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اिऻڪٌۘ

اܳٺگܹ٭ڎل۰ اܳٺݱ؇݁ࡗࡲ আॻ༟ ଩ଃ܋ଫଐܳا ؕ݁ اܳٺ༶؇رب، ෛູޚ٭ޔ أݿ؇ܳ٭ص ௰௯௫ٺܹژ ݁أ݄گ۰ّ دراݿ۰ ّگڎم ᄭᄟ؇ීݿෂا ۱ڍه
݁ټܭ اৎ৊ټ؇ܳ٭۰ ଫଃ݁أ؇ل ሌᇿإ اݿྥٷ؇داً اܳٺ༶؇رب ّݱ؇݁ࡗࡲ ඔ൹ً ᄭᄥّ݁ڰݱ ݁گ؇ر۰َ إරජاء لࡤࡲ ݿިاء. ༡ڎ আॻ༟ واᆇᅪීෂ٭۰
৖৑ اܳأڎدل۰، اܳٺ༶؇رب ሒᇭ اܳٺݱ؇݁ࡗࡲ ۱ڍه ਐಸޚٴ٭ݑ ༠؇ص ا۱ٺ݄؇م ሌᇿިُل .؇ਃಸوଫଐَ৕৑وا واৎ৊ފ؇ڣ؇ت، اܳٺڰ؇وت،
ᄭᄥ݁؇ނ َޙݠة لިڣݠّ ؇ᆙᆘ اৎ৊ިݿ۰݁ި، اܳٷگ؇ط وᆇᅦܹ٭؇ت (Strauss) ނଫଐاوس ᆇᅦܹ٭؇ت ሌᇿإ اৎ৊ފྥٷڎة ጥ጑ّ ؇ಣಈᕬ

.۰༟ި݁ٺٷ ݿ٭؇ڢ؇ت ሒᇭ ؇ዛᔻڎا༱اݿٺ আॻ༟

اܳٺݱ؇݁ࡗࡲ اܳأ؇ܹ݁٭۰، اܳٺݱ؇݁ࡗࡲ اৎ৊ټ؇ܳ٭۰، ଫଃ݁أ؇ل اᆇᅪීෂ٭۰، اܳٺݱ؇݁ࡗࡲ اܳٺ༶؇رب، ّݱ؇݁ࡗࡲ اिऻء׫ոؼמ١: اڤոஈ࿦࿮ت
ا୒ୖ؇݁ލ٭۰.
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ABSTRACT

This thesis offers an in-depth exploration of both classical and computer-based experimental

designs, emphasizing their evaluation based on optimality criteria. A detailed comparison of

experimental designs is conducted based on optimality criteria such as discrepancy, distances,

and entropy. Particular emphasis is placed on the application of these designs in numerical

experiments, including those based on Strauss and marked point processes, providing a com-

prehensive overview of their use in diverse contexts.

Keywords: Experimental designs, computer designs, optimality criteria, factorial designs,

marginal designs.
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INTRODUCTION

The methodology of experimental research (Design of Experiments, DoE) is valuable for anyone

conducting scientific research or industrial studies. Using experimental designs to empirically

study a response function presents specific challenges for both statisticians and researchers.

With limited prior knowledge of the response behavior, and generally only a small number of

observations available relative to the number of parameters in their potential models, they must

decide, before collecting any data, not only which models to use but also how to organize the

experiments. Indeed, the quality of the statistical analysis is closely tied to the experimental

design used to collect the data. Furthermore, the construction of experimental designs often

requires combinatorial analysis.

To address industrial objectives, it is sometimes necessary to conduct a series of experiments

to gather the missing information. The high cost of experimentation and the importance of

decisions made based on its results mean that relying solely on the experimenters intuition is

not advisable. A methodological approach is required one that reduces experimental cost while

ensuring optimal organization of the trials.

The aim of the design of experiments methodology is to offer one or more strategies for

addressing specific problems in experimental research. In our work, the general principles for

constructing experimental designs are presented using the concept of the experimental space.

While the geometric representation of experimental points is intuitive, it becomes limited as

the dimensionality of the space increaseshence, the use of a matrix representation.

The wide variety of designs found in the literature stems from the absence of a single design

that simultaneously satisfies all optimality criteria. Each design offers advantages with respect

to certain criteria and limitations with respect to others. Thus, compromises must be made

according to the specific objectives of each study.
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In this context, the objective of our thesis is to propose a comprehensive synthesis of both

classical and computer experimental designs, through a comparative study based on a selection

of optimality criteria. This study aims to highlight the strengths of each design and guide

researchers in making context-relevant and informed decisions. for their experimental studies.

The thesis is organized into four chapters:

- Chapter one introduces general concepts of experimental design: its history, purpose, basic

terminology (response, factors, experimental space), as well as the mathematical and statistical

tools required for modeling, estimation, and result analysis.

- Chapter two presents the main classical and computer experimental designs. It covers tra-

ditional designs (factorial, composite, Box-Behnken, Doehlert, and others.) as well as marginal

designs (Latin hypercubes, orthogonal arrays, low-discrepancy sequences). A dedicated section

also addresses designs arising from computer experiments, particularly those based on point

processes such as Strauss, marked, clustered, and spatial interaction processes.

- Chapter three focuses on the optimality criteria used to evaluate experimental designs.

It distinguishes between criteria applied to numerical designs (discrepancy, distances, entropy)

and those used for classical designs (A-optimality, D-optimality, E-optimality, G-optimality,

orthogonality), in order to highlight the strengths and limitations of each design type.

- Chapter four presents a detailed comparison of the various experimental designs discussed

in the thesis. This analysis underscores the advantages and disadvantages of each design based

on optimality criteria and specific user requirements.

Finally, the thesis concludes with a synthesis of the findings and recommendations for the

optimal use of experimental designs.
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CHAPTER 1

GENERALITIES OF EXPERIMENTAL DESIGNS

This chapter provides a synthesis of the key assumptions underlying the use of the experimental

design methodology. Essential for any researcher conducting scientific investigations or indus-

trial studies, this method applies across various disciplines whenever the goal is to analyze the

relationship between a response variable y and influencing factors xi. Its effective application

requires adherence to strict mathematical principles and a rigorous methodological approach.

1.1 History
The methodology of experimental designs is not a new technique. It has been part of scientific

progress since the early 20th century and is closely linked to the development of statistical

methods. The systematic study of experimental design has evolved over time, shaping modern

statistical techniques and optimization strategies. As early as the Middle Ages, Nicolas Oresme

(1325-1382) recognized the importance of empirical methods in his writings [1]. Later, Francis

Bacon (1561-1626), whose work influenced Descartes and Leibniz, became one of the precursors

of the experimental method [2]. The formalization of experimental design began in the early

20th century with the pioneering work of Ronald A. Fisher. In the 1920s, Fisher introduced

fundamental principles such as randomization, replication, blocking, and analysis of variance,

which laid the groundwork for modern design of experiments and statistical inference[3].

During the mid-20th century, George E. P. Box and William G. Hunter introduced facto-

rial designs, which allowed the simultaneous study of multiple factors and their interactions.

Factorial designs became widely used in industrial experiments, particularly in the fields of

agriculture, chemistry, and engineering [4].
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Building on Fisher’s legacy, notable statisticians such as Frank Yates, William Youden,

William Cochran, Robin Plackett, and John Burman played crucial roles in promoting the

application of experimental design techniques beyond agronomy. In the 1950s, Box and his

collaborators extended Yates’ ideas by developing fractional factorial designs at two levels [4].

However, the most transformative contribution came from Genichi Taguchi and Yuin Wu Ma-

suyama, who introduced orthogonal arrays to simplify the construction of experimental designs

for addressing a wide range of industrial problems. These influential tables were published in

1959 and 1961, significantly impacting quality improvement processes [5].

The field of DOE has continued to advance, with researchers developing experimental de-

signs for mixture problems [6] incorporating block effects [7], applying nonlinear models [8],

accounting for spatial correlations, and designing experiments for computer-based simulations

[9]. These contributions have further diversified the applications of DOE across various scientific

and industrial domains

1.2 Interest of the experimental design method
In experimental research, the goal is often to understand how an outcomesuch as crop yield,

chemical production cost, or engine wearis influenced by various factors (1.3.2). Researchers

measure this outcome while systematically varying the factors under controlled conditions. This

enables the development of mathematical models describing the relationship between inputs and

responses.

Figure 1.1: The system environment.

A key advantage of this method is the simultaneous variation of all factors in a structured

14



and systematic manner. Contrary to initial intuition, varying all variables at once is beneficial

and offers several advantages, including:

• Reduction in the number of trials.

• Ability to study a large number of factors.

• Detection of interactions between factors.

• Improved precision of results.

• Modeling of results and determination of optimal conditions.

Understanding experimental designs relies on two essential concepts: the experimental space

and the mathematical modeling of the studied quantities [10]. The experimental space repre-

sents all possible combinations of factor levels, guiding the planning of experiments. Math-

ematical modeling involves developing equations or algorithms that describe the relationship

between factors and outcomes, enabling predictions and optimization.

By employing these strategies, researchers can efficiently explore complex systems, gain

valuable insights, and make informed decisions based on empirical evidence.

1.3 Fundamental terminology of experimental designs
The Design of Experiments (DOE) methodology employs a specific terminology commonly used

in experimental research. While these terms are widely recognized, their meanings can vary

slightly across different statistical fields. To ensure clarity and consistency in this study, it is

essential to define some key terms that will be frequently used throughout this work.

1.3.1 Response

The response is the dependent variable observed during the experiment. It reflects the effect of

the studied factors and can be quantitative (e.g., yield, temperature) or qualitative (e.g., color,

texture).

1.3.2 Factors and experimental space

Factors are variables that are studied for their potential influence on a system. The specific

value assigned to a factor during an experiment is called a level. Factors can be classified into

different categories:
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• Controllable factors: These are variables that can be managed, adjusted, or modified

during the experiment.

• Non-controllable factors: These factors are either considered negligible and kept at

their usual values or are unknown influences that affect the experiment but cannot be

controlled.

• Quantitative factors: These are expressed as measurable numerical values, such as

speed, temperature, or intensity.

• Qualitative factors: These cannot be directly quantified; instead, they are represented

by distinct categories, such as brand, process, method, or supplier.

When studying the effect of a factor, its variations are typically constrained within a defined

range, with the low level (−1) representing the lower bound and the high level (+1) representing

the upper bound.

Figure 1.2: Factor variation range.

The effect of a factor refers to the variation in the response caused by a change in the factors

level. The interaction between two factors represents the combined influence of both factors on

the response, showing how the effect of one factor depends on the level of the other.

When introducing a second factor, it is represented by an additional axis. Like the first

factor, it has a defined low level, high level, and range of variation. This second axis is positioned

orthogonally to the first, forming a Cartesian coordinate system that defines a two-dimensional

Euclidean space, known as the experimental space (Figure 1.3)
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Figure 1.3: Experimental space definition.

The level X1 of factor 1 and the level X2 of factor 2 it’s considerated as the coordinates of

a point in the experimental space (Figure 1.4)

Figure 1.4: Experimental point in experimental space.

A given experiment is then represented by a point in this axis system, an experimental

design is represented by a set of experimental points

1.3.3 Domain of study and Response surface

The study domain is defined by the combination of factor domains, representing the range of

values that factors can take within an experiment. When considering k factors and their respec-

tive variations, the study domain forms a k-dimensional space, where each point corresponds to

a unique configuration of the k factors. This space, also known as the research space, contains

experimental points that can be positioned either inside or on the boundaries of the domain

(Figure 1.5) [11]
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Figure 1.5: Two factors study domain

Each point within this study domain is associated with a response value, and the set of all

responses forms a surface known as the response surface. Response surfaces can be classified

into two categories:

• Actual response surface: Represents the real set of values taken by the response

variable based on the process behavior.

• Theoretical response surface: When factors are continuous, an estimated response

surface can be constructed using a mathematical model. In practice, this surface is derived

from a limited number of experimental points, carefully selected by the experimenter

(Figure 1.6).

Figure 1.6: Definition of the response surface.

The fundamental challenge in experimental design is to determine an appropriate polynomial

model that provides the best approximation of the actual response surface while minimizing
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experimental effort. This approach is essential in optimizing processes and improving system

performance [12].

1.3.4 Centered reduced coordinates

In experimental design, coding factor levels by assigning -1 to the low level and +1 to the high

level introduces two key changes: Shift in Measurement Origin:

This adjustment centers the data around zero, facilitating easier interpretation of effects.

Change in Measurement Unit: Scaling the data standardizes the range of factor levels,

allowing for uniform comparison across factors.

These transformations lead to the creation of centered and scaled variables, also known as

coded variables. Centering refers to the change in origin, while scaling denotes the new unit of

measurement. The transformation from the original variable z to the coded variable x is given

by:

x =
z − z0
step

Here, z0 represents the midpoint (average) of the high and low levels of z with:

z0 =
highlevel + lowlevel

2

and "step" is half the difference between these levels. with:

step =
highlevel − lowlevel

2

This coding simplifies the design matrix, making it orthogonal and enhancing the interpretabil-

ity of main effects and interactions. For example, in a full factorial design with three factors

(A, B, and C), coding the factor levels as -1 and +1 allows for the systematic analysis of main

effects and interactions using methods like Yates analysis. This approach exploits the structure

of factorial designs to efficiently estimate factor effects.

1.3.5 Experimental Designs

Each point in the study area represents a possible operating condition, corresponding to an

experiment that the operator can perform.
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Figure 1.7: Corner Points A, B, C, and D

The fundamental challenge in experimental design lies in selecting the number and location

of these experimental points. A set of experimental points that satisfies specific properties

is referred to as an experimental design. Traditional experimental designs, which are well-

established and extensively documented, fall under the category of classical designs. When

experimental points are arranged in a manner deviating from these classical structures, they are

classified as unconventional designs, often exhibiting inferior properties compared to classical

ones [13].

1.3.6 Experimental Matrix

The experimental matrix shows all possible combinations of the low and high levels for each

input factor. These high and low levels can be coded as -1 or +1. It is a table consisting of

n rows, corresponding to the n experiments, and k columns, corresponding to the k variables

(factors) being studied. The experimental matrix (Table 1.1) defines the trials represented in

figure 1.7

runs factor 1 factor 2
1(A) -1 -1
2 (B) +1 -1
3 (C) -1 +1
4 (D) +1 +1

Table 1.1: Experimental Matrix
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1.4 Mathematical Tools for Experimental Design
In this section we will present the basic mathematical concepts necessary to understand the

experimental design method. Mathematical modeling plays a crucial role in experimental design

by providing a framework to describe and analyze the relationships between input factors and

responses [11].

