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ABSTRACT

Let G = (V,E) be a simple graph. A Roman dominating function (RDF for short) on G is

a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is

adjacent to at least one vertex v for which f(v) = 2. The weight w (f) of an RDF f is defined as

w(f) =
∑

u∈V f(u). The minimum weight of an RDF on a graph G is called the Roman domination

number of G, denoted γR(G).

A double Roman dominating function (DRDF) of a graph G is a function f : V → {0, 1, 2, 3} for

which the following conditions are satisfied.

i) If f(v) = 0, then the vertex v must have at least two neighbors assigned 2 under f or one

neighbor assigned 3 under f .

ii) If f(v) = 1, then the vertex v must have at least one neighbor u with f(u) ≥ 2.

The weight w (f) of an DRDF f is the value w(f) =
∑

u∈V f(u). The minimum weight of an

DRDF on a graph G is called the double Roman domination number of G, denoted γdR(G).

In this thesis, we will extend the study of double Roman domination by presenting new results on

the Nordhaus-Gaddum type inequality and providing a characterization of all graphs G satisfying

γdR (G) = 2γR (G) − 1. We will also explore the concept of criticality, and solve some problems

from various papers in this area.
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RESUME

Soit G = (V,E) un graphe simple. Une fonction de domination romaine (RDF) sur G est

une fonction f : V −→ {0, 1, 2} vérifiant la condition suivante: chaque sommet u pour lequel

f(u) = 0 est adjacent à au moins un sommet v tel que f(v) = 2. Le poids w (f) d’une fonction

de domination romaine f est la valeur w(f) =
∑

u∈V f(u). Le poids minimal d’une fonction de

domination romaine de G est appelé le nombre de domination romaine de G, noté γR(G).

Une fonction de domination romaine double (DRDF) d’un graphe G est une fonction f : V →

{0, 1, 2, 3} vérifiant les conditions suivantes:

i) Si f(v) = 0, alors le sommet v doit avoir au moins deux voisins u1, u2 tels que f(u1) = f(u2) = 2

ou un voisin u tel que f(u) = 3.

ii) Si f(v) = 1, alors le sommet v doit avoir au moins un voisin u tel que f(u) ≥ 2.

Le poids w (f) d’une fonction de domination romaine double f est la valeur w(f) =
∑

u∈V f(u).

Le poids minimal d’une fonction de domination romaine double de G est appelé le nombre de

domination romaine double de G, noté γdR(G).

Dans cette thèse, nous étendrons l’étude de la domination romaine double en présentant de

nouveaux résultats sur l’inégalité de type Nordhaus-Gaddum et en fournissant une caractérisation

de tous les graphes G satisfisant γdR (G) = 2γR (G)− 1. Nous explorerons également le concept de

criticité et résoudrons certains problèmes tirés de divers articles dans le domaine.
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INTRODUCTION

Graph theory is a prominent area of discrete mathematics, encompassing both theoretical

developments and practical applications. Its origins trace back to 1736 when Euler ad-

dressed the Königsberg bridge problem [34], exploring whether it was possible to traverse each of

the seven bridges exactly once. Graphs provide a powerful framework for modeling and simpli-

fying a wide range of problems by reducing them to the study of vertices and edges. In recent

years, computer scientists have driven many advancements in graph theory, particularly due to the

growing importance of algorithmic aspects.

Among the fundamental concepts in graph theory is domination in graphs. Historically, the first

domination-type problems emerged from chess. For instance, the chess master C.F. de Jaenisch [49]

and other chess enthusiasts studied how pieces like queens could be placed on an n×n chessboard

such that every square either contains a queen or is attacked by a queen. For example, five queens

are required to dominate an 8× 8 chessboard (four queens leave at least two squares unattacked).

It has been observed by Yaglom and Yaglom [83] that there are exactly 4860 such placements of

five queens (such as placing them along the main diagonal at squares a1, c3, e5, f6, and g7).

The formal study of domination in graphs is often attributed to Claude Berge in 1958 [16], who

introduced the concept of the domination number (though he did not use this term). In 1962,

Oystein Ore published Theory of Graphs [68], the first graph theory book in English, where he

formally coined the term "domination". This marked the beginning of domination as a theoretical

area of graph theory. However, it was not until 1977, with the publication of the seminal survey

paper Towards a Theory of Domination in Graphs by Cockayne and Hedetniemi, that the field

experienced significant growth. Since 1998, research in domination has expanded rapidly, with

11



Introduction

over 4, 000 papers published to date.

Another intriguing concept is graph protection, which involves placing mobile guards on graph

vertices to defend against attacks. This idea has historical roots in the military strategies of the

Roman Empire. Modern research on graph protection began in the late 20th century, inspired by

four publications referencing the strategies of Emperor Constantine the Great (274−337 AD). Ian

Stewart’s paper Defend the Roman Empire! in Scientific American [76] was particularly influential,

responding to C. S. ReVelle’s question, Can you protect the Roman Empire?

During the third century, the Roman Empire dominated much of Europe, North Africa, and the

Near East. Its defense relied on a forward strategy, with approximately fifty legions securing even

the most remote regions. However, by the fourth century, the empire’s power waned, and the

number of legions decreased significantly. According to E. N. Luttwak’s The Grand Strategy of

the Roman Empire [72], Emperor Constantine devised a new strategy to address this decline.

He decreed that no more than two legions should be stationed in any city, and any city without

stationed legions must be within proximity of a city with two legions. This ensured that one legion

could be moved to defend an attacked city.

At the time, the empire’s connectivity resembled Figure 1, and Constantine faced the challenge

of allocating only four legions to defend the entire empire. He stationed two legions in Rome

and two in Constantinople, the empire’s capitals. While this deployment secured most regions,

it left Britain vulnerable, and it was eventually the first to be lost. Modern analyses suggest

alternative solutions, such as deploying one legion in Britain, two in Rome, and one in Asia Minor.

This historical context inspired the mathematical concept of Roman domination, which involves

protecting a graph through strategic resource allocation.

While the classical problem remains relevant in military operations research [10], it can also be

applied to model and solve issues requiring time-critical assistance needs to be provided with some

reserve. For example, first-aid services should not deploy their entire team for a single emer-

gency call. Studying these types of domination problems is crucial for optimizing and effi ciently

organizing emergency services.

12



Introduction

Figure 1: The Roman Empire, fourth century AD.

This thesis is organized as follows:

Chapter 1 introduces fundamental definitions and illustrative examples essential for the subsequent

chapters.

Chapter 2 explores Roman domination further, surveying its various extensions and discussing

associated challenges.

Chapter 3 focuses on double Roman domination, a stronger version of Roman domination where

three legions can be deployed at a single location, and presents improvements to existing results.

Chapter 4 extends the concept of supercriticality to double Roman domination, building on studies

initiated by Sumner and Blitch (1983) [78], and addresses open problems in the field.

Finally, the thesis ends with a conclusion summarizing the main contributions and outlining pos-

sible directions for future research.

13



Chapter 1

Basic concepts and notation in graphs

In this chapter, we need to define some terminology and notation for the purpose of this thesis.

Additional terms will be introduced whenever necessary. Several illustrative examples are provided

to help the reader understand the ideas more clearly. Unless stated otherwise, the notation and

definitions follow those in Haynes, Hedetniemi, and Henning [44, 45].

1.1 Fundamental definitions on graphs

A graph G is an ordered pair (V (G), E(G)) consisting of a set of vertices V = V (G) together with

a set E = E(G) of unordered pairs of vertices called edges. For notational simplicity, we write

the edge uv for the unordered pair {u, v}. We denote the numbers of vertices and edges in G by

n = n(G) = |V | and m = m(G) = |E|; these two basic parameters are called the order and size of

G, respectively (Note that there are many numbers, referred to as parameters, associated with a

graph G). We will assume that all graphs are simple, i.e. there is at most one edge between any

two distinct vertices, and no edge connects a vertex to itself. If e = uv is an edge in a graph G,

we say that u and v are adjacent in G. In this case, we say that each of u and v is incident with

the edge e. Two edges are adjacent if they have a common vertex. Two vertices in a graph G are

independent if they are not adjacent. Similarly, two edges are independent if they are not adjacent.

A neighbor of a vertex v in G is a vertex that is adjacent to v. For every vertex v ∈ V , the open

14



Chapter 1. Basic Terminology and Notation in graphs

neighborhood of v in G is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood

of v is the set NG[v] = NG(v) ∪ {v}. For a set of vertices S ⊆ V , the open neighborhood of S is

the set NG(S) =
⋃
v∈SN(v) and its closed neighborhood is the set NG [S] =

⋃
v∈SN(v) ∪ S. The

degree degG(v) of a vertex v is the number of neighbors v has in G, that is, degG(v) = |NG(v)|.

For a subset of vertices S ⊆ V , the degree of v in S, denoted degS(v), is the number of vertices in

S adjacent to the vertex v. In particular, if S = V , then degS(v) = degG(v). An isolated vertex is

a vertex of degree 0 in G. A leaf is a vertex of degree one, while its neighbor is a support vertex.

A support vertex with two or more leaf neighbors is called a strong support vertex. A weak support

vertex is a support vertex that is not a strong support. When there is no ambiguity, we omit the

subscript G from graph-theoretic symbols, and write, for example, N(v), N [v], N(S), N [S] and

deg(v) instead of NG(v), NG[v], NG(S), NG [S] and degG(v), respectively.

A graph is isolate-free if it does not contain an isolated vertex. Any graph with just one vertex

is referred to as trivial. All other graphs are nontrivial. By ∆(G) = ∆ and δ(G) = δ we denote

the maximum degree and the minimum degree of G, respectively. The set of leaves is denoted by

L(G) and the set of support vertices is denoted by S(G).

Two graphs G and H are isomorphic, denoted G ∼= H, if there exists a bijection ϕ : V (G)→ V (H)

such that two vertices u and v are adjacent in G if and only if the two vertices ϕ(u) and ϕ(v) are

adjacent in H (see Figure 1.1).
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Figure 1.1: Two isomorphic graphs.

1.2 Special families of graphs

Certain types of graphs play prominent roles in graph theory, so it is necessary to mention some

of them, which we will also need throughout this thesis.
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Chapter 1. Basic Terminology and Notation in graphs

Let V (H), E(H), V (G) andE(G) be the vertex set and the vertex edge set ofH andG, respectively.

If V (H) ⊆ V (G) and E(H) ⊆ E(G), then we say that H is a subgraph of G. A subgraph H of a

graph G is called a spanning subgraph of G if V (H) = V (G). If U 6= ∅ is a subset of V (G), then

the subgraph of G induced by U , denoted G[U ], is defined to be the graph having vertex set U

and edge set consisting of those edges of G that have both ends in U . If S ( V is a set of vertices,

then we write G − S for the subgraph of G induced by V − S. Also, if S = {x} then we write

G−x instead of G−{x}. If F ⊆ E is a set of edges then we write G−F = (V,E−F ). If F = {e}

then we write G− e instead of G− {e}.

In a graph, a path of length k from vertex v0 to vertex vk is a collection of edges, denoted with

P = v0v1...vk−1vk. A cycle is a closed path where v0 = vk. A path (cycle) of order n is denoted by

Pn (Cn). A cycle C3 is often called a triangle. A graph G is called a cactus graph if each edge of

G is contained in at most one cycle. A unicyclic graph is a graph with exactly one cycle.

The complement graph G of G is the graph defined in the same vertex set of G, where an edge

belongs to G if and only if it does not belong to G. The cycle C6 and its complement are shown

in Figure 1.2.
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ss

@
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��

@
@@�

��
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s s
s s
�
��

@
@@ �

��

@
@@

Figure 1.2: The cycle C6 (on the left) and its complement C6 (on the right).

A graph G is connected if for any two distinct vertices, there is a path between them. The

components of G are the maximal connected subgraphs of G. Let u and v be two vertices of G.

If u and v are in the same component of G, we define the distance between u and v, denoted by

d(u, v), to be the length of a shortest u− v path. The diameter of a graph G, denoted diam (G),

is the greatest distance between two vertices of G. A connected graph and a disconnected graph

are shown in Figure 1.3.

A graph G is complete if every two distinct vertices of G are adjacent. A complete graph of order

n is denoted by Kn.

A vertex v of G is called a cut vertex of G if G − v has more components than G. A block of a

16



Chapter 1. Basic Terminology and Notation in graphs

(a) (b)
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Figure 1.3: (a) A connected graph, and (b) a disconnected graph.

graph is a maximal induced subgraph without cut vertex. A block graph is a graph all blocks of

which are complete.

A graph G is called bipartite, if V can be partitioned into two subsets X and Y such that each

edge uv ∈ E (G) connects a vertex of X and a vertex of Y . A bipartite graph G is complete, if

|X| = p, |Y | = q, and uv ∈ E (G) for all u ∈ X and v ∈ Y , and it is denoted by Kp,q.

A tree is a connected graph with no cycles. A star K1,p for p ≥ 1, is a tree of order p + 1 having

at least p leaves. For r, s ≥ 1, a double star S(r, s) is a tree with exactly two adjacent vertices

that are not leaves, one of which has r leaf neighbors and the other has s leaf neighbors. Figure

1.4 shows a complete graph, a complete bipartite graph and a double star.
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Figure 1.4: (a) The complete graph K5, (b) the complete bipartite graph K3,3 and (c) the double
star S(3, 2).

A graph G of order at least two is called regular if its vertices have the same degree and semiregular

if ∆(G)− δ(G) = 1. We say that, a graph G is r-regular if δ(G) = ∆(G) = r. A 3-regular graph

is also referred to as a cubic graph. For example, the graph K4 is cubic graph.

Let H be any graph. A graph G is called H-free if it does not contain H as an induced subgraph.

This idea helps define types of graphs by saying which subgraphs are not allowed. For example,

trees are graphs with no cycles, and claw-free graphs do not contain the claw, which is the graph

K1,3.

A planar graph is a graph that can be drawn on a plane without any of its edges crossing each

17



Chapter 1. Basic Terminology and Notation in graphs

other. In other words, it is possible to place the graph on a flat surface such that no two edges

intersect except at their endpoints.

For classes of graphs not defined here, we refer the reader to the survey [20] by Brandstädt, Le,

and Spinrad.

