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ABSTRACT

This thesis offers an in-depth exploration of both classical and computer-based experimental
designs, emphasizing their evaluation based on optimality criteria. A detailed comparison of
experimental designs is conducted based on optimality criteria such as discrepancy, distances,
and entropy. Particular emphasis is placed on the application of these designs in numerical
experiments, including those based on Strauss and marked point processes, providing a com-

prehensive overview of their use in diverse contexts.

Keywords: Experimental designs, computer designs, optimality criteria, factorial designs,

marginal designs.
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INTRODUCTION

The methodology of experimental research (Design of Experiments, DoE) is valuable for anyone
conducting scientific research or industrial studies. Using experimental designs to empirically
study a response function presents specific challenges for both statisticians and researchers.
With limited prior knowledge of the response behavior, and generally only a small number of
observations available relative to the number of parameters in their potential models, they must
decide, before collecting any data, not only which models to use but also how to organize the
experiments. Indeed, the quality of the statistical analysis is closely tied to the experimental
design used to collect the data. Furthermore, the construction of experimental designs often
requires combinatorial analysis.

To address industrial objectives, it is sometimes necessary to conduct a series of experiments
to gather the missing information. The high cost of experimentation and the importance of
decisions made based on its results mean that relying solely on the experimenters intuition is
not advisable. A methodological approach is required one that reduces experimental cost while
ensuring optimal organization of the trials.

The aim of the design of experiments methodology is to offer one or more strategies for
addressing specific problems in experimental research. In our work, the general principles for
constructing experimental designs are presented using the concept of the experimental space.
While the geometric representation of experimental points is intuitive, it becomes limited as
the dimensionality of the space increaseshence, the use of a matrix representation.

The wide variety of designs found in the literature stems from the absence of a single design
that simultaneously satisfies all optimality criteria. Each design offers advantages with respect
to certain criteria and limitations with respect to others. Thus, compromises must be made

according to the specific objectives of each study.
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In this context, the objective of our thesis is to propose a comprehensive synthesis of both
classical and computer experimental designs, through a comparative study based on a selection
of optimality criteria. This study aims to highlight the strengths of each design and guide
researchers in making context-relevant and informed decisions. for their experimental studies.

The thesis is organized into four chapters:

- Chapter one introduces general concepts of experimental design: its history, purpose, basic
terminology (response, factors, experimental space), as well as the mathematical and statistical
tools required for modeling, estimation, and result analysis.

- Chapter two presents the main classical and computer experimental designs. It covers tra-
ditional designs (factorial, composite, Box-Behnken, Doehlert, and others.) as well as marginal
designs (Latin hypercubes, orthogonal arrays, low-discrepancy sequences). A dedicated section
also addresses designs arising from computer experiments, particularly those based on point
processes such as Strauss, marked, clustered, and spatial interaction processes.

- Chapter three focuses on the optimality criteria used to evaluate experimental designs.
It distinguishes between criteria applied to numerical designs (discrepancy, distances, entropy)
and those used for classical designs (A-optimality, D-optimality, E-optimality, G-optimality,
orthogonality), in order to highlight the strengths and limitations of each design type.

- Chapter four presents a detailed comparison of the various experimental designs discussed
in the thesis. This analysis underscores the advantages and disadvantages of each design based
on optimality criteria and specific user requirements.

Finally, the thesis concludes with a synthesis of the findings and recommendations for the

optimal use of experimental designs.
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CHAPTER 1

GENERALITIES OF EXPERIMENTAL DESIGNS

This chapter provides a synthesis of the key assumptions underlying the use of the experimental
design methodology. Essential for any researcher conducting scientific investigations or indus-
trial studies, this method applies across various disciplines whenever the goal is to analyze the
relationship between a response variable y and influencing factors x;. Its effective application

requires adherence to strict mathematical principles and a rigorous methodological approach.

1.1 History

The methodology of experimental designs is not a new technique. It has been part of scientific
progress since the early 20th century and is closely linked to the development of statistical
methods. The systematic study of experimental design has evolved over time, shaping modern
statistical techniques and optimization strategies. As early as the Middle Ages, Nicolas Oresme
(1325-1382) recognized the importance of empirical methods in his writings [1]. Later, Francis
Bacon (1561-1626), whose work influenced Descartes and Leibniz, became one of the precursors
of the experimental method [2]. The formalization of experimental design began in the early
20th century with the pioneering work of Ronald A. Fisher. In the 1920s, Fisher introduced
fundamental principles such as randomization, replication, blocking, and analysis of variance,
which laid the groundwork for modern design of experiments and statistical inference[3].
During the mid-20th century, George E. P. Box and William G. Hunter introduced facto-
rial designs, which allowed the simultaneous study of multiple factors and their interactions.
Factorial designs became widely used in industrial experiments, particularly in the fields of

agriculture, chemistry, and engineering [4].
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Building on Fisher’s legacy, notable statisticians such as Frank Yates, William Youden,
William Cochran, Robin Plackett, and John Burman played crucial roles in promoting the
application of experimental design techniques beyond agronomy. In the 1950s, Box and his
collaborators extended Yates’ ideas by developing fractional factorial designs at two levels [4].
However, the most transformative contribution came from Genichi Taguchi and Yuin Wu Ma-
suyama, who introduced orthogonal arrays to simplify the construction of experimental designs
for addressing a wide range of industrial problems. These influential tables were published in
1959 and 1961, significantly impacting quality improvement processes [5].

The field of DOE has continued to advance, with researchers developing experimental de-
signs for mixture problems [6] incorporating block effects [7], applying nonlinear models [8],
accounting for spatial correlations, and designing experiments for computer-based simulations
[9]. These contributions have further diversified the applications of DOE across various scientific

and industrial domains

1.2 Interest of the experimental design method

In experimental research, the goal is often to understand how an outcomesuch as crop yield,
chemical production cost, or engine wearis influenced by various factors (1.3.2). Researchers
measure this outcome while systematically varying the factors under controlled conditions. This
enables the development of mathematical models describing the relationship between inputs and

respomnses.

Controllable factors

X, X, Xp
Inputs Output
Process

q
Uncontrollable factors

Figure 1.1: The system environment.

A key advantage of this method is the simultaneous variation of all factors in a structured
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and systematic manner. Contrary to initial intuition, varying all variables at once is beneficial

and offers several advantages, including:

Reduction in the number of trials.

Ability to study a large number of factors.

Detection of interactions between factors.

Improved precision of results.

Modeling of results and determination of optimal conditions.

Understanding experimental designs relies on two essential concepts: the experimental space
and the mathematical modeling of the studied quantities [10]. The experimental space repre-
sents all possible combinations of factor levels, guiding the planning of experiments. Math-
ematical modeling involves developing equations or algorithms that describe the relationship
between factors and outcomes, enabling predictions and optimization.

By employing these strategies, researchers can efficiently explore complex systems, gain

valuable insights, and make informed decisions based on empirical evidence.

1.3 Fundamental terminology of experimental designs

The Design of Experiments (DOE) methodology employs a specific terminology commonly used
in experimental research. While these terms are widely recognized, their meanings can vary
slightly across different statistical fields. To ensure clarity and consistency in this study, it is

essential to define some key terms that will be frequently used throughout this work.

1.3.1 Response

The response is the dependent variable observed during the experiment. It reflects the effect of
the studied factors and can be quantitative (e.g., yield, temperature) or qualitative (e.g., color,

texture).

1.3.2 Factors and experimental space

Factors are variables that are studied for their potential influence on a system. The specific
value assigned to a factor during an experiment is called a level. Factors can be classified into

different categories:
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o Controllable factors: These are variables that can be managed, adjusted, or modified

during the experiment.

e Non-controllable factors: These factors are either considered negligible and kept at
their usual values or are unknown influences that affect the experiment but cannot be

controlled.

« Quantitative factors: These are expressed as measurable numerical values, such as

speed, temperature, or intensity.

e Qualitative factors: These cannot be directly quantified; instead, they are represented

by distinct categories, such as brand, process, method, or supplier.

When studying the effect of a factor, its variations are typically constrained within a defined
range, with the low level (—1) representing the lower bound and the high level (41) representing
the upper bound.

LOWQ Factor Domain y]e\,g
-1 +1 Factor axis

Figure 1.2: Factor variation range.

The effect of a factor refers to the variation in the response caused by a change in the factors
level. The interaction between two factors represents the combined influence of both factors on
the response, showing how the effect of one factor depends on the level of the other.

When introducing a second factor, it is represented by an additional axis. Like the first
factor, it has a defined low level, high level, and range of variation. This second axis is positioned
orthogonally to the first, forming a Cartesian coordinate system that defines a two-dimensional

Euclidean space, known as the experimental space (Figure 1.3)
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Experimental Space

|7 Factor2 ——»

Figure 1.3: Experimental space definition.

Factlor1 ——»

The level X, of factor 1 and the level X, of factor 2 it’s considerated as the coordinates of

a point in the experimental space (Figure 1.4)

Factor 2 A\

Experimental point

) VS ——

Factor 1

Figure 1.4: Experimental point in experimental space.

A given experiment is then represented by a point in this axis system, an experimental

design is represented by a set of experimental points

1.3.3 Domain of study and Response surface

The study domain is defined by the combination of factor domains, representing the range of
values that factors can take within an experiment. When considering k factors and their respec-
tive variations, the study domain forms a k-dimensional space, where each point corresponds to
a unique configuration of the k factors. This space, also known as the research space, contains
experimental points that can be positioned either inside or on the boundaries of the domain

(Figure 1.5) [11]
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Factor 2 A\

+1 e

>

Factor 1

—_
+
LN

Figure 1.5: Two factors study domain

Each point within this study domain is associated with a response value, and the set of all
responses forms a surface known as the response surface. Response surfaces can be classified

into two categories:

e Actual response surface: Represents the real set of values taken by the response

variable based on the process behavior.

e Theoretical response surface: When factors are continuous, an estimated response
surface can be constructed using a mathematical model. In practice, this surface is derived
from a limited number of experimental points, carefully selected by the experimenter

(Figure 1.6).

Figure 1.6: Definition of the response surface.

The fundamental challenge in experimental design is to determine an appropriate polynomial

model that provides the best approximation of the actual response surface while minimizing

18



experimental effort. This approach is essential in optimizing processes and improving system

performance [12].

1.3.4 Centered reduced coordinates

In experimental design, coding factor levels by assigning -1 to the low level and 41 to the high
level introduces two key changes: Shift in Measurement Origin:

This adjustment centers the data around zero, facilitating easier interpretation of effects.

Change in Measurement Unit: Scaling the data standardizes the range of factor levels,
allowing for uniform comparison across factors.

These transformations lead to the creation of centered and scaled variables, also known as
coded variables. Centering refers to the change in origin, while scaling denotes the new unit of

measurement. The transformation from the original variable z to the coded variable x is given

by:

Z— 20

step

Here, zy represents the midpoint (average) of the high and low levels of z with:

_ highlevel + lowlevel
B 2

20

and "step" is half the difference between these levels. with:

highlevel — lowlevel
2

step =

This coding simplifies the design matrix, making it orthogonal and enhancing the interpretabil-
ity of main effects and interactions. For example, in a full factorial design with three factors
(A, B, and C), coding the factor levels as -1 and +1 allows for the systematic analysis of main
effects and interactions using methods like Yates analysis. This approach exploits the structure

of factorial designs to efficiently estimate factor effects.

1.3.5 Experimental Designs

Each point in the study area represents a possible operating condition, corresponding to an

experiment that the operator can perform.
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Factor 2 A\

Ll S o o

-1 +1 Factor 1

Figure 1.7: Corner Points A, B, C, and D

The fundamental challenge in experimental design lies in selecting the number and location
of these experimental points. A set of experimental points that satisfies specific properties
is referred to as an experimental design. Traditional experimental designs, which are well-
established and extensively documented, fall under the category of classical designs. When
experimental points are arranged in a manner deviating from these classical structures, they are
classified as unconventional designs, often exhibiting inferior properties compared to classical

ones [13].

1.3.6 Experimental Matrix

The experimental matrix shows all possible combinations of the low and high levels for each
input factor. These high and low levels can be coded as -1 or +1. It is a table consisting of
n rows, corresponding to the n experiments, and k columns, corresponding to the k variables

(factors) being studied. The experimental matrix (Table 1.1) defines the trials represented in

figure 1.7
runs | factor 1 | factor 2
1(A) -1 -1
2 (B) +1 -1
3 (C) -1 +1
4 (D) +1 +1

Table 1.1: Experimental Matrix
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1.4 Mathematical Tools for Experimental Design

In this section we will present the basic mathematical concepts necessary to understand the
experimental design method. Mathematical modeling plays a crucial role in experimental design
by providing a framework to describe and analyze the relationships between input factors and

responses [11].

1.4.1 Concept of Mathematical Modeling

1.4.2 Statistical Model

A statistical model describes the relationship between input factors and responses, incorporat-
ing randomness and variability [14] Consider a random phenomenon dependent on k variables,
where the objective is to model this phenomenon as accurately as possible. The statistical ap-
proach involves conducting n experiments, strategically chosen in the context of experimental
design. Each experiment corresponds to a point z in R¥ (assuming the variables are quantita-
tive; for qualitative variables, a subset of N* is used). The measured response, Y (z), at point
x is conventionally modeled as the sum of the true response function f(x) (the actual response
sought) and a residual term e(x) (representing the experimental error)

A general form of a statistical model is: Y (z) = f(z) + €(x)

The residual can account for many causes such as errors due to the experimenter, a poor
postulated model, the omission of certain variables. We generally assume that the residuals are

real random variables satisfying the following three hypotheses [15]:

E(e(z)) =0, Va
Cov(e(z),e(z")) =0, Vo #a (1.1)
\Var(e(z)) = o2, Vo

1.4.2.1 Linear Modeling

Linear modeling is widely used in experimental design to approximate relationships between
variables In this section, we consider a statistical model that depends on k variables, where
f is a linear function with respect to p unknown parameters. Mathematically, a model is
linear in the parameters §; (i = 1,...,p) if the partial derivatives %—g) do not depend on f;.