1.4.1 Concept of Mathematical Modeling

1.4.2 Statistical Model

A statistical model describes the relationship between input factors and responses, incorporat-

ing randomness and variability [14] Consider a random phenomenon dependent on k variables,

where the objective is to model this phenomenon as accurately as possible. The statistical ap-

proach involves conducting n experiments, strategically chosen in the context of experimental

design. Each experiment corresponds to a point x in Rk (assuming the variables are quantita-

tive; for qualitative variables, a subset of Nk is used). The measured response, Y (x), at point

x is conventionally modeled as the sum of the true response function f(x) (the actual response

sought) and a residual term ϵ(x) (representing the experimental error)

A general form of a statistical model is: Y (x) = f(x) + ϵ(x)

The residual can account for many causes such as errors due to the experimenter, a poor

postulated model, the omission of certain variables. We generally assume that the residuals are

real random variables satisfying the following three hypotheses [15]:


E(ϵ(x)) = 0, ∀x

Cov(ϵ(x), ϵ(x′)) = 0, ∀x ̸= x′

Var(ϵ(x)) = σ2, ∀x

(1.1)

1.4.2.1 Linear Modeling

Linear modeling is widely used in experimental design to approximate relationships between

variables In this section, we consider a statistical model that depends on k variables, where

f is a linear function with respect to p unknown parameters. Mathematically, a model is

linear in the parameters βi (i = 1, . . . , p) if the partial derivatives ∂f(x)
∂βi

do not depend on βi.

Given a random phenomenon to be explained, it is generally not straightforward to propose
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an appropriate model. The function f is often too complex, which is why it is common to

approximate it using a set of standard functions (e.g., Taylor expansion, Fourier series, etc.).

If n experiments are conducted at points xi (i = 1, . . . , n) in Rk, we can express the response

as:

Y (xi) = f(xi) + ε(xi), ∀i = 1, . . . , n (1.4.1)

Since f is a linear function in terms of the unknown parameters, we can also write this model

in matrix form as:

Y = Xβ + ε

where:

• Y ∈ Rn is the vector of observed responses,

• X(n, p) is the design matrix, which depends on the chosen experimental points and the

assumed model,

• β ∈ Rp is the vector of unknown coefficients,

• ε ∈ Rn is the vector of residuals.

The assumptions (1.1) can be expressed as:

E(ε) = 0, and Var(ε) = σ2In (1.2)

Consequently, Xβ represents the expected (predicted) response given by the model.

1.4.3 Estimation of Coefficients Using the Least Squares Method

Once the model is established, the challenge lies in determining the best possible estimator β̂ of

β. A common approach is to find β̂ such that the observed response vector Y and the predicted

mean response vector Ŷ = Xβ̂ are as close as possible.

Definition 1.1. The estimator β̂ is called the least squares estimator of β if and only if β̂

minimizes the objective function:

Q(β) = ∥Y −Xβ̂∥2
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The least squares estimator of β minimizes Q(β), corresponding to the sum of squared errors

between observed and predicted values:

Q(β̂) = ∥Y −Xβ̂∥2 = ∥Y − Ŷ ∥2 =
n∑

i=1

(Yi − Ŷi)
2

This confirms that the quantity is directly related to the squared error between the observed

responses Yi and the predicted mean responses Ŷi. For the practical determination of this

estimator, we have the following proposition:

Proposition 1.2. Given the statistical model Y = Xβ+ ε with X being a full-rank matrix1, the

least squares estimator of β is given by:

β̂ = (tXX)−1 tXY

Proof: To find β̂, we minimize the quantity:∥Y − Xβ̂∥2 =
∑n

i=1(Yi − Ŷi)
2 Rewriting the

sum in terms of β̂

n∑
i=1

(
Yi − Ŷi

)2
= t
(
Y −Xβ̂

)(
Y −Xβ̂

)
=
(
tY − tβ̂ tX

)(
Y −Xβ̂

)
= tY Y − tβ̂ tXY − tY Xβ̂ + tβ̂ tXXβ̂.

Note that
∑n

i=1(Yi − Ŷi)
2 is a scalar, and it is easy to verify that all terms in the sum are

also scalars. Therefore, we obtain:

tY −Xβ̂ = (β̂tX tY )t = β̂tX tY

so
n∑

i=1

(
Yi − Ŷi

)2
= tY Y − 2tβ̂tXY + tβ̂ tXXβ̂.

To minimize the value of
n∑

i=1

(
Yi − Ŷi

)2
, we compute its derivative with respect to β̂ :

∂
n∑

i=1

(
Yi − Ŷi

)2
∂β̂

=
∂tY Y

∂β̂
− 2

∂tβ̂tXY

∂β̂
+

∂tβ̂tXXβ̂

∂β̂
,

1A matrix is said to be full-rank if none of its columns are linearly dependent on the others, i.e., its rank is
equal to the number of its columns.
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where:

• ∂ tY Y

∂β̂
= 0, because tY Y is a constant with respect to β̂,

• ∂ tβ̂tXY

∂β̂
= tXY , because tβ̂tXY is a linear form with repect to β̂,

• ∂ tβ̂ tXXβ̂

∂β̂
= tXXβ̂, because tβ̂ tXXβ̂ is a quadratic form with respect to β̂.

Thus:
∂

n∑
i=1

(
Yi − Ŷi

)2
∂β̂

= −2tXY + 2tXXβ̂.

By setting this derivative to zero to find the minimum:

∂
n∑

i=1

(
Yi − Ŷi

)2
∂β̂

= 0 =⇒ −2tXY + 2tXXβ̂ = 0,

which leads to:
tXXβ̂ = tXY =⇒ β̂ =

(
tXX

)−1 tXY.

To verify that this value of β̂ corresponds to a minimum, we compute the second derivative:

∂2
n∑

i=1

(
Yi − Ŷi

)2
∂β̂2

= 2tXX.

Since X is full-rank, tXX is positive definite, meaning that the second derivative is strictly

positive. Consequently, β̂ is indeed a minimum.

Proposition 1.3. If the assumptions (1.2) on the residuals (errors) hold and if β̂ is the least

squares estimator of β, then:

1. β̂ is an unbiased estimator of β,

2. β̂ has the following variance-covariance matrix: V
(
β̂
)
= σ2 (tXX)

−1.

Proof. 1. Computing E
(
β̂
)

:

E
(
β̂
)
= E

((
tXX

)−1 tXY
)
=
(
tXX

)−1 tXE (Y ) =
(
tXX

)−1 tXXβ = β.

2. Replacing β̂ by (tXX)−1tXY and Y by Xβ + ε, we obtain:

β̂ − β = (tXX)−1tX(Xβ + ε)− β.
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Expanding this expression:

β̂ − β = (tXX)−1tXXβ + (tXX)−1tXε− β.

Simplifying, we get:

β̂ − β = β + (tXX)−1tXε− β = (tXX)−1tXε.

Since the transpose of β̂ − β is given by:

(β̂ − β)t = tεX(tXX)−1,

we can express the variance-covariance matrix of β̂ as:

V(β̂) = E
[(

β̂ − β
)(

β̂ − β
)t]

.

By substituting β̂ − β = (tXX)−1tXε, we obtain:

V(β̂) = E
[
(tXX)−1tXεtεX(tXX)−1

]
.

Rearranging, we get:

V(β̂) = (tXX)−1tXE(εtε)X(tXX)−1.

Under the assumption that ε follows a centered normal distribution with a covariance

matrix σ2In (where In is the n× n identity matrix), we know that:

E(εtε) = σ2In.

Thus, by substitution:

V(β̂) = (tXX)−1tX(σ2In)X(tXX)−1.

Since tXInX = tXX, we obtain:

V(β̂) = σ2(tXX)−1tXX(tXX)−1.
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Further simplification gives:

V(β̂) = σ2(tXX)−1.

1.4.4 Prediction of the mean response

Once β̂ has been estimated, the experimenter is often interested in using the obtained model to

predict the mean response at a point where no experiment has been conducted. This prediction

is crucial when the goal of modeling is, for instance, to determine the experimental conditions

that maximize or minimize the studied response. The predicted mean response at a point

x ∈ Rk is given by :

Ŷ (x) = tf(x)β

where f(x) ∈ Rp is a regression vector, constructed similarly to the rows of the matrix X Once

the predicted mean response at x is determined, the accuracy of this prediction is assessed

using the following result:

Proposition 1.4. The uncertainty associated with the prediction Ŷ (x) =t f(x)β̂ at x ∈ Rℸ is

measured by

V(Ŷ (x)) = σ2 tf(x)(tXX)−1f(x)

It can be observed that the error in the predicted response depends on four factors:

• The experimental error in the measured responses.

• The position of point x within the study domain.

• The set of points used to estimate the model coefficients, i.e., the experimental design

itself.

• The assumed model used to interpret the results, through the coefficient computation

matrix and the residual variance.

Proof. We have :

V(Ŷ (x)) = V(tf(x)β̂) = tf(x)V(β̂)f(x) = σ2 tf(x)(tXX)−1f(x)

since V(β̂) = σ2(tXX)−1, the result follows.
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1.4.5 Prediction variance function

The error associated with the measured responses depends on various factors, including the na-

ture of the experimentation, the accuracy of the technology used, the care and skill of the exper-

imenter, and other elements under their responsibility. These factors pertain to experimental

practice rather than the theory of experimental designs [16]. To separate this experimental

component from the theoretical one, we introduce the prediction variance function d2(Ŷ ) :

d2(Ŷ ) =t f(x)(tXX)−1f(x)

By taking the square root of this variance function, we obtain the prediction error function:

d(Ŷ ) =
√

tf(x)(tXX)−1f(x)

1.4.6 Analysis of Variance (ANOVA)

Once the model is fitted, assessing the quality of the obtained fit becomes essential. This can be

quantified using numerical indicators derived from analysis of variance (ANOVA) techniques.

These methods rely on a structured decomposition of sums of squares to evaluate the model’s

explanatory power.

Let Ȳ denote the observed mean response and Y ∗ the vector of centered observed responses.

Notably, if 1n represents the unit vector of dimension n (i.e., a vector in Rn where all components

are equal to 1), then [2]:

Ȳ =
1

n

t

1nY, Y ∗ = Y − Ȳ 1n

We define the following three classical sums of squares (SS stands for Sum of Squares):

• Total Sum of Squares (SST):

SST =
n∑

i=1

(Yi − Y )2

• Regression Sum of Squares (SSR):

SSR =
n∑

i=1

(Ŷi − Y )2
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• Error Sum of Squares (SSE):

SSE =
n∑

i=1

(Yi − Ŷi)
2

Proposition 1.5. For the least squares model, if P = X(tXX)−1 tX is the orthogonal projector

onto Im(X) in Rn, and if In ⊂ Im(X), then the sums of squares are given by:

n∑
i=1

(Yi − Ȳ )2 =t Y Y − nȲ 2,

n∑
i=1

(Yi − Ŷ )2 =t Y (In − P )Y,

n∑
i=1

(Ŷi − Ȳ )2 =t Y PY − nȲ 2.

This leads to the fundamental decomposition:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi)
2.

Proof. In matrix form, we can write:

n∑
i=1

(Yi − Ȳ )2 =t Y (In −
1

n
1n1

tn)Y,

since Ȳ = 1
n
1tnY and 1tn1n = n.

For the residual sum of squares:

n∑
i=1

(Yi − Ŷ )2 =t Y (In − P )Y.

Since Ŷ = PY , we have:
tY Y −t Ŷ Ŷ =t Y (In − P )Y.

For the regression sum of squares:

n∑
i=1

(Ŷi − Ȳ )2 =t Y PY − nȲ 2.
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Since Ŷ = X(tXX)−1 tXY , multiplying by 1Tn gives:

1tnŶ = 1tnY.

Thus, we obtain:
n∑

i=1

(Ŷi − Ȳ )2 =t Y PY − nȲ 2.

For a random vector Y ∈ Rn and a non-random matrix M ∈ Rn×n, we define the degrees

of freedom of tYMY as the rank of the matrix M . This concept arises from the chi-square

distribution: if Y ∼ N (µ, σ2In) and M is a projection matrix, then tYMY follows a non-central

chi-square distribution with a non-centrality parameter 1
2

tµAµ and degrees of freedom equal

to the rank of M [17].

1.5 Statistical Tests

1.5.1 The multiple correlation coefficient

The multiple correlation coefficient R2 is a measure of how well a multiple linear regression

model fits the data. It is defined as follows:

R2 =
SSR

SST
= 1− SSE

SST
=

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

where :

• SSE (Sum of Squared Errors) represents the sum of squared residuals from the model,

defined as:

SSE =
∑n

i=1(Yi − Ŷi)
2

• SST (Total Sum of Squares) is the total sum of squared differences between the

observed dependent variable values and their mean:

SST =
∑n

i=1(Yi − Ȳ )2

• SSR (Sum of Squares due to Regression) represents the sum of squares explained

by the regres :

SSR =
∑n

i=1(Ŷi − Ȳ )2
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1.5.2 Fishers F-Test

Fishers test assesses the quality of the model fit. It is given by the following formula [18] :

F =

SSR
p−1

SSE
n−p

where:

• (p−1) is the degrees of freedom associated with SSR.

• (n−p) is the degrees of freedom associated with SSE.

A high Fishers F -statistic indicates that the variance explained by the model is significantly

larger than the residual variance, suggesting a good fit. To obtain statistically significant

coefficients, F must be sufficiently large, corresponding to a low probability value.
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CHAPTER 2

STUDY OF VARIOUS EXPERIMENTAL DESIGNS

In this chapter, we present the fundamental families of experimental designs without attempting

to compare them. The various schemes are grouped into three complementary categories.

Standard designs are intended for estimating low-degree linear models. They include full

and fractional factorial designs with two or three levels, as well as Mozzo designs. These are

based on independent factors, meaning that each level can be freely set without imposing

constraints on the others. Modeling designs are aimed at fitting quadratic responses or higher-

order interactions. This category includes central and non-central composite designs, Box-

Behnken designs, Doehlert designs, and Roquemore designs. As with standard designs, the

factors remain independent, but the arrangement of points is primarily intended to enhance

the accuracy of local approximations.

Finally, computer and space-filling designs are tailored for purely computational or highly

expensive experiments. These include Latin hypercube designs, low-discrepancy sequences,

space-filling models, and adaptive strategies. Their main purpose is to uniformly explore high-

dimensional domains, often for use in metamodeling or sensitivity analysis.

Each section will describe the purpose, construction rules, and typical use cases of these

design families, providing a clear overview of the tools available to practitioners.

2.1 Standard Designs
We have chosen to discuss standard designs in this thesis because they were initially developed

for response surface applications. Among them, the most commonly used are factorial designs,

Box-Behnken designs, and central composite designs, which are relatively easy to generate. We
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have also chosen to include Doehlert designs, which are particularly well suited for space-filling

considerations.

In this section, we first provide a brief description of these designs before analyzing the key

properties of interest, such as space-filling capability, non-redundancy, and cost. It is worth

noting that these designs will be frequently referenced throughout this thesis to assess the

relevance of Space-Filling Designs.

2.1.1 Full factorial designs

The simplest method to achieve proper space-filling is to select points on a regular grid within

the experimental domain.

Description: To construct a regular grid with k levels, one simply needs to choose k values

evenly spaced across the range of each factor. For example, in the unit square [0, 1]×[0, 1],

selecting 5 levels results in the following grid of points (see Figure 2.1)

{0, 0.25, 0.5, 0.75, 1}×{0, 0.25, 0.5, 0.75, 1}

:

Figure 2.1: A full factorial design with 5 levels.