1.3 Basic graph operations

Let G1 = (U1, E1) and G2 = (U2, E2) be two graphs. The union of G1 and G2 written as G1 ∪G2

is the graph G = (U1 ∪ U2, E1 ∪ E2). In particular, if G is a disjoint union of k copies of a graph

H, we write G = kH. The join of G1 and G2, denoted G1 ∨ G2, is a graph formed from disjoint

copies of G1 and G2 by connecting each vertex of G1 to each vertex of G2. The Cartesian product

of G1 and G2, denoted G1�G2, is the graph with vertex set {(u, v) : u ∈ G1, v ∈ G2}. Two vertices

(v1, u1) and (v2, u2) are adjacent in G1�G2 if and only if one of the following is true: u1 = u2 and

v1 is adjacent to v2 in G2 or v1 = v2 and u1 is adjacent to u2 in G1. In particular, the Cartesian

product Pm�Pn is called the m×n grid graph and is denoted by Gm,n. Figure 1.5 shows the graph

cartesian product C4�P3.The corona cor(G) of a graph G is the graph obtained from G by adding
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Figure 1.5: The graph C4�P3.

for each vertex v ∈ V a new vertex v′ and the edge vv′. Figure 1.6 shows the corona of C6.

Let uv be an edge of G. By subdividing the edge uv we mean removing it, and adding a new

vertex, say x, along with two new edges ux and xv. In this case, we say that the edge uv has

been subdivided. Now, for a positive integer t, a healthy spider is a star K1,t with all its edges

subdivided. A wounded spider is a star K1,t with at most t− 1 of its edges subdivided.
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Figure 1.6: The cor(C6).

1.4 Domination in graphs

In 1977, Cockayne and Hedetniemi [32] published a survey paper, in which the notation γ(G) was

first used for the domination number of a graph G. Since the publication of this paper, domination

in graphs has been studied extensively and several additional research papers have been published

on this topic.

Now, we present the definition of dominating sets in graphs. Let G = (V,E) be a simple graph. A

subset S ⊆ V is a dominating set of G if every vertex in V −S has a neighbor in S. The domination

number γ(G) is the minimum cardinality of a dominating set of G. A minimum dominating set

with such cardinality is called γ(G)-set. Every graph has a dominating set, since S = V is such a

set, and so γ(G) ≤ n. We note that a graph G can have several γ(G)-sets.

For example in the graph K2,3 in Figure 1.7, {a, b} and {a, x} are examples of γ(K2,3)-sets, and

thus γ(K2,3) = 2.
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Figure 1.7: The graph K2,3.

The concept of domination, in both theoretical and applied sense, has received the attention of

many researchers. It has been used to study the optimal location of facilities such as radar stations,

hardware or software resources, and communication networks. The practical utility of domination

often prompts the development of additional parameters. Many domination parameters have

arisen when an additional condition is imposed on domination. This condition can be internal to
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Chapter 1. Basic Terminology and Notation in graphs

the dominating set, external to the dominating set, or both internal and external simultaneously.

In the following chapters, we focus on some of these parameters.

The decision problem to determine the domination number of a graph is known to beNP-complete

(see [38]). Hence, researchers are interested in exploring simple upper and lower bounds that are

easy to verify. Characterizing the graphs for which these bounds are attained becomes essential.

Also, they aim to establish inequalities between certain parameters and identify conditions under

which equality is achieved.

In 1975, Cockayene et al. [33] introduced the first linear algorithm to determine the domination

number in trees.

In the literature, there is another way that domination and the domination number of a graphG has

been looked: A dominating function (abbreviated DF ) on a graph G is a function f : V −→ {0, 1}

satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v

for which f(v) = 1. The weight w (f) of a dominating function f is the value w(f) =
∑

u∈V f(u).

The minimum weight of a dominating function on a graph G is called the domination number of

G, denoted by γ(G). It can be readily seen that a DF f , generates two sets S and V −S such that

S = {v ∈ V (G) : f(v) = 1} and V − S = {v ∈ V (G) : f(v) = 0}. Thus w(f) = |S|.

Moreover, some researchers have studied domination functions with codomains other than {0, 1},

which led to new domination parameters.

20



Chapter 2

A survey of selected Roman domination

parameters

The concept of domination is extended to Roman domination, a topic that has garnered significant

attention in recent research. This chapter will focus on providing a brief overview on the various

parameters related to Roman domination, rather than an exhaustive examination of each one.

However, before we can explore these parameters, it is essential to first define Roman domination

and provide some results related to it.

2.1 Roman domination

A Roman dominating function (abbreviated RDF ) on a graph G is a function f : V −→ {0, 1, 2}

satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex

v for which f(v) = 2. The weight w (f) of a Roman dominating function f is the value w(f) =∑
u∈V f(u). The minimum weight of an RDF on a graph G is called the Roman domination

number of G, denoted by γR(G) (see Figure 2.1). It can be readily seen that an RDF f , generates

three sets V0, V1, V2 such that Vi = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, 2}. We can equivalently

write f = (V0, V1, V2). Moreover, we observe that w(f) = |V1| + 2 |V2|. The concept of Roman

domination was introduced by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [31]. For more
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Chaptre 2. A survey of selected Roman domination parameters

details, see [25, 26] and the survey [27].

It is mentioned in [31] that the Roman domination problem on trees can be solved in linear time

and it remains NP-complete when restricted to split graphs, bipartite graphs, and planar graphs

(see [57]). Applications of Roman domination is also shown in [24].

s s
s

s
s
s

0 2

0

0

0

1

Figure 2.1: A graph G with γR(G) = 3.

The Roman domination number can be determined for certain graph families, as shown in the

following result.

Proposition 2.1.1 ([31]) For the classes of paths Pn, cycles Cn and the grid graph G2,n, γR(Pn) =

γR(Cn) =
⌈

2n
3

⌉
and γR(G2,n) = n+ 1.

Since 2004, research on Roman domination has grown rapidly. Summarizing key results and

highlighting open problems would benefit the community.

2.1.1 Bounds on Roman domination number

An upper bound on the Roman domination number for connected graphs in terms of their order

was established by Chambers et al. [24]. They also characterized the graphs that achieve this

upper bound. Let H be denote the family of connected graphs G of order n constructed from a

connected graph H such that each vertex of H is identified with the central vertex of a P5.

Let H be the family of connected graphs G of order n (a multiple of 5), constructed from n
5
copies

of P5 by adding a connected subgraph induced by the central vertices of these paths.

Theorem 2.1.1 ([24]) If G is a connected graph of order n, then γR(G) ≤ 4
5
n, with equality if

and only if G ∈ H∪{C5}.
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Chaptre 2. A survey of selected Roman domination parameters

This bound has been improved for graphs with minimum degree at least 2 or 3, as shown by the

following three results. Let B = {C4, C5, C8, H1, H2}, where H1 and H2 are the graphs illustrated

in Figure 2.2.
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Figure 2.2: Graphs H1 (on the left) and H2 (on the right).

Theorem 2.1.2 ([24]) If G is a graph of n vertices with δ(G) ≥ 2 and G /∈ B, then γR(G) ≤ 8n
11
.

Moreover, if n ≥ 9, then γR(G) = 8n
11
if and only if

1. If n = 11, then G is isomorphic to F (see Figure 2.3) plus a subset of one of {y1y3, y1y4, y2y3, y2y4},

{wz1, y1y3, y1y4}, or {wz1, wz3, y1y3} added as edges.

2. If n > 11, then G consists of disjoint copies of the graphs F, F + wz1, and F + wz1 + wz3

with additional edges connecting copies of w.

z1

s
z2

s
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w

Figure 2.3: The graph F .

Bermudo [14] improved the previous bound by considering graphs with order at least 15 and

minimum degree at least two.

Theorem 2.1.3 ([14]) Let G be a graph of order n ≥ 15, with δ(G) ≥ 2, which does not contain

any induced subgraph isomorphic to F1 or F2 (see Figure 2.4). Then, γR(G) ≤ 12n
17
.
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Figure 2.4: Graphs F1 and F2.

Bermudo [14] provided an infinite family of connected graphs that achieve the previous bound.

Consider the graph Gi = (V i, Ei) of order 17 shown in Figure 2.5, where γR(Gi) = 12. Now,

consider a connected graph Gk = (Vk, Ek) such that Vk = ∪ki=1V
i, Ek = ∪ki=1E

i ∪M , where M ⊆

{vi, vj : 1 ≤ i < j ≤ k}. It can be checked that Gk with minimum degree two, without induced

subgraph isomorphic to F1 or F2 and γR(Gk) = 12k. For example, G2 = (V 1∪V 2, E1∪E2∪{v1v2})

and γR(G2) = 24.
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Figure 2.5: The graph Gi.

Theorem 2.1.4 ([58]) If G is a graph of order n with δ(G) ≥ 3, then γR(G) ≤ 2n
3
.

Liu and Chang [58] provided an infinite family of connected graphs G of order n with γR(G) = 2n
3
.

For any integer t ≥ 3, construct graph Ht from the union of two disjoint 3t-cycles x1, x2, ..., x3t, x1

and y1, y2, ..., y3t, y1 by adding edges xiyji for 1 ≤ i ≤ 3t, where ji = i if i ≡ 1(mod 3), ji = i+ 1 if

i ≡ 2(mod 3) and ji = i− 1 if i ≡ 0(mod 3); Figure 2.6 shows the graph H3.

y1 y2 y3 y4 y5 y6 y7 y8 y9

t t t t t t t t t
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Figure 2.6: A graph H3 with γR(H3) = 12.
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It is natural to expect a relationship between γR(G) and γ(G) for a graph G. In what follows, we

present some results in this direction.

Proposition 2.1.2 ([31]) For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

To see the sharpness of the bounds in Proposition 2.1.2, consider the following examples. If G is

a nontrivial star K1,n−1, then γR(G) = 2γ(G) = 2. On the other hand, the empty graphs Kn are

the only graphs for which γR(G) = γ(G) = n. Moreover, a graph G with γR(G) = 2γ(G) is called

a Roman graph. This raises the following interesting problem:

Problem 2.1.1 ([31]) Can you find some classes of Roman graphs?

Henning [47] characterized Roman trees, but a characterization Roman graphs remains open.

Cockayne et al. [31] characterized the connected graphs G with γR(G) ∈ {γ(G) + 1, γ(G) + 2}.

Proposition 2.1.3 ([31]) If G is a connected graph of order n, then:

1. γR(G) = γ(G) + 1 if and only if there is a vertex v ∈ V (G) of degree n− γ(G).

2. γR(G) = γ(G) + 2 if and only if

a. G does not have a vertex v ∈ V (G) of degree n− γ(G);

b. either G has a vertex of degree n − γ(G) − 1 or G has two vertices v and w such that

|N [v] ∪N [w]| = n− γ(G) + 2.

Xing, Chen and Chen [82] presented the following theorem as a solution to the open question posed

in [31].

Theorem 2.1.5 ([82]) Let G be a connected graph of order n with γ(G) ≥ 2. If k is an integer

such that 2 ≤ k ≤ γ(G), then γR(G) = γ(G) + k if and only if:

a. for any integer s with 1 ≤ s ≤ k − 1, G does not have a set Ut of t (1 ≤ t ≤ s) vertices such

that |∪v∈UtN [v]| = n− γ(G)− s+ 2t;
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Chaptre 2. A survey of selected Roman domination parameters

b. there exists an integer l with 1 ≤ l ≤ k, and G has a setWl of l vertices such that |∪v∈Wl
N [v]| =

n− γ(G)− k + 2l.

Remark 2.1.1 The proof of Theorem 2.1.5 contains a gap that has been corrected in [81] by Wu

and Xing.

Wu [80] and Favaron et al. [35] also provided relations involving γR(G) and γ(G) for any connected

graph as follows. We recall that R is the family of graphs G obtained from a connected graph H

such that each vertex of H is identified with the central vertex of a P5 or with an internal vertex

of a path P4 where the |V (H)| paths are vertex-disjoint.

Theorem 2.1.6 ([80]) For any graphs G and H, γR(G�H) ≥ γ(G)γ(H).

Theorem 2.1.7 ([35]) For any graph G of order n ≥ 3, γR(G) + γ(G)
2
≤ n, with equality if and

only if G is C4, C5, cor (C4) or G ∈ R.

In [15], Bermudo et al. stated the following conjecture, which is still open.

Conjecture 2.1.1 ([15]) If G is a graph of order n with δ(G) ≥ 3, then γR(G) + γ(G) ≤ n.

2.1.2 Nordhaus-Gaddum type results for Roman domination

ANordhaus—Gaddum-type result provides either a lower or an upper bound on the sum (or product)

of a parameter of a graph and its complement in terms of the number of vertices, honoring the

classic paper by Nordhaus and Gaddum (1956). Since then, similar types of relations have been

proposed for various other graph invariants, including domination (see the survey [1]).

Firstly, Chambers et al. [24] proved the Nordhaus—Gaddum inequalities for γR.

Theorem 2.1.8 ([24]) If G is a graph of order n ≥ 3, then 5 ≤ γR(G) + γR(G) ≤ n + 3. The

lower bound is achieved if and only if G (or G) contains a vertex of degree n − 1 and G (or G)

contains a vertex of degree n− 2. The upper bound is achieved if and only if G or G is either C5

or n
2
K2.
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Furthermore, they proved the following result.

Theorem 2.1.9 ([24]) if n ≥ 160, then γR(G) · γR(G) ≤ 16n
5
, with equality if and only if G or G

is n
5
C5.

Subsequently, Jafari Rad and Rahbani [51] also investigated Nordhaus—Gaddum type bounds for

Roman domination. In the following, a cycle Cn is represented by v1v2, ..., vnv1, where V (Cn) =

{v1, v2, ..., vn}. Furthermore by Cn + vivj, where |vi − vj| > 1, we mean a graph obtained from Cn

by adding the chord vivj. Similarly, Cn + vivj + vi′vj′ and Cn + vivj + vi′vj′ + vi′′vj′′ denote Cn with

two or three such chords added, respectively. Now, we will recall some relevant families of graphs:

• G0. The class of all graphs G of order n ≥ 2 with ∆(G) = n− 1 and δ(G) ≥ n− 2.

• G1. The class of graphs Pi+sK2 (3 ≤ i ≤ 5, s ≥ 0), 2K3, C3 +K2, C3 +2K2, C4 +K2, C4 +C3,

C5 +K2, C5, C6, C6 + v3v5, C6 + v3v6, C6 + v3v6 + v1v4, C7, C7 + v1v5, C7 + v1v5 + v2v6, C7 +

v4v6 + v3v7 + v3v5, C8, C8 + v1v5, C8 + v1v5 + v2v6.

• G2. The class of seven specific graphs depicted in Figure 2.7.

Let G = G0 ∪ G1 ∪ G2.

Theorem 2.1.10 ([51]) For a graph G of order n ≥ 2, γR(G) + γR(G) = n + 2 if and only if

G ∈ G or G ∈ G.
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Figure 2.7: The Family G2.
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Before studying Nordhaus—Gaddum type bounds for another Roman domination parameter, we

must report an error in the previous characterization, as stated in Theorem 2.1.10. This will

lead us to inquire about the validity of the results presented by the authors and which have been

published.