Given a random phenomenon to be explained, it is generally not straightforward to propose
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an appropriate model. The function f is often too complex, which is why it is common to
approximate it using a set of standard functions (e.g., Taylor expansion, Fourier series, etc.).
If n experiments are conducted at points z; (i = 1,...,n) in R*, we can express the response

as:

Since f is a linear function in terms of the unknown parameters, we can also write this model

in matrix form as:

Y=Xp+¢

where:

Y € R"” is the vector of observed responses,

X(n,p) is the design matrix, which depends on the chosen experimental points and the

assumed model,

£ € RP is the vector of unknown coefficients,

e € R™ is the vector of residuals.

The assumptions (1.1) can be expressed as:

E(s) =0, and Var(e) = o?l, (1.2)

Consequently, X represents the expected (predicted) response given by the model.

1.4.3 Estimation of Coefficients Using the Least Squares Method

Once the model is established, the challenge lies in determining the best possible estimator B of
5. A common approach is to find B such that the observed response vector Y and the predicted

mean response vector Y = X3 are as close as possible.

Definition 1.1. The estimator B is called the least squares estimator of £ if and only if B

minimizes the objective function:

Q(B) = |IY — X8|
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The least squares estimator of 5 minimizes Q(/3), corresponding to the sum of squared errors

between observed and predicted values:
QB) = Y = XBIP = Y = Y|P = S (¥ = Vi)?

i=1

This confirms that the quantity is directly related to the squared error between the observed
responses Y; and the predicted mean responses Y;. For the practical determination of this

estimator, we have the following proposition:

Proposition 1.2. Given the statistical model Y = X8+ ¢ with X being a full-rank matrix!, the

least squares estimator of 3 is given by:

B=(XX)""XY

Proof: To find 3, we minimize the quantity:||Y — X5|> = 321, (¥; — ¥;)? Rewriting the

sum in terms of /3

g
—~
=
|
:< >
%
|

() (v )

:CY—fBuj(Y—Xﬁ>
=YY — 'BIXY — 'YXB+ BIXXB.

Note that 327 (V; — ;)2 is a scalar, and it is easy to verify that all terms in the sum are

also scalars. Therefore, we obtain:
tY . X/@ — (thty)t — BtXtY

SO

A\ 2 ~ ~ ~
(m-n):JYY—TﬁXY+UWXXﬁ

M-

.
Il
—

NE

~\ 2 ~
To minimize the value of (Y; — Y;) , we compute its derivative with respect to 3 :

(2

Il
R

n A\ 2
0y (Y- Vi) . o
Z& oYy 9BXY 9BXXB
op op op op
LA matrix is said to be full-rank if none of its columns are linearly dependent on the others, i.e., its rank is
equal to the number of its columns.

Y
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where:

oy

. — =0, because ‘Y'Y is a constant with respect to B ,

DIBXY
0
DIBIXXS
B

=!XY, because ‘B XY is a linear form with repect to 3,

= 'XXf, because '3 ' X X 3 is a quadratic form with respect to §3.

Thus:

= = —2'XY + 2 X XJ3.

By setting this derivative to zero to find the minimum:

n A\ 2
o3 (Y- Vi)
= 57 =0 = —2'XY +2'X X3 =0,

which leads to:
XX ='XY = [=(XX)"XV.

To verify that this value of B corresponds to a minimum, we compute the second derivative:

o5 (v v\
a;g};Q Yl) =20 XX.

Since X is full-rank, ‘X X is positive definite, meaning that the second derivative is strictly

~

positive. Consequently, S is indeed a minimum.

Proposition 1.3. If the assumptions (1.2) on the residuals (errors) hold and if /3 is the least

squares estimator of 3, then:

1. B is an unbiased estimator of j3,

2. 3 has the following variance-covariance matrix: V (B) =0’ (' XX )71.

Proof. 1. Computing E <B>
E(3) =E((XX)"'XY) = (XX)XE(Y) = ('XX) T XX8 =B
2. Replacing 3 by (*XX) XY and Y by X + ¢, we obtain:

B—pB=(XX)"X(XB+e)—p.
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Expanding this expression:
B—pB=(XX)""XXB+ ('XX)"Xe— 5.
Simplifying, we get:
B—B=B+(XX)"Xe—p=(XX)""Xe.
Since the transpose of 3 — 3 is given by:

(B—p) ="eX(XX)",

we can express the variance-covariance matrix of g as:

By substituting 5 — 8 = ("X X)"'*Xe, we obtain:

V(B) =E [((XX) M XxeleX (P X X)Y].

Rearranging, we get:

V(3) = ((XX) " XE('e) X (* X X)™.

Under the assumption that ¢ follows a centered normal distribution with a covariance

matrix 021, (where I, is the n x n identity matrix), we know that:
E(e'e) = o1,.
Thus, by substitution:
V(3) = (" XX) "X (0?[,)X (1 XX)™".
Since 'X1,X ='X X, we obtain:

V(3) = ("X X) "X X (X X)L,
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Further simplification gives:

(X X)

=
E>
[

1.4.4 Prediction of the mean response

Once B has been estimated, the experimenter is often interested in using the obtained model to
predict the mean response at a point where no experiment has been conducted. This prediction
is crucial when the goal of modeling is, for instance, to determine the experimental conditions
that maximize or minimize the studied response. The predicted mean response at a point
x € R¥ is given by :

Y(z) ="f(z)p

where f(x) € RP? is a regression vector, constructed similarly to the rows of the matrix X Once
the predicted mean response at x is determined, the accuracy of this prediction is assessed

using the following result:

Proposition 1.4. The uncertainty associated with the prediction 17(3:) =t f (a:)B at © € R7 s

measured by

V(Y () =0 "fla)((XX) f(x)
It can be observed that the error in the predicted response depends on four factors:

The experimental error in the measured responses.

e The position of point x within the study domain.

e The set of points used to estimate the model coefficients, i.e., the experimental design

itself.

e The assumed model used to interpret the results, through the coefficient computation

matrix and the residual variance.

Proof. We have :
V(Y (2)) = V(' f(2)B) =" f(@)V(B) f(x) = 0 'f(2) (X X) " f ()

since V(B) = o2(*X X)L, the result follows. O
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1.4.5 Prediction variance function

The error associated with the measured responses depends on various factors, including the na-
ture of the experimentation, the accuracy of the technology used, the care and skill of the exper-
imenter, and other elements under their responsibility. These factors pertain to experimental
practice rather than the theory of experimental designs [16]. To separate this experimental

component from the theoretical one, we introduce the prediction variance function d2(}7) ;
d(YV) =" f(2)(XX) " f(x)

By taking the square root of this variance function, we obtain the prediction error function:

d(Y) = /1 f(2) (X X)L f (2)

1.4.6 Analysis of Variance (ANOVA)

Once the model is fitted, assessing the quality of the obtained fit becomes essential. This can be
quantified using numerical indicators derived from analysis of variance (ANOVA) techniques.
These methods rely on a structured decomposition of sums of squares to evaluate the model’s
explanatory power.

Let Y denote the observed mean response and Y* the vector of centered observed responses.
Notably, if 1, represents the unit vector of dimension n (i.e., a vector in R™ where all components
are equal to 1), then [2]:

_ 1t _
Y=-1Y, Y'=Y-Y1,
n

We define the following three classical sums of squares (SS stands for Sum of Squares):

« Total Sum of Squares (SST):

SST = zn:(n —Y)?

=1

» Regression Sum of Squares (SSR):

SSR=> (Y;i-Y)

=1
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« Error Sum of Squares (SSE):

n

SSE=) (Y;-Y))?

=1

Proposition 1.5. For the least squares model, if P = X(*XX)~! X is the orthogonal projector
onto Im(X) in R, and if I, C Im(X), then the sums of squares are given by:

Y-V =YY —ny?

=1
n

S (V= V) =" Y(I, - P)Y.

D= VR = Y- ) Y (v - )

Proof. In matrix form, we can write:

- _ 1
Y ViY==Y (I, - ~1,1')Y,
n
=1
since Y = %FnY and 1tnl, = n.

For the residual sum of squares:

n

d (Vi-Y)? =Y, - P)Y.
i=1
Since Y = PY . we have:
'YY —'YY =' Y (I, — P)Y.
For the regression sum of squares:

(Vi -Y) ='YPY —nY?.

i=1
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Since Y = X (*XX)~' XY, multiplying by 17 gives:

~

1LY =1ty

Thus, we obtain:
n

> (Vi-Y)?='YPY —nY?

i=1

For a random vector Y € R™ and a non-random matrix M € R"*", we define the degrees
of freedom of 'Y MY as the rank of the matrix M. This concept arises from the chi-square
distribution: if Y ~ A (u, 021,,) and M is a projection matrix, then 'Y MY follows a non-central
chi-square distribution with a non-centrality parameter % Y Ap and degrees of freedom equal

to the rank of M [17]. O

1.5 Statistical Tests
1.5.1 The multiple correlation coefficient

The multiple correlation coefficient R? is a measure of how well a multiple linear regression
model fits the data. It is defined as follows:
, OSSR ] SSE Y .Y —Y)?

T SST T SST S (Yi-Y)

where :

o SSE (Sum of Squared Errors) represents the sum of squared residuals from the model,

defined as:

A

SSE = Y1, (Y; — Vi)’

e SST (Total Sum of Squares) is the total sum of squared differences between the

observed dependent variable values and their mean:
SST =37, (Yi—=Y)?

e SSR (Sum of Squares due to Regression) represents the sum of squares explained

by the regres :

SSR=31L,(Y;—Y)
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1.5.2 Fishers F-Test

Fishers test assesses the quality of the model fit. It is given by the following formula [18] :

o)
0
=y}

3
L

F =

o)
0
=

1
S

where:
e (p—1) is the degrees of freedom associated with SSR.
o (n—p) is the degrees of freedom associated with SSE.

A high Fishers F-statistic indicates that the variance explained by the model is significantly
larger than the residual variance, suggesting a good fit. To obtain statistically significant

coefficients, ' must be sufficiently large, corresponding to a low probability value.
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CHAPTER 2

STUDY OF VARIOUS EXPERIMENTAL DESIGNS

In this chapter, we present the fundamental families of experimental designs without attempting
to compare them. The various schemes are grouped into three complementary categories.

Standard designs are intended for estimating low-degree linear models. They include full
and fractional factorial designs with two or three levels, as well as Mozzo designs. These are
based on independent factors, meaning that each level can be freely set without imposing
constraints on the others. Modeling designs are aimed at fitting quadratic responses or higher-
order interactions. This category includes central and non-central composite designs, Box-
Behnken designs, Doehlert designs, and Roquemore designs. As with standard designs, the
factors remain independent, but the arrangement of points is primarily intended to enhance
the accuracy of local approximations.

Finally, computer and space-filling designs are tailored for purely computational or highly
expensive experiments. These include Latin hypercube designs, low-discrepancy sequences,
space-filling models, and adaptive strategies. Their main purpose is to uniformly explore high-
dimensional domains, often for use in metamodeling or sensitivity analysis.

Each section will describe the purpose, construction rules, and typical use cases of these

design families, providing a clear overview of the tools available to practitioners.

2.1 Standard Designs

We have chosen to discuss standard designs in this thesis because they were initially developed
for response surface applications. Among them, the most commonly used are factorial designs,

Box-Behnken designs, and central composite designs, which are relatively easy to generate. We
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have also chosen to include Doehlert designs, which are particularly well suited for space-filling
considerations.

In this section, we first provide a brief description of these designs before analyzing the key
properties of interest, such as space-filling capability, non-redundancy, and cost. It is worth
noting that these designs will be frequently referenced throughout this thesis to assess the

relevance of Space-Filling Designs.

2.1.1 Full factorial designs

The simplest method to achieve proper space-filling is to select points on a regular grid within
the experimental domain.

Description: To construct a regular grid with £ levels, one simply needs to choose k values
evenly spaced across the range of each factor. For example, in the unit square [0, 1]x]0, 1],

selecting 5 levels results in the following grid of points (see Figure 2.1)

{0,0.25,0.5,0.75, 1} x{0,0.25,0.5,0.75, 1}

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

o 0.2 0.4 06 08

X
Figure 2.1: A full factorial design with 5 levels.
It is evident that the higher the number of levels, the better the space-filling quality. How-
ever, this also leads to an exponential increase in the number of simulations. Therefore, it is

essential to find a suitable trade-off by selecting the most relevant levels for the problem at

hand.
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DiscussionN: This method remains effective when the problem’s dimensionality is low,
typically limited to 2 or 3 variables. However, as the dimensionality increases, the number of
simulations n¢ grows exponentially, making grid-based approaches impractical. Moreover, each
dimension only takes k distinct values. If the response depends primarily on a few variables
(e.g., one or two in a five-dimensional space), a factorial design results in many redundant
points. Consequently, this type of design becomes inefficient in high-dimensional settings, as
most points are lost when projected onto the factorial axes. For instance, if the response follows
the form f(X1, Xo) = f1(Xy) or f(X1, X2) = f2(X3), then the factorial design illustrated in
Figure 2 is poorly suited, as it effectively reduces the available information to only 5 points

instead of 25.

Remark 1. : If the number of model coefficients to be estimated is close to the number of exper-
imental runs, it is advisable to enhance the factorial design by adding a few points uniformly

distributed within the experimental domain.

2.1.2 Fractional factorial designs

Given the constraints that prevent us from conducting a large number of simulations, full fac-
torial designs are not suitable. However, the underlying principle remains valuable. Therefore,
fractional factorial designs present a good alternative. By selecting subsets of full factorial
designs, the number of required simulations can be significantly reduced, leading to lower ex-
perimental costs (for more details, see Myers & Montgomery, 1995).

However, the issues related to factorial projections remain present, as observed with full
factorial designs. Additionally, new alignment problems arise due to aliasing effects inherent in

fractional designs, similar to what occurs in orthogonal linear arrays.

2.1.3 Composite Designs

A composite experimental matrix is a combination of:

o A two-level factorial design matrix, which can be either full factorial (2?) or fractional

factorial (2¢77), where the points correspond to the vertices of a hypercube (e.g., [—1,1]).

o An axial design matrix, consisting of points symmetrically placed along each axis at a

distance ! o from the center of the domain.

IFor a cubic domain, the value of « is typically set to 1.
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o A central point 2, which, for d factors, provides information about the variability of the
phenomenon and allows for testing the models validity. For example, in the case of a

first-degree linear model, it helps detect the presence of curvature.