It is evident that the higher the number of levels, the better the space-filling quality. How-

ever, this also leads to an exponential increase in the number of simulations. Therefore, it is

essential to find a suitable trade-off by selecting the most relevant levels for the problem at

hand.
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Discussion: This method remains effective when the problem’s dimensionality is low,

typically limited to 2 or 3 variables. However, as the dimensionality increases, the number of

simulations nd grows exponentially, making grid-based approaches impractical. Moreover, each

dimension only takes k distinct values. If the response depends primarily on a few variables

(e.g., one or two in a five-dimensional space), a factorial design results in many redundant

points. Consequently, this type of design becomes inefficient in high-dimensional settings, as

most points are lost when projected onto the factorial axes. For instance, if the response follows

the form f(X1, X2) = f1(X1) or f(X1, X2) = f2(X2), then the factorial design illustrated in

Figure 2 is poorly suited, as it effectively reduces the available information to only 5 points

instead of 25.

Remark 1. : If the number of model coefficients to be estimated is close to the number of exper-

imental runs, it is advisable to enhance the factorial design by adding a few points uniformly

distributed within the experimental domain.

2.1.2 Fractional factorial designs

Given the constraints that prevent us from conducting a large number of simulations, full fac-

torial designs are not suitable. However, the underlying principle remains valuable. Therefore,

fractional factorial designs present a good alternative. By selecting subsets of full factorial

designs, the number of required simulations can be significantly reduced, leading to lower ex-

perimental costs (for more details, see Myers & Montgomery, 1995).

However, the issues related to factorial projections remain present, as observed with full

factorial designs. Additionally, new alignment problems arise due to aliasing effects inherent in

fractional designs, similar to what occurs in orthogonal linear arrays.

2.1.3 Composite Designs

A composite experimental matrix is a combination of:

• A two-level factorial design matrix, which can be either full factorial (2d) or fractional

factorial (2d−r), where the points correspond to the vertices of a hypercube (e.g., [−1, 1]).

• An axial design matrix, consisting of points symmetrically placed along each axis at a

distance 1 α from the center of the domain.
1For a cubic domain, the value of α is typically set to 1.
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• A central point 2, which, for d factors, provides information about the variability of the

phenomenon and allows for testing the models validity. For example, in the case of a

first-degree linear model, it helps detect the presence of curvature.

A face-centered composite design within the cubic domain [−1, 1]2 corresponds to a three-

level factorial design (−1, 0, 1). Notably, these designs are well-suited for the one-at-a-time

(OAT) approach, as they impose points along the axes and within the factorial design 2d

Composite designs are widely used in classical experimentation to approximate second-

degree response surfaces [19]. Different types of composite designs can be generated by adjusting

the distance between the central point and the boundary points of the domain. Common

examples include:

• Central composite designs (CCD)

• Face-centered composite designs

• Inscribed central composite designs

However, the number of experiments in composite designs increases rapidly with the num-

ber of factors, primarily due to the factorial matrix. These designs do not optimally fill the

experimental space and often fail to achieve good point distribution in projections. Indeed,

they test only three or five levels per parameter (depending on α, regardless of the design size.

2.1.4 Box-Behnken Designs

Box-Behnken designs are experimental designs where variables take only three levels (−α, 0,+α),

considering the experimental domain as a hypercube [−1,+1]d These designs consist of:

• A two-level factorial matrix (2d points).

• Balanced incomplete blocks, arranged in a specific pattern.

• central point, added to the matrix to improve estimation accuracy.

Box-Behnken designs serve as an alternative to composite designs since they require only

three levels per factor [20] while still allowing for the modeling of a second-degree response

surface. The construction methods for these designs, including the specific way to form the

blocks, can be found in [19] and [21]
2In classical experimentation, it is recommended to include multiple central points to assess experimental

variability. However, this approach becomes irrelevant when using a purely deterministic simulator, as there is
no inherent variability in the response.
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In terms of the number of experimental points, a Box-Behnken design is comparable to

a composite design in dimensions 3 and 4. However, there is no Box-Behnken design for two

factors. Because these designs place their points on the factorial axes rather than throughout

the domain, they do not ensure a good space-filling property.

2.1.5 Doehlert Designs or Uniform Networks

Doehlert designs (Doehlert, 1970) belong to the family of uniform networks. Their generation

method is iterative and consists of:

• Defining an initial simplex within the exploration domain.

• Applying isometries (translations and rotations) from one of its vertices (typically through

translations).

• Iterating this process, which results in a specific distribution of points (as shown in Figure

2.2).

Practically, for each variable in the range [−1, 1], this approach involves successively subtracting

the coordinates of each point in the initial simplex from the others.

Figure 2.2: A Doehlert design with 45 points in the unit square and its initial simplex: the
equilateral triangle in red.

Example 1. Figure 2.2 illustrates a Doehlert design with 45 points within the unit square, where

the initial simplex is an equilateral triangle (highlighted in red).
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2.1.6 MOZZO Designs

MOZZO designs are characterized by their sequential nature [22]. Initially, two factors can be

studied using three experimental runs within a triangular domain. If the decision is made to

include a third factor, three additional runs are carried out (runs 4, 5, and 6 in Table 2.1). This

sequential structure is only possible if the factors not yet under investigation are held constant

during the study of the initial factors.

For example, Factor 3 is fixed at level -1 while Factors 1 and 2 are being studied. To

investigate Factor 3, its level is changed to +1, and another triangular design is executed

with the first two factors. As more factors are introduced, corresponding interactions can be

incrementally added to the initial base model.

Trial No Factor 1 Factor 2 Factor 3 Factor 4
1 0,268 1 -1 -1
2 0,732 -0,732 -1 -1
3 -1 -0,268 -1 -1
4 -0,268 -1 1 -1
5 -0,732 0,732 1 -1
6 1 0,268 1 -1
7 -0,267 -1 - 1 1
8 -0,732 0,732 -1 1
9 -1 0,268 -1 1
10 0,268 -1 1 1
11 0,732 -0,732 1 1
12 1 0,268 1 1

Table 2.1: Mozzo Experimental Designs for Two, Three, and Four Factors

2.1.6.1 Mozzo Design for Two Factors

This design allows for the study of two factors using only three experimental runs, arranged in

a triangular configuration. Figure 2.3 illustrates one possible configuration of this triangular

layout.
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Figure 2.3: Study Domain of the Mozzo Design for Two Factors

Given the small number of points, the assumed mathematical model is simple: a first-order

model without interaction terms, expressed as:

y = a0 + a1x1 + a2x2 + a3x3

We now write the corresponding design matrix X for the model.

X =


1 0, 268 1

1 0, 732 −0, 732

1 −1 −0, 268


The information matrix XXT is computed directly and yields:

XXT =


3 0 0

0 1, 608 0

0 0 1, 608


This result confirms that the design matrix X is orthogonal. Furthermore, the elements

corresponding to the first-order terms are equal. This implies that the Mozzo design satisfies

the iso-variance by rotation criterion 3.2.8, ensuring that the prediction error remains constant

for all directions equidistant from the center of the experimental space.

2.1.6.2 Mozzo Design for Three Factors

This configuration corresponds to the first six runs of Table 2.1. Figure 2.4 illustrates the

spatial distribution of the experimental points in the three-dimensional experimental space.
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The design is sequential and symmetrical, allowing for the progressive inclusion of additional

factors while preserving the geometric balance of the design.

Figure 2.4: Study Domain of the Mozzo Design for Three Factors

As there are six experimental points, it is theoretically possible to estimate six unknown

parameters. Therefore, a first-degree model with interactions can be considered. However,

due to the configuration of the experimental points, it is not possible to estimate interactions

involving the third factor. Only the interaction between factors 1 and 2 can be included in the

model. The resulting model is given by:

y = a0 + a1x1 + a2x2 + a3x3 + a12x1x2

The corresponding design matrix X is:

X =



1 0.268 1 −1 0.268

1 0.732 −0.732 −1 −0.536

1 −1 −0.268 −1 0.268

1 0.268 −1 1 0.268

1 0.732 0.732 1 −0.536

1 1 0.268 1 0.268


To verify orthogonality, we compute the information matrix X⊤X:
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X⊤X =



6

3.22

3.22

6

0.86


(Note: The full calculation of X⊤X is omitted here but should be completed if required.)

This computation allows us to verify whether the orthogonality property is preserved in the

presence of the added interaction term.

2.1.6.3 Advantages and Limitations

• Main advantage: The primary benefit of Mozzo designs lies in the very limited number

of required experimental runs. For two factors, only three experiments are needed, and

each factor is tested at three different levels.

• Limitations: Mozzo designs are not available for every possible number of factors. Ad-

ditionally, the proposed model generally does not account for all possible interactions

between the factors.

2.2 Marginal designs
In this section, we introduce designs that, by construction, exhibit good properties in terms

of non-redundancy and non-alignment with certain subspaces. However, there is no guarantee

that they effectively cover the experimental space, which we will investigate here.

We also define the concept of margins, which refers to factorial subspaces. For instance,

one-dimensional margins correspond to factorial axes.

2.2.1 Latin Hypercubes

The Latin hypercube sampling method, introduced by MacKay, Conover, and Beckman in 1979,

was developed for the numerical evaluation of multiple integrals. It ensures non-redundant in-

formation through well-distributed projections on factorial axes. In practice, Latin hypercubes

are widely used in numerical experimental design, particularly due to their ease of implementa-

tion and construction. Description Each axis [0, 1 of the unit cube is divided into nn segments

of equal length according to the following subdivision: [0, 1
n
], [ 1

n
, 2
n
], . . . , [n−1

n
, 1]
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By taking the Cartesian product of these intervals, we obtain a grid of ndnd cells of equal

size. Then, nn cells are selected among the ndnd possible ones in such a way that each one-

dimensional margin is represented exactly once. Finally, a random point is drawn within each

of the preselected cells.

Figure 2.5: A Latin hypercube sampling with 5 points in 2 dimensions.

Definition 2.1. A Latin hypercube with nn points in [0, 1]d is defined as the set of points X i

such that:

X i
j =

πj(i) + U
(i)
j

n
, 1 ≤ i ≤ n, 1 ≤ j ≤ d

where πj is a permutation of 1, ..., n, and U
(i)
j �U [0, 1] is a random variable following a uniform

distribution on [0, 1].

Thus, the vector (π1(j), . . . , πd(i)) represents the cell in which the point X i is located, while

(U i
1, . . . , U

i
d) determines its exact position within the cell.

The resulting Latin hypercube can be represented as a matrix with n rows and d columns,

whose coefficients are X i
j.

Remark 2. 1. Points can be placed at the center of the cells to eliminate randomness in the

design.

2. A Latin hypercube, defined by the matrix π, is very easy to construct since each column

is a permutation of 1, ..., n.

Discussion

Latin hypercube points have the interesting property of being uniformly distributed along

factorial axes (see Figure 2.5). However, this property does not necessarily ensure uniformity

across the entire experimental domain.
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For a fixed n, there are n! possible permutations for each of the d columns, leading to a total

of (n!)(d−1) possible Latin hypercubes. However, not all of them ensure a uniform distribution

of points in the space.

For instance, in the Latin hypercube shown in Figure 2.6, the points are aligned along one

of the domains diagonals. If the actual process depends only on X2X1, then the information

provided by this experimental design is reduced to a single point instead of five, significantly

limiting the sampling quality.

Figure 2.6: A Latin hypercube sampling with 5 points in dimension 2.

2.2.2 Orthogonal Arrays

2.2.2.1 General Case

Conceptually, orthogonal arrays [23] are very similar to Latin hypercubes. Indeed, they share

the advantageous high-dimensional projection properties of Latin hypercubes in one dimension.

Definition 2.2. An orthogonal array of strength t with q symbols is a matrix with n rows and

d columns (where d > td > t), whose elements take q distinct values. This matrix is structured

so that every submatrix of size n×t contains each possible combination of t symbols exactly λ

times.

Thus, the following relation holds:

n = λqt

Such an orthogonal array is denoted as OA(n, d, q, t, λ).

Description From a geometric perspective, this corresponds to subdividing the unit cube

axes into q equal segments, resulting in qd equally sized cells. Then, n cells are selected to form

an orthogonal array that meets the above definition.
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This structure ensures that every set of t columns in the design matrixi.e., each t-tuple of

symbolsappears exactly λ times.

Remark 3. n orthogonal array of strength 1 is equivalent to a Latin hypercube. As with Latin

hypercubes, the sampling point can be chosen randomly within each cell or placed at the

center. In the latter case, all projections onto tt-dimensional subspaces result in a regular grid,

as illustrated in Figure

Figure 2.7: A design generated by an orthogonal array OA1(25, 5, 5, 2), with points centered
and projected onto the (X1, X2) subspace.

Definition 2.3. An orthogonal array sampling (hereafter referred to as an orthogonal array)

with nn points in [0, 1]d is a set of points X i defined by:

X i
j =

πj(A
i
j) + U i

j

q
, 1 ≤ i ≤ n, 1 ≤ j ≤ d

where:

• πj is a permutation of {0,…, q−1}.

• Ai
j are the elements of the orthogonal array.

• U i
j �U(0, 1) is a uniformly distributed random variable in [0, 1].

Thus, the vector (π(Ai
1), π(A

i
2), . . . , π(A

i
d)) represents the cell where point X i is located,

while (U i
1, . . . , U

i
d) defines its relative position within that cell.

The orthogonal array corresponds to a matrix with n rows and d columns, where each

coefficient is given by X i
j.
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Property 2.4. The generation of these designs follows a property similar to that of Latin hyper-

cubes: If the symbols in each column of an orthogonal array of strength t are permuted, the

resulting array remains an orthogonal array of strength t.

2.2.2.2 Special Case of Linear Orthogonal Arrays

Linear orthogonal arrays form a specific subclass of orthogonal arrays, chosen for their ease of

implementation compared to the general case.

Definition 2.5. A linear orthogonal array is an orthogonal array that satisfies the following

conditions:

• The number of symbols q is a prime number.

• The rows of the array are all distinct and constitute a vector subspace of Zd
q

In this case, the array is denoted as: OA(d, q, t, λ) over Zq where Zq = 0, ..., q−1 forms a finite

field since q is a prime number.

Figure 2.8: A distribution of 49 points derived from a linear orthogonal array of strength 2 in
dimension 3.

Remark 4. A linear orthogonal array of strength t is simply an orthogonal array of strength t

structured as a vector subspace. In particular, a linear orthogonal array of strength 1 is always

a Latin hypercube.

Regarding the construction of linear orthogonal arrays, readers may refer to Jourdan’s

(2000) [24] dissertation. However, upon analyzing the designs generated using this method, we

observed additional alignment issues compared to traditional orthogonal arrays. Specifically,

the points are distributed along parallel planes (see Figure 2.8).
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This phenomenon arises because the computations are performed in Zq. It is even possible

to determine the equation of the planes on which the points are distributed. For instance, in

the case of a linear orthogonal array of strength 2 over Z7, the construction method ensures

that the points satisfy the following condition: x+ y + z = 0 (mod 7)

As a result, the points are located on five parallel planes (four of which are clearly visible

in Figure 2.8, while the fifth consists only of the origin). Consequently, the distribution of

projections along the axis perpendicular to these planes is not optimal.

2.2.3 Latin Hypercubes Based on Orthogonal Arrays of Strength 2

Orthogonal arrays are widely used in experimental design, mainly due to their favorable uni-

formity properties. However, for orthogonal arrays of strength t > 1, this uniformity is only

guaranteed on subspaces of dimension t. As a result, these arrays exhibit repetitions along

factorial axes.

