
constructive characterization of trees 7" with v,r(T) = vr(T). Gao et al. [37] determined the

exact values of 7,;zr(C30C,,) and v,r(C,,OC,,) for m = 0 (mod 4) and n = 0 (mod 4).

Ahangar et al. [3], established the following results.

Proposition 2.3.1 ([3]) For n > 2, vir(Py) = Yir(Cn) = 3 | 2] + 4, where n = i (mod 4) and

i €{0,1,2}, and Yoir(Pn) = Yoir(Cr) = 3 L%J + 2 otherwise.

Proposition 2.3.2 ([3]) Let G be a connected graph of order n. Then v,ir(G) = n if and only if
G=K,.

Theorem 2.3.1 ([3]) Let G be a connected graph of order n > 2. Then the following conditions

are equivalent:
(i) Yoir(G) =n — 1.
(it) G is a (Ki3,2K,2)-free graph different from K,,.

(iit) G has a v,r(G)-function f = (Vo, V1, Va) such that |Va| =1 and |Vy| = 1.

A wvertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum

cardinality of a vertex cover is denoted by S(G).

Proposition 2.3.3 ([3]) If G is a graph without isolated vertices, then B(G) + 1 < v,r(G) <

25(G). Both bounds are tight for trees.

Martinez et al. [22] characterized the trees that achieve the lower bound. For this purpose, they
constructed the following family: Let 7" be the family of trees T, ; of order r + s+ 1 with » > 1

and 7 — 1 > s > 0, obtained from a star K, by subdividing s edges exactly once.

Theorem 2.3.2 ([22]) Let T be a nontrivial tree. Then vog(T) = 5(T) + 1 if and only if T € T

35



Chaptre 2. A survey of selected Roman domination parameters

Theorem 2.3.3 ([37]) For m = 0(mod4) and n = 0(mod4), voir(CpOC,) = 22

Theorem 2.3.4 ([37]) For any integer n > 4, v,ir(Cs0C,) = [2].

A graph G is a vertex cover Roman graph if v,;z(G) = 26(G). Martinez et al. [23] provide a

constructive characterization of vertex cover Roman trees.

Now, recall that, a set S C V(@) is an independent dominating set of G if S is an independent
and dominating set at the same time. The independent domination number of G is the minimum

cardinality among all independent dominating sets of G' and is denoted by i(G) (see [68, 17, [40]).

Theorem 2.3.5 ([22]) For any graph G with no isolated vertex, order n, Yoir(G) < n —i(G) +
1(G).

The authors in [22] noted that the upper bound is achieved in the case of complete graphs. Mo-

tivated by this observation, they raised the following question:

Question 2.3.1 ([22]) Is it the case that yoir(G) = n—1i(G)+~v(G) if and only if G is a complete

graph?

2.4 Double Roman domination

A double Roman dominating function (DRDF) on a graph G is a function f : V' — {0,1,2,3}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex
v for which f(v) = 3 or two vertices v; and vy for which f(v;) = f(v2) = 2, and every vertex u
for which f(u) = 1 is adjacent to at least one vertex v for which f(v) > 2. The double Roman
domination number is v4(G) (see Figure [2.19). A DRDF of minimum weight is called a ~4p-
function. Any DRDF f on a graph G induces four sets Vg, V1, Va, V3 where V; = {v € V' : f(v) = i}.
Thus, we write f = (Vo, V4, Vs, V3). A vertex u € Vj is said to be double Roman dominated if
|Ng(u) N Va| > 2 or |[Ng(u) N V3| > 1. This definition was first introduced in 2016 by Beeler et al.

[13], for references on double Roman domination, see for example, [4, 8, [0, 52].
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It is known that the decision version of the double Roman domination problem (MIN-DOUBLE-

RDF) is N'P-complete, even when restricted to some classes of graphs, for example see [4, 12, [T1].

0 9
0 3 0
[ ] 0

Figure 2.12: A graph G with y4z(G) = 5.

Remark 2.4.1 In Figure 2.12), the numbers indicate the values of the corresponding vertices as-

signed by a Yyqr-function.
In [I3], Beeler et al. obtained the following results.

Proposition 2.4.1 ([13]) In a DRDF of weight v4r(G), no vertex needs to be assigned the value
1.

By Proposition we now consider the DRDF of a graph G in which there exists no vertex

assigned with 1 in the following.

For a DRDF f of a graph G, let (Vp, V5, V3) be the ordered partition of V(G) induced by f such
that V; = {z: f(x) =i} for i = 0,2,3. It can be seen that there exists a 1 — 1 correspondence

between the function f and the partition (Vp, V5, V3) of V(G), we write f = (Vi, Vs, V3).

Also, they presented the following result.
Proposition 2.4.2 ([13]) For any graph G, 27v(G) < v4r(G) < 37(G).

Yr(G) < 7ar(G) < 29r(G)

Remark 2.4.2 ([13]) For any graph G, .
(G) < r(G) < 2v(G) < 7ar(G) < 37(G)

The characterization of the double Roman trees T'; that is, v4r(T) = 3v(T'), was given by Henning

et al. in [4§].
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Proposition 2.4.3 ([4]) For any integer n > 1,

n if n = 0 (mod 3)
’ydR(Pn) -
n+1 ifn=12(mod3).

Proposition 2.4.4 ([4]) For any integer n > 3,

n  ifn=0,234(mod6)
Yar(Cn) =
n+1 ifn=15mod6).

Proposition 2.4.5 ([4]) Let G be a connected graph of order n > 3. Then
1. vr(G) =3 if and only if A (G) =n — 1.
2. var(G) = 4 if and only if G = K,V H, where H is a graph with A (H) < |V (H)| — 2.
3. var(G) =5 if and only if A(G) =n —2 and G # KoV H for any graph H of order n — 2.

Remark 2.4.3 There are no graphs G with a double Roman domination number v4r(G) = 1.

Additionally, for any graph G, var(G) = 2 if and only if G is K;.
Anu and Lakshmanan [9] proved the following existence result.

Theorem 2.4.1 ([9]) Given any two positive integers a,b > 3, there exist a graph G and an

induced subgraph H of G such that var(G) = a and var(H) = b.

Remark 2.4.4 As seen in the previous theorem, no general relationship exists between the double
Roman domination number of a graph and that of its induced subgraphs; in other words, they are

imcomparable.

Now, we are focusing on bounding the double Roman domination number in terms of the order of

the graph. Khoeilar et al. [54] established the following result.
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Theorem 2.4.2 ([54]) Let G be a graph of order n > 5, §(G) > 2 and with no component

isomorphic to Cs or C7. Then vqr(G) < &2

Moreover, the authors in [54] presented an infinite family G of graphs that demonstrates the
sharpness of the upper bound in their theorem. Let H be a graph obtained from two cycles of
Cs by adding an edge between them. For any graph G, let G be the graph obtained from G
by adding |V (G)| copies Hy, ..., Hjy (g of H, where z; denotes a vertex of degree three in H;, by
identifying x; with the ith vertex of G. Let G = {Gy : G is a graph}. They conjectured that G is
the only family of extremal graphs achieving the bound %n.

Shao et al. [75] disproved this conjecture by characterizing all extremal graphs for this bound. Let
H' be a graph obtained from two cycles of C5 by adding two edges joining a vertex of one cycle
to two non-adjacent vertices of the other cycle, and H” be the graph illustrated in Figure [2.13|.
Moreover, for any graph G, let G g be the graph obtained from G by identifying the ith vertex
of G with either a vertex of degree three of a copy of H or a vertex of degree four of a copy of H'.

Let A= {Ggu : G is a connected graph}.

Theorem 2.4.3 ([75]) Let G be a connected graph of order n > 5 with minimum degree two
different from Cs and C7. Then v4r(G) = %n if and only if G € AU{H"}.

SRR

VY

Figure 2.13: The graph H".

Beeler et al. [I3] noted that for every connected graph G with a minimum degree of at least three,
the inequality v4r(G) < %" holds, and they posed the question of whether this bound could be

improved. In response to this question, Ahangar et al. [4] presented the following result.

Proposition 2.4.6 ([4]) If G is a graph of order n and minimum degree §(G) > 3, then yar(G) <

n. This bound is sharp for the complement of the cycle Cy.
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It is not known whether this bound can be improved.

Problem 2.4.1 ([69]) Let G be a graph with minimum degree at least three, different from Cs.

Is var(G) < n the best possible?

