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Abstract

The objective of this thesis is to investigate fractional-order boundary value problems in
non-regular domains by examining the existence and uniqueness of solutions for various
types of abstract differential equations involving fractional operators. The study begins with
an analysis of three-dimensional fourth-order differential equations incorporating fractional
powers of the negative Laplace operator under Cauchy-Dirichlet boundary conditions in
cuspidal domains. The investigation techniques are based on transforming the main prob-
lem, through a natural change of variables, into a complete abstract fourth-order differen-
tial equation involving fractional powers of linear operators, which allows us to provide
results on well-posedness. Furthermore, we explore periodic-type solutions for fractional
neutral evolution equations involving Caputo and -Hilfer derivatives, utilizing classical
fixed point theorems as a preliminary step toward further investigation of fractional-order

boundary value problems in non-smooth domains.

Keywords: Fractional-order boundary value problems, non-regular domains, existence and

uniqueness, abstract differential equations, well-posedness, periodic-type solutions.



Résume

L'objectif de cette these est d’étudier les problemes aux limites d’ordre fractionnaire dans
des domaines non réguliers, en examinant l’existence et 1'unicité des solutions pour dif-
férents types d’équations différentielles abstraites impliquant des opérateurs fractionnaires.
L’étude commence par l’analyse d’équations différentielles du quatriéme ordre en dimen-
sion trois, incorporant des puissances fractionnaires de l'opérateur de Laplace négatif, sous
conditions de Cauchy-Dirichlet sur la frontiere, dans des domaines contenant des points
de rebroussement. La méthode d’investigation s’appuie sur la transformation du prob-
léeme principal, via un changement naturel de variables, en une équation différentielle ab-
straite compléte du quatrieme ordre comportant des puissances fractionnaires d’opérateurs
linéaires, ce qui permet d’obtenir des résultats concernant le probleme bien posé. Par
ailleurs, on explore des solutions de type périodique pour des équations d’évolution neutres
fractionnaires impliquant les dérivées de Caputo et les dérivées -Hilfer, en utilisant les
théoréemes classiques du point fixe comme étape préliminaire vers une étude approfondie

des problemes aux limites d’ordre fractionnaire dans des domaines non lisses.

Mots clés: Problemes aux limites d’ordre fractionnaire, domaines non réguliers, existence

et unicité, équations différentielles abstraites, bien-posé, solutions de type périodique.
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Notations

R": n-Dimensional Euclidean space, where 7 is a non-zero natural number.

Q): Arbitrary set in R".

dQ): Boundary of Q.

N, R, and C: Set of natural numbers, real numbers, and complex numbers, respectively.
R*: Set of positive real numbers.

I: Arbitrary interval in R.

Re(A): Real part of complex number A.

nl: Factorial of n.

[a]: Integer part of real number «.

1i: Fourier transform of function u.

dy, = 0/dy,: Partial derivative with respect to x;.

V= (axl,..., axn): Gradient with respect to x.

d™u
dtm
(X,])]]) and (Y, ||-]ly): Banach spaces over the field K € {R, C}.

H: Complex separable Hilbert space.

= u™) and D%u: Derivatives in the sense of distributions of u.

<-,->: Scalar product on a Hilbert space H.

X’: Dual space of X with the strong dual topology.

X: Closure of X.

Ix : Identity operator on X.

L(X,Y): Space of linear bounded operators defined from the whole space X into Y. To

simplify notation, we write £ (X) instead £ (X, X).

(T(t));»(: Family of bounded linear operators on X.

A: Linear operator on X.

D(A) and R(A): Domain and range of the operator A.

o(A): Spectrum of the operator A.

p(A) and R(A, A): Resolvent set and resolvent operator of A, respectively.
I'(-): Gamma function.

I¥*: Fractional integral of order a > 0.
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. Ita’lp : Fractional integral of order a > 0, with respect to function .

e RED® and ©Df: Riemann-Liouville and Caputo fractional derivatives of order a > 0.

o Dfﬂg : Hilfer fractional derivative of order @ and type 0 < < 1.

. Dta’lp and CDta’l’b: y-Riemann-Liouville and ¢-Caputo fractional derivatives of order a > 0.
HD;;ﬁ’lp: y-Hilfer fractional derivative of order a and type 0 < g < 1.

e u,(-) = u(-+1t): Classical history function.

e C: Space of all continuous functions from [-7,0] into X, r > 0.

e BB: Phase space.

e C"(Q)): Space of n-times continuously differentiable functions on ().

e C;°(Q): The set of all smooth functions with compact support in (), having (continuous
in ()) partial derivatives of arbitrary order.

e S: Space of rapidly decreasing functions at infinity (Frechet space).

e S’: Space of Schwartz’s tempered distributions.

!

loc

(Q): Space of all locally integrable functions on Q.

LP(Q)): Lebesgue space consisting of all p-integrable measurable functions on Q.
WP (Q)): Sobolev space constructed on LP (Q2).

H™(Q)=W™2(Q).

H?(R") and H*®(Q)): Fractional order Sobolev spaces (Bessel potentials spaces).

e [P(I,X): Lebesgue space consisting of all p-integrable measurable functions from I into
X.

e L®(I,X): Lebesgue space consisting of all measurable essentially bounded functions from
I into X.

o (X, Y)Q’p and (X, Y)y: Interpolation spaces between X and Y.

e C(I,X): Space of all continuous functions from I into X.

e Cy(I,X): Space of bounded continuous functions from I into X.

e Cy(IxY,X): Space of all continuous functions from I x Y into X .

e SAP,(X): Space of S-asymptotically w-periodic functions from R* into X.

e SAAP,(X): Space of S-asymptotically w-anti-periodic functions from R* into X.

e SABP, x(X): Space of S-asymptotically Bloch type periodic functions from R* into X.

e PSAP,(X): Space of pseudo S-asymptotically w-periodic functions from R* into X.

e PSAP, ,(X): Space of pseudo S-asymptotically w-periodic functions of class p from R*
into X.

e PSAP, ,(R* xY,X): Space of uniformly (Y, X) pseudo S-asymptotically w-periodic func-

tions of class p from R* x Y into X.

viii



Introduction

The field of fractional calculus, which is mainly based on the study of integrals and deriva-
tives of arbitrary real or complex orders, has become a rapidly growing area of applied
mathematics, providing a powerful framework for modeling complex phenomena. The con-
cept dates back to the late 17th century when L'Hopital posed a question to Leibniz about
the meaning of d"y/dx" for n = 1/2. Initially regarded as a purely theoretical construct,
fractional calculus has evolved significantly through the contributions of many mathemati-
cians (see [57], [65] and references therein). In recent years, it has played a crucial role
in various branches of science and engineering [18, 48, 69, 70, 93]. Its applications ex-
tend to fields such as theoretical physics, fluid mechanics, biology, and image processing
[13, 15,19, 20, 53, 62, 63, 83, 92,102, 103].

The study of fractional boundary value problems (FBVPs) is one of the most impor-
tant areas of fractional calculus. These problems have attracted considerable interest from
researchers due to their ability to include memory effects, allowing fractional derivatives
and integrals to provide a more realistic representation of physical phenomena compared
to classical approaches. Significant research has focused on investigating the existence,
uniqueness, and stability of solutions for different types of FBVPs, using various forms of
fractional derivatives; see, for example, [1, 2, 3, 5, 8, 10, 22, 23, 25, 29, 41, 42, 43,71, 89, 90,
100, 106, 111].

A comprehensive theory has been established for FBVPs in domains with smooth bound-
aries, where sufficiently smooth coefficients, boundary operators, and domain boundaries
result in solutions with corresponding smoothness. However, the situation becomes con-
siderably more complex when the domain contains non-regular or non-smooth boundary
points, and we recall here that a point x in the boundary of a domain IT c R" (i.e., x € JIT)
is called non-regular if, for every neighborhood U around x, there is no smooth, non-
degenerate map U — R” that carries JII N U into an (n — 1)-dimensional sphere; see [66]
for more details. The study of classical boundary value problem (BVPs) in domains with
non-regular boundaries has roots in early research efforts, including T. Carleman’s Ph.D.

dissertation (1916) [28]. Subsequent surveys by researchers such as V. A. Kondrat’ev and

ix



O. A. Oleinik (1983) [66] extended this analysis to fundamental equations in mathemat-
ical physics, including elasticity theory, the Navier-Stokes equations, and the biharmonic

equation.

In the contemporary theory of boundary-value problems, correctly formulating BVPs in
non-smooth domains requires considering solutions, the right-hand sides of equations, and
boundary conditions in appropriately chosen function spaces. Often, it is convenient to use
function spaces with a weighted norm, where the weight is a power of the distance to the
set of non-regular boundary points. This approach allows for a precise description of the
singularities in the solution and its derivatives near these points, see [66] for more details.
Since the 1970s, various classical methods have been adapted to study the complexities of

BVPs in non-cylindrical and non-smooth domains. Notable methods include:

* Domain decomposition method: By approximating the non-smooth domain with a
sequence of sub-domains that can be transformed into smooth ones, researchers have
obtained significant results [17, 44, 64, 95, 96].

* Layer potential method: S. Hofmann and J. L. Lewis (2005) [59] utilized this method
for the solvability of the heat equation in non-cylindrical domains with Lipschitz-type

conditions.

* Rothe’s method: Initially introduced in the 1930s by E. Rothe [94] for second-order lin-
ear parabolic equations, this method has since been extended to handle linear parabolic

BVPs in non-cylindrical domains [46, 68].

* Sum of operators method: Developed by P. Grisvard and Da. Prato (1975) [91], this
powerful method involves representing the solution through a Dunford integral con-
taining resolvents of the operators involved. This method has been successfully ap-
plied to solve parabolic problems in non-cylindrical domains, yielding results that

demonstrate maximal regularity [72, 73, 74].

Many important applied problems reduce to studying BVPs in domains with non-smooth
boundaries, numerous studies have focused on equations in specific domains with particular
types of boundary conditions. Nevertheless, only a few results are dedicated to the study of
FBVPs in non-smooth domains. For instance, B. Chaouchi et al. (2023) [34] investigated the

solvability of a time-conformable fractional equation given by

N
DY u(t, x) + ZDfimu(t,x) = h(t,x), @ €(0,1], me N, (1)
i=1
associated with the following initial and boundary conditions

jopxa =0, 1 |jujx0 =0,

u |[o,1]><ao =0,

X



set in a singular cylindrical domain

I[T=[0,1]xQ(t),

Q= {(xl,xZ,...,xn) € ]RN/ \/xf + X5+ .+ XE < (p(t)},

where, @ represents a parametrization function satisfying ¢(0) = 0 and ¢(t) > 0, t € ]0,1],
while D is the standard conformable time fractional derivative of order « in the sense
stated in [4]. The investigation techniques are based on transforming the problem (1)—(2)

through a natural change of variables into an abstract differential problem
w () + A(tw(t) = g(t), t€[0,1],

with

w(0)=w(1)=0.
In line with this objective, this thesis is devoted to the study of fractional-order boundary
value problems in non-regular domains by examining the existence and uniqueness of solu-
tions for various types of abstract differential equations involving fractional operators. The
analysis employs a variety of functional analysis tools, including semigroup theory, frac-
tional powers of closed operators, interpolation theory, and some classical fixed point theo-

rems. This approach has been utilized in numerous works; see [33, 35, 36, 37, 49, 50, 87].

The organization and main ideas of the thesis are summarized as follows. The first chap-
ter provides essential definitions and results related to Sobolev spaces, fractional integrals
and derivatives, semigroup theory, and significant findings regarding the fractional power
of closed operators. Additionally, it introduces definitions and properties of interpolation
spaces and the trace theorem, concluding with several classical fixed point theorems that

are foundational for the subsequent analysis.

Chapter 2 explores the existence and uniqueness of solutions for three-dimensional fourth-
order differential equations involving fractional powers of the negative Laplace operator

with Cauchy-Dirichlet boundary conditions and initial conditions

d* 1/2 ° sy 447
Tt (524 (L4 pg (x))(-4) u(t,x)+;(pj(x)(—A) )Eu(t,x):f(t,x), (3)
]:
Ulg+xor1 = 0, (4)
and X
du d’u
= =0, = +b(-A)¥8y =0, 5
dt {jojx1 aps 0N (0)IT )

on the cusp domain R* x I,

H::{xeR3/0<x3<1,( N )GQ} a>1,

xi



where Q) C R? is a bounded smooth, 0i(-), j =1,2,3,4, are continuous real functions defined
onII, and f(t,-) € L?(I1).

The principal strategy for solving problem (3)-(4)-(5) involves transforming the equation (3),
posed in the non-cylindrical domain IT, into a variable-coefficient equation in a cylindrical

domain Q given by
Q=0Qx ]L, +oo[.
a-1
Section 2.2 provides sufficient conditions for the well-posedness and regular solvability of a

class of complete abstract fourth-order differential equations

4 .
d4W(t) +A49w(t) + ZAM = h(t), le R+,

dt4 A V]
j=1
endowed with the initial conditions
dw(0) d3w(0)
TR Hsg/2, 5t Kw(0) = ¢, € Hgyy,

where 60 €]0,1], A is a self-adjoint positive definite operator in a separable Hilbert space H,
Aj, j €{1,2,3,4} are linear operators acting on H, K € L(H7g,2, Hg/2), with Hg denoting the
Hilbert scale spaces generated by AP for 0 >0, and h e L? (R*;H). Lastly, after preparing
some intermediate results that directly follow from the findings in Section 2.3, we revisit

the original problem by applying the inverse change of variables.

Chapter 3 examines the existence and uniqueness of pseudo S-asymptotically periodic
mild solutions for a class of neutral evolution equations involving the Caputo fractional
operator with finite delay. This study applies classical fixed point theorems, including the
Banach contraction principle and Krasnoselskii’s fixed point theorem. Section 3.2 compiles
essential definitions and preliminary results needed to justify the main findings, particu-
larly the class of pseudo S-asymptotically periodic functions. Section 3.3 establishes suffi-
cient conditions for the existence of such solutions, while Section 3.4 illustrates an example

of a delayed partial differential equation.

Chapter 4 investigates the existence and uniqueness of S-asymptotically Bloch periodic
mild solutions for a class of neutral evolution equations governed by the i-Hilfer fractional
operator with infinite delay. The analysis employs classical fixed point theorems, specif-
ically the Banach contraction principle and Schauder’s fixed point theorem. Section 4.2
presents the fundamental definitions and preliminary results required to establish the main
findings, including the class of S-asymptotically Bloch type periodic functions and the as-
sociated phase space. Section 4.3 derives sufficient conditions ensuring the existence of the
desired solution. Finally, Section 4.4 provides an illustrative example of a fractional partial

differential equation to demonstrate the applicability of the theoretical results.

xii



Craper |

Chapter

Preliminaries

In this chapter, we review some standard definitions and properties that we will need
throughout this work. The chapter is intended to make the work as self-contained as possi-
ble. For a deeper discussion of the theory discussed here, we refer the reader to [7, 12, 14,
45, 65,79, 80, 82, 87,99, 105].

1.1 Sobolev spaces

In this section, we provide some definitions and properties of Sobolev spaces which will be

used later. The primary references for further detailed information are [7, 45, 80].

Definition 1.1.1. Let () C R" be an arbitrary set, and let x = (x1,...,x,,) be an element of Q with
dx =dxy ... dx,. For a real number p where 1 < p < +oo, the space LP (Q)) is defined by

LP(Q) = {u Q— K/ u measurable, cmdf lu(x)|P dx < +oo},
Q
equipped with the norm
1/p
sy i= [ op ) (11)
If p = 2, it is a classical result that L? (Q) is a Hilbert space for the scalar product
<u,v>p)= J u(x)v(x)dx,
Q

associated to the norm (1.1).

Definition 1.1.2. Let m be a positive integer and 1 < p < +oo.
The Sobolev space W™P (Q)) of order m on () is defined by

W™P(Q) ={u e LP(Q)/ D*u € LP(Q) for 0<l|a|<m},

where
a={ay,...,a,), lal=a+--+a, D u=0dy.. 0" (1.2)

1



1.1. Sobolev spaces

The derivatives D% u are taken in the sense of distributions on Q, i.e., D%u = v,, in the weak sense
provided v, € Llloc (Q) satisfies

|| o gidn =0 | vatptods, (1.3)
Q

Q
for every ¢ € C;° (Q).

In particular case if p = 2, we set
H™(Q)=W"™2(Q).
Remark 1.1.1. For my and m,, two integers such that my < m,, we observe strict inclusions
H™(Q)c H™ (Q)c L*(Q)=H%(Q).
Theorem 1.1.1. Let m be a positive integer and 1 < p < +oo.

(i) The space WP (Q)) equipped with the norm

>
”u”Wm'P(Q) [ Z ”Da””IL)p(Q)] , (1.4)

la|<m

—_

is a Banach space.

(i1) H™(Q) is a Hilbert space for the scalar product
<u,v >H'”(Q): Z <Dau;Dav>L2(Q)l
|a|<m

associated to the norm 1

2
) ||D“u||§z(m] . (1.5)

la|l<m

”u”H’”(Q) =

Definition 1.1.3. For m being a positive integer and 1 < p < +oo.

(i) W(;n’p (Q) is the closure of C3° (Q)) in the space WP (Q)), i.e.,

, ———W"P(Q)
W 7 (Q) = CF (Q)

(1) H(')” (Q) is the closure of Cy° (Q) in the space H™ (Q)), i.e.,

HJM Q) =CP (Q)

Proposition 1.1.1. (Poincaré’s inequality). Let () be a bounded open set and 1 < p < +co.
Then, there exists a constant C > 0 such that

1r
luller) < ClIVUllppqy, Yu e W, 7(Q).
In other words, on Wol'p (Q), the quantity ||Vul| »q) is a norm equivalent to the WLP(Q) norm.

2



1.2. Fractional derivation

Definition 1.1.4. (Fractional order Sobolev spaces). Let s be a real number, we define
H (R") = {u [uesS (R"), (1+|&P)inel? (R”)}, (1.6)
where |E|* = 512 4ot 6,3 and S’ is dual space of
S= {u /x“Dﬁu e L*(R") Va Vﬁ},
with x% = x‘fl X

Theorem 1.1.2. The space H* (R") equipped with the norm

lellggs ey = | (1 +1EP)2 2| 2 ey
is a Hilbert space.

Definition 1.1.5. For any real number s and arbitrary domain (3 C R"™.

(i) H?(Q) consists of restrictions u|q of elements u € H* (R") and is normed b
Y
1fllezs(ay = inf{ ltllgsy / ula = £, w € H* (R")].

(ii) Hg(Q) is the closure of C° (Q)) in the space H*(Q)), i.e.,

== H(O)
Hy (Q) = C5 (Q)

1.2 Fractional derivation

In this section, we present the definitions and properties of fractional integrals and frac-
tional derivatives of a function f with respect to another function . Some of these defini-

tions and results were provided in [12, 65, 99].

1.2.1 Gamma function

The Gamma function is a fundamental element of fractional calculus, playing an essential

role in the theory. More detailed information may be found in [65, Section 1.1.5].

Definition 1.2.1. The Gamma function, denoted by I'(x), is defined for any complex number z
such that Re(z) > 0 by

where t771 = elz=1)In(1),

Proposition 1.2.1. For all z€ C, Re(z) > 0 we have
[(z+1)=2zI(2).

3



1.2. Fractional derivation

1.2.2 Fractional integrals and fractional derivatives

Definition 1.2.2. [12, 99] Let (a,b) be a finite or infinite interval of the real line R and a > 0.
Let 1(x) be an increasing and positive monotone function on (a, b}, having a continuous derivative

' (x) on (a, b). The fractional integrals of a function f with respect to another function P on [a, b]
are defined by

, 1 ' -
I f(x) = mj P (1) (P(x) = P(£)* ™ f(0)dt, x € (a,b), (1.7)
where f is an integrable function defined on [a, b].
Lemma 1.2.1. Let a > 0 and > 0. Then, we have

IR () = 1P £(x), x € (a,b).