A face-centered composite design within the cubic domain [—1,1]? corresponds to a three-
level factorial design (—1,0,1). Notably, these designs are well-suited for the one-at-a-time
(OAT) approach, as they impose points along the axes and within the factorial design 2¢

Composite designs are widely used in classical experimentation to approximate second-
degree response surfaces [19]. Different types of composite designs can be generated by adjusting
the distance between the central point and the boundary points of the domain. Common

examples include:
« Central composite designs (CCD)
o Face-centered composite designs
o Inscribed central composite designs

However, the number of experiments in composite designs increases rapidly with the num-
ber of factors, primarily due to the factorial matrix. These designs do not optimally fill the
experimental space and often fail to achieve good point distribution in projections. Indeed,

they test only three or five levels per parameter (depending on «, regardless of the design size.

2.1.4 Box-Behnken Designs

Box-Behnken designs are experimental designs where variables take only three levels (—c«, 0, +«),

considering the experimental domain as a hypercube [—1,41]¢ These designs consist of:
o A two-level factorial matrix (2¢ points).
o Balanced incomplete blocks, arranged in a specific pattern.
o central point, added to the matrix to improve estimation accuracy.

Box-Behnken designs serve as an alternative to composite designs since they require only
three levels per factor [20] while still allowing for the modeling of a second-degree response
surface. The construction methods for these designs, including the specific way to form the

blocks, can be found in [19] and [21]

2In classical experimentation, it is recommended to include multiple central points to assess experimental
variability. However, this approach becomes irrelevant when using a purely deterministic simulator, as there is
no inherent variability in the response.
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In terms of the number of experimental points, a Box-Behnken design is comparable to
a composite design in dimensions 3 and 4. However, there is no Box-Behnken design for two
factors. Because these designs place their points on the factorial axes rather than throughout

the domain, they do not ensure a good space-filling property.

2.1.5 Doehlert Designs or Uniform Networks

Doehlert designs (Doehlert, 1970) belong to the family of uniform networks. Their generation

method is iterative and consists of:
o Defining an initial simplex within the exploration domain.

« Applying isometries (translations and rotations) from one of its vertices (typically through

translations).

o Iterating this process, which results in a specific distribution of points (as shown in Figure

2.2).

Practically, for each variable in the range [—1, 1], this approach involves successively subtracting

the coordinates of each point in the initial simplex from the others.

X

v

0 0z 04 06 08 1

X

Figure 2.2: A Doehlert design with 45 points in the unit square and its initial simplex: the
equilateral triangle in red.

Example 1. Figure 2.2 illustrates a Doehlert design with 45 points within the unit square, where

the initial simplex is an equilateral triangle (highlighted in red).
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2.1.6 MOZZO Designs

MOZZO designs are characterized by their sequential nature [22]. Initially, two factors can be
studied using three experimental runs within a triangular domain. If the decision is made to
include a third factor, three additional runs are carried out (runs 4, 5, and 6 in Table 2.1). This
sequential structure is only possible if the factors not yet under investigation are held constant
during the study of the initial factors.

For example, Factor 3 is fixed at level -1 while Factors 1 and 2 are being studied. To
investigate Factor 3, its level is changed to +1, and another triangular design is executed

with the first two factors. As more factors are introduced, corresponding interactions can be

incrementally added to the initial base model.

Trial No | Factor 1 | Factor 2 | Factor 3 | Factor 4
1 0,268 1 -1 -1
2 0,732 -0,732 -1 -1
3 -1 -0,268 -1 -1
4 -0,268 -1 1 -1
5 -0,732 0,732 1 -1
6 1 0,268 1 -1
7 -0,267 -1 -1 1
8 -0,732 0,732 -1 1
9 -1 0,268 -1 1
10 0,268 -1 1 1
11 0,732 -0,732 1 1
12 1 0,268 1 1

2.1.6.1 Mozzo Design for Two Factors

This design allows for the study of two factors using only three experimental runs, arranged in

a triangular configuration. Figure 2.3 illustrates one possible configuration of this triangular

layout.
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Factor2 ¢
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-0,27
-0,73

1
I
1
I
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»

Factor1

0,27 0,73
+1

Figure 2.3: Study Domain of the Mozzo Design for Two Factors

Given the small number of points, the assumed mathematical model is simple: a first-order

model without interaction terms, expressed as:

Y = ap + a1y + a2T2 + azxs
We now write the corresponding design matrix X for the model.
1 0,268 1

X=11 0,732 —0,732
1 -1 -0,268

The information matrix XX7 is computed directly and yields:

30 0
XX"=10 1,608 0
0 0 1,608

This result confirms that the design matrix X is orthogonal. Furthermore, the elements
corresponding to the first-order terms are equal. This implies that the Mozzo design satisfies
the iso-variance by rotation criterion 3.2.8, ensuring that the prediction error remains constant

for all directions equidistant from the center of the experimental space.

2.1.6.2 Mozzo Design for Three Factors

This configuration corresponds to the first six runs of Table 2.1. Figure 2.4 illustrates the

spatial distribution of the experimental points in the three-dimensional experimental space.
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The design is sequential and symmetrical, allowing for the progressive inclusion of additional

factors while preserving the geometric balance of the design.

Factor 2 ‘ ‘

Factor 3

Factor1

Figure 2.4: Study Domain of the Mozzo Design for Three Factors

As there are six experimental points, it is theoretically possible to estimate six unknown
parameters. Therefore, a first-degree model with interactions can be considered. However,
due to the configuration of the experimental points, it is not possible to estimate interactions
involving the third factor. Only the interaction between factors 1 and 2 can be included in the

model. The resulting model is given by:

Y = Qg + A1X1 + Qa9 + A3T3 + A19T1 T2

The corresponding design matrix X is:

1 0.268 1 -1 0.268
0.732 —0.732 -1 —-0.536
1 -1 -0268 —1 0.268
1 0268 -1 1 0.268
0732 0.732 1 —0.536
1 1 0268 1  0.268

—_

—_

To verify orthogonality, we compute the information matrix X ' X:
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3.22
XTX = 3.22

0.86

(Note: The full calculation of X "X is omitted here but should be completed if required.)
This computation allows us to verify whether the orthogonality property is preserved in the

presence of the added interaction term.

2.1.6.3 Advantages and Limitations

o Main advantage: The primary benefit of Mozzo designs lies in the very limited number
of required experimental runs. For two factors, only three experiments are needed, and

each factor is tested at three different levels.

o Limitations: Mozzo designs are not available for every possible number of factors. Ad-
ditionally, the proposed model generally does not account for all possible interactions

between the factors.

2.2 Marginal designs
In this section, we introduce designs that, by construction, exhibit good properties in terms
of non-redundancy and non-alignment with certain subspaces. However, there is no guarantee
that they effectively cover the experimental space, which we will investigate here.

We also define the concept of margins, which refers to factorial subspaces. For instance,

one-dimensional margins correspond to factorial axes.

2.2.1 Latin Hypercubes

The Latin hypercube sampling method, introduced by MacKay, Conover, and Beckman in 1979,
was developed for the numerical evaluation of multiple integrals. It ensures non-redundant in-
formation through well-distributed projections on factorial axes. In practice, Latin hypercubes
are widely used in numerical experimental design, particularly due to their ease of implementa-
tion and construction. Description Each axis [0, 1 of the unit cube is divided into nn segments

of equal length according to the following subdivision: [0, 1], [%, 2],.. ., [%=2, 1]

n n’n
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By taking the Cartesian product of these intervals, we obtain a grid of ndnd cells of equal
size. Then, nn cells are selected among the ndnd possible ones in such a way that each one-
dimensional margin is represented exactly once. Finally, a random point is drawn within each

of the preselected cells.

T_é&%s&_.

Xi

Figure 2.5: A Latin hypercube sampling with 5 points in 2 dimensions.

Definition 2.1. A Latin hypercube with nn points in [0, 1]¢ is defined as the set of points X*

such that: ‘
U] (Z) + U](Z)

n

Xt —

: 1<i<n1<j<d

where 7; is a permutation of 1,...,n, and U ]@ U10,1] is a random variable following a uniform
distribution on [0, 1].

Thus, the vector (71(j),...,m4(i)) represents the cell in which the point X* is located, while
(U3, ...,U}) determines its exact position within the cell.

The resulting Latin hypercube can be represented as a matrix with n rows and d columns,

whose coeflicients are X ;

Remark 2. 1. Points can be placed at the center of the cells to eliminate randomness in the

design.

2. A Latin hypercube, defined by the matrix 7, is very easy to construct since each column
is a permutation of 1,...,n.
Di1SCUSSION
Latin hypercube points have the interesting property of being uniformly distributed along
factorial axes (see Figure 2.5). However, this property does not necessarily ensure uniformity

across the entire experimental domain.
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For a fixed n, there are n! possible permutations for each of the d columns, leading to a total
of (n!)@=1 possible Latin hypercubes. However, not all of them ensure a uniform distribution
of points in the space.

For instance, in the Latin hypercube shown in Figure 2.6, the points are aligned along one
of the domains diagonals. If the actual process depends only on X5X;, then the information
provided by this experimental design is reduced to a single point instead of five, significantly

limiting the sampling quality.

Xz

X1+X3:C

Figure 2.6: A Latin hypercube sampling with 5 points in dimension 2.

2.2.2 Orthogonal Arrays

2.2.2.1 General Case

Conceptually, orthogonal arrays [23] are very similar to Latin hypercubes. Indeed, they share

the advantageous high-dimensional projection properties of Latin hypercubes in one dimension.

Definition 2.2. An orthogonal array of strength ¢ with ¢ symbols is a matrix with n rows and
d columns (where d > td > t), whose elements take ¢ distinct values. This matrix is structured
so that every submatrix of size nxt contains each possible combination of ¢ symbols exactly A
times.
Thus, the following relation holds:
n =\

Such an orthogonal array is denoted as OA(n,d, q,t, \).

DESCRIPTION From a geometric perspective, this corresponds to subdividing the unit cube
axes into g equal segments, resulting in ¢¢ equally sized cells. Then, n cells are selected to form

an orthogonal array that meets the above definition.
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This structure ensures that every set of ¢ columns in the design matrixi.e., each t-tuple of

symbolsappears exactly A times.

Remark 3. n orthogonal array of strength 1 is equivalent to a Latin hypercube. As with Latin
hypercubes, the sampling point can be chosen randomly within each cell or placed at the
center. In the latter case, all projections onto tt-dimensional subspaces result in a regular grid,

as illustrated in Figure

09

08

or

0E6

X

05

na

03

0z

0 02 04 06 0g 1

X

Figure 2.7: A design generated by an orthogonal array OA;(25,5,5,2), with points centered
and projected onto the (X, X3) subspace.

Definition 2.3. An orthogonal array sampling (hereafter referred to as an orthogonal array)

with nn points in [0, 1] is a set of points X* defined by:

X; = Lo1<i<n, 1<j<d
q

where:
 7; is a permutation of {0, ..., ¢—1}.

. A;'- are the elements of the orthogonal array.

« Ui U(0,1) is a uniformly distributed random variable in [0, 1].
Thus, the vector (w(A}),m(AL), ..., m(A})) represents the cell where point X is located,
while (U7, ..., Ut) defines its relative position within that cell.

The orthogonal array corresponds to a matrix with n rows and d columns, where each

coefficient is given by X.
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Property 2.4. The generation of these designs follows a property similar to that of Latin hyper-
cubes: If the symbols in each column of an orthogonal array of strength ¢ are permuted, the
resulting array remains an orthogonal array of strength ¢.

2.2.2.2 Special Case of Linear Orthogonal Arrays

Linear orthogonal arrays form a specific subclass of orthogonal arrays, chosen for their ease of

implementation compared to the general case.

Definition 2.5. A linear orthogonal array is an orthogonal array that satisfies the following

conditions:
e The number of symbols ¢ is a prime number.
o The rows of the array are all distinct and constitute a vector subspace of Zg

In this case, the array is denoted as: OA(d, q,t, \) over Z, where Z, = 0, ...,¢q—1 forms a finite

field since ¢ is a prime number.

0.0 #
0.0

Figure 2.8: A distribution of 49 points derived from a linear orthogonal array of strength 2 in
dimension 3.

Remark 4. A linear orthogonal array of strength ¢ is simply an orthogonal array of strength ¢
structured as a vector subspace. In particular, a linear orthogonal array of strength 1 is always
a Latin hypercube.

Regarding the construction of linear orthogonal arrays, readers may refer to Jourdan’s
(2000) [24] dissertation. However, upon analyzing the designs generated using this method, we
observed additional alignment issues compared to traditional orthogonal arrays. Specifically,

the points are distributed along parallel planes (see Figure 2.8).
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This phenomenon arises because the computations are performed in Z,. It is even possible
to determine the equation of the planes on which the points are distributed. For instance, in
the case of a linear orthogonal array of strength 2 over Z;, the construction method ensures
that the points satisfy the following condition: x +y + 2z = 0 (mod 7)

As a result, the points are located on five parallel planes (four of which are clearly visible
in Figure 2.8, while the fifth consists only of the origin). Consequently, the distribution of

projections along the axis perpendicular to these planes is not optimal.

2.2.3 Latin Hypercubes Based on Orthogonal Arrays of Strength 2

Orthogonal arrays are widely used in experimental design, mainly due to their favorable uni-
formity properties. However, for orthogonal arrays of strength ¢ > 1, this uniformity is only
guaranteed on subspaces of dimension ¢. As a result, these arrays exhibit repetitions along
factorial axes.

Thus, using Latin hypercubes seems like a promising alternative to ensure a better represen-
tation of factorial axes. However, these designs do not necessarily provide a uniform distribution
across subspaces of dimension ¢ > 1.

To summarize, neither method is entirely satisfactory.

To address these issues, Tang 1993 [25] proposed an approach that combines:
o the orthogonality properties of orthogonal arrays,
 the favorable projection properties of Latin hypercubes.

Tang also introduced an algorithm to generate these designs from orthogonal arrays of strength

2, ensuring good uniformity on 1-dimensional margins.

=
_

/NS

Figure 2.9: A Latin hypercube, a Tang Latin hypercube, and an orthogonal array of strength
2 with 4 points in dimension 2.

Definition 2.6. Let A be an orthogonal array of type OA(n,d,q,2). For each column of A,
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we replace each element by a permutation of the set of ¢ elements according to the following
rule:
Vi, ke {0,1,...,q—1}, [kg+ 1, kqg+2,...,(k+1)q]

This transformation results in a Latin hypercube.

t

0011
for example if A = and we apply the following permutations for each column
0101
of A:0—0 then 0—1 and 1—3 then 1—2 .
01 3 2
we then obtain the following Latin hypercube:
0 3 1 2

Conversely, starting from a Latin hypercube, it is possible to reconstruct an orthogonal

array of type OA(n,d, q,2), where the coefficients are defined as follows:

X = Xq“ Jfort=1,..,nand j =1,..,d where denotes the floor function.