The examples mentioned above are far from encompassing all the variants. Several new variations
of Roman domination have been introduced, reflecting the flexibility of the field and the potential

to explore different mathematical contexts based on practical or theoretical applications.
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Chapter 3

Further results on the double Roman

domination

In this chapter we provide a characterization of extremal graphs of a Nordhaus-Gaddum type
bound for 4z (G) improving the corresponding results given in [52] and [79]. Moreover, we give
a characterization of graphs G for which the equality v4z(G) = 27r(G) — 1 holds, improving the

corresponding results given in [84].

3.1 Graphs G of order n with 2(n—A) — 1 < »(G) <

2(n—A)+1

In this section we provide a characterization of some classes of graphs G with v4r(G) > 2 (n — A)—

1, including regular graphs, semiregular graphs and graphs with A — ¢ = 2.

Using Propositions [2.4.3| and [2.4.4] we have the following straightforward observation for nontrivial

graphs with A < 2.
Observation 3.1.1 Let G be a graph of order n and mazximum degree A < 2. Then

1. vr(G) =2(n—A) + 1 if and only if
G =pK,UH, where H € {Ks, P3,C5, Py} andn =p+ |V (H)|.

41



Chaptre 3. Further results on the double Roman domination

2. var(G) =2 (n — A) if and only if G = K,, or
G =pKyUH, where H € {2K5, Ko U P3, Ko UC3, Ko U Py, Cy,Cs, Ps} andn =p+ |V (H)|.

3. var(G) =2(n — A) —1 if and only if G = pK; U Ko U H, where H € {Cy4,C5, Ps} or
G =pKiU2K, UH, where H € {KQ,P3,03,P4}.

Jafari Rad and Rahbani [52] presented a family of graphs G with v4z(G) = 2 (n — A)+1 as follows:

A vertex that belongs to a minimum dominating set of G called a good vertexr. The set of all
good vertices of G is denote by good(G), and G — good(G) denotes the subgraph of G induced by
V(G) — good(@). For a graph H, an H-partition is a partition of V(H) into p + 1 nonempty sets

Ay, Ay, ..., A, for some integer p < n such that the following hold:

1. If p > 2, then for i > 1 the subgraph of H induced by V(H) — A; has domination number at

least two, or a y(H[V(H) — A;])-set is contained in Ay.

2. If p<1,then 1 <~(H) < 2. Moreover;

o If v(H) = 1, then good(H) C Ap; and every v(H — good(H))-set has at most one

common vertex with (Ji_; A; whenever v(H — good(H)) = 2.

o If v(H) = 2, then [ J}_, A; contains at most one vertex of a y(H)-set, for i = 1,2, ..., p;

otherwise a (H)-set is contained in A; for ¢ € {1,...,p} and no v(H)-set is contained

in muerN(U)-

Remark 3.1.1 For any graph H, the set Ay = V(H) itself forms an H-partition. Therefore,

every graph H has an H-partition.

Definition 3.1.1 Let Ay, Ay, ..., A, be an H-partition of a graph H. Let F be the family of graphs
G that can be obtained from a graph H by adding p + 1 new vertices vy, vs, ..., Vp, u, joining v; to

all of the vertices of A; fori=1,2,...,p, and joining u to all of the vertices of H (see Figure .

Theorem 3.1.1 ([562]) IfG is graph of order n with mazimum degree A, then v4r(G) < 2(n — A)+

1, with equality if and only if G € F.
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el6)

g.vl

.l

Figure 3.1: Structure of graphs in the family F.

For any vertex v € V(G), we write N [v] = V(G) — N[v]. We also denote by ¢ the number of edges

joining the vertices of N (v) to the vertices of N[v].

Proposition 3.1.1 ([66]) Let G be a graph of order n with maximum degree A and p a positive
integer, such that A —§ < 2. Then vr(G) = 2(n— A) + 1 if and only if either A = n — 1,
or A =n—2and G # Ky V H for any graph H of order n — 2, or G € pK, U H,where
H € {Ky, P3,C3, Py} U {cor(Ps),cor(C3)}.

Proof. Let G be a graph of order n with maximum degree A and minimum degree ¢ such that
A—06=ke{0,1,2} and y4r(G) =2 (n — A)+1. If A < 2, then from Observation [3.1.1] we obtain
G = pK,UH where H € {K>, P;,C3, Py} and n = p+|V (H)|. Now assume that A > 3. According
to the construction of Family F described above in Definition , every vertex in N[v] has at
least A — k neighbors in N(v), and every vertex in N(v) has at most one neighbor in N[v], but at
least one vertex which has no neighbor in N[v]. So we have (A — k) |N [v]| <t < |N(v)|—1, which
provides (A — k) (n — A —1) < A —1, and thus n < A + 2+ 2=L_ Clearly, for A > 2k, we have
A > n — 2, and by Proposition , G # K, V H for any graph H of order n — 2. Assume now
that A <2k —1. Since A > 3 and k < 2, we obtain that k = 2 and A = 3, and thus n € {4,5,6}.
If n € {4,5}, then A > n — 2, again by Proposition , G # K, Vv H for any graph H of order

n— 2. If n =6, then ¢t = 2. It is a simple matter to check that G = cor(Ps) or cor(Cj).

The converse is easy to show. m

Next, we present a necessary conditions for connected graphs G of order n and maximum degree
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A, where 2 (n — A) — 1 < vr(G) < 2(n — A).

Lemme 3.1.1 ([66]) Let G be a graph of order n with mazimum degree A. If yar(G) = 2 (n — A)—

p, where p € {0,1}, then for every vertex v of maximum degree we have:

1. Every vertex of N(v) has at most two neighbors in N [v].

2. N [v] # 0 and every component of G [N [UH has at most two vertices. Moreover

i) If p=0, then G [N [v]] contains at most one edge.

it) If p=1, then G [N [v]] contains at most two independent edges.

Proof. Let G be a graph with v4z(G) = 2(n — A) — p where p € {0,1}. Let v be a vertex of
maximum degree A. If some vertex u € N(v) has at least three neighbors in N[v], then f =
(N(u)UN(v) —{u,v},V(G) = (N(u) UN(v)),{u,v}) is a DRDF with weight at most 2 (n — A) —
2, a contradiction. Hence (1) follows. If N[v] = 0, then A = n — 1, and so y4r(G) = 3 =
2 (n — A)+1, a contradiction. Thus we may assume that N [v] # 0. Suppose there is a component
of G[N [v]], say F, has at least three vertices. Let z € V (F), with |Ng(z)] > 2. Clearly
f = (N{v,2}),V(G) — N[{v,z}],{v,x}) is a DRDF, with weight at most 2(n — A) — 2, a
contradiction. Now suppose that p = 0 and G [N [UH contains two independent edges zy and x'y/.
Then clearly g = (N(v) U{y,y'},V(G) — (N[v] U{z,2",y,9'}),{v,z,2'}) is a DRDF, with weight
at most 2 (n — A) — 1, a contradiction. Finally suppose that p = 1 and G [W(v)] contains at least
three independent edges xy, 'y’ and 2”y”. Then clearly g = (N(v) U{y,v,y"},V(G) — (N[v] U
{z, 2", 2"y, v, y"}),{v,z,2',2"}) is a DRDF, with weight at most 2 (n — A) — 2, a contradiction.

Hence (2) follows. m

Proposition 3.1.2 ([66]) Let G be a graph of order n with mazimum degree A such that A —§ <
1. Theny4r(G) =2 (n — A) if and only if either G €{K,,,Cy, Cs, (n — 4) K;U2K5, KoUPs, KyUCs,
KoUPy, Ps},orA=n—3and A>3, or A=n—2, A>3 and G = K,V H, where H is a graph
with A (H) < |V (H)| — 2.
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Proof. Let G be a graph of order n with maximum degree A such that A —§ =k € {0,1}, and
let v € V(G) be a vertex of maximum degree. Assume that 14z(G) = 2(n — A). If A <2, then
from Observation we obtain G € {E, 2K2,04,C5}, or G € {(n—4) K, U2Ks;n > 5}, or
G € {KyU P, Ko UCs, Ks U Py, Ps}. Now assume that A > 3. By Lemma , every vertex in
Nv] has at least A — k — 1 neighbors in N (v), and every vertex in N (v) has at most two neighbors
in N[v], and |N[v]| # 0. We proceed according to the value of |N[v]|.

Case 1. If [N [v]| > 5, then 2(A — k — 1)+ 3 (A — k) <t < 2A, which provides A < |352] <2,
a contradiction.

Case 2. |N [v]| =4. Then A =n—5, and thus 2 (A — k — 1)4+2 (A — k) < ¢t < 2A, which provides
A < 2k+1, and thus k = 1, A = 3 and n = 8. By Theorem [2.4.2, 74r(G) < £ < 2(n—A), a
contradiction.

