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Abstract

The objective of this thesis is to investigate fractional-order boundary value problems in

non-regular domains by examining the existence and uniqueness of solutions for various

types of abstract differential equations involving fractional operators. The study begins with

an analysis of three-dimensional fourth-order differential equations incorporating fractional

powers of the negative Laplace operator under Cauchy-Dirichlet boundary conditions in

cuspidal domains. The investigation techniques are based on transforming the main prob-

lem, through a natural change of variables, into a complete abstract fourth-order differen-

tial equation involving fractional powers of linear operators, which allows us to provide

results on well-posedness. Furthermore, we explore periodic-type solutions for fractional

neutral evolution equations involving Caputo and ψ-Hilfer derivatives, utilizing classical

fixed point theorems as a preliminary step toward further investigation of fractional-order

boundary value problems in non-smooth domains.

Keywords: Fractional-order boundary value problems, non-regular domains, existence and

uniqueness, abstract differential equations, well-posedness, periodic-type solutions.
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Résumé

L’objectif de cette thèse est d’étudier les problèmes aux limites d’ordre fractionnaire dans

des domaines non réguliers, en examinant l’existence et l’unicité des solutions pour dif-

férents types d’équations différentielles abstraites impliquant des opérateurs fractionnaires.

L’étude commence par l’analyse d’équations différentielles du quatrième ordre en dimen-

sion trois, incorporant des puissances fractionnaires de l’opérateur de Laplace négatif, sous

conditions de Cauchy-Dirichlet sur la frontière, dans des domaines contenant des points

de rebroussement. La méthode d’investigation s’appuie sur la transformation du prob-

lème principal, via un changement naturel de variables, en une équation différentielle ab-

straite complète du quatrième ordre comportant des puissances fractionnaires d’opérateurs

linéaires, ce qui permet d’obtenir des résultats concernant le problème bien posé. Par

ailleurs, on explore des solutions de type périodique pour des équations d’évolution neutres

fractionnaires impliquant les dérivées de Caputo et les dérivées ψ-Hilfer, en utilisant les

théorèmes classiques du point fixe comme étape préliminaire vers une étude approfondie

des problèmes aux limites d’ordre fractionnaire dans des domaines non lisses.

Mots clés: Problèmes aux limites d’ordre fractionnaire, domaines non réguliers, existence

et unicité, équations différentielles abstraites, bien-posé, solutions de type périodique.
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  ملخصال

 

    

تهدف هذه الأطروحة إلى دراسة مسائل القيم الحدية ذات الرتبة الكسرية في مجالات غير منتظمة، من خلال 

تبدأ  فحص وجود الحل ووحدانيته لأنماط مختلفة من المعادلات التفاضلية المجردة التي تتضمن مؤثرات كسرية.

مؤثر ثلاثي الأبعاد، والتي تشمل قوى كسرية للالدراسة بتحليل معادلات تفاضلية من الرتبة الرابعة في الفضاء ال

 على الحافة، وذلك في مجالات تحتوي على نقاط قرنة )رجوع(. ديريخليه -سالب لابلاس، تحت شروط كوشي

وتعتمد منهجية البحث على تحويل المسألة الأصلية، من خلال تغيير طبيعي للمتغيرات، إلى معادلة تفاضلية 

مما يتيح التوصل إلى نتائج تتعلق بمسألة بعة تتضمن قوى كسرية لمؤثرات خطية، مجردة تامة من الرتبة الرا

كما يتم أيضًا استكشاف الحلول ذات النمط الدوري لمعادلات التطور الحيادية الكسرية التي  .ة جيداًمصوغ

لثابتة الكلاسيكية كخطوة أولية نحو هيلفر، وذلك باستخدام مبرهنات النقطة ا-ψتتضمن مشتقات كابوتو ومشتقات 

 تعميق البحث في مسائل القيم الحدية ذات الرتبة الكسرية في مجالات غير ملساء.

 

 ،وجود الحل ووحدانيته ،مجالات غير منتظمة ،الحدية ذات الرتبة الكسرية مسائل القيم :يةمفتاحالكلمات ال

 .حلول ذات نمط دوري ،مسألة مصوغة جيداً، معادلات تفاضلية مجردة

 



Publications and communications

International publications

• N. Chegloufa, B. Chaouchi, F. Boutaous, and M. Kostić, S-asymptotically Bloch type

periodic solutions for abstract fractional equations involvingψ-Hilfer derivatives, Jour-

nal of Applied Nonlinear Dynamics. 14 (2025), no. 2, 343–354.

• N. Chegloufa, B. Chaouchi, M. Kostić, and F. Boutaous, On a class of abstract fourth-

order differential equations set on cusp domains, Journal of Prime Research in Mathe-

matics. 21 (2025), no. 1, 22–39.

• N. Chegloufa, B. Chaouchi, M. Kostić, and W. S. Du, On the study of pseudo S-

asymptotically periodic mild solutions for a class of neutral fractional delayed evo-

lution equations, Axioms. 12 (2023), no. 8, 800.

International communications

• N. Chegloufa. Existence of pseudo S-asymptotically periodic α-mild solution of class

p for neutral fractional derivative delayed evolution equations. ICCMA, 26-27th Novem-

ber 2023, Mila, Algeria.

• N. Chegloufa. Existence results for a class of neutral fractional evolution equations

with finite delay. 2nd-IWAM, 5-7th December 2023, Constantine, Algeria.

National communications

• N. Chegloufa. On a class of neutral fractional delayed evolution equations. MMS,

26-27th October 2023, M’sila- Bousaâda, Algeria.

iv



Contents

Notations vii

Introduction ix

1 Preliminaries 1

1.1 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fractional derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Fractional integrals and fractional derivatives . . . . . . . . . . . . . . 4

1.2.3 Caputo-type and Hilfer-type fractional derivatives . . . . . . . . . . . 4

1.2.4 Some properties of fractional derivation . . . . . . . . . . . . . . . . . 5

1.3 Semigroups of bounded linear operators . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Compact semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Existence of semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Analytic semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Fractional powers of closed operators . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Negative fractional powers of linear operators . . . . . . . . . . . . . . 10

1.4.2 Positive fractional powers of linear operators . . . . . . . . . . . . . . 10

1.5 Interpolation spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Trace theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Fixed point theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 On a class of abstract fourth-order differential equations set on cusp domains 15

2.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Statement of the abstract problem . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Existence of regular solution . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Existence of the solution to the main problem . . . . . . . . . . . . . . . . . . 30

v



3 On the study of pseudo S-asymptotically periodic mild solutions for a class of

neutral fractional delayed evolution equations 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Pseudo S-asymptotically periodic mild solution . . . . . . . . . . . . . 35

3.3 Existence and uniqueness of solution . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 S-asymptotically Bloch type periodic solutions for abstract fractional equations

involving ψ-Hilfer derivatives 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Notion of phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 S-asymptotically Bloch type periodic mild solution . . . . . . . . . . . 63

4.3 Existence and uniqueness of solution . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Conclusion 84

Appendices 85

Bibliography 87

vi



Notations

• Rn: n-Dimensional Euclidean space, where n is a non-zero natural number.

• Ω: Arbitrary set in Rn.

• ∂Ω: Boundary of Ω.

• N, R, and C: Set of natural numbers, real numbers, and complex numbers, respectively.

• R+: Set of positive real numbers.

• I : Arbitrary interval in R.

• Re(λ): Real part of complex number λ.

• n!: Factorial of n.

• [α]: Integer part of real number α.

• û: Fourier transform of function u.

• ∂xi = ∂/∂xi : Partial derivative with respect to xi .

• ∇ =
(
∂x1
, ...,∂xn

)
: Gradient with respect to x.

• d
mu
dtm

= u(m) and Dαu: Derivatives in the sense of distributions of u.

• (X,‖·‖) and (Y ,‖·‖Y ): Banach spaces over the field K ∈ {R,C}.
• H : Complex separable Hilbert space.

• < ·, · >: Scalar product on a Hilbert space H .

• X ′: Dual space of X with the strong dual topology.

• X: Closure of X.

• IX : Identity operator on X.

• L (X,Y ): Space of linear bounded operators defined from the whole space X into Y . To

simplify notation, we write L (X) instead L (X,X).

• (T (t))t≥0: Family of bounded linear operators on X.

• A: Linear operator on X.

• D (A) and R(A): Domain and range of the operator A.

• σ (A): Spectrum of the operator A.

• ρ(A) and R(λ,A): Resolvent set and resolvent operator of A, respectively.

• Γ (·): Gamma function.

• Iαt : Fractional integral of order α > 0.

vii



• Iα,ψt : Fractional integral of order α > 0, with respect to function ψ.

• RLDαt and CDαt : Riemann-Liouville and Caputo fractional derivatives of order α > 0.

• HD
α,β
a+ : Hilfer fractional derivative of order α and type 0 ≤ β ≤ 1.

• Dα,ψt and CD
α,ψ
t : ψ-Riemann-Liouville and ψ-Caputo fractional derivatives of order α > 0.

• HD
α,β,ψ
a+ : ψ-Hilfer fractional derivative of order α and type 0 ≤ β ≤ 1.

• ut(·) = u(·+ t): Classical history function.

• C: Space of all continuous functions from [−r,0] into X, r > 0.

• B: Phase space.

• Cn (Ω): Space of n-times continuously differentiable functions on Ω.

• C∞0 (Ω): The set of all smooth functions with compact support in Ω, having (continuous

in Ω) partial derivatives of arbitrary order.

• S : Space of rapidly decreasing functions at infinity (Frechet space).

• S ′: Space of Schwartz’s tempered distributions.

• L1
loc (Ω): Space of all locally integrable functions on Ω.

• Lp (Ω): Lebesgue space consisting of all p-integrable measurable functions on Ω.

• Wm,p (Ω): Sobolev space constructed on Lp (Ω).

• Hm (Ω) =Wm,2 (Ω).

• H s (Rn) and H s (Ω): Fractional order Sobolev spaces (Bessel potentials spaces).

• Lp (I,X): Lebesgue space consisting of all p-integrable measurable functions from I into

X.

• L∞ (I,X): Lebesgue space consisting of all measurable essentially bounded functions from

I into X.

• (X,Y )θ,p and (X,Y )θ: Interpolation spaces between X and Y .

• C(I,X): Space of all continuous functions from I into X.

• Cb(I,X): Space of bounded continuous functions from I into X.

• Cb(I ×Y ,X): Space of all continuous functions from I ×Y into X .

• SAPω (X): Space of S-asymptotically ω-periodic functions from R+ into X.

• SAAPω (X): Space of S-asymptotically ω-anti-periodic functions from R+ into X.

• SABPω,k(X): Space of S-asymptotically Bloch type periodic functions from R+ into X.

• P SAPω(X): Space of pseudo S-asymptotically ω-periodic functions from R+ into X.

• P SAPω,p(X): Space of pseudo S-asymptotically ω-periodic functions of class p from R+

into X.

• P SAPω,p(R+ × Y ,X): Space of uniformly (Y ,X) pseudo S-asymptotically ω-periodic func-

tions of class p from R+ ×Y into X.

viii



Introduction

The field of fractional calculus, which is mainly based on the study of integrals and deriva-

tives of arbitrary real or complex orders, has become a rapidly growing area of applied

mathematics, providing a powerful framework for modeling complex phenomena. The con-

cept dates back to the late 17th century when L’Hôpital posed a question to Leibniz about

the meaning of dny/dxn for n = 1/2. Initially regarded as a purely theoretical construct,

fractional calculus has evolved significantly through the contributions of many mathemati-

cians (see [57], [65] and references therein). In recent years, it has played a crucial role

in various branches of science and engineering [18, 48, 69, 70, 93]. Its applications ex-

tend to fields such as theoretical physics, fluid mechanics, biology, and image processing

[13, 15, 19, 20, 53, 62, 63, 83, 92, 102, 103].

The study of fractional boundary value problems (FBVPs) is one of the most impor-

tant areas of fractional calculus. These problems have attracted considerable interest from

researchers due to their ability to include memory effects, allowing fractional derivatives

and integrals to provide a more realistic representation of physical phenomena compared

to classical approaches. Significant research has focused on investigating the existence,

uniqueness, and stability of solutions for different types of FBVPs, using various forms of

fractional derivatives; see, for example, [1, 2, 3, 5, 8, 10, 22, 23, 25, 29, 41, 42, 43, 71, 89, 90,

100, 106, 111].

A comprehensive theory has been established for FBVPs in domains with smooth bound-

aries, where sufficiently smooth coefficients, boundary operators, and domain boundaries

result in solutions with corresponding smoothness. However, the situation becomes con-

siderably more complex when the domain contains non-regular or non-smooth boundary

points, and we recall here that a point x in the boundary of a domain Π ⊂ Rn (i.e., x ∈ ∂Π)

is called non-regular if, for every neighborhood U around x, there is no smooth, non-

degenerate map U → Rn that carries ∂Π ∩U into an (n − 1)-dimensional sphere; see [66]

for more details. The study of classical boundary value problem (BVPs) in domains with

non-regular boundaries has roots in early research efforts, including T. Carleman’s Ph.D.

dissertation (1916) [28]. Subsequent surveys by researchers such as V. A. Kondrat’ev and

ix



O. A. Oleinik (1983) [66] extended this analysis to fundamental equations in mathemat-

ical physics, including elasticity theory, the Navier-Stokes equations, and the biharmonic

equation.

In the contemporary theory of boundary-value problems, correctly formulating BVPs in

non-smooth domains requires considering solutions, the right-hand sides of equations, and

boundary conditions in appropriately chosen function spaces. Often, it is convenient to use

function spaces with a weighted norm, where the weight is a power of the distance to the

set of non-regular boundary points. This approach allows for a precise description of the

singularities in the solution and its derivatives near these points, see [66] for more details.

Since the 1970s, various classical methods have been adapted to study the complexities of

BVPs in non-cylindrical and non-smooth domains. Notable methods include:

• Domain decomposition method: By approximating the non-smooth domain with a

sequence of sub-domains that can be transformed into smooth ones, researchers have

obtained significant results [17, 44, 64, 95, 96].

• Layer potential method: S. Hofmann and J. L. Lewis (2005) [59] utilized this method

for the solvability of the heat equation in non-cylindrical domains with Lipschitz-type

conditions.

• Rothe’s method: Initially introduced in the 1930s by E. Rothe [94] for second-order lin-

ear parabolic equations, this method has since been extended to handle linear parabolic

BVPs in non-cylindrical domains [46, 68].

• Sum of operators method: Developed by P. Grisvard and Da. Prato (1975) [91], this

powerful method involves representing the solution through a Dunford integral con-

taining resolvents of the operators involved. This method has been successfully ap-

plied to solve parabolic problems in non-cylindrical domains, yielding results that

demonstrate maximal regularity [72, 73, 74].

Many important applied problems reduce to studying BVPs in domains with non-smooth

boundaries, numerous studies have focused on equations in specific domains with particular

types of boundary conditions. Nevertheless, only a few results are dedicated to the study of

FBVPs in non-smooth domains. For instance, B. Chaouchi et al. (2023) [34] investigated the

solvability of a time-conformable fractional equation given by

Dαt u(t,x) +
N∑
i=1

D2m
xi u(t,x) = h(t,x), α ∈ (0,1] , m ∈ N∗, (1)

associated with the following initial and boundary conditions

u
∣∣∣{0}×Ω = 0, u

∣∣∣{1}×Ω = 0,

u
∣∣∣[0,1]×∂Ω = 0,

(2)

x



set in a singular cylindrical domain

Π = [0,1]×Ω(t),

Ω =
{

(x1,x2, ...,xn) ∈ RN
/ √

x2
1 + x2

2 + ...+ x2
n ≤ ϕ(t)

}
,

where, ϕ represents a parametrization function satisfying ϕ(0) = 0 and ϕ(t) > 0, t ∈ ]0,1],

while Dαt is the standard conformable time fractional derivative of order α in the sense

stated in [4]. The investigation techniques are based on transforming the problem (1)–(2)

through a natural change of variables into an abstract differential problem

w
′
(t) +A(t)w(t) = g(t), t ∈ [0,1] ,

with

w(0) = w(1) = 0.

In line with this objective, this thesis is devoted to the study of fractional-order boundary

value problems in non-regular domains by examining the existence and uniqueness of solu-

tions for various types of abstract differential equations involving fractional operators. The

analysis employs a variety of functional analysis tools, including semigroup theory, frac-

tional powers of closed operators, interpolation theory, and some classical fixed point theo-

rems. This approach has been utilized in numerous works; see [33, 35, 36, 37, 49, 50, 87].

The organization and main ideas of the thesis are summarized as follows. The first chap-

ter provides essential definitions and results related to Sobolev spaces, fractional integrals

and derivatives, semigroup theory, and significant findings regarding the fractional power

of closed operators. Additionally, it introduces definitions and properties of interpolation

spaces and the trace theorem, concluding with several classical fixed point theorems that

are foundational for the subsequent analysis.

Chapter 2 explores the existence and uniqueness of solutions for three-dimensional fourth-

order differential equations involving fractional powers of the negative Laplace operator

with Cauchy-Dirichlet boundary conditions and initial conditions

d4

dt4
u (t,x) + (1 + ρ4 (x))(−∆)1/2u (t,x) +

3∑
j=1

(
ρj (x) (−∆)j/8

) d4−j

dt4−j
u (t,x) = f (t,x) , (3)

u|R+×∂Π = 0, (4)

and
du
dt

∣∣∣∣∣{0}×Π = 0,
d3u

dt3
+ b(−∆)3/8u

∣∣∣∣∣∣{0}×Π = 0, (5)

on the cusp domain R+ ×Π,

Π :=
{
x ∈ R3

/
0 < x3 < 1,

(
x1

(x3)α
,
x2

(x3)α

)
∈Ω

}
, α > 1,

xi



where Ω ⊆ R2 is a bounded smooth, ρj(·), j = 1,2,3,4, are continuous real functions defined

on Π, and f (t, ·) ∈ L2 (Π).

The principal strategy for solving problem (3)-(4)-(5) involves transforming the equation (3),

posed in the non-cylindrical domain Π, into a variable-coefficient equation in a cylindrical

domain Q given by

Q = Ω×
] 1
α − 1

,+∞
[
.

Section 2.2 provides sufficient conditions for the well-posedness and regular solvability of a

class of complete abstract fourth-order differential equations

d4w(t)
dt4

+A4θw(t) +
4∑
j=1

Aj
d4−jw(t)
dt4−j

= h(t), t ∈ R+,

endowed with the initial conditions

dw(0)
dt

= ϕ1 ∈H5θ/2,
d3w(0)
dt3

+Kw(0) = ϕ2 ∈Hθ/2,

where θ ∈ ]0,1], A is a self-adjoint positive definite operator in a separable Hilbert space H ,

Aj , j ∈ {1,2,3,4} are linear operators acting on H , K ∈ L(H7θ/2,Hθ/2), with Hθ denoting the

Hilbert scale spaces generated by Aθ for θ ≥ 0, and h ∈ L2 (R+;H). Lastly, after preparing

some intermediate results that directly follow from the findings in Section 2.3, we revisit

the original problem by applying the inverse change of variables.

Chapter 3 examines the existence and uniqueness of pseudo S-asymptotically periodic

mild solutions for a class of neutral evolution equations involving the Caputo fractional

operator with finite delay. This study applies classical fixed point theorems, including the

Banach contraction principle and Krasnoselskii’s fixed point theorem. Section 3.2 compiles

essential definitions and preliminary results needed to justify the main findings, particu-

larly the class of pseudo S-asymptotically periodic functions. Section 3.3 establishes suffi-

cient conditions for the existence of such solutions, while Section 3.4 illustrates an example

of a delayed partial differential equation.

Chapter 4 investigates the existence and uniqueness of S-asymptotically Bloch periodic

mild solutions for a class of neutral evolution equations governed by the ψ-Hilfer fractional

operator with infinite delay. The analysis employs classical fixed point theorems, specif-

ically the Banach contraction principle and Schauder’s fixed point theorem. Section 4.2

presents the fundamental definitions and preliminary results required to establish the main

findings, including the class of S-asymptotically Bloch type periodic functions and the as-

sociated phase space. Section 4.3 derives sufficient conditions ensuring the existence of the

desired solution. Finally, Section 4.4 provides an illustrative example of a fractional partial

differential equation to demonstrate the applicability of the theoretical results.
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Chapter 1
Preliminaries

In this chapter, we review some standard definitions and properties that we will need

throughout this work. The chapter is intended to make the work as self-contained as possi-

ble. For a deeper discussion of the theory discussed here, we refer the reader to [7, 12, 14,

45, 65, 79, 80, 82, 87, 99, 105].

1.1 Sobolev spaces

In this section, we provide some definitions and properties of Sobolev spaces which will be

used later. The primary references for further detailed information are [7, 45, 80].

Definition 1.1.1. Let Ω ⊂ Rn be an arbitrary set, and let x = (x1, . . . ,xn) be an element of Ω with

dx = dx1 . . . dxn. For a real number p where 1 ≤ p < +∞, the space Lp (Ω) is defined by

Lp (Ω) =
{
u : Ω −→K

/
u measurable, and

∫
Ω

|u(x)|p dx < +∞
}
,

equipped with the norm

‖u‖Lp(Ω) :=
(∫

Ω

|u(x)|p dx
)1/p

. (1.1)

If p = 2, it is a classical result that L2 (Ω) is a Hilbert space for the scalar product

< u,v >L2(Ω)=
∫
Ω

u(x)v(x)dx,

associated to the norm (1.1).

Definition 1.1.2. Let m be a positive integer and 1 ≤ p < +∞.

The Sobolev space Wm,p (Ω) of order m on Ω is defined by

Wm,p (Ω) = {u ∈ Lp (Ω)
/
Dαu ∈ Lp (Ω) for 0 ≤ |α| ≤m } ,

where

α = {α1, . . . ,αn} , |α| = α1 + · · ·+αn, Dαu = ∂α1
x1 . . .∂

αn
xn . (1.2)

1



1.1. Sobolev spaces

The derivatives Dαu are taken in the sense of distributions on Ω, i.e., Dαu = vα in the weak sense

provided vα ∈ L1
loc (Ω) satisfies∫

Ω

u(x)Dαϕ(x)dx = (−1)|α|
∫
Ω

vα(x)ϕ(x)dx, (1.3)

for every ϕ ∈ C∞0 (Ω).

In particular case if p = 2, we set

Hm (Ω) =Wm,2 (Ω) .

Remark 1.1.1. For m1 and m2, two integers such that m1 < m2, we observe strict inclusions

Hm2 (Ω) ⊂Hm1 (Ω) ⊂ L2 (Ω) =H0 (Ω) .

Theorem 1.1.1. Let m be a positive integer and 1 ≤ p < +∞.

(i) The space Wm,p (Ω) equipped with the norm

‖u‖Wm,p(Ω) =

 ∑
|α|≤m

‖Dαu‖pLp(Ω)


1
p

, (1.4)

is a Banach space.

(ii) Hm (Ω) is a Hilbert space for the scalar product

< u,v >Hm(Ω)=
∑
|α|≤m

〈Dαu,Dαv〉L2(Ω) ,

associated to the norm

‖u‖Hm(Ω) =

 ∑
|α|≤m

‖Dαu‖2L2(Ω)


1
2

. (1.5)

Definition 1.1.3. For m being a positive integer and 1 ≤ p < +∞.

(i) Wm,p
0 (Ω) is the closure of C∞0 (Ω) in the space Wm,p (Ω), i.e.,

W
m,p
0 (Ω) = C∞0 (Ω)

Wm,p(Ω)
.

(ii) Hm
0 (Ω) is the closure of C∞0 (Ω) in the space Hm (Ω), i.e.,

Hm
0 (Ω) = C∞0 (Ω)

Hm(Ω)
.

Proposition 1.1.1. (Poincaré’s inequality). Let Ω be a bounded open set and 1 ≤ p < +∞.

Then, there exists a constant C > 0 such that

‖u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) , ∀u ∈W
1,p
0 (Ω) .

In other words, on W 1,p
0 (Ω), the quantity ‖∇u‖Lp(Ω) is a norm equivalent to the W 1,p (Ω) norm.
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1.2. Fractional derivation

Definition 1.1.4. (Fractional order Sobolev spaces). Let s be a real number, we define

H s (Rn) =
{
u

/
u ∈ S ′ (Rn) , (1 + |ξ |2)

s
2 û ∈ L2 (Rn)

}
, (1.6)

where |ξ |2 = ξ2
1 + · · ·+ ξ2

n and S ′ is dual space of

S =
{
u

/
xαDβu ∈ L2 (Rn) ∀α ∀β

}
,

with xα = xα1
1 . . . xαnn .

Theorem 1.1.2. The space H s (Rn) equipped with the norm

‖u‖H s(Rn) =
∥∥∥(1 + |ξ |2)

s
2 û

∥∥∥
L2(Rn)

,

is a Hilbert space.

Definition 1.1.5. For any real number s and arbitrary domain Ω ⊂ Rn.

(i) H s (Ω) consists of restrictions u|Ω of elements u ∈H s (Rn) and is normed by

‖f ‖H s(Ω) = inf
{
‖u‖H s(Rn)

/
u|Ω = f , u ∈H s (Rn)

}
.

(ii) H s
0 (Ω) is the closure of C∞0 (Ω) in the space H s (Ω), i.e.,

H s
0 (Ω) = C∞0 (Ω)

H s(Ω)
.

1.2 Fractional derivation

In this section, we present the definitions and properties of fractional integrals and frac-

tional derivatives of a function f with respect to another function ψ. Some of these defini-

tions and results were provided in [12, 65, 99].

1.2.1 Gamma function

The Gamma function is a fundamental element of fractional calculus, playing an essential

role in the theory. More detailed information may be found in [65, Section 1.1.5].

Definition 1.2.1. The Gamma function, denoted by Γ (x), is defined for any complex number z

such that Re(z) > 0 by

Γ (z) =
∫ +∞

0
tz−1e−tdt,

where tz−1 = e(z−1)ln(t).

Proposition 1.2.1. For all z ∈ C, Re(z) > 0 we have

Γ (z+ 1) = zΓ (z).
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1.2. Fractional derivation

1.2.2 Fractional integrals and fractional derivatives

Definition 1.2.2. [12, 99] Let (a,b) be a finite or infinite interval of the real line R and α > 0.