0.9
0.8

07h
0.6

0.4

0.3
0.2

0.1

0 02 04 06 08 1
X

Figure 2.10: A Latin hypercube generated from an orthogonal array OA;(25,5,5,2) with ran-
domized points projected onto the subspace (X7, X5).

Description This method follows a three-step sampling process.

First, the unit cube is divided into ¢ cells. Then, among these cells, n = ¢* are selected in
such a way that they form an orthogonal array of strength 2.

Second, a sub-cell is chosen within each of the n selected cells, ensuring the construction of
a Latin hypercube.

Finally, a random point is placed within each sub-cell, resulting in a Latin hypercube based

on an orthogonal array (see Figure 2.10).
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2.2.4 Low-discrepancy sequences.

In the previous section, we discussed designs where points are well distributed in projection
but not necessarily evenly spread in space. Here, we introduce designs aimed at achieving a
more uniform filling of the space while also examining their projection properties.

These point sequences were originally developed to replace random sequences in Monte Carlo
methods, leading to the term quasi-Monte Carlo methods. Most low-discrepancy sequences [26]
are generated using deterministic algorithms to ensure that points are distributed as uniformly
as possible within the experimental domain.

To provide a fundamental understanding of how these sequences achieve space-filling prop-
erties, we introduce a basic definition of discrepancy. Niederrieters (1987) definition, presented
in Section 2.1, offers deeper insight into the theoretical foundation of discrepancy. Readers may
refer to that section for various methods of computing discrepancy.

Discrepancy measures the deviation between a given point distribution and a perfectly
uniform distribution; in other words, it quantifies the irregularity of point dispersion. In the
one-dimensional case, given the empirical distribution function E), of the points xg, 1, ..., Tn_1,
discrepancy is defined as:

Du(X) = sup |Fy(2) — Fy()]

z€[0,1]
where Fyy(x) is the cumulative distribution function of the uniform distribution on [0, 1].
Remark: The function D, (X) corresponds to the Kolmogorov-Smirnov statistic, which is

commonly used to test the goodness-of-fit to a uniform distribution.

Definition 2.7. Uniform Distribution: Let X be a compact space and p a regular probability
measure defined on the Borel sigma-algebra of X. A sequence of points (z,)nen in X is said to

be uniformly distributed if, for any continuous function f € C(X), we have:

lXn:f(xk)—>/fd,u, as n — oo.
gyt X

Remark 5. The strong law of large numbers ensures this convergence almost surely.
An important property in this context is the following.

Property 2.8. A sequence (x,,) is uniformly distributed if

lim D, (z) = 0. (2.2.1)
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There exist numerous upper bounds on discrepancy. The most well-known result in this

regard is the Koksma-Hlawka inequality.

Theorem 2.2.1. If f is a function of bounded variation V (f) in the sense of Hardy and Krause,

then for any sequence of points x1, ..., o, in [0,1]¢, we have:

< V(f)Du(X). (2.2.2)

St - [ s

[0,1)¢

Thus, the worst-case approximation error is the product of the variation V'(f) (which reflects
only the irregularity of the function f) and the discrepancy D,,(X) (which measures only the

quality of the sequence’s distribution).

Remark 6. The sequences discussed here will be finite and conventionally indexed from 0 to

n — 1 to include the origin of the domain.

It is possible to construct sequences whose discrepancy is lower than that of a random
sequence, which is of order % These are known as low-discrepancy sequences. Such sequences
are characterized by their ability to fill the unit cube uniformly and with an extremely regular
pattern.

A natural approach to achieving the most uniform distribution of points is to consider a
regular grid. However, it can be shown that the discrepancy of such a distribution remains of
order %, which is actually a poor result. The reasons behind this will be further discussed in
Section 3.1 , dedicated to discrepancy computation.

Furthermore, we will see that the complexity of discrepancy computation depends on the di-
mensionality, making it impractical for high-dimensional cases. This is why the low-discrepancy
sequences introduced here are particularly useful, as they are easy to implement and ensure
low discrepancy.

Examples of low-discrepancy sequences were proposed by Halton [27], Hammersley [28],
Sobol [29], Faure [30], and Niederreiter [31]. In the following sections, we will study the con-
struction and properties of these different sequences used in experimental design.

A fundamental concept behind the construction of most of these sequences is the inverse
radical function in base b, defined as follows:

All the sequences introduced below are defined for all n. We will see that most of these
sequences are valuable due to their iterative properties for example, when adding ¢ points to
an existing design of size n. This property significantly influences the choice of the sequence to

be used.
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Definition 2.9. Let b be an integer with b > 2. The inverse radical function in base b is given

by:

L= Pm
o(1) = pmt1

m=0

where 7 is represented in base b as:
i =po+pib+pab” £+ prb”

with p,, being the digits of 7 in base b. The sequence: Cy, = {xq, 1, ..., 2,1}, where z; = ¢(1)

is called the Van Corput sequence in base b ®.

2.2.4.1 Halton Sequences

Halton sequences are the multi-dimensional extension (d > 1) of Van der Corput sequences,
which are their one-dimensional counterparts. The key idea behind generating Halton sequences

is to use a different base for each dimension.

Definition 2.10. A Halton sequences Hy,  p, = {%o,%1,...,Zn—1} in bases by, ..., b, is

defined as:
xi = (¢b1 (Z)7 cee 7¢bd(i)) € [O, ]-]d

where by, ..., by are positive integers that are pairwise coprime.

Remark 7. To minimize the discrepancy, it is recommended to choose the first d prime num-
bers as bases. This choice helps reduce the leading term constant in the upper bound of the

discrepancy of such sequences (see Faure[32], revisited in Niederreiter [33]).
Halton sequences have the advantage of being easy to implement and computationally effi-
cient. Transitioning from x = ¢ (i) to 2" = ¢(i + 1) simply requires an addition in base b,

making them well-suited for practical applications.

3The Van Corput sequence is a low-discrepancy sequence used in quasi-random sampling; it distributes points
uniformly over the interval [0, 1] by reversing the digits of natural numbers in a given base.
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Figure 2.11: The first 50, 250, and 500 points of a Halton sequence in bases 2 and 3.

2.2.4.2 Hammersley Sequences

A Hammersley sequence in dimension d is constructed using a term dependent on the number

of points and a Halton sequence in dimension d — 1.

Definition 2.11. A Hammersley sequences Hy: , = {xo,1,.

is defined by

. Tp_1} in beses b ..., b4y

5= (0 (0)s b, () € 0,1

where by, ...,bs_1 are pairwise coprime positive integers.

Remark 8. To minimize the discrepancy of Hy , it is recommended to choose the first

d — 1 prime numbers as bases.

DiscussioN Since Hammersley sequences are built from Halton sequences, they exhibit
the same pattern of successive diagonals. Moreover, it is not possible to add extra points
to a Hammersley sequence without affecting its discrepancy. Therefore, when the number of
required points is unknown in advance, using a Hammersley sequence is not recommended.
Additionally, these sequences lose the iterative property of Halton sequences, which allows for
the easy addition of points. Here is the figure representing the first 50, 250, and 500 points

of a Hammersley sequence in base 2. Each subfigure illustrates the distribution of the points

within the unit square [0, 1]? (see figure 2.12)
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Figure 2.12: The first 50, 250, and 500 points of a Hammersley sequence in base 2.

2.2.4.3 Sobol’ Sequences

Sobol sequences are defined based on primitive polynomials over the finite field Z, = {0,1}.

Before proceeding, we recall the definition of a primitive polynomial.

Definition 2.12. A polynomial p(t) of degree s of the form:

p(t) =t° +us 1"+ -+ ugt + ug
is said to be primitive over the field Z, if it meets the following conditions:

o It is irreducible over Z,, meaning it cannot be factored into lower-degree polynomials
in Zz[t]
 The smallest integer i such that p(t) divides ¢ —1 (or ¢ +1) is exactly 2% — 1. This integer

¢ is known as the order of the polynomial.

A primitive polynomial of degree s must include both the monomials ¢* and 1, and it must

contain an odd number of terms.

Definition 2.13. A Sobol sequence S = {z° z', 2% ... "'} in one dimension is defined
as follows:
= — a
om \ 2y ) FE
where (p1,p2, ..., pm) represents the binary expansion of i, and m is given by:
1 ifi=0
m =

1+ |log,i] otherwise
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The symbol @ denotes addition in Z, *.

For k > s, the coefficients [, are computed using the recurrence relation:
e = 2uyly 1 ® 2%usly o ® -+ B 2%ugly s D Iy

where w1, us, . . ., u, are the coefficients of a primitive polynomial:t® + w#5= + - - 4+ ug_1t + u,
defined over Z,. Additionally, the integers [1,. .., [, must be odd and satisfy 1 < [;, < 2* for
k=1,...,s.

To generate a Sobol sequence in dimension d, it is sufficient to select d distinct primitive

polynomials.
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Figure 2.13: The first 50, 250, and 500 points of a Sobol’ sequence in 2D

DiscussiOoN: Sobol sequences offer several significant advantages. Firstly, their construc-
tion is highly efficient since their binary nature aligns well with computer architectures, thereby
reducing computation time [34]. Moreover, they generally maintain a well-balanced point dis-
tribution even as the dimensionality increases, unlike other low-discrepancy sequences that may

suffer from degeneracy issues in high-dimensional spaces (Joe & Kuo, 2003 [35]).

2.2.4.4 Faure Sequences

Faure sequences are defined using the inverse radical function ¢, and a Pascal generator matrix
Ch, given by:

U e e <
—RiGk—DD TR
Ch, = (I=k)!(k—1)

)

0, otherwise.

Definition 2.14. Let b > d be a prime number. The Faure sequence F' = {zg, x1,..., 2,1} in

dimension d is defined as:

4Addition modulo 2 is performed using an "exclusive or' (XOR).
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.I'EJ) = ¢b <Z ijl’l,ﬂ;l mod b) 3

=1
where Cj_1;_; represents the generator matrix of the j-th dimension of the Faure sequence

in dimension d.

Remark 9. To achieve better uniform distribution, it is recommended to choose b as the smallest

prime number greater than or equal to d.
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Figure 2.14: The first 50, 250, and 500 points of a Faure sequence in dimension 2.

Faure sequences are designed to ensure a locally uniform distribution of points.

2.3 Computer Experiments Designs
In this section, we introduce numerical designs. These designs are generated using the Markov

Chain Monte Carlo method by utilizing point process stochastic processes.

2.3.1 Experimental Designs Based on the Strauss Process

One of the first stochastic models used for generating experimental designs is the Strauss point
process, introduced by Franco et al.[36]. This process is defined by a conditional probability
density given by:

where:
e k is a normalization constant,

e 7 is an interaction parameter such that 0 <y <1,

52



o s(x) is the number of point pairs whose distance is below a threshold R:

s(#) = Vi |<R)

i<j

The parameter v controls the repulsion between points:

If v = 1, the process corresponds to a homogeneous Poisson process. If v < 1, the points

are more spaced out, introducing a repulsion effect.

2.3.2 Experimental Designs Based on the Marked Point Process

o Marked point processes [37]: extend the Strauss process by assigning each point
x; a mark m;, which can represent additional information (prediction variance, factor

importance, etc.). The probability density is given by:

n(a) = kB

where § > 0 is an intensity parameter and n(x) is the number of points in the configura-

tion.

The choice of marks is made by optimizing a predictive variance function, for example,

for a polynomial model:

var(g,) = f(z:) (F'F) ™ f ()
where F is the design matrix and f(x;) the regression vector.

o Two-Mark Experimental Designs [38]: In the specific case of computer experi-
mental designs with two marks, we distinguish two types of points M; and M, each

with its own interactions:

7T(.TJ) _ aﬁim(m) ;m(x)fyﬁu(w)f}/gm(:}c)fy;r;w(:p)

with:
— mq(x) : number of points of type Mj,

— ma(x) : number of points of type Mo,

— myq1(z) : number of M;-M; point pairs,
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— mya(x) : number of mixed M;-M; pairs,
— mas(x) : number of Msy-M, point pairs,

— Y11, V12, Y22 - interaction coefficients.

2.3.3 Experimental Designs Based on Cluster Processes

Cluster random processes [39] introduce more complex neighborhood relationships between
experimental points. An example is the continuous cluster random process, which defines the

probability of a configuration x as:

m(z) = By e

where ¢(z) is the number of connected components in the graph defined by:

The Metropolis-Hastings algorithm is used here with a cluster movement dynamic, optimizing

the coverage of the experimental space.

2.3.4 Experimental Designs Based on Area-Interaction Processes

The area-interaction process [40] is an interesting alternative where the interaction between
points is defined based on the area covered by spheres of radius R centered on the experimental

points. The process density is given by:

where m(Ug(x)) is the Lebesgue measure of the union of spheres of radius R around the points,

defined as:

n

Up(z) = | Blai,r),

i=1
representing the density of the area occupied by the union of these balls. The process density

is then expressed as:

with:
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a > 0 : normalization constant,
B > 0 : intensity parameter controlling the number of points,
~v > 0 : repulsion parameter penalizing the covered area,

m(U,(z)) : Lebesgue measure (area) of U,.(z).

The measure m(U,(x)) can be computed using the inclusion-exclusion formula:

m(U,(x)) = Zm(B(xi,r))— Z m(B(xi,r)ﬂB(xj,r))+. e (=1)" (ﬂ B(xi,r)> ‘

i=1 1<i<j<n
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CHAPTER 3

CRITERIA AND OPTIMAL DESIGNS

Studying the uniformity of point distributions is a challenging task, particularly in high-
dimensional spaces where direct assessment often becomes impractical. As a result, it is essential
to rely on specific criteria to determine whether a given distribution approximates uniformity
and ensures good space-filling properties. These criteria are generally classified into three main
categories.

First, discrepancy criteria measure the deviation between an empirical distribution and an
ideal uniform distribution. They serve as a key indicator of point dispersion [33]. Discrep-
ancy plays a central role in the theory of quasi-Monte Carlo methods, where low-discrepancy
sequences such as those of Halton (1960)[27], Sobol’ (1967)[29], and Faure (1982)[30] are widely
used in numerical integration and computer experiment designs [41].