Case 3. |N [v]| = 3. Then A =n—4, and thus 2(A — k — 1)+ (A — k) <t < 2A, which provides
A<3k+2 Sok=1and A € {3,4,5}. Set N [v] = {x,9, 2}, we have three possibilities.

Subcase 8.1. A = 5. Then n = 9, which gives t = 10. Thus N [v] has exactly one edge and every
vertex in N [v] has degree 4. Let N(v) = {a,b,c,d,e}. Without loss of generality, we assume
that zy € E (G). Since t = 10, |[N(z) " N(v)| = [N(y) N N(v)| = 3, and |N(z) N N(v)| = 4. Let
N(z) ={a,b,c,d}. Clearly, x and y have no common neighbor in {a, b, ¢, d}, and so x and y have e
as a unique common neighbor in N(v). The function f = ({z,y,a,b,c,d,v},0,{z,e}) is an DRDF

on G of weight 6, which contradicts the fact that yur(G) =2 (n — A).

Subcase 3.2. A = 4. Then n = 8, which gives t € {7,8}. Clearly, N [v] is not independent. Without
loss of generality, assume that zy € FE (G). Let N(v) = {a,b,c,d}. Since |[N(z) N N(v)| > 3, we
may assume that {a,b,c} C N(z). Clearly, xd or yd € E(G), say zd € E(G). The function
f = ({a,b,c,d,y},{v,z},{z}) is an DRDF on G of weight 7, which contradicts the fact that
var(G) =2 (n — A).

Subcase 3.3. A = 3. Then n = 7. Note that § > 2. Again by Theorem , Yar(G) < H <

2 (n — A) a contradiction.

Case 4. |N [v]| =2. Then A =n — 3 holds.
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Case 5. |N[v]| = 1. Then A =n — 2, and thus by Proposition m, var(G) = 2 (n — A) leads
G = K,V H, where H is a graph with A (H) < |V (H)| — 2.

The converse is easy to show. m

Proposition 3.1.3 ([66]) Let G be a A-regular graph of ordern > 2. Then vr(G) =2 (n — A)—
1 if and only if G = 3Ks.

Proof. Let G be a A-regular graph of order n > 2. Assume that 74z(G) = 2(n — A) — 1. If
A > 3, then by Lemma [3.1.1} every vertex in N[v] has at least A — 1 neighbors in N(v), and every
vertex in N(v) has at most two neighbors in N[v]. If [N [v]| > 3, then 2 (A — 1) + A < ¢ < 2A,

which provides A < 2, a contradiction. Therefore }N[v]! < 2, and so A > n — 3. By Propositions

13.1.1l and [3.1.2) we have v4r(G) > 2(n — A), a contradiction. Now assume that A < 2, then by

Observation we have G = 3K,.

The converse is easy to show. m

3.2 Nordhaus-Gaddum type inequality for double Roman

domination

Jafari Rad and Rahbani [52], and Volkmann [79] presented Nordhaus-Gaddum type inequalities

for the double Roman domination number in terms of the order of the graph G.

Theorem 3.2.1 ([52]) For any graph G of order n > 2, v4r(G) +v4r(G) < 2n+ 3, with equality
if and only if G € {Kn,m}.

In the following, let K,, — e and K,, — {e1, e} represent the complete graph minus an edge and the
complete graph minus two independent edges, respectively. Additionally, let Hy; ={2K5, Cy, Py, Cs,
K, —e, K, — e for n > 3}.

Theorem 3.2.2 ([52]) Let G be a graph of order n > 3 such that G ¢ {K,,K,}. Then v4r(G)+

var(G) < 2n + 2, with equality if and only if G € H,.
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Theorem 3.2.3 ([T9]) Let G be a graph of order n > 4 such that G ¢ {K,,K,} UH;. Then

Yar(G) + var(G) < 2n + 1, with equality if and only if G € {Kn —{ey, e}, K, — {61,62}} and
n>5o0rGEe {P5,3K2,F5,3_K2}.

According to Theorems|3.2.1|, |3.2.2| and|3.2.3|, if G is a graph such that G ¢ H = {Kn, E}UHlqu,

then v4r(G) + var(G) < 2n, where Hy = {Kn —{ey, e}, K, — {e1, €2}, Ps, 3Ky, Ps, 3Ky;n > 5}.
In the sequel, we provide a characterization of graphs G of order n > 4 for which vg(G) +vr(G) =

2n. For this purpose, We introduce the following families of graphs:

o fo = {4K2, 203, 06; 07}

L4 fl = {(n—6)K1 UBKQ;TL > 7,K2UP3,K2U03,K2UP4}U
{F : F is semiregular with n (F') = 6 and A(F) = 3}.

L4 fgz{(n—g)KlUP3,<TL—3)K1UC37(7’L—4)K1UP4,TLZ4}U
{cor(Ps), cor(Cs), F1, Fy, F3}, where Fy, F;, and F3 are the graphs illustrated in Figure

cor(Ps) cor(Cs)
Figure 3.2: Graphs G in F, with A (G) = 3.

Theorem 3.2.4 ([66]) Let G be a graph of ordern > 4 such that G ¢ H. Then yar(G)+var(G) <

2n, with equality if and only if G or G € Fy U Fy U Fs.

Proof. Clearly, the upper bound follows from Theorems |3.2.1], and [3.2.3] since G ¢ H.
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Assume now that y4r(G) + 74r(G) = 2n. By Theorem [3.1.1} we have

2n = var(G) + var(G)

<2(n—-A(G)+1+2(n—A(G)) +1

A

2n—AG)+142(n—(n—-1-6(G)))+1

< 2n — 2 (A(G) — 5(G)) + 4.

Hence A(G) — §(G) < 2. Therefore G is either regular or semiregular or A(G) — §(G) = 2. We

distinguish three cases.

Case 1. ( is regular. Then without loss of generality we consider three possibilities:

Subcase 1.1. v4r(G) =2 (n — A(G)) + 1 and v4r(G) = 2 (n — A (G)) — 3. By Proposition m,
we have G = K, excluded, since K,, € H.

Subcase 1.2. vqr(G) =2 (n — A(G)) and 14r(G) =2 (n — A (G)) — 2. By Proposition m, and
since G ¢ {Fn, 04,2[(2,05} C H, we have A(G) = n — 3 or n — 2 with A(G) > 3. Clearly, if
A(G) = n — 3, then G is the disjoint union of p copies of cycles of order n;, where p > 1 and
n = Y" n;. Using the fact that v4r(Cy,) < n; + 1 (see Proposition [2.4.4), we have 2n — 6 =
Yar(G) = 3P 7ar(Cy,) < n+ p, which gives n < p+ 6. On the other hand, since n; > 3, for
i € {1,...,p}, we have n > 3p, so, p < 3. Now, it is easy to check that if p = 1, then G € {Cg, Cr},
and if p = 2, then G € {2C3,C3U Oy}, finally if p = 3 then G = 3Cs. So far, we obtained
G € {Cs,07,205,C5 U Cy,3C5}. However, since y4z(Cs U Cy) = 7 and y4r(3C3) = 9, while
2(n(C3UCy) —A(C3UCy))—2=8and 2(n(3C;) — A (3C;)) — 2 = 12, the graphs C3 U Cy and
3C3 must be excluded, as it does not satisfy the equality vr(G) = 2 (n —A (@)) — 2. Therefore,
we conclude that G € {2C3,Cs, C7} C Fo. Now assume that A(G) = n —2. Then each component
of G is a K,. For such graphs we have v45(G) = 37” and A (@) = 1, where n is the order of G.
By applying the equality v4z(G) = 2 (n —A (6)) — 2, we obtain n = 8, which uniquely yields
G = 4K,. Hence, G € Fo.

Subcase 1.3. v4r(G) =2 (n — A(G)) — 1 and 74r(G) = 2 (n — A (G)) — 1. By Proposition m,
we have G = 3K, excluded, since 3K, € 'H.
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Case 2. ( is semi-regular. Then, without loss of generality, we have two possibilities:

Subcase 2.1. v4r(G) =2 (n — A(G)) + 1 and v4r(G) = 2 (n — A (G)) — 1. By Proposition m,
we have G = (n —2) K; U Ky, A(G) =n —1, or A(G) =n —2 and G # K, V H for any graph
H of order n — 2. The graph (n — 2) K7 U K is excluded, since it is in H. If A (G) =n — 1, then
A (5) =1, and so Y4z (G) = 2 (n - A (@)) — 1 leaves G = (n — 6) K; U3K,. Hence G € F;. Now
assume that A (G) =n — 2. Then A (G) = 2. By Observation , we have G = Ky U H, where

H € {K,UPs, Ky UCs, Ky U Py, Cy,Cs, Ps}, contradicting the fact that G # K, V H.

