Al Aakal jaaaall 45) jadl 4g) seanl)
People’s Democratic Republic of Algeria
) Sl g) aalasl) 3) 5
Ministry of Higher Education and Scientific Research

€
University of b Qs

Saad Dahleb 18—

Blida 1
Faculty of Science

Department of Mathematics

A thesis submitted in partial fulfillment of the
requirements for the Master’s degree

Major: Operational Research

Topic:

Optimizing Cut Order Planning in the Garment
Industry using Mixed-Integer Nonlinear
Programming with Open-Source Solvers

Ayadi Maria

In front of the jury composed of:

Mr. R. Frihi MCB Univ-blida 1 President
Mrs. S. Arrache MAA Univ-blida 1 Examiner
Mr. R. Boudjemaa PR Univ-blida 1 Supervisor

2024/2025

Acknowledgments

’?{1‘

Wle i) Oj JSs)
114 &3 b gm0

"And say, 'My Lord, increase me in knowledge."
Surah Taha, Ayah 114

First and foremost, | thank Allah for granting me the strength, patience, and perseverance to
complete this thesis.

I would like to express my sincere gratitude to my supervisor, Mr. Redouane Boudjemaa, for his
invaluable guidance, encouragement, and continuous support throughout this work. His insightful
feedback and constant availability were essential to the progress of this research.

My heartfelt thanks also go to the honorable jury members, Mr.Redouane Frihi and
Mrs. SAIDA ARRACHE, for accepting to evaluate this thesis and for their constructive remarks and
suggestions.

Finally, | am deeply grateful to my parents, relatives, and friends for their endless love, patience, and
encouragement throughout my academic journey.

e A
& edication

To my dearest parents, whose unwavering love, endless encouragement, and countless
sacrifices laid the foundation for everything | am today. Your belief in me has been my
constant motivation.

To my wonderful siblings, Lina, Ayoub, and Bissane, thank you for the laughter, the support,
and for always being my first friends. Your presence in my life is a true blessing.

And to my incredible friends, Nyhel, Radja, Soumia, and Riham, thank you for the
camaraderie, the understanding, and for making this journey so much brighter. Your
friendship has been an invaluable source of strength and joy. This achievement is as much
yours as it is mine.

Last but not least | want to thank me, | want to thank me for believing in me, | want to thank
me for doing all this hard work.

Haria %y@do’

Abstract

The aim of this thesis is to develop and implement a mathematical model to optimize
the fabric usage in garment manufacturing through Cut Order Planning (COP). The
proposed model is based on a Mixed-Integer Nonlinear Programming (MINLP)
formulation that integrates discrete decisions such as pile count and size assignment
with nonlinear constraints related to fabric consumption. This model is inspired by
the work of Unal and Yiiksel (2020) and reimplemented in an open-source
environment using Pyomo and the SCIP solver.

The approach allows for minimizing fabric waste while satisfying production
constraints across multiple product types. To evaluate the efficiency and practic-
ality of the solution, results were obtained for shirts, trousers, sweatshirts, and coats.
A comparison with the original LINGO-based model was conducted, focusing on
iteration count and constraint satisfaction, while taking hardware differences into
account.

Keywords:

Cut Order Planning, Mixed Integer Nonlinear Programming, Fabric Optimization,
Garment Industry, SCIP, Open-Source Optimization.

Résumé

L’objectif de ce mémoire est de développer et de mettre en ceuvre un modele
mathématique visant a optimiser ['utilisation du tissu dans l'industrie de
I’habillement, a travers le processus de planification des ordres de coupe (Cut Order
Planning — COP). Le modele proposé repose sur une formulation en Programmation
Non Linéaire en Nombres Mixtes (MINLP), intégrant a la fois des décisions
discretes (comme le nombre de couches et I’affectation des tailles) et des contraintes
non linéaires liées a la consommation de tissu. Ce modéle s’inspire des travaux de
Unal et Yiiksel (2020) et a été réimplémenté dans un environnement open-source en
utilisant Pyomo et le solveur SCIP.

L ’approche permet de minimiser le gaspillage de tissu tout en respectant les
contraintes de production sur plusieurs types de vétements. Les performances du
modele ont été évaluées a travers des cas tests (chemises, pantalons, sweatshirts,
manteaux). Une comparaison avec le modele original basé sur LINGO a été réalisée,
en mettant I’accent sur le nombre d’itérations et la satisfaction des contraintes, tout
en tenant compte des différences matérielles.