γR(G1) + γR(G1) = γR(G2) + γR(G2) = 5 + 4 < 9 + 2.

γR(G3) + γR(G3) = 4 + 4 < 7 + 2.

γR(G4) + γR(G4) = γR(G5) + γR(G5) = γR(G6) + γR(G6) = 5 + 4 < 8 + 2.

γR(C7 + v4v6 + v3v7 + v3v5) + γR(C7 + v4v6 + v3v7 + v3v5) = 4 + 4 < 7 + 2.

In the same year, Bouchou et al. [19] also independently provided a characterization of extremal

graphs of a Nordhaus-Gaddum bound for γR(G) + γR(G) = n+ 2.

Theorem 2.1.11 ([19]) For a graph G of order n ≥ 3, γR(G) + γR(G) = n+ 2 if and only if

G or G ∈ {Kn} ∪ H0 ∪H1 ∪H2 ∪H3, where:

• H0 = {C6, C7, C8, Ci ∪ Cj, where i, j ∈ {3, 4, 5}}.

• H1 = {pK1 ∪ qK2 : p ≥ 1, q ≥ 1 and p+ 2q = n}.

• H2 ={qK2 ∪ H with 2q + |V (H)| = n, where H ∈ {P3, P4, P5, C3, C4, C5} if q 6= 0 and

H ∈ {P3, P4, P5} if q = 0}.

• H3 = {F1, F2,M1,M2}, (shown in Figure 2.8).
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Figure 2.8: The Family H3.
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2.1.3 Critical concepts for Roman Domination

When investigating a graph parameter µ, it is often useful to study a more restricted class of graphs

known as critical graphs. In these graphs, the addition of a set of edges or the removal of a set of

vertices/edges can either increase or decrease µ, or leave µ unchanged. The study of criticality in

graphs is a very active area in graph theory. In the following, we present some important results

where γR changes when removing a vertex or removing/adding an edge of the graph. A good

compilation of the criticality properties can be found in [73].

Vertex removal

Jafari Rad and Volkmann [53] proved the following result.

Theorem 2.1.12 ([53]) Let v be a vertex of a graph G. Then γR(G− v) < γR(G) if and only if

there is a γR-function f on G such that v ∈ V f
1 . If γR(G−v) < γR(G) then γR(G−v) = γR(G)−1.

If γR(G− v) > γR(G) then for every γR-function f on G, f(v) = 2.

According to the effects of vertex removal on the Roman domination number of a graph G, we say

that G is Roman domination vertex critical, or just γR-vertex critical, if for any vertex v of V (G),

γR(G− v) < γR(G). If G is γR-vertex critical and γR(G) = k, then we call G a k-γR-vertex critical

graph. Similarly, we say that G is γ-vertex critical, if for any vertex v of V (G), γ(G− v) < γ(G).

Proposition 2.1.4 ([43]) For any vertex v in a γR-vertex critical graph G, γR(G−v) = γR(G)−1.

Theorem 2.1.13 ([43]) A block graph G is γR-vertex critical if and only if G = K2.

Theorem 2.1.14 ([53]) A graph G of order n ≥ 4 is 3-γR-vertex critical if and only if n is even,

and G is an (n− 2)-regular graph.

Theorem 2.1.15 ([53]) For any γR-vertex critical graph G, diam(G) ≤
⌈

3γR(G)−5
2

⌉
.

The authors in [53] conjectured that every γ-vertex critical graph is γR-vertex critical. However,

Blidia and Chellali [18] disproved this conjecture by providing the following counterexample.
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Let Gn be a family of connected cactus graphs obtained by n ≥ 2 disjoint cycles C4 sharing a

common vertex, say x (the graph G4 is shown in Figure 2.9). The authors demonstrated that

γ(Gn) = n + 1, γ(Gn − x) = n, γR(Gn) = n + 2 and γR(Gn − x) = 2n. Therefore, Gn is γ-vertex

critical but not γR-vertex critical.
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Figure 2.9: Connected cactus graph G4.

The characterization of the connected γR-vertex critical unicyclic graphs was given in [42]. Let E

be the class of all graphs G which either G = cor(Cm), where m ≡ 1 (mod 3) or G = Cn, where

n ≡ 1 (mod 3) or n ≡ 2 (mod 3).

Theorem 2.1.16 ([42]) A connected unicyclic graph G is γR-vertex critical if and only if G ∈ E.

Edge removal

It has already been mentioned that the removal of an edge from G cannot decrease γR(G), however,

it can increase it by at most one as shown in [53].

Proposition 2.1.5 ([53]) If e is an edge of a graph G, then γR(G) ≤ γR(G− e) ≤ γR(G) + 1.

In [53], it was indicated that if G is a graph with ∆(G) ≤ 1, then there does not exist any edge

such that γR(G− e) > γR(G), and the following theorem was also presented.

Theorem 2.1.17 ([53]) Let G be a graph with ∆(G) ≥ 2. Then γR(G− e) = γR(G) + 1 for each

edge e ∈ E(G) if and only if G is a forest in which each component is an isolated vertex or a star

of order at least 3.

Corollary 2.1.1 ([53]) RCV R∩ RCER 6= ∅, where RCV R and RCER are the classes of graphs G

such that γR(G−v) 6= γR(G) and γR(G−e) 6= γR(G), respectively, for all v ∈ V (G) and e ∈ E(G),

respectively.
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Edge addition

We begin by recalling the following results of Hansberg, Jafari Rad and Volkmann:

Theorem 2.1.18 Let G be a graph and x and y be non-adjacent vertices of G. Then γR(G)−1 ≤

γR(G + xy) ≤ γR(G). Moreover, γR(G + xy) = γR(G) − 1 if and only if there is a γR-function f

on G such that {f(x), f(y)} = {1, 2}.

Now, we say that G is Roman domination edge critical, or just γR-edge critical, if for any e ∈ E(G);

γR(G+ e) < γR(G).

Proposition 2.1.6 ([43]) Let G be a γR-edge critical graph, and let e ∈ E(G). Then γR(G+e) =

γR(G)− 1.

The authors in [43] provided a characterization of γR-edge critical trees. Let P6 be the path v1 -

v2 -v3 - v4 - v5− v6. We add two new vertices x and y, and join x to v3, and join y to v4, to obtain

a tree T . Let H1 be a tree obtained from T by adding a vertex x1 and joining x1 to x. Also let H2

be a tree obtained from H1 by adding a new vertex y1 and joining y1 to y.

Theorem 2.1.19 ([43]) A tree T is γR-edge critical if and only if T ∈ {H1, H2}.

Indeed, the authors in [42] provided a characterization of the connected γR-edge critical unicyclic

graphs.

Theorem 2.1.20 ([42]) A connected unicyclic graph G is γR-edge critical if and only if G ∈

{C4, C5, H1, H2,, H3, H4, H5, H6} (see Figure 2.10).

Definition 2.1.1 A matching in a graph G is a subset of pair-wise non-incident edges. A matching

M is said to be perfect if |M | = |V (G)|
2
.
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Figure 2.10: Connected γR-edge critical unicyclic graphs.

Let H be the graph constructed from K2r as follows: Label the vertices of K2r as u1, u2, ..., ur,

w1, w2, ..., wr, and remove from K2r the perfect matching uiwi where 1 ≤ i ≤ r. Let F be the class

of all graphs G constructed as follows: Start with a complete graph Km (where m ≥ 2) and join

each vertex of Kmto every vertex of H. Then, add a path P2by connecting one of its end vertices

to every vertex in H. Figure 2.11 shows the smallest example of a graph belonging to F .

Chellali et al. [28] provided a characterization of γR-edge critical graphs G where γR(G) = 4 and

diam(G) = 3.

Theorem 2.1.21 ([28]) If G is a connected 4-γR-edge critical graph, then diam(G) ≤ 3, with

equality if and only if G ∈ F .
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Figure 2.11: A graph G ∈ F .

Remark 2.1.2 The authors in [28] did not mention the existence of a γR-edge critical connected

graph G with γR(G) = 4 and diam(G) = 2. Therefore, it is necessary to provide an example of a

graph G, and let it be K3,3.
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The concepts of criticality and the Nordhaus-Gaddum inequality, among others, are also prominent

in various parameters of Roman domination. However, we will refrain from discussing them further

here, as they have already been addressed in the context of Roman domination, which we believe

provides suffi cient understanding.

The value of each of the following Roman domination parameters is defined as the minimum weight

of a function of the given type, where the weight w (f) of such a function f is the sum of all assigned

values, w(f) =
∑

u∈V f(u).

2.2 Total Roman domination

A total Roman dominating function of a graph G with no isolated vertex (TRDF), is a Roman

dominating function f on G with the additional property that every vertex x ∈ V for which

f(x) ≥ 1 is adjacent to at least one vertex y ∈ V such that f(y) ≥ 1. The total Roman domination

number is γtR(G), let Vi = {v ∈ V : f(v) = i} where 0 ≤ i ≤ 2, and V +
f = V1 ∪ V2. Thus, we write

f = (V0, V1, V2). A TRDF of G with weight γtR(G) is called a γtR(G)-function. As a new variant

of the Roman domination, the concept of the total Roman domination was introduced by Liu and

Chang [57].

Ahangar et al. [5] showed that for any graph G without isolated vertices,

2γ(G) ≤ γtR(G) ≤ 3γ(G), (2.1)

and had established an upper bound on the total Roman domination number in terms of the

Roman domination number.

Theorem 2.2.1 ([5]) If G is a graph of order n with no isolated vertex, then γtR(G) ≤ 2γR(G)−1.

Further, γtR(G) = 2γR(G)− 1 if and only if ∆(G) = n− 1.

Also, they raised the following problems.

Problem 2.2.1 ([5]) Characterize the graphs G satisfying γtR(G) = 2γ(G).
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Problem 2.2.2 ([5]) Characterize the graphs G satisfying γtR(G) = 3γ(G).

Jafar Amjadi et al. [6] provided a constructive characterization of trees T whith γtR(T ) = 2γ(T )

and γtR(T ) = 3γ(T ), resolving the problems mentioned earlier for trees. However, the problems

remain unsolved in general.

Cabrera Martinez et al. [21] improved the lower and upper bounds given in inequality chain

2.1. For this purpose, they used the following variant of the concept of domination. A semitotal

dominating set of a graph G without isolated vertices, is a dominating set D of G such that every

vertex in D is within distance two of another vertex of D. The semitotal domination number,

denoted by γt2(G), is the minimum cardinality among all semitotal dominating sets of G (see [41]).

Theorem 2.2.2 ([21]) For any graph G with neither isolated vertex nor components isomorphic

to K2, γt2(G) + γ(G) ≤ γtR(G) ≤ γR(G) + γ(G).

They then presented the following conjecture.

Conjecture 2.2.1 ([21]) Let G be a graph with no isolated vertex. Then γtR(G) = 3γ(G) if and

only if γtR(G) = γR(G) + γ(G).

Note that according to the bound γtR(G) ≤ γR(G) +γ(G) and Proposition 2.1.2, we conclude that

the conjecture only requires proving the suffi ciency part.

Ahangar [2] proved Conjecture 2.2.1 for nontrivial trees. However, the Conjecture remains unsolved

in general.

2.3 Outer-independent Roman Domination

Ahangar et al. [3] combined Roman domination with vertex independence and introduced the

outer independent Roman domination. The Roman dominating function f is an outer-independent

Roman dominating function (OIRDF) on G if the set of vertices labeled with zero under f is an

independent set. The outer-independent Roman domination number is γoiR(G). An OIRDF of

minimum weight is called a γoiR-function.
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After the paper [3] was published, the topic attracted many researchers. Poureidi et al. [70]

proposed an algorithm to compute γoiR(G) in O (|V |) time. Martínez et al. [22] obtained some

bounds on γoiR(G) in terms of other parameters. Nazari-Moghaddam et al. [62] provided a

constructive characterization of trees T with γoiR(T ) = γR(T ). Gao et al. [37] determined the

exact values of γoiR(C3�Cn) and γoiR(Cm�Cn) for m ≡ 0 (mod 4) and n ≡ 0 (mod 4).

Ahangar et al. [3], established the following results.

Proposition 2.3.1 ([3]) For n ≥ 2, γoiR(Pn) = γoiR(Cn) = 3
⌊
n
4

⌋
+ i, where n ≡ i (mod 4) and

i ∈ {0, 1, 2}, and γoiR(Pn) = γoiR(Cn) = 3
⌊
n
4

⌋
+ 2 otherwise.

Proposition 2.3.2 ([3]) Let G be a connected graph of order n. Then γoiR(G) = n if and only if

G = Kn.

Theorem 2.3.1 ([3]) Let G be a connected graph of order n ≥ 2. Then the following conditions

are equivalent:

(i) γoiR(G) = n− 1.

(ii) G is a (K1,3, 2K1,2)-free graph different from Kn.

(iii) G has a γoiR(G)-function f = (V0, V1, V2) such that |V2| = 1 and |V0| = 1.

A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum

cardinality of a vertex cover is denoted by β(G).

Proposition 2.3.3 ([3]) If G is a graph without isolated vertices, then β(G) + 1 ≤ γoiR(G) ≤

2β(G). Both bounds are tight for trees.

Martínez et al. [22] characterized the trees that achieve the lower bound. For this purpose, they

constructed the following family: Let T be the family of trees Tr,s of order r + s + 1 with r ≥ 1

and r − 1 ≥ s ≥ 0, obtained from a star K1,r by subdividing s edges exactly once.

Theorem 2.3.2 ([22]) Let T be a nontrivial tree. Then γoiR(T ) = β(T ) + 1 if and only if T ∈ T

.
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Theorem 2.3.3 ([37]) For m ≡ 0 (mod 4) and n ≡ 0 (mod 4), γoiR(Cm�Cn) = 5mn
8
.

Theorem 2.3.4 ([37]) For any integer n ≥ 4, γoiR(C3�Cn) =
⌈

7n
3

⌉
.

A graph G is a vertex cover Roman graph if γoiR(G) = 2β(G). Martínez et al. [23] provide a

constructive characterization of vertex cover Roman trees.

Now, recall that, a set S ⊆ V (G) is an independent dominating set of G if S is an independent

and dominating set at the same time. The independent domination number of G is the minimum

cardinality among all independent dominating sets of G and is denoted by i(G) (see [68, 17, 40]).

Theorem 2.3.5 ([22]) For any graph G with no isolated vertex, order n, γoiR(G) ≤ n − i(G) +

γ(G).