Thus, using Latin hypercubes seems like a promising alternative to ensure a better represen-

tation of factorial axes. However, these designs do not necessarily provide a uniform distribution

across subspaces of dimension t > 1.

To summarize, neither method is entirely satisfactory.

To address these issues, Tang 1993 [25] proposed an approach that combines:

• the orthogonality properties of orthogonal arrays,

• the favorable projection properties of Latin hypercubes.

Tang also introduced an algorithm to generate these designs from orthogonal arrays of strength

2, ensuring good uniformity on 1-dimensional margins.

Figure 2.9: A Latin hypercube, a Tang Latin hypercube, and an orthogonal array of strength
2 with 4 points in dimension 2.

Definition 2.6. Let A be an orthogonal array of type OA(n, d, q, 2). For each column of A,

44



we replace each element by a permutation of the set of q elements according to the following

rule:

∀k, k ∈ {0, 1, . . . , q − 1}, [kq + 1, kq + 2, . . . , (k + 1)q]

This transformation results in a Latin hypercube.

for example if A =

0 0 1 1

0 1 0 1

t

and we apply the following permutations for each column

of A:0→0 then 0→1 and 1→3 then 1→2

we then obtain the following Latin hypercube:

0 1 3 2

0 3 1 2

t

Conversely, starting from a Latin hypercube, it is possible to reconstruct an orthogonal

array of type OA(n, d, q, 2), where the coefficients are defined as follows:

Xij = �Xij

q
�,for i = 1,…, n and j = 1,…, d where ��� denotes the floor function.

Figure 2.10: A Latin hypercube generated from an orthogonal array OA1(25, 5, 5, 2) with ran-
domized points projected onto the subspace (X1, X2).

Description This method follows a three-step sampling process.

First, the unit cube is divided into qd cells. Then, among these cells, n = q2 are selected in

such a way that they form an orthogonal array of strength 2.

Second, a sub-cell is chosen within each of the n selected cells, ensuring the construction of

a Latin hypercube.

Finally, a random point is placed within each sub-cell, resulting in a Latin hypercube based

on an orthogonal array (see Figure 2.10).
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2.2.4 Low-discrepancy sequences.

In the previous section, we discussed designs where points are well distributed in projection

but not necessarily evenly spread in space. Here, we introduce designs aimed at achieving a

more uniform filling of the space while also examining their projection properties.

These point sequences were originally developed to replace random sequences in Monte Carlo

methods, leading to the term quasi-Monte Carlo methods. Most low-discrepancy sequences [26]

are generated using deterministic algorithms to ensure that points are distributed as uniformly

as possible within the experimental domain.

To provide a fundamental understanding of how these sequences achieve space-filling prop-

erties, we introduce a basic definition of discrepancy. Niederrieters (1987) definition, presented

in Section 2.1, offers deeper insight into the theoretical foundation of discrepancy. Readers may

refer to that section for various methods of computing discrepancy.

Discrepancy measures the deviation between a given point distribution and a perfectly

uniform distribution; in other words, it quantifies the irregularity of point dispersion. In the

one-dimensional case, given the empirical distribution function F̂n of the points x0, x1, ..., xn−1,

discrepancy is defined as:

Dn(X) = sup
x∈[0,1]

|F̂n(x)− F̂U(x)|

where FU(x) is the cumulative distribution function of the uniform distribution on [0, 1].

Remark: The function Dn(X) corresponds to the Kolmogorov-Smirnov statistic, which is

commonly used to test the goodness-of-fit to a uniform distribution.

Definition 2.7. Uniform Distribution: Let X be a compact space and µ a regular probability

measure defined on the Borel sigma-algebra of X. A sequence of points (xn)n∈N in X is said to

be uniformly distributed if, for any continuous function f ∈ C(X), we have:

1

n

n∑
k=1

f(xk) →
∫
X

f dµ, as n → ∞.

Remark 5. The strong law of large numbers ensures this convergence almost surely.

An important property in this context is the following.

Property 2.8. A sequence (xn) is uniformly distributed if

lim
n→∞

Dn(x) = 0. (2.2.1)
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There exist numerous upper bounds on discrepancy. The most well-known result in this

regard is the Koksma-Hlawka inequality.

Theorem 2.2.1. If f is a function of bounded variation V (f) in the sense of Hardy and Krause,

then for any sequence of points x1, ..., xn in [0, 1]d, we have:∣∣∣∣∣ 1n
n∑

i=1

f(xi)−
∫
[0,1]d

f(t)dt

∣∣∣∣∣ ≤ V (f)Dn(X). (2.2.2)

Thus, the worst-case approximation error is the product of the variation V (f) (which reflects

only the irregularity of the function f) and the discrepancy Dn(X) (which measures only the

quality of the sequence’s distribution).

Remark 6. The sequences discussed here will be finite and conventionally indexed from 0 to

n− 1 to include the origin of the domain.

It is possible to construct sequences whose discrepancy is lower than that of a random

sequence, which is of order 1
n
. These are known as low-discrepancy sequences. Such sequences

are characterized by their ability to fill the unit cube uniformly and with an extremely regular

pattern.

A natural approach to achieving the most uniform distribution of points is to consider a

regular grid. However, it can be shown that the discrepancy of such a distribution remains of

order 1
n
, which is actually a poor result. The reasons behind this will be further discussed in

Section 3.1 , dedicated to discrepancy computation.

Furthermore, we will see that the complexity of discrepancy computation depends on the di-

mensionality, making it impractical for high-dimensional cases. This is why the low-discrepancy

sequences introduced here are particularly useful, as they are easy to implement and ensure

low discrepancy.

Examples of low-discrepancy sequences were proposed by Halton [27], Hammersley [28],

Sobol [29], Faure [30], and Niederreiter [31]. In the following sections, we will study the con-

struction and properties of these different sequences used in experimental design.

A fundamental concept behind the construction of most of these sequences is the inverse

radical function in base b, defined as follows:

All the sequences introduced below are defined for all n. We will see that most of these

sequences are valuable due to their iterative properties for example, when adding q points to

an existing design of size n. This property significantly influences the choice of the sequence to

be used.
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Definition 2.9. Let b be an integer with b ≥ 2. The inverse radical function in base b is given

by:

ϕb(i) =
∞∑

m=0

pm
bm+1

where i is represented in base b as:

i = p0 + p1b+ p2b
2 + · · ·+ pmb

m

with pm being the digits of i in base b. The sequence: Cb = {x0, x1, . . . , xn−1}, where xi = ϕb(i)

is called the Van Corput sequence in base b 3.

2.2.4.1 Halton Sequences

Halton sequences are the multi-dimensional extension (d ≥ 1) of Van der Corput sequences,

which are their one-dimensional counterparts. The key idea behind generating Halton sequences

is to use a different base for each dimension.

Definition 2.10. A Halton sequences Hb1,...,bd = {x0, x1, . . . , xn−1} in bases b1, . . . , bn−1 is

defined as:

xi = (ϕb1(i), . . . , ϕbd(i)) ∈ [0, 1]d

where b1, . . . , bd are positive integers that are pairwise coprime.

Remark 7. To minimize the discrepancy, it is recommended to choose the first d prime num-

bers as bases. This choice helps reduce the leading term constant in the upper bound of the

discrepancy of such sequences (see Faure[32], revisited in Niederreiter [33]).

Halton sequences have the advantage of being easy to implement and computationally effi-

cient. Transitioning from xi = ϕb(i) to xi+1 = ϕb(i + 1) simply requires an addition in base b,

making them well-suited for practical applications.
3The Van Corput sequence is a low-discrepancy sequence used in quasi-random sampling; it distributes points

uniformly over the interval [0, 1] by reversing the digits of natural numbers in a given base.
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Figure 2.11: The first 50, 250, and 500 points of a Halton sequence in bases 2 and 3.

2.2.4.2 Hammersley Sequences

A Hammersley sequence in dimension d is constructed using a term dependent on the number

of points and a Halton sequence in dimension d− 1.

Definition 2.11. A Hammersley sequences Hn
b1,...,bd−1

= {x0, x1, . . . , xn−1} in beses b, . . . , bd−1

is defined by

xi = (
i

n
, ϕb1(i), . . . , ϕbd−1

(i)) ∈ [0, 1]d

where b1, . . . , bd−1 are pairwise coprime positive integers.

Remark 8. To minimize the discrepancy of Hn
b1,...,bd−1

, it is recommended to choose the first

d− 1 prime numbers as bases.

Discussion Since Hammersley sequences are built from Halton sequences, they exhibit

the same pattern of successive diagonals. Moreover, it is not possible to add extra points

to a Hammersley sequence without affecting its discrepancy. Therefore, when the number of

required points is unknown in advance, using a Hammersley sequence is not recommended.

Additionally, these sequences lose the iterative property of Halton sequences, which allows for

the easy addition of points. Here is the figure representing the first 50, 250, and 500 points

of a Hammersley sequence in base 2. Each subfigure illustrates the distribution of the points

within the unit square [0, 1]2 (see figure 2.12)
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Figure 2.12: The first 50, 250, and 500 points of a Hammersley sequence in base 2.

2.2.4.3 Sobol’ Sequences

Sobol sequences are defined based on primitive polynomials over the finite field Z2 = {0, 1}.

Before proceeding, we recall the definition of a primitive polynomial.

Definition 2.12. A polynomial p(t) of degree s of the form:

p(t) = ts + us−1t
s−1 + · · ·+ u1t+ u0

is said to be primitive over the field Z2 if it meets the following conditions:

• It is irreducible over Z2, meaning it cannot be factored into lower-degree polynomials

in Z2[t].

• The smallest integer i such that p(t) divides ti−1 (or ti+1) is exactly 2s−1. This integer

i is known as the order of the polynomial.

A primitive polynomial of degree s must include both the monomials ts and 1, and it must

contain an odd number of terms.

Definition 2.13. A Sobol sequence S = {x0, x1, x2, . . . , xn−1} in one dimension is defined

as follows:

xi =
1

2m

(
m
⊕
k=1

)
aklk

where (p1, p2, . . . , pm) represents the binary expansion of i, and m is given by:

m =

 1 if i = 0

1 + ⌊log2 i⌋ otherwise
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The symbol ⊕ denotes addition in Z2
4.

For k > s, the coefficients lk are computed using the recurrence relation:

lk = 2u1lk−1 ⊕ 22u2lk−2 ⊕ · · · ⊕ 2suslk−s ⊕ lk−s

where u1, u2, . . . , us are the coefficients of a primitive polynomial:ts + u1t
s−1 + · · ·+ us−1t+ us

defined over Z2. Additionally, the integers l1, . . . , ls must be odd and satisfy 1 ≤ lk ≤ 2k for

k = 1, . . . , s.

To generate a Sobol sequence in dimension d, it is sufficient to select d distinct primitive

polynomials.

Figure 2.13: The first 50, 250, and 500 points of a Sobol’ sequence in 2D

Discussion: Sobol sequences offer several significant advantages. Firstly, their construc-

tion is highly efficient since their binary nature aligns well with computer architectures, thereby

reducing computation time [34]. Moreover, they generally maintain a well-balanced point dis-

tribution even as the dimensionality increases, unlike other low-discrepancy sequences that may

suffer from degeneracy issues in high-dimensional spaces (Joe & Kuo, 2003 [35]).

2.2.4.4 Faure Sequences

Faure sequences are defined using the inverse radical function ϕb and a Pascal generator matrix

Ckl, given by:

Ck,l =


(l−1)!

(l−k)!(k−1)!
, if k ≤ l,

0, otherwise.

Definition 2.14. Let b ≥ d be a prime number. The Faure sequence F = {x0, x1, ..., xn−1} in

dimension d is defined as:
4Addition modulo 2 is performed using an "exclusive or" (XOR).
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x
(j)
i = ϕb

(
∞∑
l=1

Cj−1,l−1i
l mod b

)
,

where Cj−1,l−1 represents the generator matrix of the j-th dimension of the Faure sequence

in dimension d.

Remark 9. To achieve better uniform distribution, it is recommended to choose b as the smallest

prime number greater than or equal to d.

Figure 2.14: The first 50, 250, and 500 points of a Faure sequence in dimension 2.

Faure sequences are designed to ensure a locally uniform distribution of points.

2.3 Computer Experiments Designs
In this section, we introduce numerical designs. These designs are generated using the Markov

Chain Monte Carlo method by utilizing point process stochastic processes.

2.3.1 Experimental Designs Based on the Strauss Process

One of the first stochastic models used for generating experimental designs is the Strauss point

process, introduced by Franco et al.[36]. This process is defined by a conditional probability

density given by:

π(x) = kγs(x)

where:

• k is a normalization constant,

• γ is an interaction parameter such that 0 < γ ≤ 1,
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• s(x) is the number of point pairs whose distance is below a threshold R:

s(x) =
∑
i<j

1{∥xi−xj∥≤R}

The parameter γ controls the repulsion between points:

If γ = 1, the process corresponds to a homogeneous Poisson process. If γ < 1, the points

are more spaced out, introducing a repulsion effect.

2.3.2 Experimental Designs Based on the Marked Point Process

• Marked point processes [37]: extend the Strauss process by assigning each point

xi a mark mi, which can represent additional information (prediction variance, factor

importance, etc.). The probability density is given by:

π(x) = kβn(x)γs(x)

where β > 0 is an intensity parameter and n(x) is the number of points in the configura-

tion.

The choice of marks is made by optimizing a predictive variance function, for example,

for a polynomial model:

var(ŷxi
) = f(xi)

T (F TF )−1f(xi)

where F is the design matrix and f(xi) the regression vector.

• Two-Mark Experimental Designs [38]: In the specific case of computer experi-

mental designs with two marks, we distinguish two types of points M1 and M2, each

with its own interactions:

π(x) = αβ
m1(x)
1 β

m2(x)
2 γ

m11(x)
11 γ

m12(x)
12 γ

m22(x)
22

with:

– m1(x) : number of points of type M1,

– m2(x) : number of points of type M2,

– m11(x) : number of M1-M1 point pairs,

53



– m12(x) : number of mixed M1-M2 pairs,

– m22(x) : number of M2-M2 point pairs,

– γ11, γ12, γ22 : interaction coefficients.

2.3.3 Experimental Designs Based on Cluster Processes

Cluster random processes [39] introduce more complex neighborhood relationships between

experimental points. An example is the continuous cluster random process, which defines the

probability of a configuration x as:

π(x) = kβn(x)γ−c(x)

where c(x) is the number of connected components in the graph defined by:

xi ∼ xj if ∥xi − xj∥ ≤ R

The Metropolis-Hastings algorithm is used here with a cluster movement dynamic, optimizing

the coverage of the experimental space.

2.3.4 Experimental Designs Based on Area-Interaction Processes

The area-interaction process [40] is an interesting alternative where the interaction between

points is defined based on the area covered by spheres of radius R centered on the experimental

points. The process density is given by:

π(x) = kβn(x)γ−m(UR(x))

where m(UR(x)) is the Lebesgue measure of the union of spheres of radius R around the points,

defined as:

Ur(x) =
n⋃

i=1

B(xi, r),

representing the density of the area occupied by the union of these balls. The process density

is then expressed as:

π(x) = αβn(x) γ−m(Ur(x)),

with:
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• α > 0 : normalization constant,

• β > 0 : intensity parameter controlling the number of points,

• γ > 0 : repulsion parameter penalizing the covered area,

• m(Ur(x)) : Lebesgue measure (area) of Ur(x).