Mots-clés :

Planification des ordres de coupe, Programmation Non Linéaire en Nombres Mixtes,
Optimisation du tissu, Industrie de 1’habillement, SCIP, Optimisation open-source.

uadlall
dclia b Gilall JieY) 2l aead) Coagy (il) zdsal 2y ol) Canill 138 Caagy
z3sall iy (Cut Order Planning — COP)u=adll ol 5l laphas ddae J3A e el ¢uilall
AN (e SIS i Al 5 ¢ (MINLP)Abiaall slac Y5 dhadll e daejall Gana delua o 7 il
138 agliveg | (iladl) @M giLl dalxial) Apdasdl ye 3 5l 5 (alaal] Ganads s clidll sxe Jic) dliadidl
JdasPyomo ahadiuly juaall da gite Ly o2 ael 38 5Yiksel (2020) s Unal Jleed 73 sail
.(SCIP Solver) SCIP Jstiwl
a3 uaSlall (e Baawie g1 gl o 2 UEY1 258 ol yial peas ol) Galadll o (WS gl 18 sy
o) ya) a3 S (Cadabeall g ALl ol jiaall ol glaill ¢ laaddll Jie) Hlial c¥la MS Ge 73 gaill glal
& cJ}.gﬂ‘ glaviul Q\J\)Sﬂ\ e ‘_’JL).\S).\]\ & ¢ LINGO‘;L Aaixall L;J..a\J\ CJ}A.\]\ c,q:_t)&a
Aol Ay jlae Y b aaY)
:%AM\ Cilalsl)
(ol delia (ilaal) aladdin) Guead dhabisall Jae YU Lhall e Ayl (il el 5l Jaydads

CONTENTS

General Introduction 1

2

1 Literature Review on Cut Order Planning 4
1.1 Introduction 4
1.2 Overview of the Apparel Industry Supply Chain 4
1.3 Literature Review on Cut Order Planning (COP) in the Garment Industry 5
1.4 Cut Order Planning: Concepts and Challenges 7
1.5 Applications of MILP and MINLP in Non-Garment Cutting Problems . 9
1.6 Summary of Gaps in Existing Research 11
1.7 Conclusion 12
Evolution of Optimization Techniques 13
2.1 Introduction 13
2.2 Optimization e 14
2.3 Linear Programming 14

2.3.1 Characteristics of Linear Programming 15
2.3.2 General Formof LP, 15
2.3.3 Limitations of LP in Real-World Problems 16
2.3.4 Linear Programming Method 16
2.4 Non-Linear Programming 18
241 General Formof NLP 18
2.4.2 Nonlinear Programming Methods 19
2.5 Integer Linear Programming 20
2.5.1 General Formof ILP 20

CONTENTS

2.5.2 ILP Solution Algorithms 21
2.6 Mixed Integer Linear Programming 22
2.6.1 General Formof MILP 23
2.6.2 MILP Solution Techniques 24
2.7 Mixed Integer Non-Linear Programming 27
2.7.1 General formof MINLP 28
272 Solving MINLP, . 29
2.8 Problem Complexity and Classification 32
2.9 Comparison between Optimization models 34
210 Conclusion L 36
3 Mathematical Modeling Of The Problem 37
3.1 Introduction 37
3.2 Problem Context 38
3.3 Mathematical Model Formulation 38
3.4 Model Type and Complexity 40
3.5 PFeasibility and Justification o oL 41
3.6 Implementation Framework and Solver Environment 43
3.6.1 Optimization Workflow Overview 43
3.6.2 Model Execution Environment 44
3.7 Conclusion 45
4 Case Study 46
4.1 Introduction 46
4.2 Description Of The Case Study: 46
43 InputDataUsed:. 47
4.4 Results and Discussion 48
4.4.1 SCIP vs. LINGO: Comparative Analysis Across Products 48
4.4.1.1 Shirt Production: SCIP vs. LINGO 49
4.4.1.2 Coat Production: SCIP vs. LINGO 50
4.4.1.3 Trouser Production: SCIP vs. LINGO 51
4.4.1.4 Sweatshirt Production: SCIP vs. LINGO 51

4.4.1.5 Fabric and solver iterations Comparison: SCIP vs. LINGO
................................ 52
4.4.2 Solvers Comparison Summary — All Products 54

Vi

CONTENTS

4.5 Conclusion
General Conclusion

A Optimization Wo

A.1 Introduction

rkflow Example

A.2 ProblemSetup

A.3 Step-by-Step

WorkflowwithCode

A.3.1 Step 1-Model Initialization

A.3.2 Step 2 - Objective Function

A3.3 Step3—-Constraints L

A.3.4 Step4-SolverExecution.