Definition 1.2.3. Let ’(x) # 0 (—co <a<x < b < +o0) and a > 0, n € N. The Riemann-Liouville

derivative of a function f with respect to 1 of order a correspondent to the Riemann-Liouville, is
defined by

a,ip _ 1 d\" n a,p
D) = (i) e

a\" r* o
r(nl_a)(gb,tx)%) L ¥ (1) (P(x) - ()" f(t)dt, x€(a,b).

1.2.3 Caputo-type and Hilfer-type fractional derivatives

Definition 1.2.4. [12] Let a >0, n €N, I is the interval —oo <a <b < +co, f, P € C"(I) two
functions such that  is increasing and " = 0 on I. The -Caputo fractional derivative of order

a of a function f is given by

C Y nal,b 1 d "
D f (gb’(x)ﬁ) f(x); XE((Z,b),

where,
n=[al+1 for aeN, n=a for aeN.

Remark 1.2.1. To simplify notation, we will use the abbreviated symbol

n d\"
f[] _(¢,1(x)a) f(x), x € (a,b);

it is clear that, given « =n e N
“Dy; lpf flpn](x):
and, if a € N, then

1
['(n-a)

DY f(x) = [ e - per- gk
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1.2. Fractional derivation

In particular, when a € (0,1), we have

1
I'(l-a)
Definition 1.2.5. [99] Let n—1 < a <n withn € N, I =[a,b] be the interval such that —co < a <
b < +ooand f,ip € C"(I) two functions such that i is increasing and (" = 0 on I. The -Hilfer
fractional derivative of order a and type 0 < <1 of a function f is defined by

CDO‘IPf

J ((x) = (t)) ™ f(t)dt.

, wap( 1 d -
HDaP¥ £ (x) = 101 “)w(—¢,(x)a) 1P f(x), x € (a,b). (1.8)

1.2.4 Some properties of fractional derivation

In what follows, we present relationships between different types of fractional derivatives

and fractional integrals. For further details, we refer to [12, 99].

Theorem 1.2.1. If f € C"(I) and a > 0, then

CDC“/’]( ll’

and

_ k
0‘ ‘P CDa lzbf f ) Z (¢(X) k‘#)(a)) fq[)k](a)
k=0 )
0<

Theorem 1.2.2. If f e C*(I), n—-1<a <nand 0

Dy = P aw[ apia o § <¢<x>—¢<a>)k( 1x) 4 )" Iu-m(k—awf(a)},

and

n—1 y—k
Ia“+r¢ Hpj‘fﬂ#f(x) = f(x)- IPIE(;/ i({_)i) f[n k] 1 -B)(n-a), ¢f

>
Il

0
where y = a+ f(n—a).

Theorem 1.2.3. Let f € Cl (I), a>0and 0< B <1, we have
CDSPISY F(x) = f(x) and FDEPYIEY f(x) = f(x
Remark 1.2.2. If ¢(x) = x, then all the definitions mentioned above coincide with the definition

of the classical fractional derivative and integral; see [65, 97 ]. Therefore, we can write:

0 = i |07 e = 1 £

a,x _ 1 d e n—a—1 _ RLpa
Da+f<x>—r(n_a)(% L(x—t) F(hdt = RLDE, f(x),
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1.3. Semigroups of bounded linear operators

CDO( xf ) ;Jx(x_t)n_a—l (%) f(t)dt — CDgt+ (X),
"5 "f(x)ﬂfi”‘“)(ix) L " f (0 = DI f (),

1.3 Semigroups of bounded linear operators

For detailed proofs in this section, we refer the reader to [87, Chapter 1].

Definition 1.3.1. A one-parameter family (T(t)),s, € £(X) of bounded linear operators is a semi-

group of bounded operators on X if
(i) T(0)=1Ix,
(ii) T(t+s)=T(t)T(s) forall t,s > 0.

Definition 1.3.2. A one-parameter family (T(t)),s, € £(X) of bounded operators on X is a uni-

formly continuous semigroup if
lim IT(t) - Ix|| =0
t—0*

Definition 1.3.3. The linear operator A : D (A) C X — X is defined by

D(A)= {x EX/ lim M exists},

t—0*

and

Ax = lim T(t)x -
t—0*

, forallx e X,
is the infinitesimal generator of the semigroup (T (t)),s¢-

Theorem 1.3.1. A linear operator A is the infinitesimal generator of a uniformly continuous

semigroup if and only if A is a bounded linear operator.

Definition 1.3.4. A semigroup (T(t)),s, € £(X) of bounded operators on X is a strongly contin-

uous semigroup (or Cy- semigroup) if
lim T(t)x—x=0, forall x € X.
Lemma 1.3.1. Let (T(t)),5 be a Cy-semigroup on X. Then
(i) There exist constants v > 0 and M > 1 such that

IT(t)|| < Me"", forall t > 0.

(ii) For every x € X, t > T(t)x is a continuous function from [0,+o0) into X.

6



1.3. Semigroups of bounded linear operators

Theorem 1.3.2. Assume that (T (t)),s is a Co-semigroup on X and let A: D (A) C X — X be its

infinitesimal generator. Then

(i) T(t)x € D(A), for x € D(A) and t > 0. Moreover, for x € D (A) the function [0,+0c0) 3t >
T(t)x is differentiable and

%T(t)x =AT(t)x = T(t)Ax.

(ii) For xe D(A) and 0 <s <t < +oo,
t t
T(t)x—T(s)x = j T(t)Axdt = J AT(t)xdr.
S S
(iii) N,>1D(A") is dense in X.
(vi) If ||T(t)|| < Me"', t > 0, for some M > 1 and v € R, then for all x € X and A € C with

Re(A) > v we have

+0o
RN A)x:= (M —A) tx= J e MT(t)xdt.
0

Theorem 1.3.3. Let A : D(A) C X — X be the infinitesimal generator of two Cy-semigroups
(T(t));s0 and (S(t));sq- Then
T(t)=S(t), forall t > 0.

Definition 1.3.5. [84] A Cy-semigroup (T (t)),s is said to be a uniformly exponentially stable if

there exist constants M > 0 and v > 0 such that
IT(t)|]| < Me™*, forall t > 0. (1.9)
Moreover, we define

v = inf{ v eR[IM > 0 such that ||T(t)|| < Me", Vt > o}.

1.3.1 Compact semigroup

Definition 1.3.6. A Cy-semigroup (T(t)),s is called compact for t > t if for every t > ty, T(t) is

a compact operator. (T(t)),s is called compact if it is compact for t > 0.

We need to clarify the relationship between the compactness of the semigroup (T (t)),s

and its continuity, which is expressed via the following lemma. The proof is detailed in [87].

Lemma 1.3.2. Let (T(t)),5q be a Cy semigroup and let A be its infinitesimal generator. (T(t)),

is a compact semigroup if and only if
(i) T(t) is continuous in the uniform operator topology for t > 0, and
(i) R(A, A) is compact for A € p(A).
Corollary 1.3.1. Let (T(t)),s( be a uniformly continuous semigroup. (T(t)),s is a compact semi-

group if and only if R(A, A) is compact for every A € p(A).
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1.3. Semigroups of bounded linear operators

1.3.2 Existence of semigroups

Theorem 1.3.4. (Hille-Yosida). If A : D(A) C X — X is a linear operator, then the following

conditions are equivalent:

(i) A is the infinitesimal generator of a Cy-semigroup of contractions, i.e., A is the infinitesimal

generator of a Cy-semigroup (T (t)),s such that,

T (t)|| <1 forallt>0.

(ii) (a) Ais closed and D (A) = X,

(b) the resolvent set p(A) of A contains (0,+co) and for every A >0
1

-1
”(/UX ”z: X

(iii) (a) Aisclosed and D(A) =X,
(b) the resolvent set p(A) of A contains the half plane {1 € C/ Re(A) > 0} and for such A

“(MX _A)_IHL(X) = Re())’

Theorem 1.3.5. (Feller-Miyadera-Phillips). If A: D(A) C X — X is a linear operator and

M >1,v € R are constants, then the following conditions are equivalent:
(i) A is the infinitesimal generator of a Cy-semigroup (T(t)),so such that,

IT(t)|| < Me"* for all t > 0.

(ii) (a) Ais closed and D (A) = X,
(b) the resolvent set p(A) of A contains (v,+oco) and and for every A >v and ne N

M
A=v)"

I(ALx = A) |l g x) <

(iii) (a) Aisclosed and D(A) = X,

(b) the resolvent set p(A) of A contains the half plane {A € C | Re(A) > v} and for such A

and neN
M

I(ALx = A) "l zx) W-



1.4. Fractional powers of closed operators

1.3.3 Analytic semigroups

For the results in this section we refer the reader to [87, Chapter 2].

Definition 1.3.7. A semigroup (T(t)),s is called an analytic if there exist a sector on the complex

plane
AéZ{ZGC/él <arg(z)<62, 51 <0<52},

and a family of bounded linear operators (T (z)),ca, which coincide with T(t) for t > 0, such that
(i) the mapping z — T(z) is analytic in Ag,
(ii) T(0)=1Ix and lim,_,q ep, T(2)x = x for all x € X,
(iii) T(z1+2) =T(2z1)T(z,) for all zy,z, € As.
Definition 1.3.8. [82] Let 0 <9< %, M > 1 and a € R. We say that an operator A : D(A) C

X — X is sectorial if

(i) Ais a densely defined closed operator,

(ii) the resolvent set p(A) contains the sector
Sas={A /o< |arg(A—a)|<m, A=a},

and the estimate
M

A —al

ot~y =
holds for all A € S 5.

Theorem 1.3.6. Let A: D(A) C X — X be a linear operator. Then the following conditions are

equivalent:

(i) A is the infinitesimal generator of an analytic semigroup.

(ii) —A is a sectorial operator in X.

Theorem 1.3.7. Let A be the infinitesimal generator of an analytic semigroup. If B is a bounded

linear operator then A + B is the infinitesimal generator of an analytic semigroup.

1.4 Fractional powers of closed operators

To characterize the fractional powers of linear operators, we use the following assumption:

Let A be a densely defined closed linear operator for which:
(H):q (i) p(A) DY "={1eC/0<w<|arg(A)| <m}UV, where V is a neighborhood of zero,

(ii) [IR(A, Al < #I/\I’ forle) ™.

If M =1 and w = %, then —A generates a Cy-semigroup. For w < 7, —A generates an

analytic semigroup; see [87, Theorem 2.5.2].



1.4. Fractional powers of closed operators

1.4.1 Negative fractional powers of linear operators

Let A be an operator satisfying assumption (H), and let 0 > 0. If @ < 7, i.e., —A is the

infinitesimal generator of an analytic semigroup (T(t));»,. The negative fractional powers

of A are given by

o._ 1 [T 0
A"_FWL£ 9717 (1) dt, (1.10)

where the integral converges in the uniform operator topology for every 6 > 0. For alterna-
tive representations of A~ involving the Dunford integral or real line resolvent integrals,
we refer the reader to [14, 87].

Remark 1.4.1. In the subsequent discussion, if —A is the infinitesimal generator of an analytic
semigroup (T(t)),s,, we adopt Equation (1.10) as the definition of A™° for 6 > 0, while setting

AO = Ix.
Lemma 1.4.1. Suppose A satisfies Assumption (H) with w < 5. Then, we have

(1) For 61, 92 >0
A(01402) — A=01, p-02

(ii) There exists a constant C such that

|A%|<c, for0<O<1.

(iii) A9 is one-to-one.

1.4.2 Positive fractional powers of linear operators

Definition 1.4.1. Let A satisfies Assumption (H) with w < 7. For every 0 > 0 we define

o (40)", o0,
Iy, 0=0.
Here are some properties of these operators.
Theorem 1.4.1. Let AY be defined by Definition 1.4.1. Then,
(i) A9 is a closed operator with domain D(A?) = R(A79).
(ii) For 6, >0, >0 implies D(A%)c D(A%).

(iii) If 61, O, are real then
A61+92 :A61 'AGZ,

for every x € D(AY) where 6 = max(0,,0,,0, +0,).
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1.5. Interpolation spaces

For x € D(A) c D(A?) and 0 < 6 < 1, we can explicitly define the operators A%x.

Lemma 1.4.2. (Balakrishnan’s formula). Let 0< 6 < 1. If x € D(A) C D(A?) then

_ sin(70)
oon

+00
A%« f t9 VAt + A) ' xdt. (1.11)
0

Theorem 1.4.2. Assume that —A is the infinitesimal generator of an analytic semigroup (T (t)),so,
and that ||T(t)|| < Me™°" for all t > 0 and some 6 > 0. If 0 € p(A), then one has

(i) T(t): X — D(A?) for every t >0 and 0 > 0.
(ii) For everyt>0and x € D(Ae), we have

T(t)A%x = APT(¢)x.

(iii) For every t >0, the operator AGT(t) is bounded and

IAP T (1)]] < Mgt~ %", (1.12)
(vi) Let 0< O <1andxe D(AG), then
IT(t)x - x|| < Cot?||A%x]|

The following result, as cited in [98, p. 15], will be needed in Chapter 2.

Theorem 1.4.3. If A: D(A) C H — H is a positive definite self-adjoint operator in a Hilbert
space H, then the operator A? : D(A) ¢ H — H is positive definite self-adjoint for each 6 > 0.

1.5 Interpolation spaces

For further details on this section, we refer the reader to [79, 80, 82, 105].

Definition 1.5.1. (Intermediate and interpolation spaces). Let X,Y,Z be Banach spaces. The

space Z is called an intermediate space between X and Y if
YcZcX,

with continuous embeddings. Furthermore, Z is called an interpolation space between X and
Y if, for every linear operator T € L(X) such that the restriction T|y € L(Y), it follows that
Tlz € L(Z).

11



1.5. Interpolation spaces

Now, we provide specific characterizations of interpolation spaces.
Definition 1.5.2. Let X and Y be two Banach spaces with Y C X, and let C > 0 be such that
lIxllx < Clixlly, forallxeY.
Let 0<0 <1and1<p<+oco. We define:
(i)
(X, Y)g,={xeX [t 9PK(t,x,X,Y) € LP(0,+c0) .
(ii) The norm on (X, Y)Q’p is given by

el vy, = 17077 K2 X ]| 4o

(iii) The space

t—0

(X, Y), = {x € X /lim FOK(tx X, Y) = o}.
Here, for every x € X and t > 0, the function K(t,x,X,Y) is defined by

K(t,x,X,Y)=inf{||allx +t||blly/x=a+b,ac X, beY}.

For the proofs of the following proposition, refer to A. Lunardi (1995) [82, Chapter 1].

Proposition 1.5.1. Let 0,0,,0,,p, and p, be real numbers.
(i) If 0<6<1,1<p; <py<+oothen

(X,Y)g,, C(X,Y)y, C(X,¥)yC(X,Y)

0,+c0*

(ii) If 0<01<0,<1,then (X,Y)g, ,oo C(X,Y)g, 1-
Regarding fractional power operators, here is another definition that will be essential.

Definition 1.5.3. Let 0<60 <1, 1 <p < +oo, and A be a closed linear operator with its domain
D(A) C X, we define the intermediate space between D(A) and X by

D4(0,p) = (D(A),X), g,

Following [40], when the operator A satisfies certain additional assumptions, it is then
possible to provide explicit characterizations of D, (6, p). To accomplish this, it is necessary
to utilize the space L? (R*, X) as defined by

+00

1
P
LP<R+,X>={u:R+—>X/ ||u||Lp(R+,x>:(fo ||u<t>||Pdt) <+oo},

with the usual modification for p = +co; that is

L®(R*,X) = {u RY — X/ ||l oo+, x) = sup [lu()]] < +oo}.

t>0

12



1.6. Trace theorem

Theorem 1.5.1. Let 0 < 0 <1, 1 < p < +oo. Assume that p(A) D R* and that there exists a
constant C > 0 such that

_ C
H(A— Ay) 1)"£(X) < T forall A >0,

then

D4(0,p) = {x eX [t VPA(A-tIy) " xeLP (R*,X)},
and

Dy (0, +00) = {x € X/ sup|[t?A(A-tIy) ™ x|| < +o<>},

£>0

equipped with the norm

el (0,+00) = IIxll + sup [[7A (A = tIx) ™" x]].
t>0

Lemma 1.5.1. Let A: D(A) C H — H be a positive definite self-adjoint operator in a Hilbert
space H. Let o and B be two positive constants. Then, for 0< 6 <1,

[D (A%),D (Aﬁ)]e i=(D(A%),D(AF)) ~=D(A-010F),

0,2
In particular case where p = 0, we have

D4(6,2) = (D(A),X)g, = D(A"179).
Proof. See H. Triebel (1995) [105, Page 142]. O

Remark 1.5.1. According to Remark 1.1.1, for s > 0, the space H® (CQ) may also be defined as the
interpolation space between H™ (Q) and L? (Q), given by

H*(Q) = [Hm(Q),Lz(Q)] , (1-0)m=s, minteger, 0<60 < 1.

0

For a more detailed discussion, we refer the reader to [80].

1.6 Trace theorem

The proofs in this section can be found in [80, Chapter 1].

Definition 1.6.1. Let X and Y be two separable Hilbert spaces such that Y C X and Y dense
in X with continuous injection. For an integer m > 1, we denote by W (R*,Y, X) the classes of

functions u such that

dm
W (R, Y,X) = {u/ uel?(RYY), dT:: —u(m 2 (R*,X)},

where u'™ is taken in the sense of distributions, and the space is equipped with the norm
2 2 2
||u||W(R+,Y,X) = (||u||L2(R+,Y) + ||M(M)||L2(R+’X)) .
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1.7. Fixed point theorems

Theorem 1.6.1. For u € W™(R",Y, X), we have
ul € Cy (R [Y, X ju1joym), 0<j<m-—1,
and u — ul) being a continuous and linear mapping of
W™(RY, Y, X) — Cy (R* [Y, X] (1 1/2/m)-
Theorem 1.6.2. Let u € W (R*,Y, X), we have
u(0) €[V, X)jy1/2ym» 0Sj<m—1.
Moreover, the mapping
U — {u(f)(O) JO<j<m-— 1} of W(RYY,X)— T Y, X] ja1/2/m

is surjective.

1.7 Fixed point theorems

For convenience, we recall essential fixed point theorems related to our study.

Definition 1.7.1. [52] Let X,Y be topological spaces. A map f : X — Y is called compact if

f(X) is contained in a compact subset of Y.

Theorem 1.7.1. (Banach contraction principle [26, 52] ). Let (E,d) be a complete metric space

and f : E — E be contractive. Then f has a unique fixed point u, and lim f"(y) — u, for each
n—+oo

y€eE.

Theorem 1.7.2. (Schauder’s fixed point theorem [26, 52] ). Let Q) be a closed convex subset of

a normed linear space and let f : () — Q) be a compact map. Then f has a fixed point.

Theorem 1.7.3. (Krasnoselskii’s fixed point theorem [27]). Let (2 be a closed convex nonempty
subset of a Banach space (X, ||||). Suppose that A, and A, map Q into X such that

o Aix+ Ayy € Q for every pair x,y € (2,
o Ay is continuous and Ay (Q) is contained in a compact set,
* A, is a contraction.

Then, there exists y € () with Ajy + A,y = .
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Chapter 2
Chapter

On a class of abstract fourth-order differential

equations set on cusp domains

In this chapter, we concentrate on a boundary value problem set on a singular domain in-
volving a cuspidial point. In our analysis, we obtain some existence results. We also study
the boundary value problems for a class of the complete abstract fourth-order differential
equations involving fractional powers of unbounded linear operators.