The measure m(Ur(x)) can be computed using the inclusion-exclusion formula:

m(Ur(x)) =
n∑

i=1

m
(
B(xi, r)

)
−
∑

1≤i<j≤n

m
(
B(xi, r)∩B(xj, r)

)
+· · ·+(−1)n+1m

(
n⋂

i=1

B(xi, r)

)
.
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CHAPTER 3

CRITERIA AND OPTIMAL DESIGNS

Studying the uniformity of point distributions is a challenging task, particularly in high-

dimensional spaces where direct assessment often becomes impractical. As a result, it is essential

to rely on specific criteria to determine whether a given distribution approximates uniformity

and ensures good space-filling properties. These criteria are generally classified into three main

categories.

First, discrepancy criteria measure the deviation between an empirical distribution and an

ideal uniform distribution. They serve as a key indicator of point dispersion [33]. Discrep-

ancy plays a central role in the theory of quasi-Monte Carlo methods, where low-discrepancy

sequences such as those of Halton (1960)[27], Sobol’ (1967)[29], and Faure (1982)[30] are widely

used in numerical integration and computer experiment designs [41].

Second, distance-based criteria assess the regularity of a point distribution by comparing

it to a regular grid [42]. This method is particularly useful in space-filling designs, where

maintaining a minimum distance between points helps enhance interpolation accuracy and

response surface modeling [43].

Third, the entropy criterion quantifies the amount of information contained in a design.

Unlike the first two, it is model-dependent, relying on statistical assumptions about the response

function [44]. Entropy-based criteria are often employed in Bayesian experimental design, where

maximizing entropy leads to optimal information gain and reduced uncertainty in predictions

[45]. Entropy is also closely related to interpoint distances, thus promoting well-distributed

designs [46].

Each of these approaches supports the construction of optimal designs tailored to different

objectives. Low-discrepancy designs provide uniform space coverage and are widely used in
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numerical simulations and optimization [47]. Distance-based designs reduce clustering and are

ideal for computer experiments [48].

Finally, for the standard designs, the quality of experimentation can be assessed using

the model matrix even before running the experiments. This matrix depends on both the

assumed mathematical model and the experimental point locations. It directly affects the

prediction error, which should be minimized to a level comparable to the measurement error.

Depending on the objective, various optimality criteria can be adoptedeither to ensure good

domain coverage or to achieve precise estimation of model coefficients.

3.1 Optimality Criteria for computer experiments de-

signs

3.1.1 Uniformity Criteria Based on Discrepancy and Low-Discrepancy

Designs

3.1.1.1 Discrepancy

The fundamental definition of discrepancy was introduced in Section (2.2.4). As a reminder,

discrepancy measures the deviation between a given point distribution and a uniform distribu-

tion; in other words, it quantifies the irregularity of the distribution. Below, we present the

formal definition to clarify the underlying principle.

Remark 10. If the domain is reparameterizedfor instance, if we analyze X
(2)
1 instead of X1then

the objective will not be exactly the same. Ensuring uniformity for X1 does not necessar-

ily imply uniformity for X
(2)
1 . This issue also arises in Bayesian inference when defining an

informative prior distribution, where uniformity is not necessarily the primary goal.

Definition 3.1. (Niederreiter, 1987): Let X be a sequence of n points x1, . . . , xn in [0, 1]d, and

let J be a subset of [0, 1]d. Using the previous notations, the discrepancy function is defined

as:

Dn(J,X) =
A(J,X)

n
− λd(J)

where: - A(J,X) is the number of indices i, 1 ≤ i ≤ n, such that xi ∈ J , - λd(J) represents

the Lebesgue measure (or volume) of J .

The extreme discrepancy of X, denoted as Dn(X), is defined as:
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Dn(X) = sup
J∈J

Dn(J,X)

where J is the set of all subsets of [0, 1]d of the form:J =
∏d

i=1[ai, bi]. The star discrepancy of

X, denoted as D∗
n(X), is given by:D∗

n(X) = supJ∈J ∗ |Dn(J,X)|

where J ∗ is the set of subsets of [0, 1]d of the form:
∏d

i=1[0, bi].

Remark 11. Let µX = 1
n

∑n
i=1 δxi

be the uniform probability measure on X. Then, Dn(J,X)

can be expressed as the distance between this measure and the Lebesgue measure, i.e.,

Dn(J,X) = |µX(J)− λd(J)|

where λd(J) denotes the Lebesgue measure (or volume) of J .

Figure 3.1: The first 80 points of a Hammersley sequencein demension 2 with a subset J defined
by x and x′ for extreme discrepancy

Consider the rectangle J defined by the corners: - x = (0.2, 0.3) - x′ = (0.8, 0.7)

The volume of this rectangle, given by the Lebesgue measure, is: λd(J) = (0.8 − 0.2) ×

(0.7− 0.3) = 0.24. This means that, under a perfectly uniform distribution, 24% of the points

should ideally fall within J .

Now, considering a set X of 80 points, suppose that 18 points actually lie inside J . The

observed proportion is:
A(J,X)

n
=

18

80
= 0.225.
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The discrepancy for this subset J is then given by:

Dn(J,X) =

∣∣∣∣A(J,X)

n
− λd(J)

∣∣∣∣ = |0.225− 0.24| = 0.015.

By repeating this calculation for multiple subsets J and selecting the maximum value ob-

tained, we derive the extreme discrepancy of the sequence X, denoted as Dn(X). Similarly,

D∗
n(X) represents the star discrepancy. These discrepancies are defined in the L∞-norm, which

measures the worst-case deviation between the point distribution and the ideal uniformity.

Figure 3.2: A subset J for the computation of the discrepancy at the origin

An alternative approach is to consider L2-norm discrepancies, which provide a global mea-

sure of non-uniformity by integrating quadratic deviations over the entire domain. This concept

will be further explored in Section (3.1.2).

Now that we have established a rigorous definition of discrepancy, we can explain why a

regular grid can lead to poor discrepancy results. To achieve low discrepancy, it is crucial

that the sampling uniformly covers all axis-aligned rectangles. However, a regular grid does

not always meet this criterion. Some sub-rectangles may be poorly sampled due to the rigid

structure of the grid. For instance, the placement of the boundaries relative to the grid may

lead to significant deviations from ideal uniformity.
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Figure 3.3: Factorial design and visualization of two axis-parallel rectangles not being uniformly
sampled.

3.1.2 Discrepancy in L2-norm

The L2-norm discrepancy is the only one that remains easily computable regardless of the

dimension.

Let X = {x1, . . . , xn} be a sequence of n points in the interval [0, 1]d. This section first

introduces the definition of various forms of L2-norm discrepancy and then presents the corre-

sponding computational approaches.

3.1.2.1 Discrepancy at Extremes and at the Origin

Definition 3.2. The L2 discrepancy of a sequence of n points x1, . . . , xn in [0, 1]d is defined as:

D2
L2
(Xn) =

∫
[0,1]d

D(J,Xn)
2 da db

where J represents subsets of [0, 1]d of the form:

J =
d∏

i=1

[ai, bi]

Definition 3.3. The L2 discrepancy at the origin of a sequence of n points x1, . . . , xn in [0, 1]d

is given by:

D∗2
L2
(Xn) =

∫
[0,1]d

D(J,Xn)
2 db

where J represents subsets of [0, 1]d of the form:
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J =
d∏

i=1

[0, bi]

3.1.2.2 Extreme and Origin Discrepancy Calculation

In dimension d, the values of D2
L2
(Xn) and D∗2

L2
(Xn) can be computed using the following

explicit formulas:

D2
L2
(Xn) =

1

n2

n∑
i=1

n∑
k=1

d∏
j=1

(
1 +

1

2
max(xij, xkj)−

1

2
min(xij, xkj)− xijxkj

)
− 1

n

d∑
j=1

n∏
i=1

(
1

2
− xij

)
+

1

12d

and

D∗2
L2
(Xn) =

1

n2

n∑
i=1

n∑
k=1

d∏
j=1

(1− max(xij, xkj) + xijxkj)−
1

n

d∑
j=1

n∏
i=1

(
1

3
− xij

)
+

1

3d

3.1.2.3 Modified Discrepancy

Definition 3.4. The modified L2-discrepancy of a sequence of n points x1, ..., xn in [0, 1]d is

defined as:

DL2Mn (Xn) =
∑
u ̸=0

∫
[0,1]u

Dp(Ju, Xn)
2 dbu

where [0, 1]u is the projection of the unit hypercube onto the components u, which form a

subset of {1, ..., d}, with p = Card(u). Ju denotes the projection of the subset J , defined as:

Ju =
∏d

i=1[0, bi]

The modified L2-discrepancy considers projections onto all subspaces and is defined by the

following explicit formula:

DL2Mn (Xn) =

(
4

3

)
− 21−d

n

n∑
i=1

d∏
j=1

(
3− (xi

j)
2
)
+

1

n2

n∑
i=1

n∑
k=1

d∏
j=1

(
2−max

(
xi
j, x

k
j

))

3.1.3 Centered Discrepancy

Definition 3.5. The centered L2-discrepancy of a sequence of n points x1, . . . , xn in [0, 1]d is

defined as:
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DC
L2
(Xn) =

∑
u ̸=0

pu

∫
[0,1]u

D(Ju, Xn)
2 dx

where:

- [0, 1]u represents the projection of the unit hypercube onto the components u, which is a

subset of {1, ..., d},

- p = Card(u),

- Ju is the projection of a subset constructed from the considered point x and its nearest

vertex.

Remark 12. In dimension 2, the set Ju can take four different forms, one of which is depicted

in Figure 3.4. More generally, in dimension d, there are 2d possible cases.

Figure 3.4: A subset J for the calculation of the centred discrepancy

Hickernell (1998) [42] provides an analytical expression for the centered discrepancy.

DL2Cn (X)2 =

(
13

12

)2

− 2

n

n∑
i=1

d∏
j=1

(
1 +

1

2
|xi

j − 0.5| − 1

2
|xi

j − 0.5|2
)

+
1

n2

n∑
i=1

n∑
k=1

d∏
j=1

(
1 +

1

2
|xi

j − 0.5|+ 1

2
|xk

j − 0.5| − 1

2
|xi

j − xk
j |
)
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3.1.4 Symmetric Discrepancy

Definition 3.6. The L2 symmetric discrepancy of a sequence of n points x1, ..., xn in [0, 1]d is

defined as:

DLS
2 (X) =

∑
u ̸=0

∫
[0,1]

D(Ju, X)2 dx

where Ju is the projection of the interval J onto the subspace defined by the components u,

and J represents the union of symmetric subsets, i.e., subsets where the sum of the coordinates

of the vertices remains equal.

Figure 3.5: For x = (0.7, 0.75), the total volume of the two subsets J is 0.6, and the total
proportion of points is 49/80 = 0.6125. The difference between these two values is therefore
0.0125

We also have an analytical formula to compute this discrepancy:

DL2Sn(X)2 =

(
4

3

)d

− 2

n

n∑
i=1

d∏
j=1

(
1 + 2xi

j − 2(xi
j)

2
)
+

2d

n2

n∑
i=1

n∑
k=1

d∏
j=1

(
1−

∣∣xi
j, x

k
j

∣∣)

3.1.5 Low-Discrepancy Designs

The concept of low-discrepancy designs discussed here differs from that of sequences detailed

in Section 2.2.4 for the following reasons.

First, let us clearly define what we mean by low-discrepancy designs. These designs refer to

stochastic configurations generated by a simple exchange algorithm, which favors arrangements
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that minimize discrepancy.

Numerous results exist for bounding discrepancy. In Section 2.2.4, we mentioned the

Koksma-Hlawka inequality, but there are also specific upper bounds for each of the previ-

ously discussed sequences. For instance, Faure[32] demonstrated that the star discrepancy of a

n-point Halton sequence in d dimensions, generated using bases b1, ..., bd, is bounded by:

d

n
+

1

n

d∏
j=1

bj − 1

2 log bj
logn+

bj + 1

2
.

Faure’s theorem [49] further suggests that discrepancy can be reduced by generalizing se-

quences, specifically by applying permutations to sequence elements. Consequently, the idea

of obtaining low-discrepancy designs through a simple exchange algorithm appears not only

feasible but also promising.

Theorem 3.1.1. Let X be the generalized Van der Corput sequence in base b = 12, generated

by the permutation

σ = (0, 5, 9, 3, 7, 110, 4, 8, 2, 6, 11)

Then, we obtain:

lim sup
n→∞

nD∗
n(X)

logn ≈ 0.224.

The study of low-discrepancy designs is of dual interest. Firstly, it demonstrates that it is

possible to obtain designs with a lower discrepancy than most of the sequences discussed in

Section 2.2.4. Secondly, these inherently non-deterministic designs avoid the projection defects

commonly found in high-dimensional sequences due to their regular structure.

The construction of these designs relies on discrepancy computation, and they are primarily

built using the L2-norm discrepancy, which is significantly easier to compute than the L∞-norm

discrepancy. This approach makes it possible to design plans based on any of the discrepancies

defined in Section 3.1.2, particularly the centered or modified discrepancy, which consider point

projections on the margins. Consequently, in the following discussion, the designs will be

generated using the centered discrepancy.

However, a major drawback of these designs is their computational cost. Even though

the L2-norm discrepancy can be calculated using simple analytical formulas, low-discrepancy

sequences are much faster to generate. For instance, a Halton sequence with 600 points in 60

dimensions can be produced instantly, whereas constructing a low-discrepancy design of similar
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size is computationally prohibitive.

3.1.6 Distance Criteria and Optimal Designs

Distance-based criteria aim to assess the proximity between a given point distribution and that

of a regular grid. In this section, we will focus on the most commonly used uniformity criteria,

which are based on the distance between neighboring points. For a more in-depth discussion

of additional uniformity measures, the reader may refer to Gunzburger [50].

The idea is to generate designs whose points are close to a regular grid without exactly

matching it, in order to avoid undesirable misalignments. Our goal is to construct designs with

a quasi-periodic distribution, striking a balance between a regular grid and good uniformity,

often measured using discrepancy criteria.

The distance between two points xi and xk, denoted as dist(xi, xk), is given by the Euclidean

distance:

dist(xi, xk) =

[
d∑

j=1

(xi
j − xk

j )
2

]1/2

3.1.6.1 Covering Measure

Definition 3.7. Let X = {x1, ..., xn} ⊂ [0, 1]d be a sequence of n points in a d-dimensional

space.

The covering measure λ is defined as:

λ =
1

γ̄

(
1

n

n∑
i=1

(γi − γ̄)2

)1/2

where: - γi = min
k ̸=i

dist(xi, xk) represents the minimum distance between point xi and the

other points in the sequence. - γ̄ = 1
n

∑n
i=1 γi is the average of all γi.

Interpretation

If the points are arranged on a regular grid, then γi = γ for all i, leading to λ = 0.

Therefore, the smaller λ, the closer the points are to a regular grid. This expression explic-

itly highlights the coefficient of variation of the sample γi, which is the ratio of the standard

deviation to the mean.
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3.1.6.2 The Distance Ratio

Definition 3.8. Let X = {x1, ..., xn} ⊂ [0, 1]d be a set of n points in d-dimensional space.