A.3.5 Step 5 —Output Interpretation

A.4 Conclusion

Bibliography

57

59
59
59
60
60
60
60
61
61
62

63

vii

LIST OF FIGURES

1.1

2.1

3.1

4.1
4.2
4.3

Al

Typical process flow in a cutting department—from fabric arrival to

sorting and bundling (adapted from Unal & Yiiksel [48]). 8

Visual representation of complexity classes: P, NP, NP-Complete, and

NP-Hard 33
Flowchart of Optimization Framework Using Python and SCIP 43
Fabric Usage Comparison by Product 53
Solver iterations Comparison. 53

Comparison of solver runtime between SCIP, BONMIN and COUENNE. 55

Console output from the COP model solved with SCIP 62

viii

LIST OF TABLES

2.1 Comparison of Optimization Models 35
4.1 Input Data for Shirt Production 48
4.2 Input Data for Coat Production 48
4.3 Input Data for Trouser Production 48
4.4 Input Data for Sweatshirt Production 48
4.5 LINGO Result — Shirt Case (Unal & Yiksel) 49
4.6 SCIP Result—ShirtCase 49
4.7 LINGO Result — Coat Case (Unal & Yiksel) 50
4.8 SCIPResult—CoatCase 50
4.9 LINGO Result — Trouser Case (Unal & Yiiksel) 51
4.10 SCIP Result — Trouser Case 51
4.11 LINGO Result — Sweatshirt Case (Unal & Yiiksel) 52
4.12 SCIP Result — Sweatshirt Case 52
4.13 Solver Performance Comparison Across All Products 54

ix

LIST OF ALGORITHMS

QO = W N =

Branch and Cut algorithm 22
Branch and Bound Algorithm for MILP 25
Branch and Cut Algorithm for MILP 26
NLP Branch and Bound for MINLP [13] 29
Extended Cutting Plane (ECP) for MINLP [13]. 30

ABBREVIATIONS AND NOTATIONS

Abbreviations
corp Cut Order Planning.
LP Linear Programming.
NLP Non-Linear Programming.
ILP Integer Linear Programming.
MILP Mixed Integer Linear Programming.
MINLP Mixed Integer Non Linear Programming.
NP-hard Non-deterministic Polynomial-time hard.

NP-complete Non-deterministic Polynomial-time complete.

SCIP Solving Constraint Integer Programs.
CAD Computer-Aided Design.
ERP Enterprise Resource Planning.
SKU Stock Keeping Units.
Notations

IR Set of real numbers

X1

GENERAL INTRODUCTION

Operations Research (OR) uses quantitative methods and analytical tools to help decision-
makers optimize the performance of various systems, including those in financial,
scientific, and industrial sectors. The goal of OR is to enhance system efficiencies
through a systematic and scientific approach. The formal beginnings of OR can be
traced back to World War II, when it was employed to improve military operations.
The British military worked alongside scientists to optimize resource allocation and
manage operations effectively, notably utilizing radar technology to monitor aircraft.
This success paved the way for the application of OR in business, industry, and gov-
ernment in the post-war era. The expansion of OR was further accelerated by the
rise of high-speed computers, which made it possible to perform the complex calcula-
tions necessary for OR techniques. Professional organizations such as the Operational
Research Society in Britain and the Operations Research Society of America (ORSA)
were founded, eventually merging to form INFORMS. Today, OR plays a crucial role
in various fields, boosting efficiency and productivity. It continues to adapt and grow,
driven by advancements in computational methods and the increasing complexity of
organizational challenges. By offering quantitative insights and supporting informed
decision-making, OR remains an essential discipline in contemporary society, improv-

ing quality of life and organizational effectiveness.

Within this context, the apparel manufacturing industry faces growing pressure to
optimize production while managing diverse customer demands, tight deadlines, and
rising material costs. One of the most fabric- and cost-intensive stages in apparel pro-
duction is the cutting department, where raw fabrics are spread and cut into specific
garment components. The planning process for this operation is known as Cut Order

Planning (COP), and it plays a critical role in reducing fabric waste and improving

LIST OF ALGORITHMS

productivity.