Let ψ(x) be an increasing and positive monotone function on (a,b], having a continuous derivative

ψ
′
(x) on (a,b). The fractional integrals of a function f with respect to another function ψ on [a,b]

are defined by

I
α,ψ
a+ f (x) =

1
Γ (α)

∫ x

a
ψ
′
(t) (ψ(x)−ψ(t))α−1 f (t)dt, x ∈ (a,b), (1.7)

where f is an integrable function defined on [a,b].

Lemma 1.2.1. Let α > 0 and β > 0. Then, we have

I
α,ψ
a+ I

β,ψ
a+ f (x) = Iα+β,ψ

a+ f (x), x ∈ (a,b).

Definition 1.2.3. Let ψ′(x) , 0 (−∞ ≤ a < x < b ≤ +∞) and α > 0, n ∈ N. The Riemann-Liouville

derivative of a function f with respect to ψ of order α correspondent to the Riemann-Liouville, is

defined by

D
α,ψ
a+ f (x) =

(
1

ψ′(x)
d
dx

)n
I
n−α,ψ
a+ f (x)

=
1

Γ (n−α)

(
1

ψ′(x)
d
dx

)n∫ x

a
ψ
′
(t) (ψ(x)−ψ(t))n−α−1 f (t)dt, x ∈ (a,b).

1.2.3 Caputo-type and Hilfer-type fractional derivatives

Definition 1.2.4. [12] Let α > 0, n ∈ N, I is the interval −∞ ≤ a < b ≤ +∞, f , ψ ∈ Cn (I) two

functions such that ψ is increasing and ψ′ , 0 on I . The ψ-Caputo fractional derivative of order

α of a function f is given by

CD
α,ψ
a+ f (x) = In−α,ψa+

(
1

ψ′(x)
d
dx

)n
f (x), x ∈ (a,b),

where,

n = [α] + 1 for α < N, n = α for α ∈ N.

Remark 1.2.1. To simplify notation, we will use the abbreviated symbol

f
[n]
ψ (x) =

(
1

ψ′(x)
d
dx

)n
f (x), x ∈ (a,b);

it is clear that, given α = n ∈ N
CD

α,ψ
a+ f (x) = f [n]

ψ (x),

and, if α < N, then

CD
α,ψ
a+ f (x) =

1
Γ (n−α)

∫ x

a
ψ′(t) (ψ(x)−ψ(t))n−α−1 f

[n]
ψ (t)dt.
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1.2. Fractional derivation

In particular, when α ∈ (0,1), we have

CD
α,ψ
a+ f (x) =

1
Γ (1−α)

∫ x

a
(ψ(x)−ψ(t))−α f ′(t)dt.

Definition 1.2.5. [99] Let n−1 < α < n with n ∈ N, I = [a,b] be the interval such that −∞ ≤ a <
b ≤ +∞ and f ,ψ ∈ Cn (I) two functions such that ψ is increasing and ψ

′
, 0 on I . The ψ-Hilfer

fractional derivative of order α and type 0 ≤ β ≤ 1 of a function f is defined by

HD
α,β,ψ
a+ f (x) = Iβ(n−α),ψ

a+

(
1

ψ′ (x)
d
dx

)n
I

(1−β)(n−α),ψ
a+ f (x), x ∈ (a,b) . (1.8)

1.2.4 Some properties of fractional derivation

In what follows, we present relationships between different types of fractional derivatives

and fractional integrals. For further details, we refer to [12, 99].

Theorem 1.2.1. If f ∈ Cn(I) and α > 0, then

CD
α,ψ
a+ f (x) =Dα,ψa+

f (x)−
n−1∑
k=0

(ψ(x)−ψ(a))k

k!
f

[k]
ψ (a)

 ,
and

I
α,ψ
a+

CD
α,ψ
a+ f (x) = f (x)−

n−1∑
k=0

(ψ(x)−ψ(a))k

k!
f

[k]
ψ (a).

Theorem 1.2.2. If f ∈ Cn(I), n− 1 < α < n and 0 ≤ β ≤ 1, then

HD
α,β,ψ
a+ f (x) =Dn−β(n−α),ψ

a+

I (1−β)(n−α),ψ
a+ f (x)−

n−1∑
k=0

(ψ(x)−ψ(a))k

k!

(
1

ψ′(x)
d
dx

)k
I

(1−β)(k−α),ψ
a+ f (a)

 ,
and

I
α,ψ
a+

HD
α,β,ψ
a+ f (x) = f (x)−

n−1∑
k=0

(ψ(x)−ψ(a))γ−k

Γ (γ − k + 1)
f

[n−k]
ψ I

(1−β)(n−α),ψ
a+ f (a),

where γ = α + β (n−α).

Theorem 1.2.3. Let f ∈ C1 (I), α > 0 and 0 ≤ β ≤ 1, we have

CD
α,ψ
a+ I

α,ψ
a+ f (x) = f (x) and HD

α,β,ψ
a+ I

α,ψ
a+ f (x) = f (x).

Remark 1.2.2. If ψ(x) = x, then all the definitions mentioned above coincide with the definition

of the classical fractional derivative and integral; see [65, 97]. Therefore, we can write:

Iα,xa+ f (x) =
1

Γ (α)

∫ x

a
(x − t)α−1 f (t)dt = Iαa+f (x),

Dα,xa+ f (x) =
1

Γ (n−α)

(
d
dx

)n∫ x

a
(x − t)n−α−1 f (t)dt = RLDαa+f (x),
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1.3. Semigroups of bounded linear operators

CDα,xa+ f (x) =
1

Γ (n−α)

∫ x

a
(x − t)n−α−1

(
d
dt

)n
f (t)dt = CDαa+f (x),

HD
α,β,x
a+ f (x) = Iβ(n−α)

a+

(
d
dx

)n
I

(1−β)(n−α)
a+ f (x) = HD

α,β
a+ f (x).

1.3 Semigroups of bounded linear operators

For detailed proofs in this section, we refer the reader to [87, Chapter 1].

Definition 1.3.1. A one-parameter family (T (t))t≥0 ∈ L (X) of bounded linear operators is a semi-

group of bounded operators on X if

(i) T (0) = IX ,

(ii) T (t + s) = T (t)T (s) for all t, s ≥ 0.

Definition 1.3.2. A one-parameter family (T (t))t≥0 ∈ L (X) of bounded operators on X is a uni-

formly continuous semigroup if

lim
t−→0+

‖T (t)− IX‖ = 0.

Definition 1.3.3. The linear operator A :D (A) ⊂ X −→ X is defined by

D (A) =
{
x ∈ X

/
lim
t−→0+

T (t)x − x
t

exists
}
,

and

Ax = lim
t−→0+

T (t)x − x
t

, for all x ∈ X,

is the infinitesimal generator of the semigroup (T (t))t≥0.

Theorem 1.3.1. A linear operator A is the infinitesimal generator of a uniformly continuous

semigroup if and only if A is a bounded linear operator.

Definition 1.3.4. A semigroup (T (t))t≥0 ∈ L (X) of bounded operators on X is a strongly contin-

uous semigroup (or C0- semigroup) if

lim
t−→0+

T (t)x − x = 0, for all x ∈ X.

Lemma 1.3.1. Let (T (t))t≥0 be a C0-semigroup on X. Then

(i) There exist constants ν ≥ 0 and M ≥ 1 such that

‖T (t)‖ ≤Meνt, for all t ≥ 0.

(ii) For every x ∈ X, t 7→ T (t)x is a continuous function from [0,+∞) into X.
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1.3. Semigroups of bounded linear operators

Theorem 1.3.2. Assume that (T (t))t≥0 is a C0-semigroup on X and let A :D (A) ⊂ X −→ X be its

infinitesimal generator. Then

(i) T (t)x ∈ D (A), for x ∈ D (A) and t ≥ 0. Moreover, for x ∈ D (A) the function [0,+∞) 3 t 7→
T (t)x is differentiable and

d
dt
T (t)x = AT (t)x = T (t)Ax.

(ii) For x ∈D (A) and 0 ≤ s ≤ t < +∞,

T (t)x − T (s)x =
∫ t

s
T (τ)Axdτ =

∫ t

s
AT (τ)xdτ.

(iii) ∩n≥1D (An) is dense in X.

(vi) If ‖T (t)‖ ≤ Meνt, t ≥ 0, for some M ≥ 1 and ν ∈ R, then for all x ∈ X and λ ∈ C with

Re(λ) > ν we have

R(λ,A)x := (λIX −A)−1x =
∫ +∞

0
e−λtT (t)xdt.

Theorem 1.3.3. Let A : D (A) ⊂ X −→ X be the infinitesimal generator of two C0-semigroups
(T (t))t≥0 and (S(t))t≥0. Then

T (t) = S(t), for all t ≥ 0.

Definition 1.3.5. [84] A C0-semigroup (T (t))t≥0 is said to be a uniformly exponentially stable if

there exist constants M > 0 and ν > 0 such that

‖T (t)‖ ≤Me−νt, for all t ≥ 0. (1.9)

Moreover, we define

ν0 = inf
{
ν ∈ R

/
∃M > 0 such that ‖T (t)‖ ≤Meνt, ∀t ≥ 0

}
.

1.3.1 Compact semigroup

Definition 1.3.6. A C0-semigroup (T (t))t≥0 is called compact for t > t0 if for every t > t0, T (t) is

a compact operator. (T (t))t≥0 is called compact if it is compact for t > 0.

We need to clarify the relationship between the compactness of the semigroup (T (t))t≥0

and its continuity, which is expressed via the following lemma. The proof is detailed in [87].

Lemma 1.3.2. Let (T (t))t≥0 be a C0 semigroup and let A be its infinitesimal generator. (T (t))t≥0

is a compact semigroup if and only if

(i) T (t) is continuous in the uniform operator topology for t > 0, and

(ii) R(λ,A) is compact for λ ∈ ρ(A).

Corollary 1.3.1. Let (T (t))t≥0 be a uniformly continuous semigroup. (T (t))t≥0 is a compact semi-

group if and only if R(λ,A) is compact for every λ ∈ ρ(A).
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1.3. Semigroups of bounded linear operators

1.3.2 Existence of semigroups

Theorem 1.3.4. (Hille-Yosida). If A : D (A) ⊂ X −→ X is a linear operator, then the following

conditions are equivalent:

(i) A is the infinitesimal generator of a C0-semigroup of contractions, i.e., A is the infinitesimal

generator of a C0-semigroup (T (t))t≥0 such that,

‖T (t)‖ ≤ 1 for all t ≥ 0.

(ii) (a) A is closed and D (A) = X,

(b) the resolvent set ρ(A) of A contains (0,+∞) and for every λ > 0∥∥∥(λIX −A)−1
∥∥∥L(X)

≤ 1
λ
.

(iii) (a) A is closed and D (A) = X,

(b) the resolvent set ρ(A) of A contains the half plane {λ ∈ C
/
Re(λ) > 0 } and for such λ∥∥∥(λIX −A)−1

∥∥∥L(X)
≤ 1
Re(λ)

.

Theorem 1.3.5. (Feller-Miyadera-Phillips). If A : D (A) ⊂ X −→ X is a linear operator and

M ≥ 1,ν ∈ R are constants, then the following conditions are equivalent:

(i) A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 such that,

‖T (t)‖ ≤Meνt for all t ≥ 0.

(ii) (a) A is closed and D (A) = X,

(b) the resolvent set ρ(A) of A contains (ν,+∞) and and for every λ > ν and n ∈ N

‖(λIX −A)−n‖L(X) ≤
M

(λ− ν)n
.

(iii) (a) A is closed and D (A) = X,

(b) the resolvent set ρ(A) of A contains the half plane {λ ∈ C
/
Re(λ) > ν } and for such λ

and n ∈ N
‖(λIX −A)−n‖L(X) ≤

M

(Re(λ)− ν)n
.
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1.4. Fractional powers of closed operators

1.3.3 Analytic semigroups

For the results in this section we refer the reader to [87, Chapter 2].

Definition 1.3.7. A semigroup (T (t))t≥0 is called an analytic if there exist a sector on the complex

plane

∆δ = {z ∈ C
/
δ1 < arg(z) < δ2, δ1 < 0 < δ2 } ,

and a family of bounded linear operators (T (z))z∈∆δ which coincide with T (t) for t ≥ 0, such that

(i) the mapping z 7−→ T (z) is analytic in ∆δ,

(ii) T (0) = IX and limz−→0,z∈∆δ T (z)x = x for all x ∈ X,

(iii) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ ∆δ.

Definition 1.3.8. [82] Let 0 < δ < π
2 , M ≥ 1 and a ∈ R. We say that an operator A : D (A) ⊂

X −→ X is sectorial if

(i) A is a densely defined closed operator,

(ii) the resolvent set ρ(A) contains the sector

Sa,δ = {λ
/
δ ≤ |arg(λ− a)| ≤ π,λ , a } ,

and the estimate ∥∥∥(λIX −A)−1
∥∥∥ ≤ M

|λ− a|
holds for all λ ∈ Sa,δ.

Theorem 1.3.6. Let A : D (A) ⊂ X −→ X be a linear operator. Then the following conditions are

equivalent:

(i) A is the infinitesimal generator of an analytic semigroup.

(ii) −A is a sectorial operator in X.

Theorem 1.3.7. Let A be the infinitesimal generator of an analytic semigroup. If B is a bounded

linear operator then A+B is the infinitesimal generator of an analytic semigroup.

1.4 Fractional powers of closed operators

To characterize the fractional powers of linear operators, we use the following assumption:

(H) :


Let A be a densely defined closed linear operator for which:

(i) ρ(A) ⊃
∑+ = {λ ∈ C

/
0 < ω < |arg(λ)| ≤ π } ∪V , where V is a neighborhood of zero,

(ii) ‖R(λ,A)‖ ≤ M
1+|λ| , for λ ∈

∑+ .

If M = 1 and ω = π
2 , then −A generates a C0-semigroup. For ω < π

2 , −A generates an

analytic semigroup; see [87, Theorem 2.5.2].
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1.4. Fractional powers of closed operators

1.4.1 Negative fractional powers of linear operators

Let A be an operator satisfying assumption (H), and let θ > 0. If ω < π
2 , i.e., −A is the

infinitesimal generator of an analytic semigroup (T (t))t≥0. The negative fractional powers

of A are given by

A−θ :=
1

Γ (θ)

∫ ∞
0
tθ−1T (t)dt, (1.10)

where the integral converges in the uniform operator topology for every θ > 0. For alterna-

tive representations of A−θ involving the Dunford integral or real line resolvent integrals,

we refer the reader to [14, 87].

Remark 1.4.1. In the subsequent discussion, if −A is the infinitesimal generator of an analytic

semigroup (T (t))t≥0, we adopt Equation (1.10) as the definition of A−θ for θ > 0, while setting

A0 := IX .

Lemma 1.4.1. Suppose A satisfies Assumption (H) with ω < π
2 . Then, we have

(i) For θ1, θ2 ≥ 0

A−(θ1+θ2) = A−θ1 ·A−θ2 .

(ii) There exists a constant C such that∥∥∥A−θ∥∥∥ ≤ C, for 0 ≤ θ ≤ 1.

(iii) A−θ is one-to-one.

1.4.2 Positive fractional powers of linear operators

Definition 1.4.1. Let A satisfies Assumption (H) with ω < π
2 . For every θ > 0 we define

Aθ =


(
A−θ

)−1
, θ > 0,

IX , θ = 0.

Here are some properties of these operators.

Theorem 1.4.1. Let Aθ be defined by Definition 1.4.1. Then,

(i) Aθ is a closed operator with domain D(Aθ) = R(A−θ).

(ii) For θ1 ≥ θ2 > 0 implies D(Aθ1) ⊂D(Aθ2).

(iii) If θ1, θ2 are real then

Aθ1+θ2 = Aθ1 ·Aθ2 ,

for every x ∈D(Aθ) where θ =max(θ1,θ2,θ1 +θ2).

10



1.5. Interpolation spaces

For x ∈D(A) ⊂D(Aθ) and 0 < θ < 1, we can explicitly define the operators Aθx.

Lemma 1.4.2. (Balakrishnan’s formula). Let 0 < θ < 1. If x ∈D(A) ⊂D(Aθ) then

Aθx =
sin(πθ)
π

∫ +∞

0
tθ−1A(tIX +A)−1xdt. (1.11)

Theorem 1.4.2. Assume that −A is the infinitesimal generator of an analytic semigroup (T (t))t≥0,

and that ‖T (t)‖ ≤Me−δt for all t ≥ 0 and some δ > 0. If 0 ∈ ρ(A), then one has

(i) T (t) : X→D(Aθ) for every t > 0 and θ ≥ 0.

(ii) For every t ≥ 0 and x ∈D(Aθ), we have

T (t)Aθx = AθT (t)x.

(iii) For every t > 0, the operator AθT (t) is bounded and

||AθT (t)|| ≤Mθt
−θe−δt. (1.12)

(vi) Let 0 < θ < 1 and x ∈D(Aθ), then

||T (t)x − x|| ≤ Cθtθ ||Aθx||.

The following result, as cited in [98, p. 15], will be needed in Chapter 2.

Theorem 1.4.3. If A : D(A) ⊂ H −→ H is a positive definite self-adjoint operator in a Hilbert

space H , then the operator Aθ :D(Aθ) ⊂H −→H is positive definite self-adjoint for each θ > 0.

1.5 Interpolation spaces

For further details on this section, we refer the reader to [79, 80, 82, 105].

Definition 1.5.1. (Intermediate and interpolation spaces). Let X,Y ,Z be Banach spaces. The

space Z is called an intermediate space between X and Y if

Y ⊂ Z ⊂ X,

with continuous embeddings. Furthermore, Z is called an interpolation space between X and

Y if, for every linear operator T ∈ L(X) such that the restriction T |Y ∈ L(Y ), it follows that

T |Z ∈ L(Z).

11



1.5. Interpolation spaces

Now, we provide specific characterizations of interpolation spaces.

Definition 1.5.2. Let X and Y be two Banach spaces with Y ⊂ X, and let C > 0 be such that

‖x‖X ≤ C ‖x‖Y , for all x ∈ Y .

Let 0 < θ ≤ 1 and 1 ≤ p ≤ +∞. We define:

(i)
(X,Y )θ,p =

{
x ∈ X

/
t 7→ t−θ−1/pK(t,x,X,Y ) ∈ Lp (0,+∞)

}
.

(ii) The norm on (X,Y )θ,p is given by

‖x‖(X,Y )θ,p =
∥∥∥t−θ−1/pK(t,x,X,Y )

∥∥∥
Lp(0,+∞)

.

(iii) The space

(X,Y )θ =
{
x ∈ X

/
lim
t→0

t−θK(t,x,X,Y ) = 0
}
.

Here, for every x ∈ X and t > 0, the function K(t,x,X,Y ) is defined by

K(t,x,X,Y ) = inf { ‖a‖X + t ‖b‖Y
/
x = a+ b, a ∈ X, b ∈ Y } .

For the proofs of the following proposition, refer to A. Lunardi (1995) [82, Chapter 1].

Proposition 1.5.1. Let θ,θ1,θ2,p1 and p2 be real numbers.

(i) If 0 < θ < 1, 1 ≤ p1 ≤ p2 ≤ +∞ then

(X,Y )θ,p1
⊂ (X,Y )θ,p2

⊂ (X,Y )θ ⊂ (X,Y )θ,+∞ .

(ii) If 0 < θ1 < θ2 ≤ 1, then (X,Y )θ2,+∞ ⊂ (X,Y )θ1,1.

Regarding fractional power operators, here is another definition that will be essential.

Definition 1.5.3. Let 0 < θ < 1, 1 ≤ p ≤ +∞, and A be a closed linear operator with its domain

D(A) ⊂ X, we define the intermediate space between D(A) and X by

DA (θ,p) = (D(A),X)1−θ,p .

Following [40], when the operator A satisfies certain additional assumptions, it is then

possible to provide explicit characterizations of DA (θ,p). To accomplish this, it is necessary

to utilize the space Lp (R+,X) as defined by

Lp (R+,X) =

u : R+ −→ X

/
‖u‖Lp(R+,X) =

(∫ +∞

0
‖u(t)‖p dt

) 1
p

< +∞

 ,
with the usual modification for p = +∞; that is

L∞ (R+,X) =
{
u : R+ −→ X

/
‖u‖L∞(R+,X) = sup

t≥0
‖u(t)‖ < +∞

}
.
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1.6. Trace theorem

Theorem 1.5.1. Let 0 < θ < 1, 1 ≤ p ≤ +∞. Assume that ρ (A) ⊃ R+ and that there exists a

constant C > 0 such that ∥∥∥∥(A−λIX)−1
)∥∥∥∥L(X)

≤ C
λ
, for all λ > 0,

then

DA (θ,p) =
{
x ∈ X

/
tθ−1/pA (A− tIX)−1x ∈ Lp (R+,X)

}
,

and

DA (θ,+∞) =
{
x ∈ X

/
sup
t>0

∥∥∥tθA (A− tIX)−1x
∥∥∥ < +∞

}
,

equipped with the norm

‖x‖DA(θ,+∞) = ‖x‖+ sup
t>0

∥∥∥tθA (A− tIX)−1x
∥∥∥ .

Lemma 1.5.1. Let A : D(A) ⊂ H −→ H be a positive definite self-adjoint operator in a Hilbert

space H . Let α and β be two positive constants. Then, for 0 < θ < 1,[
D (Aα) ,D

(
Aβ

)]
θ

:=
(
D (Aα) ,D

(
Aβ

))
θ,2

=D
(
Aα(1−θ)+θβ

)
.

In particular case where β = 0, we have

DA (θ,2) = (D (Aα) ,X)θ,2 =D
(
Aα(1−θ)

)
.

Proof. See H. Triebel (1995) [105, Page 142].

Remark 1.5.1. According to Remark 1.1.1, for s ≥ 0, the space H s (Ω) may also be defined as the

interpolation space between Hm (Ω) and L2 (Ω), given by

H s (Ω) =
[
Hm (Ω) ,L2 (Ω)

]
θ
, (1−θ)m = s, m integer, 0 < θ < 1.

For a more detailed discussion, we refer the reader to [80].

1.6 Trace theorem

The proofs in this section can be found in [80, Chapter 1].

Definition 1.6.1. Let X and Y be two separable Hilbert spaces such that Y ⊂ X and Y dense

in X with continuous injection. For an integer m ≥ 1, we denote by W (R+,Y ,X) the classes of

functions u such that

W (R+,Y ,X) =
{
u

/
u ∈ L2 (R+,Y ) ,

dmu
dtm

= u(m) ∈ L2 (R+,X)
}
,

where u(m) is taken in the sense of distributions, and the space is equipped with the norm

‖u‖W (R+,Y ,X) =
(
‖u‖2L2(R+,Y ) +

∥∥∥u(m)
∥∥∥2

L2(R+,X)

) 1
2
.
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1.7. Fixed point theorems

Theorem 1.6.1. For u ∈Wm(R+,Y ,X), we have

u(j) ∈ Cb
(
R+, [Y ,X](j+1/2)/m

)
, 0 ≤ j ≤m− 1,

and u 7→ u(j) being a continuous and linear mapping of

Wm(R+,Y ,X) −→ Cb
(
R+, [Y ,X](j+1/2)/m

)
.

Theorem 1.6.2. Let u ∈W (R+,Y ,X) , we have

u(j)(0) ∈ [Y ,X](j+1/2)/m , 0 ≤ j ≤m− 1.

Moreover, the mapping

u 7−→
{
u(j)(0)

/
0 ≤ j ≤m− 1

}
of W (R+,Y ,X) −→Πm−1

j=0 [Y ,X](j+1/2)/m ,

is surjective.

1.7 Fixed point theorems

For convenience, we recall essential fixed point theorems related to our study.

Definition 1.7.1. [52] Let X,Y be topological spaces. A map f : X −→ Y is called compact if

f (X) is contained in a compact subset of Y .

Theorem 1.7.1. (Banach contraction principle [26, 52] ). Let (E,d) be a complete metric space

and f : E→ E be contractive. Then f has a unique fixed point u, and lim
n→+∞

f n(y)→ u, for each

y ∈ E.

Theorem 1.7.2. (Schauder’s fixed point theorem [26, 52] ). Let Ω be a closed convex subset of

a normed linear space and let f : Ω→Ω be a compact map. Then f has a fixed point.

Theorem 1.7.3. (Krasnoselskii’s fixed point theorem [27] ). LetΩ be a closed convex nonempty

subset of a Banach space (X,‖·‖). Suppose that A1 and A2 map Ω into X such that

• A1x+A2y ∈Ω for every pair x,y ∈Ω,

• A1 is continuous and A1 (Ω) is contained in a compact set,

• A2 is a contraction.

Then, there exists y ∈Ω with A1y +A2y = y.

14



Chapter 2
On a class of abstract fourth-order differential

equations set on cusp domains

In this chapter, we concentrate on a boundary value problem set on a singular domain in-

volving a cuspidial point. In our analysis, we obtain some existence results. We also study

the boundary value problems for a class of the complete abstract fourth-order differential

equations involving fractional powers of unbounded linear operators.

2.1 Introduction and motivation

In this section, we assume that x = (x1,x2,x3) is a generic point of R3. Let Π ⊆ R3 be a cusp

domain defined by

Π :=
{
x ∈ R3

/
0 < x3 < 1,

(
x1

(x3)α
,
x2

(x3)α

)
∈Ω

}
,

where Ω ⊆ R2 is a bounded smooth domain and α > 1.

x1

x3

x2

Π

Ω

R3

∂Π

Cusp point

(0,0,0) •

Fig. 1: The cusp domain Π, where Ω is the unit disk in R2 and α = 2.
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2.1. Introduction and motivation

In the cusp domain R+ ×Π, we consider the following problem

d4

dt4
u (t,x) + (1 + ρ4 (x))(−∆)4θu (t,x) +

3∑
j=1

ρj (x) (−∆)jθ
d4−j

dt4−j
u (t,x) = f (t,x) , (2.1)

where u is a function from R+ ×Π into the complex plane C, θ ∈ ]0,1], and ∆ is the clas-

sical Laplace operator on R3 defined by ∆ =
∑3
i=1∂

2
xi . The functions ρj(·), j = 1,2,3,4, are

continuous real functions defined on Π, such that

lim
x3→0+

(
1
x3

) 3α
8 (4−j)

ρj (x) < +∞, j = 1,2,3,4. (2.2)

The right hand side of equation (2.1) is assumed to belong to the Hilbert space L2(R+ ×
Π) = L2(R+,L2 (Π)). We will also accompany to (2.1) some boundary conditions and initial

conditions involving Laplace operator. More precisely, we look for a solution u(·) satisfying

u|R+×∂Π = 0, (2.3)

du
dt

∣∣∣∣∣{0}×Π = 0,
d3u

dt3
+ b(−∆)3θu

∣∣∣∣∣∣{0}×Π = 0, b ∈ C. (2.4)

The first step is to transform the cusp domain R+ ×Π into a cylindrical one. To do this,

we consider the following change of variables

Ψ : R+ ×Π→ R+ ×Q
(t,x) 7→ (t,ξ) ,

where ξ = (ξ1,ξ2,ξ3) is also a new generic point of R3 such that

ξ1 = x1
(x3)α , ξ2 = x2

(x3)α , and ξ3 = (x3)1−α

α−1 . (2.5)

Here,

Q = Ω×
]
ξ3,0,+∞

[
,

with ξ3,0 = 1
α−1 > 0.