Second, distance-based criteria assess the regularity of a point distribution by comparing
it to a regular grid [42]. This method is particularly useful in space-filling designs, where
maintaining a minimum distance between points helps enhance interpolation accuracy and
response surface modeling [43].

Third, the entropy criterion quantifies the amount of information contained in a design.
Unlike the first two, it is model-dependent, relying on statistical assumptions about the response
function [44]. Entropy-based criteria are often employed in Bayesian experimental design, where
maximizing entropy leads to optimal information gain and reduced uncertainty in predictions
[45]. Entropy is also closely related to interpoint distances, thus promoting well-distributed
designs [46].

Each of these approaches supports the construction of optimal designs tailored to different

objectives. Low-discrepancy designs provide uniform space coverage and are widely used in

56



numerical simulations and optimization [47]. Distance-based designs reduce clustering and are
ideal for computer experiments [48].

Finally, for the standard designs, the quality of experimentation can be assessed using
the model matrix even before running the experiments. This matrix depends on both the
assumed mathematical model and the experimental point locations. It directly affects the
prediction error, which should be minimized to a level comparable to the measurement error.
Depending on the objective, various optimality criteria can be adoptedeither to ensure good

domain coverage or to achieve precise estimation of model coefficients.

3.1 Optimality Criteria for computer experiments de-
signs
3.1.1 Uniformity Criteria Based on Discrepancy and Low-Discrepancy

Designs

3.1.1.1 Discrepancy

The fundamental definition of discrepancy was introduced in Section (2.2.4). As a reminder,
discrepancy measures the deviation between a given point distribution and a uniform distribu-
tion; in other words, it quantifies the irregularity of the distribution. Below, we present the

formal definition to clarify the underlying principle.

Remark 10. If the domain is reparameterizedfor instance, if we analyze X f2) instead of X then
the objective will not be exactly the same. Ensuring uniformity for X; does not necessar-
ily imply uniformity for Xl(Q) . This issue also arises in Bayesian inference when defining an

informative prior distribution, where uniformity is not necessarily the primary goal.

Definition 3.1. (Niederreiter, 1987): Let X be a sequence of n points zy, ..., z, in [0, 1]¢, and
let J be a subset of [0,1]¢. Using the previous notations, the discrepancy function is defined

as:

A(J, X)

D,(J,X) = .

— X(J)

where: - A(J, X) is the number of indices 7, 1 < i < n, such that z; € J, - AX4(.J) represents
the Lebesgue measure (or volume) of J.

The extreme discrepancy of X, denoted as D,,(X), is defined as:
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D,(X) = 31;2 D, (J,X)

where 7 is the set of all subsets of [0,1]¢ of the form:J = [[, [as, bi]. The star discrepancy of
X, denoted as D} (X), is given by:D}(X) = sup e 7- | Dn(J, X)|
where J* is the set of subsets of [0, 1] of the form:H?zl[O, b;.

Remark 11. Let px = £ 37" | 8,, be the uniform probability measure on X. Then, D,(J, X)
can be expressed as the distance between this measure and the Lebesgue measure, i.e.,
Dy (J, X) = [ux(J) — Aa(J)]

where A\g(J) denotes the Lebesgue measure (or volume) of J.
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Figure 3.1: The first 80 points of a Hammersley sequencein demension 2 with a subset J defined
by z and 2’ for extreme discrepancy

Consider the rectangle J defined by the corners: - z = (0.2,0.3) - 2/ = (0.8,0.7)

The volume of this rectangle, given by the Lebesgue measure, is: A\g(J) = (0.8 — 0.2) X
(0.7 — 0.3) = 0.24. This means that, under a perfectly uniform distribution, 24% of the points
should ideally fall within J.

Now, considering a set X of 80 points, suppose that 18 points actually lie inside J. The
observed proportion is:

A(J, X) 18

= — = (.225.
n 80
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The discrepancy for this subset J is then given by:

A(J, X)

D, (J,X) = — Xa(J)| = 0.225 — 0.24] = 0.015.

By repeating this calculation for multiple subsets J and selecting the maximum value ob-
tained, we derive the extreme discrepancy of the sequence X, denoted as D,(X). Similarly,
D2 (X) represents the star discrepancy. These discrepancies are defined in the L-norm, which

measures the worst-case deviation between the point distribution and the ideal uniformity.

09} - - .

0.2 . s . 9

Figure 3.2: A subset J for the computation of the discrepancy at the origin

An alternative approach is to consider Lo-norm discrepancies, which provide a global mea-
sure of non-uniformity by integrating quadratic deviations over the entire domain. This concept
will be further explored in Section (3.1.2).

Now that we have established a rigorous definition of discrepancy, we can explain why a
regular grid can lead to poor discrepancy results. To achieve low discrepancy, it is crucial
that the sampling uniformly covers all axis-aligned rectangles. However, a regular grid does
not always meet this criterion. Some sub-rectangles may be poorly sampled due to the rigid
structure of the grid. For instance, the placement of the boundaries relative to the grid may

lead to significant deviations from ideal uniformity.
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Figure 3.3: Factorial design and visualization of two axis-parallel rectangles not being uniformly
sampled.

3.1.2 Discrepancy in L2-norm

The Lo-norm discrepancy is the only one that remains easily computable regardless of the
dimension.

Let X = {x1,...,2,} be a sequence of n points in the interval [0,1]?. This section first
introduces the definition of various forms of Lo-norm discrepancy and then presents the corre-

sponding computational approaches.

3.1.2.1 Discrepancy at Extremes and at the Origin

Definition 3.2. The L, discrepancy of a sequence of n points 1, . .., x, in [0, 1]¢ is defined as:

D2 (X,) = D(J, X,,)? da db
0,1)4

where J represents subsets of [0, 1] of the form:

d
J = H[ai, bl]
i=1
Definition 3.3. The L, discrepancy at the origin of a sequence of n points 1, ..., z, in [0, 1]¢
is given by:
DP(X,) = D(J, X,,)* db
[0,1]¢

where J represents subsets of [0, 1]¢ of the form:
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3.1.2.2 Extreme and Origin Discrepancy Calculation

In dimension d, the values of D7 (X,) and Dj2(X,) can be computed using the following

explicit formulas:

d d n
1 1 . 1 1
D%Z (Xn) = ﬁ | | (1 + 5 max(xij, J:k:j) — 5 mln(xij, Ik]’) — xijxkj> _ﬁ E | | <§ - l’z]>+1—

3
3

d d n
D2 (X,) = — H (1 — max(zij, Trj) + ijTry) - Z H ( ) 3d

i=1 k=1 j=1 j=1 i=1

3.1.2.3 Modified Discrepancy

Definition 3.4. The modified Lo-discrepancy of a sequence of n points 1, ...,z, in [0, 1]¢

defined as:

DL2M(X,) :Z/ Dy(Ju, X)? db,
w0  0.1]

where [0, 1]* is the projection of the unit hypercube onto the components u, which form a

subset of {1,...,d}, with p = Card(u). J, denotes the projection of the subset .J, defined as:
Ju =TT, [0,b]

The modified Lo-discrepancy considers projections onto all subspaces and is defined by the

following explicit formula:

n

R R 9) | CRELTED ) 9) ) (R e

=1

3.1.3 Centered Discrepancy

Definition 3.5. The centered Lo-discrepancy of a sequence of n points 1, ..., z, in [0, 1]¢

defined as:
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D7(Xn) = pu D(Jy, X,,)? dx:
u#0 [0,1]*

where:

- [0, 1]* represents the projection of the unit hypercube onto the components u, which is a

subset of {1,...,d},
- p = Card(u),

- J, is the projection of a subset constructed from the considered point x and its nearest

vertex.

Remark 12. In dimension 2, the set J, can take four different forms, one of which is depicted

in Figure 3.4. More generally, in dimension d, there are 2¢ possible cases.

El‘.?r I > L]

0.8} - S

u_]rL s L] .
1N * 4 1

05} . o |

0.2t . ® *

0D1F - d -1

Figure 3.4: A subset J for the calculation of the centred discrepancy

Hickernell (1998) [42] provides an analytical expression for the centered discrepancy.

C 2 13 ? 2 - - 1 i 1 i 2
DL2](X)* = ( 33 —EZH L+ 5laf = 0.5] = 5l — 0.5
i=1 j=1

n n d

1 1, 1 1,
+§Z (1+§|xj—0.5|+§|x§—0.5|—§|xj—x§|)
i=1 k=1 j=1
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3.1.4 Symmetric Discrepancy

Definition 3.6. The L, symmetric discrepancy of a sequence of n points 1, ..., ,, in [0, 1]d is

defined as:

DL{(X)=>_ [ D(J.,X)"dx
u#0 [0,1]

where J, is the projection of the interval J onto the subspace defined by the components wu,
and J represents the union of symmetric subsets, i.e., subsets where the sum of the coordinates

of the vertices remains equal.

0.9t . -

D&} . " b

04| | . .
o3} T s 1
u_z L . * * -

01f * ® k|

Figure 3.5: For x = (0.7, 0.75), the total volume of the two subsets J is 0.6, and the total

proportion of points is 49/80 = 0.6125. The difference between these two values is therefore
0.0125

We also have an analytical formula to compute this discrepancy:

2nd d n n

pE (07 = (5) ~ 2 X205~ + 55 33 TT 0 )

3.1.5 Low-Discrepancy Designs

The concept of low-discrepancy designs discussed here differs from that of sequences detailed
in Section 2.2.4 for the following reasons.
First, let us clearly define what we mean by low-discrepancy designs. These designs refer to

stochastic configurations generated by a simple exchange algorithm, which favors arrangements
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that minimize discrepancy.

Numerous results exist for bounding discrepancy. In Section 2.2.4, we mentioned the
Koksma-Hlawka inequality, but there are also specific upper bounds for each of the previ-
ously discussed sequences. For instance, Faure[32] demonstrated that the star discrepancy of a

n-point Halton sequence in d dimensions, generated using bases by, ..., b4, is bounded by:

d

d 1 b, —1 b;+1
-+ — 1 J )
n+nj1:[1210gbj ogrn + 2

Faure’s theorem [49] further suggests that discrepancy can be reduced by generalizing se-
quences, specifically by applying permutations to sequence elements. Consequently, the idea
of obtaining low-discrepancy designs through a simple exchange algorithm appears not only

feasible but also promising.

Theorem 3.1.1. Let X be the generalized Van der Corput sequence in base b = 12, generated

by the permutation

o=(0,5,9,3,7,110,4,8,2,6,11)

Then, we obtain:

Dy(X)

lim sup ~ (.224.

n—ooo  logn

The study of low-discrepancy designs is of dual interest. Firstly, it demonstrates that it is
possible to obtain designs with a lower discrepancy than most of the sequences discussed in
Section 2.2.4. Secondly, these inherently non-deterministic designs avoid the projection defects
commonly found in high-dimensional sequences due to their regular structure.

The construction of these designs relies on discrepancy computation, and they are primarily
built using the Lo-norm discrepancy, which is significantly easier to compute than the L.-norm
discrepancy. This approach makes it possible to design plans based on any of the discrepancies
defined in Section 3.1.2, particularly the centered or modified discrepancy, which consider point
projections on the margins. Consequently, in the following discussion, the designs will be
generated using the centered discrepancy.

However, a major drawback of these designs is their computational cost. Even though
the Lo-norm discrepancy can be calculated using simple analytical formulas, low-discrepancy
sequences are much faster to generate. For instance, a Halton sequence with 600 points in 60

dimensions can be produced instantly, whereas constructing a low-discrepancy design of similar
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size is computationally prohibitive.

3.1.6 Distance Criteria and Optimal Designs

Distance-based criteria aim to assess the proximity between a given point distribution and that
of a regular grid. In this section, we will focus on the most commonly used uniformity criteria,
which are based on the distance between neighboring points. For a more in-depth discussion
of additional uniformity measures, the reader may refer to Gunzburger [50].

The idea is to generate designs whose points are close to a regular grid without exactly
matching it, in order to avoid undesirable misalignments. Our goal is to construct designs with
a quasi-periodic distribution, striking a balance between a regular grid and good uniformity,
often measured using discrepancy criteria.

The distance between two points x; and xy, denoted as dist(x;, xy), is given by the Euclidean

distance:

M&

1/2
dist(x;, xx) [ :c —x ]
Jj=1

3.1.6.1 Covering Measure

Definition 3.7. Let X = {xy,....,z,} C [0,1]? be a sequence of n points in a d-dimensional
space.

The covering measure A is defined as:

n 1/2
A= % (%Zm - w?)

i=1
where: - y; = Iil;in dist(a?, 2*) represents the minimum distance between point x; and the
1

other points in the sequence. - ¥ = % > iy i is the average of all ;.

Interpretation

If the points are arranged on a regular grid, then ~; = v for all ¢, leading to A = 0.

Therefore, the smaller A, the closer the points are to a regular grid. This expression explic-
itly highlights the coefficient of variation of the sample ~;, which is the ratio of the standard

deviation to the mean.
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3.1.6.2 The Distance Ratio

Definition 3.8. Let X = {zy,...,z,} C [0,1]? be a set of n points in d-dimensional space.

The distance ratio is defined as:

max y;
i=1,....,n

n 7
i=1,..,n

R:

where

7i = mindis (x', z")
represents the minimum distance between the point x; and any other point in the set.

When the points are arranged on a regular grid, we have v; = v for all 7, leading to

max -y;

R = =1.

min ;

Therefore, the closer R is to 1, the more the point distribution resembles a regular grid.

3.1.6.3 Maximin and Minimax Distances

Johnson et al.[48] introduced the mazimin and minimaz distances to construct designs that

optimize space-filling properties.

Definition 3.9. [51]

These criteria are defined using the Euclidean distance:

o Maximin Distance (MinDist):

MinDist = min min dist(z’, 2")
r,€X xpeX
ki

o Minimax Average Distance (AvgDist):
AvgDist = 1 z”: min dist(z, z¥)
n mzix ’

where X = {z1, ..., z,} represents an experimental design with n points in d-dimensional space.
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3.1.7 Entropy Criterion and Maximum Entropy Designs

This criterion differs from the previously presented ones as it does not directly assess the
uniformity or space-filling properties of a design in an exploratory phase. Indeed, entropy
calculation is generally feasible only when the underlying distribution is known, an assumption
that is often not met in exploratory settings.