The authors in [22] noted that the upper bound is achieved in the case of complete graphs. Mo-

tivated by this observation, they raised the following question:

Question 2.3.1 ([22]) Is it the case that γoiR(G) = n− i(G)+γ(G) if and only if G is a complete

graph?

2.4 Double Roman domination

A double Roman dominating function (DRDF) on a graph G is a function f : V −→ {0, 1, 2, 3}

satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex

v for which f(v) = 3 or two vertices v1 and v2 for which f(v1) = f(v2) = 2, and every vertex u

for which f(u) = 1 is adjacent to at least one vertex v for which f(v) ≥ 2. The double Roman

domination number is γdR(G) (see Figure 2.12). A DRDF of minimum weight is called a γdR-

function. Any DRDF f on a graph G induces four sets V0, V1, V2, V3 where Vi = {v ∈ V : f(v) = i}.

Thus, we write f = (V0, V1, V2, V3). A vertex u ∈ V0 is said to be double Roman dominated if

|NG(u) ∩ V2| ≥ 2 or |NG(u) ∩ V3| ≥ 1. This definition was first introduced in 2016 by Beeler et al.

[13], for references on double Roman domination, see for example, [4, 8, 9, 52].
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It is known that the decision version of the double Roman domination problem (MIN-DOUBLE-

RDF) is NP-complete, even when restricted to some classes of graphs, for example see [4, 12, 71].

s s
s

s
s
s

0 3

0

0

0

2

Figure 2.12: A graph G with γdR(G) = 5.

Remark 2.4.1 In Figure 2.12, the numbers indicate the values of the corresponding vertices as-

signed by a γdR-function.

In [13], Beeler et al. obtained the following results.

Proposition 2.4.1 ([13]) In a DRDF of weight γdR(G), no vertex needs to be assigned the value

1.

By Proposition 2.4.1, we now consider the DRDF of a graph G in which there exists no vertex

assigned with 1 in the following.

For a DRDF f of a graph G, let (V0, V2, V3) be the ordered partition of V (G) induced by f such

that Vi = {x : f(x) = i} for i = 0, 2, 3. It can be seen that there exists a 1 − 1 correspondence

between the function f and the partition (V0, V2, V3) of V (G), we write f = (V0, V2, V3).

Also, they presented the following result.

Proposition 2.4.2 ([13]) For any graph G, 2γ(G) ≤ γdR(G) ≤ 3γ(G).

Remark 2.4.2 ([13]) For any graph G,
γR(G) < γdR(G) ≤ 2γR(G)

γ(G) ≤ γR(G) ≤ 2γ(G) ≤ γdR(G) ≤ 3γ(G)
.

The characterization of the double Roman trees T ; that is, γdR(T ) = 3γ(T ), was given by Henning

et al. in [48].
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Proposition 2.4.3 ([4]) For any integer n ≥ 1,

γdR(Pn) =

 n if n ≡ 0 (mod 3)

n+ 1 if n ≡ 1, 2 (mod 3) .

Proposition 2.4.4 ([4]) For any integer n ≥ 3,

γdR(Cn) =

 n if n ≡ 0, 2, 3, 4 (mod 6)

n+ 1 if n ≡ 1, 5 (mod 6) .

Proposition 2.4.5 ([4]) Let G be a connected graph of order n ≥ 3. Then

1. γdR(G) = 3 if and only if ∆ (G) = n− 1.

2. γdR(G) = 4 if and only if G = K2 ∨H, where H is a graph with ∆ (H) ≤ |V (H)| − 2.

3. γdR(G) = 5 if and only if ∆ (G) = n− 2 and G 6= K2 ∨H for any graph H of order n− 2.

Remark 2.4.3 There are no graphs G with a double Roman domination number γdR(G) = 1.

Additionally, for any graph G, γdR(G) = 2 if and only if G is K1.

Anu and Lakshmanan [9] proved the following existence result.

Theorem 2.4.1 ([9]) Given any two positive integers a, b ≥ 3, there exist a graph G and an

induced subgraph H of G such that γdR(G) = a and γdR(H) = b.

Remark 2.4.4 As seen in the previous theorem, no general relationship exists between the double

Roman domination number of a graph and that of its induced subgraphs; in other words, they are

incomparable.

Now, we are focusing on bounding the double Roman domination number in terms of the order of

the graph. Khoeilar et al. [54] established the following result.
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Theorem 2.4.2 ([54]) Let G be a graph of order n ≥ 5, δ(G) ≥ 2 and with no component

isomorphic to C5 or C7. Then γdR(G) ≤ 11n
10
.

Moreover, the authors in [54] presented an infinite family G of graphs that demonstrates the

sharpness of the upper bound in their theorem. Let H be a graph obtained from two cycles of

C5 by adding an edge between them. For any graph G, let GH be the graph obtained from G

by adding |V (G)| copies H1, ..., H|V (G)| of H, where xi denotes a vertex of degree three in Hi, by

identifying xi with the ith vertex of G. Let G = {GH : G is a graph}. They conjectured that G is

the only family of extremal graphs achieving the bound 11
10
n.

Shao et al. [75] disproved this conjecture by characterizing all extremal graphs for this bound. Let

H ′ be a graph obtained from two cycles of C5 by adding two edges joining a vertex of one cycle

to two non-adjacent vertices of the other cycle, and H ′′ be the graph illustrated in Figure 2.13.

Moreover, for any graph G, let GH,H′ be the graph obtained from G by identifying the ith vertex

of G with either a vertex of degree three of a copy of H or a vertex of degree four of a copy of H ′.

Let A = {GH,H′ : G is a connected graph}.

Theorem 2.4.3 ([75]) Let G be a connected graph of order n ≥ 5 with minimum degree two

different from C5 and C7. Then γdR(G) = 11
10
n if and only if G ∈ A ∪ {H ′′}.
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Figure 2.13: The graph H ′′.

Beeler et al. [13] noted that for every connected graph G with a minimum degree of at least three,

the inequality γdR(G) ≤ 9n
8
holds, and they posed the question of whether this bound could be

improved. In response to this question, Ahangar et al. [4] presented the following result.

Proposition 2.4.6 ([4]) If G is a graph of order n and minimum degree δ(G) ≥ 3, then γdR(G) ≤

n. This bound is sharp for the complement of the cycle C6.
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It is not known whether this bound can be improved.

Problem 2.4.1 ([69]) Let G be a graph with minimum degree at least three, different from C6.

Is γdR(G) ≤ n the best possible?

The examples mentioned above are far from encompassing all the variants. Several new variations

of Roman domination have been introduced, reflecting the flexibility of the field and the potential

to explore different mathematical contexts based on practical or theoretical applications.
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Chapter 3

Further results on the double Roman

domination

In this chapter we provide a characterization of extremal graphs of a Nordhaus-Gaddum type

bound for γdR (G) improving the corresponding results given in [52] and [79]. Moreover, we give

a characterization of graphs G for which the equality γdR(G) = 2γR(G) − 1 holds, improving the

corresponding results given in [84].

3.1 Graphs G of order n with 2 (n−∆) − 1 ≤ γdR(G) ≤

2 (n−∆) + 1

In this section we provide a characterization of some classes of graphs G with γdR(G) ≥ 2 (n−∆)−

1, including regular graphs, semiregular graphs and graphs with ∆− δ = 2.

Using Propositions 2.4.3 and 2.4.4, we have the following straightforward observation for nontrivial

graphs with ∆ ≤ 2.

Observation 3.1.1 Let G be a graph of order n and maximum degree ∆ ≤ 2. Then

1. γdR(G) = 2 (n−∆) + 1 if and only if

G = pK1 ∪H, where H ∈ {K2, P3, C3, P4} and n = p+ |V (H)|.
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2. γdR(G) = 2 (n−∆) if and only if G = Kn or

G = pK1 ∪H, where H ∈ {2K2, K2 ∪ P3, K2 ∪ C3, K2 ∪ P4, C4, C5, P5} and n = p+ |V (H)|.

3. γdR(G) = 2 (n−∆)− 1 if and only if G = pK1 ∪K2 ∪H, where H ∈ {C4, C5, P5} or

G = pK1 ∪ 2K2 ∪H, where H ∈ {K2, P3, C3, P4}.

Jafari Rad and Rahbani [52] presented a family of graphs G with γdR(G) = 2 (n−∆)+1 as follows:

A vertex that belongs to a minimum dominating set of G called a good vertex. The set of all

good vertices of G is denote by good(G), and G− good(G) denotes the subgraph of G induced by

V (G)− good(G). For a graph H, an H-partition is a partition of V (H) into p+ 1 nonempty sets

A0, A1, ..., Ap for some integer p < n such that the following hold:

1. If p ≥ 2, then for i ≥ 1 the subgraph of H induced by V (H)−Ai has domination number at

least two, or a γ(H[V (H)− Ai])-set is contained in A0.

2. If p ≤ 1, then 1 ≤ γ(H) ≤ 2. Moreover;

• If γ(H) = 1, then good(H) ⊆ A0; and every γ(H − good(H))-set has at most one

common vertex with
⋃p
i=1Ai whenever γ(H − good(H)) = 2.

• If γ(H) = 2, then
⋃p
i=1Ai contains at most one vertex of a γ(H)-set, for i = 1, 2, ..., p;

otherwise a γ(H)-set is contained in Ai for i ∈ {1, ..., p} and no γ(H)-set is contained

in
⋂
u∈A0N(u).

Remark 3.1.1 For any graph H, the set A0 = V (H) itself forms an H-partition. Therefore,

every graph H has an H-partition.

Definition 3.1.1 Let A0, A1, ..., Ap be an H-partition of a graph H. Let F be the family of graphs

G that can be obtained from a graph H by adding p + 1 new vertices v1, v2, ..., vp, u, joining vi to

all of the vertices of Ai for i = 1, 2, ..., p, and joining u to all of the vertices of H (see Figure 3.1).

Theorem 3.1.1 ([52]) If G is graph of order n with maximum degree∆, then γdR(G) ≤ 2 (n−∆)+

1, with equality if and only if G ∈ F .
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Figure 3.1: Structure of graphs in the family F .

For any vertex v ∈ V (G), we write N [v] = V (G)−N [v]. We also denote by t the number of edges

joining the vertices of N(v) to the vertices of N [v].

Proposition 3.1.1 ([66]) Let G be a graph of order n with maximum degree ∆ and p a positive

integer, such that ∆ − δ ≤ 2. Then γdR(G) = 2 (n−∆) + 1 if and only if either ∆ = n − 1,

or ∆ = n − 2 and G 6= K2 ∨ H for any graph H of order n − 2, or G ∈ pK1 ∪ H,where

H ∈ {K2, P3, C3, P4} ∪ {cor(P3), cor(C3)}.

Proof. Let G be a graph of order n with maximum degree ∆ and minimum degree δ such that

∆−δ = k ∈ {0, 1, 2} and γdR(G) = 2 (n−∆)+1. If ∆ ≤ 2, then from Observation 3.1.1 we obtain

G = pK1∪H where H ∈ {K2, P3, C3, P4} and n = p+|V (H)|. Now assume that ∆ ≥ 3. According

to the construction of Family F described above in Definition 3.1.1, every vertex in N [v] has at

least ∆− k neighbors in N(v), and every vertex in N(v) has at most one neighbor in N [v], but at

least one vertex which has no neighbor in N [v]. So we have (∆− k)
∣∣N [v]

∣∣ ≤ t ≤ |N(v)|−1, which

provides (∆− k) (n−∆− 1) ≤ ∆− 1, and thus n ≤ ∆ + 2 + k−1
∆−k . Clearly, for ∆ ≥ 2k, we have

∆ ≥ n − 2, and by Proposition 2.4.5, G 6= K2 ∨H for any graph H of order n − 2. Assume now

that ∆ ≤ 2k− 1. Since ∆ ≥ 3 and k ≤ 2, we obtain that k = 2 and ∆ = 3, and thus n ∈ {4, 5, 6}.

If n ∈ {4, 5}, then ∆ ≥ n − 2, again by Proposition 2.4.5, G 6= K2 ∨H for any graph H of order

n− 2. If n = 6, then t = 2. It is a simple matter to check that G = cor(P3) or cor(C3).

The converse is easy to show.

Next, we present a necessary conditions for connected graphs G of order n and maximum degree
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∆, where 2 (n−∆)− 1 ≤ γdR(G) ≤ 2 (n−∆).

Lemme 3.1.1 ([66]) Let G be a graph of order n with maximum degree∆. If γdR(G) = 2 (n−∆)−

p, where p ∈ {0, 1}, then for every vertex v of maximum degree we have:

1. Every vertex of N(v) has at most two neighbors in N [v].

2. N [v] 6= ∅ and every component of G
[
N [v]

]
has at most two vertices. Moreover

i) If p = 0, then G
[
N [v]

]
contains at most one edge.

ii) If p = 1, then G
[
N [v]

]
contains at most two independent edges.

Proof. Let G be a graph with γdR(G) = 2 (n−∆) − p where p ∈ {0, 1}. Let v be a vertex of

maximum degree ∆. If some vertex u ∈ N(v) has at least three neighbors in N [v], then f =

(N(u)∪N(v)−{u, v}, V (G)− (N(u) ∪N(v)) , {u, v}) is a DRDF with weight at most 2 (n−∆)−

2, a contradiction. Hence (1) follows. If N [v] = ∅, then ∆ = n − 1, and so γdR(G) = 3 =

2 (n−∆)+1, a contradiction. Thus we may assume that N [v] 6= ∅. Suppose there is a component

of G[N [v]], say F , has at least three vertices. Let x ∈ V (F ), with |NF (x)| ≥ 2. Clearly

f = (N ({v, x}) , V (G) − N [{v, x}], {v, x}) is a DRDF, with weight at most 2 (n−∆) − 2, a

contradiction. Now suppose that p = 0 and G
[
N [v]

]
contains two independent edges xy and x′y′.

Then clearly g = (N(v) ∪ {y, y′}, V (G)− (N [v] ∪ {x, x′, y, y′}), {v, x, x′}) is a DRDF, with weight

at most 2 (n−∆)− 1, a contradiction. Finally suppose that p = 1 and G
[
N(v)

]
contains at least

three independent edges xy, x′y′ and x′′y′′. Then clearly g = (N(v) ∪ {y, y′, y′′}, V (G) − (N [v] ∪

{x, x′, x′′, y, y′, y′′}), {v, x, x′, x′′}) is a DRDF, with weight at most 2 (n−∆)− 2, a contradiction.

Hence (2) follows.