In this study, we confine ourselves to the neighborhood of the origin 0R3 ; this means that

we consider the case in which ξ3 > ξ3,0 is large enough. At this level, let us introduce the

following change of functions

v (t,ξ) = u (t,x) , g (t,ξ) = f (t,x) .

According to (2.5), it is easy to check that

f ∈ L2(R+ ×Π) if and only if
(
γ

ξ3

)−3α
2β

g ∈ L2(R+ ×Q)), (2.6)
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2.1. Introduction and motivation

where

β = 1/γ = α − 1.

To avoid the use of weighted L2-spaces, we opt for the use of a new change of functions

given by

w =
(
γ

ξ3

)−s
v, h =

(
γ

ξ3

)−3α
2β

g,

with

s =
α
β

( 3
8θ

+ 2
)
.

As a direct consequence, the problem (2.1)-(2.3)-(2.4) is written as follows

P1(ξ3)
d4

dt4
w (t,ξ) + (1 + σ4 (ξ))(L)4θw (t,ξ) +

3∑
j=1

(
σj (ξ) (L)jθ

) d4−j

dt4−j
w (t,ξ) = h (t,ξ) , (2.7)

w|R+×∂Q = 0, (2.8)

and
dw
dt

∣∣∣∣∣{0}×Q = 0, P2(ξ3)
d3w

dt3
+ b(L)3θw

∣∣∣∣∣∣{0}×Q = 0. (2.9)

Here

P1(ξ3) =
(
γ

ξ3

)α
β ( 3

8θ+ 1
2 )
, P2(ξ3) =

(
γ

ξ3

)α
β ( 3

8θ+ 7
8 )
,

and

L = −∆+
1
ξ3
M, ξ3 > ξ3,0 > 0,

whereM is the second-order differential operator with smooth coefficients given by

(Mw) (ξ) =
(αγ)2

ξ3

{
ξ2

1∂
2
ξ1
w+ ξ2

2∂
2
ξ2
w+ 2ξ1ξ2∂

2
ξ1ξ2

w
}
+ 2αγ

{
ξ1∂

2
ξ1ξ3

w+ ξ2∂
2
ξ2ξ3

w
}

+ (αγ − 2s)∂ξ3
w+

αγ

ξ3
((α + 1)γ − 2s)

{
ξ1∂ξ1

w+ ξ2∂ξ2
w
}
− s
ξ3
{s+ 1 +αγ}w.

Note also that the family of functions σj (ξ) , j ∈ {1,2,3,4} are defined as follows(
γ

ξ3

) 3α
8β (4−j)

σj (ξ) = ρj (x) , j ∈ {1,2,3,4} .

Due to the change of variables Ψ defined by (2.5) and the condition (2.2), these functions

are bounded on Q.

Observe that the study of (2.7)-(2.8)-(2.9) needs the investigation of the following ab-

stract problem

d4w(t)
dt4

+A4θw(t) +
4∑
j=1

Aj
d4−jw(t)
dt4−j

= h(t), t ∈ R+, (2.10)
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2.2. Statement of the abstract problem

endowed with the initial conditions

dw(0)
dt

= 0,
d3w(0)
dt3

+Kw(0) = 0. (2.11)

where the vector-valued functions w and h are defined by

w : R+→H ; t→ w(t) ; w(t)(ξ) = w(t,ξ),

h : R+→H ; t→ h(t) ; h(t)(ξ) = h(t,ξ),

with H = L2(Q). Here, (Aφ) (ξ) := −∆φ (ξ) ,

D (A) :=
{
φ ∈ L2 (Q)

/
Aφ ∈ L2 (Q) , φ

∣∣∣
∂Q

= 0
}
,

(2.12)

and 
(
Ajψ

)
(ξ) :=

[
σj(ξ)(−∆)jθ

]
φ (ξ) , j = 1,2,3,4,

D
(
Aj

)
:=

{
φ ∈ L2 (Q)

/
Ajφ ∈ L2 (Q) , φ

∣∣∣
∂Q

= 0
}
.

(2.13)

We define the operator K by (Kφ) (ξ) := b
[
(−∆)3θ

]
φ (ξ) ,

D (K) :=
{
φ ∈ L2 (Q)

/
Kφ ∈ L2 (Q)

}
.

(2.14)

Following [24] and [51], the fractional power of the operator (2.12) is well defined. Fur-

thermore, we have the following practical characterization of D(Aθ) through the classical

Sobolev spaces. For the reader convenience, we recall that

D(Aθ) =



H2θ(Q), 0 < θ < 1/4,

H1/2
00 (Q), θ = 1/4,

H2θ
0 (Q), 1/4 < θ ≤ 1/2,

H2θ(Q)∩H1
0 (Q), 1/2 < θ ≤ 1;

(2.15)

here, H1/2
00 (Q) is the interpolation space defined in [80, Chapter 1, p. 66].

2.2 Statement of the abstract problem

In this section, a particular attention is given to the study of a general class of the abstract

fourth-order differential equations with operator coefficients posed in Hilbert spaces.

18



2.2. Statement of the abstract problem

2.2.1 Preliminaries

We consider a complex separable Hilbert space H and a self-adjoint positive-definite oper-

ator A on H . By Hθ, θ ≥ 0 we denote the scale of Hilbert spaces generated by the operator

Aθ, i.e.,

Hθ :=D
(
Aθ

)
;
〈
x,y

〉
θ

:=
〈
Aθx,Aθy

〉
, x, y ∈D

(
Aθ

)
.

According to Theorem 1.4.3, it is well established that Aθ is a self-adjoint positive defi-

nite operator for θ > 0. This allows us to define the Sobolev space W 4,θ (R+,H) as follows

W 4,θ (R+,H) :=
{
w

/
w(4) ∈ L2 (R+,H) , A4θw ∈ L2 (R+,H)

}
, (2.16)

endowed with the norm

‖w‖W 4,θ(R+,H) :=
(∥∥∥w(4)

∥∥∥2

L2(R+,H)
+
∥∥∥A4θw

∥∥∥2
L2(R+,H)

)1/2
.

For more details about these spaces, see [80, Chapter 1].

Now, let us consider the following abstract differential equation

w(4)(t) +A4θw(t) +
4∑
j=1

Ajw
(4−j)(t) = h(t), t ∈ R+, (2.17)

where θ ∈ ]0,1], h ∈ L2 (R+,H) and Aj , j = 1,2,3,4, are linear operators acting on H . We

also assume that Eq. (2.17) is accompanied with the following nonhomogeneous abstract

boundary conditions given by

w′(0) = ϕ1, w
′′′(0) +Kw(0) = ϕ2, (2.18)

with K being an element of L(H7θ/2,Hθ/2), ϕ1 ∈H5θ/2 and ϕ2 ∈Hθ/2.

First of all, we seek for a regular solution for (2.17), i.e., a vectorial functionw ∈W 4,θ(R+;H)

satisfying (2.17)-(2.18) a.e. in R+. Next, we provide some necessary conditions ensuring the

regular solvability of our problem (2.17)-(2.18). For the reader’s convenience, we recall from

Definition 2.1 in [9] that the problem (2.17)-(2.18) is said to be regularly solvable if and only

if it admits a regular solution w which satisfies the following conditions
lim
t→0+
‖w′(t)−ϕ1‖H5θ/2

= 0,

lim
t→0+
‖w′′′(t) +Kw(t)−ϕ2‖Hθ/2 = 0,

and for any h ∈ L2(R+;H), there exists C > 0 such that

‖w‖W 4,θ(R+,H) ≤ C
(
‖ϕ1‖H5θ/2

+ ‖ϕ2‖Hθ/2 + ‖h‖L2(R+,H)

)
.
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2.2. Statement of the abstract problem

In the current literature, we find many works considering various classes of the fourth-

order operator-differential equations. For example, in [11], some optimal results about the

existence and uniqueness of regular solutions have been established for the problem

d4w(t)
dt4

+A4w(t) +
4∑
j=1
Aj
d4−jw(t)
dt4−j

= h(t), t ∈ R,

d3w(0)
dt3

= 0,
d2w(0)
dt2

−K dw(0)
dt

= 0,

(2.19)

where

• h ∈ L2 (R+,H),

• (A,D(A)) is a self-adjoint positive definite operator in a Hilbert space H,

• Aj , j ∈ {1,2,3,4} are, in general, linear unbounded operators,

• K ∈ L(H5/2,H3/2).

In [9], many interesting regularity results are established for the problem

d4w(t)
dt4

+A4w(t) +
4∑
j=1
Aj
d4−jw(t)
dt4−j

= h(t), t ∈ R+,

w(0) = ϕ ∈H7/2,
d2w(0)
dt2

−K dw(0)
dt

= ψ ∈H3/2,

(2.20)

with the same assumptions as above.

In the same direction, in [60] we find a complete study concerning the problem

d4w(t)
dt4

+ ρ (t)A4w(t) +
4∑
j=1
Aj
d4−jw(t)
dt4−j

= h(t), t ∈ R+,

w(0) = ϕ,
dw(0)
dt

= ψ,

with ρ being a scalar measurable function in R+.

2.2.2 Existence of regular solution

In the sequel, the abbreviation W 4,θ
K (R+,H) stands for the space defined by

W 4,θ
K (R+,H) =

{
w

/
w ∈W 4,θ(R+,H), w′(0) = 0, w′′′(0) = −Kw(0)

}
,

where K ∈ L (H7θ/2,Hθ/2) .

Remark 2.2.1. As a direct consequence of the well known Lions-Peetre interpolation, the traces

w′(0), w′′′(0) and w(0)
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2.2. Statement of the abstract problem

are well defined; see Section 1.6. Furthermore, for w ∈W 4,θ (R+,H), one has

wj(0) ∈D
(
Aθ(7/2−j)

)
, j = 0,1,2,3,

and the mapping
W 4,θ (R+,H)→

∏3
j=0D

(
Aθ(7/2−j)

)
,

w 7→
{
w(j)(0)

}
, 0 ≤ j ≤ 3,

is surjective; see also Theorem 1.6.2.

The first step of our strategy is based on the study of the principal part of Eq. (2.17), that

is

w(4)(t) +A4θw(t) = h(t), t ∈ R+, (2.21)

equipped with the homogeneous initial conditions

w′(0) = 0, w′′′(0) +Kw(0) = 0. (2.22)

Towards this end, let us denote by P0 the operator defined as follows

P0 : W 4,θ
K (R+,H) → L2 (R+,H)

w 7→ P0w(t) = w(4)(t) +A4θw(t).
(2.23)

Lemma 2.2.1. Let B be the operator defined by

B := Aθ/2KA−7θ/2. (2.24)

Assume that −
√

2 < σ (B). Then the equation

P0w(t) = 0

has only a zero solution in the space W 4,θ
K (R+,H).

Proof. As in [11], we look for a solution of equation

P0w(t) = 0,

set on the space W 4,θ (R+,H) . This solution has the following standard form

w0(t) = eη1tA
θ
φ1 + eη2tA

θ
φ2, t ∈ R+,

where (eη1tA
θ
)t≥0 and (eη2tA

θ
)t≥0 are the C0-semigroups generated by η1A

θ and η2A
θ, respec-

tively, with

η1 = − 1
√

2
+

1
√

2
i, η2 = − 1

√
2
− 1
√

2
i,

and φ1, φ2 ∈H7θ/2. Taking into account conditions (2.22), we obtain η1A
θφ1 + η2A

θφ2 = 0,

A3θ(η3
1φ1 + η3

2φ2) = −K(φ1 +φ2).
(2.25)
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2.2. Statement of the abstract problem

A direct computation implies that

φ2 = −
η1

η2
φ1, (2.26)

and (√
2IH +B

)
A7θ/2φ1 = 0. (2.27)

Keeping in mind that

−
√

2 < σ (B),

this leads to φ1 = 0 and from (2.26) it results that φ2 = 0. Therefore, w0(t) = 0.

Now, we are able to state our main result concerning the solvability of problem (2.21)-

(2.22).

Theorem 2.2.1. Let the assumptions of Lemma 2.2.1 hold. Then, the problem (2.21)-(2.22) has

a unique regular solution w ∈W 4,θ
K (R+,H).

Proof. Step 1. Thanks to Lemma 2.2.1, we know that the problem

w(4)(t) +A4θw(t) = 0, t ∈ R+, (2.28)

w′(0) = 0, w′′′(0) = −Kw(0), (2.29)

has only zero solution in W 4,θ
K (R+,H). Let us show that the equation

P0w(t) = h(t)

has a solution w ∈W 4,θ
K (R+,H) for every h ∈ L2 (R+,H) .

First, set

H(t) :=


h (t) , t ≥ 0,

0, t < 0.

Let Ĥ(ξ) be the Fourier transform of H(t), i.e.,

Ĥ(ξ) =
1
√

2π

∫ +∞

−∞
H(t)e−iξt dt, ξ ∈ R.

Then, performing the direct and inverse Fourier transforms, it is clear that the vector-valued

function

v(t) =
1

2π

∫ +∞

−∞
(ξ4IH +A4θ)−1

(∫ +∞

0
h(s)e−iξsds

)
eiξtdξ, t ∈ R, (2.30)

satisfies the equation

v(4)(t) +A4θv(t) =H(t) a.e. in R.

Now, we prove that v(·) defined by the formula (2.30) belongs to the space W 4,θ (R+,H). By

Plancherel’s theorem, we have

‖v‖2W 4,θ(R+,H) =
∥∥∥v(4)

∥∥∥2
L2(R+,H)

+
∥∥∥A4θv

∥∥∥2
L2(R+,H)

=
∥∥∥ξ4v̂

∥∥∥2
L2(R+,H)

+
∥∥∥A4θv̂

∥∥∥2
L2(R+,H)

;
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2.2. Statement of the abstract problem

hence,

‖v‖2W 4,θ(R+,H)

=
∥∥∥ξ4(ξ4IH +A4θ)−1Ĥ(ξ)

∥∥∥2
L2(R+,H)

+
∥∥∥A4θ(ξ4IH +A4θ)−1Ĥ(ξ)

∥∥∥2
L2(R+,H)

.

Then

‖v‖2W 4,θ(R+,H)

≤
(
sup
ξ∈R

∥∥∥ξ4(ξ4IH +A4θ)−1
∥∥∥L(H)

+ sup
ξ∈R

∥∥∥A4θ(ξ4IH +A4θ)−1
∥∥∥L(H)

)
‖H‖2L2(R+,H) .

According to the classical spectral theory of self-adjoint operators, we obtain∥∥∥ξ4(ξ4IH +A4θ)−1
∥∥∥L(H)

≤ sup
λ∈σ (Aθ)

∣∣∣ξ4(ξ4 +λ4)−1
∣∣∣ ≤ 1,

and ∥∥∥A4θ(ξ4IH +A4θ)−1
∥∥∥L(H)

≤ sup
λ∈σ (Aθ)

∣∣∣λ4(ξ4 +λ4)−1
∣∣∣ ≤ 1;

hence v ∈W 4,θ (R+,H).

Step 2 Put

w1(t) := v(t)|R+ .

Then w1 ∈ W 4,θ (R+,H) and satisfies the equation (2.21) almost everywhere in R+. On the

other hand, Theorem 1.6.2 yields that

w
(j)
1 (0) ∈H(7/2−j)θ, j = 0,1,2,3.

Similarly, as in the previous step, the solution of problem (2.21)-(2.22) can be written in the

following form

w(t) = w1(t) + eη1tA
θ
φ1 + eη2tA

θ
φ2,

where

η1 = − 1
√

2
+

1
√

2
i and η2 = − 1

√
2
− 1
√

2
i,

φ1, φ2 ∈H7θ/2; see also (2.22). Consequently, we obtain the following system w′1(0) + η1A
θφ1 + η2A

θφ2 = 0,

w′′′1 (0) + η3
1A

3θφ1 + η3
2A

3θφ2 = −K(w1(0) +φ1 +φ2).
(2.31)

Taking into account that

φ2 = −
η1

η2
φ1 −

1
η2
A−θw′1(0),

and keeping in mind the condition

−
√

2 < σ (B),
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2.2. Statement of the abstract problem

we uniquely deduce that

φ1 = A−7θ/2(
√

2I +B)−1A7θ/2η ∈H7θ/2,

where

η = −1− i
2
A−3θ

(
w′′′1 (0) + iA2θw′(0) +Kw1(0)− η1KA

−θw′1(0)
)
∈H7θ/2.

Thus, w belongs to the space W 4,θ (R+,H) and it is a solution for the problem (2.21)-(2.22).

Moreover, the operator

P0 :W 4,θ
K (R+,H)→ L2 (R+,H)

is bounded. In fact, we have

‖P0w‖2L2(R+,H) =
∥∥∥w(4) +A4θw

∥∥∥2

L2(R+,H)
≤ 2‖w‖2W 4,θ(R+,H) .

Therefore, by the Banach inverse operator theorem, we deduce that operator P0 is invertible

and

P −1
0 : L2 (R+,H)→W 4,θ

K (R+,H) .

Furthermore, this operator is bounded and we obtain

‖w‖W 4,θ(R+,H) ≤ C ‖h‖L2(R+,H) .

The following result follows directly from Lemma 2.2.1 and Theorem 2.2.1.

Corollary 2.2.1. Under the assumptions of Lemma 2.2.1, the operator P0 defined by (2.23) is an

isomorphism.

Let us prove now the following coercive inequality, which will be used later.

Lemma 2.2.2. Let B denote the operator defined by (2.24), with Re (B) ≥ 0. Then, for every

w ∈W 4,θ
K (R+,H) , the following inequality holds true

‖P0w‖2L2(R+,H) ≥ ‖w‖
2
W 4,θ(R+,H) + 2

∥∥∥A2θw′′
∥∥∥2
L2(R+,H)

. (2.32)

Proof. For w ∈W 4,θ
K (R+,H), we have

‖P0w‖2L2(R+,H) (2.33)

=
∥∥∥w(4)

∥∥∥2

L2(R+,H)
+
∥∥∥A4θw

∥∥∥2
L2(R+,H)

+ 2Re
(
< w(4),A4θw >L2(R+,H)

)
.

On the other hand, integrating by parts, we obtain

< w(4),A4θw >L2(R+,H) =
[
< w′′′(t),A4θw(t) >

]+∞
0
−
∫ +∞

0
< w′′′(t),A4θw′(t) > dt

= < Kw(0),A4θw(0) > +
∫ +∞

0
< A2θw′′(t),A2θw′′(t) > dt

= < BA7θ/2w(0),A7θ/2w(0) > +
∥∥∥A2θw′′

∥∥∥2
L2(R+,H)

.

(2.34)

Taking into account the fact that Re (B) ≥ 0, the estimate (2.32) is easily deduced from rela-

tion (2.34).
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2.2. Statement of the abstract problem

Observe here that the Corollary 2.2.1 implies that the quantity ‖P0w‖L2(R+,H) is equiv-

alent to ‖w‖W 4,θ(R+,H) in the space W 4,θ
K (R+,H). Moreover, the norms of the intermediate

derivative operators

Ajθ
d4−j

dt4−j
:W 4,θ

K (R+,H) −→ L2 (R+,H) , j = 1,2,3,4,

can be estimated with respect to ‖P0u‖L2(R+,H).

Theorem 2.2.2. Under the assumptions of Lemma 2.2.2, the following estimates hold true∥∥∥Ajθw(4−j)
∥∥∥
L2(R+,H)

≤ aj ‖P0w‖L2(R+,H) , j = 1,2,3,4, (2.35)

for any w ∈W 4,θ
K (R+,H) with

a0 = a1 = a4 = 1, a2 =
1
2
, a3 =

1
√

2
.

Proof. Let w ∈W 4,θ
K (R+,H). From the equality (2.34), we have

Re
(
< P0w,A

4θw >L2(R+,H)

)
=

∥∥∥A4θw
∥∥∥2
L2(R+,H)

+Re
(
< BA7θ/2w(0),A7θ/2w(0) >

)
+
∥∥∥A2θw′′

∥∥∥2
L2(R+,H)

.

Then we can see that

Re
(
< P0w,A

4θw >L2(R+,H)

)
≥

∥∥∥A4θw
∥∥∥2
L2(R+,H)

+
∥∥∥A2θw′′

∥∥∥2
L2(R+,H)

.

Applying the well known Cauchy-Schwarz and Young inequalities, we conclude that∥∥∥A4θw
∥∥∥2
L2(R+,H)

+
∥∥∥A2θw′′

∥∥∥2
L2(R+,H)

(2.36)

≤ ‖P0w‖L2(R+,H)

∥∥∥A4θw
∥∥∥
L2(R+,H)

,

from which we may deduce that∥∥∥A4θw
∥∥∥2
L2(R+,H)

+
∥∥∥A2θw′′

∥∥∥2
L2(R+,H)

≤ δ
2
‖P0w‖2L2(R+,H) +

1
2δ

∥∥∥A4θw
∥∥∥2
L2(R+,H)

, (2.37)

with δ > 0.

Choosing δ = 1
2 in (2.37), we get∥∥∥A2θw′′

∥∥∥
L2(R+,H)

≤ 1
2
‖P0w‖L2(R+,H) . (2.38)

On the other hand, from (2.36) we have∥∥∥A4θw
∥∥∥2
L2(R+,H)

≤ ‖P0w‖L2(R+,H)

∥∥∥A4θw
∥∥∥
L2(R+,H)

,

which implies that ∥∥∥A4θw
∥∥∥
L2(R+,H)

≤ ‖P0w‖L2(R+,H) . (2.39)
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2.2. Statement of the abstract problem

It follows from inequality (2.32) that∥∥∥w(4)
∥∥∥
L2(R+,H)

≤ ‖P0w‖L2(R+,H) . (2.40)

Now let us estimate the norm
∥∥∥A3θw′

∥∥∥
L2(R+,H)

.

Taking into account that w ∈ W 4,θ
K (R+,H) , the use of the Cauchy-Schwarz inequality

combined with inequalities (2.38) and (2.39), allows us to conclude that∥∥∥A3θw′
∥∥∥2
L2(R+,H)

=
[
< A3θw(t),A3θw′(t) >

]+∞
0
−
∫ +∞

0
< A4θw(t),A2θw′′(t) > dt,

so ∥∥∥A3θw′
∥∥∥2
L2(R+,H)

≤
∥∥∥A2θw′′

∥∥∥
L2(R+,H)

∥∥∥A4θw
∥∥∥
L2(R+,H)

≤ 1
2
‖P0w‖2L2(R+,H) .

Consequently, ∥∥∥A3θw′
∥∥∥
L2(R+,H)

≤ 1
√

2
‖P0w‖L2(R+,H) . (2.41)

Finally, let us estimate the quantity
∥∥∥Aθw′′′∥∥∥

L2(R+,H)
. We know that, for w ∈W 4,θ (R+,H), we

have ∥∥∥Aθw′′′∥∥∥2
L2(R+,H)

≤ 2
∥∥∥A2θw′′

∥∥∥
L2(R+,H)

∥∥∥w(4)
∥∥∥
L2(R+,H)

. (2.42)

Inserting the inequalities (2.38) and (2.40) in (2.42), we have∥∥∥Aθw′′′∥∥∥
L2(R+,H)

≤ ‖P0w‖L2(R+,H) , (2.43)

which ends the proof of this theorem.

It is worth noting that the coefficient operator A, in our boundary value problem, was

considered with a positive natural power so far. From now on, we will treat our problem in

the general case, where the coefficient operators considered will be of the form Aθ, θ ∈ (0,1).

To this end, let us consider the following abstract Cauchy problem with a complete fourth-

order differential equation

w(4)(t) +A4θw(t) +
4∑
j=1

Ajw
(4−j)(t) = h(t), t ∈ R+, (2.44)

w′(0) = 0, w′′′(0) = −Kw(0). (2.45)

Put
P : W 4,θ

K (R+,H) −→ L2 (R+,H)

w 7−→ Pw(t) := w(4)(t) +A4θw(t) +
4∑
j=1
Ajw

(4−j)(t).
(2.46)
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2.2. Statement of the abstract problem

The first auxiliary result concerning this operator is formulated as follows.

Lemma 2.2.3. Assume that AjA−jθ ∈ L(H), j = 1,2,3,4. Then the operator P , defined by (2.46),

is bounded.

Proof. Let w ∈W 4,θ
K (R+,H). Then, we have

‖Pw‖L2(R+,H) ≤ ‖P0w‖L2(R+,H) +

∥∥∥∥∥∥ 4∑
j=1
Ajw

(4−j)
∥∥∥∥∥∥
L2(R+,H)

≤
√

2‖w‖W 4,θ(R+,H) +

∥∥∥∥∥∥ 4∑
j=1
Ajw

(4−j)
∥∥∥∥∥∥
L2(R+,H)

≤
√

2‖w‖W 4,θ(R+,H) +
4∑
j=1

∥∥∥AjA−jθ∥∥∥L(H)

∥∥∥Ajθw(4−j)
∥∥∥
L2(R+,H)

.

Using the theorem for intermediate derivatives in [80], we deduce that

‖Pw‖L2(R+,H) ≤ C ‖w‖W 4,θ(R+,H) .

Let us state our essential results concerning the problem (2.44)-(2.45) performed in the

space L2 (R+,H) .

Theorem 2.2.3. Let B = Aθ/2KA−7θ/2. Assume that
Re (B) ≥ 0,

and

AjA
−jθ ∈ L (H) , j = 1,2,3,4,

and

a =
4∑
j=1

ai
∥∥∥AjA−jθ∥∥∥L(H)

< 1,

with

a1 = 1, a2 =
1
2
, a3 =

1
√

2
, a4 = 1.