2.1 Introduction and motivation

In this section, we assume that x = (x1,x,,x3) is a generic point of R3. Let IT1 C R? be a cusp

n::{xeRs/0<x3<1, (__)Q}
(x3)" (x3)

where Q C R? is a bounded smooth domain and « > 1.

domain defined by

Cusp point ~ R3
(0,0,0) X1

X2

Fig. 1: The cusp domain T1, where Q) is the unit disk in R? and a = 2.
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2.1. Introduction and motivation

In the cusp domain R* x I'l, we consider the following problem

4

i (£, )+ (1 + pg (%)) (=A) O u (£, x) +

o, () (<AL

e

—u(t,x) = f(tx), (2.1)
o dt4]

where u is a function from R* xIT into the complex plane C, 0 € ]0,1], and A is the clas-
sical Laplace operator on R3 defined by A = 21'3:1 8)261,. The functions p;(-), j = 1,2,3,4, are

continuous real functions defined on I, such that

X (4-))
1\s™
li — ' , 7=1,2,3,4. 2.2
x3gr5+(x3) pj(x) <+oo, ] 3 (2.2)
The right hand side of equation (2.1) is assumed to belong to the Hilbert space L*(R" x
IT) = L?(R*,L?(IT)). We will also accompany to (2.1) some boundary conditions and initial

conditions involving Laplace operator. More precisely, we look for a solution u(-) satisfying

ulg+xor = 0, (2.3)
d a3
=0, E24b(-A)%] =0, beC. (2.4)
dt ljopt dt {0}xTT

The first step is to transform the cusp domain R* x IT into a cylindrical one. To do this,

we consider the following change of variables

W: RYxIT—-R*xQ
(t,x) > (1, &),

where & = (&1, &,,&3) is also a new generic point of R3 such that

l1-a

51 = xlaf 52 = (xx#, and E3 = (X;)_l :

Here,
Q=Qx]&s,+00[,

with 53’0 = % > 0.
In this study, we confine ourselves to the neighborhood of the origin Ogs; this means that
we consider the case in which &3 > &5 is large enough. At this level, let us introduce the

following change of functions

v(t,&)=ul(t x), g(t,&)=f(tx).

According to (2.5), it is easy to check that

3a

f eL*(R* xIT) if and only if (Els)zﬁ g€ L*(RT xQ)), (2.6)
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2.1. Introduction and motivation

where
p=1/y=a-1
To avoid the use of weighted L?-spaces, we opt for the use of a new change of functions
given by
an y\*
w=|=—]| v, h=|— ,
(53) (53) ¢
with 3
a
S = E (@ + 2)
As a direct consequence, the problem (2.1)-(2.3)-(2.4) is written as follows
d4 3 d4 j
PuE) Tqw(t,E) + (1 + 0 (DD w(t,8)+ ) (o w(t,&)=h(t,E), (27)
j=1
wlR*XaQ = 0, (28)
and 5
d d>w
T =0 PaE) T b0 W] =0 (2.9)
tljojxQ t {0}xQ
Here a(3 1) a(3 7)
y plsot2 (7/ ),3 30tsg
P = | — , =|— ,
1(E3) (53) (&3) 5
and

1
[::—A-FCS—M, £3>£3’0>0,
3

where M is the second-order differential operator with smooth coefficients given by

(Mw)(é)_(ag;) (€202 w+ E302 w+28, 6,02  wh+2ay[8,02 , w+ £,02 , w)

+(ay —2s)d; w+—7((a+1)7/—25){5185]w+62852w}——{s+1+a7/}w
} &3 &3

Note also that the family of functions 0; (&), j € {1,2,3,4} are defined as follows

y 8/5( =)
(Ea) 0j (&) = pj(x), j€(1,2,3,4).

Due to the change of variables W defined by (2.5) and the condition (2.2), these functions
are bounded on Q.

Observe that the study of (2.7)-(2.8)-(2.9) needs the investigation of the following ab-
stract problem

s y
+ AYu(t) + ZAjM = h(t), t e RY, (2.10)
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2.2. Statement of the abstract problem

endowed with the initial conditions

dw(0)  d3w(0) B
S =0, +Ku(0) =0,

where the vector-valued functions w and h are defined by

w:R" > H;t—-w(t); wt)(é)=wtl),
h:RY*— H;t—h(t); h(t)(&)=h(tE),

with H = L?(Q). Here,

(AP)(£) =-Ad (&),
D(4) ={¢el’(Q[ApeL?(Q) 9|,,=0},

and

{ (A59) (&) =[o)(E-1)0]p(&), j=1,2,3,4,

D(4;) ={¢el?(Q]AipL?(Q) ¢|,,=0}.

We define the operator K by

(K@) (&) =b[(-0)*]¢ (&),
D(K) ={¢el?(Q [KpeL*(Q}.

(2.11)

(2.12)

(2.13)

(2.14)

Following [24] and [51], the fractional power of the operator (2.12) is well defined. Fur-

thermore, we have the following practical characterization of D(A?) through the classical

Sobolev spaces. For the reader convenience, we recall that

H?%(Q), 0<6<1/4,

Hy)%(Q), 6 =1/4,
DA% =4 %

Hg"(Q), 1/4<6<1/2,

H®(Q)NHN(Q), 1/2<0<1;

here, Hééz(Q) is the interpolation space defined in [80, Chapter 1, p. 66].

2.2 Statement of the abstract problem

(2.15)

In this section, a particular attention is given to the study of a general class of the abstract

fourth-order differential equations with operator coefficients posed in Hilbert spaces.
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2.2. Statement of the abstract problem

2.2.1 Preliminaries

We consider a complex separable Hilbert space H and a self-adjoint positive-definite oper-
ator A on H. By Hy, 6 > 0 we denote the scale of Hilbert spaces generated by the operator
A% e,
Hy := D(Ae); <x,y>6 = <A6x,A9y>, X, Y€ D(Ae).
According to Theorem 1.4.3, it is well established that A? is a self-adjoint positive defi-
nite operator for 6 > 0. This allows us to define the Sobolev space W*? (R*, H) as follows

W40 (R*, H) := {w [w® e L2 (R, H), A*we L? (R*,H)}, (2.16)

endowed with the norm

w2 o 12 1/2
”w”W‘LQ(R*,H)::(“w ||L2(R+,H)+||A w||L2(R+,H)) :

For more details about these spaces, see [80, Chapter 1].

Now, let us consider the following abstract differential equation

4
w(t) + A%w(t)+ ) A =h(t), teR?, (2.17)

j=1
where 0 € ]10,1], h € L2 (R*,H) and A]-, j =1,2,3,4, are linear operators acting on H. We
also assume that Eq. (2.17) is accompanied with the following nonhomogeneous abstract

boundary conditions given by
w'(0) = @1, w”(0) + Kw(0) = ¢, (2.18)

with K being an element of £L(H7¢/,, Hg/2), ¢1 € Hsg/» and ¢, € Hy)».

First of all, we seek for a regular solution for (2.17), i.e., a vectorial function w € W4'9(R+;H)
satisfying (2.17)-(2.18) a.e. in R*. Next, we provide some necessary conditions ensuring the
regular solvability of our problem (2.17)-(2.18). For the reader’s convenience, we recall from
Definition 2.1 in [9] that the problem (2.17)-(2.18) is said to be regularly solvable if and only

if it admits a regular solution w which satisfies the following conditions

. Vi =
}555 lw’(t) = ¢1ll,,, = 0,
lim [[w” (1) + Kw(t) = @2, = O,

and for any h € Lz(RﬂH), there exists C > 0 such that

wllwso e,y < C (101l , + 192l , + Iz m ).
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2.2. Statement of the abstract problem

In the current literature, we find many works considering various classes of the fourth-
order operator-differential equations. For example, in [11], some optimal results about the

existence and uniqueness of regular solutions have been established for the problem

4 4 4—j
A7) | Aty + ¢ 1A w_h(t),teR,
dit =1 det (2.19)
d3w(0) 2w(0 ) _ e dw(0) 0
dt3 ’ dt2 dt ’
where
e hel?*(RY, H),

(A,D(A)) is a self-adjoint positive definite operator in a Hilbert space H,
Aj, j€{1,2,3,4} are, in general, linear unbounded operators,

* K€ L(Hs/,Hsz)).

In [9], many interesting regularity results are established for the problem

4 4—j
W) | Adp(r) + ZA]d wt) _ e, teRY
di = det (2.20)
d2 (0) _ dw(0)
w(0) = ¢ € Hy», T2 K =¥ et

with the same assumptions as above.

In the same direction, in [60] we find a complete study concerning the problem

d*w(t) 4 dtiw(t) .
T +p(t)A4W(t)+]§iA]W:h(t), teRT,
w(0) =@, 2w _ ¥,

with p being a scalar measurable function in R*.

2.2.2 Existence of regular solution

In the sequel, the abbreviation WI?’G (R*, H) stands for the space defined by
4,0 + 4,0 /1p+ ) 7
Wl (RY, H) = {w/ we WHO(RY, H), w'(0) =0, w”(0) = —Kw(O)},
where K € L(H7g/2,Hy)2).
Remark 2.2.1. As a direct consequence of the well known Lions-Peetre interpolation, the traces

w’(0), w””’(0) and w(0)
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2.2. Statement of the abstract problem

are well defined; see Section 1.6. Furthermore, for w € w40 (R*, H), one has
wl(0) e D(APU/>1)), j=0,1,2,3,

and the mapping |
w40 (R+, H) BN ]—[]3':0D(A6(7/2—])),
w {w(j)(O)}, 0<;7<3,

is surjective; see also Theorem 1.6.2.

The first step of our strategy is based on the study of the principal part of Eq. (2.17), that
is
w () + AY®w(t) = h(t), teRT, (2.21)
equipped with the homogeneous initial conditions
w’(0) =0, w”(0) + Kw(0) = 0. (2.22)
Towards this end, let us denote by P, the operator defined as follows

Py: W(R*,H) — L*(R*,H)

2.23
w — Pyw(t) = w¥(t) + A%w(t). (223)
Lemma 2.2.1. Let B be the operator defined by
B:= A92KA7792, (2.24)

Assume that -2 & 0(B). Then the equation
Pyw(t)=0
has only a zero solution in the space WI%’Q (R*, H).
Proof. Asin [11], we look for a solution of equation
Pyw(t) =0,
set on the space W*Y (R*, H). This solution has the following standard form
wy(t) = el tAecj)l + e"ztAquz, teR,

where (e”ltAe)tZO and (e”ztAe)tZO are the Cy-semigroups generated by 1, A? and 1,A?, respec-

tively, with
1 1

1 1 . .
=——t—i, = ——=— —i,
Y AR, SN

and ¢, ¢, € Hyg/,. Taking into account conditions (2.22), we obtain

0 [¢] _
{ MmATPy + 1124742 =0, (2.25)

A0 py+13¢,) = —K(P1 + Po)-
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2.2. Statement of the abstract problem

A direct computation implies that

$r=—Lop, (2.26)
M2
and
(V21 +B)A7"2¢; = 0. (2.27)
Keeping in mind that
—V2 ¢ o (B),
this leads to ¢p; = 0 and from (2.26) it results that ¢, = 0. Therefore, wy(t) = 0. O

Now, we are able to state our main result concerning the solvability of problem (2.21)-
(2.22).

Theorem 2.2.1. Let the assumptions of Lemma 2.2.1 hold. Then, the problem (2.21)-(2.22) has

a unique regular solution w € WI?Q (R*, H).
Proof. Step 1. Thanks to Lemma 2.2.1, we know that the problem
w () + AYw(t) =0, t e RY, (2.28)
w’(0) =0, w”’(0) = —Kw(0), (2.29)
has only zero solution in WI?’Q (R*, H). Let us show that the equation
Pyw(t) = h(t)

has a solution w € Wé’e (R*,H) for every h € L>(R*,H).

First, set

Let H(E) be the Fourier transform of H(t), i.e.,

. 1 +00 )
H(E)= — H(t)e "t dt, & eR.
(¢) mf_m (B)e™="dt, o €

Then, performing the direct and inverse Fourier transformes, it is clear that the vector-valued

function

+00 +00
v(t) ! J (541H+A49)—1U h(s)e—iésds)eiéfdg, teR, (2.30)
0

= E .
satisfies the equation
v (1) + A (1) = H(t) ae.inR.
Now, we prove that v(-) defined by the formula (2.30) belongs to the space W*¢ (R*, H). By

Plancherel’s theorem, we have

|'v(4)Hi2(R+,H) + ||A49v||i2(R+,H)

4. ” 46 4
”E v R+’H)+ A*YP

2
”v”W4’9(R+,H)

2 2 _
L2( L2(R+,H)’
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2.2. Statement of the abstract problem

hence,

2
||vllw4,6(R+’H)

= [l s + AT Ao g+ 1A E T + AT

Then

2
||v||W4,9(R+!H)

< sg;ﬂg||£4(£41H+A49)‘1H£(H)+?;£||A49(541H+A49)—1|| PO [/

According to the classical spectral theory of self-adjoint operators, we obtain

H£4(€41H+A49)—1H£(H) < sup |£4(€4+/\4)—1| < 1,
Aeo(A9)

and
|A% (&2 + A%9)! ||£(H) < sup [AHEH+AH T <1
hence v € W49 (R*, H).
Step 2 Put
wi(t) := v(t)|p--

Then w; € W49 (R*, H) and satisfies the equation (2.21) almost everywhere in R*. On the
other hand, Theorem 1.6.2 yields that

w{(0) H/2-5y9, 1=0,1,2,3.

Similarly, as in the previous step, the solution of problem (2.21)-(2.22) can be written in the
following form
w(t) = wi (1) + M gy + P
where
m :—L+Li and qzz—i—ii,
2 V2 V2

¢1, ¢2 € Hygn; see also (2.22). Consequently, we obtain the following system

{ w1 (0)+ 11 APy +1,A% P, = 0, (2.31)

w"(0) + 117 A% 1 + 134y = ~K(w1(0) + Py + ).
Taking into account that

M I o,
=—1¢, —-—A%(0),
¢2 mcin . 1(0)

and keeping in mind the condition

~V2 ¢ o(B),
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2.2. Statement of the abstract problem

we uniquely deduce that
¢1 — A_76/2(\/§I +B)_11479/217 c H79/2,

where -
n=-= A—39( 7(0) +iA%%w'(0) + Kwy (0) - i KA~} (0)) € Hygya.

Thus, w belongs to the space W*Y (R*, H) and it is a solution for the problem (2.21)-(2.22).
Moreover, the operator
Py: We¥ (RY,H) — L (R*, H)
is bounded. In fact, we have
2 (4 460 112 2
||POw||L2(R+,H) - ||w( >+A w||L2(R+,H) < 2”wllw4,6(R+’H) .

Therefore, by the Banach inverse operator theorem, we deduce that operator P, is invertible
and
Pyl L2(RY,H) —» Wl (R, H).

Furthermore, this operator is bounded and we obtain

lwllwsowe,m) < CllAll2@e,m)-

The following result follows directly from Lemma 2.2.1 and Theorem 2.2.1.

Corollary 2.2.1. Under the assumptions of Lemma 2.2.1, the operator Py defined by (2.23) is an

isomorphism.
Let us prove now the following coercive inequality, which will be used later.

Lemma 2.2.2. Let B denote the operator defined by (2.24), with Re(B) > 0. Then, for every
we Wﬁ’e (R*,H), the following inequality holds true

2 20
WP gy 2 012 o1y 21470 e - (2.32)
Proof. For w e Wé’e (R*, H), we have
||P0w||[%2(R+’H) (233)
4)]|? 40 1|2 (4) 240
||w ||L2(R+’H)+ ||A wHLz(R+’H)+2Re(<w LA w>Lz(R+,H)).

On the other hand, integrating by parts, we obtain
<w®, AV >ppoy = [< w”(t), A% w >] T <w” (1), A%w (1) > dt

= < Kw(O),A49 w(0) > +j0 A29 (¢t ) Ay () >dt (2.34)

< BA76/ZW(O),A76/2 (0)> + HAZG

(R*,H)"
Taking into account the fact that Re(B) > 0, the estimate (2.32) is easily deduced from rela-
tion (2.34). O]
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2.2. Statement of the abstract problem

Observe here that the Corollary 2.2.1 implies that the quantity ||Pyw|| 2+ p) is equiv-
alent to [[wl|40(r+ ) in the space WI?’Q (R*,H). Moreover, the norms of the intermediate

derivative operators

44
0
Al T

can be estimated with respect to ||Pyu||p2(r+ p)-

Wl (R, H) — L2(R*,H), j=1,2,3,4,

Theorem 2.2.2. Under the assumptions of Lemma 2.2.2, the following estimates hold true

40w ey < 1Pl 2@ by, = 1,2,3,4, (2.35)
forany w e WI%’G (R*, H) with
1 1
00:(11204:1, 0225, a3:ﬁ.

Proof. Letw e Wé’e (R*, H). From the equality (2.34), we have

Re(< Pow,A49w >L2(R+,H))

||A49 +R€(< BA76/ZW(O),A79/2 )+ ||A29

w||L2(R+,H) (]R+ H)'

Then we can see that

Re (< Pyw, A*%w > 12z py) > [| A% +|A%w”

w||L2(R+ H) (]R* H)'

Applying the well known Cauchy-Schwarz and Young inequalities, we conclude that

||A49w||iz( y * |4%0w” (R+ H) (2.36)
< IPowlliagee,m) ||A w2
from which we may deduce that
1
||A49w“L2(R+H + ”Aw (R+H = 2 ||P0w||L2 +H) T %”AMWHU(W,H)' (2.37)
with 6 > 0.
Choosing 6 = % in (2.37), we get
1427w || g ) < %llPowlle(w,H). (2.38)
On the other hand, from (2.36) we have
||A46w|'iz(R+,H) < Powlle2me, ) ”A46w”L2(R+,H)’
which implies that
1A% w]] 2 ey < IOz - (2.39)
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2.2. Statement of the abstract problem

It follows from inequality (2.32) that

”w<4)||L2(R+,H) < ||P0w||L2(R+,H)' (240)

; 30,/
Now let us estimate the norm ||A Wl 2w by

Taking into account that w € Wé’e (R*,H), the use of the Cauchy-Schwarz inequality
combined with inequalities (2.38) and (2.39), allows us to conclude that

2

”Aww/ L2(R+,H)

+00
= [< A3%w(t), A3Ow' (1) >]g —J < AYy(1), AW (t) > dt,
0

SO
30, /(|2 20 » 460
HA Wllremy S ”A w L2(R+,H)”A wHL2(R+,H)
1
< §||P0w||[%2(R+’H)-
Consequently,
1
30,
”A w LZ(R*',H)S6||P0w||L2(R+fH)' (241)

177

. We know that, for w e W49 (R*, H), we

Finally, let us estimate the quantity ||A9w

L2(R+,H)
have
0. ml|? 20 7 (4)
HA Wl e gy < 2 HA WollL2 v+ 1) ”w HLz(R+,H)‘ (2.42)
Inserting the inequalities (2.38) and (2.40) in (2.42), we have
1A% 2 g gy < WPowle2 e, ) (2.43)
which ends the proof of this theorem. N

It is worth noting that the coefficient operator A, in our boundary value problem, was
considered with a positive natural power so far. From now on, we will treat our problem in
the general case, where the coefficient operators considered will be of the form A?, 0 € (0,1).
To this end, let us consider the following abstract Cauchy problem with a complete fourth-

order differential equation

4
w(t) + A%w(t) + ZAjw(4_j)(t) = h(t), t e R, (2.44)

j=1
w’(0) =0, w”’(0) = =Kw(0). (2.45)

Put
P: W¢?(RY,H) — L*(R*,H)
4 » (2.46)
w — Pw(t) := w®(t) + AY%w(t) + 3 AwI(t),
j=1
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2.2. Statement of the abstract problem

The first auxiliary result concerning this operator is formulated as follows.

Lemma 2.2.3. Assume that AjA‘j6 € L(H), j =1,2,3,4. Then the operator P, defined by (2.46),

is bounded.

Proof. Letw € Wé’e (R*,H). Then, we have

4 .
IPwl2memy < NPowllp2me,my + XAjw(4_])
j=1 L2(R+,H)
4 .
< V2wliwsome my+ || L Ajw*)
=1 L2(R+,H)

IA

4
A-jO 0. (4-j)
‘/§||w||w4'9(R+,H) +]§1 ||A]A ! ||£(H) ”A] wt ||L2(R+,H)'
Using the theorem for intermediate derivatives in [80], we deduce that

IPwllr2®es,m) < Cllwllwao e, -
U

Let us state our essential results concerning the problem (2.44)-(2.45) performed in the
space L (R, H).