The COP problem is combinatorial in nature and subject to numerous constraints
such as fabric lay length, number of plies, and exact demand fulfillment for different
garment sizes. Due to these complexities, traditional manual methods or spreadsheet-
based solutions are often inefficient. Recent research has proposed mathematical opti-
mization as a powerful alternative.

This thesis builds upon the study conducted by Unal and Yiiksel, who formulated
the Cut Order Planning problem as a Mixed-Integer Nonlinear Programming (MINLP)
model and solved it using the LINGO solver. Their work demonstrated significant
fabric savings, but it relied on proprietary software, limiting reproducibility and ac-
cessibility for small-to-medium enterprises. To overcome this limitation, our study
re-implements the model in Python using Pyomo and evaluates the performance of
open-source solvers such as SCIP, Bonmin, and Couenne.

The thesis is structured as follows:

- Chapter 1 presents a detailed literature review on Cut Order Planning (COP). It
explores the operational context of COP in the apparel industry, outlines key chal-
lenges, and identifies research gaps. Particular attention is given to solver limitations
and the lack of accessible, open-source implementations.

- Chapter 2 outlines the evolution of optimization techniques, starting from Lin-
ear Programming (LP) and advancing through Nonlinear Programming (NLP), Integer
Programming (ILP), and Mixed-Integer Linear Programming (MILP), before reaching
the complexity of MINLP. Each model is discussed in terms of mathematical formu-
lation, solution strategies, and computational complexity, establishing the theoretical
foundation required to address the COP problem.

- Chapter 3 defines the mathematical model used in this thesis. It re-implements
the MINLP formulation originally proposed by Unal and Yiiksel, clearly presenting the
objective function, decision variables, and constraints. The model is classified as NP-
hard due to its combinatorial structure and nonlinear terms, and its implementation
is validated using the open-source SCIP solver.

- Chapter 4 provides the core experimental work. It presents a real-world case
study involving four garment types: shirts, coats, trousers, and sweatshirts. Results
obtained using SCIP are compared to those from the original LINGO solver and further
contrasted with Bonmin and Couenne. Solver efficiency, fabric savings, and runtime
performance are analyzed and discussed in detail.

- The conclusion of the thesis summarizes the main findings, highlighting contri-

2

LIST OF ALGORITHMS

butions, and suggesting avenues for future research. It reflects on the practical value
of transitioning from commercial solvers to open-source tools in apparel production
environments.

In sum, this thesis contributes to the literature by offering a transparent, accessible,
and efficient optimization-based approach to solving the COP problem. By leveraging
open-source tools, it bridges the gap between academic research and real-world ap-
plication, offering practical benefits to manufacturers seeking to optimize fabric usage

and improve sustainability.

CHAPTER 1

LITERATURE REVIEW ON CUT ORDER PLANNING

1.1 Introduction

This chapter provides a structured review of the literature related to Cut Order Plan-
ning (COP) in the apparel industry. It begins with an overview of the apparel industry
supply chain to contextualize where COP fits in the broader production process. Then,
it presents a review of key academic works focused specifically on COP in the garment
sector, highlighting various optimization approaches and practical applications.

The chapter continues with a detailed explanation of the core concepts and chal-
lenges involved in COP, followed by a discussion on how similar mathematical model-
ing techniques—such as MILP and MINLP—have been applied to non-garment cutting
and packing problems. Finally, it summarizes the main research gaps identified in the
literature, which this thesis aims to address through an open-source and MINLP-based

approach.

1.2 Overview of the Apparel Industry Supply Chain

The apparel industry is a global and rapidly evolving sector that has transitioned from
local, manual production to complex, internationally distributed supply chains. Ac-
cording to [6], this shift was driven by technological advances and the pursuit of lower
production costs through offshoring. Today’s apparel supply chains must balance cost-
efficiency with agility to respond to fast-changing consumer trends.

One of the most critical stages in the apparel manufacturing process is the cutting

phase, where fabric is prepared based on demand for various styles, sizes, and colors.

4

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

This stage plays a major role in overall production cost and efficiency. Poor planning at
this point can result in substantial fabric waste, increased labor hours, and production
delays.

One of the most planning-intensive operations in this stage is Cut Order Planning
(COP), a process that will be explored in detail in the following section.

COP involves key steps such as marker making, fabric spreading, and cutting. A
marker is a layout plan that minimizes fabric waste by determining the most efficient
arrangement of garment pieces. Each marker must consider variations in size, style,
and color, adding to the complexity of planning.