Subcase 2.2. var(G) =2 (n — A(Q)) and v4r(G) = 2 (n — A (G)). By Proposition , we have
G € {pK1U2K,5 where p > 1, Ky U P3, Ky UC3, Ky U Py, Ps}, or A(G) =n—3 and A(G) > 3,
or A(G) =n—2, A(G) >3 and G = K,V H, where G is a graph with A (G) < |V (G)| — 2.

The graphs pK; U 2K, where p > 1 and Ps are excluded, since they are in H. So for A(G) <
(

(\)

Y

var(G) =2 (n - A (5)) leaves G € {Ky U P3, Ky U C5, Ko U Py} C Fp. Now suppose that A(G) >
3. If A(G) =n — 2, then A(G) =2, and so G € {KyU Ps, K, U Cs, K, U Py} C F;. Now assume
that A (G) = n — 3. Then A(G) = 3, which means that A(G) = n — 3, and thus n = 6. Therefore
G and G are semi regular with maximum degree 3. Hence G and G are in F;.

Case 3. A(G) — §(G) = 2. Then we have the only possibility: v4r(G) = 2(n — A(G)) + 1
and 4r(G) = 2(n— A (G)) + 1. By Proposition we have either M €{pK; U H, where
H € {P5,Cs, Py}, p > 1}U{cor(Ps),cor(Cs)}, or A(M) =n—1, or A(M) =n —2 and M #
K, V H for any graph H of order n — 2, where M € {G,@}. Without loss of generality, if
A(G) < 2, then G € {pK, U H, where H € {P;,C3,P,},p > 1}. Therefore G has a vertex with
degree A(G) = n — 1. Hence G € F,. Now suppose that A(G) > 3. If A(G) = n — 1, then G
has an isolated vertex, and so G € {pK; U H, where H € {P3,C3, P,} and p > 1}. Hence G € F,.
Assume that A(G) = n — 2, then A (@) = 3. By the construction of Family F described above,

we get n € {5,6}. It is a simple matter to check that G € {Fy, Fy, F3, cor(P3), cor(C3)} C Fo.

The converse is easy to see and we omit the details. m
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3.3 Graph with /YdR(G> = Q’YR(G) —1

In this section, we give a characterization of connected graphs with v4r(G) = 27g(G) — 1. We

begin by recalling some important results that will be useful.
Theorem 3.3.1 ([31]) For any graph G, v(G) < yr(G), with equality if and only if G = K,,.
Theorem 3.3.2 ([13]) For any graph G, van(G) < 2yn(G), with equality if and only if G = K.

From Theorem [3.3.2 if G is a nontrivial connected graph, then v,(G) < 27x(G) — 1. In what
follows, we provide a characterization of graphs G satisfying the equality v4r(G) = 2vg(G) — 1,

which extends the corresponding result given in [84] for trees.

Proposition 3.3.1 ([66]) If G is a connected graph of order n with mazimum degree A, then
Yar(G) = 2vr(G) — 1 if and only if var(G) =2 (n — A) + 1.

Proof. Let f = (Vp,Vi,V2) be an RDF with minimum weight and v4z(G) = 2w (f) — 1. So
Y4r(G) = 2 [Vi|+4 V5| 1. Tt is clear that g = (Vp, 0, V1, V2) is a DRDF on G of weight 2 [V1|+3 |V5].
A simple calculation shows that |V5| < 1. We have two cases:

Case 1. V5, = (). Then V; = V. However, it is observed that v5(G) = n if and only if G = pK>UgK;
where 2p + ¢ = n. Since G is connected, v4r(G) = 27g(G) — 1 leaves only G = K,. Hence
Yar(G) =2(n— A) + 1.

Case 2. V, = {v}. Since no edge of G joins V] and {v}, and {v} dominates Vj, we have

G)+1

den(v) = Vol = n — (Vi| + Vo) = 0 —3a(@) + 1 = n — DLy

and so A > M_W+MH' Hence v4r(G) > 2(n— A) + 1. Equality holds from the fact that
Yar(G) <2 (n— A) + 1.
Conversely, assume v4r(G) = 2(n — A) + 1, and let v be a vertex of G with maximum degree

A. We define Vy = N(v), Vi =V — N[v|, and V5 = {v}, then f = (V,, Vi, V,) is an RDF with
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Chaptre 3. Further results on the double Roman domination

w(f)=n—A+1= w Since vr(G) > w for connected graphs, f is an RDF for G
with w (f) =& (G). =

The following result is an immediate consequence of Theorem [3.1.1] and Propositions [3.3.1

Corollary 3.3.1 ([66]) Let G be a connected graph of order n with maximum degree A. Then

the following statements are equivalent:

(1) 1ar(G) = 29r(G) — 1.

(i) 9an(G) = 2(n — A) + 1.

(iii) G € F.

We note that if v4r(G) = 2v(G) + 1 and vr(G) = v(G) + 1, then v4r(G) = 29g(G) — 1. But

the converse is not true as shown by the graph in Figure where v (G) = 3, 7g (G) = 5 and
YdR (G) =9.

Remark 3.3.1 If one of the following equalities var(G) = 2v(G) + 1 and vr(G) = v(G) + 1 is
not hold, then clearly v4r(G) # 2vr(G) — 1.

Now in the class of trees, from the construction of Family F, described above, we observe that
wounded spiders are the only trees in F. On the other hand wounded spiders are the only trees T’
such that v4r(T") = 2vg(T) — 1, yr(T) = ~v(T) + 1, or v4r(T) = 27(T') + 1, as shown by Zhang et
al. [84], Cockayne et al. [31] and Ahangar et al. [4], respectively.

The following result is an immediate consequence of Corollary

Corollary 3.3.2 ([66]) Let T be a tree of order n with maximum degree A. Then the following

statements are equivalent:
(1) var(T) = 2vr(T) — 1.

(i4) ar(T) = 2y(T) + 1.
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Chaptre 3. Further results on the double Roman domination

(ii) Yr(T) =~(T) + 1.
() yar(T) =2(n—A) + 1.

(v) T is a wounded spider.

3.4 Counterexamples to a published result

Mojdeh, Parsian and Masoumi [60] attempted to improve the bound v4z(G) < 2vr(G), where they
proved that v4r(G) < vr(G) + v(G). In the following, we will show that this result is incorrect
[65).

Firstly, Recall that B(X) is the set of vertices in V' — X that have a neighbor in the set X
for every X C V. The differential of a set X is defined to be 9(X) = |B(X)| — | X|, and the
differential of G' to be 9(G) = max {0(X) : X C V'}. An enclaveless number (or B-differential) of
G is ¥(G) = max {|B(X)|: X CV}.

It has been shown by Mojdeh, Parsian and Masoumi [60] that for every graph G of order n having

no isolated vertices,

Yar(G) < 2n = V(G) — 9(G) (3.1)

It is worth noting that this result, whose invalidity will be shown, is presented in two separate
papers by the same authors. The following Gallai theorems have been established in [15] and [56]

for the differential of a graph and the enclaveless number, respectively.
Theorem 3.4.1 ([15]) If G is a graph of order n, then O(G) = n — vr(G).

Theorem 3.4.2 ([56]) For any graph G of order n, then ¥(G) = n — v(G).

Note that according to Theorems [3.4.1] and [3.4.2] the inequality [3.1] becomes v4r(G) < vr(G) +

~v(G). Now, we will provide an infinite family of graphs showing that inequality (ar(G) <

vr(G) + v(@Q)) is erroneous.
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Chaptre 3. Further results on the double Roman domination

Let G be the family of trees 7" obtained from a double star S(r, s) with r > s > 2, by subdividing
twice the central edge and once any other edge of the double star S(r,s). Figure shows
the smallest example of a tree belonging to G. We can easily see that any tree T' in G has order
n = 2(r+s)+4, further 7(T') = r+s+1 and yg(T) = r+s+4, and thus leading to ¥(T') = r+s+3

and O(T') = r+s. Now since v4r(T") = 2(r+s)+6, we consequently have v4r(T") > 2n—U(T)—0(T).

Figure 3.3: The tree T in G.