Proposition 3.1.2 ([66]) Let G be a graph of order n with maximum degree ∆ such that ∆−δ ≤

1. Then γdR(G) = 2 (n−∆) if and only if either G ∈{Kn, C4, C5, (n− 4)K1∪2K2, K2∪P3, K2∪C3,

K2∪P4, P5}, or ∆ = n− 3 and ∆ ≥ 3, or ∆ = n− 2, ∆ ≥ 3 and G = K2∨H, where H is a graph

with ∆ (H) ≤ |V (H)| − 2.
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Chaptre 3. Further results on the double Roman domination

Proof. Let G be a graph of order n with maximum degree ∆ such that ∆− δ = k ∈ {0, 1}, and

let v ∈ V (G) be a vertex of maximum degree. Assume that γdR(G) = 2 (n−∆). If ∆ ≤ 2, then

from Observation 3.1.1 we obtain G ∈
{
Kn, 2K2, C4, C5

}
, or G ∈ {(n− 4)K1 ∪ 2K2;n ≥ 5}, or

G ∈ {K2 ∪ P3, K2 ∪ C3, K2 ∪ P4, P5}. Now assume that ∆ ≥ 3. By Lemma 3.1.1, every vertex in

N [v] has at least ∆−k−1 neighbors in N(v), and every vertex in N(v) has at most two neighbors

in N [v], and
∣∣N [v]

∣∣ 6= 0. We proceed according to the value of
∣∣N [v]

∣∣.
Case 1. If

∣∣N [v]
∣∣ ≥ 5, then 2 (∆− k − 1) + 3 (∆− k) ≤ t ≤ 2∆, which provides ∆ ≤

⌊
5k+2

3

⌋
≤ 2,

a contradiction.

Case 2.
∣∣N [v]

∣∣ = 4. Then∆ = n−5, and thus 2 (∆− k − 1)+2 (∆− k) ≤ t ≤ 2∆, which provides

∆ ≤ 2k + 1, and thus k = 1, ∆ = 3 and n = 8. By Theorem 2.4.2, γdR(G) ≤ 11n
10

< 2 (n−∆), a

contradiction.

Case 3.
∣∣N [v]

∣∣ = 3. Then ∆ = n−4, and thus 2 (∆− k − 1)+(∆− k) ≤ t ≤ 2∆, which provides

∆ ≤ 3k + 2. So k = 1 and ∆ ∈ {3, 4, 5}. Set N [v] = {x, y, z}, we have three possibilities.

Subcase 3.1. ∆ = 5. Then n = 9, which gives t = 10. Thus N [v] has exactly one edge and every

vertex in N [v] has degree 4. Let N(v) = {a, b, c, d, e}. Without loss of generality, we assume

that xy ∈ E (G). Since t = 10, |N(x) ∩N(v)| = |N(y) ∩N(v)| = 3, and |N(z) ∩N(v)| = 4. Let

N(z) = {a, b, c, d}. Clearly, x and y have no common neighbor in {a, b, c, d}, and so x and y have e

as a unique common neighbor in N(v). The function f = ({x, y, a, b, c, d, v}, ∅, {z, e}) is an DRDF

on G of weight 6, which contradicts the fact that γdR(G) = 2 (n−∆).

Subcase 3.2. ∆ = 4. Then n = 8, which gives t ∈ {7, 8}. Clearly, N [v] is not independent. Without

loss of generality, assume that xy ∈ E (G). Let N(v) = {a, b, c, d}. Since |N(z) ∩N(v)| ≥ 3, we

may assume that {a, b, c} ⊆ N(z). Clearly, xd or yd ∈ E (G), say xd ∈ E (G). The function

f = ({a, b, c, d, y}, {v, z} , {x}) is an DRDF on G of weight 7, which contradicts the fact that

γdR(G) = 2 (n−∆).

Subcase 3.3. ∆ = 3. Then n = 7. Note that δ ≥ 2. Again by Theorem 2.4.2, γdR(G) ≤ 11n
10

<

2 (n−∆) a contradiction.

Case 4.
∣∣N [v]

∣∣ = 2. Then ∆ = n− 3 holds.
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Chaptre 3. Further results on the double Roman domination

Case 5.
∣∣N [v]

∣∣ = 1. Then ∆ = n − 2, and thus by Proposition 2.4.5, γdR(G) = 2 (n−∆) leads

G = K2 ∨H, where H is a graph with ∆ (H) ≤ |V (H)| − 2.

The converse is easy to show.

Proposition 3.1.3 ([66]) Let G be a ∆-regular graph of order n ≥ 2. Then γdR(G) = 2 (n−∆)−

1 if and only if G = 3K2.

Proof. Let G be a ∆-regular graph of order n ≥ 2. Assume that γdR(G) = 2 (n−∆) − 1. If

∆ ≥ 3, then by Lemma 3.1.1, every vertex in N [v] has at least ∆− 1 neighbors in N(v), and every

vertex in N(v) has at most two neighbors in N [v]. If
∣∣N [v]

∣∣ ≥ 3, then 2 (∆− 1) + ∆ ≤ t ≤ 2∆,

which provides ∆ ≤ 2, a contradiction. Therefore
∣∣N [v]

∣∣ ≤ 2, and so ∆ ≥ n− 3. By Propositions

3.1.1 and 3.1.2, we have γdR(G) ≥ 2 (n−∆), a contradiction. Now assume that ∆ ≤ 2, then by

Observation 3.1.1, we have G = 3K2.

The converse is easy to show.

3.2 Nordhaus-Gaddum type inequality for double Roman

domination

Jafari Rad and Rahbani [52], and Volkmann [79] presented Nordhaus-Gaddum type inequalities

for the double Roman domination number in terms of the order of the graph G.

Theorem 3.2.1 ([52]) For any graph G of order n ≥ 2, γdR(G) + γdR(G) ≤ 2n+ 3, with equality

if and only if G ∈
{
Kn, Kn

}
.

In the following, let Kn− e and Kn−{e1, e2} represent the complete graph minus an edge and the

complete graph minus two independent edges, respectively. Additionally, letH1 ={2K2, C4, P4, C5,

Kn − e,Kn − e for n ≥ 3}.

Theorem 3.2.2 ([52]) Let G be a graph of order n ≥ 3 such that G /∈
{
Kn, Kn

}
. Then γdR(G)+

γdR(G) ≤ 2n+ 2, with equality if and only if G ∈ H1.
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Chaptre 3. Further results on the double Roman domination

Theorem 3.2.3 ([79]) Let G be a graph of order n ≥ 4 such that G /∈
{
Kn, Kn

}
∪ H1. Then

γdR(G) + γdR(G) ≤ 2n + 1, with equality if and only if G ∈
{
Kn − {e1, e2} , Kn − {e1, e2}

}
and

n ≥ 5 or G ∈
{
P5, 3K2, P5, 3K2

}
.

According to Theorems 3.2.1, 3.2.2 and 3.2.3, ifG is a graph such thatG /∈ H =
{
Kn, Kn

}
∪H1∪H2,

then γdR(G) + γdR(G) ≤ 2n, where H2 =
{
Kn − {e1, e2} , Kn − {e1, e2}, P5, 3K2, P5, 3K2;n ≥ 5

}
.

In the sequel, we provide a characterization of graphs G of order n ≥ 4 for which γR(G)+γR(G) =

2n. For this purpose, We introduce the following families of graphs:

• F0 = {4K2, 2C3, C6, C7}.

• F1 = {(n− 6)K1 ∪ 3K2;n ≥ 7, K2 ∪ P3, K2 ∪ C3, K2 ∪ P4}∪

{F : F is semiregular with n (F ) = 6 and ∆(F ) = 3}.

• F2 = {(n− 3)K1 ∪ P3, (n− 3)K1 ∪ C3, (n− 4)K1 ∪ P4;n ≥ 4} ∪

{cor(P3), cor(C3), F1, F2, F3}, where F1, F2 and F3 are the graphs illustrated in Figure 3.2.
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Figure 3.2: Graphs G in F2 with ∆ (G) = 3.

Theorem 3.2.4 ([66]) Let G be a graph of order n ≥ 4 such that G /∈ H. Then γdR(G)+γdR(G) ≤

2n, with equality if and only if G or G ∈ F0 ∪ F1 ∪ F2.

Proof. Clearly, the upper bound follows from Theorems 3.2.1, 3.2.2 and 3.2.3, since G /∈ H.
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Chaptre 3. Further results on the double Roman domination

Assume now that γdR(G) + γdR(G) = 2n. By Theorem 3.1.1, we have

2n = γdR(G) + γdR(G)

≤ 2 (n−∆ (G)) + 1 + 2
(
n−∆

(
G
))

+ 1

≤ 2 (n−∆ (G)) + 1 + 2 (n− (n− 1− δ(G))) + 1

≤ 2n− 2 (∆(G)− δ(G)) + 4.

Hence ∆(G) − δ(G) ≤ 2. Therefore G is either regular or semiregular or ∆(G) − δ(G) = 2. We

distinguish three cases.

Case 1. G is regular. Then without loss of generality we consider three possibilities:

Subcase 1.1. γdR(G) = 2 (n−∆ (G)) + 1 and γdR(G) = 2
(
n−∆

(
G
))
− 3. By Proposition 3.1.1,

we have G = Kn, excluded, since Kn ∈ H.

Subcase 1.2. γdR(G) = 2 (n−∆ (G)) and γdR(G) = 2
(
n−∆

(
G
))
− 2. By Proposition 3.1.2, and

since G /∈
{
Kn, C4, 2K2, C5

}
⊂ H, we have ∆(G) = n − 3 or n − 2 with ∆(G) ≥ 3. Clearly, if

∆(G) = n − 3, then G is the disjoint union of p copies of cycles of order ni, where p ≥ 1 and

n =
∑p

i=1ni. Using the fact that γdR(Cni) ≤ ni + 1 (see Proposition 2.4.4), we have 2n − 6 =

γdR(G) =
∑p

i=1γdR(Cni) ≤ n + p, which gives n ≤ p + 6. On the other hand, since ni ≥ 3, for

i ∈ {1, ..., p}, we have n ≥ 3p, so, p ≤ 3. Now, it is easy to check that if p = 1, then G ∈ {C6, C7},

and if p = 2, then G ∈ {2C3, C3 ∪ C4}, finally if p = 3 then G = 3C3. So far, we obtained

G ∈ {C6, C7, 2C3, C3 ∪ C4, 3C3}. However, since γdR(C3 ∪ C4) = 7 and γdR(3C3) = 9, while

2 (n (C3 ∪ C4)−∆ (C3 ∪ C4))− 2 = 8 and 2 (n (3C3)−∆ (3C3))− 2 = 12, the graphs C3 ∪C4 and

3C3 must be excluded, as it does not satisfy the equality γdR(G) = 2
(
n−∆

(
G
))
− 2. Therefore,

we conclude that G ∈ {2C3, C6, C7} ⊂ F0. Now assume that ∆(G) = n−2. Then each component

of G is a K2. For such graphs we have γdR(G) = 3n
2
and ∆

(
G
)

= 1, where n is the order of G.

By applying the equality γdR(G) = 2
(
n−∆

(
G
))
− 2, we obtain n = 8, which uniquely yields

G = 4K2. Hence, G ∈ F0.

Subcase 1.3. γdR(G) = 2 (n−∆ (G))− 1 and γdR(G) = 2
(
n−∆

(
G
))
− 1. By Proposition 3.1.3,

we have G = 3K2, excluded, since 3K2 ∈ H.
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Chaptre 3. Further results on the double Roman domination

Case 2. G is semi-regular. Then, without loss of generality, we have two possibilities:

Subcase 2.1. γdR(G) = 2 (n−∆ (G)) + 1 and γdR(G) = 2
(
n−∆

(
G
))
− 1. By Proposition 3.1.1,

we have G = (n− 2)K1 ∪K2, ∆(G) = n − 1, or ∆(G) = n − 2 and G 6= K2 ∨ H for any graph

H of order n− 2. The graph (n− 2)K1 ∪K2 is excluded, since it is in H. If ∆ (G) = n− 1, then

∆
(
G
)

= 1, and so γdR(G) = 2
(
n−∆

(
G
))
− 1 leaves G = (n− 6)K1 ∪ 3K2. Hence G ∈ F1. Now

assume that ∆ (G) = n− 2. Then ∆
(
G
)

= 2. By Observation 3.1.1, we have G = K2 ∪H, where

H ∈ {K2 ∪ P3, K2 ∪ C3, K2 ∪ P4, C4, C5, P5}, contradicting the fact that G 6= K2 ∨H.

Subcase 2.2. γdR(G) = 2 (n−∆ (G)) and γdR(G) = 2
(
n−∆

(
G
))
. By Proposition 3.1.2, we have

G ∈ {pK1 ∪ 2K2 where p ≥ 1, K2 ∪ P3, K2 ∪ C3, K2 ∪ P4, P5}, or ∆(G) = n − 3 and ∆ (G) ≥ 3,

or ∆(G) = n − 2, ∆ (G) ≥ 3 and G = K2 ∨ H, where G is a graph with ∆ (G) ≤ |V (G)| − 2.

The graphs pK1 ∪ 2K2 where p ≥ 1 and P5 are excluded, since they are in H. So for ∆(G) ≤ 2,

γdR(G) = 2
(
n−∆

(
G
))
leaves G ∈ {K2 ∪ P3, K2 ∪ C3, K2 ∪ P4} ⊂ F1. Now suppose that∆(G) ≥

3. If ∆(G) = n− 2, then ∆(G) = 2, and so G ∈ {K2 ∪ P3, K2 ∪ C3, K2 ∪ P4} ⊂ F1. Now assume

that ∆ (G) = n− 3. Then ∆(G) = 3, which means that ∆(G) = n− 3, and thus n = 6. Therefore

G and G are semi regular with maximum degree 3. Hence G and G are in F1.

Case 3. ∆(G) − δ(G) = 2. Then we have the only possibility: γdR(G) = 2 (n−∆ (G)) + 1

and γdR(G) = 2
(
n−∆

(
G
))

+ 1. By Proposition 3.1.1, we have either M ∈{pK1 ∪ H, where

H ∈ {P3, C3, P4}, p ≥ 1}∪{cor(P3), cor(C3)}, or ∆(M) = n − 1, or ∆(M) = n − 2 and M 6=

K2 ∨ H for any graph H of order n − 2, where M ∈
{
G,G

}
. Without loss of generality, if

∆(G) ≤ 2, then G ∈ {pK1 ∪H, where H ∈ {P3, C3, P4} , p ≥ 1}. Therefore G has a vertex with

degree ∆(G) = n − 1. Hence G ∈ F2. Now suppose that ∆(G) ≥ 3. If ∆(G) = n − 1, then G

has an isolated vertex, and so G ∈ {pK1 ∪H, where H ∈ {P3, C3, P4} and p ≥ 1}. Hence G ∈ F2.