Then, for every h ∈ L2 (R+,H) , the boundary value problem (2.44)-(2.45) has a unique regular

solution.

Proof. First, we write the boundary value problem (2.44)-(2.45) in the form of operator equa-

tion

P0w(t) + (P − P0)w(t) = h(t), t ∈ R+, (2.47)

where h ∈ L2 (R+,H) and w ∈W 4,θ
K (R+,H) .

The conditions Re (B) ≥ 0 ensure that the operator

P −1
0 : L2 (R+,H) −→W 4,θ

K (R+,H)
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2.2. Statement of the abstract problem

is well defined.

Set w(t) := P −1
0 v(t), with v ∈ L2 (R+,H). Then a direct computation shows that v satisfies

the following equation

v(t) + (P − P0)P −1
0 v(t) = h(t), t ∈ R+.

Keeping in mind that v ∈ L2 (R+,H) and taking into account the estimates (2.35), one has∥∥∥(P − P0)P −1
0 v

∥∥∥
L2(R+,H)

= ‖(P − P0)w‖L2(R+,H) ,

so ∥∥∥(P − P0)P −1
0 v

∥∥∥
L2(R+,H)

≤
4∑
j=1

∥∥∥AjA−jθ∥∥∥L(H)

∥∥∥Ajθw(4−j)
∥∥∥
L2(R+,H)

≤
4∑
j=1

aj
∥∥∥AjA−jθ∥∥∥L(H) ‖P0w‖L2(R+,H) .

Therefore ∥∥∥(P − P0)P −1
0 v

∥∥∥
L2(R+,H)

= a‖v‖L2(R+,H) .

Since a < 1, the operator (
IH + (P − P0)P −1

0

)−1

is well defined in the space L2 (R+,H). Consequently, the equation (2.47) is uniquely solvable

in the space W 4,θ
K (R+,H) and

w(t) = P −1
0

(
IH + (P − P0)P −1

0

)−1
h(t).

Moreover,

‖w‖W 4,θ(R+;H)

≤
∥∥∥P −1

0

∥∥∥L(L2(R+,H),W 4,θ(R+,H))
∥∥∥(IH + (P − P0)P −1

0 )−1
∥∥∥L(L2(R+,H)) ‖h‖L2(R+,H)

≤ C ‖h‖L2(R+,H) .

Remark 2.2.2. In Theorem 2.2.3, the condition Re (B) ≥ 0 with

B = Aθ/2KA−7θ/2,

allows us to omit the condition −
√

2 < σ (B).

Finally, we may get the conditions for the regular solvability of the boundary value prob-

lem (2.17)-(2.18) from Theorem 2.2.3.

Theorem 2.2.4. Assume that all conditions of Theorem 2.2.3 are fulfilled. Then the boundary

value problem (2.17)-(2.18) is regularly solvable.
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Proof. In the case ϕ1 = ϕ2 = 0, the regular solvability of the boundary value problem (2.17)-

(2.18) was established.

In the case Aj = 0, j = 1,2,3,4, and h = 0, the problem (2.17)-(2.18) is reduced to the new

one given by

w(4)(t) +A4θw(t) = 0, t ∈ R+, (2.48)

w′(0) = ϕ1, w
′′′(0) +Kw(0) = ϕ2, (2.49)

with ϕ1 ∈ H5θ/2 and ϕ2 ∈ Hθ/2. The solution of problem (2.48)-(2.49) will be written as

follows

w0(t) = eη1tA
θ
φ1 + eη2tA

θ
φ2, (2.50)

where

η1 = − 1
√

2
+

1
√

2
i and η2 = − 1

√
2
− 1
√

2
i,

and φ1, φ2 are the unknown vectors to be determined via the conditions (2.49): η1A
θφ1 + η2A

θφ2 = ϕ1,

A3θ(η3
1φ1 + η3

2φ2) +K(φ1 +φ2) = ϕ2.
(2.51)

System (2.51) yields

φ2 =
1
w2

(
A−θϕ1 − η1φ1

)
,

(
√

2IH +B)A−7θ/2φ1 = (i − 1)Aθ/2(ϕ2 − η2
2A

2θϕ1 − η1A
−θϕ1).

Since −
√

2 < σ (B), then we have

φ1 = −(1− i)
2

A7θ/2(
√

2IH +B)Aθ/2(ϕ2 − η2
2A

2θϕ1 − η1A
−θϕ1).

Thus

φ2 = η1A
−θϕ1 + (

1− i
2

)A7θ/2(
√

2IH +B)Aθ/2(ϕ2 − η2
2A

2θϕ1 − η1A
−θϕ1).

It is not difficult to show that φ1, φ2 ∈H7θ/2. From (2.50), we obtain

‖w0‖W 4,θ(R+,H) ≤ C
(∥∥∥φ1

∥∥∥
H7θ/2

+
∥∥∥φ2

∥∥∥
H7θ/2

)
≤ C

(
‖ϕ1‖H5θ/2

+ ‖ϕ2‖Hθ/2
)
.

(2.52)

Now, we are able to study the boundary value problem (2.17)-(2.18). We will seek its

solutions in the form

w(t) = v(t) +w0(t),

where w0 is a regular solution of the problem (2.48)-(2.49). Then, the function v is the

solution to the boundary value problem

v(4)(t) +A4θv(t) +
4∑
j=1

Ajv
(4−j)(t) = g(t), t ∈ R+, (2.53)
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2.3. Existence of the solution to the main problem

v′(0) = 0, v′′′(0) +Kv(0) = 0, (2.54)

where

g(t) = −
4∑
j=1

Ajw
(4−j)
0 (t) + h(t).

Let us estimate the quantity ‖g‖L2(R+,H). One has

‖g‖L2(R+;H) ≤
∥∥∥∥∥∥ 4∑
j=1
Ajw

(4−j)
0

∥∥∥∥∥∥
L2(R+,H)

+ ‖h‖L2(R+,H)

≤
4∑
j=1

∥∥∥AjA−jθ∥∥∥L(H)

∥∥∥∥Ajθw(4−j)
0

∥∥∥∥
L2(R+,H)

+ ‖h‖L2(R+,H)

≤ C
(
‖ϕ1‖H5θ/2

+ ‖ϕ2‖Hθ/2 + ‖h‖L2(R+,H)

)
.

Thanks to Theorem 2.2.3 and the estimate (2.52), we have

‖w‖W 4,θ(R+,H) ≤ ‖v‖W 4,θ(R+,H) + ‖w0‖W 4,θ(R+,H)

≤ ‖g‖L2(R+,H) + ‖w0‖W 4,θ(R+,H)

≤ C
(
‖ϕ1‖H5θ/2

+ ‖ϕ2‖Hθ/2 + ‖h‖L2(R+,H)

)
.

2.3 Existence of the solution to the main problem

In this section, we return to the original problem. In order to provide a comprehensive study

of the problem (2.1)-(2.3)-(2.4), we need some intermediate results which can be viewed as

a direct consequence of the results obtained in the previous section.

Remark 2.3.1. To simplify the computations involving functional spaces and make the study

more comprehensible, we consider the case when θ = 1/8. Thus, from (2.15) and (2.16), the space

W 4,θ(R+,L2(Q)) is defined as follows

W 4,θ(R+,L2(Q)) =
{
w

/
w(4) ∈ L2

(
R+,L2(Q)

)
, w ∈ L2

(
R+,H1

0 (Q)
)}
.

Keeping in mind the definition of the operators (A,D (A)) ,
(
Aj ,D

(
Aj

))
, and (K,D (K)) ,

defined respectively by (2.12), (2.13), and (2.14). Our main result for the transformed prob-

lem (2.10)-(2.11) is formulated as follows.

Theorem 2.3.1. Let h ∈ L2(R+ ×Q). Assume that

Re(b) ≥ 0,
4∑
j=1

sup
ξ∈Q

∣∣∣σj(ξ)
∣∣∣ < 1.

Then, the problem

d4w(t)
dt4

+A4θw(t) +
4∑
j=1

Aj
d4−jw(t)
dt4−j

= h(t), t ∈ R+,
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2.3. Existence of the solution to the main problem

with
dw(0)
dt

= 0,
d3w(0)
dt3

+Kw(0) = 0,

has a unique regular solution w ∈W 4,θ(R+,L2(Q)).

By the same argument and using a classical argument of perturbation as in [21, Section

3, p. 49], we conclude the following result.

Theorem 2.3.2. Let h ∈ L2(R+ ×Q). Assume that

Re(b) ≥ 0,
4∑
j=1

sup
ξ∈Ω

∣∣∣σj(ξ)
∣∣∣ < 1.

Then, the problem (2.7)-(2.8)-(2.9) has a unique regular solution w ∈W 4,θ(R+,L2(Q)).

Consider now the inverse change of variables

Ψ −1 : R+ ×Q→ R+ ×Π
(t,ξ) 7→ (t,x) ,

with

x1 =
(
γ
ξ3

)α
β ξ1, x2 =

(
γ
ξ3

)α
β ξ2, x3 =

(
γ
ξ3

) 1
β .

We have

w =
(
γ

ξ3

)−αβ ( 3α
8θ+2)

u

( γξ3

)α
β

ξ1,

(
γ

ξ3

)α
β

ξ2,

(
γ

ξ3

) 1
β
 ;

this gives

w =
(
γ

ξ3

)− 3α
2β

(x3)−α( 3
2θ+ 1

2 )u. (2.55)

In an equivalent manner,

∂ξ1
w =

(
γ

ξ3

)− 3α
2β

(x3)−α( 3
2θ−

1
2 )∂x1

u, (2.56)

and

∂ξ2
w =

(
γ

ξ3

)− 3α
2β

(x3)−α( 3
2θ−

1
2 )∂x2

u. (2.57)

Due to the fact that w, ∂ξ1
w, and ∂ξ2

w are L2-integrable in Q, (2.6) with (2.55)-(2.56)-(2.57)

implies that

(x3)−α( 3
2θ+ 1

2 )u, (x3)−α( 3
2θ−

1
2 )∂x1

u, (x3)−α( 3
2θ−

1
2 )∂x2

u ∈ L2(Π). (2.58)

31



2.3. Existence of the solution to the main problem

Furthemore, a direct computation shows that

∂x2
w

=
(
γ

ξ3

)−s sξ−1
3 u − α

β
ξ1ξ

−1
3

(
γ

ξ3

)α
β

∂x1
u − α

β
ξ2ξ

−1
3

(
γ

ξ3

)α
β

∂x2
u

−1
β
ξ−1

3

(
γ

ξ3

) 1
β

∂x3
u


=

(
γ

ξ3

)− 3α
2β

[
sξ−1

3 x
−α( 3

8θ+ 1
2 )

3 u − α
β
ξ1ξ

−1
3 x
−α( 3

8θ−
1
2 )

3 ∂x1
u − α

β
ξ2ξ

−1
3 x
−α( 3

8θ−
1
2 )

3 ∂x2
u

− 1
γβ
x
−α( 3

8θ−
1
2 )

3 ∂x3
u

]
.

Since ∂ξ3
w is L2-integrable inQ, according to the previous calculations and (2.58), we obtain

x
−α( 3

8θ−
1
2 )

3 ∂x3
u ∈ L2(Π).

In summary, the following proposition has been established.

Proposition 2.3.1. The fact that w ∈W 4,θ(R+,L2(Q)) implies that

u ∈W 4,θ(R+,L2(Π)).

This help us to justify our main result set in the cusp domain R+ ×Π.

Theorem 2.3.3. Let f ∈ L2(R+ ×Π). Assume that

Re(b) ≥ 0 and
4∑
j=1

sup
x∈Π

∣∣∣ρj(x)
∣∣∣ < 1.

Then, the problem

d4

dt4
u (t,x) + (1 + ρ4 (x))(−∆)4θu (t,x) +

3∑
j=1

(
ρj (x) (−∆)jθ

) d4−j

dt4−j
u (t,x) = f (t,x) ,

u|R+×∂Π = 0,

du
dt

∣∣∣∣∣{0}×Π = 0 and
d3u

dt3
+ b(−∆)3θu

∣∣∣∣∣∣{0}×Π = 0,

has a unique regular solution u ∈W 4,θ(R+,L2(Π)).
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Chapter 3
On the study of pseudo S-asymptotically

periodic mild solutions for a class of neutral
fractional delayed evolution equations

The goal of this chapter is to investigate the existence and uniqueness of pseudo S-asymptotically

periodic mild solutions for a class of neutral fractional evolution equations involving the Ca-

puto fractional operator with finite delay. We essentially use the fractional powers of closed

linear operators, the semigroup theory, and some classical fixed point theorems. Further-

more, we provide an example to illustrate the applications of our abstract results.

3.1 Introduction

We consider the following abstract fractional Cauchy problem CDα0+

(
u(t)−G(t,ut)

)
+Au(t) = F

(
t,ut

)
, t ≥ 0,

u (t) = ϕ (t) , −r ≤ t ≤ 0,
(3.1)

where α ∈ (0,1), and (A,D(A)) is a closed linear operator in a Banach space (X,‖·‖). Here,

u : [−r,+∞) −→ X,

and

F ,G : R+ ×C −→ X, r > 0

are two continuous functions, where C = C([−r,0],X). By ut we denote the classical history

function defined by

ut(s) := u(t + s), − r ≤ s ≤ 0,

while the data ϕ(·) belongs to the space C.

The class of pseudo S-asymptotically periodic functions was introduced in [88]. In

that paper, the authors have considered the classical version of (3.1) with α = 1 and es-

tablished several interesting results concerning the existence and uniqueness of pseudo S-

asymptotically periodic mild solutions for such problems. The class of pseudo S-asymptotically
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3.2. Preliminaries

periodic functions is a natural generalization of the class of S-asymptotically periodic func-

tions; see [56]. The investigation of existence and uniqueness of pseudo S-asymptotically

periodic mild solutions for various classes of the abstract fractional Cauchy problems is

an attractive field and was the principal subject of many works. For example, in [55] the

authors have examined the existence and uniqueness of pseudo S-asymptotically periodic

solutions of the second-order abstract Cauchy problems. Another interesting class of the

abstract fractional equations was analyzed in [110], where the authors have considered a

fractional integro-differential neutral equations with order 1 < α < 2. Moreover, the knowl-

edge of the structure of solutions is useful in numerical analysis; see [36, 38, 39].

3.2 Preliminaries

In the rest of this chapter, we always suppose that A is a closed linear operator with 0 ∈ ρ (A)

and −A generates a uniformly exponentially stable analytic semigroup (T (t))t≥0. Moreover,

we need to use the notion of fractional powers of closed linear operators. Then, we know

that, for every θ > 0, the operator Aθ is well defined; see Definition 1.4.1.

For θ ∈ (0,1), we set

Xθ :=D(Aθ).

In the particular situation θ = 0, we consider thatA0 := IX andX0 := X. The fractional power

space Xθ is a Banach space when it is endowed with its natural norm

‖ · ‖θ =
∥∥∥Aθ· ∥∥∥ .

Furthermore, for 0 ≤ θ1 ≤ θ2 ≤ 1, one has

Xθ2
↪→ Xθ1

,

and the embedding Xθ2
↪→ Xθ1

is compact whenever the resolvent operator of A is compact.

In the sequel, we consider the Banach space

Cθ := C
(
[−r,0],Xθ

)
,

of all continuous vector-valued functions from [−r,0] into Xθ, equipped with the norm

‖ϕ‖Cθ := max
s∈[−r,0]

‖ϕ(s)‖θ .

Let us define the following families of operators

U (t) :=

∞∫
0

ζα(τ)T
(
tατ

)
dτ and V (t) := α

∞∫
0

τζα(τ)T
(
tατ

)
dτ, t ≥ 0, (3.2)
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3.2. Preliminaries

where

ζα(τ) :=
1
απ

∑
n≥1

(−τ)n−1 Γ (αn− 1)
n!

sin(αnπ), τ ∈ R+ − {0} , (3.3)

is a probability density function defined on R+ − {0}. Let us recall that (see, e.g., [107])

ζα(τ) ≥ 0, τ > 0 and
∫ ∞

0
ζα(τ)dτ = 1,

and
∞∫

0

τυζα(τ)dτ =
Γ (1 +υ)
Γ (1 +αυ)

, 0 ≤ υ ≤ 1. (3.4)

The lemma below summarizes the principal properties of these families; see [107].

Lemma 3.2.1. Let (T (t))t≥0 be aC0-semigroup. Then, the operator families (U (t))t≥0 and (V (t))t≥0

defined by (3.2) have the following properties:

(i) (U (t))t≥0 and (V (t))t≥0 are strongly continuous.

(ii) If (T (t))t≥0 is uniformly bounded, then U (t) and V (t) are linear bounded operators for any

fixed t ≥ 0.

(iii) If (T (t))t≥0 is compact, then U (t) and V (t) are compact operators for any t > 0.

(vi) If x ∈ X, θ ∈ (0,1) and t > 0, then

AV (t)x = A1−θV (t)Aθx,

and ∥∥∥AθV (t)
∥∥∥ ≤ Mθ

tαθ
αΓ (1−θ)
Γ (α(1−θ))

. (3.5)

(v) If t ≥ 0 and x ∈ Xθ, then

‖U (t)x‖θ ≤M ‖x‖θ ,

and

‖V (t)x‖θ ≤M
α

Γ (1 +α)
‖x‖θ .

3.2.1 Pseudo S-asymptotically periodic mild solution

To investigate the mild solution for problem (3.1), we must introduce the space of pseudo

S-asymptotically periodic functions and some of its properties. Further details about this

class of functions can be founded in [88, 109, 110].

Definition 3.2.1. A function f ∈ Cb (R+,X) is said to be pseudo S-asymptotically periodic if there

exists ω > 0 such that

lim
h→+∞

1
h

h∫
0

‖f (t +ω)− f (t)‖ dt = 0. (3.6)

The set of such functions will be denoted by P SAPω(X).
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3.2. Preliminaries

Definition 3.2.2. Let p > 0 and f ∈ P SAPω(X). Then, we say that f (·) is pseudo S-asymptotically

ω-periodic of class p if

lim
h→+∞

1
h

h∫
p

sup
t∈[ξ−p,ξ]

‖f (t +ω)− f (t)‖ dξ = 0.

We denote the space of all such functions by P SAPω,p(X).

Proposition 3.2.1. Let p ≥ 0. Then

(i) P SAPω,p(X) ⊆ P SAPω(X).

(ii) P SAPω,p(X) is a closed subspace of Cb(R+,X).

(iii) Assume that f ∈ Cb(R+,X). Then, f ∈ P SAPω,p(X) if and only if, for every ε > 0, we have

lim
h→+∞

1
h
µ
(
Mh,ε(f )

)
= 0,

where µ (·) denotes the classical Lebesgue measure and

Mh,ε(f ) =

t ∈ [p,h]
/

sup
t∈[ξ−p,ξ]

‖f (t +ω)− f (t)‖ ≥ ε

 .
At this level, for Banach spaces (Z,‖·‖Z) and (W,‖·‖W ), we define another functional

framework which will be used henceforth.

Definition 3.2.3. We say that a function f ∈ Cb(R+ × Z,W ) is uniformly (Z,W ) pseudo S-

asymptotically ω-periodic of class p if

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

 sup
‖x‖Z≤L

‖f (t +ω,x)− f (t,x)‖W

dξ = 0,

for any L > 0. The collection of such functions will be denoted by P SAPω,p(R+ ×Z,W ).

From the previously cited references, we also have the following lemmas.

Lemma 3.2.2. Let u ∈ Cb([−r,+∞),X) and

u|R+ ∈ P SAPω,p(X).

Then, the function t 7→ ut belongs to P SAPω,p(C).

Lemma 3.2.3. Let f ∈ P SAPω,p(R+ ×C,X). Assume that

(1) there exists Lf ∈ Cb (R+,R+) such that for all (t,φi) ∈ R+ ×C

||f (t,φ1)− f (t,φ2)|| ≤ Lf (t)||φ1 −φ2||C;
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3.2. Preliminaries

(2) u ∈ Cb([−r,+∞),X);

(3) u|R+ ∈ P SAPω,p(X).

Then, the function t 7→ f (t,ut) belongs to P SAPω,p(X).

The following result can be regarded as a generalization of Lemma 3.2.3.

Lemma 3.2.4. Let θ1,θ2 ∈ [0,1] and f ∈ P SAPω,p(R+ ×Cθ1
,Xθ2

). We assume that

(1) there exists Lf ∈ Cb (R+,R+) such that for all (t,φi) ∈ R+ ×Cθ1

||f (t,φ1)− f (t,φ2)||θ2
≤ Lf (t)||φ1 −φ2||Cθ1

;

(2) u ∈ Cb([−r,+∞),Xθ1
);

(3) u|R+ ∈ P SAPω,p(Xθ1
).

Then, the function t 7→ f (t,ut) belongs to P SAPω,p(Xθ2
).

Proof. First, according to Lemma 3.2.2, we can see that t 7→ ut ∈ P SAPω,p(Cθ1
). Now, for

h > 0, one has

h∫
p

 sup
t∈[ξ−p,ξ]

‖f (t +ω,ut+ω)− f (t,ut)‖θ2

dξ
≤

h∫
p

 sup
t∈[ξ−p,ξ]

‖f (t +ω,ut+ω)− f (t,ut+ω)‖θ2

dξ +

h∫
p

 sup
t∈[ξ−p,ξ]

‖f (t,ut+ω)− f (t,ut)‖θ2

dξ,
which implies that

h∫
p

 sup
t∈[ξ−p,ξ]

‖f (t +ω,ut+ω)− f (t,ut)‖θ2

dξ
≤

h∫
p

 sup
t∈[ξ−p,ξ]

 sup
‖φ‖Cθ1

≤L

∥∥∥f (t +ω,φ)− f (t,φ)
∥∥∥
θ2


dξ

+
∥∥∥Lf ∥∥∥Cb(R+,R+)

h∫
p

 sup
t∈[ξ−p,ξ]

‖ut+ω −ut‖Cθ1

dξ.
As a result, we get

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖f (t +ω,ut+ω)− f (t,ut)‖θ2

dξ = 0.

The proof is complete.
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We are now prepared to define the mild solution for problem (3.1).

Definition 3.2.4. A function u ∈ C([−r,+∞),Xθ) is said to be a θ-mild solution for problem (3.1)

if u satisfies problem (3.1) and

u(t) = ϕ(t),

for ϕ ∈ Cθ and t ∈ [−r,0]. In this case, u is defined explicitly as follows

u(t) =U (t)(ϕ(0)−G(0,ϕ) +G(t,ut)−
t∫

0

(
(t − s)α−1AV (t − s)G(s,us)

)
ds

+

t∫
0

(
(t − s)α−1V (t − s)F(s,us)

)
ds, t ≥ 0.

Moreover, if u|R+
∈ P SAPω,p(Xθ), then u(·) is called pseudo S-asymptotically ω-periodic θ-mild

solution of class p for problem (3.1).

3.3 Existence and uniqueness of solution

In this section, we discuss some questions related to the existence and uniqueness of pseudo

S-asymptotically ω-periodic θ-mild solutions of class p to problem (3.1). Our standing

hypotheses are:

(A1) F ∈ P SAPω,p(R+ ×Cθ,X) and G ∈ P SAPω,p(R+ ×Cθ,X1).

(A2) There exists a function LG(·) ∈ Cb (R+,R+) such that∥∥∥AG(t,φ1)−AG(t,φ2)
∥∥∥ ≤ LG(t)

∥∥∥φ1 −φ2

∥∥∥Cθ ,
for all (t,φi) ∈ R+ ×Cθ.

(A3) There exists a function LF(·) ∈ Cb (R+,R+) such that∥∥∥F(t,φ1)−F(t,φ2)
∥∥∥ ≤ LF(t)

∥∥∥φ1 −φ2

∥∥∥Cθ ,

for all (t,φi) ∈ R+ ×Cθ.

(A4) Setting LG = sup
t∈R+

LG(t) and LF = sup
t∈R+

LF(t), we so assume that

(
C
θ−1
LG + (LG +LF)

MθΓ (1−θ)
|v0|1−θ

)
< 1,

with

Cθ−1 = ||Aθ−1||.
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3.3. Existence and uniqueness of solution

Theorem 3.3.1. Suppose that assumptions (A1)-(A4) hold and −A be the generator of a uniformly

exponentially stable analytic semigroup T (t)(t≥0). For θ ∈ [0,1), we assume that ϕ ∈ Cθ, F :

R+ ×Cθ→ X and G : R+ ×Cθ→ X1 are continuous functions. Then, problem (3.1) has a unique

pseudo S-asymptotic ω-periodic θ-mild solution of class p.

Proof. We consider the Banach space

Cb,0 (Xθ) :=
{
x : [−r,+∞)→ Xθ

/
x|[−r,0] = 0 and x|R+ ∈ Cb (R+,Xθ)

}
,

endowed with the norm

‖x‖Cb,0 = ‖x0‖Cθ + sup
t≥0
‖x(t)‖θ = sup

t≥0
‖x(t)‖θ .

According to Proposition 3.2.1, we define the closed subspace of Cb,0(Xθ) as follows

P SAPω,p,0(Xθ) :=
{
x : [−r,+∞)→ Xθ

/
x|[−r,0] = 0 and x|R+ ∈ P SAPω,p(Xθ)

}
.

Throughout the proof, y denotes the function defined by

y(t) :=

 0, t ≥ 0,

ϕ(t), t ∈ [−r,0].

Let x ∈ P SAPω,p,0(Xθ). Due to the continuity of F : R+ × Cθ → X and G : R+ × Cθ → X1 and

by taking into account assumptions (A1)-(A3) and Lemma 3.2.4, we can conclude that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥AG(t +ω,xt+ω + yt+ω)−AG(t,xt + yt)
∥∥∥dξ = 0, (3.7)

and

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥F(t +ω,xt+ω + yt+ω)−F(t,xt + yt)
∥∥∥dξ = 0,

which means that F ∈ P SAPω,p(X) and G ∈ P SAPω,p(X1). Further, there exist MF > 0 and

MG > 0 such that

||F(t,xt + yt)|| ≤MF and ||AG(t,xt + yt)|| ≤MG for all t ≥ 0. (3.8)

Now, we need to introduce the following operator

N : P SAPω,p,0(Xθ)→ P SAPω,p,0(Xθ)

x→Nx,

where

Nx(t) := U (t)(ϕ(0)−G(0,ϕ)) +G(t,xt + yt)−
t∫

0

(
(t − s)α−1AV (t − s)G(s,xs + ys)

)
ds

+

t∫
0

(
(t − s)α−1V (t − s)F(s,xs + ys)

)
ds,
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3.3. Existence and uniqueness of solution

with t ≥ 0. In what follows, we show that the operator N has a unique fixed point in

P SAPw,p,0(Xθ). Firstly, we check that N is well defined. From the Fubini’s theorem and the

definition of the operator V given by (3.2), it follows from (1.12),(3.4) and (3.8) that

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥F(s,xs + ys)

∥∥∥)ds
≤ αMFMθ

t∫
0

(t − s)α(1−θ)−1

∞∫
0

(
τ1−θζα(τ)e−|ν0|(t−s)ατ

)
dτ

ds
≤ MFMθΓ (1−θ)

|ν0|1−θ
< +∞.