The distance ratio is defined as:

R =
max

i=1,...,n
γi

min
i=1,...,n

γi

where

γi = min
k ̸=i

dist(xi, xk)

represents the minimum distance between the point xi and any other point in the set.

When the points are arranged on a regular grid, we have γi = γ for all i, leading to

R =
max γi
min γi

= 1.

Therefore, the closer R is to 1, the more the point distribution resembles a regular grid.

3.1.6.3 Maximin and Minimax Distances

Johnson et al.[48] introduced the maximin and minimax distances to construct designs that

optimize space-filling properties.

Definition 3.9. [51]

These criteria are defined using the Euclidean distance:

• Maximin Distance (MinDist):

MinDist = min
xi∈X

min
xk∈X
k ̸=i

dist(xi, xk)

• Minimax Average Distance (AvgDist):

AvgDist = 1

n

n∑
i=1

min
xk∈X
k ̸=i

dist(xi, xk)

where X = {x1, ..., xn} represents an experimental design with n points in d-dimensional space.
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3.1.7 Entropy Criterion and Maximum Entropy Designs

This criterion differs from the previously presented ones as it does not directly assess the

uniformity or space-filling properties of a design in an exploratory phase. Indeed, entropy

calculation is generally feasible only when the underlying distribution is known, an assumption

that is often not met in exploratory settings.

The purpose of introducing entropy here is to lay the foundation for a method of optimal

design generation based on this criterion (see section 3.1.7.2). Although this criterion is not

inherently linked to spatial uniformity, the resulting designs exhibit good space-filling proper-

ties. Additionally, it allows for the consideration of variable anisotropy, which can sometimes

be inferred during the exploratory phase based on prior knowledge of the physical phenomenon.

3.1.7.1 Definition of Entropy

Shewry and Wynn (1987)[44] described entropy as "the amount of information contained in an

experiment." More generally, entropy quantifies the information content within a probability

distribution.

Definition 3.10. The entropy of a continuous random variable X with probability density

function f is given by:

H(X) = −
∫
x∈R

f(x) log f(x) dx = −EX(log f(X))

with the convention 0 ln(0) = 0.

For mathematical simplicity, we use the natural logarithm. This choice does not affect the

results, as entropy is merely translated by a constant factor.

Similarly, for a continuous random vector X = (X1, ..., Xd) in Rd with density f , entropy is

defined as:

H(X) = −
∫
Rd

f(x) log f(x) dµ(x),

where µ is the Lebesgue measure.

Remark 13. Entropy depends solely on the probability density function f and not on the specific

values taken by X. Consequently, it cannot be directly computed from an experimental design.

Maximizing Entropy for Experimental Design

The goal is to select an experiment e from a set E that maximizes the expected information

gain. Shewry and Wynn (1987) [44] highlighted several challenges with this approach, partic-
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ularly regarding the definition of E. They proposed considering E as a finite set of possible

experiments and established a connection between information gain and entropy.

If the experimental domain E consists of N points, each associated with a response Yi for

i = 1, ..., N , we can partition E into two subsets: - D, the chosen design points, - Dc, the

remaining points.

The standard decomposition of entropy yields:

H(YE) = H(YD) + EYD
[H(YD̄|YD)].

The term E[H(YDc |YD)] corresponds to the expected reduction in entropy when selecting D.

Maximizing entropy-based designs thus involves choosing D to maximize H(YD), the entropy

of the selected design points.

The purpose of maximum entropy designs is therefore to maximize the information gained

from experiments relative to a parameter θ. Many studies have explored this concept, notably

those by Koehler and Owen [52] and Santner et al. [9]. Entropy-based experimental designs

have been widely used to approximate complex deterministic models, as discussed by Mitchell

and Scott [53], Currin et al. [54], and Sebastiani and Wynn [55].

Remark 14. This approach combines prior knowledge with experimental data under an assumed

model to produce a posterior distribution, placing it entirely within the Bayesian framework.

For a comprehensive review of Bayesian experimental designs, see Chaloner and Verdinelli [45].

3.1.7.2 Maximum Entropy Designs

The general definition of maximum entropy designs typically requires knowing the response

values at the design points, which means that entropy is not, in principle, an intrinsic criterion.

However, Shewry and Wynn [44] proposed a formulation that allows constructing such designs

without needing the actual response values.

The method they introduced focuses on space-filling by distributing points according to a

spatial correlation matrix. In the specific case of a centered Gaussian process f , Shewry and

Wynn (1987) showed 1 that the entropy H(Y (X)) depends directly on the determinant of the

covariance matrix:

H(Y (X)) ∝ ln det(C(X))

1This demonstration is excellently detailed in Koelher and Owen [52]
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where C(X) is the covariance matrix. Therefore, under the assumption of stationarity, gen-

erating a maximum entropy design amounts to maximizing the determinant of the correlation

matrix.

Remark 15. If the model is linear, then the determinant can be expressed in terms of the

design matrix. In this case, a design obtained using a classical approach, such as an exchange

algorithm, would be D-optimal.

This equivalence holds only if the responses at the design points follow a multivariate normal

distribution, without any specific assumptions on the covariance structure.

Let

X = (X1, . . . , Xn)
T

be a vector of random variables. The variancecovariance matrix of X is given by:

C(X) =


σ2
1 cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) σ2
2 · · · cov(X2, Xn)

... ... . . . ...

cov(Xn, X1) cov(Xn, X2) · · · σ2
n


where σi is the standard deviation of Xi, and

cov(Xi, Xj) = σiσjρij

is the covariance between Xi and Xj.

If the variables Xi are standardized, the covariance matrix C(X) becomes the correlation

matrix:

C(X) =


1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
... ... . . . ...

ρn1 ρn2 · · · 1


Now, let us define a spatial correlation matrix C = [ρij] as follows:

ρij =


1, if i = j

1− γ(hij), if hij < a

0, if hij > a
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Here, γ(h) is the variogram, hij denotes the Euclidean distance between points i and j, and

a is the range parameter of the variogram

We can then compute, for

X = (x1, . . . , xn)

a vector of points in a d-dimensional space, a spatial correlation matrix defined as:

C(X) =


1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
... ... . . . ...

ρn1 ρn2 · · · 1


where ρij is a function of the distance between points i and j, computed based on a spatial

correlation model that is assigned a priori to the experimental space (see equation (1) above).

The determinant of C(X) reaches its maximum when ρij = 0, that is, when each pair of

points is separated by a distance greater than the range a of the spatial correlation function.

Thus, the goal is to maximize the determinant of C(X) using an exchange algorithm, such

as those proposed by Fedorov or Mitchell, as described below:
Algorithm 1: Procedure for Generating a Maximum Entropy Design (DETMAX)

Input: Number of points n, maximum number of iterations Nmax, variogram model

Output: A design X with (approximately) maximum entropy

Initialize: Randomly select an initial design X(0) of n points in [0, 1]d and fix a

variogram model;

Compute det(C(X(0)));

for k = 1 to Nmax do

Randomly choose an index i ∈ {1, . . . , n};

Simulate a new point zi uniformly in [0, 1]d;

Let X(k) be X(k−1) with xi replaced by zi;

if det(C(X(k))) > det(C(X(k−1))) then

Accept the new design X(k);

end

else

Reject the update and keep X(k) = X(k−1);

end

end

return X(Nmax)
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Remark 16. The classical DETMAX algorithm explores all points on a regular grid.

3.2 Optimality Criteria for Standard Designs
A good experimental design is one that minimizes the prediction error on the responses. A

general rule is that the prediction error should be of the same order of magnitude as the

measurement error on the observed responses. Depending on the selected optimality criterion,

the location of the experimental points may vary from one design to another.

Several optimality criteria exist. Some focus on the distribution of the variance across the

experimental domainsuch as the rotational isovariance criterion. Others aim to ensure that the

resulting mathematical model is of high quality. These criteria are primarily concerned with

the precision of the models estimated coefficients.

3.2.1 A-Optimality Criterion

An experimental design matrix is said to be A-optimal if it minimizes the trace of the disper-

sion matrix:

Tr
(
(XTX)−1

)
This criterion focuses on minimizing the average variance of the estimated coefficients.

3.2.2 D-Optimality Criterion

A design matrix is D-optimal if it minimizes the determinant of its dispersion matrix:

det
(
(XTX)−1

)
Equivalently, this maximizes the determinant of the information matrix XTX, reducing the

volume of the confidence ellipsoid for the model coefficients.

3.2.3 E-Optimality Criterion

A design matrix is E-optimal if it minimizes the largest eigenvalue of the dispersion matrix

(XTX)−1. This criterion ensures that the worst-case variance among the coefficients is as small

as possible.
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3.2.4 G-Optimality Criterion

The G-optimality criterion considers the maximum prediction variance across the design

domain:

d = max
u∈D

ŷ2(u)

The best design under this criterion minimizes d.

G-Efficiency The G-efficiency of a design is calculated as:

EffG =
100 · q
N · dmax

where q is the number of model parameters, N is the number of experiments, and dmax is the

maximum prediction variance. A design is close to G-optimal if EffG ≈ 100%.

3.2.5 M-Criterion

The M-criterion assesses the information quality of a design, independent of the number of

runs. The moment matrix is defined as:

M =
1

N
XTX

Let M1 and M2 be the moment matrices for two designs with N1 and N2 runs:

M1 =
1

N1

XT
1 X1, M2 =

1

N2

XT
2 X2

Design 1 is more efficient than Design 2 with respect to this criterion if det(M1) > det(M2).

3.2.6 Orthogonality Criterion

A design is orthogonal if it leads to independent coefficient estimations, which occurs when

the information matrix XTX (or its inverse) is diagonal. This implies zero covariance between

coefficients.

3.2.7 Near-Orthogonality Criterion

The near-orthogonality criterion is satisfied when the submatrix (excluding the first row and

column) of (XTX)−1 is diagonal, indicating that all coefficients except the intercept are nearly
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uncorrelated.

3.2.8 Iso-Variance by Rotation Criterion

This criterion requires the prediction error to be constant for all points located at equal distances

from the center of the experimental domain. It ensures isotropy and rotational symmetry of

the variance distribution across the space.
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CHAPTER 4

COMPARATIVE ANALYSIS OF STANDARD AND COMPUTER

EXPERIMENTAL DESIGNS BASED ON OPTIMALITY

CRITERIA

This chapter is dedicated to the comparative analysis between standard design of experiments

(such as factorial designs, composite designs, Box-Behnken designs, and so on.) and computer

designs generated through simulation (such as low-discrepancy sequences, maximin distance

designs, Strauss designs, marked Strauss designs, and so on.). Based on the optimality criteria

discrepancy, inter-point distances, and entropy we evaluate the relative performance of each

type of design. This comparison aims to identify scenarios where one design may be more

appropriate than another, depending on the experimental goals pursued, such as space-filling,

estimation accuracy.

4.1 Comparison of Standard Experimental Designs Ac-

cording to Classical Optimality Criteria
This section focuses on the comparative analysis of several classical experimental designs based

on widely accepted optimality criteria. The designs examined include full factorial designs

at two and three levels, Mozzo designs, composite designs, and Box-Behnken designs. These

designs are commonly used in practice due to their simplicity and effectiveness in modeling

first- or second-order responses.

Each design is evaluated using key optimality criteria such as:

• D-optimality, based on the determinant of the information matrix (XTX),
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• A-optimality, based on the trace of (XTX)−1,

• G-optimality, through the maximum prediction variance max d(x),

• M-criterion, related to the determinant of the moment matrix M = 1
N
XTX

• G-efficiency, indicating the overall predictive quality of the design.

Through this analysis, we aim to highlight the trade-offs between the number of experiments,

estimation precision, and spatial coverage of the experimental domain. The comparison allows

us to determine under which conditions each design performs best and to provide guidance for

choosing the most suitable design according to the study objectives.

4.1.1 Comparison for Two-Factor Designs

We examine four standard experimental designs used in the case of two factors: the full factorial

designs at two and three levels, the Mozzo design, and the composite design. These designs

are evaluated according to several classical optimality criteria such as D-optimality (through

det(XTX)), A-optimality (trace of the inverse information matrix), G-optimality (maximum

prediction variance), and G-efficiency. The goal is to assess the trade-offs between model

estimation quality, prediction accuracy, and space-filling properties.

Table 4.1: Comparison of standard designs for two factors

Design Full Factorial 2k Full Factorial 3k Mozzo Composite
Nb. Runs. 6 9 3 12
Nb. Levels 2 ; 2 3 ; 3 3 ; 3 5 ; 5
det(XTX)−1 2.61× 10−3 1.92× 10−4 0.129 3.05× 10−5

trace[(XTX)−1] 0.92 2.1389 1.5771 2.18
M 0.296 9.754× 10−3 0.287 6.16× 10−2

max d(x) 0.805 0.81 1.564 0.99
G-efficiency (%) 82.81 82.30 63.39 67.34

The analysis of the results in Table 4.1 highlights several trade-offs. The full factorial design

at two levels shows the highest D-optimality and a very good G-efficiency, indicating strong

model identifiability with a relatively small number of experiments. The factorial 3k design

offers a finer resolution due to more levels but slightly reduces G-efficiency and increases the

complexity of the experiment.

Although the Mozzo design is highly economical (with only 3 points), it performs poorly in

terms of D- and A-optimality and the highest maximum prediction variance, which limits its
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practical utility for accurate modeling. The composite plan, although it uses the highest num-

ber of experiments (12), performs moderately across most criteria, offering a balance between

coverage and estimation quality, but with lower G-efficiency.

For two-factor models, the full factorial design at two levels appears to offer the best com-

promise between economy and statistical robustness.

4.1.2 Comparison for Three-Factor Designs

A comparative evaluation of three classical designs used in the case of three factors: the full

factorial design at three levels, the central composite design, and the Box-Behnken design.

These designs are commonly used when second-order models are required, particularly for

response surface methodology. The comparison is based on optimality criteria such as D-

optimality, A-optimality, moment matrix determinant, G-optimality, and G-efficiency.

Table 4.2: Comparison of standard designs for three factors

Design Full Factorial (3 levels) Composite Box-Behnken
Nb. Runs. 27 15 15
Nb. Levels 3 ; 3 ; 3 5 ; 5 ; 5 3 ; 3 ; 3
det(XTX)−1 1.70× 10−11 1.19× 10−9 3.97× 10−8

trace[(XTX)−1] 1.176 1.769 2.270
M 2.85× 10−4 1.452× 10−2 4.364× 10−5

max d(x) 0.51 0.525 0.73
G-efficiency (%) 72.62 67.34 59.52

The results in Table 4.2 show that the full factorial design at three levels achieves the best

overall performance in terms of both D-optimality and A-optimality. This confirms its strong

ability to estimate complex models with high precision, at the cost of a higher number of

experimental runs (27).

The composite design, with only 15 runs, achieves a good compromise. Although its D-

efficiency is slightly lower, it still provides reasonable estimation accuracy with improved econ-

omy. Moreover, its G-efficiency remains acceptable, reflecting reliable prediction performance

over the experimental space.

The Box-Behnken design, also with 15 runs, shows lower efficiency on all statistical criteria.