Theorem 2.2.3. Let B= A%2KA~792 Assume that

Re(B) >0,
and
A;AT9 e L(H), j=1,2,3,4,

and A
a= Z“f ||AjA_j9||,c(H) <1
j=1
with
1 1
a; =1, aQ:E, a3:$, ag =1.

Then, for every h € L? (R*,H), the boundary value problem (2.44)-(2.45) has a unique regular

solution.

Proof. First, we write the boundary value problem (2.44)-(2.45) in the form of operator equa-
tion
Pyw(t) + (P — Py)w(t) = h(t), t e R, (2.47)

where he L>(R*,H) and w € Wé’e (R*,H).
The conditions Re(B) > 0 ensure that the operator

Pyl L?(RY,H) — WP (R, H)
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2.2. Statement of the abstract problem

is well defined.
Set w(t) := Po‘lv(t), with v € L?(R*, H). Then a direct computation shows that v satisfies

the following equation
v(t)+ (P - Py)Pytv(t) = h(t), t e R™.

Keeping in mind that v € L? (R*, H) and taking into account the estimates (2.35), one has
||(P - Po)Py v||L2 wery = NP = Po)wllpzee gy,

SO

H(P Fo) Py Z”A A ]6”5 |A]9 (4 ||L2 R+,H)

4
aj "AjA_j6||L(H) 1Bowllz2 g+, 1)
=1

v“LZ R+, H)

IA

Therefore
(P = Po)P5 || 2 ey = IVl -

Since a < 1, the operator

(I + (P = Po)P )
is well defined in the space L? (R*, H). Consequently, the equation (2.47) is uniquely solvable
in the space WI?’Q (R*,H) and

w(t) =Py (I + (P Po)Py ") (),

Moreover,
||w||w49 R+;H)
1 -1
= ”PO ”z: 2(R*,H),W40 (R*,H)) ” (I + (P - PO)PO ||£(L2(R+,H))||h||L2(R+'H)
< Clirll2 g m)-

Remark 2.2.2. In Theorem 2.2.3, the condition Re(B) > 0 with
B = A9/2KA—76/2
allows us to omit the condition —\2 & o(B).

Finally, we may get the conditions for the regular solvability of the boundary value prob-
lem (2.17)-(2.18) from Theorem 2.2.3.

Theorem 2.2.4. Assume that all conditions of Theorem 2.2.3 are fulfilled. Then the boundary
value problem (2.17)-(2.18) is regularly solvable.
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2.2. Statement of the abstract problem

Proof. In the case ¢ = @, = 0, the regular solvability of the boundary value problem (2.17)-
(2.18) was established.
In the case Aj =0,7=1,2,3,4,and h =0, the problem (2.17)-(2.18) is reduced to the new

one given by

w®(t)+ A%w(t) =0, t e RT, (2.48)
w’(0) = @1, w”(0) + Kw(0) = ¢,, (2.49)
with ¢@; € Hsg/, and ¢, € Hg/,. The solution of problem (2.48)-(2.49) will be written as
follows
wo(t) = emtAG(pl + e”ztAe(j)Z, (2.50)
where
__ + ! i and 7, = ! ! i
SR R, H RV MY

and ¢, ¢, are the unknown vectors to be determined via the conditions (2.49):

mA%py +1,A%p, = ¢y, 551
430 (113 3 K B (2.51)
(71 +13¢2) + K1 + P2) = o
System (2.51) yields
1
=— (A%, - ,
b2 W ( P1 ’714?1)
(V2Iy +B)AT 2y = (i = 1)AY* (93 = 1342 o1 — 1 A1),
Since —V2 ¢ ¢(B), then we have
1-i _
oy =0 : 4701, + BAY (s - 1A% 1 - A ).
Thus -
_ —1 _
by =mAp; + (T)A79/z(\51H +B)AY (-5 A% 0y -1 A0 y),
It is not difficult to show that ¢, ¢, € Hyg/,. From (2.50), we obtain
wollwsoesm < C(I91],, * [#2ls, ) 52
< C(Iprllgyy, + 2l )-

Now, we are able to study the boundary value problem (2.17)-(2.18). We will seek its
solutions in the form
w(t) = v(t) +wo(t),

where wy is a regular solution of the problem (2.48)-(2.49). Then, the function v is the

solution to the boundary value problem

4
v (1) + A% (1) + ZA
=1

pEI() = g(t), teRY, (2.53)
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2.3. Existence of the solution to the main problem

v’(0) =0, v"’(0)+ Kv(0) =0, (2.54)

where A
»
=-) Ajw Dty + ).
j=1

Let us estimate the quantity ||g||L2(R+’H). One has

4 (4-j)
gl < || 2 Ajwy +1Allr2 e+ )
fl L2(R*,H)
S [ el O L Py
j=1 L?(R+,H)

IA

C il , + 1021l + Wl mm))-

Thanks to Theorem 2.2.3 and the estimate (2.52), we have

lwlliwsowe,my < lIVllwsomsmy + lwollwows m)
< Iglle2 ey + lwollwao w1y
< C(ll1llsy, + 92l + Wllizgee, i)

2.3 Existence of the solution to the main problem

In this section, we return to the original problem. In order to provide a comprehensive study
of the problem (2.1)-(2.3)-(2.4), we need some intermediate results which can be viewed as

a direct consequence of the results obtained in the previous section.

Remark 2.3.1. To simplify the computations involving functional spaces and make the study
more comprehensible, we consider the case when 6 = 1/8. Thus, from (2.15) and (2.16), the space
W4O(R*,L?(Q)) is defined as follows

W4 (R", L2(Q)) = {w/ w e 12 (R, 12(Q)), w e L* (R, Hy (Q))}.

Keeping in mind the definition of the operators (A, D (A)), (Aj,D(A]-)), and (K, D (K)),
defined respectively by (2.12), (2.13), and (2.14). Our main result for the transformed prob-
lem (2.10)-(2.11) is formulated as follows.

Theorem 2.3.1. Let h € L?(R* x Q). Assume that

Re(b) >0, Z sup'a (5)| <1.

j=1&€Q
Then, the problem
d*w(t) 460, d*Tw(t +
= )i a Z i _h(t),teR,
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2.3. Existence of the solution to the main problem

with
dw(0) _,  d*w(0)
at dt3

has a unique regular solution w € W49(R*,L?(Q)).

+ Kw(0) =0,

By the same argument and using a classical argument of perturbation as in [21, Section

3, p- 49], we conclude the following result.

Theorem 2.3.2. Let h € L*(R* x Q). Assume that

4
Re(b)>0, Y suploj(&)|<1.
j=1&eQ)

Then, the problem (2.7)-(2.8)-(2.9) has a unique regular solution w € W49(R*,L?(Q)).
Consider now the inverse change of variables

Pl R*xQ - R*xII

(t,&) - (t,x),
with
a=(F) e n=(§)& w=(&)
We have 2 (35.2) . . 1
(2" wl2 o
W—(E3) M( 53 El; 53 521 53 )
this gives
_3a
w:(l) ﬁ(x3)_“(%+%)u. (2.55)
&3

In an equivalent manner,

i, (2.56)

and

T2 1
de,w = (—) (x3)_“(29_7)8x u. (2.57)

Due to the fact that w, dg, w, and dg,w are L?-integrable in Q, (2.6) with (2.55)-(2.56)-(2.57)

implies that
(x3) (072, (x3)7 (20"

Nl=
Nl=

)9, (x3)"*(5572) 9w e L2(1T), (2.58)
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2.3. Existence of the solution to the main problem

Furthemore, a direct computation shows that

Oy, w

- 513_S[szglu—%élé?(é)g8x1u—%ézégl(§3)g%u
5 (&) o

_ ( y ) l5551x3 <:6+;>u_%51 e, o L P
. ;—ﬁ 5“(839_5)%”]

Since dg,w is L?-integrable in Q, according to the previous calculations and (2.58), we obtain
x;a(%_%)&%u e L(IT).
In summary, the following proposition has been established.
Proposition 2.3.1. The fact that w € W*9(R*,L2(Q)) implies that
u e WH9(R*, L(IT)).
This help us to justify our main result set in the cusp domain R* x IT.

Theorem 2.3.3. Let f € L>(R* xI1). Assume that

Re(b) > 0 and
(b)>0an ;igg|p] |

Then, the problem

i 40 ° o\ 47
g (00 + (L ps A 00+ )y 0 (-A)°) gy t.2) = £ (1)
]:
Ulg+xgrr =0,
3
du =0and d—3+b( A)3u =0,
dt {O}xIT dt {0}xIT

has a unique regular solution u € W*9(R*, L?(IT)).
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Chapter
Chapter

On the study of pseudo S-asymptotically

periodic mild solutions for a class of neutral
fractional delayed evolution equations

The goal of this chapter is to investigate the existence and uniqueness of pseudo S-asymptotically

periodic mild solutions for a class of neutral fractional evolution equations involving the Ca-
puto fractional operator with finite delay. We essentially use the fractional powers of closed
linear operators, the semigroup theory, and some classical fixed point theorems. Further-

more, we provide an example to illustrate the applications of our abstract results.

3.1 Introduction

We consider the following abstract fractional Cauchy problem

cD8+(u(t)—G(t,ut))+Au(t):P(t,ut), t>0, o)
u(t)=¢(t), -r<t<0, :

where a € (0,1), and (A, D(A)) is a closed linear operator in a Banach space (X, ||||). Here,
u: [-r,40) — X,

and
F,G: R"xC— X, r>0

are two continuous functions, where C = C([-r,0], X). By u; we denote the classical history
function defined by

uy(s):=u(t+s), —r<s<o,
while the data ¢(-) belongs to the space C.

The class of pseudo S-asymptotically periodic functions was introduced in [88]. In
that paper, the authors have considered the classical version of (3.1) with @ = 1 and es-

tablished several interesting results concerning the existence and uniqueness of pseudo S-

asymptotically periodic mild solutions for such problems. The class of pseudo S-asymptotically
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3.2. Preliminaries

periodic functions is a natural generalization of the class of S-asymptotically periodic func-
tions; see [56]. The investigation of existence and uniqueness of pseudo S-asymptotically
periodic mild solutions for various classes of the abstract fractional Cauchy problems is
an attractive field and was the principal subject of many works. For example, in [55] the
authors have examined the existence and uniqueness of pseudo S-asymptotically periodic
solutions of the second-order abstract Cauchy problems. Another interesting class of the
abstract fractional equations was analyzed in [110], where the authors have considered a
fractional integro-differential neutral equations with order 1 < a < 2. Moreover, the knowl-

edge of the structure of solutions is useful in numerical analysis; see [36, 38, 39].

3.2 Preliminaries

In the rest of this chapter, we always suppose that A is a closed linear operator with 0 € p(A)
and —A generates a uniformly exponentially stable analytic semigroup (T(t)),5,. Moreover,
we need to use the notion of fractional powers of closed linear operators. Then, we know
that, for every 6 > 0, the operator A9 is well defined; see Definition 1.4.1.
For 0 € (0,1), we set
Xg := D(AY).

In the particular situation 6 = 0, we consider that A? := Iy and X, := X. The fractional power

space Xp is a Banach space when it is endowed with its natural norm
0
I-llo = [|A° |
Furthermore, for 0 < 6; <6, <1, one has
ng — X@l,

and the embedding Xy, <> Xg, is compact whenever the resolvent operator of A is compact.

In the sequel, we consider the Banach space
Co := C([-,0], Xp),
of all continuous vector-valued functions from [-r,0] into Xy, equipped with the norm

I9llc, = max ll¢(s)lo-

Let us define the following families of operators

U(t):= jCQ(T)T(taT)dT and V(t):= aJrCa(T)T(t“T)dI, t>0, (3.2)
0 0
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3.2. Preliminaries

where

ColT):= al—n;(—r)”AWSin(ann), TeR"-{0}, (3.3)

is a probability density function defined on R* —{0}. Let us recall that (see, e.g., [107])

Ca(t) >0, T>0and J Colr)ydTr =1,
0

and -
v I(1+v)
J Co(T)dT = Tt auw) 0<v<l. (3.4)
0

The lemma below summarizes the principal properties of these families; see [107].

Lemma 3.2.1. Let (T(t)),5 be a Cy-semigroup. Then, the operator families (U(t)),so and (V (1)),
defined by (3.2) have the following properties:

(i) (U(t));s and (V(t)), are strongly continuous.

(ii) If (T(t)),sq is uniformly bounded, then U(t) and V (t) are linear bounded operators for any
fixed t > 0.

(iii) If (T(t)),q is compact, then U(t) and V(t) are compact operators for any t > 0.
(vi) If x€X,0¢€(0,1)and t >0, then
AV (t)x =A"0V (1A%
and

||_M9 OCF 6)

9
la%v 120 F—Q))-

(v) Ift >0 and x € Xg, then
U (t)xllg < M|xllg,

and

IV (t)xllp < M llxllo -

_*
[(1+a)
3.2.1 Pseudo S-asymptotically periodic mild solution

To investigate the mild solution for problem (3.1), we must introduce the space of pseudo
S-asymptotically periodic functions and some of its properties. Further details about this
class of functions can be founded in [88, 109, 110].

Definition 3.2.1. A function f € C, (R", X) is said to be pseudo S-asymptotically periodic if there

exists w > 0 such that

lim J||f (t+w)—f(t)|dt =0. (3.6)

h—+oo N

The set of such functions will be denoted by PSAP,(X).
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3.2. Preliminaries

Definition 3.2.2. Let p > 0and f € PSAP,(X). Then, we say that f(-) is pseudo S-asymptotically
w-periodic of class p if

.1
lim — sup ||f(t+w)—f(t)|dE=0.
h—+00 ) te[{—p,é]

We denote the space of all such functions by PSAP,, ,(X).
Proposition 3.2.1. Let p > 0. Then

(i) PSAP, ,(X)C PSAP,(X).

(ii) PSAP, ,(X) is a closed subspace of Cp(R™,X).

(iii) Assume that f € C,(R*, X). Then, f € PSAPa,,p(X) if and only if, for every ¢ >0, we have

lim %V(Mh,e(f)) =0,

h—+00

where u(-) denotes the classical Lebesgue measure and

My, (f) = {t € [p,h]/ sup |If(t+w)—f(t)l = 8}-

te[E-p,é]

At this level, for Banach spaces (Z,||-||;) and (W,|||v), we define another functional
framework which will be used henceforth.

Definition 3.2.3. We say that a function f € C,(R* x Z, W) is uniformly (Z, W) pseudo S-
asymptotically w-periodic of class p if

h

lim 1 ( sup (sup ||f(t+a),x)—f(t,x)||w]]d£:0,
h—too it )\ refe—p,e1\inl <t

for any L > 0. The collection of such functions will be denoted by PSAP,, ,(R* x Z, W).
From the previously cited references, we also have the following lemmas.
Lemma 3.2.2. Let u € Cy([-r,+00),X) and
ulg- € PSAP, ,(X).
Then, the function t +— u; belongs to PSAP,, ,(C).
Lemma 3.2.3. Let f € PSAP,, ,(R" xC, X). Assume that

(1) there exists Ly € C, (R, RY) such that for all (t, ¢;) e R* xC

If (£, 1) = f(£, Pl < Le ()1 = Palles
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3.2. Preliminaries

(2) u € Cy([-7,+00),X);

(3) ulg+ € PSAP, ,(X).
Then, the function t v f(t,u;) belongs to PSAP,, ,(X).

The following result can be regarded as a generalization of Lemma 3.2.3.

Lemma 3.2.4. Let 0,0, € [0,1] and f € PSAP, ,(R" xCg,, Xp,). We assume that

(1) there exists Ly € Cy (R™,RY) such that for all (t, ;) € R* xCg,

1/ (£, p1) = £ (£, p2)llo, < Le(Dllp1 = Palicy, 5

(2) u € Cy([-1,+00), Xp, );

(3) ulg: € PSAP, ,(Xp,)-
Then, the function t — f(t,u;) belongs to PSAP,, ,(Xg,).

Proof. First, according to Lemma 3.2.2, we can see that t > u; € PSAP, ,(Cg,). Now, for
h > 0, one has

h
A
sup ”f(t+w'ut+w)_f(t'ut)”92]d‘s
J\te[E—p.&]
p
}fl‘ h
< Sup ||f(t+a)rut+a))_f(t ut+a) ”92)d6+J-[ Sup ||ftut+a)) f(t!ut)llez dé,
J \te[é-p.&] te[é-p&]
P p
which implies that
h
~
sup ||f(t+ w, ut+w)_f(tl ut)”ez]d
J \te[é-p,&]
p
h
A
< sup | sup |[|f(t+w,d)-f(59),,
J etz 1ol <t
h
+||L + TR+ J( sup ”uH—w_ut”C ]d5
” f||Cb(]R R )p el pc] 01

As a result, we get

lim J‘( sup Ilf(t+w,utm)—f(f,ut)ll(;z]dé=0.

h—)+00 h te[g D, é
The proof is complete. ]
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3.3. Existence and uniqueness of solution

We are now prepared to define the mild solution for problem (3.1).

Definition 3.2.4. A function u € C([—r,+0), Xg) is said to be a 0-mild solution for problem (3.1)
if u satisfies problem (3.1) and

for @ € Cg and t € [—r,0]. In this case, u is defined explicitly as follows

t
u(t) = U(£)(@(0) - G(0, @) + G(t, uy) f )" LAV (£ = 5)G(s, 1)) ds
0

t
+J t—s"‘lV )F(s,us))ds, t>0.
0

Moreover, if ulg € PSAP, ,(Xg), then u(-) is called pseudo S-asymptotically w-periodic 6-mild
solution of class p for problem (3.1).

3.3 Existence and uniqueness of solution

In this section, we discuss some questions related to the existence and uniqueness of pseudo
S-asymptotically w-periodic 6-mild solutions of class p to problem (3.1). Our standing
hypotheses are:

(A1) F e PSAP, ,(R* xCy,X) and G € PSAF,, ,(R* xCg, X;).
(A2) There exists a function Ls(-) € Cp, (R*,R*) such that
IAG(t 1) = AG(t, p2)| < Lo () [|1 = o,
for all (t,¢;) € R" x Cy.
(A3) There exists a function Lg(-) € Cp, (R*,R*) such that
IF (1) = F(t, d2)|| < Le(0) |91 — 5, -
for all (t,¢;) € R" x Cy.

(A4) Setting Lg = sup Lg(t) and Lr = sup Lg(t), we so assume that

teR* teR+
MyT(1-6)
Cg_lLG + (LG + LF)# <1,
|vol
with
Co-1 =147
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3.3. Existence and uniqueness of solution

Theorem 3.3.1. Suppose that assumptions (A1)-(A4) hold and —A be the generator of a uniformly
exponentially stable analytic semigroup T(t)s). For 0 € [0,1), we assume that ¢ € Cy, F
R*xCq — X and G: R* xCg — X are continuous functions. Then, problem (3.1) has a unique

pseudo S-asymptotic w-periodic O-mild solution of class p.
Proof. We consider the Banach space

Cio(Xo) :={x 1 [-r,+00) = Xg [ xl[_.0)=0 and x[z+ € Cy (R¥, Xp)},
endowed with the norm

Ixllc, o = 1Xolle, +sup llx(t)llg = sup [lx(t)llg-
£>0 t>0

According to Proposition 3.2.1, we define the closed subspace of Cj, ((Xg) as follows
PSAP,50(Xg) :={x: [-1,+00) = Xg [ |_,,0) =0 and x|g. € PSAR,,,(Xo)}.