Similarly,

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥AG(s,xs + ys)

∥∥∥)ds
≤ αMGMθ

t∫
0

(t − s)α(1−θ)−1

∞∫
0

(
τ1−θζα(τ)e−|ν0|(t−s)ατ

)
dτ

ds
≤ MGMθΓ (1−θ)

|ν0|1−θ
< +∞,

for every x ∈ P SAPω,p,0(Xθ). Consequently, we can see that t 7→Nx(t) is a bounded function.

Then, it remains to show that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖Nx(t +ω)−Nx(t)‖θ

dξ = 0.

A direct computation allows us to get

Nx(t +ω)−Nx(t) =
6∑
i=1

Ji(t),

where

J1(t) = (U (t +ω)−U (t))(ϕ(0)−G(0,ϕ)),

J2(t) = G(t +ω,xt+ω + yt+ω)−G(t,xt + yt),

J3(t) =

ω∫
0

(
(t +ω − s)α−1V (t +ω − s)AG(s,xs + ys)

)
ds,
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J4(t) =

t∫
0

(
(t − s)α−1V (t − s)(AG(s+ω,xs+ω + ys+ω)−AG(s,xs + ys))

)
ds,

J5(t) =

ω∫
0

(
(t +ω − s)α−1V (t +ω − s)F(s,xs + ys)

)
ds,

J6(t) =

t∫
0

(
(t − s)α−1V (t − s)(F(s+ω,xs+ω + ys+ω)−F(s,xs + ys))

)
ds.

This implies that

h∫
p

 sup
t∈[ξ−p,ξ]

‖Nx(t +ω)−Nx(t)‖θ

dξ ≤ 6∑
i=1


h∫
p

 sup
t∈[ξ−p,ξ]

‖Ji(t)‖θ

dξ
 .

Keeping in mind the exponential stability of semigroup (T (t))t≥0 and the definition of the

operator U given by (3.2), we deduce that for all ε > 0, there exists tε > 0, such that

‖U (t)‖ ≤
ε
2
, for all t ≥ tε.

First, let us start with the estimation of the quantity J1. We have

‖J1(t)‖θ ≤ (‖U (t +ω)‖+ ‖U (t)‖)‖ϕ(0)−G(0,ϕ)‖θ ,

so

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J1(t)‖θ

dξ
≤ 1

h

h∫
p

 sup
t∈[ξ−p,ξ]

(‖U (t +ω)‖+ ‖U (t)‖)‖ϕ(0)−G(0,ϕ)‖θ

dξ
≤ ‖ϕ(0)−G(0,ϕ)‖θ

(
2Mtε
h

+ ε
(
1−

(p+ tε)
h

))
,

this implies that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J1(t)‖θ

dξ = 0.

From (3.7) and taking into account that X1 ↪→ Xθ, we get

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥G(t +ω,xt+ω + yt+ω)−G(t,xt + yt)
∥∥∥
θ

dξ
≤ Cθ−1

h

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥AG(t +ω,xt+ω + yt+ω)−AG(t,xt + yt)
∥∥∥dξ;
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hence,

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥G(t +ω,xt+ω + yt+ω)−G(t,xt + yt)
∥∥∥
θ

dξ = 0,

and

t 7→ G(t,xt + yt) ∈ P SAPw,p(Xθ).

At this level, let us show that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖Ji(t)‖θ

dξ = 0, i = 3,4,5,6.

Taking into account that

t +ω − s ≥ t +ω
ω

(ω − s) ,

and the estimates (3.5), (3.8), we deduce that

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J3(t)‖θ

dξ
≤ MGMθ

ωΓ (1−θ)
Γ (α(1−θ) + 1)

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

(t +ω)α(1−θ)−1

 dξ


≤ MGMθ
ωΓ (1−θ)

Γ (α(1−θ) + 1)

1
h

h∫
p

(ξ − p+ω)α(1−θ)−1 dξ

 ,
which implies that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J3(t)‖θ

dξ = 0,

and

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J5(t)‖θ

dξ = 0.

In fact, it suffices to see that

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J5(t)‖θ

dξ
≤ MFMθ

ωΓ (1−θ)
Γ (α(1−θ) + 1)

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

(t +ω)α(1−θ)−1

 dξ


≤ MFMθ
ωΓ (1−θ)

Γ (α(1−θ) + 1)

1
h

h∫
p

(ξ − p+ω)α(1−θ)−1dξ

 .
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It remains to show that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖Ji(t)‖θ

dξ = 0, i = 4,6.

We examine the term I4. To make the notation less cluttered, we define the function QG as

follows

QG(t) = AG(t +ω,xt+ω + yt+ω)−AG(t,xt + yt), t ≥ 0.

Thanks to (3.7), we can deduce that, for every ε > 0, there exists hε > 0 such that

1
h

h∫
p

sup
t∈[ξ−p,ξ]

‖QG(t)‖ dξ ≤ ε, for all h ≥ hε. (3.9)

Consequently,

h∫
p

 sup
t∈[ξ−p,ξ]

‖J4(t)‖θ

dξ
≤

h∫
p

 sup
t∈[ξ−p,ξ]

ξ−p∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥‖QG(s)‖

)
ds

dξ
+

h∫
p

 sup
t∈[ξ−p,ξ]

t∫
ξ−p

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥‖QG(s)‖

)
ds

dξ
:=

2∑
i=1

J i4(t).

Taking into account the definition of the operator V given in (3.2) and the estimates (1.12),

we get

J1
4 (t)

≤ αMθ

h∫
p

sup
t∈[ξ−p,ξ]

ξ−p∫
0

(t − s)α(1−θ)−1
(∫ ∞

0
τ1−θζα(τ)e−|ν0|(t−s)ατ dτ

)
‖QG(s)‖ dsdξ

≤ αMθ

h∫
p

ξ−p∫
0

(ξ − p − s)α(1−θ)−1
(∫ ∞

0
τ1−θζα(τ)e−|ν0|(ξ−p−s)ατdτ

)
‖QG(s)‖ dsdξ

= αMθ

h∫
p

ξ∫
p

(ξ − s)α(1−θ)−1
(∫ ∞

0
τ1−θζα(τ)e−|ν0|(ξ−s)ατdτ

)
‖QG(s − p)‖dsdξ.
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Using the classical Fubini’s theorem, we get

J1
4 (t)

≤ αMθ

h∫
p

‖QG(s − p)‖


h∫
s

(ξ − s)α(1−θ)−1
(∫ ∞

0
τ1−θζα(τ)e−|ν0|(ξ−s)ατdτ

)
dξ

ds
≤ αMθ

h∫
p

‖QG(s − p)‖


h−s∫
0

(ξ)α(1−θ)−1
(∫ ∞

0
τ1−θζα(τ)e−|ν0|(ξ)ατdτ

)
dξ

ds.
Similarly as before, we obtain

J1
4 (t) ≤Mθ

Γ (1−θ)

|ν0|1−θ

h∫
p

‖QG(s − p)‖ ds;

it follows from (3.9) and Proposition 3.2.1 that

lim
h→+∞

1
h
J1
4 (t) = 0.

Assume that h ≥ 2p, then we get

J2
4 (t)

=

2p∫
p

 sup
t∈[ξ−p,ξ]

t∫
ξ−p

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥‖QG(s)‖

)
ds

 dξ
+

h∫
2p

 sup
t∈[ξ−p,ξ]

t∫
ξ−p

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥‖QG(s)‖

)
ds

 dξ
:=

2∑
i=1

J2,i
4 (t).

Thanks to (3.8) and the estimate (3.5), we obtain

J2,1
4 (t)

≤ 2MGMθ
Γ (1−θ)

Γ (α(1−θ))

2p∫
p

 sup
t∈[ξ−p,ξ]

t∫
ξ−p

(
(t − s)α(1−θ)−1

)
ds

dξ
= 2MGMθ

Γ (1−θ)
Γ (1 +α(1−θ))

2p∫
p

 sup
t∈[ξ−p,ξ]

(t − ξ + p)α(1−θ)

dξ
≤ 2MGMθ

Γ (1−θ)
Γ (1 +α(1−θ))

2p∫
p

pα(1−θ)dξ,
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therefore

lim
h→+∞

1
h
J2,1
4 (t) = 0.

Concerning the term J2,2
4 (t), we have

J2,2
4 (t)

≤ Mθ
αΓ (1−θ)
Γ (α(1−θ))

h∫
2p

 sup
t∈[ξ−p,ξ]

t∫
ξ−p

(t − s)α(1−θ)−1 ‖QG(s)‖ ds

dξ
≤ Mθ

αΓ (1−θ)
Γ (α(1−θ))

h∫
2p


p∫

0

(s)α(1−θ)−1 sup
t∈[ξ−p,ξ]

‖QG(t − s)‖ ds

dξ,
for h ≥ hε, the use of Fubini’s theorem implies

1
h
J2,2
4 (t)

≤ Mθ
Γ (1−θ)

Γ (α(1−θ))

p∫
0

(s)α(1−θ)−1

1
h

h∫
2p

sup
t∈[ξ−p,ξ]

‖QG(t − s)‖ dξ

 ds
≤ Mθ

Γ (1−θ)
Γ (α(1−θ))

p∫
0

(s)α(1−θ)−1

1
h

h∫
p

sup
t∈[ξ−p,ξ]

‖QG(t)‖ dξ

 ds
≤ εMθ

Γ (1−θ)
Γ (α(1−θ))

p∫
0

sα(1−θ)−1ds

→ 0, as ε→ 0.

Combining all the previous estimates, we conclude that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J4(t)‖θ

 dξ = 0.

Similarly,

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J6(t)‖θ

 dξ = 0.

Summing up, one can deduce that

N (P SAPω,p,0(Xθ)) ⊆ P SAPω,p,0(Xθ). (3.10)

Next, we will show that N is a contraction mapping. Let x,z ∈ P SAPω,p,0(Xθ), taking into
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account the assumptions (A2) and (A3), we get

‖Nx(t)−Nz(t)‖θ
≤ Cθ−1

∥∥∥AG(t,xt + yt)−AG(t, zt + yt)
∥∥∥
θ

+

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥AG(s,xs + ys)−AG(s,zs + ys)

∥∥∥)ds
+

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥F(s,xs + ys)−F(s,zs + ys)

∥∥∥)ds
≤ Cθ−1LG ‖xt − zt‖Cθ

+(LG +LF)

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥‖xs − zs‖Cθ)ds

≤
(
C
θ−1
LG + (LG +LF)

MθΓ (1−θ)
|v0|1−θ

)
||x − z||Cb,0 .

As a result, we confirm that

||Nx −Nz||Cb,0 ≤
(
C
θ−1
LG + (LG +LF)

MθΓ (1−θ)
|v0|1−θ

)
||x − z||Cb,0 .

Hence, taking into account assumption (A4), we conclude that the mapping

N : P SAPw,p,0(Xθ)→ P SAPw,p,0(Xθ)

is a contraction. Then, it follows from the Banach contraction principle that N has a unique

fixed point x ∈ P SAPw,p,0(Xθ). Set u(t) = x(t) +y(t) for t ∈ [−r,+∞), we can confirm that u is a

unique pseudo S-asymptotic ω-periodic θ-mild solution of class p of the problem (3.1).

In the remainder of this section, we prove the existence of the pseudo S-asymptotic ω-

periodic θ-mild solution of class p for problem (3.1) without assuming the Lipschitz prop-

erty of the function F. Our strategy is based on the use of the Krasnoselskii’s fixed point

theorem. In order to do this, we need the following conditions:

(A5) Let ψi : R+→ R+, i = 1,2 be non negative functions that satisfy the following estimate

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

ψi(t)

dξ = 0, i = 1,2,

and assume that, for every t ∈ R+ and φ ∈ Cθ, there exists ω > 0 such that∥∥∥F(t +ω,φ)−F(t,φ)
∥∥∥ ≤ ψ1(t) and

∥∥∥AG(t +ω,φ)−AG(t,φ)
∥∥∥ ≤ ψ2(t).
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(A6) There exists a function k : R+→ R+ and a constant δ > 0 such that for all φ ∈ Cθ,

||F(t,φ)|| ≤ k(t), for all t ≥ 0, (3.11)

and k satisfies the following estimate

lim
h→+∞

1
h

h∫
δ

(ξ − p)α(1−θ) sup
s∈[0,ξ]

k(s)

dξ = 0. (3.12)

(A7) There exists a positive constant LG such that∥∥∥AG(t,φ1)−AG(t,φ2)
∥∥∥ ≤ LG ∥∥∥φ1 −φ2

∥∥∥Cθ ,
for all (t,φi) ∈ R+ ×Cθ.

(A8) Assume that (
Cθ−1LG +LG

MθΓ (1−θ)

|ν0|1−θ

)
< 1.

Theorem 3.3.2. Assume that (A5)-(A8) hold and −A generates a compact, uniformly expo-

nentially stable analytic semigroup (T (t))t≥0 on X. For θ ∈ [0,1), we assume that ϕ ∈ Cθ,

F : R+×Cθ→ Xθ is a bounded continuous function andG : R+×Cθ→ X1 is a continuous function

that satisfies G(t,0) = 0 for t ≥ 0. Then, the problem (3.1) has at least one pseudo S-asymptotic

ω-periodic θ-mild solution of class p.

Proof. For the sake of convenience, we will conserve the notation adopted in the proof of

the Theorem 3.3.1. In the sequel, our aim is to show that

N (P SAPw,p,0(Xθ)) ⊆ P SAPw,p,0(Xθ),

which means that for any x ∈ P SAPw,p,0(Xθ),

Nx : t 7→U (t)(ϕ(0)−G(0,ϕ) +G(t,xt + yt)

−
t∫

0

(
(t − s)α−1AV (t − s)G(s,xs + ys)

)
ds

+

t∫
0

(
(t − s)α−1V (t − s)F(s,xs + ys)

)
ds, t ≥ 0,

belongs to the space P SAPω,p(Xθ). Since the function F is bounded and G is continuous and

satisfies the conditions (A5) and (A7), then by the embedding Xθ ↪→ X and Lemma 3.2.4,

there exist two positive constants M ′F and M ′G such that

||F(t,xt + yt)|| ≤M ′F and ||AG(t,xt + yt)|| ≤M ′G, for all t > 0, (3.13)
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for any x ∈ P SAPω,p,0(Xθ). Furthermore, one has

t 7→ G(t,xt + yt) ∈ P SAPw,p(X1). (3.14)

Note that (3.13) guarantees the boundedness of the functionNx. Now, we look to prove that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖Nx(t +ω)−Nx(t)‖θ

dξ = 0,

i.e.,

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖Ji(t)‖θ

dξ = 0, i = {1,2, ...,6} .

From Theorem 3.3.1, it is immediate that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J1(t)‖θ

dξ = 0.

Exploiting (3.14) and the fact that X1 ↪→ Xθ , we obtain

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J2(t)‖θ

dξ = 0. (3.15)

Taking into account (3.13) and Theorem 3.3.1, we confirm that

lim
h→∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖Ji(t)‖θ

dξ = 0, i = 3,5.

Our objective now is to show that

lim
h→∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖Ji(t)‖θ

dξ = 0, i = 4,6.

First of all, for t ≥ 0, we set

QF(t) = F(t +ω,xt+ω + yt+ω)−F(t,xt+ω + yt+ω).

According to (A5), it is evident to say that the function QF satisfies the following estimate

lim
h→+∞

1
h

h∫
p

sup
t∈[ξ−p,ξ]

‖QF(t)‖ dξ = 0. (3.16)
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On other side, we observe that
h∫
p

 sup
t∈[ξ−p,ξ]

‖J6(t)‖θ

dξ ≤ 2∑
i=1

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥J i6(t)
∥∥∥
θ

dξ,
where

J1
6 (t) =

t∫
0

(
(t − s)α−1V (t − s)QF(t)

)
ds,

and

J2
6 (t) =

t∫
0

(
(t − s)α−1V (t − s) (F(s,xs+ω + ys+ω)−F(s,xs + ys))

)
ds.

Due to (3.13), (3.15) and (3.16) with Theorem 3.3.1 that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J4(t)‖θ

dξ = 0,

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥J1
6 (t)

∥∥∥
θ

dξ = 0.

It remains to show that

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

∥∥∥J2
6 (t)

∥∥∥
θ

dξ = 0.

Taking into account the exponential stability of the semigroup (T (t))t≥0 and the definition

of the operator V as presented in (3.2), we can deduce that for every ε > 0, there exists

t′ε =
(
αC−β

MβΓ (1− β)

Γ (α(1− β))ε

) 1
αβ

> 0 ,

such that ‖V (t)‖ ≤ ε, for all t ≥ t′ε and β ∈ (0,1). In actual fact, it suffices to take into account

the estimate (3.5) which allows us to write

‖V (t)x‖ ≤
∥∥∥A−β∥∥∥∥∥∥AβV (t)x

∥∥∥ ≤ αC−β MβΓ (1− β)

tαβΓ (α(1− β))
‖x‖ ,

for any β ∈ (0,1) and x ∈ X. Then, we can write
h∫
p

sup
t∈[ξ−p,ξ]

J2
6 (t) dξ

=

t′ε+p∫
p

sup
t∈[ξ−p,ξ]

t∫
0

(
(t − s)α−1V (t − s) (F(s,xs+ω + ys+ω)−F(s,xs + ys))

)
dsdξ

+

h∫
t′ε+p

sup
t∈[ξ−p,ξ]

t∫
0

(
(t − s)α−1V (t − s) (F(s,xs+ω + ys+ω)−F(s,xs + ys))

)
dsdξ.
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Thanks to (3.13) and the estimate (3.5), we conclude that

1
h

t′ε+p∫
p

 sup
t∈[ξ−p,ξ]

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥(F(s,xs+ω + ys+ω)−F(s,xs + ys))

∥∥∥)ds
dξ

≤
2M ′FMθΓ (1−θ)

Γ (α(1−θ))

1
h

t′ε+p∫
p

ξα(1−θ)dξ

→ 0, as h→ +∞.

Keeping in mind that the function

s 7→ g(s) = (s+ (ξ − p))α − sα

is decreasing for s ≥ 0, we get g(0) ≥ g(p), i.e., ξα − (ξ − p)α ≤ pα. Hence,

1
h

h∫
t′ε+p

 sup
t∈[ξ−p,ξ]

t−(ξ−p)∫
0

(
(t − s)α−1 ‖V (t − s)‖

∥∥∥AθF(s,xs+ω + ys+ω)−AθF(s,xs + ys)
∥∥∥)ds

dξ
≤

2M ′Fε
αC−θ

1
h

h∫
t′ε+p

(ξα − (ξ − p)α)dξ

 ≤ 2M ′Fε
αC−θ

pα → 0, as ε→ 0.

At this level, the use of (3.11) justify the fact that

||F(t,xs + ys)|| ≤ k(t).

Therefore, by (3.12), one can find

1
h

h∫
t′ε+p

sup
t∈[ξ−p,ξ]

t∫
t−(ξ−p)

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥F(s,xs+ω + ys+ω)−F(s,xs + ys)

∥∥∥)dsdξ
≤ 2MθΓ (1−θ)

Γ (α(1−θ))

1
h

h∫
t′ε+p

 sup
t∈[ξ−p,ξ]

t∫
t−(ξ−p)

(
(t − s)α(1−θ)−1k(s)

)
ds

dξ


≤ 2MθΓ (1−θ)
Γ (α(1−θ))

1
h

h∫
t′ε+p

(ξ − p)α(1−θ) sup
s∈[0,ξ]

k(s)

dξ
 ,

then

lim
h→+∞

1
h

h∫
t′ε+p

sup
t∈[ξ−p,ξ]

t∫
t−(ξ−p)

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥F(s,xs+ω + ys+ω)−F(s,xs + ys)

∥∥∥)dsdξ


= 0.
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Thus,

lim
h→+∞

1
h

h∫
p

 sup
t∈[ξ−p,ξ]

‖J6(t)‖θ

dξ = 0.

Summing up, the above results for Ji , i ∈ {1,2, ...,6} , we conclude that

Nx ∈ P SAPω,p(Xθ);

which justify the following inclusion, that is

N (P SAPω,p,0(Xθ)) ⊆ P SAPω,p,0(Xθ).

We are now in a position to show that the operator N has at least one fixed point x ∈
P SAPω,p,0(Xθ). For % > 0, we define the closed ball of P SAPω,p,0(Xθ) with center 0 and radius

% by

Ω% =
{
x ∈ P SAPω,p,0(Xθ)

/
||x||Cb,0 ≤ %

}
.

Set N =N1 +N2, with

N1x(t) :=U (t)ϕ(0) +
t∫

0

(
(t − s)α−1V (t − s)F(s,xs + ys)

)
ds,

N2x(t) :=U (t)(G(0,ϕ)) +G(t,xt + yt)−
t∫

0

(
(t − s)α−1AV (t − s)G(s,xs + ys)

)
ds.

We first prove that there exists a positive constant %0 such that N1x +N2z ∈ Ω%0
, for every

pair x,z ∈Ω%0
. For this purpose, we assume that for any % > 0, there exist x,z ∈Ω% and t ≥ 0

such that

%

≤ ‖N1x(t) +N2z(t)‖θ

≤ ‖U (t)‖‖ϕ(0)‖θ +

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥F(s,xs + ys)

∥∥∥)ds
+‖U (t)‖‖G(0,ϕ)‖θ +

∥∥∥G(t, zs + ys)
∥∥∥
θ

+

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥AG(s,zs + ys)

∥∥∥)ds,
so

%

≤ M ‖ϕ‖Cθ +M ′F

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥)ds

+MC−θLG ‖ϕ‖Cθ +Cθ−1LG
∥∥∥zs + ys

∥∥∥Cθ +LG
∥∥∥zs + ys

∥∥∥Cθ
t∫

0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥)ds,
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then

%

≤ M ‖ϕ‖Cθ +M ′FMθ
Γ (1−θ)

|ν0|1−θ

+MC−θLG ‖ϕ‖Cθ +Cθ−1LG
(
%+ ‖ϕ‖Cθ

)
+LG

(
%+ ‖ϕ‖Cθ

)MθΓ (1−θ)

|ν0|1−θ
.

Dividing on both sides by % and taking the limit as % approaches infinity, we obtain

1 ≤ Cθ−1LG +LG
MθΓ (1−θ)

|ν0|1−θ
.

Combining all the above arguments, we can deduce that there exists a positive constant %0,

such that for any pair of x,z ∈Ω%0
, one has N1x+N2z ∈Ω%0

.

Now, let us show that the function N1 is compact and the function N2 is contraction. To

do that, we should do it in several steps as follows.

Step 1: We show that the function N1 is continuous on Ω%0
. In fact, due the continuity of

the function F, for any sequence (xn) ∈Ω%0
such that xn→ x on Ω%0

, one can see∥∥∥F(s,xns + ys)−F(s,xs + ys)
∥∥∥→ 0, as n→ +∞.

Then, by the dominate convergence theorem, we can conclude that

‖N1x
n(t)−N1x(t)‖θ ≤

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥F(s,xns + ys)−F(s,xs + ys)

∥∥∥)ds
→ 0, as n→ +∞.

Step 2: Following [108], for t ≥ 0, we define

N ε,δ
1 x(t) :=U (t)ϕ(0) +α

t∫
0

(t − s)α−1

∞∫
δ

(τζα(τ)T (tατ)F(s,xs + ys))dτ

ds.
The compactness of the operator T (t) and Lemma 3.2.1 implies that the set N ε,δ

1

(
Ω%0

)
(t) is

relatively compact in Xθ. Moreover, it follows from (1.12) and (3.13) that∥∥∥∥N1x(t)−N ε,δ
1 x(t)

∥∥∥∥
θ

≤ α

t∫
0

(t − s)α−1

δ∫
0

(
τζα(τ)

∥∥∥AθT (tατ)
∥∥∥∥∥∥F(s,xs + ys)

∥∥∥)dτ
ds

+α

t∫
t−ε

(t − s)α−1

∞∫
δ

(
τζα(τ)

∥∥∥AθT (tατ)
∥∥∥∥∥∥F(s,xs + ys)

∥∥∥)dτ
ds
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≤ αMθM
′
F


∫ δ

0

τ1−θζα(τ)

t∫
0

(
(t − s)α(1−θ)−1e−|ν0|(t−s)ατ

)
ds

dτ
+

t∫
t−ε

(
(t − s)α(1−θ)−1

)
ds

∫ ∞
0

(
τ1−θζα(τ)

)
dτ


≤ MθM

′
F
Γ (1−θ)

|ν0|1−θ

[∫ δ

0
ζα(τ)dτ +

1
α(1−θ)

εα(1−θ)
]
,

in other word

lim
ε,δ→0

∥∥∥∥N1x(t)−N ε,δ
1 x(t)

∥∥∥∥
θ

= 0.

Consequently, the set N1

(
Ω%0

)
(t) is relatively compact in Xθ.

Step 3: Let t1 > t2 ≥ 0 and x ∈Ω%0
. Observe that, from Lemma 2.9 in [107] we deduce that∥∥∥AθV (t1 − s)−AθV (t2 − s)

∥∥∥→ 0, as t1→ t2 ,

and

‖U (t1)−U (t2)‖ → 0, as t1→ t2 .

On other side, one has
t2∫

0

(
(t2 − s)α−1 − (t1 − s)α−1

(t2 − s)αθ

)
ds

=

t2∫
0

(t2 − s)α(1−θ)−1 − (t1 − s)α(1−θ)−1
(
t1 − s
t2 − s

)αθds
≤

t2∫
0

(
(t2 − s)α(1−θ)−1 − (t1 − s)α(1−θ)−1

)
ds

→ 0, as t1→ t2.