Assume that ∆(G) = n − 2, then ∆
(
G
)

= 3. By the construction of Family F described above,

we get n ∈ {5, 6}. It is a simple matter to check that G ∈ {F1, F2, F3, cor(P3), cor(C3)} ⊂ F2.

The converse is easy to see and we omit the details.
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Chaptre 3. Further results on the double Roman domination

3.3 Graph with γdR(G) = 2γR(G)− 1

In this section, we give a characterization of connected graphs with γdR(G) = 2γR(G) − 1. We

begin by recalling some important results that will be useful.

Theorem 3.3.1 ([31]) For any graph G, γ(G) ≤ γR(G), with equality if and only if G = Kn.

Theorem 3.3.2 ([13]) For any graph G, γdR(G) ≤ 2γR(G), with equality if and only if G = Kn.

From Theorem 3.3.2, if G is a nontrivial connected graph, then γdR(G) ≤ 2γR(G) − 1. In what

follows, we provide a characterization of graphs G satisfying the equality γdR(G) = 2γR(G) − 1,

which extends the corresponding result given in [84] for trees.

Proposition 3.3.1 ([66]) If G is a connected graph of order n with maximum degree ∆, then

γdR(G) = 2γR(G)− 1 if and only if γdR(G) = 2 (n−∆) + 1.

Proof. Let f = (V0, V1, V2) be an RDF with minimum weight and γdR(G) = 2w (f) − 1. So

γdR(G) = 2 |V1|+4 |V2|−1. It is clear that g = (V0, ∅, V1, V2) is a DRDF onG of weight 2 |V1|+3 |V2|.

A simple calculation shows that |V2| ≤ 1. We have two cases:

Case 1. V2 = ∅. Then V1 = V . However, it is observed that γR(G) = n if and only ifG = pK2∪qK1

where 2p + q = n. Since G is connected, γdR(G) = 2γR(G) − 1 leaves only G = K2. Hence

γdR(G) = 2 (n−∆) + 1.

Case 2. V2 = {v}. Since no edge of G joins V1 and {v}, and {v} dominates V0, we have

deg(v) = |V0| = n− (|V1|+ |V2|) = n− γR(G) + 1 = n− γdR(G) + 1

2
+ 1

and so ∆ ≥ 2n−γdR(G)+1
2

. Hence γdR(G) ≥ 2 (n−∆) + 1. Equality holds from the fact that

γdR(G) ≤ 2 (n−∆) + 1.

Conversely, assume γdR(G) = 2 (n−∆) + 1, and let v be a vertex of G with maximum degree

∆. We define V0 = N(v), V1 = V − N [v], and V2 = {v}, then f = (V0, V1, V2) is an RDF with
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Chaptre 3. Further results on the double Roman domination

w (f) = n −∆ + 1 = γdR(G)+1
2

. Since γR(G) ≥ γdR(G)+1
2

for connected graphs, f is an RDF for G

with w (f) = γR (G).

The following result is an immediate consequence of Theorem 3.1.1 and Propositions 3.3.1.

Corollary 3.3.1 ([66]) Let G be a connected graph of order n with maximum degree ∆. Then

the following statements are equivalent:

(i) γdR(G) = 2γR(G)− 1.

(ii) γdR(G) = 2 (n−∆) + 1.

(iii) G ∈ F .

We note that if γdR(G) = 2γ(G) + 1 and γR(G) = γ(G) + 1, then γdR(G) = 2γR(G) − 1. But

the converse is not true as shown by the graph in Figure 3.3, where γ (G) = 3, γR (G) = 5 and

γdR (G) = 9.

Remark 3.3.1 If one of the following equalities γdR(G) = 2γ(G) + 1 and γR(G) = γ(G) + 1 is

not hold, then clearly γdR(G) 6= 2γR(G)− 1.

Now in the class of trees, from the construction of Family F , described above, we observe that

wounded spiders are the only trees in F . On the other hand wounded spiders are the only trees T

such that γdR(T ) = 2γR(T )− 1, γR(T ) = γ(T ) + 1, or γdR(T ) = 2γ(T ) + 1, as shown by Zhang et

al. [84], Cockayne et al. [31] and Ahangar et al. [4], respectively.

The following result is an immediate consequence of Corollary 3.3.1.

Corollary 3.3.2 ([66]) Let T be a tree of order n with maximum degree ∆. Then the following

statements are equivalent:

(i) γdR(T ) = 2γR(T )− 1.

(ii) γdR(T ) = 2γ(T ) + 1.
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(iii) γR(T ) = γ(T ) + 1.

(iv) γdR(T ) = 2 (n−∆) + 1.

(v) T is a wounded spider.

3.4 Counterexamples to a published result

Mojdeh, Parsian and Masoumi [60] attempted to improve the bound γdR(G) ≤ 2γR(G), where they

proved that γdR(G) ≤ γR(G) + γ(G). In the following, we will show that this result is incorrect

[65].

Firstly, Recall that B(X) is the set of vertices in V − X that have a neighbor in the set X

for every X ⊆ V . The differential of a set X is defined to be ∂(X) = |B(X)| − |X|, and the

differential of G to be ∂(G) = max {∂(X) : X ⊆ V }. An enclaveless number (or B-differential) of

G is Ψ(G) = max {|B(X)| : X ⊆ V }.

It has been shown by Mojdeh, Parsian and Masoumi [60] that for every graph G of order n having

no isolated vertices,

γdR(G) ≤ 2n−Ψ(G)− ∂(G) (3.1)

It is worth noting that this result, whose invalidity will be shown, is presented in two separate

papers by the same authors. The following Gallai theorems have been established in [15] and [56]

for the differential of a graph and the enclaveless number, respectively.

Theorem 3.4.1 ([15]) If G is a graph of order n, then ∂(G) = n− γR(G).

Theorem 3.4.2 ([56]) For any graph G of order n, then Ψ(G) = n− γ(G).

Note that according to Theorems 3.4.1 and 3.4.2, the inequality 3.1 becomes γdR(G) ≤ γR(G) +

γ(G). Now, we will provide an infinite family of graphs showing that inequality 3.1 (γdR(G) ≤

γR(G) + γ(G)) is erroneous.
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Chaptre 3. Further results on the double Roman domination

Let G be the family of trees T obtained from a double star S(r, s) with r ≥ s ≥ 2, by subdividing

twice the central edge and once any other edge of the double star S(r, s). Figure 3.3 shows

the smallest example of a tree belonging to G. We can easily see that any tree T in G has order

n = 2(r+s)+4, further γ(T ) = r+s+1 and γR(T ) = r+s+4, and thus leading to Ψ(T ) = r+s+3

and ∂(T ) = r+s. Now since γdR(T ) = 2(r+s)+6, we consequently have γdR(T ) > 2n−Ψ(T )−∂(T ).
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Figure 3.3: The tree T in G.

In the following, we define another class of graphs different from trees for which 3.1 is not also

valid. Let H be the family of graphs G obtained from a star K1,p, with p ≥ 3, by first subdividing

once each edge of the star and then adding a new vertex attached to the center vertex and one of

its neighbors. Figure 3.4 shows the smallest example of a graph belonging to H. One can easily

see that any graph G in H has order n = 2p + 2, further γ(G) = p and γR(G) = p + 2, and

thus leading to Ψ(G) = p + 2 and ∂(G) = p. Now since γdR(G) = 2p + 3, we consequently have

γdR(G) > 2n−Ψ(G)− ∂(G).
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Figure 3.4: The graph G in H.

We conclude by mentioning that inequality 3.1 is used in [59], which therefore calls into question

the validity of certain results.
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Chapter 4

Critical graphs for total and double

Roman domination

In this chapter, we concentrate on edge-critical graphs with respect to graph parameter µ where

µ ∈ {γtR, γdR} (that is, µ decreases when any missing edge is added).

4.1 Total Roman domination edge critical graphs

Sumner and Blitch [78] remarked that while adding an edge can decrease the domination number

by at most one, that is γ(G)−1 ≤ γ(G+ e) ≤ γ(G) for any e ∈ E(G), and they studied graphs for

which γ(G + e) = γ(G) − 1 for each e ∈ E(G), and called these graphs domination edge critical.

A domination edge critical graph G with γ(G) = k is called k-γ-edge critical.

We consider the behavior of the total Roman domination number of a graph G upon the addition

of edges to G. In [55], Lampman et al. showed that for any graph G with no isolated vertices, if

e ∈ E(G), then γtR(G) − 2 ≤ γtR(G + e) ≤ γtR(G). Define a graph G with no isolated vertices

to be γtR-edge-critical if γtR(G + e) < γtR(G) for every edge e ∈ E(G) 6= ∅, and to be γtR-

edge-supercritical if γtR(G + e) = γtR(G) − 2 for every edge e ∈ E(G) 6= ∅. We say that G is

k-γtR-edge-supercritical if γtR(G) = k and G is γtR-edge-supercritical. Also in [55] the authors

posed the following problems:
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Chaptre 4. Critical graphs with respect to total (double) Roman domination

Question 4.1.1 ([55]) Are the disjoint unions of two or more complete graphs, each having order

at least 3, the only γtR-edge-supercritical graphs?

We define vertex u ∈ V as "dead" if every γtR-function f on G satisfies f (u) = 0.

Question 4.1.2 ([55]) Do there exist γtR-edge-critical graphs containing dead vertices?

Mynhardt et al. in [61] answered the first question by constructing the following class of graphs:

Let Gr be the graph constructed from the complete graph K2r as follows: Label the vertices of K2r

as x1, x2, ..., xr, y1, y2, ..., yr, and remove from K2r a perfect matching xiyi where 1 ≤ i ≤ r. Add

a vertex disjoint K3 component to K2r, and label the added vertices u, v, w. Let w be adjacent to

both xi and yi, and v be adjacent to xi, for 1 ≤ i ≤ r. Finally, add two more vertices x0 and y0,

such that x0u, x0xi, y0v, y0yi ∈ E(Gr) for 1 ≤ i ≤ r. See Figure 4.1 for r = 3.
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Figure 4.1: The graph G3

They also posed the following conjectures:

Conjecture 4.1.1 ([61]) If G is a γtR-edge-supercritical graph and u ∈ V (G), then there exists

a γtR-function f = (V0, V1, V2) such that u ∈ V +
f , where V

+
f = V1 ∪ V2.

Conjecture 4.1.2 ([61]) If G is a k-γtR-edge-supercritical graph, then G∪Kn is (k+3)-γtR-edge-

critical, for n ≥ 3.

In the next we settle the Question 4.1.2 and present proofs of Conjectures 4.1.1 and 4.1.2.
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4.1.1 Answer to Question 4.1.2

Recall that a set S of vertices in a graph G is a total dominating set (TDS) of G if every vertex

of G is adjacent to some vertex in S. The total domination number γt(G) of G is the minimum

cardinality of a TDS of G. See [30].

We make use of the following observation:

Observation 4.1.1 ([61]) If G is a connected graph of order n ≥ 3 such that ∆ ≤ n − 2, then

γt(G) + 2 ≤ γtR(G) ≤ 2γt(G).

The next result demonstrates the existence of an infinite class of γtR-edge-critical graphs containing

a dead vertex, which answers the second question posed by Lampman et al. in [55].

Let G be the class of all graphsGp that are obtained first from the 7-cycle, C = (x1, x2, x3, x4, x5, x6, x7)

and join x2 to x4, x5 to x7, x2 to x7 and x3 to x6, and then adding a complete graph Kp for some

p ≥ 1 by joining each of its vertices to every vertex in {x3, x4, x5, x6}. The graph G2 in G is shown

in Figure 4.2.
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Figure 4.2: Example of a graph in G for p = 2.

Proposition 4.1.1 ([64]) Every graph Gp ∈ G is a γtR-edge-critical graph. Moreover, x1 is a

dead vertex.

Proof. Let Gp ∈ G of order n and maximum degree ∆(Gp). It is clear that ∆(Gp) ≤ n − 2, and

since no pair of adjacent vertices dominates Gp, γt (Gp) ≥ 3. Thus by Observation 4.1.1, we have

γtR (Gp) ≥ 5. On the other hand, the function f = (V (Gp)−{x2, x3, x6}, {x3}, {x2, x6}) is a TRDF
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on Gp of weight 5, implying that γtR (Gp) ≤ 5. Hence γtR (Gp) = 5. It is clear that x1 is a dead

vertex, otherwise γtR (Gp) ≥ 6. Now, we shall show that Gp is a γtR-edge-critical graph. Let u an

arbitrary vertex of the copy Kp in Gp. Without loss of generality, we can consider, in E
(
Gp

)
, only

the set of edges E∗ = {x1x3, x1x4, x1u, x2x5, x2x6, x2u, x3x5}. For each e in E∗in the listed order,

it is a simple matter to check that {x3, x6}, {x4, x5}, {x1, u}, {x2, x5}, {x2, x6}, {x2, u}, {x2, x3}

are total dominating sets of Gp + e. Thus by Observation 4.1.1, γtR (Gp + e) ≤ 4 for any edge

e ∈ E
(
Gp

)
. Hence for each p, Gp is a γtR-edge-critical graph containing a dead vertex.

We can also construct a connected γtR-edge-critical graph H with γtR(H) = 10 containing two

dead vertices, as illustrated in the Figure 4.3, but we will omit the details. So, we demonstrated

the existence of connected γtR-edge-critical graphs containing dead vertices. However, in the next

section, it will be shown that a γtR-edge-supercritical graph cannot have this property, that is, no

connected γtR-edge-supercritical graph contains a dead vertex.
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Figure 4.3: The graph H, where x and y are dead vertices.

4.1.2 Proof of conjectures

First we mention a result proved in [55].

Proposition 4.1.2 ([55]) For a graph G with no isolated vertices, if uv ∈ E
(
G
)
is a critical edge,

then there exists a γtR(G+uv)-function f such that {f (u) , f (v)} ∈ {{2, 2} , {2, 1} , {2, 0} , {1, 1}}.