Throughout the proof, y denotes the function defined by

=] 120
Y= o(t), te[-r0]

Let x € PSAP, ,0(Xp). Due to the continuity of F: R"xCg — X and G: R* xCg — X; and
by taking into account assumptions (A1l)-(A3) and Lemma 3.2.4, we can conclude that
h

1
lim — ( sup ||AG(t+w,xt+a,+yt+w)—AG(t,xt+yt)||)dé =0, (3.7)
h—+00 te[&—p,&]

and
h

.1
lim 7 ( sup '|P(t+w,xt+w+yt+w)—P(t,Xt+yt)||]dé:0,
vt ] tele-p]

which means that F € PSAP, ,(X) and G € PSAPF,, ,(X;). Further, there exist My > 0 and
Mg > 0 such that

IF(t,x; + vo)|| < Mp and ||JAG(t,x; + ;)| < Mg for all ¢ > 0. (3.8)
Now, we need to introduce the following operator

N: PSAP,,,(Xg) = PSAP, ,(Xp)

x — Nx,

t

Nx(t) = U(t)(p(0)-G(0,))+ G(t, x; + vs) I ) LAV t—s)G(s,stryS))ds

0
t

+ | ((t=5)% 1V (t=5)F(s, x5+ vs) ) ds,
J 2)
0
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3.3. Existence and uniqueness of solution

with ¢+ > 0. In what follows, we show that the operator N has a unique fixed point in
PSAP, ,0(Xg). Firstly, we check that N is well defined. From the Fubini’s theorem and the
definition of the operator V given by (3.2), it follows from (1.12),(3.4) and (3.8) that

t

[ (s favie- sl sl

0
t 00
< aMFMQJ((ts)“(l9)1J(TlQCQ(T)e|V0|(tS)aT)dT ds
0 0
. MpMor(1-0)
B L
< +oo.

Similarly,

[ (-9 Jaovie-siacts s sl
0

t

< aMGng (t—s)“(l_e)_lf(Tl_QCa(T)e_WO'(t_S)aT)dT ds
0 0

_ MgMgl(1-0)

S ol

< oo,

for every x € PSAP,, , o(Xg). Consequently, we can see that t — Nx(t) is a bounded function.

Then, it remains to show that

lim J-[ sup |[Nx(t+ w)— x(t)||9)d€:O.

h—)+00 h te[é -p, g

A direct computation allows us to get

6

Nx(t+w)—Nx(t) = Z]i(t)’

i=1

where

J1(t) = (U(t + w) = U(1)(¢(0) = G(0, p)),

2(t) = Gt + @, X1 + Vivew) — G(E Xt +14),

I t+a) )LV (t+w —5)AG(s, xs+ys))d
0
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3.3. Existence and uniqueness of solution

t
j t—s LV (t—5)(AG(S + @, Xg400 + Vsrco) — AG(s,x5+ys)))ds,
0

J t+a) )4 1V(t+cu—s)F(s,x5+ys))ds,

0
]6(t) = j((t - 5)a_1 V(t - 5)(P(5 t W, Xgp o+ ys+w) - F(S, Xs + ys)))ds
0

This implies that
h h

f[ sup [INx(t+w) - Nx(t >||9]d5<z f( sup IIL-(t)Ilg]dE
te
p p

[E-p.&] te[E-p,&]

Keeping in mind the exponential stability of semigroup (T(t));», and the definition of the
operator U given by (3.2), we deduce that for all € > 0, there exists . > 0, such that

€
U (1) < > for all t > t,.
First, let us start with the estimation of the quantity J;. We have

1i(®llg < (Ut + w)ll+ U ®)IDI9(0) = G0, @)llg »

SO
h
1 f‘
|| s IIh(t)Ile)dé
o \te[é-p.é]
p
h
1 (
< 3 || s <||U<t+w>||+||U<t>||>||(p<o>—G<o,q0>||9]da
5 \telE-pe]
2Mt, t,
< ||¢<0>—G<0,<p>||@( ; +e(1—(”; )))

this implies that

lim hf( sup (¢ ||9)de 0
h—>+00 tE[E Pé

From (3.7) and taking into account that X; — Xy, we get
h

1
: f ( sup ||c<t+w,xt+w+yt+w>—G<t,xt+z»t>l|9]dé
te[é—p,]

h
C
% 1 j[ sup HAG (t+ @, Xt + Vivew) = AG(E, X; + 1 ”]dé'
te[é-p,&]
p
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3.3. Existence and uniqueness of solution

hence,

lim hJ[ sup G (t+ @, X100+ Virw) — G(t,xt+yt)”9 dé =0,
h—+oco tel& pé]

and
- G(t,xt + yt) € PSAPw,p(XG)

At this level, let us show that
h

1
lim — [ sup ||]i(t)||9)d€ =0,1=3,4,5,6.
h—)+00 te[é—p,é]
Taking into account that
I+w
ttw-—s>——(w-5),
w

and the estimates (3.5), (3.8), we deduce that

h

1

EJ[ sup ||13<t>||9)d5
) te[e-p.E]

h
wl(1-0) 1 a(1-0)-1
< moMoana i [ g,
p
ra-o) (1
wiil - 1 (1-6)-1
< McMorr,a=e)+1) hJ(E prao)f ae .
p

which implies that

lim h [SUP J5(¢ ||e)d5 0,
h—>+00 te[ép(z

and

lim hf[ sup [Js(t ||9)d5 0
h—+oco te[E-p,&]

In fact, it suffices to see that
h

1
EJ[ sup ||15<t>||9)d5
) te[&-p,E]

wl(1-0)
(a(1-0)+1)

Il
= C

IA

MpMop ( sup (t+a))“(1_9)_1]d£
te

[E-p.&]

wl(1-0)
(a(1-60)+1)

(5 —p+ w)a(l—G)—ld(S ]

==
=

IA

MFMQF
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3.3. Existence and uniqueness of solution

It remains to show that

lim J‘( sup ||J;(t ||9)d£ 0, 1=4,6.

h—+00 h te[g D, 6]

We examine the term I4. To make the notation less cluttered, we define the function Qg as

follows
QG(t) = AG(t T W, Xt T yt+w) —AG(t, Xt + yt)' t>0.

Thanks to (3.7), we can deduce that, for every ¢ > 0, there exists h, > 0 such that

h

1
EJ sup ||Qg(t)||d& <€, forall h > h,. (3.9)
) te[E—p,]

Consequently,

sup ||]4(t)||9)d€
J \te[f-p,&]

&-p
sup [ (=57 A°vie s hQats) s oz
0

J | te[é-p,E]

IA

h
~

t
+ sup j )4 1||A9 t—s||||QG ||)ds dé
J | te[&-p,&]

p &-p

Taking into account the definition of the operator V given in (3.2) and the estimates (1.12),

we get

E-p
(t—s)1-0)-1 U Tl-f’cm)e—'vo'“—”“fdr)nQG(s)n dsdé&
0

IA

Q

<

()
ﬁ%w
m
T
= T
i}
o%

IA
<
(o)
ﬁ%:‘
o~
=
2z
Q
I
2
N
———
(=) )
J—
()
(e
L
<
=
™~
=
©n
q
[
S
~——
@)
Q
QU
%)
QU
(%

I
S
S
—
E%M o

(5—5)“(1_9)_1(foofl_6€a( Jeolté TdT)”QG(S_ )lldsdé.
0
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3.3. Existence and uniqueness of solution

Using the classical Fubini’s theorem, we get

Ja(t)
h h
A
< aMyp | |IQc(s—p)ll !
F S
h h—s

IA

J
p

Similarly as before, we obtain

o C

p(é —5)a(1=0)-1 (J‘oo Tl‘QCa(T)e_|V°|('5‘5)aTdr) dé] ds
0

aM F”QG(S—p)” P(E)a(l—e)—l (JOOTIGCa(T)eVO(é)aTdT)dcf]ds.
0

h
I'(1-6
TH(0) SM@ﬁf”QG@‘P)H ds;
0
14

it follows from (3.9) and Proposition 3.2.1 that

Assume that h > 2p, then we get

IA

IA

Ji(t)

h
~

te[é-p,é]

&-p
t

+ sup

N
= «

J ((t -5
tE[é—p,é](S

P

2
=) I3,
i=1

Thanks to (3.8) and the estimate (3.5), we obtain

2p t
J| swp [ (e=stJacvie-siiootonas| s
pP

AV (- 9)[[lIQa(s)) ds | de

i)
1-0) t
T(1-0 J J a(1-0)-1
2M M su t—s dS dé
G Gr(a(l—Q)) te[é—ié] ( ) )
2p
I'(1-6) & 1-0
2McM sup (t—&+p)*19 |de
“OT1+a(1-0)) (te[(i—l;é]( %
p
2p
F(1—9) " a(1-0)
2MGM6F(1+&(1—9))¢ P 1
p
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3.3. Existence and uniqueness of solution

therefore

Ii2(®)
ri-0) ( :
al'(1 -
< Mg=——F——+ f—g)a(1-0)-1 gsla
T(a(1-0)) | te[s’;g’é]f( s) 1Qc(s)ll ds |d&
2p -
ra-o) ([
(04 —
< M a(1-6)- byl ds lde
Qr(a(l—e)); J tesgugg]”QG( )l 5] £
p

2,2
EL; (£)
1"( 9) p h
1- B 1(
< M s)a1=0)-11 — su Qc(t—3s)||d& |ds
orai=oy | © i) sup_ I0at=sl
0 2p
r(i-o) (
1- A 1(
< M g)x(1=0)-1] _ su Qc(t)|| d& | ds
Tari-oy ) J i st

p
[(1-0) _0)-
< eMp— | 217071
< ¢ 0T ( ))Ojs ds

— 0,ase—0.

Combining all the previous estimates, we conclude that

h

. 1
lim — [ sup ||]4(t)||6) d&é =0.
h—+oo te[E—p,&]

Similarly,

lim h [sup |6 (¢ ||6]dcf 0.
h—)+oo teé PE]

Summing up, one can deduce that
N(PSAP, ,(Xg)) C PSAP, , o(X). (3.10)

Next, we will show that N is a contraction mapping. Let x,z € PSAP,, , o(Xp), taking into
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3.3. Existence and uniqueness of solution

account the assumptions (A2) and (A3), we get

INx(£) = Nz(t)lg

< Co1||AG(t,x +9) - AG(t 2 + 1),
+ ﬁ((t—s)“_l||A9V(t—s)||HAG(s,xS+ys)—AG(s,zs+ys)||)ds
6?
+ ((£=s) AV (£ = 5)|[|[F (s, x5 + ) = F(s, 2+ 3,)|| ) ds
< C; lLG”xt_Zt||(39

+(Lg+Lp) J t—s)2 AV (£ =) llxs - zs||C9)d5
0

MyT(1-6)
< (Cg_lLG + (LG + LF)W)HX_Z”C&O.

As a result, we confirm that

MyL(1-6
INx =Nz, , < (Cg_lLG +(Lg + LF)Q—))HX—ZHCN

L
Hence, taking into account assumption (A4), we conclude that the mapping
N: PSAPw’p’O(XQ) — PSAPw’p’O(XQ)

is a contraction. Then, it follows from the Banach contraction principle that N has a unique
fixed point x € PSAP, , o(Xp). Set u(t) = x(t) +y(t) for t € [-r,+00), we can confirm that u is a

unique pseudo S-asymptotic w-periodic 6-mild solution of class p of the problem (3.1). [

In the remainder of this section, we prove the existence of the pseudo S-asymptotic w-
periodic 6-mild solution of class p for problem (3.1) without assuming the Lipschitz prop-
erty of the function F. Our strategy is based on the use of the Krasnoselskii’s fixed point

theorem. In order to do this, we need the following conditions:

(A5) Let¢;: Rt ->R*, i =1,2 be non negative functions that satisfy the following estimate

lim J( sup P;(t ]dE:O, i=1,2,
h—>+ooh te[E-p,&]

and assume that, for every t € R* and ¢ € Cy, there exists w > 0 such that

|F(t+w, @)= F(t, )| <91(t) and [|AG(t+w, )~ AG(t, )| < Palt)
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3.3. Existence and uniqueness of solution

(A6) There exists a function k: R* — R* and a constant 6 > 0 such that for all ¢ € Cy,

IF(t, )| < k(t), for all t >0, (3.11)

and k satisfies the following estimate

h
lim 1”(5—;7)“(1—9) sup k(s)|d& = 0. (3.12)
h—+oco N . s€[0,¢]

(A7) There exists a positive constant L such that

IAG(t p1) = AG(t, p2)| < Lo |1 = ¢2 .,
for all (¢,¢;) e Rt xCy.

(A8) Assume that
MoI'(1-6)

Co_1Lg+Lg o0
Theorem 3.3.2. Assume that (A5)-(A8) hold and —A generates a compact, uniformly expo-
nentially stable analytic semigroup (T(t));so on X. For 0 € [0,1), we assume that ¢ € Cy,
F:R*xCqy — Xg is a bounded continuous function and G : R* xCq — X is a continuous function
that satisfies G(t,0) = 0 for t > 0. Then, the problem (3.1) has at least one pseudo S-asymptotic
w-periodic O-mild solution of class p.

Proof. For the sake of convenience, we will conserve the notation adopted in the proof of

the Theorem 3.3.1. In the sequel, our aim is to show that
N(PSAPw,p,O(XQ)) c PSAPw,p,O(XG)’
which means that for any x € PSAP,, , o(Xp),

Nx : t U(t)(@(0)-G(0,9)+ G(t, x; +v;)

t
~

_ ((t —5)* LAV (t —5)G(s, x, +ys))ds

o C

t
~

+ | ((t=9) 'V (t=9)F(s,x, +py))ds, >0,
J
0

belongs to the space PSAP,, ,(Xp). Since the function F is bounded and G is continuous and
satisfies the conditions (A5) and (A7), then by the embedding Xy <> X and Lemma 3.2.4,

there exist two positive constants My and M, such that
IF(t,x; + )l <My and [JAG(t,x; +y;)l| < M, forallt>0, (3.13)
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3.3. Existence and uniqueness of solution

for any x € PSAP,, , ¢(Xg). Furthermore, one has
t|—)G(t,xt+yt)€PSAPw’p(X1). (314)

Note that (3.13) guarantees the boundedness of the function Nx. Now, we look to prove that

h
1
lim — ( sup ||Nx(t+a))—Nx(t)||9)d5 =0,
]’l—>+00 tE[E—p,é]
i.e.,
h
.1 .
lim — ( sup ||]i(t)||e)d’5 =0,i={1,2,..,6}.
h—>+oo te[é—p,é]

From Theorem 3.3.1, it is immediate that

sup |[J1 ()l )dé 0.
h—>+oohJ‘(te[§ -p,&] ! 0

Exploiting (3.14) and the fact that X; < Xy , we obtain

lim J( sup [t ||9)d5 0. (3.15)

I’l—)+00 h te[g D, é

Taking into account (3.13) and Theorem 3.3.1, we confirm that

lim — J[ sup |IJ;(t) ||9]d£ 0, i=3,5.

Our objective now is to show that

lim h_[[ sup |[J; (¢ ||9]d5 0, 1=46.
First of all, for t > 0, we set

QF(t) = F(t Tt W, X1t yt+a)) - F(t, Xtrw T yt+w)'

According to (A5), it is evident to say that the function Qp satisfies the following estimate

h

1
lim ﬁj sup ||Qr(t)|| d€ =0. (3.16)
h—>+00 > te[é—p,éﬁ]
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3.3. Existence and uniqueness of solution

On other side, we observe that

h 5 h
j( sup ||16<t>||@)dé < ZJ( sup IIIé(t)HQ)dE,
te[£-p,&] i=1 te[&-p.<]
p p
where
J VIV (£ - 5)Qp (1)) ds,
0
and
t
Jo(t) = f((t = )TV (£ = 5) (F(5, Xorao + Vsiw) — F(5, %5+ 25)) ) ds.
0
Due to (3.13), (3.15) and (3.16) with Theorem 3.3.1 that
h
.1
lim 7 sup ||]4(t)||9)d<5 =0,
h—>+0<) \;7 tE[E—p,E]

. 1
i o ol Jae <o

It remains to show that

][ g e oo

Taking into account the exponentlal stability of the semigroup (T(t)),5, and the definition

of the operator V as presented in (3.2), we can deduce that for every ¢ > 0, there exists
1
MgI'(1-) \F
, B
te=laCp=———| >0,
¢ (“ PT(a(l —/3))5)
such that ||V(t)|| < ¢, for all t >t and B € (0,1). In actual fact, it suffices to take into account
the estimate (3.5) which allows us to write
MgI'(1-p)
P 19PT(a(1-p))

IV (1)l < [|AP||[|APV (1)x]| < aC Il

for any p €(0,1) and x € X. Then, we can write

h
J sup JE(t)d&
te[e—p,&]
p
tetp t
= j sup J((t_s)a_l V(t—S) (F(S’xsﬂu +ys+w)_F(Slxs +ys)))d5d5
te[é-p,&] 0
h t
e[ s [ (T ) (Bt pera) - Fls ) s
ip te[é-p,€] 0
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3.3. Existence and uniqueness of solution

Thanks to (3.13) and the estimate (3.5), we conclude that

NS

te[é‘p;g] 0

t+p t
f[ sup f((t—s)ﬂ“-1 1AV (£ =9)|[[[(F(s, Xsso + Dss0) = Fls, s + )] ds | dE

tetp
j gal=-0gel 5 0, ash— +oo.
p

2M/MpT(1-6)] 1
T(a(1-6)) |h

Keeping in mind that the function

[24

s> g(s)=(s+(£-p))*-s

is decreasing for s > 0, we get g(0) > g(p), i.e., £*—(&—p)* < p“. Hence,

h t=(E-p)
1 _
Ef sup f (£ =) M IV (£ =) [[APE (S Xgr + Dovw) = AF(s, x5+ 34)| ) ds | d&
, te[é_pig]
t+p 0
2M; ‘ 2M;
F€ 1 a a F€ o
< — —(& — < 0, 0.
< S e eeepndg | < T o0 ases
t+p

At this level, the use of (3.11) justify the fact that
IE(2, x5 +9s)ll < k(2).

Therefore, by (3.12), one can find

h t
1 _
Ef sup f (=) APV (=) [F(5, %o + Dss0) = Fls, s + 9| dsd
te[é-p,&£]
& t—(E-p)
: ) h t
2MpT(1-0)|1 J‘ J a(1-6)-1
_— | = su t—s k(s))ds|d&
fati—on |7 ) [ b,y J (79 )
tetp t—(&-p)
1-0)1 [
2MpT(1-6)| 1 J 2(1-6)
—_— = - sup k(s)|d& |,
Ta(i-o) (1) (7P 0 <)
ti+p
then
h t
lim —J sup J‘ ((t—s)“‘l||A6V(t—s)||||F(s,x5+a,+y5+a,)—F(s,xS+y5)||)dsdé
h—+0c0 ; tE[é—p,é]
te f—(é—P)
=0.
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3.3. Existence and uniqueness of solution

Thus,

lim ,J[ sup [t ||9)da 0
h—+oco te[E-p,&]

Summing up, the above results for J;, i €{1,2,...,6}, we conclude that
Nx € PSAP, ,(Xp);
which justify the following inclusion, that is
N(PSAP, ,,0(Xg)) € PSAP, ,0(Xp)-

We are now in a position to show that the operator N has at least one fixed point x €
PSAP, 5,0(Xg)- For p > 0, we define the closed ball of PSAP,, , o(Xg) with center 0 and radius

o by
Q, = {x € PSAP,,,0(Xo) [ Ixllc, , < p}.

SetN:N1+N2, with
t
Npx(t) = +f( )1y t—s)F(s,xS+yS))ds,
0

Nox(t) := U(t)(G(0,9)) + G(t, x¢ + v¢) — ((t —s5)¥ LAV (£ - 5)G(s, x4 +y5))ds.