To meet the demands of modern supply chains, many companies are adopting digi-
tal tools such as CAD(Computer-Aided Design) for marker planning and ERP(Enterprise
Resource Planning) systems for production coordination. Optimization-based decision
support systems are also gaining popularity to improve the precision and efficiency of
COP.

In summary, the apparel industry’s move toward faster and more flexible produc-
tion systems has elevated the importance of planning operations like COP. As pro-
duction complexity grows, so too does the need for optimization techniques that can

support smarter, data-driven decisions.

1.3 Literature Review on Cut Order Planning (COP) in

the Garment Industry

Cut Order Planning (COP) has emerged as one of the most critical planning activi-
ties in garment manufacturing. Its main purpose is to determine how customer or-
ders—often diverse in size, style, and color—can be translated into efficient cutting
operations that minimize fabric waste while respecting production constraints. Given
the fabric cost’s significant share of total production expenses, COP optimization has
attracted considerable academic attention.

Rose and Shier [45] were among the first to apply optimization techniques to COP
by proposing a Mixed-Integer Linear Programming (MILP) model for cut scheduling in
the apparel industry. Their work considered fabric width, style variety, and production
constraints to minimize fabric waste, illustrating how MILP models could offer feasible
solutions to real-world garment cutting problems. However, their use of commercial

solvers limited the model’s practical adoption in cost-sensitive environments.

5

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

Pasayev [42] conducted a field study in Turkish apparel factories, analyzing how
production planning methods affected fabric cost. Although the study was non-mathematical,
it showed that unoptimized COP operations could lead to over 20% excess fabric us-
age—highlighting the real-world consequences of inefficient planning and underscor-
ing the need for more scientific approaches in this domain.

Utkiin [49] emphasized the importance of marker planning on overall productivity,
particularly in bathrobe production. The study demonstrated that differences in model
design and marker layout strategies significantly impact fabric consumption. While
this research didn’t propose a new optimization model, it strongly reinforced the need
for adaptive COP methods that respond to product variety and changing demand.

Kong et al. [33] introduced a MILP-based approach to optimize line balancing and
production scheduling in garment factories. Although their model targeted sewing op-
erations rather than cutting, the structural similarity of constraints—like production
rates, resource limitations, and demand satisfaction—demonstrates the MILP frame-
work’s versatility in addressing apparel planning problems, including COP.

Liyanage et al. [38] took a different route by applying genetic programming to op-
timize workflows across multiple stages in textile manufacturing. Their research in-
corporated cutting, sewing, and finishing activities, showing that heuristic and meta-
heuristic methods like Genetic Algorithms can be used to reduce lead time and re-
source consumption—especially in environments with high complexity and uncer-
tainty.

A more practice-oriented contribution is offered by LeanStitch platform [37], a
website that explains the basics of COP implementation from an industrial perspec-
tive. The platform highlights practical concerns like lay planning, marker efficiency,
and fabric utilization, aligning well with academic models while offering an accessible
view for small and medium-sized factories.

Unal and Yiiksel [48] delivered one of the few studies using a full Mixed-Integer
Nonlinear Programming (MINLP) approach. Their model captures the nonlinear rela-
tionships between marker length, fabric usage, and SKU (Stock Keeping Units) combi-
nations, producing more accurate and realistic planning results. Their work demon-
strated that MINLP provides superior modeling capability for COP compared to tra-
ditional MILP models—though it also requires more advanced solvers and computa-
tional power.

Finally, recent advances in artificial intelligence (Al) are beginning to reshape how

decision-making is handled in the apparel supply chain. According to a white paper

6

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

by the Ghasemiran Foundation (2023) [21], Al techniques—including machine learn-
ing and reinforcement learning—can enhance demand forecasting, inventory manage-
ment, and production scheduling in fashion industries. These techniques, when com-
bined with mathematical models, hold strong potential to support intelligent COP
systems that adapt to dynamic environments.

In summary, the body of research reviewed here spans from early MILP formula-
tions to recent Al-driven approaches, illustrating a rich and evolving field. However,
most studies still rely on proprietary tools, and few fully explore nonlinear models or
open-source implementations. This thesis builds upon the work of Unal and Yiiksel by
implementing their MINLP model in Python using the SCIP solver, aiming for better

accessibility, reproducibility, and real-world relevance.

1.4 Cut Order Planning: Concepts and Challenges

Cut Order Planning (COP) is a core operation in apparel manufacturing that connects
demand fulfillment with efficient fabric utilization. It involves determining how vari-
ous customer orders—differentiated by style, size, and color—should be grouped and
assigned to cutting markers to minimize fabric waste while satisfying production re-
quirements.