Theorem 4.1.1 ([64]) Let G be a γtR-edge-supercritical graph with no isolated vertices. Then,

for every vertex u ∈ V (G), there exists a γtR (G)-function f such that u ∈ V +
f .
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Proof. Let G be a γtR-edge-supercritical graph of order n, and let u ∈ V (G). Then, for any

edge uv ∈ E
(
G
)
, γtR (G+ uv) = γtR (G) − 2. Suppose for a contradiction that there is a vertex

x ∈ V (G) such that f(x) = 0 for every γtR (G)-function f . Note that, since G is connected x

is adjacent to some vertex, say w, in G. If x is adjacent to all other vertices of G, then clearly

the function h, such that h(x) = 2, h(w) = 1 and h(z) = 0 for all other z ∈ V (G), is a γtR (G)-

function, which contradicts our assumption. Assume now that there exists a vertex y such that

xy ∈ E
(
G
)
. By Proposition 4.1.2, there exists a γtR(G + xy)-function g = (V0, V1, V2) such that

{g(x), g(y)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}. We distinguish between three cases.

Case 1. {g(x), g(y)} ∈ {{2, 2}, {2, 1}, {1, 1}}. Then we have three possibilities. If NG (x)∩V +
g 6= ∅

and NG (y)∩V +
g 6= ∅, then the function g is a TRDF on G, which contradicts the minimality of f .

If, without loss of generality, NG (x)∩V +
g = ∅ and NG (y)∩V +

g 6= ∅, then x has a neighbor x′ in V0,

since G is without isolated vertices. Then the function f ′ : V −→ {0, 1, 2}, such that f ′(x′) = 1

and f ′(z) = g(z) for all other z ∈ V (G), is a TRDF on G, a contradiction too. Assume now that

NG (x)∩V +
g = ∅ and NG (y)∩V +

g = ∅. Then x and y have neighbors in V0. If NG (x)∩NG (y) 6= ∅,

say x′ ∈ NG (x)∩NG (y), then the function f ′ : V −→ {0, 1, 2} such that f ′(x′) = 1 and f ′(z) = g(z)

for all other z ∈ V (G), is a TRDF on G, again we have a contradiction with the minimality of

f . If NG (x) ∩ NG (y) = ∅, then the function f ′ : V −→ {0, 1, 2}, such that f ′(x′) = f ′ (y′) = 1,

where x′ ∈ NG (x) and y′ ∈ NG (y), and f ′(z) = g(z) for all other z ∈ V (G) is a TRDF on G, with

w(f ′) = γtR (G) and f ′(x) > 0, which contradicts our assumption.

Case 2. g(x) = 2 and g(y) = 0. If NG (y)∩ V +
g 6= ∅, then the function f ′ : V −→ {0, 1, 2} defined

on G, as follows: f ′ (y) = 1 and f ′(z) = g(z) for all other z ∈ V (G) is a TRDF on G, we have a

contradiction with the minimality of f . If NG (y)∩V +
g = ∅, then y has a neighbor y′ in V0. Define

f ′ : V −→ {0, 1, 2} on G, as follows: f ′ (y) = f ′(y′) = 1 and f ′(z) = g(z) for all other z ∈ V (G).

Thus f ′ is a TRDF on G, with w(f ′) = γtR (G) and f ′(x) = 2, which contradict our assumption.

Case 3. g(x) = 0 and g(y) = 2. If NG (x)∩ V +
g 6= ∅, then the function f

′
: V −→ {0, 1, 2} defined

on G, as follows: f
′
(x) = 1 and f ′(z) = g(z) for all other z ∈ V (G) is a TRDF on G, we have a

contradiction with the minimality of f ′. If NG (x)∩V +
g = ∅, then x has a neighbor x′ in V0. Define

f ′ : V −→ {0, 1, 2} on G, as follows: f ′ (x) = f ′(x′) = 1 and f ′(z) = g(z) for all other z ∈ V (G).
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Thus f ′ is a TRDF on G, with w(f ′) = γtR (G) and f ′(x) = 1, contradicting our assumption.

The authors noted in [61] that Conjecture 4.1.2 would be a direct result of Conjecture 4.1.1.

Consequently, Conjecture 4.1.2 has also been proven. So, we obtain the following corollary:

Corollary 4.1.1 ([64]) If G is a k-γtR-edge-supercritical graph, then G∪Kn is (k+ 3)-γtR-edge-

critical, for n ≥ 3.

Remark 4.1.1 Mynhardt et al. [61] provided an excellent graph in response to Question 4.1.1,

but they left another related question unanswered:

Question 4.1.3 ([61]) Do there exist connected 6-γtR-edge-supercritical graphs with diameter 2?

4.2 Double Roman domination edge critical graphs

It is shown in [9] that the addition of an edge to a graph can decrease the double Roman domination

number by at most two.

Theorem 4.2.1 ([9]) Let G be a graph and e be an edge in G. Then γdR(G)− 2 ≤ γdR(G+ e) ≤

γdR(G).

A graph G is said to be double Roman domination edge critical, or just γdR-edge critical, if γdR(G+

e) < γdR(G) for any e ∈ E(G), that is; for any edge e ∈ E(G), γdR(G)−2 ≤ γdR(G+e) ≤ γdR(G)−1.

Double Roman domination edge critical graphs are studied in [63].

In this section, we continue our study of the critical concept for double Roman domination in

graphs, providing a characterization of double Roman domination edge-critical trees. This work

answers a problem posed by Nazari-Moghaddam et al. in [63].

Conjecture 4.2.1 ([63]) A tree T is γdR-edge critical if and only if T = P4.
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4.2.1 Preliminary results

We begin by recalling some important results, given by Beeler, Haynes and Hedetniemi [13],

Ahangar, Chellali and Sheikholeslami [4] and Anu [8], that will be useful in our investigations.

Proposition 4.2.1 ([13]) In a double Roman dominating function of weight γdR(G), no vertex

needs to be assigned the value 1.

Using Proposition 4.2.1, we have the following straightforward observation.

Observation 4.2.1 Let v be a support vertex in a graph G. Then any γdR(G)-function f =

(V0, ∅, V2, V3) assigns 0 or 3 to v.

Proposition 4.2.2 ([8]) γdR (cor(Pn)) = γdR (cor(Cn)) = 2n+
⌈n

3

⌉
.

Proposition 4.2.3 ([63]) Let G be a γdR-edge critical graph and a, b two non-adjacent vertices.

Then for any γdR(G+ ab)-function f = (V0, ∅, V2, V3) we have f(a) = 0 and f(b) ≥ 2, or f(b) = 0

and f(a) ≥ 2.

Proposition 4.2.4 ([63]) Any support vertex in a γdR-edge critical graph is adjacent to exactly

one leaf.

4.2.2 Double Roman domination edge critical trees

In [63], Nazari-Moghaddam and Volkmann gave the following result for trees.

Theorem 4.2.2 ([63]) Let T be a tree of order n ≥ 5 and diam(T ) 6= 5. Then T is not γdR-edge

critical.

The necessary condition in 4.2.1 is not true, as can be seen by the trees T1 and T2, where T1 is

obtained from two copies of path P5, and T2 is obtained from a copy of path P5 and a copy of path

P4, by joining their center vertices, respectively (Refer Figure 4.4).
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Observe that every DRDF of T1 or T2 assigns a weight of at least 6 and 5 to the copies P5 and

P4, respectively. Hence, γdR(T1) ≥ 12 and γdR(T2) ≥ 11. We can also define two DRDFs on T1

and T2, with weights 12 and 11, respectively. Hence, γdR(T1) = 12 and γdR(T2) = 11. Now, by a

simple calculation we see that γdR(T1 + e) = 11 for any edge e ∈ E(T1), and γdR (T2 + e) ∈ {9, 10}

for any edge e ∈ E(T2) (Refer to Figures 4.5 and 4.6).
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Figure 4.5: All possibilities of graphs T1 + e, where γdR(T1 + e) = 11.
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Figure 4.6: All possibilities of graphs T2 + e, where γdR (T2 + e) ∈ {9, 10}..

In the following we show that the only γdR-edge critical trees are P4, T1 and T2.

Theorem 4.2.3 ([67]) A tree T of order n ≥ 3 is γdR-edge critical if and only if T ∈ {P4, T1, T2}.

Proof. Let T be a γdR-edge critical tree. Considering the contrapositive of Theorem 4.2.2, we

may assume that T is a tree of order n ≤ 4 or diam(T ) = 5. If n ≤ 4, then T ∈ {P3, P4, K1,3},

and so by Proposition 4.2.4, P3 and K1,3 are excluded. Hence T = P4. So in the following we may

assume that diam(T ) = 5. Let v0v1...v5 be a diametrical path in T . Note that by Proposition

4.2.4, we may assume that deg(v1) = deg(v4) = 2. We proceed according to the value of degT (v2):

Case 1. degT (v2) = 2. Suppose that f is a γdR(T +v0v2)-function. By the definition of f we must

have f(v0) + f(v1) + f(v2) = 3, since {v0, v1, v2} induces a pendant complete graph. Note that, if

f(v3) = 0, then we have f(v4) + f(v5) = 3. However, defining g on V (T ) by g(v1) = g(v4) = 3,

g(v0) = g(v2) = g(v5) = 0 and g(v) = f(v) for v /∈ {v0, v1, v2, v4, v5} produces a DRDF for T with

weight γdR(T + v0v2), so γdR(T ) ≤ γdR(T + v0v2), which contradicts the fact that T is γdR-edge

critical. Now assume that f(v3) ≥ 2. Then we define g on V (T ) by g(v1) = 3, g(v0) = g(v2) = 0 and

g(v) = f(v) for v /∈ {v0, v1, v2} produces a DRDF for T with weight γdR(T +v0v2), a contradiction.
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Case 2. deg(v2) ≥ 4. Recall that v2 has at most one leaf (see Proposition 4.2.4). Suppose that f

is a γdR(T +v1v
′
1)-function, where v′1 ∈ N (v2)−{v1, v3} is a support vertex adjacent to a single leaf

v′0 in T . By Proposition 4.2.3, Observation 4.2.1, and without loss of generality, we may assume

that f(v1) = 0 and f(v′1) = 3. By the definition of f we must have f(v0) = 2 and f(v′0) = 0. If

f(v2) ≥ 2, then the function h defined on V (T + v1v
′
1) by h (v′1) = 0, h(v′0) = 2, and h(v) = f(v)

for v /∈ {v′0, v′1}, produces a DRDF for T + v1v
′
1 with weight less than f , a contradiction. Hence,

we may assume that f(v2) = 0. If v2 has exactly one leaf neighbor, say v′2, then this leaf would

be assigned a 2 under f . But the function g defined by g(v2) = 3, g(v′1) = g(v′2) = 0, g(v′0) = 2

and g(v) = f(v) for v /∈ {v2, v
′
0, v
′
1, v
′
2} produces a DRDF for T with weight γdR(T + v1v

′
1), a

contradiction. Finally assume that v2 has no leaf. Note that, since deg(v2) ≥ 4, there exists a

support vertex w ∈ N (v2)− {v1, v3, v
′
1} adjacent to a single leaf t such that f(w) + f(t) = 3. But

the function g defined by g(v2) = 2, g(v′1) = g(w) = 0, g(v′0) = g(t) = 2 and g(x) = f(x) otherwise,

produces a DRDF on T with weight γdR(T + v1v
′
1), a contradiction too.

Case 3. deg(v2) = 3. Then by above cases and by symmetry, we must have that deg(v3) =

3. We claim that v2 or v3 is not support vertex. Suppose to the contrary that v2 and v3 are

support vertices. Then T = Cor (P4) and T + v1v4 = Cor (C4). From Proposition 4.2.2, we have

γdR (Cor (P4)) = γdR (Cor (C4)) = 10, again a contradiction. Hence at least one of v2 and v3 is not

support vertex, and thus T = T1 or T2.

The converse part is obvious. This completes the proof.

We recall some results before going further. A set D of vertices in a graph G is a 2-dominating

set of G if every vertex in V −D has at least two neighbors in D. The 2-domination number of a

graph G, denoted by γ2(G), is the minimum cardinality of a 2-dominating set of G.

Proposition 4.2.5 ([13]) For any graph G, 2γ(G) ≤ γdR(G) ≤ 3γ(G).

Proposition 4.2.6 ([13]) For any graph G, 2γ(G) = γdR(G) if and only if γ(G) = γ2(G).

The independence number α(G) of a graph G is the cardinality of a maximum independent set

of vertices. The following result, due to Balbuena and Hansberg [11], establishes a connection

between 3-γ-edge-critical graphs, the independence number, and the 2-domination number.
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Theorem 4.2.4 ([11]) If G is a connected 3-γ-edge-critical graph with independence number

α(G) ≥ 4, then γ2(G) ≤ 5.

In addition, the authors [11] mentioned the following: "Until now, we have not found a single

example of a 3-edge critical graph with γ2(G) = 5. Moreover, there are many examples where

γ2(G) is 3 or 4."

Thus, this remark can be translated into the following problem.

Conjecture 4.2.2 ([11]) If G is a connected 3-γ-edge-critical graph with independence number

α(G) ≥ 4, then γ2(G) ≤ 4.

4.2.3 k-γdR-edge supercritical graphs

A graph G is said to be double Roman domination edge supercritical, or just γdR-edge supercritical,

if γdR(G+ e) = γdR(G)−2 for any edge e ∈ E(G). A double Roman domination edge supercritical

graphG with γdR(G) = k is called k-γdR-edge supercritical. The concept of edge supercriticality was

studied, for the first time, by Haynes, Mynhardt and van der Merwe [46] for the total domination

number.

The next result follows immediately from Theorem 4.2.3.

Corollary 4.2.1 ([67]) There is no γdR-edge-supercritical tree.

In the following, we study k-γdR-edge supercritical graphs where k ∈ {5, 6, 7, 8}.

Theorem 4.2.5 ([67]) A graph G is 5-γdR-edge supercritical if and only if G is a disjoint union

of stars, each of order at least 3. Figure 4.7 shows the smallest example of such a graph.

Proof. We first prove the necessity. Let G be 5-γdR-edge supercritical graph. Then for any edge

e ∈ E
(
G
)
, we have γdR (G+ e) = 3, and thus Proposition 2.4.5 implies that the addition of any

edge to G creates a universal vertex, say u. Therefore, u is isolated in G− uv, where uv ∈ E
(
G
)
.

Hence, we have shown that every edge of G is incident with a leaf of G. So, the components of G
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are nontrivial stars. Moreover, each star must be of order at least 3, otherwise γdR (G) ∈ {3, 4}

(see Proposition 2.4.5).

Now, we consider the suffi ciency. Suppose G is the disjoint union of stars, each of order at least 3.

Then G has no universal vertices and G 6= K2 ∨H, where H is a graph with ∆ (H) ≤ |V (H)| − 2.