The purpose of introducing entropy here is to lay the foundation for a method of optimal
design generation based on this criterion (see section 3.1.7.2). Although this criterion is not
inherently linked to spatial uniformity, the resulting designs exhibit good space-filling proper-
ties. Additionally, it allows for the consideration of variable anisotropy, which can sometimes

be inferred during the exploratory phase based on prior knowledge of the physical phenomenon.

3.1.7.1 Definition of Entropy

Shewry and Wynn (1987)[44] described entropy as "the amount of information contained in an
experiment." More generally, entropy quantifies the information content within a probability

distribution.

Definition 3.10. The entropy of a continuous random variable X with probability density

function f is given by:

HX) == [ f@)log () do = ~Bxlog f(X))
with the convention 01n(0) = 0.

For mathematical simplicity, we use the natural logarithm. This choice does not affect the
results, as entropy is merely translated by a constant factor.

Similarly, for a continuous random vector X = (X1, ..., Xy4) in R? with density f, entropy is

defined as:
H(X) = - » f(x)log f(z) dp(z),
where p is the Lebesgue measure.

Remark 13. Entropy depends solely on the probability density function f and not on the specific

values taken by X. Consequently, it cannot be directly computed from an experimental design.

Maximizing Entropy for Experimental Design
The goal is to select an experiment e from a set E that maximizes the expected information

gain. Shewry and Wynn (1987) [44] highlighted several challenges with this approach, partic-
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ularly regarding the definition of E. They proposed considering F as a finite set of possible
experiments and established a connection between information gain and entropy.

If the experimental domain E consists of N points, each associated with a response Y; for
t = 1,..., N, we can partition E into two subsets: - D, the chosen design points, - D¢ the
remaining points.

The standard decomposition of entropy yields:

H(YE) = H(YD) + EYD [H(YD|YD)].

The term E[H (Ype|Yp)] corresponds to the expected reduction in entropy when selecting D.
Maximizing entropy-based designs thus involves choosing D to maximize H(Yp), the entropy
of the selected design points.

The purpose of maximum entropy designs is therefore to maximize the information gained
from experiments relative to a parameter #. Many studies have explored this concept, notably
those by Koehler and Owen [52] and Santner et al. [9]. Entropy-based experimental designs
have been widely used to approximate complex deterministic models, as discussed by Mitchell

and Scott [53], Currin et al. [54], and Sebastiani and Wynn [55].

Remark 14. This approach combines prior knowledge with experimental data under an assumed
model to produce a posterior distribution, placing it entirely within the Bayesian framework.

For a comprehensive review of Bayesian experimental designs, see Chaloner and Verdinelli [45].

3.1.7.2 Maximum Entropy Designs

The general definition of maximum entropy designs typically requires knowing the response
values at the design points, which means that entropy is not, in principle, an intrinsic criterion.
However, Shewry and Wynn [44] proposed a formulation that allows constructing such designs
without needing the actual response values.

The method they introduced focuses on space-filling by distributing points according to a
spatial correlation matrix. In the specific case of a centered Gaussian process f, Shewry and
Wynn (1987) showed ! that the entropy H(Y (X)) depends directly on the determinant of the

covariance matrix:

H(Y (X)) x Indet(C(X))

!This demonstration is excellently detailed in Koelher and Owen [52]
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where C'(X) is the covariance matrix. Therefore, under the assumption of stationarity, gen-
erating a maximum entropy design amounts to maximizing the determinant of the correlation

matrix.

Remark 15. If the model is linear, then the determinant can be expressed in terms of the
design matrix. In this case, a design obtained using a classical approach, such as an exchange

algorithm, would be D-optimal.

This equivalence holds only if the responses at the design points follow a multivariate normal

distribution, without any specific assumptions on the covariance structure.
Let
X =(X,...,X,)"

be a vector of random variables. The variancecovariance matrix of X is given by:

o? cov(Xy, Xo) -+ cov(Xy, X,)

cov(Xqg, X o2 <o cov(Xo, X,

C(X) _ ( ‘2 1) ‘2 ( .2 )
cov(X,, X1) cov(X,, Xs) - o2

where o; is the standard deviation of X;, and

COV(Xi, XJ) = 0,0 Pij

is the covariance between X; and X.
If the variables X; are standardized, the covariance matrix C'(X) becomes the correlation

matrix:

1 pi2 - pun

1 .- "
C’(X) _ P21 P2
Pnl Pn2 " 1

Now, let us define a spatial correlation matrix C' = [p;;] as follows:

1, if i = j

pi; =8 1—=r(hy), ifhyj<a

O, if hij >a
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Here, v(h) is the variogram, h;; denotes the Euclidean distance between points ¢ and j, and
a is the range parameter of the variogram
We can then compute, for

X = (x1,...,2,)

a vector of points in a d-dimensional space, a spatial correlation matrix defined as:

1 pi2 o pin

1 .. "
C’(X) _ P21 P2
Pnl Pn2 " 1

where p;; is a function of the distance between points ¢ and j, computed based on a spatial
correlation model that is assigned a priori to the experimental space (see equation (1) above).

The determinant of C'(X) reaches its maximum when p;; = 0, that is, when each pair of
points is separated by a distance greater than the range a of the spatial correlation function.

Thus, the goal is to maximize the determinant of C'(X) using an exchange algorithm, such

as those proposed by Fedorov or Mitchell, as described below:

Algorithm 1: Procedure for Generating a Maximum Entropy Design (DETMAX)
Input: Number of points n, maximum number of iterations N, variogram model

Output: A design X with (approximately) maximum entropy
Initialize: Randomly select an initial design X of n points in [0, 1]¢ and fix a
variogram model;
Compute det(C(X©®));
for k=1 to N, do
Randomly choose an index i € {1,...,n};
Simulate a new point z; uniformly in [0, 1]¢;
Let X® be X* =1 with ; replaced by z;
if det(C(X®)) > det(C(X*~1)) then
‘ Accept the new design X*);
end
else
‘ Reject the update and keep X*) = X (*-1).

end

end

return X (Vma)
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Remark 16. The classical DETMAX algorithm explores all points on a regular grid.

3.2 Optimality Criteria for Standard Designs
A good experimental design is one that minimizes the prediction error on the responses. A
general rule is that the prediction error should be of the same order of magnitude as the
measurement error on the observed responses. Depending on the selected optimality criterion,
the location of the experimental points may vary from one design to another.

Several optimality criteria exist. Some focus on the distribution of the variance across the
experimental domainsuch as the rotational isovariance criterion. Others aim to ensure that the
resulting mathematical model is of high quality. These criteria are primarily concerned with

the precision of the models estimated coefficients.

3.2.1 A-Optimality Criterion

An experimental design matrix is said to be A-optimal if it minimizes the trace of the disper-

sion matrix:

Tr (X7X)™)

This criterion focuses on minimizing the average variance of the estimated coefficients.

3.2.2 D-Optimality Criterion

A design matrix is D-optimal if it minimizes the determinant of its dispersion matrix:
det (X7X)™)

Equivalently, this maximizes the determinant of the information matrix X7 X, reducing the

volume of the confidence ellipsoid for the model coefficients.

3.2.3 E-Optimality Criterion

A design matrix is E-optimal if it minimizes the largest eigenvalue of the dispersion matrix
(XTX)~!. This criterion ensures that the worst-case variance among the coefficients is as small

as possible.
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3.2.4 G-Optimality Criterion

The G-optimality criterion considers the maximum prediction variance across the design
domain:

_ ~2
= i)

The best design under this criterion minimizes d.

G-Efficiency The G-efficiency of a design is calculated as:

100 - ¢

Bffg = — 1
“ N'dmax

where ¢ is the number of model parameters, N is the number of experiments, and dy,., is the

maximum prediction variance. A design is close to G-optimal if Effg ~ 100%.

3.2.5 M-Criterion
The M-criterion assesses the information quality of a design, independent of the number of

runs. The moment matrix is defined as:

1
M=_—X"X
N

Let M; and M, be the moment matrices for two designs with N; and N, runs:

1
=N

1

M
1 N,

XIx,, M,=—XI'X,

Design 1 is more efficient than Design 2 with respect to this criterion if det(M;) > det(M,).

3.2.6 Orthogonality Criterion

A design is orthogonal if it leads to independent coefficient estimations, which occurs when
the information matrix X7 X (or its inverse) is diagonal. This implies zero covariance between

coefficients.

3.2.7 Near-Orthogonality Criterion

The near-orthogonality criterion is satisfied when the submatrix (excluding the first row and

column) of (X7 X)~! is diagonal, indicating that all coefficients except the intercept are nearly
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uncorrelated.

3.2.8 Iso-Variance by Rotation Criterion

This criterion requires the prediction error to be constant for all points located at equal distances
from the center of the experimental domain. It ensures isotropy and rotational symmetry of

the variance distribution across the space.
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CHAPTER 4

COMPARATIVE ANALYSIS OF STANDARD AND COMPUTER
EXPERIMENTAL DESIGNS BASED ON OPTIMALITY
CRITERIA

This chapter is dedicated to the comparative analysis between standard design of experiments
(such as factorial designs, composite designs, Box-Behnken designs, and so on.) and computer
designs generated through simulation (such as low-discrepancy sequences, maximin distance
designs, Strauss designs, marked Strauss designs, and so on.). Based on the optimality criteria
discrepancy, inter-point distances, and entropy we evaluate the relative performance of each
type of design. This comparison aims to identify scenarios where one design may be more
appropriate than another, depending on the experimental goals pursued, such as space-filling,

estimation accuracy.

4.1 Comparison of Standard Experimental Designs Ac-

cording to Classical Optimality Criteria
This section focuses on the comparative analysis of several classical experimental designs based
on widely accepted optimality criteria. The designs examined include full factorial designs
at two and three levels, Mozzo designs, composite designs, and Box-Behnken designs. These
designs are commonly used in practice due to their simplicity and effectiveness in modeling
first- or second-order responses.

Each design is evaluated using key optimality criteria such as:
« D-optimality, based on the determinant of the information matrix (X7 X),
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A-optimality, based on the trace of (X7 X)™1,

G-optimality, through the maximum prediction variance max d(zx),

M-criterion, related to the determinant of the moment matrix M = %X Tx

G-efficiency, indicating the overall predictive quality of the design.

Through this analysis, we aim to highlight the trade-offs between the number of experiments,
estimation precision, and spatial coverage of the experimental domain. The comparison allows
us to determine under which conditions each design performs best and to provide guidance for

choosing the most suitable design according to the study objectives.

4.1.1 Comparison for Two-Factor Designs

We examine four standard experimental designs used in the case of two factors: the full factorial
designs at two and three levels, the Mozzo design, and the composite design. These designs
are evaluated according to several classical optimality criteria such as D-optimality (through
det(XTX)), A-optimality (trace of the inverse information matrix), G-optimality (maximum
prediction variance), and G-efficiency. The goal is to assess the trade-offs between model

estimation quality, prediction accuracy, and space-filling properties.

Table 4.1: Comparison of standard designs for two factors

Design Full Factorial 2* | Full Factorial 3* | Mozzo | Composite
Nb. Runs. 6 9 3 12
Nb. Levels 22 3;3 33 53D
det(XTX)™! 2.61 x 1073 1.92 x 10~* 0.129 3.05 x 107
trace[(XTX)™] 0.92 2.1389 1.5771 2.18

M 0.296 9.754 x 1073 0.287 6.16 x 1072
max d(x) 0.805 0.81 1.564 0.99
G-efficiency (%) 82.81 82.30 63.39 67.34

The analysis of the results in Table 4.1 highlights several trade-offs. The full factorial design
at two levels shows the highest D-optimality and a very good G-efficiency, indicating strong
model identifiability with a relatively small number of experiments. The factorial 3* design
offers a finer resolution due to more levels but slightly reduces G-efficiency and increases the
complexity of the experiment.

Although the Mozzo design is highly economical (with only 3 points), it performs poorly in

terms of D- and A-optimality and the highest maximum prediction variance, which limits its
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practical utility for accurate modeling. The composite plan, although it uses the highest num-
ber of experiments (12), performs moderately across most criteria, offering a balance between
coverage and estimation quality, but with lower G-efficiency.

For two-factor models, the full factorial design at two levels appears to offer the best com-

promise between economy and statistical robustness.

4.1.2 Comparison for Three-Factor Designs

A comparative evaluation of three classical designs used in the case of three factors: the full
factorial design at three levels, the central composite design, and the Box-Behnken design.
These designs are commonly used when second-order models are required, particularly for
response surface methodology. The comparison is based on optimality criteria such as D-

optimality, A-optimality, moment matrix determinant, G-optimality, and G-efficiency.

Table 4.2: Comparison of standard designs for three factors

Design Full Factorial (3 levels) | Composite | Box-Behnken
Nb. Runs. 27 15 15

Nb. Levels 3:3;3 5:5:5 3:3;3
det(XTX)~! 1.70 x 10~11 119 x 10 | 3.97 x 108
trace[(X7X)~1] 1.176 1.769 2.270

M 2.85 x 10~ 1.452 x 1072 | 4.364 x 107°
max d(z) 0.51 0.525 0.73
G-efficiency (%) 72.62 67.34 59.52

The results in Table 4.2 show that the full factorial design at three levels achieves the best
overall performance in terms of both D-optimality and A-optimality. This confirms its strong
ability to estimate complex models with high precision, at the cost of a higher number of
experimental runs (27).

The composite design, with only 15 runs, achieves a good compromise. Although its D-
efficiency is slightly lower, it still provides reasonable estimation accuracy with improved econ-
omy. Moreover, its G-efficiency remains acceptable, reflecting reliable prediction performance
over the experimental space.

The Box-Behnken design, also with 15 runs, shows lower efficiency on all statistical criteria.
While it is often appreciated for requiring fewer experimental runs and for being rotatable,
it presents the largest prediction variance and the lowest G-efficiency among the three, which

could be a limiting factor in some applications.
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For three-factor experiments aiming at quadratic modeling, the full factorial design pro-
vides the best estimation power, while the composite plan remains a viable alternative when

experimental cost must be minimized.

4.1.3 Comparison for Four-Factor Designs

We compare several standard experimental designs suitable for four factors. These include full
factorial designs at two and three levels, the Box-Behnken design, the composite design, as well
as the Mozzo and Doehlert designs. The evaluation is carried out using multiple optimality
criteria, including D- and A-optimality, maximum prediction variance, and G-efficiency. These
criteria help assess the balance between estimation accuracy, prediction robustness, and space-

filling properties.