O~

We first prove that there exists a positive constant gy such that Nyx + N,z € QQ,, , for every

0o’
pair x,z € (3, . For this purpose, we assume that for any p > 0, there exist x,z€ Q, and t > 0

such that

o
[IN1x(t) + Noz(t)llg
t
U )1 (0)llg + j ((t=9)2 | AV (£ =9)||||F (s, x5 +v5)]| ) ds

0

IA

IN

t

+IUOIIGO, @)llg + |Gt 25 +35)]|, + f((t )3 H|AV (¢ - 5)| [ AG(s, 2+ vy)||) ds
0
SO

0

t

< M||q0||CQ+M[’:J-((t—s)“‘1||A9V(t—s)||)ds
0
t

+MC_gLg [l@llg, + Co-1Lg ||z + }75”66 +Lg ||z, + }’s”CB f ((f —s) A%Vt - S)“)ds
0
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3.3. Existence and uniqueness of solution

then

0

o T(1-0
< Mlpl, + MpMy—1—9)

lvol' ™0

MpT'(1-6
+MC_gLglplle, + CorLa (0 + Iglle, )+ Lo (0+ ||<p||ce)%
0

Dividing on both sides by p and taking the limit as p approaches infinity, we obtain

Combining all the above arguments, we can deduce that there exists a positive constant p,
such that for any pair of x,z € (2, , one has Nyx + Nyz € (0.
Now, let us show that the function N; is compact and the function N, is contraction. To

do that, we should do it in several steps as follows.

Step 1: We show that the function N, is continuous on (), . In fact, due the continuity of

the function F, for any sequence (x") € Q, such that x" — x on Q, , one can see

0o’

||F(s,x§Z +vs) — F(s, x; +ys)|| — 0, as n — +oo.

Then, by the dominate convergence theorem, we can conclude that

t
N () = Nix(t)llg - < f((t—s)“—l||Af’V<t—s>||liP(s,x?+ys>—P<s,xs+ys>||)ds
0
— 0, asn — +oo.

Step 2: Following [108], for t > 0, we define

Nf'éx(t) = U(t)g0(0)+aJ (t=s)""1 | (TCo(T)T (t*T) F(s, x5 + v5)) dT |ds.
0 5

The compactness of the operator T(f) and Lemma 3.2.1 implies that the set Nf"S (on)(t) is
relatively compact in Xy. Moreover, it follows from (1.12) and (3.13) that

“le(t) —z\rf'éx(t)”6

t 5
< a|l|@t-9597" (TCa(T)”AGT(taT)”“F(S,xs-i-ys)”)d’[ ds
Jier]

t

va [ (t—s)“—lJ(Tca(r)||A9T(t%)||||P(s,x5+ys)||)dT ds
o

t—¢
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Consequently, the set Ny (Q 00)(t) is relatively compact in Xjy.
Step 3: Let t; > £, > 0 and x € Q. Observe that, from Lemma 2.9 in [107] we deduce that

|49V (t; =)= APV (t, =s)|| > 0, as t; —> 15,

and
”U(tl) - U(tz)” —> 0, as tl —> t2 .

On other side, one has

t
(((ty—5)*! = (t; —5)*"! s
J (t, —s)a?
0
t,% f af
_ (tz_s)a(l—e)—l (4 _S)a(l—Q)—l 1—S ds
J ty—s
0
t
2
< ((tz_s)a(l 0) 1_(t1 S)d(l—@) 1)615
J
0
— 0, ast; = tp.

This gives

IN1x(¢1) = Nix(t)llg

< [lU(8) = U(o)ll||A%(0) - A°G(0, )|

12

+ | ((t1 =) APV (= 5) = APV (1 = 5)||||F (5, % + 35)]|) ds
0

+ ([(tz —s)* (4 —s)q_l] ||A9V(t2 —s)” ||F(s,xS +y5)||)ds
0

+ ((tl —s)a-! HAQV(tl —s)” ||F(s,xS +y5)||)ds
t
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3.4. Example

IA

1U(t1) - U()II([[A%@(0)| + Co-1 1AG(0, @)l

+M;}. U((t1 —s) AV (1 —5) - A%V (1 —s)||)ds
0

%) 31

(tp=5)" ' = (t; —5)*! a(1-0)-
+M9J( 2 (tz—s)“le )ds+M9f((t1—s) (1=01) gs|.
0 ty

Then
%igtlznz\]lx(tl) —Nix(ty)llg =0,

which means that N, (on) is equicontinuous. Combining the above steps, the Arzela-Ascoli
theorem guarantees that N; is a compact operator on Q.
Step 4: What is left is to show that N, is contraction. Let x,z € on, for t > 0, one has

IN2x(t) = Naz(t)|lg
< ||G(t,xt + yt) - G(trzt + yt)”Q

t
; f (£ =) AV (£ = )| [AG(s,x, + 95) ~ AG(s, 2 + )| ) s,
0

then
MpI'(1-0)
IN2x(1) = Naz(t)llg < | Co1 L + Lo— ——5— |l =2llc,,, »
|VO|1 0 b,0

it follows from (A8) that N, is contraction.

Finally, by applying Theorem 1.7.3, we conclude that the operator N has at least one
fixed point x € Q, C PSAP, ,(Xg). Hence, we can affirm that u = x +y is the pseudo
S-asymptotically w-periodic 6-mild solution of class p for problem (3.1). ]

3.4 Example

In this section, we present an example to apply our abstract theoretical results. We focus on
the following delayed partial differential equation

Cp? [ (€ o
Dw(u(t,(z)—kz(t) (s bz(s—t)u(s,q)dq)ds)—a—ézu(t,é)

=ki(1) [ bi(s—tu(s,&)ds, & (0,7, t R, (3.17)
u(t,0)=u(t,®) =0, teR",
u(t,&) = p(7)(&), tel-,0],&e[0,m],

where 7 is a positive constant, ¢ € C ([—r, 0], L%([0, n])), bi(-),by(-) € C([-1,0],R), and k;(.), ko(.)
are continuous functions on R*. Let X := L?([0,7]) and A : D(A) € X — X is the operator
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defined by

Au //’

DA)={ueX/u”,u" e X,u(0)=u(n)=0}.
Remark 3.4.1. Most of the useful spectral properties of this operator can be founded in Section 5
in [78] and Example 5.1 in [104]. For the reader’s convenience, we recall that

* A has a discrete spectrum with eigenvalues n?, neN;

* A generates a uniformly exponentially stable analytic semigroup (T (t))0) defined by

o0

T(t)u := Ze_”2t<u,en>en and ||T(t)||<e”",

n=1

|—

where {e,, / n € N} is an orthonormal basis of X and e, (&) = (%)2 sin(n&) are the associated

normalized eigenvectors;

o the operator A'? is well-defined and can be characterized as follows

(A)%u _Zn 1”(“ €n>€n,
(A Tu= Y5, <u ) e
D(AY?):= uEX/Zn 1niu,ey)e, € X4;

s for u € D(AY?), we have

Let us introduce the following functions F : R* xC; —Xand G: R* XC% — X as follows

F(t, ¢ j bi(s &)ds,
and

G(t, )& fsz ¢(s,n)dnds.

According to Theorem 3.3.1, we have the following result.

Proposition 3.4.1. Suppose that the functions k;, k, belong to PSAP,, , (R") and

1 1
0 2 0 2 ’
<1+n>(f |b1<s>|2ds) ||k1||cb<[o,+m>,R+>+n(f |b2<s>|2ds) 2llcy o, reo ey <772 (3.18)
—r —r

Then, the problem (3.17) has a unique pseudo S-asymptotic w-periodic 5-mild solution of class p.

Proof. Note that, for t >0 and ¢ € C%, one has

ky () (f 1 (5)[(5,€) Ids)
|k1<t>|2f_ |b1<s>|2dsf_ (s, €)| ds.

IA

IF(t,)(&)|

IA
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Using the Fubini theorem, we have

0 0
IFI < 1o [ s | otz o
—r -
0
< r|k1<t>|2f ba(s)2ds sup (5,22 o)
—r s€[-1,0]
Furthermore, 1
0 2
[t ¢)]| < 3 |k1<t>|(f |b1<s>|2ds) lll,
—r 3
and

h
j sup sup ||F(t+w,¢)—F(t)||dE
) felé—P'EJIIMIQSL

ol

h
(f Iba(s |ds) [ sup @k |
hp te[&E—p,&]

which implies that
h

1
hmzf sup sup [|F(t+ @, ¢) - F(t, )| de =0,
horeo ) tele—pel|jg|,, <t
2

and
FePSAPw,p(RerC%,X). (3.19)

Moreover, we can easily see that

1
0 2
||F<t,¢1>—P<t,¢2>||sﬁ||k1||cb<[o,+m>,R+)(j |b1<s>|2ds) lor =, (320

for any ¢, ¢, € B%. Similarly, one has

2

82
‘952 oo = o] [ aézf slsmdnds|
Jd
2
< Tholt) bz()aé¢( 5 )ds
0 a 2
< |k2<t>|2f_ ba(s)P dsf_ S bls:E)

This yields

02 1 0 2
8_£2G(t'¢)‘l < Tzlkz(f)|(£r|b2(5)| ds) SR 5°) ([0,7])

0 2
_ rz|k2<t>|(j_ |b2<s>|2ds) ||¢||c;
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Therefore,
h
1 0? 0?
- sup  sup —ZG(t+a),¢)—ﬁG(t,¢) aé
R o e ¢
g )
. 0 % 1 f
< LrZ(J |b2(s)|2ds) ﬁj sup |ko(t+w)—ky(t)|dE |,
—r te[E—p,&]
p
which means that
‘ 9° 9°
1
lim —J sup  sup —2G(t+w,¢)——2G(t,({))Hd§:O,
h—>+oohp te[é—P;E]”(i)”ClSL aé aé
2
and consequently
GePSAPw,p(RJ”xC%,Xl). (3.21)
On other side, we have
92 82
HQ_ész(t’q)l)_a_EzG(t'(PZ)
0 3
1
< r2||kz||cb<[o,+m),R+>(f |hz(5)|2d5) [¢1 =]l - (3.22)
_r 1

for any ¢4, ¢, € C%. Observe that, from (3.19), (3.20), (3.21), and (3.22), we can deduce that
the condition (A1), (A2), and (A3) from Section 3 hold. It is immediate that (3.18) implies
that the condition (A4) holds with |[A™/2|| = 1, M% =T(1/2) = yr and vy = —1. By Theorem
3.3.1, we conclude that the problem (3.17) has a unique pseudo S-asymptotical w-periodic

%—mild solution of class p. .

57



—4
Chapter

S-asymptotically Bloch type periodic solutions

for abstract fractional equations involving
-Hilfer derivatives

The aim of this chapter is to investigate the existence and uniqueness of S-asymptotically
Bloch type periodic solutions for a class of the neutral ¢-Hilfer fractional derivative equa-
tions with infinite delay. Our approach is based on the semigroup theory, the fractional
powers of linear operators, as well as the Banach contraction mapping principle and the
Schauder’s fixed point theorem. In the end, we present an example to illustrate the applica-

tions of the abstract results.

Note: The notations used here are entirely independent of those used in Chapter 3, except

for what we specifically mention.

4,1 Introduction

Let 0<a <1and 0 <p <1. Consider the following nonlinear fractional neutral functional

differential equation with infinite delay

{ HDOPY (u(t) - G(t 1) = Au(t) + F(tu(t),uy), t20, w)

u(t)=@(t), t<0,

where A is the infinitesimal generator of a uniformly exponentially stable analytic semi-

group (T(t)),s( in a Banach space (X, ||||). In this study, we define
u: R—X,
and u; denotes the classical history function given by

uy(s)=u(t+s), —c0<s<0,
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4.2. Preliminaries

while the data ¢ belongs to a suitable admissible phase space B. In order to furnish a
complete study of (4.1), we assume that G: R* x B — X is a continuous function and
F: R"xXxB— Xisofaclass C!.

It is necessary to note that the study of existence and uniqueness of Bloch type periodic
solutions as parts of the qualitative theory of differential equations have attracted great at-
tention of researchers and have been developed rapidly. Such type of solutions appears in
several concrete situations. For instance, it is observed that solutions to equations describ-
ing heat or wave propagation in solid-state physics often manifest the Bloch type periodicity,
see [54, 77, 86, 112]. Recently, the concept of S-asymptotically Bloch type periodicity was
proposed and developed in [31]. This concept can be viewed in some sense as an extension
of classical Bloch type periodicity. At this level, we mention that several works have been
concerned with the study of the existence and uniqueness of S-asymptotically periodic so-
lutions [56] for ordinary differential equations with finite delay; see [47, 75, 76, 78] and
references therein. To explore other perspectives and approaches, we advise the reader to
consult [6, 16, 43, 101]. For further information concerning the Bloch-type periodic func-
tions and their applications to evolution equations, we refer the reader to the recent research

monographs [30] and [67].

4.2 Preliminaries

According to Remark 1.4.1, we know that if (T(t));>( is an analytic semigroup generated by
A with 0 € p(A), then for any 6 > 0, the operator (—A)~Y is well defined and has the following

explicit representation

1 [o0]
(~A) 0= — | t97IT(t)dt.
I'(0) OJ

Moreover, (-A)~? is an injective continuous endomorphism of X; see Lemma 1.4.1. Then,

0

we can define (—A)” as a closed bijective linear operator in X by

which is a closed bijective linear operator in X.

Furthermore, the subspace D ((—A)G) is dense in X and the expression
I llo = [[(=4)° -]
defines a norm on D ((—A)Q) forxe D ((—A)e). For 0 <0 <1, set
Xg = D((-A)").

In the particular situation 6 = 0, we consider that (—A)0 := Iy and X, := X. As mentioned

in Chapter 3, the fractional power space Xy endowed with its natural norm || - || is a Banach
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space. In addition, for 0 < 6; <0, <1, one has
XGZ — X@l. (42)

Remark 4.2.1. In the rest of this paper, we assume that the function 1 appearing in (1.7) and
(1.8) satisfies the following conditions:

(1) v is a non-negative increasing function on [0,+o0) such that 1(0) = 0.
(2) ¢’ #0o0n[0,+c0).

The technical arguments used in our proofs needs the introducion of the following oper-
ators Ulz(t,s) and Vl/‘f(t,s) defined on X as follows

o0

U (t)x = | CalIT(p(0) - plo)" Dhvde, x€X, (4.3)
0
and -
Vll‘j‘(t,s)x =a J TCo(D)T((P(t) — P(s)) T)xdT, x€X, (4.4)
0

for t > s >0, where C,(-) is a probability density function defined by (3.3).

Proposition 4.2.1. For 6 >0, we have

(i) For any fixedt >s>0, U{;‘(t,s) and Vl/‘f(t,s) are linear bounded operators.

(ii) If (T(t));sq is a compact, then Ug(t,s) and Vd‘j‘(t,s) are compact operators in Xg for every

t>s5>0, and hence U%(t,s) and V% (t,s) are immediately norm-continuous.
P P y

(iii) Let 6 <1, we have

t

f(gb(t) —(s)*! H(—A)6 vg(t,s)‘| ' (s)ds < Mg %, forallt>0.  (4.5)
0
0
Proof. (i) See Lemma 3.4 in [85].
(ii) For R > 0, we set
Yr={x€Xp/ lIxllg <R}.
We need to show that the sets
U (Y)(ts) = [ CalOT (1) - pls))" Ode/ v Ve |,
0
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4.2. Preliminaries

and -
V3 (YR)(t,5) = { ajrcmm(w(t) —p(s)" T)xdr/ x € YR}
0

are relatively compact for t > s > 0. Let t > s > 0 be fixed; for 0 > 0, we define the subset

UG 5 (Yr)(,5) in X by

US 5 (YR) (1,5) = {f@(rm(w _p(s)  T)xd ) x € YR}.
1)

It is immediate that

J-Ca(T)T((QD(t) —p(s)* )xd = T((p(t) - (s))" 0) f Ca(DT(((t) = p(s))" (T = 0))xd .
o 0

According to Lemma 3.3 [81], we can deduce that the set Uljf’é (Yr)(t,s) is relatively compact
in X for all 6 > 0. On the other hand, it follows from Theorem 1.4.2 that

“Ug(t,s)x— Ulz"b—(t,s)xue

0

o
Jca(T)T((ED(t) —(s))* T)xdt
0
o

< | S|4 T((1) - p(s)* T)x]|
09«
< | G| T(1) - ()" 0) (~4)° x|| de
" )
< pMJsau)drnxn@.
0

Then, we conclude that for any x € Yy

. a o
}512(1)”U,’b(t,s)x—UWS

Lo| =o.

(t5,

Consequently, there exist relatively compact sets arbitrarily close to the set U$(YR)(t,s) for
t>s>0. As a result, the set U{Zj(YR)(t,s) for t > s > 0 is also relatively compact in Xy. Using
the same reasoning, we obtain a similar result for the set Vlﬁ‘(YR)(t,s).

(iii) According to the definition of the operator Vlﬁ‘(t,s) and Theorem 1.4.2, we have

(p(0) - ()" |47 Vi (1.5)| 9 (5)ds

= | () - () ﬁ@(r)il(—A)GT<<¢<t>—¢<s>>“r>||dr ' (s)ds
0
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t e8]
_iena-l T (D) -9 g | 4 (61
< aMeofu,b(t) $() Of e oy (o)ds,
SO
[ wo- g |carviwaly o
0
< aMy j rlecam[f (p(t) = p(s)* 1O e Molp =N Ty (5)ds | dr.
0 0
Set
& = ol (P(t) = 9(s)*
keeping in memory the formula (3.4), we see that the inequality (4.5) is true. N

4.2.1 Notion of phase space

To establish our main results, it is necessary to introduce the notion of a phase space. Let
B be a linear space with a seminorm || - ||z consisting of functions from (—co,0] into X. As
presented in Chapter 1 in [58], the fundamental axioms required on B are given as follows:

(A): If uis a function mapping (—oo,d + b] into X, b > 0, such that
u|i5745) € C([8,b+6];X),
and t € [9,b+ 0] and ug € B, then for every t € [9,b + 0] the following conditions hold:
(i) upe Bforte[o,b+9],

(ii) There exist a continuous function p;(¢) > 0 and a locally bounded function p;(t) > 0

from [0, +o0) into [0, +o0), for t > 0, which are independent of v such that

llulls < pa (= 0) sup [[u(s)l| + pa(t = 0)luslls,

0<s<t
(iii) ||u(t)]| < K||u¢||z which is equivalent to ||¢(0)|| < K||¢||z for all ¢ € B.

(A-1): For the function u in (A), the function f + 1, is continuous from [9,b + 6] into B.

For the reader convenience, we recall also some basic useful properties of this kind of
functional spaces, that is

(B): The space B is complete.

(C-2): If (¢") 1en 1s @ uniformly bounded sequence of continuous functions with compact

support and ¢" — ¢, n — co in the compact open topology, then ¢ € B and
”(j)”—(p” — 0asn— co.
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Remark 4.2.2. Since B satisfies axiom (C-2), the space Cy ((—o0,0],X) is continuously included
in B (cf. [58, Proposition 7.1.1]). Thus, there exists a constant K’ > 0 such that

lpllz < K'supll(s)ll,
s<0

for every ¢ € Cy ((—o0,0], X).

Now, for t > 0, we consider the operator S(t): B — B given by

(S(t)p)(s) = { p(0),  —t<s<0,

Q(t+s), s<-t,

for ¢ € B. This family of operators is simply a strongly continuous semigroup of bounded

linear operators on 5 (cf. [58, Proposition 1.2.2]).

Definition 4.2.1. The phase space B is called a fading memory space if
lim [|So(t)@ll5 — 0, for each ¢ € B°,
where
B ={peB|p(0)=0},
and Sy(t) the restriction of S(t)to BP.
Example 4.2.1. Let h be a positive continuous function on (—oo, 0] satisfying the following:

h(t+s

(g-1) H(t)= sup p

s€(—o0,—t]

is bounded for t > 0,

(g-2) Lim h(s) = oo.
S—>—00
Then, B :CP?((—oo,O],X) being the space consisting of continuous functions ¢ : (—o0,0] = X

such that o)l
PSI _
e h(s)

is a fading memory space. Moreover, ||So(t)||£(3) =H(t) for t > 0.

Remark 4.2.3. In the case that B is a fading memory space, one can choose the functions py(-)
and p,(-) in axiom (A-iii) so that py(-) = py and p,(-) = p, are constants (cf. [58, Proposition
7.1.5(i)]).