In the following, we define another class of graphs different from trees for which is not also
valid. Let ‘H be the family of graphs GG obtained from a star K ,, with p > 3, by first subdividing
once each edge of the star and then adding a new vertex attached to the center vertex and one of
its neighbors. Figure shows the smallest example of a graph belonging to H. One can easily
see that any graph G in H has order n = 2p + 2, further 7(G) = p and yr(G) = p + 2, and
thus leading to ¥(G) = p+ 2 and 0(G) = p. Now since 14r(G) = 2p + 3, we consequently have
var(G) > 2n — ¥(G) — 9(Q).

Figure 3.4: The graph G in 'H.

We conclude by mentioning that inequality is used in [59], which therefore calls into question

the validity of certain results.
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Chapter 4

Critical graphs for total and double

Roman domination

In this chapter, we concentrate on edge-critical graphs with respect to graph parameter p where

p € {Vir,var} (that is, u decreases when any missing edge is added).

4.1 Total Roman domination edge critical graphs

Sumner and Blitch [78] remarked that while adding an edge can decrease the domination number

by at most one, that is v(G) — 1 < y(G +e¢e) < v(G) for any e € F(G), and they studied graphs for

which v(G + €) = 7(G) — 1 for each e € E(G), and called these graphs domination edge critical.

A domination edge critical graph G with v(G) = k is called k-y-edge critical.

We consider the behavior of the total Roman domination number of a graph G upon the addition

of edges to G. In [55], Lampman et al. showed that for any graph G with no isolated vertices, if

e € F(G), then 14r(G) — 2 < 3r(G + €) < 1r(G). Define a graph G with no isolated vertices

to be vyg-edge-critical if vr(G + e) < yr(G) for every edge e € E(G) # (), and to be v;r-
edge-supercritical if v,r(G + €) = vr(G) — 2 for every edge e € E(G) # 0. We say that G is
k-yir-edge-supercritical if y,r(G) = k and G is ~y;g-edge-supercritical. Also in [55] the authors

posed the following problems:
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Chaptre 4. Critical graphs with respect to total (double) Roman domination

Question 4.1.1 ([55]) Are the disjoint unions of two or more complete graphs, each having order

at least 3, the only ~y;r-edge-supercritical graphs?
We define vertex u € V' as "dead" if every ;g-function f on G satisfies f (u) = 0.
Question 4.1.2 ([55]) Do there exist ~;r-edge-critical graphs containing dead vertices?

Mynhardt et al. in [61] answered the first question by constructing the following class of graphs:

Let G, be the graph constructed from the complete graph K, as follows: Label the vertices of K,
as T, X2, ..., Try Y1, Y2, ..., Yr, and remove from Ks, a perfect matching x;y; where 1 < i < r. Add
a vertex disjoint K3 component to K5,, and label the added vertices u, v, w. Let w be adjacent to
both z; and y;, and v be adjacent to z;, for 1 < i < r. Finally, add two more vertices zy and yp,

such that xou, Toz;, yov, yoy; € E(G,) for 1 <i < r. See Figure for r = 3.

Figure 4.1: The graph G3

They also posed the following conjectures:

Conjecture 4.1.1 ([61]) If G is a vyr-edge-supercritical graph and u € V(Q), then there ezists

a yr-function f = (Vy, V1, Va) such that u € Vf+, where V;r =V U,

Conjecture 4.1.2 ([61]) If G is a k-vr-edge-supercritical graph, then GU K, is (k+3)-yr-edge-

critical, forn > 3.

In the next we settle the Question and present proofs of Conjectures [4.1.1] and [4.1.2]
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Chaptre 4. Critical graphs with respect to total (double) Roman domination

4.1.1 Answer to Question |4.1.2

Recall that a set S of vertices in a graph G is a total dominating set (TDS) of G if every vertex
of G is adjacent to some vertex in S. The total domination number 1(G) of G is the minimum

cardinality of a TDS of G. See [30].

We make use of the following observation:

Observation 4.1.1 ([61]) If G is a connected graph of order n > 3 such that A < n — 2, then

1(G) +2 < 3unl(G) < 29(G).

The next result demonstrates the existence of an infinite class of v;g-edge-critical graphs containing

a dead vertexr, which answers the second question posed by Lampman et al. in [55].

Let G be the class of all graphs G, that are obtained first from the 7-cycle, C' = (x4, z2, x3, 24, 25, 26, T7)
and join x9 to x4, x5 to x7, T2 to x7 and x3 to x6, and then adding a complete graph K, for some

p > 1 by joining each of its vertices to every vertex in {x3, x4, T5, x¢}. The graph G, in G is shown
in Figure

xs3

X2 Ty

T

Xy

X

Te

Figure 4.2: Example of a graph in G for p = 2.

Proposition 4.1.1 ([64]) Every graph G, € G is a yg-edge-critical graph. Moreover, x1 is a

dead vertez.

Proof. Let G, € G of order n and maximum degree A(G)). It is clear that A(G,) < n — 2, and
since no pair of adjacent vertices dominates G, v (G,) > 3. Thus by Observation we have
Yr (Gp) > 5. On the other hand, the function f = (V(G,) — {22, z3, z6}, {x3}, {x2, w6}) is a TRDF
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on G, of weight 5, implying that v,z (G,) < 5. Hence vz (G,) = 5. It is clear that z; is a dead
vertex, otherwise vz (G,) > 6. Now, we shall show that G, is a y;z-edge-critical graph. Let u an
arbitrary vertex of the copy K, in G,. Without loss of generality, we can consider, in (@p), only
the set of edges E* = {x123, 1124, T1u, T2T5, ToTe, Tou, x3x5}. For each e in E*in the listed order,
it is a simple matter to check that {x3, z¢}, {4, 25}, {1, u}, {22, 25}, {22, 26}, {2, u}, {22, 23}
are total dominating sets of GG, + e. Thus by Observation e (G, +€) < 4 for any edge

eck (@p). Hence for each p, G, is a <y, z-edge-critical graph containing a dead vertex. m

We can also construct a connected ~y,g-edge-critical graph H with v,z(H) = 10 containing two
dead vertices, as illustrated in the Figure [£.3] but we will omit the details. So, we demonstrated
the existence of connected 7, z-edge-critical graphs containing dead vertices. However, in the next
section, it will be shown that a ~,z-edge-supercritical graph cannot have this property, that is, no

connected v;z-edge-supercritical graph contains a dead vertex.

Figure 4.3: The graph H, where x and y are dead vertices.

4.1.2 Proof of conjectures

First we mention a result proved in [55].

Proposition 4.1.2 ([55]) For a graph G with no isolated vertices, if w € E (G) is a critical edge,
then there ezists a vir(G +uv)-function f such that {f (u), f (v)} € {{2,2},{2,1},{2,0},{1,1}}.

Theorem 4.1.1 ([64]) Let G be a yig-edge-supercritical graph with no isolated vertices. Then,

for every vertex u € V (G), there exists a g (G)-function f such that u € Vf+.
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Proof. Let G be a g-edge-supercritical graph of order n, and let u € V(G). Then, for any
edge wv € E (G), 1r (G + uv) = 35 (G) — 2. Suppose for a contradiction that there is a vertex
r € V(G) such that f(x) = 0 for every g (G)-function f. Note that, since G is connected z
is adjacent to some vertex, say w, in G. If x is adjacent to all other vertices of GG, then clearly
the function h, such that h(z) = 2, h(w) = 1 and h(z) = 0 for all other z € V(G), is a yr (G)-
function, which contradicts our assumption. Assume now that there exists a vertex y such that
vy € E (G). By Proposition there exists a v,z(G + zy)-function g = (Vp, V1, V) such that
{9(z),9(y)} € {{2,2},{2,1},{2,0},{1,1}}. We distinguish between three cases.

Case 1. {g(7),9(y)} € {{2,2},{2,1}, {1, 1}}. Then we have three possibilities. If Ng ()NV," # 0
and Ng (y) NV,;" # 0, then the function g is a TRDF on G, which contradicts the minimality of f.
If, without loss of generality, Ng (x)NV," = () and Ng (y) NV," # 0, then = has a neighbor 2’ in 14,
since G is without isolated vertices. Then the function f': V — {0,1,2}, such that f'(z') =1
and f'(z) = g(z) for all other z € V(G), is a TRDF on G, a contradiction too. Assume now that
Ng (r)N V't =B and Ng (y)NV," = 0. Then x and y have neighbors in V4. If Ng ()N Ne (y) # 0,
say ' € Ng ()N Ng (y), then the function f': V' — {0, 1,2} such that f'(2') = 1 and f'(2) = g(z)
for all other z € V(G), is a TRDF on G, again we have a contradiction with the minimality of
f. If Ng(x) N Ng(y) = 0, then the function f’': V — {0,1,2}, such that f'(z/) = f' (/) = 1,
where @’ € Ng (z) and ' € Ng (y), and f'(2) = g(z) for all other z € V(G) is a TRDF on G, with

w(f') =vr (G) and f'(x) > 0, which contradicts our assumption.