The COP process starts after production orders are finalized and fabric rolls are
available in the cutting department. The objective is to design marker plans and fab-
ric lays that ensure all Stock Keeping Units (SKUs) are covered while minimizing the
amount of fabric consumed. A marker is essentially a layout that determines how gar-
ment pieces are arranged on fabric spreads to maximize efficiency. COP thus answers
key questions such as: how many garments of each type should be placed in each lay,
how many markers are required, and how orders should be grouped to balance effi-
ciency and feasibility.

The complexity of COP stems from several real-world operational constraints:

* SKU Variability: Orders include numerous combinations of sizes, colors, and

styles, increasing the number of possible layout configurations.

* Fabric Constraints: Fabric rolls vary in width, shrinkage rate, or defect tolerance,

all of which must be factored into planning.

* Production Restrictions: Machines and tables impose limits on lay length and

layer height; certain garment types may require batching or specific equipment.

7

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

* Exact Demand Fulfillment: Overproduction is costly and underproduction is
unacceptable; COP must meet demand precisely, sometimes within allowable

tolerance margins.

According to Textile Engineering website [47], COP plays a decisive role in to-
tal manufacturing cost and speed. Efficient COP strategies reduce fabric waste, labor
time, and machine downtime. Nevertheless, in many small and medium-sized apparel
factories, COP is still carried out manually, relying on the planner’s experience and
heuristics. This often leads to suboptimal decisions, especially as product variety and
order volume increase.
To better understand the practical implementation of COP, consider the schematic
process flow shown in Figure 2.1. This diagram—adapted from Unal and Yiiksel [48]—illustrates
the sequential steps in a typical cutting department, starting from fabric arrival to sort-

ing and bundling of cut components.

Purchase fabric

;

Fabric spreading

T AT

Computerized

Manual ™ Cutting " Computerized

Marker plan
spreading over the
fabric

Plastic film spreading
over the fabric

Cut Order Planning

Bring the fabric
roll

Pattern preparatio

Marker plan

preparation

3
3

TR ORI,

Figure 1.1: Typical process flow in a cutting department—from fabric arrival to sorting

Computerized
Cutting

Manual Cutting

Sorting & Bundling

Sewing Process
2

and bundling (adapted from Unal & Yiiksel [48]).

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

As depicted, the process begins with fabric roll reception and continues through
quality checks, spreading, marker placement, cutting, sorting, and bundling. The fig-
ure highlights how tightly integrated COP is with other stages: poor COP decisions
can create bottlenecks in later steps, leading to inefficiencies or material loss.

The COP process itself can be divided into four key planning phases:

1. Order Grouping: Determining which styles, sizes, and colors can be combined

in the same lay to reduce the number of markers and maximize marker efficiency.

2. Marker Planning: Designing optimal markers to minimize fabric waste while

accommodating garment shapes and sizes.

3. Lay Planning: Deciding how many fabric layers are needed for each marker,

considering machine limits and fabric roll length.

4. Execution: Implementing the cutting operation according to the predefined plan,

followed by sorting and bundling for further processing.

As emphasized by Unal and Yiiksel [48], each decision in the COP process directly
affects key performance indicators such as fabric utilization, production throughput,
and labor productivity. In high-volume manufacturing, the number of possible marker
and lay combinations can reach into the thousands, making manual approaches in-
creasingly inefficient and error-prone.

Consequently, the industry is seeing a shift toward algorithmic and data-driven
approaches to COP. Mathematical optimization techniques—including Integer Linear
Programming (ILP), Mixed-Integer Linear Programming (MILP), and Mixed-Integer
Nonlinear Programming (MINLP)—are being explored to automate and enhance decision-
making. These methods allow planners to handle the complex trade-offs involved in

grouping, cutting, and allocation, all while adhering to operational constraints.

1.5 Applications of MILP and MINLP in Non-Garment
Cutting Problems

While Cut Order Planning (COP) is specific to the apparel industry, its structure shares
strong similarities with other cutting and packing problems commonly found in oper-
ations research. Several studies outside the textile sector have employed Mixed-Integer

Linear Programming (MILP) and Mixed-Integer Nonlinear Programming (MINLP) to

9

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

model and solve such problems, demonstrating the robustness and versatility of these

techniques.