4.2.2 S-asymptotically Bloch type periodic mild solution

Let us introduce some functional spaces which play an important role in our study. Further
details can be found in [32].
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Definition 4.2.2. A function f € C,(R*, X) is called S-asymptotically w-periodic if there exists
w > 0 such that

tim £ (14 @)= £ (1)) = 0.
The set of such functions will be denoted by SAP,,(X).

Definition 4.2.3. A function f € C,(R*, X) is said to be S-asymptotically Bloch type periodic if,
for given k e R and @ >0
lim ||f(t+w)-e“*f(1)]|=0

t—+00

holds for each t > 0. 4. The collection of such functions will be denoted by SABP,, \(X).

Definition 4.2.4. A function f € C,(R*, X) is said to be S-asymptotically w-anti-periodic if there
exists w > 0 such that
lim ||f(t+w)+ f(t)||=0.

t—+o00

We denote the space of all such functions by SAAP,,(X).

Remark 4.2.4. If kw = 27, Definition 4.2.3 is equivalent to Definition 4.2.2. Similarly, when
kw = 1, Definition 4.2.3 can be reduced to Definition 4.2.4.

Lemma 4.2.1. Let fy, f,, f € SABP,, x(X). Then the following results hold:

(i) fi +f, € SABP, (X), and cf € SABP,, \(X) for each c € C.

(ii) The space SABP,, x(X) is a Banach space with the sup-norm.

Proof. See the proofs of Lemma 3.1 and Theorem 3.2 in [32]. N

Remark 4.2.5. From (4.2), it is clear that the condition
F: R"xXgxBg— X

is weaker than
F: R"xXxB—X,

where By stands for the phase space with respect to the space Xg.

Based on the work of F. Norouzi and G. M. N’'guérékata (2021) [85], we define the 6-mild
solution for the Cauchy problem (4.1) as follows.

Definition 4.2.5. A function u € C(R, Xyp) is said to be an 6-mild solution for the Cauchy prob-
lem (4.1) if u satisfies
u(t) = @(t), with @ € By and t € (-o0,0],
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4.3. Existence and uniqueness of solution

and u is given explicitly by

¢(0)-G(0,9)

u(t) = Ulff(t,O) TOT2=7) + G(t,uy)
t
+ (D)= () Vi (£,5)AG(s, us) (s) ) ds (4.6)
Oﬁ
+ (1) = P(s)* V(£ 5)E(s,u(s), u)p () ds,
0

fort>0,y=a+p(l-a),and p(0) = G(0,p) = 0. Moreover, if
u|[0,+oo) € SABPw,k(XG)I

then the vectorial function (4.6) u is called an S-asymptotically Bloch type periodic 0-mild solu-
tion for problem (4.1).

Remark 4.2.6. As a particular case, if kw = 1, u is called S-asymptotically w-anti-periodic 6-

mild solution.

4.3 Existence and uniqueness of solution

In this section we focus ourselves on giving some answers to the questions related to the
existence and uniqueness of S-asymptotically Bloch type periodic 6-mild solutions for the
problem (4.1).

Lemma 4.3.1. Assume that Bg is a fading memory space. Let u : R — Xy be a continuous
function with uy € Bg and
u |R+ S SABPw,k(XQ).

Then the function t — u, € SABP,, 1 (Bp).

Proof. Keeping in mind axioms (A-iii)—(A-1) and Remark 4.2.3, we have

luellg, < p1 sup lu(s)llg + p2lluolls, ;
0<s<t

thus t + u; is a bounded continuous function on [0, +c0). Now, we define the function

v(t) = u(t + ) — ' *u(t), forall t eR.

Observe that v:R — Xy is a continuos function on [0, +o0) and satisfies the condition

k

v = Uy, — €' ugy € By.
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4.3. Existence and uniqueness of solution

Moreover, we have
lim [[(t)llg = lim [|u(t+w)—e“Fu(t)||, = 0;
t—+oo t—+o00 @}
using the results obtained in [58, Proposition 7.1.3], we easily deduce that
. _1: iwk —
Jm lvllg, = Hm [|ug =5 = 0.
O

Remark 4.3.1. If X is a real Banach space, then Lemma 4.3.1 hods true only for kw = 7 (or 27).

Proposition 4.3.1. For 6 €(0,1), we assume that F: R* x XgxBg — X and G: R* x By — X

are two continuous functions satisfying the following conditions:
(H1) For all (t,x) € [0,+00) X X,

sup||F(t,x,0)|| < +oo0 and sup||AG(t,0)|| < +oo.

t>0 t>0

(H2) There exist L, Ly, Ly > 0 such that for all t >0, x1,x, € Xg and ¢y, P, € By,

E(t 2 1) = F(t,x2, §o)|| < Lillxy = x2llg + La [[ b1 = a5,
and
|Gt ¢1) = AG(L p)|| < L[ b1 = 2 5, -

(H3) For all (t,x,¢$) € [0,+00) x Xg x By, and for a given k € R and w > 0,

lim HP(t 4 a),X,(P) —eik“’P(t, e—ikwx’ e—ikw¢)|' =0,

t—+o00
and

lim [|AG(t+w, ) - e"“AG(t, e p)|| = 0.

t—+o00
Then for each u € SABP,, 1 (Xg), the function

t — F(t,u(t),u;) € SABP, (X),

and the function
t — G(t,u;) € SABP, 1 (X1).

Proof. From conditions (H1)—(H2), we see that

sup||F(t, u(t), us)l| < Ly supluyl|, +supl|F(t, u(t), 0)|| < +oco, (4.7)
t>0 >0 >0
and
sup |AG(t, uy)l| < Lsupl||uyl| g, +sup AG(t, 0)]| < +oo. (4.8)
>0 >0 £>0
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Taking into account that u € SABP,, x(Xp) and using Lemma 4.3.1, we conclude that there

exists a positive constant ¢, ; sufficiently large such that for t > ¢, ;,
”u(t + w) - ei“’ku(t)”6 <e& and ||ut+w - ei“’kut”Be <e. (4.9)

At this level, observe that for every (x, ¢) € Xg x By, the condition (H3) allows us to deduce

that there exists a positive constant ¢, , such that
HP(t +w,x,¢)—eKVE(t, e 0y, e_ik“’(j)” <g,

and
[AG(t + @, d) - e “FAG(t, e F p)|| < e,

for any t > t, ,. Since the function t — u(t + @) € Xy and axiom (A-i) implies that
t— U, € Bg,
for all t > 0, we conclude that
||P(t o, u(t+w), Uy y) — e UF(t e Ou(t + w), e_ik“’ut+w)|| <g, (4.10)

and
|AG(t + @, 1y, ) — € AG(E ek, )| < e (4.11)

Furthermore, for

t> te = max(t&l, te,Z):

it follows from condition (H2) that

[F(t+ @, u(t + @), t1) — € “FF(t,u(t), uy)

< ||F(t+ @ ult + 0) 1) — eFOF(t e u(t + w), e Ky, )|
+L, ||u(t + w)— ei“)ku(t)He +L, ”utﬂu - ei“’kut”BQ
< e(1+Ly+Ly);
this gives
Jlim [F(t + @, u(t + @), 4y 0) — € “FF(t, u(t), uy)|| = 0.
Similarly,
|AG(t + @, 11140) — € AG(t, 1y )|
< ||AG(t +w, Uy, — e AG(, e_i‘”kutm)” +L ||ut+w - ei‘”kut”B@
< &(1+1L),

which implies that
lim ||AG(t + W, ut+a)) - eikaG(t' ut)” = 0.

t—+o00
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The following existence result for problem (4.1) is based on the use of the Banach con-

traction mapping principle.

Theorem 4.3.1. Let A generate a uniformly exponentially stable analytic semigroup (T(t)),s in
a Banach space X, with the growth exponent vy < 0. For 6 € [0,1), we assume that By is a fading
memory space, @ € By, F: R*xXgxBg — X and G : R*xBgy — Xj are two continuous functions
that satisfy the conditions (H1)—(H3) with

9(0) = G(0,9) = 0.
If the following condition holds
I'(1-6)(uL+max(Ly,piLy))

|vol' 7

[/llLCQ_l +MQ <1, (4:12)

where
Co-1:=|(-4)"""

’

then the problem (4.1) has a unique S-asymptotically Bloch type periodic 0-mild solution.
Proof. Consider the Banach space

Cp,0(Xg) = {x ‘R— Xe/ X |(co0,0] = 0 x| [0,400) € Cb (R+:X6)}:
equipped with the norm

Ixllc, o = [1Xolls, +supllx(£)ll = sup|lx()]].
£>0 £>0

According to Lemma 4.2.1, we define the closed subspace of C; ((Xg) denoted by SABPLS,k (Xp)

as follows
SABPY, (Xg) = {x {R = Xg [ X|(-c0,0 = 0, Xj0,100) € SABP, (XQ)}.

Throughout the proof, y(-) denotes the function defined by

We introduce the operator the operator
N : SABP)  (Xg) — SABP) , (Xq)

defined by its action as follows
(0)-6(0,9)

Nx(t) = Ujf(t,O)(?(y)r(z_y) +G(t,x; + ;)
t
+ () = p(s)* V(£ 5)AG(s, X + ) (5) ) ds (4.13)
0

t
~
,

+ | (@) = () V(8 9)E (s, x(5) + 9(5), x5 + 1) (5)) ds,

o
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with ¢ > 0.

We shall show that the operator N has a unique fixed point in SABP(S,k (Xg).-

First of all, we check that N is well defined. Note that, for any x € SABPCS,k (Xg), by (4.7)
and (4.8), we deduce that there exist two positive constants Mg, Mg such that

[F(t,x(t) +9(t), % +v,)|| < M and ||[AG(t,x, +79,)|| < Mg forall t>0. (4.14)

Therefore, it comes from (4.5) that

’

st (P(t) = () TV (8, 5)F(s, X(5) + 9(8), X5 + 95)p (9),

s (Y(H) = ()T AV (£,5)Gls, %+ 9P (5),
are integrable on [0,t), for every t > 0, which implies that t — Nx(t), t > 0 is a bounded

function. Then, it remains to show that

lim [Nx(t+w)-e“*Nx(t), = 0.

t—+00

for any x € SABP£ i (Xg). Based on the assumption that 1 is a linear function without loss of

generality, a direct computation allows us to write

Nx(t + w) - e'“*Nx(t)

_ a iwkTra (P(O)_G(OJ(P) iwk
= [Ug(t+w,0)-e Ulp(t,O)]W+[G(t+w,xt+w+yt+w)—e G (t,x,+)]

(2-7)
o (@t + @)= ()" Vi (E+ @, 5)AG(s, x5 + 95 (s)) ds
Ot
(" : ’
| (@O =) V() (AG(s + @, Xeriy + Psra) — € FAG(s, X, + ) ) (5) ) ds
0
@

7

| (@t + @) = ()T VG ( +,5)F (s, x(5) + 9(s), %+ 2, (5)) ds

0
A
+ | (@) =) V() (F(s + @, X(s + @) + 95+ ), Xero + Ystoo)
0
—e" R (s, x(s) + 9(s), %5+ 95) ) ¥ (s)) ds
6

for every t > 0. So, it is sufficient to prove that

tlim I/i(t)llp =0, foreachie{l,2,..,6}.
—+00
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Taking into account the uniformly exponentially stability of semigroup (T'(t)),s, it can
be inferred that ||T(t)|| < Me"0!, where v, < 0. Consequently, by combining the definition of
the operator U{Z‘ given by (4.3) and (3.4), for every ¢ > 0, there exists a positive constant ¢,
such that

€
HUﬁUJDHSEWbraHtZté

it follows that

¢(0)-G(0, p)
F(L2-y) llg

< (Joes ool fogeof | A-gsnone)

& 2] 0
< ool e A G

— 0,ase—0,

e = (Ut @0 - uge0)

witch means that
li = 0.
; 1r+n ||]1(t)||9 0

0

According to Lemma 1.4.2 (i) the operator (~A)” ™! is a bounded in X, and

W2(B)llg

”G(t + 0, ) — €N Gt X + %)”9

IA

Co-1||AG(t+ @, Xps00 + V1) — € FAG(t, X, + ;)|
Hence, by Proposition 4.3.1, we obtain

lim ||]>(t)llg = 0.

t—+o00

For the terms J3(t) and J5(¢), from Theorem 1.4.2 (vi), one can see that

Now, by definition of the operator Vlff given by (4.4) and the use of Lemma 2, we confirm
that for z € X, one has

o0

0y i 0 a
|’ viwsz]| < a| wCa@ll-A° T (@0 - pE)" 7) 2] dr
0
°;’ 0
< a | (0| T (W) - p(s))* 7)||ll2ll d
0
<

<¢<t>oiﬂfbe<s>>“9 J e Ceateetal

0
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Then, it follows from (2.6) that

aMp I'(1+(1-0))
() - p(s)* T(1 +a(1-0))

”(—A)G vg(t,s)H <

thus
(-A)° V(L s)|| < i , (4.15)
iz vices)] (B() - ()"0
where
_ Mpl'(1-0)
T=Ta-0)

Since s — G(s, x5 +v;) and s — F(s,x(s) + y(s), x; + y5) are bounded functions on [0, t), then by
the fact that

e )= () < ple+ ) pLs),
and (4.15), one obtains
sB)lly < H(:p(t @) = (s) VIt +w,9)AG(s,x, +ys)z,b’(s)H9 ds
0
< Mg | (lr+ @) p(o) O as
0
< Mo (ple+ )0,
which implies that
Tim [[73(1)llg =0.
Similarly,
(el < JH(W +@) = (s))* T Vgt + @, 9)F (5, (5) + (s), 2+ 9:)9 (5)| s
0
< My [ (904 @)= pls) -0 ds
0
r a‘fl(fz) (Pt +w) ™=,
so that

Jim l5(#)lle = 0.

Now, we proceed to show that

JLim lJi(t)llo = 0, 7= 4,6.
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Due to Proposition 4.3.1, there exists t, > 0 such that for any t > t,, the following inequality

p(t)
p(te)

(P(te) = (s)) < P(f) — P(s)
holds true for t, > s, and

ITa(®)ll

te

< J((W) —p(s))e ! H(—A)Q Vg(t,s)H |AG(s + @, Xeyo + Verw) — €O AG(s, %, + 1) ¢’(s))ds
0

t
. f (9(6) = 9060 (-2 Vi 5| [ 4G + 02+ Bva) = € FAG (s, %, + )| 9(9)) s
t€

P(te) a(1-0)-1 ['(1-06)
< 2nM t +eMpg———.
Mo Z1-0) (1h(1)) O o0
Therefore
Tim [7(t)lp = 0.
Similarly,
We(t)llg

te

< [ o= v a0 v lFe s o @l pis @) e
0

—e"FF (s, x(s) + p(s), %, + 25)|| 9(5) ) ds

t
+f<¢<t> = ()|~ Vi (19| [FGs + @, (5 + )+ 95+ ), X + Bir)
te
—e'KF(s,x(s) + p(s), x, + 35)|| ¢ (5) ) ds

Pt a(1-0)- I(1-6)
< 2Mp T (9 (1) (1-0 1+eM9W;

this gives
lim {|]s()llg = O-

t—+o00

Combining the above arguments, we can deduce that
N : SABP) (Xg) — SABP) ,(Xq)

is well defined.
Now, we will prove that N is a contraction mapping. Let x,z € SABP£ k(XQ); from condi-
tion (H2) and axioms (A-iii) with Remark 4.2.3, we get the following estimates:

|AG(tx, + 1) = AG(t, 2 +9)|| < m LlIx — 2l
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|[F(s,x(5) + (), X5 +95) = F(s,2(5) + 9(5), 25 + 9)|| < max (Ly, py L) lIx = 2l
thus,
INx(t) = Nz(t)|lg
Co-1 HAG(t; xi+9;) —AG(t, 2, + yt)”

IA

t

[ (w0 -0 a0 Vi 9 4605 %+ 30 - 4G 2+ 30| 95 s

J

0
t

# | (0= ()™ A0 V)| [Fs 1)+ 906055+ 93) = Fls,265) + 9(5) 2+ 3
0

P'(s))ds

#1LCo 1 llx—2llc,

IA

t
+yﬂ:f«¢uy—¢@»”4W—AWV?UJ”H@QdﬂM—AkM
0

t

emax(Ly, L) [ (0904 vt 9w @) dslix -2l
0

S ("llvﬁﬁ_?ax(“’” D)l
with t > 0. From (4.12) it follows that
INx—Nzllc,
< (ylLCQ_l N MpT'(1 - 9)(leLlT_T;laX(Llfﬂle)))”x 2,
0

< -,

Then, by the Banach’s contraction mapping principle, we deduce that the operator N has a
unique fixed point x € SABP£ (Xp). Hence, we can affirm that u = x+y is the S-asymptotically
Bloch type periodic 6-mild solution to problem (4.1). ]

In what follows, we will show that Proposition 4.3.1 holds true if we replace the condi-
tions (H1) and (H2) with a new condition.

Proposition 4.3.2. For 0 €(0,1), we assume that G: R*x By — Xy and F: R* x XgxBg —» X

are two continuous functions that satisfy the conditions (H3) and

(H4) There exist L’,L7, L%, > 0 such that for all x € Xy, ¢ € By, and t > 0,
Pl
Ols,-

|E(t,x, ¢)|| < L1 lIxllg + L)

|AG(t ¢)|| < L’
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Then for each u € SABP,, 1(Xg), the function t v~ F(t,u(t),u;) € SABP, (X) and the function
t — G(t,u;) € SABP,, 1 (X7).

Proof. From condition (H4), it is a simple matter to see that the functions ¢ +— F(¢, u(t), u;)
and t — G(t,u;) are bounded. Indeed,

sup ||F(t, u(t), u;)l| < Lysup|[u(t)llg + Lysup|lullg, < +oo,
t>0 >0 £>0

sup|[|AG(t, u;)|| < L'sup|ful|5, < +o0.
£>0 £>0
According to (4.9) and the continuity of the functions F and H, we have
[E(t e u(t + w), e up, ) - F(t,u(t), )| < &,
||AG(t, e ik, ) - AG(t, ut)” <g,

for any t > t.; and € > 0. For t > t,, it follows from (4.10) and (4.11) that

|F(t+ @, u(t + @), 14.0) — € “FF(t, u(t), uy)

< ||F(t +w,u(t+w), s y)— € UF(t e Ou(t + w), e_ik“’ut+w)||
+|E(t e e u(t + w), e uy ) = F(t,u(t),u)|
< 2e
Hence,
Jlim [F(t+ @, u(t + @), 14.0) — € “FF(t,u(t), u,)| = 0.
—+00
Similarly,
|AG(t + @, 1111.)) — € “FAG(t, uy)|
< ||AG(t + W, Uppy,) — ei“’kAG(t, e—iwkun)”
+||AG(t e uyy ) — AG(t, )|
< 2e.
Then,
lim |AG(t+ @, 114, — € “* AG(t,uy)|| = 0.
—+00
The proof is complete. ]

The following existence result for problem (4.1) is based on the Schauder’s fixed point

theorem.

Theorem 4.3.2. Let A generate a compact and uniformly exponentially stable analytic semigroup
(T(t));so in a Banach space X, with the growth exponent vy < 0. For 0 € [0,1), we assume
that By is a fading memory space, ¢ € Bg, F: R* xXgxBg — X and G: R*x By — X;
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4.3. Existence and uniqueness of solution

are continuos functions that satisfy the conditions (H3)—(H4), and ¢(0) = G(0,¢) = 0. If the

following condition holds

I(1-6)

L’C9_1’/11 +(L/ﬂ1 +(L/2+Lillxll))M9 |V |1—6
0

<1, (4.16)

then the problem (4.1) has an S-asymptotically Bloch type periodic 6-mild solution.