Case 2. g(r) =2 and g(y) = 0. If Ng (y) NV, # 0, then the function f’: V' — {0, 1,2} defined
on G, as follows: f'(y) =1 and f'(z) = g(z) for all other z € V(G) is a TRDF on G, we have a
contradiction with the minimality of f. If N¢ (y) NV," = (), then y has a neighbor 3’ in Vj. Define
f:V —{0,1,2} on G, as follows: f'(y) = f'(y/) = 1 and f'(z) = g(z) for all other z € V(G).
Thus f’ is a TRDF on G, with w(f") = 1z (G) and f’(x) = 2, which contradict our assumption.

Case 3. g(v) =0 and g(y) = 2. If Ng (z)NV," # (), then the function f:V —{0,1,2} defined
on G, as follows: f (r) =1 and f'(z) = g(2) for all other z € V(G) is a TRDF on G, we have a
contradiction with the minimality of f'. If N¢ (2) NV," = 0, then x has a neighbor 2 in V4. Define

[V —{0,1,2} on G, as follows: f'(z) = f'(2’) =1 and f'(z) = g(z) for all other z € V(G).
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Thus f" is a TRDF on G, with w(f’) = 1z (G) and f'(z) = 1, contradicting our assumption. m

The authors noted in [61] that Conjecture would be a direct result of Conjecture [£.1.1]

Consequently, Conjecture has also been proven. So, we obtain the following corollary:

Corollary 4.1.1 ([64]) If G is a k-y,r-edge-supercritical graph, then G U K, is (k + 3)-y,r-edge-

critical, for n > 3.

Remark 4.1.1 Mynhardt et al. [61] provided an excellent graph in response to Question

but they left another related question unanswered:

Question 4.1.3 ([61]) Do there exist connected 6-v;r-edge-supercritical graphs with diameter 27

4.2 Double Roman domination edge critical graphs

It is shown in [9] that the addition of an edge to a graph can decrease the double Roman domination

number by at most two.

Theorem 4.2.1 ([9]) Let G be a graph and e be an edge in G. Then var(G) — 2 < yar(G +¢) <
Var(G).

A graph G is said to be double Roman domination edge critical, or just yag-edge critical, if y4r(G +

e) < var(G) for any e € E(G), that is; for any edge e € E(G), Yar(G)—2 < yar(G+e) < var(G)—1.

Double Roman domination edge critical graphs are studied in [63].

In this section, we continue our study of the critical concept for double Roman domination in
graphs, providing a characterization of double Roman domination edge-critical trees. This work

answers a problem posed by Nazari-Moghaddam et al. in [63].

Conjecture 4.2.1 ([63]) A tree T is y4r-edge critical if and only if T = Pj.
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4.2.1 Preliminary results

We begin by recalling some important results, given by Beeler, Haynes and Hedetniemi [13],

Ahangar, Chellali and Sheikholeslami [4] and Anu [8], that will be useful in our investigations.

Proposition 4.2.1 ([13]) In a double Roman dominating function of weight v4r(G), no vertex

needs to be assigned the value 1.
Using Proposition [4.2.1] we have the following straightforward observation.

Observation 4.2.1 Let v be a support vertex in a graph G. Then any var(G)-function f =
(Vo, 0, V4, V3) assigns 0 or 3 to v.

Proposition 4.2.2 ([8]) vur (cor(P,)) = Yar (cor(C,)) = 2n + {gw

Proposition 4.2.3 ([63]) Let G be a v4r-edge critical graph and a,b two non-adjacent vertices.
Then for any vyar(G + ab)-function f = (Vo, 0, Va, V3) we have f(a) =0 and f(b) > 2, or f(b) =0
and f(a) > 2.

Proposition 4.2.4 ([63]) Any support vertex in a v4r-edge critical graph is adjacent to exactly

one leaf.

4.2.2 Double Roman domination edge critical trees

In [63], Nazari-Moghaddam and Volkmann gave the following result for trees.

Theorem 4.2.2 ([63]) Let T be a tree of order n > 5 and diam(T) # 5. Then T is not yar-edge

critical.

The necessary condition in is not true, as can be seen by the trees 77 and 75, where T} is
obtained from two copies of path Ps, and 7T is obtained from a copy of path Ps; and a copy of path

Py, by joining their center vertices, respectively (Refer Figure .
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Observe that every DRDF of T} or T; assigns a weight of at least 6 and 5 to the copies P5; and
Py, respectively. Hence, v4r(T1) > 12 and ~4r(T2) > 11. We can also define two DRDFs on T
and Ty, with weights 12 and 11, respectively. Hence, y4r(71) = 12 and y4z(72) = 11. Now, by a
simple calculation we see that v4z(T) +€) = 11 for any edge e € E(T}), and v4r (T2 + €) € {9,10}

for any edge e € E(T3) (Refer to Figures [4.5 and .
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Figure 4.5: All possibilities of graphs 17 + e, where v4r(71 + €) = 11.
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o

0 0 0 0 0 3
3 2 3 2 3 0
0 0 O 0 0 O 0 3 0
2 2
0 0 O 0
2 2 2

Figure 4.6: All possibilities of graphs T5 + e, where v4r (T2 + €) € {9, 10}..

In the following we show that the only v,z-edge critical trees are Py, 77 and T5.
Theorem 4.2.3 ([67]) A tree T of order n > 3 is y4r-edge critical if and only if T € {Py, Ty, T>}.

Proof. Let T be a vy gr-edge critical tree. Considering the contrapositive of Theorem [4.2.2] we
may assume that 7" is a tree of order n < 4 or diam(T) = 5. If n < 4, then T' € {Ps, Py, K; 3},
and so by Proposition [4.2.4] P; and K 3 are excluded. Hence 7" = P;. So in the following we may
assume that diam(T) = 5. Let vyv;...v5 be a diametrical path in 7. Note that by Proposition

[1.2.4 we may assume that deg(vi) = deg(vs) = 2. We proceed according to the value of degy(vs):

Case 1. deg;(vy) = 2. Suppose that f is a y4r(T + vovz)-function. By the definition of f we must
have f(vo) + f(v1) + f(ve) = 3, since {vg, v1,v2} induces a pendant complete graph. Note that, if
f(v3) = 0, then we have f(vy) + f(vs) = 3. However, defining g on V(T') by g(v1) = g(v4) = 3,
g(vg) = g(v2) = g(vs) = 0 and g(v) = f(v) for v & {wvo, v1,va,v4,v5} produces a DRDF for T with
weight Yar(T + vovs), 80 Yar(T) < Y4r(T + vovs), which contradicts the fact that 7' is vy r-edge
critical. Now assume that f(v3) > 2. Then we define g on V(T") by g(v1) = 3, g(vg) = g(v2) = 0 and

g(v) = f(v) for v ¢ {vy, v1,v2} produces a DRDF for T with weight v4r(T +vov2), a contradiction.
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Case 2. deg(vs) > 4. Recall that v, has at most one leaf (see Proposition [£.2.4). Suppose that f
is a yar(T 4 v1v))-function, where v} € N (vy) —{v1,v3} is a support vertex adjacent to a single leaf
vy in T. By Proposition [£.2.3] Observation [4.2.1], and without loss of generality, we may assume
that f(v1) = 0 and f(v]) = 3. By the definition of f we must have f(vy) = 2 and f(vj) = 0. If
f(v2) > 2, then the function h defined on V(T + v1v}) by h(v]) = 0, h(v)) = 2, and h(v) = f(v)
for v ¢ {v},v]}, produces a DRDF for T' + v;v] with weight less than f, a contradiction. Hence,
we may assume that f(vy) = 0. If ve has exactly one leaf neighbor, say v}, then this leaf would
be assigned a 2 under f. But the function g defined by g(ve) = 3, g(v]) = g(v5) = 0, g(vf) = 2
and g(v) = f(v) for v ¢ {va, v}, v}, v5} produces a DRDF for T' with weight vyur(T + v1v}), a
contradiction. Finally assume that vs has no leaf. Note that, since deg(vy) > 4, there exists a
support vertex w € N (vy) — {v1,vs3,v]} adjacent to a single leaf ¢ such that f(w) + f(¢) = 3. But
the function g defined by g(v2) = 2, g(v]) = g(w) =0, g(vy) = g(t) = 2 and g(x) = f(z) otherwise,
produces a DRDF on T with weight v,r(T + v1v]), a contradiction too.