One widely studied class of problems is the cutting stock problem, in which raw
materials like metal, wood, or paper are cut into pieces of varying sizes to meet de-
mand while minimizing waste. Wascher et al. [51] provide a comprehensive typology
of such problems, classifying them into one-dimensional, two-dimensional, and three-
dimensional variants. Their work also distinguishes between cutting problems with
fixed patterns and those that generate patterns dynamically, both of which are rele-

vant to marker-making in garment COP.

In another domain, Berkey and Wang [11] developed MILP-based models for bin
packing problems with fixed-plus-linear cost schemes. Their approach optimizes the
use of bins with varying capacities while balancing fixed setup costs and variable load-
ing costs. The model incorporates piece placement and bin utilization constraints sim-
ilar in structure to those seen in COP. This study illustrates the ability of MILP to han-
dle industrial settings involving discrete configurations and cost trade-offs—elements

also central to cut planning in apparel.

Additionally, Grossmann [23] explored the broader field of MINLP techniques, dis-
cussing how they can address process systems engineering problems that involve non-
linear relationships and discrete decisions. His review highlights how MINLP offers
significant modeling power for systems like blending, scheduling, and layout opti-
mization—many of which present mathematical complexities analogous to those en-

countered in COP, such as bilinear terms and logical constraints.

A recent report by Avci and Topaloglu [5] presents a MINLP formulation for the
trim-loss problem in the metal industry, where coils of sheet metal are cut to size with
minimal waste. The authors emphasize that including nonlinearity in the model (e.g.,
in cost or cutting constraints) leads to more realistic and efficient outcomes. Their com-
putational experiments also show that MINLP solvers like SCIP can deliver practical

solutions within reasonable runtimes, reinforcing our thesis’s use of SCIP for COP.

These examples collectively reinforce the relevance of MILP and MINLP for solving
complex cutting and layout problems across industries. Since Cut Order Planning
exhibits many of the same characteristics—integer-based decisions, nonlinear fabric
consumption, and layout-dependent constraints—it is logical and methodologically
sound to adopt similar optimization paradigms. This broader context supports the

validity and transferability of our modeling approach to COP in the garment industry.

10

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

1.6

Summary of Gaps in Existing Research

While this chapter has reviewed a range of studies from both garment and non-garment

industries—including MILP and MINLP applications in cutting and packing prob-

lems—certain methodological and practical gaps still persist in the academic literature

on Cut Order Planning (COP):

Limited Solver Diversity: Most published works rely on commercial solvers
such as LINGO, Gurobi, or CPLEX. These tools, while powerful, often limit ac-
cessibility due to licensing costs. The underuse of open-source solvers like SCIP,
which provide comparable performance and flexibility, represents a missed op-

portunity in COP research.

Underutilization of MINLP Frameworks: Although COP naturally includes non-
linear constraints and integer decisions, the number of works employing full
MINLP formulations remains limited. Many adopt MILP, which simplifies the
model at the cost of realism. Unal and Yiiksel’s use of MINLP was pioneering,

but few have followed up on this approach, especially using open frameworks.

Computational Efficiency Overlooked: Many studies focus on model structure
or feasibility but neglect detailed performance benchmarks. In our work, solving
the same MINLP model using SCIP instead of LINGO resulted in a noticeable
reduction in the number of solver iterations and overall processing time. This

highlights the value of solver selection and implementation strategy.

Reproducibility and Transparency: Proprietary software restricts transparency
and reproducibility. By re-implementing the model in Python with SCIP, our
work enables other researchers and practitioners to replicate, validate, and ex-

tend our results without proprietary barriers.

Lack of Real-World Integration and Case-Based Evaluation: Much of the ex-
isting literature relies on synthetic or simplified datasets. In contrast, this thesis
directly applies the original data set from Unal and Yiiksel’s study, allowing for

direct comparison and real-world applicability.

Absence of Hybrid and Adaptive Methods: Hybrid techniques that integrate
heuristics with exact methods are rarely applied to COP. Similarly, adaptive sys-
tems that can respond to fluctuating demand or fabric availability remain under-

explored.

11

CHAPTER 1. LITERATURE REVIEW ON CUT ORDER PLANNING

» Static Assumptions and Deterministic Models: Most models assume fixed in-
puts and fail to account for real-time changes, demand uncertainty, or disrup-
tions such as machine breakdowns or urgent order changes. The future of COP
research lies in incorporating stochastic optimization, robust formulations, or

even Al-based dynamic planning.