Table 4.3: Comparison of standard designs for four factors (Part 1)

Design Full factorial 3* | Full factorial 2* | Box-Behnken
Nb. Runs. 81 16 27

Nb. Levels 3;3:3;3 2:2:2;2 3:;3:3;3
det (X7 X)"! 6.52 x 1011 1.67 x 1073 1.96 x 105
trace[(XT X)™] 0.574 0.3125 2.9167
max d(z) 22.50 5.00 15.75
G-efficiency (%) 66.67 100.00 95.24

Table 4.4: Comparison of standard designs for four factors (Part 2)

Design Composite Design | Mozzo Design | Doehlert Design
Nb. Runs. 30 18 24

Nb. Levels 3:;3;3;3 5:;5:;5;5 5:5;5;5
det(XTX)™! 1.96 x 107° Not valid 2.24

trace[( X7 X)™] 0.8542 Not valid 64.45

max d(z) 17.50 Not available 19.20
G-efficiency (%) 85.71 Not available 78.12

The comparison reveals distinct performance patterns among the designs. The full factorial
2% design achieves the best G-efficiency (100%) and lowest A-optimality trace, but it lacks the
resolution to estimate second-order effects fully. The 3* factorial design provides better model
estimation at the cost of a high number of runs (81), with good D- and A-optimality, although
it is less space-filling.

The composite design represents a strong compromise, balancing estimation accuracy and
point dispersion, with high G-efficiency and moderate prediction variance. Box-Behnken per-

forms acceptably but shows lower estimation quality, as reflected in its A-optimality.
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The Doehlert design, while efficient in terms of point distribution and fewer experimental
runs, yields poor A-optimality and an unusually high prediction variance, limiting its suitability
for accurate modeling. The Mozzo design values appear numerically unstable (invalid determi-
nants or traces), suggesting it may not be adequate for four-factor second-order modeling.

The composite design offers the best compromise between estimation quality and space-

filling performance in the case of four factors.

4.1.4 Comparison for Five-Factor Designs

We compare several standard experimental designs suitable for five-factor studies. The consid-
ered designs include full factorial designs at two and three levels, the Box-Behnken design, the
central composite design, and the Doehlert design. These are evaluated according to optimality

criteria such as D-optimality, A-optimality, G-efficiency, and the maximum prediction variance.

Table 4.5: Comparison of standard designs for five factors (Part 1)

Design Full factorial 3° | Full factorial 2° | Box-Behnken
Nb. Runs. 243 32 43

Nb. Levels 3;3:;3;3:3 2:2:;2:;2;2 3;3:;3;3:;3
det(XTX)~! 2.14 x 1071 1.15 x 10~* 6.96 x 107
trace[(XT X)™] 0.2613 0.1875 3.9271
max d(x) 33.50 6.00 21.50
G-efficiency (%) 62.69 100.00 97.67

Table 4.6: Comparison of standard designs for five factors (Part 2)

Design Composite Design | Doehlert Design
Nb. Runs. 48 34

Nb. Levels 3:;3:3;3;3 5;D5:;95;5:5
det(XTX)~! 1.18 x 1071 146.33
trace[( X7 X)™1] 0.6887 162.94

max d(z) 26.91 26.81
G-efficiency (%) 78.04 78.34

From the comparison above, it is clear that the full factorial design at two levels offers the
best G-efficiency (100%) and the lowest prediction variance, although it cannot model second-
order effects.. The 3° factorial design offers excellent D- and A-optimality, but at the cost of
significant computational expense due to the very high number of experiments (243).

The composite design presents a strong compromise, maintaining relatively low prediction

variance and acceptable G-efficiency while reducing the number of runs compared to the full
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factorial. The Box-Behnken design, with 43 runs, also performs very well in terms of G-efficiency
and space coverage, although with reduced estimation accuracy.

The Doehlert design is the most economical in terms of prediction dispersion, but it exhibits
extremely poor A-optimality, making it less appropriate for accurate model estimation in higher-
dimensional settings.

For five-factor designs, the composite and Box-Behnken plans appear to provide a practical

balance between statistical quality and experimental cost.

4.1.5 Comparison for Six-Factor Designs

A detailed comparison of several standard experimental designs suitable for six factors. The
criteria considered include the number of experiments, the number of levels, statistical precision
indicators such as the determinant and the trace of the information matrix (X*X)~! the max-
imum distance between points, as well as G-efficiency. These criteria allow for the evaluation

of trade-offs between experimental cost, estimation accuracy, and the space-filling quality.

Table 4.7: Comparison of standard designs for six factors (part 1)

Design Full factorial 3° | Full factorial 2° | Box-Behnken
Nb. Runs. 729 64 63

Nb. Levels 3 2 3

det (X7 X)"! 1.37 x 10731 1.4 x 106 4.37 x 10712
trace[(XT X)™] 0.113512 0.109375 5.220833
M 9.21 x 107° 1 1.83 x 10~
max d(x) 46.75 7 28.35
G-efficiency (%) 59.89 100 98.77

Table 4.8: Comparison of standard designs for six factors (part 2)

Design Composite Design | Doehlert Design
Nb. Runs. 82 46

Nb. Levels 3 D
det(XTX)~! 6.53 x 10~ 1.44 x 105
trace[(XT X)) 0.514174 351.4375

M 0.38 1

max d(z) 44.8071 35.9375
G-efficiency (%) 62.49 77.91

Comparative Analysis The full factorial design 3% provides excellent coverage of the ex-
perimental space (maxd(x) = 46.75) and good statistical precision (trace = 0.113512), but at

the cost of a very high experimental burden (729 runs), making it impractical in many cases.
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The 2% factorial design offers a highly efficient solution: with only 64 runs, it achieves
maximum G-efficiency (100%) and optimal precision (trace = 0.109375). However, its limited
spatial dispersion (max d(z) = 7) reduces its ability to explore the factor space thoroughly.

The Box-Behnken design (63 runs) represents a good compromise. It offers excellent G-
efficiency (98.77%) and acceptable dispersion (maxd(x) = 28.35), though with lower statistical
precision (higher trace value).

The central composite design (82 runs) provides good dispersion (maxd(z) = 44.81) and
satisfactory precision (trace = 0.514174) at a moderate cost, but has relatively low G-efficiency
(62.49%).

Finally, the Doehlert design performs poorly in terms of statistical precision (trace =
351.4375) and exhibits an abnormally high determinant, indicating multicollinearity issues.
Despite its low experimental cost (46 runs), this design is not well suited for accurately mod-
eling complex phenomena involving six factors. Conclusion

In summary, the 2° factorial and Box-Behnken designs offer the best trade-offs between cost,
precision, and space-filling ability. The final choice depends on the required level of precision

and specific experimental constraints.

4.1.6 Comparison for Seven-Factor Designs

This section presents a comparative evaluation of several classical experimental designs used
to study seven factors. The evaluated criteria include the number of experiments, number of
levels, determinant and trace of the information matrix, maximum pairwise distance between
design points, and G-efficiency. The objective is to identify the most suitable designs under

cost constraints and modeling requirements.

Table 4.9: Comparison of standard designs for seven factors

Design Full factorial 3" | Full factorial 2 | Box-Behnken | Composite
Nb. Runs. 2187 128 87 148
Nb. Levels 3 2 3 3
det(XTX)~! 3.14 x 10747 1.56 x 1078 6.81 x 10715 1.29 x 10734
trace[(XT X)) 0.047668 0.0625 6.779167 0.345315
M 5.24 x 107° 1 8.78 x 1017 2.82
max d(x) 62.25 8 36.25 80.2488
G-efficiency (%) 57.83 100 99.31 44.86

Comparative analysis The full factorial design 37 offers excellent accuracy (trace = 0.047668)

and very broad space coverage (max d(z) = 62.25), but it is extremely expensive, requiring 2187
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experiments, which is often impractical.

The 27 full factorial design is much more economical (128 experiments), achieves the highest
G-efficiency (100%), and has good statistical precision (trace = 0.0625). However, its low spatial
dispersion (maxd(x) = 8) limits global space exploration.

The Box-Behnken design, with only 87 experiments, provides very high G-efficiency (99.31%)
but suffers from lower precision (trace = 6.779167). Still, it remains a good trade-off for mod-
erately complex response surfaces.

The composite design (148 runs) improves space coverage (max d(z) = 80.25), but its low G-
efficiency (44.86%) and moderate precision (trace = 0.345315) reduce its appeal for applications
requiring high statistical quality.

For seven-factor experiments, the 27 factorial design stands out as an excellent option due to
its precision and efficiency. The Box-Behnken design is also a strong candidate, offering a good
balance between cost and performance. In contrast, the full factorial and composite designs,
while strong in terms of space coverage, are either too costly or less efficient depending on the

evaluation criteria.

4.2 Comparison of Computer Design

To ensure the statistical relevance of the results, the evaluation criteria were computed over
a set of 100 designs generated for each stochastic method. The comparison was based on
several performance metrics, including Coverage (Cov), Discrepancy (Disc), Minimum Distance

(Mindist), and the R criterion. The following types of designs were compared:
« Random Designs (RD)
 Latin Hypercube Sampling (LHS) [56]
« Maximin Latin Hypercube Sampling (mLHS) [57]
o Maximum Entropy Designs (Dmax) [44]
 Strauss Designs (SD) [36]
» Marked Strauss Designs (MSD)
 Connectivity-Interaction Model Designs (CCD) [39]

o Two-Marked Strauss Designs (TMD) [37]
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4.2.1 Designs with 20, 50, and 100 Points in 5 Dimensions

The figures below provide a visual representation of the most relevant evaluation criteria com-
puted for each design. These graphical illustrations facilitate a clearer understanding and
interpretation of the results by highlighting the distribution patterns and variations observed

across each criterion.
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Figure 4.1: Box plots of the quality criteria computed on the 100 designs with 20 points in

dimension 5.

In summary, while the optimal choice depends on the specific quality criterion being tar-
geted, Strauss-based designs and CCD stand out as the most well-rounded and robust options

for general use in computer experiments.
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Figure 4.2: Box plots of the quality criteria computed on the 100 designs with 50 points in
dimension 5.

DISCUSSION: Strauss designs (SD, MSD, TMD) and CCD exhibit the best balance be-
tween space-filling and uniformity. MLHS and Dmax achieve low discrepancy but at the cost
of spacing. Random designs (RD) remain the least reliable. For dimension 5 and 50 points,

MSD, CCD, and TMD offer the most robust overall quality.
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Figure 4.3: Box plots of the quality criteria computed on the 100 designs with 100 points in
dimension 5.

DISCUSSION: In the case of 100 points in 5 dimensions, the best-performing designs over-
all are MSD, CCD, and TMD, achieving a good trade-off between space-filling (cov, mindist)
and uniformity (disc). MLHS continues to perform well in uniformity but is limited by poor
spacing and coverage. Random and LH designs show inconsistent results. The Strauss designs

maintain good spacing, but SD can be less stable in balance (R).
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4.2.2 Designs with 20, 50, and 100 Points in 7 Dimensions
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Figure 4.4: Box plots of the quality criteria computed on the 100 designs with 20 points in
dimension 7.

The Two-Marked Strauss Designs (TMD) and Marked Strauss Designs (MSD) stand out with
high Mindist values, indicating good spatial dispersion. The Strauss-type designs (SD, MSD)
also show low Cov values, reflecting good alignment with a regular grid. Regarding discrep-
ancy, the best results are obtained by the Dmaxz and mLHS designs, which ensure a uniform

distribution of points.
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Figure 4.5: Box plots of the quality criteria computed on the 100 designs with 50 points in
dimension 7.

With 50 points, the observed trends are confirmed. The TMD and MSD designs maintain
their advantage in terms of minimum distance, while the SD and MSD designs continue to
yield the best results for the coverage criterion. Discrepancy remains dominated by the Dmax

designs, closely followed by mLHS.
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Figure 4.6: Box plots of the quality criteria computed on the 100 designs with 100 points in
dimension 7.

An overall convergence in performance is observed. The differences between designs di-
minish, particularly for Mindist and Disc, due to the increased point density in the space.
However, Dmax and mLHS designs still retain an advantage in terms of uniformity, while the
Strauss-based designs maintain their robustness with respect to the coverage criterion.

In summary, TMD and MSD designs are particularly suitable when point dispersion is
prioritized, whereas Dmax and mLHS designs perform better in ensuring good spatial unifor-
mity. Strauss-based designs (SD, MSD) demonstrate remarkable stability in terms of coverage,

regardless of the number of points considered.
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CONCLURSION

Mathematics has long played a central role in both fundamental and applied research, pro-
ducing a wide array of theoretical advances. However, the practical application of many of
these advances has often lagged behind due to the computational complexity involved. The
rise of computer technology has helped bridge this gap, enabling researchers to implement so-
phisticated models and perform large-scale computations. A prime example is the widespread
adoption of statistical methods and experimental design techniques in modern industry.

This thesis presented a comprehensive synthesis of experimental design methodologies, rang-
ing from classical standard designs to modern numerical approaches tailored for computer ex-
periments. In the first part of the work, we reviewed the theoretical foundations and described
a variety of design families, including factorial, composite, and uniform designs, as well as
numerical designs derived from stochastic models, such as marked point processes.

The second part of the thesis focused on a comparative analysis of these designs based on
several optimality criteria. Classical criteria such as A-, D-, E-, and G-optimality were applied
to standard designs, while criteria such as discrepancy, entropy, and inter-point distance were
used to assess computer-generated designs. This analysis provided insight into the strengths
and limitations of each design, depending on the number of factors and the experimental budget.

The results demonstrated that standard designs are efficient and interpretable for low-
dimensional problems, particularly when second-order models are required. However, in high-
dimensional settings, numerical designs although more complex to construct offer better
space-filling properties and prediction performance.