This gives

‖N1x(t1)−N1x(t2)‖θ
≤ ‖U (t1)−U (t2)‖

∥∥∥Aθϕ(0)−AθG(0,ϕ)
∥∥∥

+

t2∫
0

(
(t1 − s)α−1

∥∥∥AθV (t1 − s)−AθV (t2 − s)
∥∥∥∥∥∥F(s,xs + ys)

∥∥∥)ds
+

t2∫
0

([
(t2 − s)α−1 − (t1 − s)q−1

]∥∥∥AθV (t2 − s)
∥∥∥∥∥∥F(s,xs + ys)

∥∥∥)ds
+

t1∫
t2

(
(t1 − s)α−1

∥∥∥AθV (t1 − s)
∥∥∥∥∥∥F(s,xs + ys)

∥∥∥)ds
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≤ ‖U (t1)−U (t2)‖
(∥∥∥Aθϕ(0)

∥∥∥+Cθ−1 ‖AG(0,ϕ)‖
)

+M ′F


t2∫

0

(
(t1 − s)α−1

∥∥∥AθV (t1 − s)−AθV (t2 − s)
∥∥∥)ds

+Mθ

t2∫
0

(
(t2 − s)α−1 − (t1 − s)α−1

(t2 − s)αθ

)
ds+Mθ

t1∫
t2

(
(t1 − s)α(1−θ)−1

)
ds

 .
Then

lim
t1→t2

‖N1x(t1)−N1x(t2)‖θ = 0,

which means thatN1

(
Ω%0

)
is equicontinuous. Combining the above steps, the Arzela-Ascoli

theorem guarantees that N1 is a compact operator on Ω%0
.

Step 4: What is left is to show that N2 is contraction. Let x,z ∈Ω%0
, for t ≥ 0, one has

‖N2x(t)−N2z(t)‖θ
≤

∥∥∥G(t,xt + yt)−G(t, zt + yt)
∥∥∥
θ

+

t∫
0

(
(t − s)α−1

∥∥∥AθV (t − s)
∥∥∥∥∥∥AG(s,xs + ys)−AG(s,zs + ys)

∥∥∥)ds,
then

‖N2x(t)−N2z(t)‖θ ≤
(
Cθ−1LG +LG

MθΓ (1−θ)

|ν0|1−θ

)
‖x − z‖Cb,0 ,

it follows from (A8) that N2 is contraction.

Finally, by applying Theorem 1.7.3, we conclude that the operator N has at least one

fixed point x ∈ Ω%0
⊂ P SAPω,p,0(Xθ). Hence, we can affirm that u = x + y is the pseudo

S-asymptotically ω-periodic θ-mild solution of class p for problem (3.1).

3.4 Example

In this section, we present an example to apply our abstract theoretical results. We focus on

the following delayed partial differential equation

CD
1
2
0+

(
u(t,ξ)− k2(t)

t∫
t−r

(∫ ξ
a
b2(s − t)u(s,η)dη

)
ds

)
− ∂2

∂ξ2u(t,ξ)

= k1(t)
∫ t
t−r b1(s − t)u(s,ξ)ds, ξ ∈ [0,π], t ∈ R+,

u(t,0) = u(t,π) = 0, t ∈ R+,

u(τ,ξ) = ϕ(τ)(ξ), τ ∈ [−r,0],ξ ∈ [0,π],

(3.17)

where r is a positive constant,ϕ ∈ C
(
[−r,0],L2([0,π])

)
, b1(·),b2(·) ∈ C ([−r,0],R), and k1(.), k2(.)

are continuous functions on R+. Let X := L2 ([0,π]) and A : D(A) ⊆ X → X is the operator
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defined by  Au := −u′′,
D(A) = {u ∈ X

/
u′′,u′ ∈ X,u(0) = u(π) = 0 } .

Remark 3.4.1. Most of the useful spectral properties of this operator can be founded in Section 5

in [78] and Example 5.1 in [104]. For the reader’s convenience, we recall that

• A has a discrete spectrum with eigenvalues n2, n ∈ N;

• A generates a uniformly exponentially stable analytic semigroup (T (t))(t≥0) defined by

T (t)u :=
∞∑
n=1

e−n
2t 〈u,en〉en and ‖T (t)‖≤e−t,

where {en
/
n ∈ N } is an orthonormal basis of X and en(ξ) =

(
2
π

) 1
2 sin(nξ) are the associated

normalized eigenvectors;

• the operator A1/2 is well-defined and can be characterized as follows
(A)

1
2 u :=

∑∞
n=1n〈u,en〉en,

(A)−
1
2 u :=

∑∞
n=1

1
n
〈u,en〉en,

D(A1/2) := {u ∈ X
/ ∑∞

n=1n〈u,en〉en ∈ X } ;

• for u ∈D(A1/2), we have

‖u‖ 1
2

=
∥∥∥u′∥∥∥ .

Let us introduce the following functions F : R+×C 1
2
→ X and G : R+×C 1

2
→ X1 as follows

F(t,φ)(ξ) = k1(t)
∫ 0
−r b1(s)φ(s,ξ)ds,

and

G(t,φ)(ξ) = k2(t)
∫ 0
−r

∫ ξ
a
b2(s)φ(s,η)dη ds.

According to Theorem 3.3.1, we have the following result.

Proposition 3.4.1. Suppose that the functions k1, k2 belong to P SAPw,p (R+) and

(1 +π)
(∫ 0

−r
|b1(s)|2ds

) 1
2

‖k1‖Cb([0,+∞),R+) +π
(∫ 0

−r
|b2(s)|2ds

) 1
2

‖k2‖Cb([0,+∞),R+) < r
− 1

2 . (3.18)

Then, the problem (3.17) has a unique pseudo S-asymptotic ω-periodic 1
2-mild solution of class p.

Proof. Note that, for t ≥ 0 and φ ∈ C 1
2
, one has

∣∣∣F(t,φ)(ξ)
∣∣∣2 ≤ |k1(t)|2

(∫ 0

−r
|b1(s)|

∣∣∣φ(s,ξ)
∣∣∣ds)2

≤ |k1(t)|2
∫ 0

−r
|b1(s)|2ds

∫ 0

−r

∣∣∣φ(s,ξ)
∣∣∣2ds.
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Using the Fubini theorem, we have∥∥∥F(t,φ)
∥∥∥2 ≤ |k1(t)|2

∫ 0

−r
|b1(s)|2ds

∫ 0

−r

∥∥∥φ(s, ·)
∥∥∥2
L2([0,π])

ds

≤ r |k1(t)|2
∫ 0

−r
|b1(s)|2ds sup

s∈[−r,0]

∥∥∥φ(s, ·)
∥∥∥2
L2([0,π])

.

Furthermore, ∥∥∥F(t,φ)
∥∥∥ ≤ r 1

2 |k1(t)|
(∫ 0

−r
|b1(s)|2ds

) 1
2 ∥∥∥φ∥∥∥C 1

2

,

and

1
h

h∫
p

sup
t∈[ξ−p,ξ]

sup
‖φ‖C 1

2

≤L

∥∥∥F(t +ω,φ)−F(t,φ)
∥∥∥dξ

≤ Lr
1
2

(∫ 0

−r
|b1(s)|2ds

) 1
2

1
h

h∫
p

sup
t∈[ξ−p,ξ]

|k1(t +ω)− k1(t)|dξ

 ,
which implies that

lim
h→+∞

1
h

h∫
p

sup
t∈[ξ−p,ξ]

sup
‖φ‖C 1

2

≤L

∥∥∥F(t +ω,φ)−F(t,φ)
∥∥∥dξ = 0,

and

F ∈ P SAPω,p(R+ ×C 1
2
,X). (3.19)

Moreover, we can easily see that

∥∥∥F(t,φ1)−F(t,φ2)
∥∥∥ ≤ r 1

2 ‖k1‖Cb([0,+∞),R+)

(∫ 0

−r
|b1(s)|2ds

) 1
2 ∥∥∥φ1 −φ2

∥∥∥C 1
2

, (3.20)

for any φ1, φ2 ∈ B 1
2
. Similarly, one has∣∣∣∣∣∣ ∂2

∂ξ2G(t,φ)(ξ)

∣∣∣∣∣∣2 = |k2(t)|2
∣∣∣∣∣∣
∫ 0

−r
b2(s)

∂2

∂ξ2

∫ ξ

a
φ(s,η)dη ds

∣∣∣∣∣∣
2

≤ |k2(t)|2
∣∣∣∣∣∣
∫ 0

−r
b2(s)

∂
∂ξ
φ(s,ξ)ds

∣∣∣∣∣∣
2

≤ |k2(t)|2
∫ 0

−r
|b2(s)|2 ds

∫ 0

−r

∣∣∣∣∣ ∂∂ξφ(s,ξ)
∣∣∣∣∣2 ds.

This yields ∥∥∥∥∥∥ ∂2

∂ξ2G(t,φ)

∥∥∥∥∥∥ ≤ r
1
2 |k2(t)|

(∫ 0

−r
|b2(s)|2ds

) 1
2

sup
s∈[−r,0]

∥∥∥φ′(s, ·)∥∥∥
L2([0,π])

= r
1
2 |k2(t)|

(∫ 0

−r
|b2(s)|2ds

) 1
2 ∥∥∥φ∥∥∥C 1

2

.
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Therefore,

1
h

h∫
p

sup
t∈[ξ−p,ξ]

sup
‖φ‖C 1

2

≤L

∥∥∥∥∥∥ ∂2

∂ξ2G(t +ω,φ)− ∂2

∂ξ2G(t,φ)

∥∥∥∥∥∥dξ
≤ Lr

1
2

(∫ 0

−r
|b2(s)|2ds

) 1
2

1
h

h∫
p

sup
t∈[ξ−p,ξ]

|k2(t +ω)− k2(t)|dξ

 ,
which means that

lim
h→+∞

1
h

h∫
p

sup
t∈[ξ−p,ξ]

sup
‖φ‖C 1

2

≤L

∥∥∥∥∥∥ ∂2

∂ξ2G(t +ω,φ)− ∂2

∂ξ2G(t,φ)

∥∥∥∥∥∥dξ = 0,

and consequently

G ∈ P SAPω,p(R+ ×C 1
2
,X1). (3.21)

On other side, we have ∥∥∥∥∥∥ ∂2

∂ξ2G(t,φ1)− ∂2

∂ξ2G(t,φ2)

∥∥∥∥∥∥
≤ r

1
2 ‖k2‖Cb([0,+∞),R+)

(∫ 0

−r
|b2(s)|2ds

) 1
2 ∥∥∥φ1 −φ2

∥∥∥C 1
2

, (3.22)

for any φ1, φ2 ∈ C 1
2
. Observe that, from (3.19), (3.20), (3.21), and (3.22), we can deduce that

the condition (A1), (A2), and (A3) from Section 3 hold. It is immediate that (3.18) implies

that the condition (A4) holds with ‖A−1/2‖ = 1, M 1
2

= Γ (1/2) =
√
π and ν0 = −1. By Theorem

3.3.1, we conclude that the problem (3.17) has a unique pseudo S-asymptotical ω-periodic
1
2-mild solution of class p.
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Chapter 4
S-asymptotically Bloch type periodic solutions

for abstract fractional equations involving
ψ-Hilfer derivatives

The aim of this chapter is to investigate the existence and uniqueness of S-asymptotically

Bloch type periodic solutions for a class of the neutral ψ-Hilfer fractional derivative equa-

tions with infinite delay. Our approach is based on the semigroup theory, the fractional

powers of linear operators, as well as the Banach contraction mapping principle and the

Schauder’s fixed point theorem. In the end, we present an example to illustrate the applica-

tions of the abstract results.

Note: The notations used here are entirely independent of those used in Chapter 3, except

for what we specifically mention.

4.1 Introduction

Let 0 < α ≤ 1 and 0 ≤ β ≤ 1. Consider the following nonlinear fractional neutral functional

differential equation with infinite delay HD
α,β,ψ
0+ (u(t)−G(t,ut)) = Au(t) +F(t,u(t),ut), t ≥ 0,

u (t) = ϕ (t) , t ≤ 0,
(4.1)

where A is the infinitesimal generator of a uniformly exponentially stable analytic semi-

group (T (t))t≥0 in a Banach space (X,‖·‖). In this study, we define

u : R −→ X,

and ut denotes the classical history function given by

ut(s) = u(t + s), −∞ ≤ s ≤ 0,
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4.2. Preliminaries

while the data ϕ belongs to a suitable admissible phase space B. In order to furnish a

complete study of (4.1), we assume that G : R+ × B → X is a continuous function and

F : R+ ×X ×B → X is of a class C1.

It is necessary to note that the study of existence and uniqueness of Bloch type periodic

solutions as parts of the qualitative theory of differential equations have attracted great at-

tention of researchers and have been developed rapidly. Such type of solutions appears in

several concrete situations. For instance, it is observed that solutions to equations describ-

ing heat or wave propagation in solid-state physics often manifest the Bloch type periodicity,

see [54, 77, 86, 112]. Recently, the concept of S-asymptotically Bloch type periodicity was

proposed and developed in [31]. This concept can be viewed in some sense as an extension

of classical Bloch type periodicity. At this level, we mention that several works have been

concerned with the study of the existence and uniqueness of S-asymptotically periodic so-

lutions [56] for ordinary differential equations with finite delay; see [47, 75, 76, 78] and

references therein. To explore other perspectives and approaches, we advise the reader to

consult [6, 16, 43, 101]. For further information concerning the Bloch-type periodic func-

tions and their applications to evolution equations, we refer the reader to the recent research

monographs [30] and [67].

4.2 Preliminaries

According to Remark 1.4.1, we know that if (T (t))t≥0 is an analytic semigroup generated by

Awith 0 ∈ ρ(A), then for any θ > 0, the operator (−A)−θ is well defined and has the following

explicit representation

(−A)−θ :=
1

Γ (θ)

∞∫
0

tθ−1T (t)dt.

Moreover, (−A)−θ is an injective continuous endomorphism of X; see Lemma 1.4.1. Then,

we can define (−A)θ as a closed bijective linear operator in X by

(−A)θ :=
(
(−A)−θ

)−1
,

which is a closed bijective linear operator in X.

Furthermore, the subspace D
(
(−A)θ

)
is dense in X and the expression

‖ · ‖θ =
∥∥∥(−A)θ ·

∥∥∥
defines a norm on D

(
(−A)θ

)
for x ∈D

(
(−A)θ

)
. For 0 ≤ θ ≤ 1, set

Xθ =D((−A)θ).

In the particular situation θ = 0, we consider that (−A)0 := IX and X0 := X. As mentioned

in Chapter 3, the fractional power space Xθ endowed with its natural norm ‖ · ‖θ is a Banach
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space. In addition, for 0 ≤ θ1 ≤ θ2 ≤ 1, one has

Xθ2
↪→ Xθ1

. (4.2)

Remark 4.2.1. In the rest of this paper, we assume that the function ψ appearing in (1.7) and

(1.8) satisfies the following conditions:

(1) ψ is a non-negative increasing function on [0,+∞) such that ψ(0) = 0.

(2) ψ′ , 0 on [0,+∞) .

The technical arguments used in our proofs needs the introducion of the following oper-

ators Uα
ψ (t, s) and V α

ψ (t, s) defined on X as follows

Uα
ψ (t, s)x =

∞∫
0

ζα(τ)T ((ψ(t)−ψ(s))α τ)xdτ, x ∈ X, (4.3)

and

V α
ψ (t, s)x = α

∞∫
0

τζα(τ)T ((ψ(t)−ψ(s))α τ)xdτ, x ∈ X, (4.4)

for t ≥ s ≥ 0, where ζα(·) is a probability density function defined by (3.3).

Proposition 4.2.1. For θ ≥ 0, we have

(i) For any fixed t > s ≥ 0, Uα
ψ (t, s) and V α

ψ (t, s) are linear bounded operators.

(ii) If (T (t))t≥0 is a compact, then Uα
ψ (t, s) and V α

ψ (t, s) are compact operators in Xθ for every

t > s ≥ 0, and hence Uα
ψ (t, s) and V α

ψ (t, s) are immediately norm-continuous.

(iii) Let θ < 1, we have

t∫
0

(ψ(t)−ψ(s))α−1
∥∥∥∥(−A)θV α

ψ (t, s)
∥∥∥∥ψ′ (s)ds ≤Mθ

Γ (1−θ)

|ν0|1−θ
, for all t > 0. (4.5)

Proof. (i) See Lemma 3.4 in [85].

(ii) For R > 0, we set

YR = {x ∈ Xθ
/
‖x‖θ ≤ R } .

We need to show that the sets

Uα
ψ (YR)(t, s) =


∞∫

0

ζα(τ)T ((ψ(t)−ψ(s))α τ)xdτ
/
x ∈ YR

 ,
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and

V α
ψ (YR)(t, s) =

 α
∞∫

0

τζα(τ)T ((ψ(t)−ψ(s))α τ)xdτ
/
x ∈ YR


are relatively compact for t > s ≥ 0. Let t > s ≥ 0 be fixed; for δ > 0, we define the subset

Uα
ψ,δ (YR) (t, s) in Xθ by

Uα
ψ,δ (YR) (t, s) :=


∞∫
δ

ζα(τ)T ((ψ(t)−ψ(s))α τ)xdτ
/
x ∈ YR

 .
It is immediate that

∞∫
δ

ζα(τ)T ((ψ(t)−ψ(s))α τ)xdτ = T ((ψ(t)−ψ(s))α δ)

∞∫
δ

ζα(τ)T ((ψ(t)−ψ(s))α (τ − δ))xdτ.

According to Lemma 3.3 [81], we can deduce that the set Uα
ψ,δ (YR) (t, s) is relatively compact

in Xθ for all δ > 0. On the other hand, it follows from Theorem 1.4.2 that

∥∥∥∥Uα
ψ (t, s)x −Uα

ψ,δ(t, s)x
∥∥∥∥
θ

=

∥∥∥∥∥∥∥∥
δ∫

0

ζα(τ)T ((ψ(t)−ψ(s))α τ)xdτ

∥∥∥∥∥∥∥∥
θ

≤
δ∫

0

ζα(τ)
∥∥∥(−A)θ T ((ψ(t)−ψ(s))α τ)x

∥∥∥dτ
≤

δ∫
0

ζα(τ)
∥∥∥T ((ψ(t)−ψ(s))α τ) (−A)θ x

∥∥∥dτ
≤ ρM

δ∫
0

ξα(τ)dτ ‖x‖θ .

Then, we conclude that for any x ∈ YR

lim
δ→0

∥∥∥∥Uα
ψ (t, s)x −Uα

ψ,δ(t, s)x
∥∥∥∥
θ

= 0.

Consequently, there exist relatively compact sets arbitrarily close to the set Uα
ψ (YR)(t, s) for

t > s ≥ 0. As a result, the set Uα
ψ (YR)(t, s) for t > s ≥ 0 is also relatively compact in Xθ. Using

the same reasoning, we obtain a similar result for the set V α
ψ (YR)(t, s).

(iii) According to the definition of the operator V α
ψ (t, s) and Theorem 1.4.2, we have

t∫
0

(ψ(t)−ψ(s))α−1
∥∥∥∥(−A)θV α

ψ (t, s)
∥∥∥∥ψ′ (s)ds

=

t∫
0

(ψ(t)−ψ(s))α−1


∞∫

0

τζα(τ)
∥∥∥(−A)θ T ((ψ(t)−ψ(s))α τ)

∥∥∥dτ
ψ′ (s)ds
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≤ αMθ

t∫
0

(ψ(t)−ψ(s))α−1


∞∫

0

τ1−θζα(τ)

(ψ(t)−ψ(s))αθ
e−|ν0|(ψ(t)−ψ(s))ατdτ

ψ′ (s)ds,
so

t∫
0

(ψ(t)−ψ(s))α−1
∥∥∥∥(−A)θV α

ψ (t, s)
∥∥∥∥ψ′ (s)ds

≤ αMθ

∞∫
0

τ1−θζα(τ)


t∫

0

(ψ(t)−ψ(s))α(1−θ)−1 e−|ν0|(ψ(t)−ψ(s))ατψ
′
(s)ds

dτ.
Set

ξ := |ν0| (ψ(t)−ψ(s))α τ ;

keeping in memory the formula (3.4), we see that the inequality (4.5) is true.

4.2.1 Notion of phase space

To establish our main results, it is necessary to introduce the notion of a phase space. Let

B be a linear space with a seminorm ‖ · ‖B consisting of functions from (−∞,0] into X. As

presented in Chapter 1 in [58], the fundamental axioms required on B are given as follows:

(A): If u is a function mapping (−∞,δ+ b] into X, b > 0, such that

u
∣∣∣[δ,T+δ] ∈ C ([δ,b+ δ] ;X) ,

and t ∈ [δ,b+ δ] and uδ ∈ B, then for every t ∈ [δ,b+ δ] the following conditions hold:

(i) ut ∈ B for t ∈ [δ,b+ δ] ,

(ii) There exist a continuous function µ1(t) > 0 and a locally bounded function µ2(t) > 0

from [0,+∞) into [0,+∞), for t ≥ 0, which are independent of v such that

‖ut‖B ≤ µ1(t − δ) sup
δ≤s≤t

‖u(s)‖+µ2(t − δ)‖uδ‖B ,

(iii) ‖u(t)‖ ≤ K ‖ut‖B which is equivalent to ‖ϕ(0)‖ ≤ K ‖ϕ‖B for all ϕ ∈ B.

(A-1): For the function u in (A), the function t 7→ ut is continuous from [δ,b+ δ] into B.
For the reader convenience, we recall also some basic useful properties of this kind of

functional spaces, that is

(B): The space B is complete.

(C-2): If (φn)n∈N is a uniformly bounded sequence of continuous functions with compact

support and φn→ φ, n→∞ in the compact open topology, then φ ∈ B and∥∥∥φn −φ∥∥∥→ 0 as n→∞.
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Remark 4.2.2. Since B satisfies axiom (C-2), the space Cb ((−∞,0] ,X) is continuously included

in B (cf. [58, Proposition 7.1.1]). Thus, there exists a constant K ′ ≥ 0 such that

‖ϕ‖B ≤ K
′ sup
s≤0
‖ϕ(s)‖ ,

for every ϕ ∈ Cb ((−∞,0] ,X).

Now, for t ≥ 0, we consider the operator S(t) : B →B given by

(S(t)ϕ)(s) =

 ϕ(0), −t ≤ s ≤ 0,

ϕ(t + s), s < −t,

for ϕ ∈ B. This family of operators is simply a strongly continuous semigroup of bounded

linear operators on B (cf. [58, Proposition 1.2.2]).

Definition 4.2.1. The phase space B is called a fading memory space if

lim
t→∞
‖S0(t)ϕ‖B → 0, for each ϕ ∈ B0,

where

B0 = {ϕ ∈ B | ϕ(0) = 0 } ,

and S0(t) the restriction of S(t) to B0.

Example 4.2.1. Let h be a positive continuous function on (−∞,0] satisfying the following:

(g-1) H(t) = sup
s∈(−∞,−t]

h(t + s)
h(s)

is bounded for t ≥ 0,

(g-2) lim
s→−∞

h(s) =∞.

Then, B =C0
h ((−∞,0] ,X) being the space consisting of continuous functions ϕ : (−∞,0] → X

such that

lim
s→−∞

‖ϕ(s)‖
h(s)

= 0

is a fading memory space. Moreover, ‖S0(t)‖L(B) =H(t) for t ≥ 0.

Remark 4.2.3. In the case that B is a fading memory space, one can choose the functions µ1(·)
and µ2(·) in axiom (A-iii) so that µ1(·) = µ1 and µ2(·) = µ2 are constants (cf. [58, Proposition

7.1.5 (i)]).

4.2.2 S-asymptotically Bloch type periodic mild solution

Let us introduce some functional spaces which play an important role in our study. Further

details can be found in [32].
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Definition 4.2.2. A function f ∈ Cb(R+,X) is called S-asymptotically ω-periodic if there exists

ω > 0 such that

lim
t−→+∞

‖f (t +ω)− f (t)‖ = 0.

The set of such functions will be denoted by SAPω(X).

Definition 4.2.3. A function f ∈ Cb(R+,X) is said to be S-asymptotically Bloch type periodic if,

for given k ∈ R and ω > 0

lim
t→+∞

∥∥∥f (t +ω)− eiωkf (t)
∥∥∥ = 0

holds for each t ≥ 0. 4. The collection of such functions will be denoted by SABPω,k(X).

Definition 4.2.4. A function f ∈ Cb(R+,X) is said to be S-asymptoticallyω-anti-periodic if there

exists ω > 0 such that

lim
t→+∞

‖f (t +ω) + f (t)‖ = 0.

We denote the space of all such functions by SAAPω(X).

Remark 4.2.4. If kω = 2π , Definition 4.2.3 is equivalent to Definition 4.2.2. Similarly, when

kω = π, Definition 4.2.3 can be reduced to Definition 4.2.4.

Lemma 4.2.1. Let f1, f2, f ∈ SABPw,k(X). Then the following results hold:

(i) f1 + f2 ∈ SABPw,k(X), and cf ∈ SABPw,k(X) for each c ∈ C.

(ii) The space SABPw,k(X) is a Banach space with the sup-norm.

Proof. See the proofs of Lemma 3.1 and Theorem 3.2 in [32].

Remark 4.2.5. From (4.2), it is clear that the condition

F : R+ ×Xθ ×Bθ→ X

is weaker than

F : R+ ×X ×B → X,

where Bθ stands for the phase space with respect to the space Xθ.

Based on the work of F. Norouzi and G. M. N’guérékata (2021) [85], we define the θ-mild

solution for the Cauchy problem (4.1) as follows.

Definition 4.2.5. A function u ∈ C (R,Xθ) is said to be an θ-mild solution for the Cauchy prob-

lem (4.1) if u satisfies

u(t) = ϕ(t), with ϕ ∈ Bθ and t ∈ (−∞,0] ,
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and u is given explicitly by

u(t) = Uα
ψ (t,0)

ϕ(0)−G(0,ϕ)
Γ (γ)Γ (2−γ)

+G(t,ut)

+

t∫
0

(
(ψ(t)−ψ(s))α−1V α

ψ (t, s)AG(s,us)ψ
′
(s)

)
ds (4.6)

+

t∫
0

(
(ψ(t)−ψ(s))α−1V α

ψ (t, s)F(s,u(s),us)ψ
′
(s)

)
ds,

for t ≥ 0 , γ = α + β(1−α), and ϕ(0) = G(0,ϕ) = 0. Moreover, if

u|[0,+∞) ∈ SABPω,k(Xθ),

then the vectorial function (4.6) u is called an S-asymptotically Bloch type periodic θ-mild solu-

tion for problem (4.1).