While it is often appreciated for requiring fewer experimental runs and for being rotatable,

it presents the largest prediction variance and the lowest G-efficiency among the three, which

could be a limiting factor in some applications.
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For three-factor experiments aiming at quadratic modeling, the full factorial design pro-

vides the best estimation power, while the composite plan remains a viable alternative when

experimental cost must be minimized.

4.1.3 Comparison for Four-Factor Designs

We compare several standard experimental designs suitable for four factors. These include full

factorial designs at two and three levels, the Box-Behnken design, the composite design, as well

as the Mozzo and Doehlert designs. The evaluation is carried out using multiple optimality

criteria, including D- and A-optimality, maximum prediction variance, and G-efficiency. These

criteria help assess the balance between estimation accuracy, prediction robustness, and space-

filling properties.

Table 4.3: Comparison of standard designs for four factors (Part 1)

Design Full factorial 34 Full factorial 24 Box-Behnken
Nb. Runs. 81 16 27
Nb. Levels 3 ; 3 ; 3 ; 3 2 ; 2 ; 2 ; 2 3 ; 3 ; 3 ; 3
det(XTX)−1 6.52× 10−11 1.67× 10−3 1.96× 10−6

trace[(XTX)−1] 0.574 0.3125 2.9167
max d(x) 22.50 5.00 15.75
G-efficiency (%) 66.67 100.00 95.24

Table 4.4: Comparison of standard designs for four factors (Part 2)

Design Composite Design Mozzo Design Doehlert Design
Nb. Runs. 30 18 24
Nb. Levels 3 ; 3 ; 3 ; 3 5 ; 5 ; 5 ; 5 5 ; 5 ; 5 ; 5
det(XTX)−1 1.96× 10−9 Not valid 2.24
trace[(XTX)−1] 0.8542 Not valid 64.45
max d(x) 17.50 Not available 19.20
G-efficiency (%) 85.71 Not available 78.12

The comparison reveals distinct performance patterns among the designs. The full factorial

24 design achieves the best G-efficiency (100%) and lowest A-optimality trace, but it lacks the

resolution to estimate second-order effects fully. The 34 factorial design provides better model

estimation at the cost of a high number of runs (81), with good D- and A-optimality, although

it is less space-filling.

The composite design represents a strong compromise, balancing estimation accuracy and

point dispersion, with high G-efficiency and moderate prediction variance. Box-Behnken per-

forms acceptably but shows lower estimation quality, as reflected in its A-optimality.
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The Doehlert design, while efficient in terms of point distribution and fewer experimental

runs, yields poor A-optimality and an unusually high prediction variance, limiting its suitability

for accurate modeling. The Mozzo design values appear numerically unstable (invalid determi-

nants or traces), suggesting it may not be adequate for four-factor second-order modeling.

The composite design offers the best compromise between estimation quality and space-

filling performance in the case of four factors.

4.1.4 Comparison for Five-Factor Designs

We compare several standard experimental designs suitable for five-factor studies. The consid-

ered designs include full factorial designs at two and three levels, the Box-Behnken design, the

central composite design, and the Doehlert design. These are evaluated according to optimality

criteria such as D-optimality, A-optimality, G-efficiency, and the maximum prediction variance.

Table 4.5: Comparison of standard designs for five factors (Part 1)

Design Full factorial 35 Full factorial 25 Box-Behnken
Nb. Runs. 243 32 43
Nb. Levels 3 ; 3 ; 3 ; 3 ; 3 2 ; 2 ; 2 ; 2 ; 2 3 ; 3 ; 3 ; 3 ; 3
det(XTX)−1 2.14× 10−19 1.15× 10−4 6.96× 10−9

trace[(XTX)−1] 0.2613 0.1875 3.9271
max d(x) 33.50 6.00 21.50
G-efficiency (%) 62.69 100.00 97.67

Table 4.6: Comparison of standard designs for five factors (Part 2)

Design Composite Design Doehlert Design
Nb. Runs. 48 34
Nb. Levels 3 ; 3 ; 3 ; 3 ; 3 5 ; 5 ; 5 ; 5 ; 5
det(XTX)−1 1.18× 10−15 146.33
trace[(XTX)−1] 0.6887 162.94
max d(x) 26.91 26.81
G-efficiency (%) 78.04 78.34

From the comparison above, it is clear that the full factorial design at two levels offers the

best G-efficiency (100%) and the lowest prediction variance, although it cannot model second-

order effects.. The 35 factorial design offers excellent D- and A-optimality, but at the cost of

significant computational expense due to the very high number of experiments (243).

The composite design presents a strong compromise, maintaining relatively low prediction

variance and acceptable G-efficiency while reducing the number of runs compared to the full
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factorial. The Box-Behnken design, with 43 runs, also performs very well in terms of G-efficiency

and space coverage, although with reduced estimation accuracy.

The Doehlert design is the most economical in terms of prediction dispersion, but it exhibits

extremely poor A-optimality, making it less appropriate for accurate model estimation in higher-

dimensional settings.

For five-factor designs, the composite and Box-Behnken plans appear to provide a practical

balance between statistical quality and experimental cost.

4.1.5 Comparison for Six-Factor Designs

A detailed comparison of several standard experimental designs suitable for six factors. The

criteria considered include the number of experiments, the number of levels, statistical precision

indicators such as the determinant and the trace of the information matrix (X tX)−1, the max-

imum distance between points, as well as G-efficiency. These criteria allow for the evaluation

of trade-offs between experimental cost, estimation accuracy, and the space-filling quality.

Table 4.7: Comparison of standard designs for six factors (part 1)

Design Full factorial 36 Full factorial 26 Box-Behnken
Nb. Runs. 729 64 63
Nb. Levels 3 2 3
det(XTX)−1 1.37× 10−31 1.4× 10−6 4.37× 10−12

trace[(XTX)−1] 0.113512 0.109375 5.220833
M 9.21× 10−5 1 1.83× 10−11

max d(x) 46.75 7 28.35
G-efficiency (%) 59.89 100 98.77

Table 4.8: Comparison of standard designs for six factors (part 2)

Design Composite Design Doehlert Design
Nb. Runs. 82 46
Nb. Levels 3 5
det(XTX)−1 6.53× 10−24 1.44× 105

trace[(XTX)−1] 0.514174 351.4375
M 0.38 1
max d(x) 44.8071 35.9375
G-efficiency (%) 62.49 77.91

Comparative Analysis The full factorial design 36 provides excellent coverage of the ex-

perimental space (max d(x) = 46.75) and good statistical precision (trace = 0.113512), but at

the cost of a very high experimental burden (729 runs), making it impractical in many cases.
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The 26 factorial design offers a highly efficient solution: with only 64 runs, it achieves

maximum G-efficiency (100%) and optimal precision (trace = 0.109375). However, its limited

spatial dispersion (max d(x) = 7) reduces its ability to explore the factor space thoroughly.

The Box-Behnken design (63 runs) represents a good compromise. It offers excellent G-

efficiency (98.77%) and acceptable dispersion (max d(x) = 28.35), though with lower statistical

precision (higher trace value).

The central composite design (82 runs) provides good dispersion (max d(x) = 44.81) and

satisfactory precision (trace = 0.514174) at a moderate cost, but has relatively low G-efficiency

(62.49%).

Finally, the Doehlert design performs poorly in terms of statistical precision (trace =

351.4375) and exhibits an abnormally high determinant, indicating multicollinearity issues.

Despite its low experimental cost (46 runs), this design is not well suited for accurately mod-

eling complex phenomena involving six factors. Conclusion

In summary, the 26 factorial and Box-Behnken designs offer the best trade-offs between cost,

precision, and space-filling ability. The final choice depends on the required level of precision

and specific experimental constraints.

4.1.6 Comparison for Seven-Factor Designs

This section presents a comparative evaluation of several classical experimental designs used

to study seven factors. The evaluated criteria include the number of experiments, number of

levels, determinant and trace of the information matrix, maximum pairwise distance between

design points, and G-efficiency. The objective is to identify the most suitable designs under

cost constraints and modeling requirements.

Table 4.9: Comparison of standard designs for seven factors

Design Full factorial 37 Full factorial 27 Box-Behnken Composite
Nb. Runs. 2187 128 87 148
Nb. Levels 3 2 3 3
det(XTX)−1 3.14× 10−47 1.56× 10−8 6.81× 10−15 1.29× 10−34

trace[(XTX)−1] 0.047668 0.0625 6.779167 0.345315
M 5.24× 10−6 1 8.78× 10−17 2.82
max d(x) 62.25 8 36.25 80.2488
G-efficiency (%) 57.83 100 99.31 44.86

Comparative analysis The full factorial design 37 offers excellent accuracy (trace = 0.047668)

and very broad space coverage (max d(x) = 62.25), but it is extremely expensive, requiring 2187

80



experiments, which is often impractical.

The 27 full factorial design is much more economical (128 experiments), achieves the highest

G-efficiency (100%), and has good statistical precision (trace = 0.0625). However, its low spatial

dispersion (max d(x) = 8) limits global space exploration.

The Box-Behnken design, with only 87 experiments, provides very high G-efficiency (99.31%)

but suffers from lower precision (trace = 6.779167). Still, it remains a good trade-off for mod-

erately complex response surfaces.

The composite design (148 runs) improves space coverage (max d(x) = 80.25), but its low G-

efficiency (44.86%) and moderate precision (trace = 0.345315) reduce its appeal for applications

requiring high statistical quality.

For seven-factor experiments, the 27 factorial design stands out as an excellent option due to

its precision and efficiency. The Box-Behnken design is also a strong candidate, offering a good

balance between cost and performance. In contrast, the full factorial and composite designs,

while strong in terms of space coverage, are either too costly or less efficient depending on the

evaluation criteria.

4.2 Comparison of Computer Design
To ensure the statistical relevance of the results, the evaluation criteria were computed over

a set of 100 designs generated for each stochastic method. The comparison was based on

several performance metrics, including Coverage (Cov), Discrepancy (Disc), Minimum Distance

(Mindist), and the R criterion. The following types of designs were compared:

• Random Designs (RD)

• Latin Hypercube Sampling (LHS) [56]

• Maximin Latin Hypercube Sampling (mLHS) [57]

• Maximum Entropy Designs (Dmax) [44]

• Strauss Designs (SD) [36]

• Marked Strauss Designs (MSD)

• Connectivity-Interaction Model Designs (CCD) [39]

• Two-Marked Strauss Designs (TMD) [37]
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4.2.1 Designs with 20, 50, and 100 Points in 5 Dimensions

The figures below provide a visual representation of the most relevant evaluation criteria com-

puted for each design. These graphical illustrations facilitate a clearer understanding and

interpretation of the results by highlighting the distribution patterns and variations observed

across each criterion.

Figure 4.1: Box plots of the quality criteria computed on the 100 designs with 20 points in
dimension 5.

In summary, while the optimal choice depends on the specific quality criterion being tar-

geted, Strauss-based designs and CCD stand out as the most well-rounded and robust options

for general use in computer experiments.
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Figure 4.2: Box plots of the quality criteria computed on the 100 designs with 50 points in
dimension 5.

DISCUSSION: Strauss designs (SD, MSD, TMD) and CCD exhibit the best balance be-

tween space-filling and uniformity. MLHS and Dmax achieve low discrepancy but at the cost

of spacing. Random designs (RD) remain the least reliable. For dimension 5 and 50 points,

MSD, CCD, and TMD offer the most robust overall quality.
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Figure 4.3: Box plots of the quality criteria computed on the 100 designs with 100 points in
dimension 5.

DISCUSSION: In the case of 100 points in 5 dimensions, the best-performing designs over-

all are MSD, CCD, and TMD, achieving a good trade-off between space-filling (cov, mindist)

and uniformity (disc). MLHS continues to perform well in uniformity but is limited by poor

spacing and coverage. Random and LH designs show inconsistent results. The Strauss designs

maintain good spacing, but SD can be less stable in balance (R).
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4.2.2 Designs with 20, 50, and 100 Points in 7 Dimensions

Figure 4.4: Box plots of the quality criteria computed on the 100 designs with 20 points in
dimension 7.

The Two-Marked Strauss Designs (TMD) and Marked Strauss Designs (MSD) stand out with

high Mindist values, indicating good spatial dispersion. The Strauss-type designs (SD, MSD)

also show low Cov values, reflecting good alignment with a regular grid. Regarding discrep-

ancy, the best results are obtained by the Dmax and mLHS designs, which ensure a uniform

distribution of points.
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Figure 4.5: Box plots of the quality criteria computed on the 100 designs with 50 points in
dimension 7.

With 50 points, the observed trends are confirmed. The TMD and MSD designs maintain

their advantage in terms of minimum distance, while the SD and MSD designs continue to

yield the best results for the coverage criterion. Discrepancy remains dominated by the Dmax

designs, closely followed by mLHS.
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Figure 4.6: Box plots of the quality criteria computed on the 100 designs with 100 points in
dimension 7.

An overall convergence in performance is observed. The differences between designs di-

minish, particularly for Mindist and Disc, due to the increased point density in the space.

However, Dmax and mLHS designs still retain an advantage in terms of uniformity, while the

Strauss-based designs maintain their robustness with respect to the coverage criterion.

In summary, TMD and MSD designs are particularly suitable when point dispersion is

prioritized, whereas Dmax and mLHS designs perform better in ensuring good spatial unifor-

mity. Strauss-based designs (SD, MSD) demonstrate remarkable stability in terms of coverage,

regardless of the number of points considered.
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CONCLUSION

Mathematics has long played a central role in both fundamental and applied research, pro-

ducing a wide array of theoretical advances. However, the practical application of many of

these advances has often lagged behind due to the computational complexity involved. The

rise of computer technology has helped bridge this gap, enabling researchers to implement so-

phisticated models and perform large-scale computations. A prime example is the widespread

adoption of statistical methods and experimental design techniques in modern industry.

This thesis presented a comprehensive synthesis of experimental design methodologies, rang-

ing from classical standard designs to modern numerical approaches tailored for computer ex-

periments. In the first part of the work, we reviewed the theoretical foundations and described

a variety of design families, including factorial, composite, and uniform designs, as well as

numerical designs derived from stochastic models, such as marked point processes.

The second part of the thesis focused on a comparative analysis of these designs based on

several optimality criteria. Classical criteria such as A-, D-, E-, and G-optimality were applied

to standard designs, while criteria such as discrepancy, entropy, and inter-point distance were

used to assess computer-generated designs. This analysis provided insight into the strengths

and limitations of each design, depending on the number of factors and the experimental budget.

The results demonstrated that standard designs are efficient and interpretable for low-

dimensional problems, particularly when second-order models are required. However, in high-

dimensional settings, numerical designs although more complex to construct offer better

space-filling properties and prediction performance.