This work also opens several promising research directions. These include the development
of new probabilistic models for design generation, the combination of multiple optimality cri-
teria to build hybrid designs, and the incorporation of adaptive or Bayesian frameworks to

dynamically optimize experiments based on intermediate results.
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APPENDIX A

PYTHON code for the results of the 4th chapter

for the standard experimental designs

code for BBD with k factors

| import numpy as np
2 import itertools

3 import scipy.linalg # Pour une inversion plus stable

| num_factors = 6

5 num_center_points = 3 # Nombre de points au centre

¢ factors = list(range(num_factors))

7 factor_pairs = list(itertools.combinations(factors, 2))

levels = [-1, 1]

9 level_combinations = list(itertools.product(levels, repeat=2))
10 design_points = []

1] for pair in factor_pairs:

12 for combo in level_combinations:

13 run = np.zeros(num_factors)

14 run[list(pair)] = combo

15 design_points.append(run)

14 center_point = np.zeros(num_factors)

17 for _ in range(num_center_points):

18 design_points.append(center_point)

19 X_design = np.array(design_points)

20 num_runs = X_design.shape [0]

21l num_linear = num_factors

22 num_interact = num_factors * (num_factors - 1) // 2

23 num_quad = num_factors
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num_params = 1 + num_linear + num_interact + num_quad

X_model

np.ones ((num_runs, num_params))
{ col_idx =1
X_model[:, col_idx:col_idx + num_linear] = X_design
col_idx += num_linear
interaction_pairs = list(itertools.combinations(range (num_factors), 2))
for i, j in interaction_pairs:
X_model[:, col_idx] = X_designl[:, i] * X_designl[:, j]
col_idx += 1
for i in range(num_factors):
X_model[:, col_idx] = X_designl[:, i] *x 2
col_idx += 1
i Xt = X_model.T
XtX = Xt @ X_model

§ try:

XtX_inv = scipy.linalg.inv (XtX)
matrix_invertible = True
except scipy.linalg.LinAlgError:
XtX_inv = np.full ((num_params, num_params), np.nan)
matrix_invertible = False

total_experiments = num_runs

4 num_levels = 3

ot

{ 1f matrix_invertible:

trace_XtX_inv = np.trace(XtX_inv)

M_matrix = XtX / num_runs

sign_M, log_det_M = np.linalg.slogdet(M_matrix)
M_criterion = np.exp(log_det_M) if sign_ M > 0 else O
sign, log_det_XtX = np.linalg.slogdet (XtX)

det_XtX = np.exp(log_det_XtX) if sign > 0 else O

pred_var_normalized = num_runs * np.sum((X_model @ XtX_inv) * X_model,
axis=1)

max_pred_var_normalized = np.max(pred_var_normalized)

g_efficiency = (num_params / max_pred_var_normalized) * 100

56 else:

trace_XtX_inv = M_criterion = det_XtX = max_pred_var_normalized =

g_efficiency = np.nan
print (f"--- Propriétés du Plan Box-Behnken k={num_factors}, nc={
num_center_points} ---")

print (£"1. Nombre total d’expériences (N): {total_experiments}")

print (£"2. Nombre de niveaux par facteur: {num_levelsl}")
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6l print ("-" * 40)

2 print ("Métriques d’0Optimalité :")

64 print (£"3. Nombre de paramétres (p): {num_params}")

64 1f matrix_invertible:

65 print(£"4. Trace[(X"T X)~-1] (A-optimalité): {trace_XtX_inv:.6f}")
66 print (£"5. Déterminant de X"T X (D-optimalité): {det_XtX:.6el}")

67 print(£"6. Déterminant de M = (1/N) X°T X (M-criterion): {M_criterion
:.6e}")

6 print (£"7. G-efficiency:")

6 print (£" -> Variance de prédiction normalisée max : {
max_pred_var_normalized:.4f}")

7 print (£" -> Efficacité G : {g_efficiency:.2f}%")

71 else:

79 print ("ATTENTION : Matrice X“T X non inversible, calculs non

réalisables.")

print ("-" % 40)

4.2.2.1 code for full fact 2

i import numpy as np

7 import scipy.linalg

from pyDOE2 import ff2n

4 num_factors = 6 # Changer ici le nombre de facteurs

5 add_center_points = True

1 num_center_points 0 if add_center_points else O
1 X_base = ff2n(num_factors) # Matrice codée en [-1, +1]

¢ if add_center_points:

¢ center_points = np.zeros((num_center_points, num_factors))
1 X_design = np.vstack((X_base, center_points))

1] else:

12 X_design = X_base

13 num_runs = X_design.shape [0]

14 num_params = 1 + num_factors # Intercept + termes linéaires
15 X_model = np.ones ((num_runs, num_params))

14 X_model[:, 1:] = X_design # Ajout des colonnes linéaires

17 XtX = X_model.T @ X_model

1§ try:
1 XtX_inv = scipy.linalg.inv(XtX)
2 matrix_invertible = True
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21 except np.linalg.LinAlgError:

22 matrix_invertible = False
2 XtX_inv = np.full ((num_params, num_params), D0p.nan)
24 M_matrix = XtX / num_runs

27 sign_M, log_det_M = np.linalg.slogdet(M_matrix)

2¢ if sign_M > O:

27 M_criterion = np.exp(log_det_M)

28 else:

2 M_criterion = 0 if sign_ M == 0 else -np.exp(log_det_M)

30 1f matrix_invertible:

31 trace_XtX_inv = np.trace(XtX_inv)

39 sign, log_det = np.linalg.slogdet (XtX)

3: det_XtX = np.exp(log_det) if sign > 0 else O

3 pred_var = num_runs * np.sum((X_model @ XtX_inv) * X_model, axis=1)
35 max_pred_var = np.max(pred_var)

36 g_eff = (num_params / max_pred_var) * 100

37 else:

38 trace_XtX_inv = det_XtX = g_eff = max_pred_var = np.nan

3 print (£"--- PLAN FACTORIEL 27 {num_factors} : Modéle LINEAIRE ---")
4 print (f"Nombre d’expériences : {num_runs}")

41| print (f"Nombre de paramétres (linéaires) : {num_paramsl}")

a2 print ("-" * 40)

44 1f matrix_invertible:

44 print (f"Trace [(X"T X)~-1] (A-optimalité) : {trace_XtX_inv:.6f}")
45 print (f"Déterminant X°T X (D-optimalité) : {det_XtX:.6el}")

46 print (f"M-criterion (det[(1/N) X°T X]) : {M_criterion:.6e}")

47 print (£"-> Interprétation : Plus cest grand, plus le plan est

informatif (normalisé a N).")

4 print (f"Max variance de prédiction : {max_pred_var:.6f}")
5 print(f"G-efficiency : {g_eff:.2f}%")

51 else:

59 print ("ATTENTION : Matrice X“T X non inversible.")

print ("-" % 40)

o

4.2.2.2 code for full fact 3*

[
1‘import numpy as np

% import itertools
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import scipy.linalg # Pour une inversion potentiellement plus stable
from pyDOE2 import fullfact

num_factors = 7

levels = [3] * num_factors

X_design_012 = fullfact(levels)

X_design = X_design_012 - 1

num_runs = X_design.shape [0]

num_runs = X_design.shape[0]# Nombre total d’expériences
print ("Niveaux uniques dans le CCD:", np.unique(X_design))
num_linear = num_factors

num_interact = num_factors * (num_factors - 1) // 2
num_quad = num_factors

num_params = 1 + num_linear + num_interact + num_quad
X_model = np.ones((num_runs, num_params))

col_idx =1
X_model[:, col_idx : col_idx + num_linear] = X_design
col_idx += num_1linear
interaction_pairs = list(itertools.combinations(range (num_factors), 2))
for i, j in interaction_pairs:
X_model[:, col_idx] = X_design[:, i] * X_designl[:, j]
col_idx += 1
for i in range(num_factors):
X_model[:, col_idx] = X_designl[:, i] *x* 2
col_idx += 1

Xt = X_model.T

{ XtX = Xt @ X_model # Moment matrix M = X°T X

M_matrix = XtX / num_runs
sign_M, log_det_M = np.linalg.slogdet(M_matrix)
if sign_M > O:
M_criterion = np.exp(log_det_M)
else:

M_criterion = 0 if sign_ M == 0 else -np.exp(log_det_M)

i try:

XtX_inv = scipy.linalg.inv(XtX)

matrix_invertible = True

{ except scipy.linalg.LinAlgError:

print ("Erreur: La matrice singuliére, impossible de calculel’inverse.")
matrix_invertible = False
XtX_inv = np.full ((num_params, num_params), 0p.nan)

total_experiments = num_runs
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num_levels = 3 # Par définition du plan Box-Behnken (-1, 0, +1)
if matrix_invertible:

trace_XtX_inv = np.trace(XtX_inv)

1 else:

trace_XtX_inv np.nan

sign, log_det_XtX np.linalg.slogdet (XtX)
if sign > O:

det_XtX

np.exp(log_det_XtX) # det = exp(log(det))
else:

det_XtX

0 if sign == 0 else -np.exp(log_det_XtX)

if matrix_invertible:

pred_var_normalized = num_runs * np.sum((X_model @ XtX_inv) * X_model,
axis=1)
max_pred_var_normalized = np.max(pred_var_normalized)
g_efficiency = (num_params / max_pred_var_normalized) * 100
else:
max_pred_var_normalized = np.nan
g_efficiency = np.nan

print (f"1. Nombre total d’expériences (N): {total_experiments}")

print (£"2. Nombre de niveaux par facteur: {num_levels}")

print ("-" % 40)
print ("Métriques d’0Optimalité (basées sur le modéle quadratique) :")
print (£" Nombre de paramétres dans le modéle (p): {num_params}")

if matrix_invertible:

print (£"3. Trace [(XT X)1] (A-optimality related): {trace_XtX_inv:.6f}")

print (£" -> Interprétation: Plus c’est petit, meilleure est la
variance moyenne des estimations.")

print (£"4. Déterminant de M = XT X (D-optimality related): {det_XtX:.6e
IR

print (£" -> Interprétation: Plus c’est grand, plus le volume de
confiance des paramétres est petit.")

print (£"5. M-criterion (Determinant de M = (1/N) X°T X): {M_criterion
:.6e}")

print (£" -> Interprétation: Plus c’est grand, plus 1’information
totale est concentrée et fiable.")

print(£"6. G-efficiency:")

print (£" -> Variance de prédiction normalisée max (sur les points du
plan): {max_pred_var_normalized:.4f}")

print (£" -> Efficacité G = (p / max_var_norm) * 100: {g_efficiency:.2
£3%")
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print (£" -> Interprétation: Proche de 100% indique une variance de

prédiction uniforme sur les points du plan.")

else:
print("3. Trace[(XT X)1]: Non calculable (matrice XT X singuliére)")
print("4. Déterminant de M = XT X: Non calculable (matrice XT X
singuliére ou non définie positive)")
print("5. G-efficiency: Non calculable (matrice XT X singuliére)")
print ("-" % 40)

np.set_printoptions ()

import numpy as np
import itertools
import scipy.linalg
num_factors = 6
num_center_points = 3 # Ajout de points centraux
def generate_mozzo(k):
points = []
for i in range(k):
pt = np.zeros (k)
ptl[i]l = 1
points.append (pt)
for p in range(2, k+1):
for comb in itertools.combinations(range(k), p):
pt = np.zeros (k)
pt[list(comb)] = 1/p
points.append (pt)

return np.array(points)

{ X_mozzo_base = generate_mozzo (num_factors)
X _mozzo_base = X_mozzo_base - 1/num_factors
center_points = np.zeros ((num_center_points, num_factors))
X_design = np.vstack((X_mozzo_base, center_points))

num_runs X_design.shape [0]

print (f"Plan de Mozzo (k={num_factors}, nc={num_center_points}) généré.")

print (f"Nombre total d’essais (N): {num_runs}")

num_linear = num_factors

1 num_interact = num_factors * (num_factors - 1) // 2
num_quad = num_factors
num_params = 1 + num_linear + num_interact + num_quad
X_model = np.ones ((num_runs, num_params))
col_idx =1
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| X_model[:, col_idx : col_idx + num_linear] = X_design

30 col_idx += num_linear

34 interaction_pairs = list(itertools.combinations(range (num_factors), 2))
34 for i, j in interaction_pairs:

35 X_model[:, col_idx] = X_designl[:, i] * X_designl[:, jl
36 col_idx += 1

37 for i in range(num_factors):

38 X_model[:, col_idx] = X_designl[:, i] *x 2

3¢ col_idx += 1

10 Xt = X_model.T

11 XtX = Xt @ X_model

12 try:

4 XtX_inv = scipy.linalg.inv(XtX)

14 matrix_invertible = True

15 except scipy.linalg.LinAlgError:

16 matrix_invertible = False

47 XtX_inv = np.full ((num_params, num_params), np.nan)
15 total_experiments = num_runs

iy num_levels = len(np.unique(X_design))

50 if matrix_invertible:

51 trace_XtX_inv = np.trace(XtX_inv)

52 sign, log_det_XtX = np.linalg.slogdet (XtX)

5: det_XtX = np.exp(log_det_XtX) if sign > 0 else (0 if sign == 0 else -np
.exp(log_det_XtX))

54 M_matrix = XtX / num_runs

55 sign_M, log_det_M = np.linalg.slogdet(M_matrix)

56 M_criterion = np.exp(log_det_M) if sign_ M > 0 else (0 if sign_ M == 0

else -np.exp(log_det_M))

57 pred_var_normalized = num_runs * np.sum((X_model @ XtX_inv) * X_model,
axis=1)

5 max_pred_var_normalized = np.max(pred_var_normalized)

5¢ g_efficiency = (num_params / max_pred_var_normalized) * 100

60 else:

61 trace_XtX_inv = np.nan

62 det_XtX = np.nan

63 g_efficiency = np.nan

64 print ("-" * 50)

63 print (f"--- Propriétés du Plan de Mozzo k={num_factors}, nc={
num_center_points} ---")

6 print (f"1. Nombre total d’expériences (N): {total_experimentsl}")
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print (£"2.

Nombre de niveaux uniques par facteur:

{num_levels}")

print ("-" * 40)
print ("Métriques d’0Optimalité (basées sur le modéle quadratique) :")
print (£" Nombre de paramétres dans le modéle (p): {num_params}")

if matrix_invertible:

print (£"3. Trace [(XT X)1]
print(£"4. Déterminant de M =
print(£"5. M-criterion =
print (£"6. G-efficiency

print (£"

max_pred_var_normalized:.4f}")
else:
print ("Matrice XT X non inversible

print ("-" % 50)

(A-optimalité):
XT X (D-optimalité):
det [(1/N) = X°T X]

{trace_XtX_inv:.6f}")
{det_XtX:.6e}")

{M_criterion:.6el}")

{g_efficiency:.2f}%")

-> Max variance de prédiction normalisée: {

métriques non calculables.")
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