Thus, by Proposition 2.4.5, γdR (G) ≥ 5. Let u be a leaf in G, with v its support vertex and define

f : V (G) −→ {0, 1, 2, 3} by f (u) = 3, f (v) = 2 and f (x) = 0 for all x ∈ V (G)−{u, v}. Clearly f

is a DRDF on G, and hence γdR (G) = 5. Since deleting any edge in G produces an isolated vertex,

the addition of any edge to G creates a universal vertex. Hence we obtain that γdR (G+ e) = 3

for all e ∈ E
(
G
)
, and so G is 5-γdR-edge supercritical.
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Figure 4.7: The smallest 5-γdR-edge supercritical graph.

Theorem 4.2.6 ([67]) There are no k-γdR-edge supercritical graphs for k ∈ {6, 7}.

Proof. Consider k = 6. Suppose for a contradiction that G is a 6-γdR-edge supercritical graph.

Then γdR (G+ uv) = 4 for any uv ∈ E
(
G
)
. By Proposition 2.4.5 there exist two non adjacent

vertices x and y each of which is adjacent to all other vertices in G+ uv. It is clear that {x, y} 6=

{u, v}. If {x, y} and {u, v} are disjoint, then γdR (G) = 4, contradicting G being 6-γdR-edge

supercritical. Without loss of generality, assume that u = x. In this case assign 2 to x and 3 to y

in G to obtain a DRDF of weight 5, a contradiction too.

Consider k = 7. Suppose for a contradiction that G is a 7-γdR-edge supercritical graph. Then

γdR (G+ uv) = 5 for any uv ∈ E
(
G
)
. Again by Proposition 2.4.5, we have ∆ (G+ uv) = n − 2

and G + uv 6= K2 ∨ H for any graph H of order n − 2. Thus in G + uv, there exist two non

adjacent vertices, say x and y, such that degG+uv (x) = n − 2. It is clear that {x, y} 6= {u, v}. If

{x, y} and {u, v} are disjoint, then u and v are in NG (x), and thus γdR (G) = 5, contradicting
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G being 7-γdR-edge supercritical. If y ∈ {u, v}, then u or v is in NG (x), and thus γdR (G) = 5,

a contradiction. Assume now that x ∈ {u, v}, without loss of generality, let x = u. We consider

three cases:

Case 1. Suppose that v ∈ NG+uv (y). In this case assign 3 to x and y, and 0 to the remaining

vertices to obtain a DRDF on G of weight 6, a contradiction.

Case 2. Suppose that NG+uv (x)−NG+uv (y) = {v}. In this case assign 2 to x, v and y, and 0 to

the remaining vertices to obtain a DRDF on G of weight 6, a contradiction.

Case 3. Suppose that |NG+uv (x)−NG+uv (y)| ≥ 2 and v ∈ NG+uv (x) − NG+uv (y). Obviously,

we have degG (x) = n − 3 and degG (y) ≤ n − 4. Now, we will show that degG (v) ≤ n − 4,

and for any w in V − {x, y, v}, degG (w) ≤ n − 3. Firstly, suppose that degG (v) ≥ n − 3. Then

NG (v) = V −{x, y}, and thus g = (V − {x, y, v} , ∅, {x, y, v} , ∅) is a DRDF on G with w (g) = 6, a

contradiction. Secondly, suppose that there is a vertex w in V −{x, y, v} such that degG (w) ≥ n−2.

Then by Proposition 2.4.5, we have γdR (G) ≤ 5, a contradiction too. Hence ∆ (G+ vy) ≤ n− 3,

and so by Proposition 2.4.5, we have γdR (G+ vy) ≥ 6, contradicting the supercriticality of G.

This completes the proof.

For γdR-edge supercritical graphs, the analogous result to Proposition 4.2.3 is more restrictive, as

we now show.

Corollary 4.2.2 ([67]) Let G be a γdR-edge supercritical graph and a, b two non-adjacent vertices.

Then for any γdR(G+ ab)-function f = (V0, ∅, V2, V3), we have {f(a), f(b)} = {0, 3}.

Proof. Let G be a γdR-edge supercritical graph. Then for any ab ∈ E
(
G
)
, we have γdR (G+ ab) =

γdR(G) − 2. Let f = (V0, ∅, V2, V3) be a γdR(G + ab)-function. By Proposition 4.2.3, and without

loss of generality, we may assume that f(a) ≥ 2 and f(b) = 0. Suppose to the contrary that

f(a) = 2 and f(b) = 0. Then there exists a vertex, say w, in NG(b) such that f(w) ∈ {2, 3}. If

f(w) = 3, then γdR(G) ≤ γdR(G + ab), a contradiction. Assume now that f(w) = 2, and define

the function g by g(w) = 3 and g(x) = f(x) otherwise. Clearly, g is a DRDF on G of weight

γdR(G+ ab) + 1, a contradiction too.

66



Chaptre 4. Critical graphs with respect to total (double) Roman domination

In the following proposition, we show that there is no leaf in connected 8-γdR-edge supercritical

graphs.

Proposition 4.2.7 ([67]) There is no connected 8-γdR-edge supercritical graph having a leaf.

Proof. Suppose there exists a connected 8-γdR-edge supercritical graph G with a leaf y adjacent

to a vertex x in G. Clearly N(x)−{y} 6= ∅. We claim that N(x)−{y} induces a complete graph.

Suppose for a contradiction that there exist two non adjacent vertices u and v in N(x)−{y}, and

consider a γdR-function f = (V0, ∅, V2, V3) on G+uv. By Corollary 4.2.2, {f(u), f(v)} = {0, 3}. We

can assume f(x) = 3, since y is a leaf and γdR (G+ uv) = 6. In this case, f is also a DRDF on G,

contradicting γdR (G) = 8. Therefore G [N(x)− {y}] is complete. Now, let w ∈ N(x)−{y}. It is a

simple matter to see that deg(w) ≤ n− 4 (for otherwise γdR (G) ≤ 7). So, there exist two vertices

a and b in V −N [x] that are not adjacent to w, and consider a γdR-function g = (V0, ∅, V2, V3) on

G + aw. Again, by Corollary 4.2.2, we have {g(a), g(w)} = {0, 3}. We can assume, without loss

of generality, that g(x) = 3. If g(a) = 3 and g(w) = 0, then g is a DRDF on G, a contradiction.

Now, assume that g(a) = 0 and g(w) = 3, but in this case b is not double Roman dominated, a

contradiction too. Hence there is no leaf in G.

Remark 4.2.1 If G is 8-γdR-edge supercritical graph, then G is easily seen to be connected.

Now, we consider connected 8-γdR-edge supercritical graphs and give results concerning 3-γ-edge

critical graphs, and the diameter of such graphs. We need the following result for 3-γ-edge critical

graphs.

Theorem 4.2.7 ([78]) The diameter of a 3-γ-edge critical graph is at most 3.

Proposition 4.2.8 ([67]) If G is a connected 8-γdR-edge supercritical graph, then G is 3-γ-edge

critical.

Proof. Let G be a connected 8-γdR-edge supercritical graph, and let e be any edge of E
(
G
)
.

First we show that 2 ≤ γ(G + e) ≤ 3. The upper bound of Proposition 4.2.5, leads to γ(G) ≥
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⌈
γdR(G)

3

⌉
=
⌈

8
3

⌉
= 3, and since γ(G+ e) ≥ γ(G)− 1 for any edge e ∈ E

(
G
)
, γ (G+ e) ≥ 2. On the

other hand, the lower bound of Proposition 4.2.5, leads to γ(G + e) ≤ γdR(G+e)
2

= 6
2

= 3. Now we

show that γ(G+ e) 6= 3 for any edge e ∈ E
(
G
)
. Suppose, to the contrary, that γ (G+ ab) = 3 for

some edge ab ∈ E
(
G
)
. Since G is an 8-γdR-edge supercritical, γdR (G+ ab) = 2γ (G+ ab). Thus

by Proposition 4.2.6, we have γ(G + ab) = γ2(G + ab). Let D be a γ2-set of G + ab. Note that

|D| = 3. If {a, b} ⊂ V (G)−D or {a, b} ⊂ D, then assigning a 2 to every vertex of D and a 0 to

every vertex not in D provides a DRDF of G with weight 2 |D| = 6, contradicting γdR (G) = 8.

Now, without loss of generality, assume that a ∈ D. In this case assign 2 to every vertex of D, 1

to b and 0 to every vertex not in D ∪ {b} to obtain a DRDF of G with weight 2 |D| + 1 = 7, a

contradiction too. Hence, γ (G+ e) = 2 for any edge e ∈ E
(
G
)
, that is G is 3-γ-edge critical.

Remark 4.2.2 Balbuena and Hansberg [11] characterized a special family of 3-γ-edge critical

graphs with minimum degree one and presented a figure (Figure 4.8) illustrating all such graphs of

order at most 8. So, by Proposition 4.2.7, the converse of Proposition 4.2.8 is not true.
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Figure 4.8: All 3-γ-edge-critical graphs with minimum degree one and order at most 8.

Theorem 4.2.8 ([67]) If G is a connected 8-γdR-edge supercritical graph, then diam(G) ∈ {2, 3}.

Moreover, there exist connected 8-γdR-edge supercritical graphs F and H with diam(F ) = 2 and

diam(H) = 3, as illustrated in Figure 4.9.

Proof. Obviously diam(G) ≥ 2. By Proposition 4.2.8 and Theorem 4.2.7, we have diam(G) ≤ 3.

Now we show that the graphs F and H in Figure 4.9 are 8-γdR-edge supercritical:
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Consider the graph F . The function f that assigns 3 to each of a and a′, 2 to d′ and 0 to all other

vertices is a DRDF of F with weight w(f) = 8. It can be verified that there are no DRDFs of

smaller weights of F . Hence γdR (F ) = 8. It is simple matter to check that {a, d′}, {a, c′}, {a, a′}

and {a′, d} are dominating sets of F + ab′, F + ae′, F + ad′ and F + a′c′, respectively, and thus

γdR (F + e) ≤ 6 for any e ∈ {ab′, ac′, ae′, a′c′}. Since all possible edges of F have been considered,

we must have γdR (F + e) ≤ 6 for any e ∈ E
(
F
)
. In either case, we have γdR (F + e) = 6 for any

e ∈ E
(
F
)
. Moreover, it is clear that ecc (u) = 2 for any u ∈ V (F ), and thus diam(F ) = 2. It

follows that F is 8-γdR-edge supercritical with diam(F ) = 2.

Consider the graph H. The function h that assigns 3 to each of x8 and x9, 2 to x4 and 0 to all

other vertices is a DRDF of H with weight w(h) = 8. It can be verified that there are no DRDFs

of smaller weights of H. Hence γdR (H) = 8. As shown in [77], the graph H is 3-γ-edge critical.

Then γ (H + e) = 2 for any e ∈ E
(
H
)
. By Proposition 4.2.5, we must have γdR (H + e) = 6

for any e ∈ E
(
H
)
. Now, by inspection, ecc (x3) = ecc (x5) = ecc (x8) = 2 and ecc (u) = 3 for

any u ∈ V (H) − {x3, x5, x8}, and thus diam(H) = 3. Hence H is 8-γdR-edge supercritical with

diam(H) = 3.
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Figure 4.9: Examples of 8-γdR-edge-supercritical graphs

It is shown in [29] that there exists an infinite class F of 3-γ-edge critical graphs as follows: Let

A = {a1, a2, a3}, B = {b1, b2, ..., bn} for n ≥ 3, and C = {c1, c2, c3}. Set V (G) = A ∪ B ∪ C ∪ {v}.

Form complete graphs on A, B and C. Join v to each vertex of A, join each vertex in C to exactly

two vertices in A such that each vertex of A is adjacent to exactly two vertices of C. Form a
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perfect matching between three vertices in B and vertices in A, and join the other vertices in B

to each vertex of A (see Figure 4.10 for n = 5). Next, we show that F is an infinite families of

8-γdR-edge supercritical graphs.

Let G ∈ F . It is not diffi cult to show that γdR (G) = 8. Now, since G is 3-γ-edge critical, then

γ (G+ e) = 2 for any e ∈ E
(
G
)
. By Proposition 4.2.5, we must have γdR (G+ e) ≤ 6 for any

e ∈ E
(
G
)
. Hence G is 8-γdR-edge supercritical.
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Figure 4.10: Example of 8-γdR-edge-supercritical graph with diameter equal to 3

In 2011, Jafari Rad et al. [50] showed that the only γ-edge critical cactus graphs are P2, C3, C4 and

cor(C3). However, these graphs have a double Roman domination number of at most 7. Therefore,

the following corollary can be directly deduced from Proposition 4.2.8.

Corollary 4.2.3 ([67]) There is no connected 8-γdR-edge supercritical cactus.

In [39], Goddard and Henning proved that every planar graph G with diameter 2 has γ (G) ≤ 2,

except for the graph F depicted in Figure 4.11, which has γ (F ) = 3.
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Figure 4.11: The planar graph F
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Therefore, we conclude that there is no 8-γdR-edge supercritical planar graph of diameter 2, since

γdR (G) ≤ 3γ (G) ≤ 6, and γdR (F ) = 6. On the other hand, Furuya and Matsumoto [36] provided

a well-organized and inventive proof showing that the order of a connected 3-γ-edge critical planar

graph is at most 23. Thus the order of a connected 8-γdR-edge supercritical planar graph is at

most 23. Note that the graph H illustrated above is planar of order 9.
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CONCLUSION

In this thesis, we characterized the graphs G achieving the upper bound in the inequality γdR(G)+

γdR(G) ≤ 2n, a type of Nordhaus-Gaddum inequality, and determined the graphs G satisfying

γdR(G) = 2γR(G) − 1, improving upon previous studies. Additionally, we extended the concept

of supercriticality to double Roman domination for the first time, yielding significant results that

enhance the understanding of criticality in graph theory and build upon classical domination

concepts. Furthermore, we solved some open problems.

Based on these contributions, it is evident that Roman domination functions remain an attractive

research area in graph theory. There have been many achievements on this topic, but still some

open problems remain that have not been completely solved. In closing, we recall a few notable

examples:

Conjecture 4.2.3 ([15]) If G is a graph of order n with δ(G) ≥ 3, then γR(G) + γ(G) ≤ n.

Conjecture 4.2.4 ([21]) Let G be a graph with no isolated vertex. Then γtR(G) = 3γ(G) if and

only if γtR(G) = γR(G) + γ(G).

Question 4.2.1 ([67]) Can you establish structural properties of 8-γdR-edge supercritical graphs?

Question 4.2.2 ([67]) Can you find some classes of 8-γdR-edge supercritical graphs?

Question 4.2.3 ([22]) Is it the case that γoiR(G) = n− i(G)+γ(G) if and only if G is a complete

graph?

Question 4.2.4 ([61]) Do there exist connected 6-γtR-edge-supercritical graphs with diameter 2?
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