This work also opens several promising research directions. These include the development

of new probabilistic models for design generation, the combination of multiple optimality cri-

teria to build hybrid designs, and the incorporation of adaptive or Bayesian frameworks to

dynamically optimize experiments based on intermediate results.
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APPENDIX A

PYTHON code for the results of the 4th chapter
for the standard experimental designs

code for BBD with k factors

1 import numpy as np

2 import itertools

3 import scipy . linalg # Pour une inversion plus stable

4 num_factors = 6

5 num_center_points = 3 # Nombre de points au centre

6 factors = list( range ( num_factors ))

7 factor_pairs = list( itertools . combinations (factors , 2))

8 levels = [-1, 1]

9 level_combinations = list( itertools . product (levels , repeat =2))

10 design_points = []

11 for pair in factor_pairs :

12 for combo in level_combinations :

13 run = np.zeros( num_factors )

14 run[list(pair)] = combo

15 design_points . append (run)

16 center_point = np. zeros( num_factors )

17 for _ in range ( num_center_points ):

18 design_points . append ( center_point )

19 X_design = np. array( design_points )

20 num_runs = X_design .shape [0]

21 num_linear = num_factors

22 num_interact = num_factors * ( num_factors - 1) // 2

23 num_quad = num_factors
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24 num_params = 1 + num_linear + num_interact + num_quad

25 X_model = np.ones (( num_runs , num_params ))

26 col_idx = 1

27 X_model [:, col_idx : col_idx + num_linear ] = X_design

28 col_idx += num_linear

29 interaction_pairs = list( itertools . combinations ( range ( num_factors ), 2))

30 for i, j in interaction_pairs :

31 X_model [:, col_idx ] = X_design [:, i] * X_design [:, j]

32 col_idx += 1

33 for i in range ( num_factors ):

34 X_model [:, col_idx ] = X_design [:, i] ** 2

35 col_idx += 1

36 Xt = X_model .T

37 XtX = Xt @ X_model

38 try:

39 XtX_inv = scipy . linalg .inv(XtX)

40 matrix_invertible = True

41 except scipy . linalg . LinAlgError :

42 XtX_inv = np.full (( num_params , num_params ), np.nan)

43 matrix_invertible = False

44 total_experiments = num_runs

45 num_levels = 3

46 if matrix_invertible :

47 trace_XtX_inv = np.trace( XtX_inv )

48 M_matrix = XtX / num_runs

49 sign_M , log_det_M = np. linalg . slogdet ( M_matrix )

50 M_criterion = np.exp( log_det_M ) if sign_M > 0 else 0

51 sign , log_det_XtX = np. linalg . slogdet (XtX)

52 det_XtX = np.exp( log_det_XtX ) if sign > 0 else 0

53 pred_var_normalized = num_runs * np.sum (( X_model @ XtX_inv ) * X_model ,

axis =1)

54 max_pred_var_normalized = np.max( pred_var_normalized )

55 g_efficiency = ( num_params / max_pred_var_normalized ) * 100

56 else:

57 trace_XtX_inv = M_criterion = det_XtX = max_pred_var_normalized =

g_efficiency = np.nan

58 print (f" --- Propriétés du Plan Box - Behnken k={ num_factors }, nc ={

num_center_points } ---")

59 print (f"1. Nombre total d’expériences (N): { total_experiments }")

60 print (f"2. Nombre de niveaux par facteur : { num_levels }")
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61 print ("-" * 40)

62 print (" Métriques d’Optimalité :")

63 print (f"3. Nombre de paramètres (p): { num_params }")

64 if matrix_invertible :

65 print (f"4. Trace [(X^T X)^-1] (A- optimalité ): { trace_XtX_inv :.6f}")

66 print (f"5. Déterminant de X^T X (D- optimalité ): { det_XtX :.6e}")

67 print (f"6. Déterminant de M = (1/N) X^T X (M- criterion ): { M_criterion

:.6e}")

68 print (f"7. G- efficiency :")

69 print (f" -> Variance de prédiction normalisée max : {

max_pred_var_normalized :.4f}")

70 print (f" -> Efficacité G : { g_efficiency :.2f}%")

71 else:

72 print (" ATTENTION : Matrice X^T X non inversible , calculs non

réalisables .")

73 print ("-" * 40)

4.2.2.1 code for full fact 2k

1 import numpy as np

2 import scipy . linalg

3 from pyDOE2 import ff2n

4 num_factors = 6 # Changer ici le nombre de facteurs

5 add_center_points = True

6 num_center_points = 0 if add_center_points else 0

7 X_base = ff2n( num_factors ) # Matrice codée en [-1, +1]

8 if add_center_points :

9 center_points = np.zeros (( num_center_points , num_factors ))

10 X_design = np. vstack (( X_base , center_points ))

11 else:

12 X_design = X_base

13 num_runs = X_design .shape [0]

14 num_params = 1 + num_factors # Intercept + termes linéaires

15 X_model = np.ones (( num_runs , num_params ))

16 X_model [:, 1:] = X_design # Ajout des colonnes linéaires

17 XtX = X_model .T @ X_model

18 try:

19 XtX_inv = scipy . linalg .inv(XtX)

20 matrix_invertible = True

91



21 except np. linalg . LinAlgError :

22 matrix_invertible = False

23 XtX_inv = np.full (( num_params , num_params ), np.nan)

24 M_matrix = XtX / num_runs

25 sign_M , log_det_M = np. linalg . slogdet ( M_matrix )

26 if sign_M > 0:

27 M_criterion = np.exp( log_det_M )

28 else:

29 M_criterion = 0 if sign_M == 0 else -np.exp( log_det_M )

30 if matrix_invertible :

31 trace_XtX_inv = np.trace( XtX_inv )

32 sign , log_det = np. linalg . slogdet (XtX)

33 det_XtX = np.exp( log_det ) if sign > 0 else 0

34 pred_var = num_runs * np.sum (( X_model @ XtX_inv ) * X_model , axis =1)

35 max_pred_var = np.max( pred_var )

36 g_eff = ( num_params / max_pred_var ) * 100

37 else:

38 trace_XtX_inv = det_XtX = g_eff = max_pred_var = np.nan

39 print (f" --- PLAN FACTORIEL 2^{ num_factors } : Modèle LINÉAIRE ---")

40 print (f" Nombre d’expériences : { num_runs }")

41 print (f" Nombre de paramètres ( linéaires ) : { num_params }")

42 print ("-" * 40)

43 if matrix_invertible :

44 print (f"Trace [(X^T X)^-1] (A- optimalité ) : { trace_XtX_inv :.6f}")

45 print (f" Déterminant X^T X (D- optimalité ) : { det_XtX :.6e}")

46 print (f"M- criterion (det [(1/N) X^T X]) : { M_criterion :.6e}")

47 print (f"-> Interprétation : Plus cest grand , plus le plan est

informatif ( normalisé à N).")

48

49 print (f"Max variance de prédiction : { max_pred_var :.6f}")

50 print (f"G- efficiency : { g_eff :.2f}%")

51 else:

52 print (" ATTENTION : Matrice X^T X non inversible .")

53 print ("-" * 40)

4.2.2.2 code for full fact 3k

1 import numpy as np

2 import itertools
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3 import scipy . linalg # Pour une inversion potentiellement plus stable

4 from pyDOE2 import fullfact

5 num_factors = 7

6 levels = [3] * num_factors

7 X_design_012 = fullfact ( levels )

8 X_design = X_design_012 - 1

9 num_runs = X_design .shape [0]

10 num_runs = X_design .shape [0]# Nombre total d’expériences

11 print (" Niveaux uniques dans le CCD:", np. unique ( X_design ))

12 num_linear = num_factors

13 num_interact = num_factors * ( num_factors - 1) // 2

14 num_quad = num_factors

15 num_params = 1 + num_linear + num_interact + num_quad

16 X_model = np.ones (( num_runs , num_params ))

17 col_idx = 1

18 X_model [:, col_idx : col_idx + num_linear ] = X_design

19 col_idx += num_linear

20 interaction_pairs = list( itertools . combinations ( range ( num_factors ), 2))

21 for i, j in interaction_pairs :

22 X_model [:, col_idx ] = X_design [:, i] * X_design [:, j]

23 col_idx += 1

24 for i in range ( num_factors ):

25 X_model [:, col_idx ] = X_design [:, i] ** 2

26 col_idx += 1

27 Xt = X_model .T

28 XtX = Xt @ X_model # Moment matrix M = X^T X

29 M_matrix = XtX / num_runs

30 sign_M , log_det_M = np. linalg . slogdet ( M_matrix )

31 if sign_M > 0:

32 M_criterion = np.exp( log_det_M )

33 else:

34 M_criterion = 0 if sign_M == 0 else -np.exp( log_det_M )

35 try:

36 XtX_inv = scipy . linalg .inv(XtX)

37 matrix_invertible = True

38 except scipy . linalg . LinAlgError :

39 print (" Erreur : La matrice singulière , impossible de calculel ’inverse .")

40 matrix_invertible = False

41 XtX_inv = np.full (( num_params , num_params ), np.nan)

42 total_experiments = num_runs
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43 num_levels = 3 # Par définition du plan Box - Behnken (-1, 0, +1)

44 if matrix_invertible :

45 trace_XtX_inv = np.trace( XtX_inv )

46 else:

47 trace_XtX_inv = np.nan

48 sign , log_det_XtX = np. linalg . slogdet (XtX)

49 if sign > 0:

50 det_XtX = np.exp( log_det_XtX ) # det = exp(log(det))

51 else:

52 det_XtX = 0 if sign == 0 else -np.exp( log_det_XtX )

53 if matrix_invertible :

54 pred_var_normalized = num_runs * np.sum (( X_model @ XtX_inv ) * X_model ,

axis =1)

55 max_pred_var_normalized = np.max( pred_var_normalized )

56 g_efficiency = ( num_params / max_pred_var_normalized ) * 100

57 else:

58 max_pred_var_normalized = np.nan

59 g_efficiency = np.nan

60 print (f"1. Nombre total d’expériences (N): { total_experiments }")

61 print (f"2. Nombre de niveaux par facteur : { num_levels }")

62 print ("-" * 40)

63 print (" Métriques d’Optimalité ( basées sur le modèle quadratique ) :")

64 print (f" Nombre de paramètres dans le modèle (p): { num_params }")

65 if matrix_invertible :

66 print (f"3. Trace [( XT X)1] (A- optimality related ): { trace_XtX_inv :.6f}")

67 print (f" -> Interprétation : Plus c’est petit , meilleure est la

variance moyenne des estimations .")

68 print (f"4. Déterminant de M = XT X (D- optimality related ): { det_XtX :.6e

}")

69 print (f" -> Interprétation : Plus c’est grand , plus le volume de

confiance des paramètres est petit .")

70 print (f"5. M- criterion ( Determinant de M = (1/N) X^T X): { M_criterion

:.6e}")

71 print (f" -> Interprétation : Plus c’est grand , plus l’information

totale est concentrée et fiable .")

72 print (f"6. G- efficiency :")

73 print (f" -> Variance de prédiction normalisée max (sur les points du

plan): { max_pred_var_normalized :.4f}")

74 print (f" -> Efficacité G = (p / max_var_norm ) * 100: { g_efficiency :.2

f}%")
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75 print (f" -> Interprétation : Proche de 100% indique une variance de

prédiction uniforme sur les points du plan.")

76 else:

77 print ("3. Trace [( XT X)1]: Non calculable ( matrice XT X singulière )")

78 print ("4. Déterminant de M = XT X: Non calculable ( matrice XT X

singulière ou non définie positive )")

79 print ("5. G- efficiency : Non calculable ( matrice XT X singulière )")

80 print ("-" * 40)

81 np. set_printoptions ()

1 import numpy as np

2 import itertools

3 import scipy . linalg

4 num_factors = 6

5 num_center_points = 3 # Ajout de points centraux

6 def generate_mozzo (k):

7 points = []

8 for i in range (k):

9 pt = np.zeros(k)

10 pt[i] = 1

11 points . append (pt)

12 for p in range (2, k+1):

13 for comb in itertools . combinations ( range (k), p):

14 pt = np.zeros(k)

15 pt[list(comb)] = 1/p

16 points . append (pt)

17 return np.array( points )

18 X_mozzo_base = generate_mozzo ( num_factors )

19 X_mozzo_base = X_mozzo_base - 1/ num_factors

20 center_points = np. zeros (( num_center_points , num_factors ))

21 X_design = np. vstack (( X_mozzo_base , center_points ))

22 num_runs = X_design .shape [0]

23 print (f"Plan de Mozzo (k={ num_factors }, nc ={ num_center_points }) généré .")

24 print (f" Nombre total d’essais (N): { num_runs }")

25 num_linear = num_factors

26 num_interact = num_factors * ( num_factors - 1) // 2

27 num_quad = num_factors

28 num_params = 1 + num_linear + num_interact + num_quad

29 X_model = np.ones (( num_runs , num_params ))

30 col_idx = 1
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31 X_model [:, col_idx : col_idx + num_linear ] = X_design

32 col_idx += num_linear

33 interaction_pairs = list( itertools . combinations ( range ( num_factors ), 2))

34 for i, j in interaction_pairs :

35 X_model [:, col_idx ] = X_design [:, i] * X_design [:, j]

36 col_idx += 1

37 for i in range ( num_factors ):

38 X_model [:, col_idx ] = X_design [:, i] ** 2

39 col_idx += 1

40 Xt = X_model .T

41 XtX = Xt @ X_model

42 try:

43 XtX_inv = scipy . linalg .inv(XtX)

44 matrix_invertible = True

45 except scipy . linalg . LinAlgError :

46 matrix_invertible = False

47 XtX_inv = np.full (( num_params , num_params ), np.nan)

48 total_experiments = num_runs

49 num_levels = len(np. unique ( X_design ))

50 if matrix_invertible :

51 trace_XtX_inv = np.trace( XtX_inv )

52 sign , log_det_XtX = np. linalg . slogdet (XtX)

53 det_XtX = np.exp( log_det_XtX ) if sign > 0 else (0 if sign == 0 else -np

.exp( log_det_XtX ))

54 M_matrix = XtX / num_runs

55 sign_M , log_det_M = np. linalg . slogdet ( M_matrix )

56 M_criterion = np.exp( log_det_M ) if sign_M > 0 else (0 if sign_M == 0

else -np.exp( log_det_M ))

57 pred_var_normalized = num_runs * np.sum (( X_model @ XtX_inv ) * X_model ,

axis =1)

58 max_pred_var_normalized = np.max( pred_var_normalized )

59 g_efficiency = ( num_params / max_pred_var_normalized ) * 100

60 else:

61 trace_XtX_inv = np.nan

62 det_XtX = np.nan

63 g_efficiency = np.nan

64 print ("-" * 50)

65 print (f" --- Propriétés du Plan de Mozzo k={ num_factors }, nc ={

num_center_points } ---")

66 print (f"1. Nombre total d’expériences (N): { total_experiments }")
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67 print (f"2. Nombre de niveaux uniques par facteur : { num_levels }")

68 print ("-" * 40)

69 print (" Métriques d’Optimalité ( basées sur le modèle quadratique ) :")

70 print (f" Nombre de paramètres dans le modèle (p): { num_params }")

71 if matrix_invertible :

72 print (f"3. Trace [( XT X)1] (A- optimalité ): { trace_XtX_inv :.6f}")

73 print (f"4. Déterminant de M = XT X (D- optimalité ): { det_XtX :.6e}")

74 print (f"5. M- criterion = det [(1/N) * X^T X] : { M_criterion :.6e}")

75 print (f"6. G- efficiency : { g_efficiency :.2f}%")

76 print (f" -> Max variance de prédiction normalisée : {

max_pred_var_normalized :.4f}")

77 else:

78 print (" Matrice XT X non inversible : métriques non calculables .")

79 print ("-" * 50)
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