Case 3. deg(vy) = 3. Then by above cases and by symmetry, we must have that deg(vs) =
3. We claim that v, or vy is not support vertex. Suppose to the contrary that v, and vz are
support vertices. Then T' = Cor (Py) and T + vyvy = Cor (Cy). From Proposition [4.2.2] we have
Yar (Cor (Py)) = var (Cor (Cy)) = 10, again a contradiction. Hence at least one of vy and vs is not

support vertex, and thus T =T} or Ts.
The converse part is obvious. This completes the proof. m

We recall some results before going further. A set D of vertices in a graph G is a 2-dominating
set of G if every vertex in V — D has at least two neighbors in D. The 2-domination number of a

graph G, denoted by 72(G), is the minimum cardinality of a 2-dominating set of G.
Proposition 4.2.5 ([13]) For any graph G, 27v(G) < v4r(G) < 37(G).
Proposition 4.2.6 ([13]) For any graph G, 2v(G) = var(G) if and only if v(G) = v(G).

The independence number a(G) of a graph G is the cardinality of a maximum independent set
of vertices. The following result, due to Balbuena and Hansberg [I1], establishes a connection

between 3-v-edge-critical graphs, the independence number, and the 2-domination number.
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Theorem 4.2.4 ([11]) If G is a connected 3-y-edge-critical graph with independence number
a(G) >4, then v2(G) < 5.

In addition, the authors [11] mentioned the following: "Until now, we have not found a single
example of a 3-edge critical graph with 7,(G) = 5. Moreover, there are many examples where

Y2(G) is 3 or 4."

Thus, this remark can be translated into the following problem.

Conjecture 4.2.2 ([11]) If G is a connected 3-y-edge-critical graph with independence number
a(G) >4, then v (G) < 4.

4.2.3 k-v;r-edge supercritical graphs

A graph G is said to be double Roman domination edge supercritical, or just v4r-edge supercritical,
if v4r(G +¢€) = y4r(G) — 2 for any edge e € F(G). A double Roman domination edge supercritical
graph G with v4r(G) = k is called k-y4r-edge supercritical. The concept of edge supercriticality was
studied, for the first time, by Haynes, Mynhardt and van der Merwe [46] for the total domination

number.

The next result follows immediately from Theorem [4.2.3]

Corollary 4.2.1 ([67]) There is no vy4r-edge-supercritical tree.

In the following, we study k-y4z-edge supercritical graphs where k € {5,6,7,8}.

Theorem 4.2.5 ([67]) A graph G is 5-y4r-edge supercritical if and only if G is a disjoint union

of stars, each of order at least 3. Figure[{.7 shows the smallest example of such a graph.

Proof. We first prove the necessity. Let G' be 5-y4z-edge supercritical graph. Then for any edge
ec€ F (@), we have v4r (G + e) = 3, and thus Proposition implies that the addition of any
edge to G creates a universal vertex, say u. Therefore, u is isolated in G — uv, where uv € E (5)

Hence, we have shown that every edge of G is incident with a leaf of G. So, the components of G
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are nontrivial stars. Moreover, each star must be of order at least 3, otherwise 45 (G) € {3,4}
(see Proposition [2.4.5)).

Now, we consider the sufficiency. Suppose G is the disjoint union of stars, each of order at least 3.
Then G has no universal vertices and G # K,V H, where H is a graph with A (H) < |V (H)| —2.
Thus, by Proposition , v4r (G) > 5. Let u be a leaf in G, with v its support vertex and define
f:V(G)—{0,1,2,3} by f(u) =3, f(v)=2and f(z) =0forall z € V (G)—{u,v}. Clearly f
is a DRDF on G, and hence vz (G) = 5. Since deleting any edge in G produces an isolated vertex,
the addition of any edge to G creates a universal vertex. Hence we obtain that vy (G +¢€) = 3

foralle e £ (@), and so G is 5-y4r-edge supercritical. =

Figure 4.7: The smallest 5-v45-edge supercritical graph.

Theorem 4.2.6 ([67]) There are no k-y4r-edge supercritical graphs for k € {6,7}.

Proof. Consider k£ = 6. Suppose for a contradiction that G is a 6-y4z-edge supercritical graph.
Then 4 (G + uwv) = 4 for any wv € E (@) By Proposition m there exist two non adjacent
vertices z and y each of which is adjacent to all other vertices in G 4 uv. It is clear that {z,y} #
{u,v}. If {z,y} and {u,v} are disjoint, then v4z (G) = 4, contradicting G' being 6-y;z-edge
supercritical. Without loss of generality, assume that « = x. In this case assign 2 to x and 3 to y
in G to obtain a DRDF of weight 5, a contradiction too.

Consider k£ = 7. Suppose for a contradiction that G is a 7-y4r-edge supercritical graph. Then
Yar (G +uv) =5 for any uv € E (G). Again by Proposition , we have A (G 4+ uv) =n — 2
and G +wv # K, V H for any graph H of order n — 2. Thus in G 4 uwv, there exist two non
adjacent vertices, say = and y, such that degq,,, (r) = n — 2. It is clear that {z,y} # {u,v}. If

{z,y} and {u,v} are disjoint, then u and v are in Ng (z), and thus v4z (G) = 5, contradicting
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G being T-y4g-edge supercritical. If y € {u,v}, then u or v is in Ng (z), and thus vz (G) = 5,
a contradiction. Assume now that = € {u, v}, without loss of generality, let © = u. We consider

three cases:

Case 1. Suppose that v € Ngiu (y). In this case assign 3 to x and y, and 0 to the remaining

vertices to obtain a DRDF on G of weight 6, a contradiction.

Case 2. Suppose that Ngiuy () — Norw (y) = {v}. In this case assign 2 to z, v and y, and 0 to

the remaining vertices to obtain a DRDF on G of weight 6, a contradiction.

Case 3. Suppose that |Ngiw, () — Notw (¥)] > 2 and v € Ngyuw () — Naiuw (y). Obviously,
we have deg. () = n — 3 and deg, (y) < n — 4. Now, we will show that deg, (v) < n — 4,
and for any w in V — {z,y,v}, degs (w) < n — 3. Firstly, suppose that deg, (v) > n — 3. Then
N¢g (v) =V —{z,y}, and thus g = (V — {z,y,v},0,{z,y,v},0) isa DRDF on G with w (g) = 6, a
contradiction. Secondly, suppose that there is a vertex w in V—{z, y, v} such that deg, (w) > n—2.
Then by Proposition [2.4.5, we have v4z (G) < 5, a contradiction too. Hence A (G +vy) < n — 3,
and so by Proposition we have v4r (G + vy) > 6, contradicting the supercriticality of G.

This completes the proof. m

For v4r-edge supercritical graphs, the analogous result to Proposition is more restrictive, as

we now show.

Corollary 4.2.2 ([67]) Let G be a yar-edge supercritical graph and a, b two non-adjacent vertices.
Then for any var(G + ab)-function f = (Vo,0, Va2, V3), we have {f(a), f(b)} = {0, 3}.

Proof. Let G be a y4z-edge supercritical graph. Then for any ab € E (@), we have v4r (G + ab) =
Yar(G) — 2. Let f = (Vo,0,Va,V3) be a var(G + ab)-function. By Proposition [4.2.3] and without
loss of generality, we may assume that f(a) > 2 and f(b) = 0. Suppose to the contrary that
f(a) = 2 and f(b) = 0. Then there exists a vertex, say w, in Ng(b) such that f(w) € {2,3}. If
f(w) = 3, then v4r(G) < Y4r(G + ab), a contradiction. Assume now that f(w) = 2, and define
the function g by g(w) = 3 and g(z) = f(z) otherwise. Clearly, g is a DRDF on G of weight

~var(G + ab) + 1, a contradiction too. m
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In the following proposition, we show that there is no leaf in connected 8-v4z-edge supercritical

graphs.
Proposition 4.2.7 ([67]) There is no connected 8-y4r-edge supercritical graph having a leaf.