Remark 4.2.6. As a particular case, if kω = π, u is called S-asymptotically ω-anti-periodic θ-

mild solution.

4.3 Existence and uniqueness of solution

In this section we focus ourselves on giving some answers to the questions related to the

existence and uniqueness of S-asymptotically Bloch type periodic θ-mild solutions for the

problem (4.1).

Lemma 4.3.1. Assume that Bθ is a fading memory space. Let u : R → Xθ be a continuous

function with u0 ∈ Bθ and

u |R+ ∈ SABPw,k(Xθ).

Then the function t 7→ ut ∈ SABPw,k(Bθ).

Proof. Keeping in mind axioms (A-iii)−(A-1) and Remark 4.2.3, we have

‖ut‖Bθ ≤ µ1 sup
0≤s≤t

‖u(s)‖θ +µ2 ‖u0‖Bθ ;

thus t 7→ ut is a bounded continuous function on [0,+∞) . Now, we define the function

v(t) = u(t +ω)− eiωku(t), for all t ∈ R.

Observe that v : R→ Xθ is a continuos function on [0,+∞) and satisfies the condition

v0 = uω − eiωku0 ∈ Bθ.
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Moreover, we have

lim
t→+∞

‖v(t)‖θ = lim
t→+∞

∥∥∥u(t +ω)− eiωku(t)
∥∥∥
θ

= 0;

using the results obtained in [58, Proposition 7.1.3], we easily deduce that

lim
t→+∞

‖vt‖Bθ = lim
t→+∞

∥∥∥ut+ω − eiωkut∥∥∥Bθ = 0.

Remark 4.3.1. If X is a real Banach space, then Lemma 4.3.1 hods true only for kω = π (or 2π) .

Proposition 4.3.1. For θ ∈ [0,1), we assume that F : R+ ×Xθ ×Bθ→ X and G : R+ ×Bθ→ X1

are two continuous functions satisfying the following conditions:

(H1) For all (t,x) ∈ [0,+∞)×Xθ,

sup
t≥0
‖F(t,x,0)‖ < +∞ and sup

t≥0
‖AG(t,0)‖ < +∞ .

(H2) There exist L, L1, L2 > 0 such that for all t ≥ 0, x1,x2 ∈ Xθ and φ1,φ2 ∈ Bθ,∥∥∥F(t,x,φ1)−F(t,x2,φ2)
∥∥∥ ≤ L1 ‖x1 − x2‖θ +L2

∥∥∥φ1 −φ2

∥∥∥Bθ ,
and ∥∥∥AG(t,φ1)−AG(t,φ2)

∥∥∥ ≤ L∥∥∥φ1 −φ2

∥∥∥Bθ .
(H3) For all (t,x,φ) ∈ [0,+∞)×Xθ ×Bθ, and for a given k ∈ R and ω ≥ 0,

lim
t→+∞

∥∥∥F(t +ω,x,φ)− eikωF(t, e−ikωx,e−ikωφ)
∥∥∥ = 0,

and

lim
t→+∞

∥∥∥AG(t +ω,φ)− eiωkAG(t, e−iωkφ)
∥∥∥ = 0.

Then for each u ∈ SABPw,k(Xθ), the function

t 7→ F(t,u(t),ut) ∈ SABPw,k(X),

and the function

t 7→ G(t,ut) ∈ SABPw,k(X1).

Proof. From conditions (H1)−(H2), we see that

sup
t≥0
‖F(t,u(t),ut)‖ ≤ L2 sup

t≥0
‖ut‖Bθ + sup

t≥0
‖F(t,u(t),0)‖ < +∞, (4.7)

and

sup
t≥0
‖AG(t,ut)‖ ≤ Lsup

t≥0
‖ut‖Bθ + sup

t≥0
‖AG(t,0)‖ < +∞. (4.8)
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4.3. Existence and uniqueness of solution

Taking into account that u ∈ SABPw,k(Xθ) and using Lemma 4.3.1, we conclude that there

exists a positive constant tε,1 sufficiently large such that for t ≥ tε,1,∥∥∥u(t +ω)− eiωku(t)
∥∥∥
θ
≤ ε and

∥∥∥ut+ω − eiωkut∥∥∥Bθ ≤ ε. (4.9)

At this level, observe that for every (x,φ) ∈ Xθ ×Bθ, the condition (H3) allows us to deduce

that there exists a positive constant tε,2 such that∥∥∥F(t +ω,x,φ)− eikωF(t, e−ikωx,e−ikωφ
∥∥∥ ≤ ε,

and ∥∥∥AG(t +ω,φ)− eiωkAG(t, e−iωkφ)
∥∥∥ ≤ ε,

for any t ≥ tε,2. Since the function t 7→ u(t +ω) ∈ Xθ and axiom (A-i) implies that

t 7→ ut+ω ∈ Bθ,

for all t ≥ 0, we conclude that∥∥∥F(t +ω,u(t +ω),ut+ω)− eikωF(t, e−ikωu(t +ω), e−ikωut+ω)
∥∥∥ ≤ ε, (4.10)

and ∥∥∥AG(t +ω,ut+ω)− eiωkAG(t, e−iωkut+ω)
∥∥∥ ≤ ε. (4.11)

Furthermore, for

t ≥ tε := max
(
tε,1, tε,2

)
,

it follows from condition (H2) that∥∥∥F(t +ω,u(t +ω),ut+ω)− eiωkF(t,u(t),ut)
∥∥∥

≤
∥∥∥F(t +ω,u(t +ω),ut+ω)− eikωF(t, e−ikωu(t +ω), e−ikωut+ω)

∥∥∥
+L1

∥∥∥u(t +ω)− eiωku(t)
∥∥∥
θ

+L2

∥∥∥ut+ω − eiωkut∥∥∥Bθ
≤ ε (1 +L1 +L2) ;

this gives

lim
t→+∞

∥∥∥F(t +ω,u(t +ω),ut+ω)− eiωkF(t,u(t),ut)
∥∥∥ = 0.

Similarly, ∥∥∥AG(t +ω,ut+ω)− eiωkAG(t,ut)
∥∥∥

≤
∥∥∥AG(t +ω,ut+ω)− eiωkAG(t, e−iωkut+ω)

∥∥∥+L
∥∥∥ut+ω − eiωkut∥∥∥Bθ

≤ ε (1 +L) ,

which implies that

lim
t→+∞

∥∥∥AG(t +ω,ut+ω)− eiωkAG(t,ut)
∥∥∥ = 0.
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The following existence result for problem (4.1) is based on the use of the Banach con-

traction mapping principle.

Theorem 4.3.1. Let A generate a uniformly exponentially stable analytic semigroup (T (t))t≥0 in

a Banach space X, with the growth exponent ν0 < 0. For θ ∈ [0,1), we assume that Bθ is a fading

memory space, ϕ ∈ Bθ, F : R+×Xθ×Bθ→ X andG : R+×Bθ→ X1 are two continuous functions

that satisfy the conditions (H1)−(H3) with

ϕ(0) = G(0,ϕ) = 0.

If the following condition holds(
µ1LCθ−1 +Mθ

Γ (1−θ) (µ1L+ max(L1,µ1L2))

|ν0|1−θ

)
< 1, (4.12)

where

Cθ−1 :=
∥∥∥(−A)θ−1

∥∥∥ ,
then the problem (4.1) has a unique S-asymptotically Bloch type periodic θ-mild solution.

Proof. Consider the Banach space

Cb,0 (Xθ) =
{
x : R→ Xθ

/
x
∣∣∣(−∞,0] = 0, x

∣∣∣[0,+∞) ∈ Cb (R+,Xθ)
}
,

equipped with the norm

‖x‖Cb,0 = ‖x0‖Bθ + sup
t≥0
‖x(t)‖ = sup

t≥0
‖x(t)‖ .

According to Lemma 4.2.1, we define the closed subspace of Cb,0 (Xθ) denoted by SABP 0
ω,k (Xθ)

as follows

SABP 0
ω,k (Xθ) =

{
x : R→ Xθ

/
x
∣∣∣(−∞,0] = 0, x

∣∣∣[0,+∞) ∈ SABPω,k (Xθ)
}
.

Throughout the proof, y(·) denotes the function defined by

y(t) =

 0, t ≥ 0,

ϕ(t), t ≤ 0.

We introduce the operator the operator

N : SABP 0
ω,k (Xθ)→ SABP 0

ω,k (Xθ)

defined by its action as follows

Nx(t) = Uα
ψ (t,0)

ϕ(0)−G(0,ϕ)
Γ (γ)Γ (2−γ)

+G(t,xt + yt)

+

t∫
0

(
(ψ(t)−ψ(s))α−1V α

ψ (t, s)AG(s,xs + ys)ψ
′
(s)

)
ds (4.13)

+

t∫
0

(
(ψ(t)−ψ(s))α−1V α

ψ (t, s)F(s,x(s) + y(s),xs + ys)ψ
′
(s)

)
ds,
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4.3. Existence and uniqueness of solution

with t ≥ 0.

We shall show that the operator N has a unique fixed point in SABP 0
ω,k (Xθ) .

First of all, we check that N is well defined. Note that, for any x ∈ SABP 0
ω,k (Xθ), by (4.7)

and (4.8), we deduce that there exist two positive constants MF , MG such that∥∥∥F(t,x(t) + y(t),xt + yt)
∥∥∥ ≤MF and

∥∥∥AG(t,xt + yt)
∥∥∥ ≤MG for all t ≥ 0. (4.14)

Therefore, it comes from (4.5) that

s 7→ (ψ(t)−ψ(s))α−1V α
ψ (t, s)F(s,x(s) + y(s),xs + ys)ψ

′
(s),

s 7→ (ψ(t)−ψ(s))α−1AV α
ψ (t, s)G(s,xs + ys)ψ

′
(s),

are integrable on [0, t) , for every t ≥ 0, which implies that t 7→ Nx(t), t ≥ 0 is a bounded

function. Then, it remains to show that

lim
t→+∞

∥∥∥Nx(t +ω)− eiωkNx(t)
∥∥∥
θ

= 0.

for any x ∈ SABP 0
ω,k (Xθ). Based on the assumption that ψ is a linear function without loss of

generality, a direct computation allows us to write

Nx(t +ω)− eiωkNx(t)

=
[
Uα
ψ (t +ω,0)− eiωkUα

ψ (t,0)
] ϕ(0)−G(0,ϕ)
Γ (γ)Γ (2−γ)

+
[
G (t +ω,xt+ω + yt+ω)− eiωkG (t,xt + yt)

]
+

ω∫
0

(
(ψ(t +ω)−ψ(s))α−1V α

ψ (t +ω,s)AG(s,xs + ys)ψ
′
(s)

)
ds

+

t∫
0

(
(ψ(t)−ψ(s))α−1V α

ψ (t, s)
(
AG(s+ω,xs+ω + ys+ω)− eiωkAG(s,xs + ys)

)
ψ
′
(s)

)
ds

+

ω∫
0

(
(ψ(t +ω)−ψ(s))α−1V α

ψ (t +ω,s)F(s,x(s) + y(s),xs + ys)ψ
′
(s)

)
ds

+

t∫
0

(
(ψ(t)−ψ(s))α−1V α

ψ (t, s) (F(s+ω,x(s+ω) + y(s+ω),xs+ω + ys+ω)

−eiωkF(s,x(s) + y(s),xs + ys)
)
ψ
′
(s)

)
ds

=
6∑
i=1

Ji(t).

for every t ≥ 0. So, it is sufficient to prove that

lim
t→+∞

‖Ji(t)‖θ = 0, for each i ∈ {1,2, ...,6} .
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4.3. Existence and uniqueness of solution

Taking into account the uniformly exponentially stability of semigroup (T (t))t≥0, it can

be inferred that ||T (t)|| ≤Meν0t, where ν0 < 0. Consequently, by combining the definition of

the operator Uα
ψ given by (4.3) and (3.4), for every ε > 0, there exists a positive constant tε

such that ∥∥∥∥Uα
ψ (t,0)

∥∥∥∥ ≤ ε2 for all t ≥ tε;

it follows that

‖J1(t)‖θ =
∥∥∥∥∥(Uα

ψ (t +ω,0)− eiωkUα
ψ (t,0)

) ϕ(0)−G(0,ϕ)
Γ (γ)Γ (2−γ)

∥∥∥∥∥
θ

≤
(∥∥∥∥Uα

ψ (t +ω,0)
∥∥∥∥+

∥∥∥∥Uα
ψ (t,0)

∥∥∥∥)∥∥∥∥∥∥(−A)θϕ(0)− (−A)θG(0,ϕ)
Γ (γ)Γ (2−γ)

∥∥∥∥∥∥
≤ ε

Γ (γ)Γ (2−γ)

∥∥∥(−A)θϕ(0)− (−A)θG(0,ϕ)
∥∥∥

→ 0, as ε→ 0,

witch means that

lim
t→+∞

‖J1(t)‖θ = 0.

According to Lemma 1.4.2 (i) the operator (−A)θ−1 is a bounded in X, and

‖J2(t)‖θ =
∥∥∥G(t +ω,ut+ω)− eiωkG(t,xt + yt)

∥∥∥
θ

≤ Cθ−1

∥∥∥AG(t +ω,xt+ω + yt+ω)− eiωkAG(t,xt + yt)
∥∥∥ .

Hence, by Proposition 4.3.1, we obtain

lim
t→+∞

‖J2(t)‖θ = 0.

For the terms J3(t) and J5(t), from Theorem 1.4.2 (vi), one can see that∥∥∥(−A)θ T ((ψ(t)−ψ(s))α τ)
∥∥∥ ≤ Mθ

((ψ(t)−ψ(s))α τ)θ
.

Now, by definition of the operator V α
ψ given by (4.4) and the use of Lemma 2, we confirm

that for z ∈ X, one has

∥∥∥∥(−A)θV α
ψ (t, s)z

∥∥∥∥ ≤ α

∞∫
0

τζα(τ)
∥∥∥(−A)θ T ((ψ(t)−ψ(s))α τ)z

∥∥∥dτ
≤ α

∞∫
0

τζα(τ)
∥∥∥(−A)θ T ((ψ(t)−ψ(s))α τ)

∥∥∥‖z‖dτ
≤ αMθ

(ψ(t)−ψ(s))αθ

∞∫
0

τ1−θζα(τ)dτ ‖z‖ .
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4.3. Existence and uniqueness of solution

Then, it follows from (2.6) that∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥ ≤ αMθ

(ψ(t)−ψ(s))αθ
Γ (1 + (1−θ))
Γ (1 +α(1−θ))

,

thus ∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥ ≤ η

(ψ(t)−ψ(s))αθ
, (4.15)

where

η =
MθΓ (1−θ)
Γ (α (1−θ))

.

Since s 7→ G(s,xs + ys) and s 7→ F(s,x(s) + y(s),xs + ys) are bounded functions on [0, t), then by

the fact that
ψ(t +ω)
ψ(ω)

(ψ(ω)−ψ(s)) ≤ ψ(t +ω)−ψ(s),

and (4.15), one obtains

‖J3(t)‖θ ≤
ω∫

0

∥∥∥∥(ψ(t +ω)−ψ(s))α−1V α
ψ (t +ω,s)AG(s,xs + ys)ψ

′
(s)

∥∥∥∥
θ
ds

≤ ηMG

ω∫
0

(ψ(t +ω)−ψ(s))α(1−θ)−1ds

≤ ηMG
ψ (ω)
α (1−θ)

(ψ(t +ω))α(1−θ)−1 ,

which implies that

lim
t→+∞

‖J3(t)‖θ = 0.

Similarly,

‖J5(t)‖θ ≤
ω∫

0

∥∥∥∥(ψ(t +ω)−ψ(s))α−1V α
ψ (t +ω,s)F(s,x(s) + y(s),xs + ys)ψ

′
(s)

∥∥∥∥
θ
ds

≤ ηMF

ω∫
0

(ψ(t +ω)−ψ(s))α(1−θ)−1ds

≤ ηMF
ψ (ω)
α (1−θ)

(ψ(t +ω))α(1−θ)−1 ,

so that

lim
t→+∞

‖J5(t)‖θ = 0.

Now, we proceed to show that

lim
t→+∞

‖Ji(t)‖θ = 0, i = 4,6.

71



4.3. Existence and uniqueness of solution

Due to Proposition 4.3.1, there exists tε ≥ 0 such that for any t > tε, the following inequality

ψ(t)
ψ(tε)

(ψ(tε)−ψ(s)) ≤ ψ(t)−ψ(s)

holds true for tε > s, and

‖J4(t)‖θ

≤
tε∫

0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥AG(s+ω,xs+ω + ys+ω)− eiωkAG(s,xs + ys)
∥∥∥ψ′ (s))ds

+

t∫
tε

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥AG(s+ω,xs+ω + ys+ω)− eiωkAG(s,xs + ys)
∥∥∥ψ′ (s))ds

≤ 2ηMG
ψ(tε)
α(1−θ)

(ψ(t))α(1−θ)−1 + εMθ
Γ (1−θ)

|ν0|1−θ
.

Therefore

lim
t→+∞

‖J4(t)‖θ = 0.

Similarly,

‖J6(t)‖θ

≤
tε∫

0

(ψ(t)−ψ(s))α−1
∥∥∥∥(−A)θV α

ψ (t, s)
∥∥∥∥∥∥∥F(s+ω,x(s+ω) + y(s+ω),xs+ω + ys+ω)

−eiωkF(s,x(s) + y(s),xs + ys)
∥∥∥ψ′(s))ds

+

t∫
tε

(ψ(t)−ψ(s))α−1
∥∥∥∥(−A)θV α

ψ (t, s)
∥∥∥∥∥∥∥F(s+ω,x(s+ω) + y(s+ω),xs+ω + ys+ω)

−eiωkF(s,x(s) + y(s),xs + ys)
∥∥∥ψ′(s))ds

≤ 2ηMF
ψ(tε)
α(1−θ)

(ψ(t))α(1−θ)−1 + εMθ
Γ (1−θ)

|ν0|1−θ
;

this gives

lim
t→+∞

‖J6(t)‖θ = 0.

Combining the above arguments, we can deduce that

N : SABP 0
w,k(Xθ)→ SABP 0

w,k(Xθ)

is well defined.

Now, we will prove that N is a contraction mapping. Let x,z ∈ SABP 0
w,k(Xθ); from condi-

tion (H2) and axioms (A-iii) with Remark 4.2.3, we get the following estimates:∥∥∥AG(t,xt + yt)−AG(t, zt + yt)
∥∥∥ ≤ µ1L‖x − z‖Cb,0 ,
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4.3. Existence and uniqueness of solution

∥∥∥F(s,x(s) + y(s),xs + ys)−F(s,z(s) + y(s), zs + ys)
∥∥∥ ≤max(L1,µ1L2)‖x − z‖Cb,0 ;

thus,

‖Nx(t)−Nz(t)‖θ
≤ Cθ−1

∥∥∥AG(t,xt + yt)−AG(t, zt + yt)
∥∥∥

+

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥AG(s,xs + ys)−AG(s,zs + ys)
∥∥∥ψ′ (s))ds

+

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥F(s,x(s) + y(s),xs + ys)−F(s,z(s) + y(s), zs + ys)
∥∥∥

ψ
′
(s)

)
ds

≤ µ1LCθ−1 ‖x − z‖Cb,0

+µ1L

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥ψ′ (s)ds ‖x − z‖Cb,0
+max(L1,µ1L2)

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥ψ′ (s))ds ‖x − z‖Cb,0
≤

(
µ1LCθ−1 +

MθΓ (1−θ) (µ1L+ max(L1,µ1L2))

|ν0|1−θ

)
‖x − z‖Cb,0 ,

with t ≥ 0. From (4.12) it follows that

‖Nx −Nz‖Cb,0

≤
(
µ1LCθ−1 +

MθΓ (1−θ) (µ1L+ max(L1,µ1L2))

|ν0|1−θ

)
‖x − z‖Cb,0

< ‖x − z‖Cb,0 .

Then, by the Banach’s contraction mapping principle, we deduce that the operator N has a

unique fixed point x ∈ SABP 0
w,k(Xθ). Hence, we can affirm that u = x+y is the S-asymptotically

Bloch type periodic θ-mild solution to problem (4.1).

In what follows, we will show that Proposition 4.3.1 holds true if we replace the condi-

tions (H1) and (H2) with a new condition.

Proposition 4.3.2. For θ ∈ [0,1), we assume that G : R+ ×Bθ→ X1 and F : R+ ×Xθ ×Bθ→ X

are two continuous functions that satisfy the conditions (H3) and

(H4) There exist L′,L′1,L
′
2 > 0 such that for all x ∈ Xθ, φ ∈ Bθ, and t ≥ 0,∥∥∥F(t,x,φ)

∥∥∥ ≤ L′1 ‖x‖θ +L′2
∥∥∥φ∥∥∥Bθ ,∥∥∥AG(t,φ)

∥∥∥ ≤ L′ ∥∥∥φ∥∥∥Bθ .
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4.3. Existence and uniqueness of solution

Then for each u ∈ SABPw,k(Xθ), the function t 7→ F(t,u(t),ut) ∈ SABPw,k(X) and the function

t 7→ G(t,ut) ∈ SABPw,k(X1).

Proof. From condition (H4), it is a simple matter to see that the functions t 7→ F(t,u(t),ut)

and t 7→ G(t,ut) are bounded. Indeed,

sup
t≥0
‖F(t,u(t),ut)‖ ≤ L′1 sup

t≥0
‖u(t)‖θ +L′2 sup

t≥0
‖ut‖Bθ < +∞,

sup
t≥0
‖AG(t,ut)‖ ≤ L′ sup

t≥0
‖ut‖Bθ < +∞.

According to (4.9) and the continuity of the functions F and H , we have∥∥∥F(t, e−ikωu(t +ω), e−ikωut+ω)−F(t,u(t),ut)
∥∥∥ ≤ ε,∥∥∥AG(t, e−iωkut+ω)−AG(t,ut)

∥∥∥ ≤ ε,
for any t ≥ tε,1 and ε > 0. For t ≥ tε, it follows from (4.10) and (4.11) that∥∥∥F(t +ω,u(t +ω),ut+ω)− eiωkF(t,u(t),ut)

∥∥∥
≤

∥∥∥F(t +ω,u(t +ω),ut+ω)− eikωF(t, e−ikωu(t +ω), e−ikωut+ω)
∥∥∥

+
∥∥∥F(t, e−ikωu(t +ω), e−ikωut+ω)−F(t,u(t),ut)

∥∥∥
≤ 2ε.

Hence,

lim
t→+∞

∥∥∥F(t +ω,u(t +ω),ut+ω)− eiωkF(t,u(t),ut)
∥∥∥ = 0.

Similarly, ∥∥∥AG(t +ω,ut+ω)− eiωkAG(t,ut)
∥∥∥

≤
∥∥∥AG(t +ω,ut+ω)− eiωkAG(t, e−iωkut+ω)

∥∥∥
+
∥∥∥AG(t, e−iωkut+ω)−AG(t,ut)

∥∥∥
≤ 2ε.

Then,

lim
t→+∞

∥∥∥AG(t +ω,ut+ω)− eiωkAG(t,ut)
∥∥∥ = 0.

The proof is complete.

The following existence result for problem (4.1) is based on the Schauder’s fixed point

theorem.

Theorem 4.3.2. Let A generate a compact and uniformly exponentially stable analytic semigroup
(T (t))t≥0 in a Banach space X, with the growth exponent ν0 < 0. For θ ∈ [0,1), we assume

that Bθ is a fading memory space, ϕ ∈ Bθ, F : R+ × Xθ × Bθ → X and G : R+ × Bθ → X1
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are continuos functions that satisfy the conditions (H3)−(H4), and ϕ(0) = G(0,ϕ) = 0. If the

following condition holds(
L′Cθ−1µ1 + (L′µ1 + (L′2 +L′1µ1))Mθ

Γ (1−θ)

|ν0|1−θ

)
< 1, (4.16)

then the problem (4.1) has an S-asymptotically Bloch type periodic θ-mild solution.

Proof. Throughout the proof, we will use the same notation for the operator N and the

Banach space SABP 0
ω,k (Xθ) as previously defined in the proof of Theorem 4.3.1.

For % > 0, we define the closed ball of SABP 0
ω,k (Xθ) whose centre is 0 and radius is % as

Ω% =
{
u ∈ SABP 0

ω,k (Xθ)
/
‖u‖Cb,0 ≤ %

}
.

We shall show that there exist a positive constant %0 such that N
(
Ω%0

)
⊂ Ω%0

. In fact,

according to Proposition 4.3.2 and the arguments in the proof of Theorem 4.3.1, it is easy to

check that

N
(
SABP 0

w,k(Xθ)
)
⊂ SABP 0

w,k(Xθ).

On the other hand, there exist two positive constant M ′F and M ′G such that∥∥∥F(t,x(t) + y(s),xt + yt)
∥∥∥ ≤M ′F and

∥∥∥AG(t,xt + yt)
∥∥∥ ≤M ′G , for all t ≥ 0. (4.17)

Note that, from condition (H3) and axioms (A-ii)−(A-iii) with Remark 4.2.3, we obtain

‖ϕ(0)‖θ ≤ K ‖ϕ‖Bθ ,

‖G(0,ϕ)‖θ ≤ Cθ−1L
′ ‖ϕ‖Bθ ,∥∥∥AG(t,xt + yt)

∥∥∥ ≤ L′µ1 ‖x‖Cb,0 +L′µ2 ‖ϕ‖Bθ ,∥∥∥F(t,x(t) + y(s),xt + yt)
∥∥∥ ≤ (L′2 +L′1µ1)‖x‖Cb,0 +L′2µ2 ‖ϕ‖Bθ .