Proof. Throughout the proof, we will use the same notation for the operator N and the
Banach space SABP£ « (Xp) as previously defined in the proof of Theorem 4.3.1.
For p > 0, we define the closed ball of SABPw0 « (Xg) whose centre is 0 and radius is p as

Q, ={u e SABES, (Xo)/ llulic,, <o}

We shall show that there exist a positive constant gy such that N(on) C Qp,- In fact,

according to Proposition 4.3.2 and the arguments in the proof of Theorem 4.3.1, it is easy to
check that
N (SABP(Xg)) C SABPJ (Xp).

On the other hand, there exist two positive constant M} and M, such that
[F(t,x(5) + (), %, +p1)|| < M} and ||AG(t,x; +p,)|| < MG , for all £ > 0. (4.17)

Note that, from condition (H3) and axioms (A-ii)—(A-iii) with Remark 4.2.3, we obtain

lp(0)llg < Kllplls,
IG(0, )llg < Cor L llllg, »
JAG(t, %+ )| < L'p lxllc, , + L p2llpllg, »

[F(tx() +9(s), x +91)|| < (Ly + L) lixllc, , + Lopz @l -

Now, we assume that for any p > 0, there exist x € Qp and t > 0 such that

o < INx(®)ll
oo
< oy 19Ol +16(0.0lo) + |Gt 2+ 90l
+J“((¢(t> ()™ |- Vg (19| [AG( . + 1) ¢’(S))d5
0

t

[ (- w0 A v 9 [ xt6) + 5+ 9] ) s
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4.3. Existence and uniqueness of solution

K+ CQ—IL/ ,
(m)ll@llgg +L'Coy (1 lIxllc, , + 2 @ll, )

+L (pr el + s, ) | (@00 = 900 -4 V(e s)]| /(5 as

o%w

#((L+ L) Il + Lo lils, ) | (001 = 912 417 Vi) @'(s))as

o%w

K+ C@—lL/ ) ,
T Y +L'Cqy_ +
(rmr(z_y) l@lls, +L'Co-r (o + aliglls, )

[(1-9)
[vol' =
Dividing the both sides by p and taking the limits as p — +oo, it results that
r(1-0)
[vol' %
this contradicts our assumption (4.16). Therefore, there exists a positive constant p, such
that

+(L' (o + mallglig, ) + (L5 + L) o+ Lopa llplls, ) Mo

1<L'Co_ypy +(L'py + (Ly+ Lipy)) Mg

NxcQ,,, forany x€ Q. (4.18)

Now, we will prove the compactness of the operator N. To achieve this purpose, we
should proceed in three steps as follows.
Step 1. We show that N is continuous on (), . Let (x") be a sequence such that
lim x" =x,
n—+00
on Q, . Clearly,

. n _
nl_l)TPOOHXt xt”ge — 0.

for every t > 0. Due to the continuity of the functions F and G, we have
[F (£, (8) + 9(8), 27+ 90) = F (8, x(8) + p(8), %, + 91)] [ - 0,

and
lim ||AG(t,x] +9,)—AG(t,x,+p,)|| = 0.

n—-+oo

Therefore, from (4.5) and the dominated convergence theorem, we get

INx"(t) - Nx(t)llg
< Co HAG(t,xf +9;) —AG(t,x; +}’t)“
t

[ (- 9 ) Vi I1AG (s 12 + 50 - AG (5 343 5)) s

J
0
t

# | (1= A v [F (s + p(s)x 30 F(s,29) +5) x| 9'(5) s

o
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4.3. Existence and uniqueness of solution

this implies that
lim [[Nx"(t)-Nx(t)|lp =0,

n—+oo

which means that N is continuous on on.

Step 2. We verify the equicontinuity of N (on) on [0, +00). We fix t| > 0 and suppose that t; > t;.

For x € on, we have

5
Nx(t) = Nx(t1) = ) _Li{t1,ta),

=1

where

¢(0) - G(0, p)
T(y)Ir2-y)’
Ir(ty,t2) = G(tp, X1, + 91,) — G(t1, 2, +91)),s

I(t1, 1) = (Ug (t2,0) = Ug (1, 0))

7

i) = [ ((0(E2)~ N V12,9 (AG (5,5 + 93]+ F(5,x(5) +pi5) x5+ 3 0 (5)) s,
t

Ii(ti,t) = - tl( (() = ()" = (P(t2) = h(s)* ") Vi (£1,8) (AG (s, x5 + 95)
0 P

+F (5,x(5) + 1(5), X5 + 7)) 9 (5) ) ds,

t
It ty) = fo ((9(02) = () (Ve (t205) = Vi (11,9)) (AG (5, %, + po) +
F(s,x(s)+y(s), xs + vs)) 1,[1/(5))ds.

According to Proposition 4.2.1 (ii) and the continuity of G with axiom (A-1), it is a simple matter
to see that

lim ||I;(ty,t))|lp =0, i=1,2.

ty—t;

Since 1 is an increasing linear function and t, > ty, it follows from (4.15) that

t) ,
I13(t1, t2)llg < 1 (MG +M1:)£ () = () 01 (s)) ds.

Hence,

tlin} IlI3(t1,£2)llg = O.
20

For the term I4, one can see that

a(t1, £2)llg

L [ ()~ B — (Bl - )T
< (o) | ( ($(0) = ()"0 "b(s))ds
< (M +Mﬁ)(f0 (ple) =900y (9)ds= [ (i) - ¢<s>>““—9>—1¢’<s>)ds).
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4.3. Existence and uniqueness of solution

Therefore,

lim |[Iy(t1, 12)llg = 0.
270

Using the continuity of t s ||T(t)||, it comes from Theorem 1.4.2 (vi) and (3.4) that, for every
s€[0,t;), we have

H(‘A>6 Vit s) - (-A)° V! (tl,s)H
[l st sy ot
0

IA

2 2 2
(—A)GT(MT) dt
2aMg J-Oo 1-0 ((4’(152—5) P (tr—s) —4)(151—5)&) )
< — T Ca(T)||T T
(-9 Jo 2 2
AL

— 0,ast, = t.
By (4.5), it is easily seen that
s (1) = (s | (=A)° Vi (t2,9) = (=47 Vig (10,5 (6)
is integrable on [0,t1). Indeed, we have
t ,
| (=i ear v om0 -ar vy v o) ds

f
(e = i) |41 v ) w'0))ds

< ) ((t2) = ()™ [(=A)° Vi (t2,5)|| 9 (5) ) ds +
0 0
2M9r(1_6).
|vol'7?

Hence, from the dominated convergence theorem, it follows that
[15(t1, £2)llg
tl 7
< (Mg +Mf:)J (e2) = ()™ (-4 Vi 12,9~ (<40 Vi (t1,5)| () ds.
0

Then,

tlirrt1 ls(t1,t2)llg = O.
21

Finally, we can conclude that

lim [[Nx(t;) = Nx(t)lly = 0,

tz—)t]

this shows that N (on) is equicontinuous on [0, +co).
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4.3. Existence and uniqueness of solution

Step 3. We check that N(on)(t) is relatively compact in Xg for all t > 0. First, it is important
to observe that due to the compactness of the embedding X, — Xg, for 0 € (0,1), it follows from
(4.17) that

{t — G(t,x; + ;) /x € Qp}

is relatively compact set in Xg.
It is clear that N (on)(O) is relatively compact in Xg. Let t > 0 be a fixed number. For € € (0, t)
and 6 > 0, we define
N (Q,, ) (1) = {N“Px(t) [ x€Qy },

where
N&0x(t)
_ rrag, 1 P00) = G(0,¢)
= Uy(t,0) FOIT2 =) G(t,x; + ;)

Fett JJ )Tl ()T ((t =) 7= (p(e)” ) (AG(s, %, +5)

+F(s,X(5) + (s), %, + :)) ¢ () ) deds,

or any x € Q), . Then, the set N¢°(Q t) is relatively compact in Xg since the operator
y 00 % p 0 14

©o
T((9(e)*0), (P(e))6>0

is compact in Xg. Furthermore, we have

||Nx ()= N&2x(t) ||9
t o

j [ (o= pep a2 Tt - pn o (Jacts .+ -+
0

||F (s,x(s)+ (s ,x5+y5)||1,b/(s))d1ds
t +oo

+a || (@)= () e (T)||(-A B)=1(s)* )| (J|AG(s, x5 +35)||+
!

IF (s, x(5) + p(s), x5 + )| 9 (5)) deds
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4.4. Example

0 t
aMo (Mg +M;:)jr1—6camf(<¢<t>—¢<s>>““—9>—1e—'vo"“”—#’“”%’(s))dsdT
0

0
t +00

+aMy (Mé;+Mé)f<4)<t>—¢<s>>““—">—1¢’<s>dsfrl—ecm)dr
t—¢ o
o

IA

/ , 1 (¢(€))a(1—6)
MQ(MG+MF)F(1—9)[W—19!Ca(7)d7+r(1+a(1_9)) '

IA

Then, we conclude that

J(isr_r)loHNx(t) - N“°x(t)||, =0.

Consequently, N (on)(t) is relatively compact in Xg.

Summing up all the steps above, the Arzela-Ascoli theorem guarantees that N is a com-
pact operator on (), . Then, it follows from Theorem 1.7.2 that N has a fixed point x €
SABPu?’k(Xg). Obviously, u = x + y is the S-asymptotically Bloch type periodic 6-mild solu-
tion to problem (4.1). O

4.4 Example

In this section, we give an example to illustrate our abstract results obtained in the previous
sections. Specifically, we discuss the existence and uniqueness of an S-asymptotically w-

anti-periodic %—mild solution for the following problem

t

L 82
DG (0,60 -0) (I bls = 0wt s | - 2zt )

—00

=gz(t)f_tooa(5—t)u(s;é)ds+gl(t)f(€;u(t,5)), ¢el0m],t>0, (4.19)
u(t,0)=u(t,®)=0, t€[0,+00),
u(t,&) = @(1)(&), 1<0;

1
here, 0 < <1 and HD(fjrﬁ’l’b is the ip-Hilfer fractional derivative of order % and type g, with
respect to the function .

Let X = L?([0,7]) and A: D(A) C X — X be the operator defined by

Au=u",
DA)={ueX/u”,u’"eX, u(0)=u(mr)=0}.

We know that A generates a uniformly exponentially stable analytic semigroup (T(t));>0

2

on X. Moreover, —A has discrete spectrum o (A) with eigenvalues n*, n € N, associated to a

normalized eigenvectors e, (&) = (%)7 sin(n&). We note also that {e,, | n € N} is an orthonormal
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4.4. Example

basis of X. Hence, the associated semigroup (T(t))) is explicitly given by

o0

T(t)u = Ze_”zt (u,e,)e,.

n=1
Furthermore,

IT(t)]<e™,

for all u € X. On other side, the closed linear operator (—A) ? is well defined and one has

1 -
(_A) tu= anl n(”! en>ew

Nl —

D((~A)") = (u € X| £, n(u,e,)e, € X).

Note here that D((—A)%) is the Banach space with the norm ||ully = ||u’]|, for all u € X1

According to [58, Example 7.1.7], we know that if h(s) = 1 +|s|" for some n > 0, then the
space C}? ((—oo, 0],X%) is a fading memory space. Moreover, it is follows from [58, Theorem
1.3.6] that

1 1+s+t|"
t)= —— =1 and t) = _—

Consider the Banach space

By = C})((-0,0], Xy ),
equipped with its norm
oo,
[ “51 R TP
which is also equivalent to | ”
¢’(s)
I, =sep e

To study the problem (4.19), we need to consider some particular assumptions, that is
* f:[0,t]xR— R is a continuous function satisfying the following conditions:
- Forx,y e X%, there exists /; > 0 such that
I Cx)=F eyl b=y,
— Let A be a complex number with || =1,
f(EAX(E)) = Af (&,x(8)), for E€[0,7] and x € X).

* The data function p € B 1.
* The functions g,¢; and g, belong to the space C! ([0, +0c0)) with g(0) = 0.
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4.4. Example

* The functions s+ (1+]s|")a(s) and s +— (1+]s|")b(s) are integrable functions on (—co, 0],

and . .
I = f(l s lals)lds, 1= j(l +1s/")? [b(s)] ds.

Now we are in a position to define the functions F: R* x X% X B% — X and G:

R* x B% — X as follows

0
F(t$)(€) = ga(t) f a()p(s E)ds + g (1)f (£,x(5)),
and

0 &
Gt $)(E) = g(1) ffms)q)(s,n)dnds -

_OOO

According to Theorem 4.3.1, we have the following result.

Proposition 4.4.1. Suppose that the functions g, g, and g, belong to SAP,,(R"). We assume also
that

(1+m)lsup|g(t) + nmax(ll sup|g ()], 1, su(})) |g2(t)|) <1 (4.20)
t>

t>0 t>0

Then, the problem (4.19) has a unique S-asymptotically w-anti-periodic 3-mild solution.

Proof. 1t is sufficient to show that the functions F and H satisfies the conditions (H1)—-(H3)

in Proposition 4.3.1. For x € X1, it is clear that

supfw(t,x,oxafdé = sup |g1<t)|[f|f<é,x<é>>|2d5] < +00,
0

t>0 >0
0

and
2

d& < +o0;

t>0

supJ“a—(EzG(t,O)(cf)
0

hence, the condition (H1) holds.

In the sequel, we suppose that kw = 7. For t > 0, x € X% and ¢ € B%, Since X% — X, and
thanks to Holder’s inequality and Fubini’s theorem, we get

szfa(S)(P(S,é)ds g < (Jlla(s)lds)[f|“(5)|||(P(S,-)|2ds]

0 0
0 0 (s, )|
U <1+|s|”>2|a<s>|ds) f (14 15" a(s)] ———2 d

2
—co 0 (1'+|ﬂn)

2

A

IA
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4.4. Example

f(l +s|")?|a(s)|ds | su M
. s<1(;) (1 + |5| )

2
12||4>||B%) | (4.21)

IA

IA

This implies
||P(t +w,x, Q) - ek OE (1, ek, e‘”“”cj))”
< blg(t+w) - g@)l]|¢ 5, +la(t+w) = OIlf x ),
2

so that
tl_1>£n ”F(t+ w,x,({))—eik“’F(t,e_ik“’x,e_ikw(l))|l - 0.
Similarly,
| O P 2 9~
JUb(s) 4)6(,5;)(15 de < | | Ibs Ids][f (s)[|¢” >||2d5]
0 koo oo -
» 2 o3
< (1 +|s|”>2|b<s>|ds) sup ———=
J -0 s<0 (1+|S| )
2
< (ol ) 422)
2
it follows that
A6t 0.1~ Gt )] < i+ -]l

SO
lim ||AG(t +w, ) —e*AG(t, e p)|| = 0,

t—+o00

thus the condition (H3) holds. Observe that, from the inequalities (4.21) and (4.22), one has

|E(8,x1, 1) = F(t, %2, )|
< Lsuplg(0)l||d1—bal|;, +1suplg(t)lllx Iy,
>0 3 >0

and
|Gt 1)~ AG( @) < tsuplg(oillgs = b,

which holds true for any ¢ € [0, +0), x1,%; € X% and ¢, P, € B%. This means that the condi-
tion (H2) holds. It is immediate that (4.20) implies that (4.12) holds, with

(-A)?

1
=1, =1, M%:r(i):ﬁ’

and vy = —1. Finally, according to Theorem 4.3.1, we conclude that the problem (4.19) has a

unique S-asymptotically w-anti-periodic %—mild solution. ]
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Conclusion

In this thesis, we investigated the existence and uniqueness of solutions for fractional-order
boundary value problems in non-regular domains, focusing on different classes of abstract
differential equations involving fractional operators. Using a combination of semigroup
theory, fractional powers of closed operators, interpolation theory, and classical fixed point

theorems, we established sufficient conditions for well-posedness in various settings.

In particular, we analyzed fourth-order equations with fractional powers of the nega-
tive Laplacian operator under Cauchy-Dirichlet conditions in 3D cusp domains, showing
that a transformation of these domains to cylindrical domains facilitates their resolution.
Furthermore, we investigated pseudo S-asymptotically periodic mild solutions for neutral
evolution equations involving the Caputo fractional operator with finite delay, applying
the Banach contraction principle and Krasnoselskii’s fixed point theorem. Additionally, we
extended this study to S-asymptotically Bloch periodic solutions for neutral evolution equa-
tions governed by the t-Hilfer fractional operator with infinite delay, utilizing both the

Banach contraction principle and Schauder’s fixed point theorem.

These interesting results not only deepen the theoretical understanding of fractional dif-
ferential equations but also provide a foundation for further research into their applications
in irregular geometries and complex physical systems. A natural continuation of this study
is to consider a nonlinear differential equation involving a fractional operator (such as Rie-
mann-Liouville, Caputo, Hilfer, etc.) with different boundary conditions in non-regular
domains. This direction aims to extend the existence and uniqueness results from Chapters
3 and 4 to more general nonlinear settings using similar methods. It may also open the way
to investigating qualitative properties, such as periodic-type solutions, for such problems

and exploring their implications in scientific and engineering contexts.
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Appendices

Definition 4.4.1. (Closed operator [61]). A linear operator A on a Banach space X is said to be
closed if its graph
G(A) ={(x,Ax): x € D(A)}

is a closed subset of X x X. In other words, if a sequence {x,,} C D(A) satisfies

{ X, — X, . {xeD(A),

Ax, — v, Ax =7.

Definition 4.4.2. (Self-adjoint, positive definite operator [14]). Let H be a Hilbert space. A
linear operator A : D(A) C H — H is called self-adjoint and positive definite if

* A = A" (self-adjoint),
o there exists a > 0 such that (Ax, x) > a||x||* for all x € D(A). We write A > aly;.

Definition 4.4.3. (Positive operator [105]). Let X be a Banach space and let A be a linear
closed operator with dense domain of definition D(A) C X such that its range is contained in X,
too. The operator A is said to be positive, if (—co,0] belongs to the resolvent set of A and there
exists a number C > 0 such that

[(A-AD7| < %IAI for A <0.
Remark 4.4.1. [105] Any self-adjoint, positive definite operator A on a Hilbert space is a positive

operator in the sense of the above definition.

Lemma 4.4.1. (Bochner’s theorem [30]). A measurable function f : I — X is Bochner inte-

grable if and only if ||f|| is Lebesgue integrable. Furthermore, if f is Bochner integrable, then

d dat.
Lf(t) t SLIIf(t)II t

Lemma 4.4.2. [30] Let A be a closed linear operator on X. Let f : I — X be Bochner integrable.
Suppose that f(t) e D(A) forallt el and A- f : I — X is Bochner integrable. Then

ff(t)dt eD(A) and Ajf(t)dt = JAf(t)dt.
I I

I
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Lemma 4.4.3. (Dominated convergence theorem [30]). Let f, : I — X be Bochner integrable

functions. Assume that:

(i) There exists an integrable function g : I — R such that

I/a ()l < g(2),

a.e. on I forall n e N.
(i1) f(t):=lim, ., f.(t) exists a.e. on I.

Then f is Bochner integrable and

LfUMhiLAg;ﬂamt

Furthermore,

Lllfn(t)—f(t)lldt—> 005 11— +oo

Lemma 4.4.4. (Fubini’s theorem [30]). Let I = I, x I, be a rectangle in R?. Let f : 1 — X be

measurable, and suppose that

J‘ If (s, t)||dtds < +oo.
LJI

Then f is Bochner integrable and the repeated integrals

J. Ilf (s, t)||dtds < +c0  and f Ilf (s, t)||dsdt < +c0
Il 12 12 Il

exist and are equal, and they coincide with the double integral

Lnf(s,t)nd(t,s).

Theorem 4.4.1. (Cauchy-Schwarz’s inequality [7]). Let H be a Hilbert space. Then, for x, y €
H

|< %9 >u| < Il |2 ;-

Theorem 4.4.2. (Holdet’s inequality [7]). Let Q) be open set of R", and let 1 < p < oo, with p’

denoting the conjugate exponent, i.e., 11—7+I% =1.IfuelP(Q)andve LP (Q), then u-v e L} (Q),

and
JQ |u(x)v(x)|dx < ||u||Lp(Q) ||”||LP’(Q)'
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