Proof. Suppose there exists a connected 8-y4z-edge supercritical graph G with a leaf y adjacent
to a vertex x in G. Clearly N(z)— {y} # 0. We claim that N(z)— {y} induces a complete graph.
Suppose for a contradiction that there exist two non adjacent vertices u and v in N(z) — {y}, and
consider a yyp-function f = (Vp, 0, Vs, V3) on G+uv. By Corollary [£.2.2] {f(u), f(v)} = {0,3}. We
can assume f(x) = 3, since y is a leaf and 4z (G + uv) = 6. In this case, f is also a DRDF on G,
contradicting v4r (G) = 8. Therefore G [N(z) — {y}] is complete. Now, let w € N(z)—{y}. Itis a
simple matter to see that deg(w) < n — 4 (for otherwise 4z (G) < 7). So, there exist two vertices
a and b in V — NJz| that are not adjacent to w, and consider a yap-function g = (Vp, 0, V3, V3) on
G + aw. Again, by Corollary we have {g(a), g(w)} = {0,3}. We can assume, without loss
of generality, that g(z) = 3. If g(a) = 3 and g(w) = 0, then ¢ is a DRDF on G, a contradiction.
Now, assume that g(a) = 0 and g(w) = 3, but in this case b is not double Roman dominated, a

contradiction too. Hence there is no leaf in G. =
Remark 4.2.1 If G is 8-y4r-edge supercritical graph, then G is easily seen to be connected.

Now, we consider connected 8-y;z-edge supercritical graphs and give results concerning 3-v-edge
critical graphs, and the diameter of such graphs. We need the following result for 3-v-edge critical

graphs.
Theorem 4.2.7 ([78]) The diameter of a 3-y-edge critical graph is at most 3.

Proposition 4.2.8 ([67]) If G is a connected 8-y4r-edge supercritical graph, then G is 3-y-edge

critical.

Proof. Let G be a connected 8-y4z-edge supercritical graph, and let e be any edge of F (@)
First we show that 2 < (G + ¢) < 3. The upper bound of Proposition [4.2.5 leads to v(G) >
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P‘“*T(G)W =[] =3, and since 7(G +¢) > 7(G) — 1 for any edge e € E (G), v (G + ¢) > 2. On the

other hand, the lower bound of Proposition , leads to v(G +e) < “R(GJFG) =% =3. Now we
show that v(G + e) # 3 for any edge e € F (G) Suppose, to the contrary, that v (G + ab) = 3 for
some edge ab € E (G). Since G is an 8-y4z-edge supercritical, yar (G + ab) = 2v (G + ab). Thus
by Proposition [4.2.6, we have (G + ab) = 72(G + ab). Let D be a ~o-set of G + ab. Note that
|D| = 3. If {a,b} C V(G) — D or {a,b} C D, then assigning a 2 to every vertex of D and a 0 to
every vertex not in D provides a DRDF of G with weight 2 |D| = 6, contradicting 4z (G) = 8.
Now, without loss of generality, assume that a € D. In this case assign 2 to every vertex of D, 1

to b and 0 to every vertex not in D U {b} to obtain a DRDF of G with weight 2|D| +1 =7, a

contradiction too. Hence, v (G + e) = 2 for any edge e € E (5), that is G is 3-y-edge critical. m

Remark 4.2.2 Balbuena and Hansberg [11] characterized a special family of 3-y-edge critical
graphs with minimum degree one and presented a figure ( Figure@ illustrating all such graphs of
order at most 8. So, by Proposition the converse of Proposition is not true.

SRR
» S A

Figure 4.8: All 3-y-edge-critical graphs with minimum degree one and order at most 8.

Theorem 4.2.8 ([67]) If G is a connected 8-y4r-edge supercritical graph, then diam(G) € {2, 3}.
Moreover, there exist connected 8-y r-edge supercritical graphs F and H with diam(F) = 2 and

diam(H) = 3, as illustrated in Figure[{.9

Proof. Obviously diam(G) > 2. By Proposition and Theorem [4.2.7, we have diam(G) < 3.

Now we show that the graphs F' and H in Figure are 8-v,p-edge supercritical:
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Consider the graph F'. The function f that assigns 3 to each of a and @, 2 to d’ and 0 to all other
vertices is a DRDF of F' with weight w(f) = 8. It can be verified that there are no DRDF's of
smaller weights of F'. Hence i (F) = 8. It is simple matter to check that {a,d’}, {a,}, {a,d’}
and {a’,d} are dominating sets of F'+ al/, F + a¢’, F 4+ ad' and F + d'c, respectively, and thus
var (F +¢e) < 6 for any e € {ab/,ac’,ae’,a'c’}. Since all possible edges of F' have been considered,
we must have v4r (F +¢) < 6 for any e € E (F). In either case, we have 4 (F 4 €) = 6 for any
e € E (F). Moreover, it is clear that ecc(u) = 2 for any u € V (F), and thus diam(F) = 2. It

follows that F' is 8-y4g-edge supercritical with diam(F) = 2.

Consider the graph H. The function h that assigns 3 to each of xg and x4, 2 to 24 and 0 to all
other vertices is a DRDF of H with weight w(h) = 8. It can be verified that there are no DRDFs
of smaller weights of H. Hence 4z (H) = 8. As shown in [77], the graph H is 3-y-edge critical.
Then v (H +¢e) = 2 for any e € E (H). By Proposition , we must have vy (H +¢) = 6
for any e € E (H). Now, by inspection, ecc(z3) = ecc(x5) = ecc(xs) = 2 and ecc (u) = 3 for
any u € V (H) — {x3,x5, 23}, and thus diam(H) = 3. Hence H is 8-y;z-edge supercritical with
diom(H)=3. m

T X2
x
xg
e
6 7
T, €3
Xyg
H

Figure 4.9: Examples of 8-v,4z-edge-supercritical graphs

It is shown in [29] that there exists an infinite class F of 3-y-edge critical graphs as follows: Let
A ={ay,ay,a3}, B ={by,by,...,0,} forn >3, and C = {¢1,cq,c3}. Set V(G) = AUBUC U {v}.
Form complete graphs on A, B and C'. Join v to each vertex of A, join each vertex in C' to exactly

two vertices in A such that each vertex of A is adjacent to exactly two vertices of C'. Form a
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perfect matching between three vertices in B and vertices in A, and join the other vertices in B
to each vertex of A (see Figure for n = 5). Next, we show that F is an infinite families of
8-vqr-edge supercritical graphs.

Let G € F. It is not difficult to show that v4z (G) = 8. Now, since G is 3-y-edge critical, then
7(G+e) =2 for any e € E(G). By Proposition we must have vz (G +¢€) < 6 for any

eckE (@) Hence G is 8-y4r-edge supercritical.

Figure 4.10: Example of 8-v,z-edge-supercritical graph with diameter equal to 3

In 2011, Jafari Rad et al. [50] showed that the only vy-edge critical cactus graphs are Py, C3, Cy and
cor(C3). However, these graphs have a double Roman domination number of at most 7. Therefore,

the following corollary can be directly deduced from Proposition [4.2.8|
Corollary 4.2.3 ([67]) There is no connected 8-y4r-edge supercritical cactus.

In [39], Goddard and Henning proved that every planar graph G with diameter 2 has v (G) < 2,
except for the graph F' depicted in Figure [4.11 which has v (F) = 3.

Figure 4.11: The planar graph F’
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Therefore, we conclude that there is no 8-y,z-edge supercritical planar graph of diameter 2, since
var (G) < 37(G) < 6, and 45 (F) = 6. On the other hand, Furuya and Matsumoto [36] provided
a well-organized and inventive proof showing that the order of a connected 3-v-edge critical planar
graph is at most 23. Thus the order of a connected 8-y,4z-edge supercritical planar graph is at

most 23. Note that the graph H illustrated above is planar of order 9.
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CONCLUSION

In this thesis, we characterized the graphs G achieving the upper bound in the inequality v4r(G) +
var(G) < 2n, a type of Nordhaus-Gaddum inequality, and determined the graphs G satisfying
Yar(G) = 2vgr(G) — 1, improving upon previous studies. Additionally, we extended the concept
of supercriticality to double Roman domination for the first time, yielding significant results that
enhance the understanding of criticality in graph theory and build upon classical domination

concepts. Furthermore, we solved some open problems.

Based on these contributions, it is evident that Roman domination functions remain an attractive
research area in graph theory. There have been many achievements on this topic, but still some
open problems remain that have not been completely solved. In closing, we recall a few notable

examples:
Conjecture 4.2.3 ([15]) If G is a graph of order n with 6(G) > 3, then vr(G) + v(G) < n.

Conjecture 4.2.4 ([21]) Let G be a graph with no isolated vertex. Then vir(G) = 3v(G) if and
only if 1r(G) = Yr(G) +7(G).

Question 4.2.1 ([67]) Can you establish structural properties of 8-yar-edge supercritical graphs?
Question 4.2.2 ([67]) Can you find some classes of 8-yr-edge supercritical graphs?

Question 4.2.3 ([22]) Is it the case that v,ir(G) = n—i(G)+~v(Q) if and only if G is a complete

graph?

Question 4.2.4 ([61]) Do there exist connected 6-v,r-edge-supercritical graphs with diameter 27
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