Now, we assume that for any % > 0, there exist x ∈Ω% and t ≥ 0 such that

% ≤ ‖Nx(t)‖θ

≤

∥∥∥∥Uα
ψ (t,0)

∥∥∥∥
Γ (γ)Γ (2−γ)

(
‖ϕ(0)‖θ + ‖G(0,ϕ)‖θ

)
+
∥∥∥G(t,xt + yt)

∥∥∥
θ

+

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥AG(t,xt + yt)
∥∥∥ψ′ (s))ds

+

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥F(t,x(t) + y(s),xt + yt)
∥∥∥ψ′ (s))ds
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≤ M

(
K +Cθ−1L

′

Γ (γ)Γ (2−γ)

)
‖ϕ‖Bθ +L′Cθ−1

(
µ1 ‖x‖Cb,0 +µ2 ‖ϕ‖Bθ

)
+L′

(
µ1 ‖x‖Cb,0 +µ2 ‖ϕ‖Bθ

) t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥ψ′ (s))ds
+
(
(L′2 +L′1µ1)‖x‖Cb,0 +L′2µ2 ‖ϕ‖Bθ

) t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥ψ′ (s))ds
≤ M

(
K +Cθ−1L

′

Γ (γ)Γ (2−γ)

)
‖ϕ‖Bθ +L′Cθ−1

(
µ1%+µ2 ‖ϕ‖Bθ

)
+
(
L′

(
µ1%+µ2 ‖ϕ‖Bθ

)
+
(
(L′2 +L′1µ1)%+L′2µ2 ‖ϕ‖Bθ

))
Mθ

Γ (1−θ)

|ν0|1−θ
.

Dividing the both sides by % and taking the limits as %→ +∞, it results that

1 ≤ L′Cθ−1µ1 + (L′µ1 + (L′2 +L′1µ1))Mθ
Γ (1−θ)

|ν0|1−θ
;

this contradicts our assumption (4.16). Therefore, there exists a positive constant %0 such

that

Nx ⊂Ω%0
, for any x ∈Ω%0

. (4.18)

Now, we will prove the compactness of the operator N . To achieve this purpose, we

should proceed in three steps as follows.

Step 1. We show that N is continuous on Ω%0
. Let (xn) be a sequence such that

lim
n→+∞

xn = x,

on Ω%0
. Clearly,

lim
n→+∞

‖xnt − xt‖Bθ → 0.

for every t ≥ 0. Due to the continuity of the functions F and G, we have∥∥∥F (t,xn(t) + y(t),xnt + yt)−F (t,x(t) + y(t),xt + yt)
∥∥∥→ 0,

and

lim
n→+∞

∥∥∥AG (t,xnt + yt)−AG (t,xt + yt)
∥∥∥ = 0.

Therefore, from (4.5) and the dominated convergence theorem, we get

‖Nxn(t)−Nx(t)‖θ
≤ Cθ−1

∥∥∥AG (t,xnt + yt)−AG (t,xt + yt)
∥∥∥

+

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥AG (s,xns + ys)−AG (s,xs + ys)
∥∥∥ψ′ (s))ds

+

t∫
0

(
(ψ(t)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t, s)

∥∥∥∥∥∥∥F (s,xn(s) + y(s),xns + ys)−F (s,x(s) + y(s),xs + ys)
∥∥∥ψ′ (s))ds;
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this implies that

lim
n→+∞

‖Nxn(t)−Nx(t)‖θ = 0,

which means that N is continuous on Ω%0
.

Step 2. We verify the equicontinuity ofN
(
Ω%0

)
on [0,+∞). We fix t1 ≥ 0 and suppose that t2 > t1.

For x ∈Ω%0
, we have

Nx(t2)−Nx(t1) =
5∑
i=1

Ii(t1, t2),

where

I1(t1, t2) =
(
Uα
ψ (t2,0)−Uα

ψ (t1,0)
) ϕ(0)−G(0,ϕ)
Γ (γ)Γ (2−γ)

,

I2(t1, t2) = G(t2,xt2 + yt2)−G(t1, zt1 + yt1),

I3(t1, t2) =
∫ t2

t1

(
(ψ(t2)−ψ(s))α−1V α

ψ (t2, s) (AG (s,xs + ys) +F (s,x(s) + y(s),xs + ys))ψ
′
(s)

)
ds,

I4(t1, t2) = −
∫ t1

0

((
(ψ(t1)−ψ(s))α−1 − (ψ(t2)−ψ(s))α−1

)
V α
ψ (t1, s) (AG (s,xs + ys)

+F (s,x(s) + y(s),xs + ys))ψ
′
(s)

)
ds,

I5(t1, t2) =
∫ t1

0

(
(ψ(t2)−ψ(s))α−1

(
V α
ψ (t2, s)−V α

ψ (t1, s)
)
(AG (s,xs + ys)+

F (s,x(s) + y(s),xs + ys))ψ
′
(s)

)
ds.

According to Proposition 4.2.1 (ii) and the continuity of G with axiom (A-1), it is a simple matter

to see that

lim
t2→t1

‖Ii(t1, t2)‖θ = 0, i = 1,2.

Since ψ is an increasing linear function and t2 > t1, it follows from (4.15) that

‖I3(t1, t2)‖θ ≤ η
(
M ′G +M ′F

)∫ t2

t1

(
(ψ(t2)−ψ(s))α(1−θ)−1ψ

′
(s)

)
ds.

Hence,

lim
t2→t1

‖I3(t1, t2)‖θ = 0.

For the term I4, one can see that

‖I4(t1, t2)‖θ

≤ η
(
M ′G +M ′F

)∫ t1

0

(
(ψ(t1)−ψ(s))α−1 − (ψ(t2)−ψ(s))α−1

(ψ(t1)−ψ(s))αθ
ψ
′
(s)

)
ds

≤ η
(
M ′G +M ′F

)(∫ t1

0

(
ψ(t1)−ψ(s))α(1−θ)−1ψ

′
(s)

)
ds −

∫ t1

0

(
(ψ(t2)−ψ(s))α(1−θ)−1ψ

′
(s)

)
ds

)
.
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Therefore,

lim
t2→t1

‖I4(t1, t2)‖θ = 0.

Using the continuity of t 7→ ‖T (t)‖, it comes from Theorem 1.4.2 (vi) and (3.4) that, for every

s ∈ [0, t1) , we have∥∥∥∥(−A)θV α
ψ (t2, s)− (−A)θV α

ψ (t1, s)
∥∥∥∥

≤
∫ ∞

0
τζα (τ)

∥∥∥∥∥∥
[
T

((
ψ (t2 − s)α

2
+
ψ (t2 − s)α −ψ (t1 − s)α

2

)
τ

)
− T

(
ψ (t1 − s)α

2
τ

)]
(−A)θ T

(
ψ (t1 − s)α

2
τ

)∥∥∥∥∥∥dτ
≤ 2αMθ

ψ (t1 − s)αθ

∫ ∞
0
τ1−θζα (τ)

∥∥∥∥∥∥T
((
ψ (t2 − s)α

2
+
ψ (t2 − s)α −ψ (t1 − s)α

2

)
τ

)
−T

(
ψ (t1 − s)α

2
τ

)∥∥∥∥∥∥dτ
→ 0, as t2→ t1.

By (4.5), it is easily seen that

s 7→ (ψ(t2)−ψ(s))α−1
∥∥∥∥(−A)θV α

ψ (t2, s)− (−A)θV α
ψ (t1, s)

∥∥∥∥ψ′ (s)
is integrable on [0, t1) . Indeed, we have∫ t1

0

(
(ψ(t2)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t2, s)− (−A)θV α

ψ (t1, s)
∥∥∥∥ψ′ (s))ds

≤
∫ t1

0

(
(ψ(t2)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t2, s)

∥∥∥∥ψ′ (s))ds+
∫ t1

0

(
(ψ(t1)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t1, s)

∥∥∥∥ψ′ (s))ds
≤ 2Mθ

Γ (1−θ)

|ν0|1−θ
.

Hence, from the dominated convergence theorem, it follows that

‖I5(t1, t2)‖θ

≤
(
M ′G +M ′F

)∫ t1

0

(
(ψ(t2)−ψ(s))α−1

∥∥∥∥(−A)θV α
ψ (t2, s)− (−A)θV α

ψ (t1, s)
∥∥∥∥ψ′ (s))ds.

Then,

lim
t2→t1

‖I5(t1, t2)‖θ = 0.

Finally, we can conclude that

lim
t2→t1

‖Nx(t1)−Nx(t2)‖θ = 0,

this shows that N
(
Ω%0

)
is equicontinuous on [0,+∞) .
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Step 3. We check that N
(
Ω%0

)
(t) is relatively compact in Xθ for all t ≥ 0. First, it is important

to observe that due to the compactness of the embedding X1 ↪→ Xθ, for θ ∈ (0,1), it follows from

(4.17) that {
t 7→ G(t,xt + yt)

/
x ∈Ωρ

}
is relatively compact set in Xθ.

It is clear thatN
(
Ω%0

)
(0) is relatively compact inXθ. Let t > 0 be a fixed number. For ε ∈ (0, t)

and δ > 0, we define

N ε,δ
(
Ω%0

)
(t) =

{
N ε,δx(t)

/
x ∈Ω%0

}
,

where

N ε,δx(t)

= Uα
ψ (t,0)

ϕ(0)−G(0,ϕ)
Γ (γ)Γ (2−γ)

+G(t,xt + yt)

+α

t−ε∫
0

∞∫
δ

(
(ψ(t)−ψ(s))α−1τζα(τ)T ((ψ(t − s))α τ) (AG(s,xs + ys) +F(s,x(s) + y(s),xs + ys))

ψ
′
(s)

)
dτds

= Uα
ψ (t)

ϕ(0)−G(0,ϕ)
Γ (γ)Γ (2−γ)

+G(t,xt + yt)

+αT ((ψ(ε))α δ)

t−ε∫
0

∞∫
δ

(
(ψ(t)−ψ(s))α−1τζα(τ)T ((ψ(t − s))α τ − (ψ(ε))α δ) (AG(s,xs + ys)

+F(s,x(s) + y(s),xs + ys))ψ
′
(s))

)
dτds,

for any x ∈Ω%0
. Then, the set N ε,δ

(
Ω%0

)
(t) is relatively compact in Xθ since the operator

T ((ψ(ε))α δ) , (ψ(ε))α δ > 0

is compact in Xθ. Furthermore, we have∥∥∥Nx(t)−N ε,δx(t)
∥∥∥
θ

≤ α

t∫
0

δ∫
0

(
(ψ(t)−ψ(s))α−1τζα(τ)

∥∥∥(−A)θ T ((ψ(t)−ψ(s))α τ)
∥∥∥(∥∥∥AG(s,xs + ys)

∥∥∥+

∥∥∥F(s,x(s) + y(s),xs + ys)
∥∥∥ψ′ (s))dτds

+α

t∫
t−ε

+∞∫
δ

(
(ψ(t)−ψ(s))α−1τζα(τ)

∥∥∥(−A)θ T ((ψ(t)−ψ(s))α τ)
∥∥∥(∥∥∥AG(s,xs + ys)

∥∥∥+

∥∥∥F(s,x(s) + y(s),xs + ys)
∥∥∥ψ′ (s))dτds
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≤ αMθ

(
M ′G +M ′F

) δ∫
0

τ1−θζα(τ)

t∫
0

(
(ψ(t)−ψ(s))α(1−θ)−1e−|ν0|(ψ(t)−ψ(s)))ατψ

′
(s)

)
dsdτ

+αMθ

(
M ′G +M ′F

) t∫
t−ε

(ψ(t)−ψ(s))α(1−θ)−1ψ
′
(s)ds

+∞∫
δ

τ1−θζα(τ)dτ

≤ Mθ

(
M ′G +M ′F

)
Γ (1−θ)

 1

|ν0|1−θ

δ∫
0

ζα(τ)dτ +
(ψ (ε))α(1−θ)

Γ (1 +α (1−θ))

 .
Then, we conclude that

lim
ε,δ→0

∥∥∥Nx(t)−N ε,δx(t)
∥∥∥
θ

= 0.

Consequently, N
(
Ω%0

)
(t) is relatively compact in Xθ.

Summing up all the steps above, the Arzela-Ascoli theorem guarantees that N is a com-

pact operator on Ω%0
. Then, it follows from Theorem 1.7.2 that N has a fixed point x ∈

SABP 0
w,k(Xθ). Obviously, u = x + y is the S-asymptotically Bloch type periodic θ-mild solu-

tion to problem (4.1).

4.4 Example

In this section, we give an example to illustrate our abstract results obtained in the previous

sections. Specifically, we discuss the existence and uniqueness of an S-asymptotically ω-

anti-periodic 1
2-mild solution for the following problem

HD
1
2 ,β,ψ
0+

(
u(t,ξ)− g(t)

t∫
−∞

(∫ ξ
0
b(s − t)u(s,η)dη

)
ds

)
− ∂2

∂ξ2u(t,ξ)

= g2(t)
∫ t
−∞ a(s − t)u(s,ξ)ds+ g1(t)f (ξ,u(t,ξ)) , ξ ∈ [0,π], t ≥ 0,

u(t,0) = u(t,π) = 0, t ∈ [0,+∞) ,

u(τ,ξ) = ϕ(τ)(ξ), τ ≤ 0;

(4.19)

here, 0 ≤ β ≤ 1 and HD
1
2 ,β,ψ
0+ is the ψ-Hilfer fractional derivative of order 1

2 and type β, with

respect to the function ψ.

Let X = L2 ([0,π]) and A :D(A) ⊂ X→ X be the operator defined by Au = u′′,

D(A) = {u ∈ X
/
u′′,u′ ∈ X, u(0) = u(π) = 0 } .

We know that A generates a uniformly exponentially stable analytic semigroup (T (t))t≥0

on X. Moreover, −A has discrete spectrum σ (A) with eigenvalues n2, n ∈ N, associated to a

normalized eigenvectors en(ξ) =
(

2
π

) 1
2 sin(nξ).We note also that {en | n ∈ N} is an orthonormal
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basis of X. Hence, the associated semigroup (T (t))(t≥0) is explicitly given by

T (t)u =
∞∑
n=1

e−n
2t 〈u,en〉en.

Furthermore,

‖T (t)‖≤e−t,

for all u ∈ X. On other side, the closed linear operator (−A)−
1
2 is well defined and one has

(−A)−
1
2 u =

∑∞
n=1n〈u,en〉en,

D((−A)
1
2 ) = {u ∈ X

/ ∑∞
n=1n〈u,en〉en ∈ X } .

Note here that D((−A)
1
2 ) is the Banach space with the norm ‖u‖ 1

2
= ‖u′‖ , for all u ∈ X 1

2
.

According to [58, Example 7.1.7], we know that if h(s) = 1 + |s|n for some n > 0, then the

space C0
h

(
(−∞,0] ,X 1

2

)
is a fading memory space. Moreover, it is follows from [58, Theorem

1.3.6] that

µ1(t) = sup
t≤0

1
1 + |s|n

= 1 and µ2(t) = sup
t≤0

1 + |s+ t|n

1 + |s|n
≤ 1.

Consider the Banach space

B 1
2

= C0
h

(
(−∞,0] ,X 1

2

)
,

equipped with its norm ∥∥∥φ∥∥∥B 1
2

= sup
s≤0

∥∥∥φ(s)
∥∥∥ 1

2

1 + |s|n
,

which is also equivalent to ∥∥∥φ∥∥∥B 1
2

= sup
s≤0

∥∥∥φ′(s)∥∥∥
1 + |s|n

.

To study the problem (4.19), we need to consider some particular assumptions, that is

• f : [0,π]×R −→ R is a continuous function satisfying the following conditions:

– For x,y ∈ X 1
2
, there exists l1 > 0 such that∥∥∥f (·,x (·))− f (·, y (·))

∥∥∥ ≤ l1 ∥∥∥x − y∥∥∥ 1
2
.

– Let λ be a complex number with |λ| = 1,

f (ξ,λx(ξ)) = λf (ξ,x(ξ)) , for ξ ∈ [0,π] and x ∈ X 1
2
.

• The data function ϕ ∈ B 1
2

.

• The functions g,g1 and g2 belong to the space C1 ([0,+∞)) with g(0) = 0.
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• The functions s 7→ (1+ |s|n)a(s) and s 7→ (1+ |s|n)b(s) are integrable functions on (−∞,0] ,

and

l2 =

0∫
−∞

(1 + |s|n)2 |a(s)|ds, l =

0∫
−∞

(1 + |s|n)2 |b(s)|ds.

Now we are in a position to define the functions F : R+ × X 1
2
× B 1

2
→ X and G :

R+ ×B 1
2
→ X1 as follows

F(t,x,φ) (ξ) = g2(t)

0∫
−∞

a(s)φ(s,ξ)ds+ g1(t)f (ξ,x (ξ)) ,

and

G(t,φ)(ξ) = g(t)


0∫
−∞

ξ∫
0

b(s)φ(s,η)dηds

 .
According to Theorem 4.3.1, we have the following result.

Proposition 4.4.1. Suppose that the functions g, g1 and g2 belong to SAPw(R+). We assume also

that

(1 +π) l sup
t≥0
|g(t)|+πmax

(
l1 sup

t≥0
|g1(t)| , l2 sup

t≥0
|g2(t)|

)
< 1. (4.20)

Then, the problem (4.19) has a unique S-asymptotically ω-anti-periodic 1
2-mild solution.

Proof. It is sufficient to show that the functions F and H satisfies the conditions (H1)−(H3)

in Proposition 4.3.1. For x ∈ X 1
2
, it is clear that

sup
t≥0

π∫
0

|F(t,x,0)(ξ)|2dξ = sup
t≥0
|g1(t)|


π∫

0

|f (ξ,x(ξ))|2dξ

 < +∞,

and

sup
t≥0

π∫
0

∣∣∣∣∣∣ ∂2

∂ξ2G(t,0)(ξ)

∣∣∣∣∣∣2dξ < +∞;

hence, the condition (H1) holds.

In the sequel, we suppose that kω = π. For t ≥ 0, x ∈ X 1
2

and φ ∈ B 1
2
, Since X 1

2
↪→ X, and

thanks to Hölder’s inequality and Fubini’s theorem, we get

π∫
0

∣∣∣∣∣∣∣∣
0∫
−∞

a(s)φ(s,ξ)ds

∣∣∣∣∣∣∣∣
2

dξ ≤
(∫ 0

−∞
|a(s)|ds

)
0∫
−∞

|a(s)|
∥∥∥φ(s, ·)

∥∥∥2
ds


≤

(∫ 0

−∞
(1 + |s|n)2 |a(s)|ds

)
∫ 0

−∞
(1 + |s|n)2 |a(s)|

∥∥∥φ(s, ·)
∥∥∥2

1
2

(1 + |s|n)2ds


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≤


0∫
−∞

(1 + |s|n)2 |a(s)|ds


2

sup
s≤0

∥∥∥φ(s, ·)
∥∥∥2

1
2

(1 + |s|n)2

≤
(
l2

∥∥∥φ∥∥∥B 1
2

)2

. (4.21)

This implies ∥∥∥F(t +ω,x,φ)− eikωF(t, e−ikωx,e−ikωφ)
∥∥∥

≤ l2 |g2(t +ω)− g2(t)|
∥∥∥φ∥∥∥B 1

2

+ |g1(t +ω)− g1(t)| ‖f (·,x (·))‖ ,

so that

lim
t→+∞

∥∥∥F(t +ω,x,φ)− eikωF(t, e−ikωx,e−ikωφ)
∥∥∥ = 0.

Similarly,

π∫
0

∣∣∣∣∣∣∣∣
0∫
−∞

b(s)
∂φ(s,ξ)
∂ξ

ds

∣∣∣∣∣∣∣∣
2

dξ ≤


0∫
−∞

|b(s)|ds




0∫
−∞

|b(s)|
∥∥∥φ′(s, ·)∥∥∥2

ds


≤

(∫ 0

−∞
(1 + |s|n)2 |b(s)|ds

)2

sup
s≤0

∥∥∥φ(s, ·)
∥∥∥2

1
2

(1 + |s|n)2

≤
(
l
∥∥∥φ∥∥∥B 1

2

)2

; (4.22)

it follows that ∥∥∥AG(t +ω,φ)− eikωAG(t, e−ikωφ)
∥∥∥ ≤ l |g(t +ω)− g(t)|

∥∥∥φ∥∥∥B 1
2

,

so

lim
t→+∞

∥∥∥AG(t +ω,φ)− eikωAG(t, e−ikωφ)
∥∥∥ = 0,

thus the condition (H3) holds. Observe that, from the inequalities (4.21) and (4.22), one has∥∥∥F(t,x1,φ1)−F(t,x2,φ2)
∥∥∥

≤ l2 sup
t≥0
|g2(t)|

∥∥∥φ1 −φ2

∥∥∥
B 1

2

+ l1 sup
t≥0
|g1(t)| ‖x1 − x2‖ 1

2
,

and ∥∥∥AG(t,φ1)−AG(t,φ2)
∥∥∥ ≤ l sup

t≥0
|g(t)|

∥∥∥φ1 −φ2

∥∥∥
B 1

2

,

which holds true for any t ∈ [0,+∞) , x1,x2 ∈ X 1
2

and φ1,φ2 ∈ B 1
2
. This means that the condi-

tion (H2) holds. It is immediate that (4.20) implies that (4.12) holds, with

µ1 = 1,
∥∥∥∥(−A)−

1
2

∥∥∥∥ = 1, M 1
2

= Γ (
1
2

) =
√
π,

and ν0 = −1. Finally, according to Theorem 4.3.1, we conclude that the problem (4.19) has a

unique S-asymptotically ω-anti-periodic 1
2-mild solution.
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Conclusion

In this thesis, we investigated the existence and uniqueness of solutions for fractional-order

boundary value problems in non-regular domains, focusing on different classes of abstract

differential equations involving fractional operators. Using a combination of semigroup

theory, fractional powers of closed operators, interpolation theory, and classical fixed point

theorems, we established sufficient conditions for well-posedness in various settings.

In particular, we analyzed fourth-order equations with fractional powers of the nega-

tive Laplacian operator under Cauchy-Dirichlet conditions in 3D cusp domains, showing

that a transformation of these domains to cylindrical domains facilitates their resolution.

Furthermore, we investigated pseudo S-asymptotically periodic mild solutions for neutral

evolution equations involving the Caputo fractional operator with finite delay, applying

the Banach contraction principle and Krasnoselskii’s fixed point theorem. Additionally, we

extended this study to S-asymptotically Bloch periodic solutions for neutral evolution equa-

tions governed by the ψ-Hilfer fractional operator with infinite delay, utilizing both the

Banach contraction principle and Schauder’s fixed point theorem.

These interesting results not only deepen the theoretical understanding of fractional dif-

ferential equations but also provide a foundation for further research into their applications

in irregular geometries and complex physical systems. A natural continuation of this study

is to consider a nonlinear differential equation involving a fractional operator (such as Rie-

mann–Liouville, Caputo, Hilfer, etc.) with different boundary conditions in non-regular

domains. This direction aims to extend the existence and uniqueness results from Chapters

3 and 4 to more general nonlinear settings using similar methods. It may also open the way

to investigating qualitative properties, such as periodic-type solutions, for such problems

and exploring their implications in scientific and engineering contexts.
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Appendices

Definition 4.4.1. (Closed operator [61]). A linear operator A on a Banach space X is said to be

closed if its graph

G(A) = {(x,Ax) : x ∈D(A)}

is a closed subset of X ×X. In other words, if a sequence {xn} ⊂D(A) satisfies xn −→ x,

Axn −→ y,
=⇒

 x ∈D (A) ,

Ax = y.

Definition 4.4.2. (Self-adjoint, positive definite operator [14]). Let H be a Hilbert space. A

linear operator A :D(A) ⊂H →H is called self-adjoint and positive definite if

• A = A∗ (self-adjoint),

• there exists a > 0 such that 〈Ax,x〉 ≥ a‖x‖2 for all x ∈D(A). We write A ≥ aIH .

Definition 4.4.3. (Positive operator [105]). Let X be a Banach space and let A be a linear

closed operator with dense domain of definition D(A) ⊂ X such that its range is contained in X,

too. The operator A is said to be positive, if (−∞,0] belongs to the resolvent set of A and there

exists a number C ≥ 0 such that∥∥∥(A−λI)−1
∥∥∥ ≤ C

1 + |λ|
, for λ ≤ 0.

Remark 4.4.1. [105] Any self-adjoint, positive definite operator A on a Hilbert space is a positive

operator in the sense of the above definition.

Lemma 4.4.1. (Bochner’s theorem [30]). A measurable function f : I −→ X is Bochner inte-

grable if and only if ‖f ‖ is Lebesgue integrable. Furthermore, if f is Bochner integrable, then∥∥∥∥∥∫
I
f (t)dt

∥∥∥∥∥ ≤ ∫
I
‖f (t)‖dt.

Lemma 4.4.2. [30] Let A be a closed linear operator on X. Let f : I −→ X be Bochner integrable.

Suppose that f (t) ∈D(A) for all t ∈ I and A · f : I −→ X is Bochner integrable. Then∫
I
f (t)dt ∈D(A) and A

∫
I
f (t)dt =

∫
I
Af (t)dt.
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Lemma 4.4.3. (Dominated convergence theorem [30]). Let fn : I −→ X be Bochner integrable

functions. Assume that:

(i) There exists an integrable function g : I −→ R such that

‖fn(t)‖ ≤ g(t),

a.e. on I for all n ∈ N.

(ii) f (t) := limn−→+∞ fn(t) exists a.e. on I .

Then f is Bochner integrable and ∫
I
f (t)dt =

∫
I

lim
n−→+∞

fn(t)dt.

Furthermore, ∫
I
‖fn(t)− f (t)‖dt −→ 0 as n −→ +∞.

Lemma 4.4.4. (Fubini’s theorem [30]). Let I = I1 × I2 be a rectangle in R2. Let f : I −→ X be

measurable, and suppose that ∫
I1

∫
I2

‖f (s, t)‖dtds < +∞.

Then f is Bochner integrable and the repeated integrals∫
I1

∫
I2

‖f (s, t)‖dtds < +∞ and
∫
I2

∫
I1

‖f (s, t)‖dsdt < +∞

exist and are equal, and they coincide with the double integral∫
I
‖f (s, t)‖d(t, s).

Theorem 4.4.1. (Cauchy-Schwarz’s inequality [7]). Let H be a Hilbert space. Then, for x, y ∈
H ∣∣∣< x,y >H ∣∣∣ ≤ ‖x‖H ∥∥∥y∥∥∥

H
.

Theorem 4.4.2. (Holder’s inequality [7]). Let Ω be open set of Rn, and let 1 < p <∞, with p′

denoting the conjugate exponent, i.e., 1
p + 1

p′ = 1. If u ∈ Lp (Ω) and v ∈ Lp′ (Ω), then u ·v ∈ L1 (Ω),

and ∫
Ω

|u(x)v(x)|dx ≤ ‖u‖Lp(Ω) ‖u‖Lp′ (Ω) .
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