In light of these limitations, this thesis makes several contributions. It revisits a
validated MINLP model, implements it using the open-source SCIP solver within a
Python environment, and compares performance metrics with those obtained using
LINGO. The improvements observed in computational efficiency, along with enhanced
accessibility and reproducibility, demonstrate how such methodological refinements

can benefit both research and practice.

1.7 Conclusion

This chapter presented a comprehensive overview of the Cut Order Planning (COP)
process within the apparel supply chain, highlighting its significance as a critical
driver of fabric efficiency and production performance. By tracing the evolution of the
industry and outlining the operational challenges of COP—including SKU variability,
fabric constraints, and manual dependency—the chapter established motivation for
more advanced optimization techniques.

The literature review revealed that, although COP has been extensively studied,
key research gaps remain. Most notably, prior work relies heavily on commercial
solvers and simplified model structures (e.g., MILP rather than MINLP). Moreover,
real-world data and dynamic modeling elements are often absent, limiting the practi-
cal relevance of many proposed approaches.

To address these limitations, this thesis builds upon the work of Unal and Yiiksel
by re-implementing their MINLP model using an open-source optimization frame-
work (SCIP). This improves accessibility, transparency, and enables more robust com-
putational performance and scalability—particularly for large, complex garment plan-
ning scenarios. This review establishes a strong foundation for the methodological and
computational contributions introduced in the following chapters. It supports the hy-
pothesis that open-source solvers, when paired with well-formulated MINLP models,
can provide industry-grade solutions to the COP problem without relying on propri-

etary tools.

12

CHAPTER 2

EVOLUTION OF OPTIMIZATION TECHNIQUES

2.1 Introduction

Optimization has long served as a foundational tool in operations research, enabling
decision-makers to model and solve problems involving resource allocation, schedul-
ing, and logistics. Over the decades, the field has evolved from early formulations of
Linear Programming (LP) to more complex frameworks capable of handling discrete
decisions and nonlinear system behaviors. This chapter presents a chronological and
conceptual overview of this evolution—from Linear Programming (LP) to Mixed Inte-

ger Nonlinear Programming (MINLP).

As systems became more sophisticated, so did the mathematical tools required to
represent them accurately. Real-world constraints are often nonlinear and involve bi-
nary or integer variables—features not addressable by LP or even traditional Non-
linear Programming (NLP). The development of Integer Linear Programming (ILP),
Mixed-Integer Linear Programming (MILP), and eventually Mixed-Integer Nonlinear

Programming (MINLP) addressed this need for expressive power.

Drawing on the seminal work of Grossmann [23], this chapter explores how these
modeling frameworks have grown in capability, computational complexity, and prac-
tical relevance. We review their theoretical structures, discuss classical and modern
solving techniques—including branch-and-bound, cutting planes, and hybrid heuris-
tics—and compare them in terms of applicability, solver availability, and efficiency.
This background lays the foundation for applying MINLP methods to the Cut Order
Planning (COP) problem in the apparel industry in later chapters.

13

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

2.2 Optimization

Optimization is a cornerstone of operations research, representing a systematic ap-
proach to finding the most favorable solutions from a set of feasible alternatives. It is a
mathematical and computational discipline that aims to either maximize or minimize
an objective function while adhering to given constraints. With its ability to improve
decision-making processes and allocate resources efficiently, optimization plays a crit-
ical role across diverse fields such as engineering, economics, logistics, and manage-
ment.

Historically, the concept of optimization has its roots in the mathematical problem-
solving techniques of ancient times. However, significant advancements were made in
the 18th century when pioneers like Newton, Lagrange, and Cauchy developed meth-
ods using differential and variation calculus to solve optimization problems in physics
and geometry. The field witnessed a revolutionary breakthrough in 1947, when George
Dantzig [18] introduced the Simplex Method, which provided a systematic solution to
linear programming problems.

Optimization is characterized by several essential components: an objective func-
tion that quantifies the goal to be achieved, decision variables that influence outcomes,
and constraints that define the feasible solution space. Techniques such as linear pro-
gramming, nonlinear programming, dynamic programming, and metaheuristic algo-
rithms have been developed over the years to navigate the complexities of optimization
problems and identify the best solutions [41].

Today, optimization is applied across various domains, including production plan-
ning, supply chain management, transportation, finance, energy, and healthcare. Its
integration with cutting-edge technologies, such as artificial intelligence and machine
learning, continues to expand its scope, enhancing decision-making and resource allo-
cation in an ever-evolving world. By balancing competing objectives and constraints,
optimization provides a robust framework to solve complex real-world problems and

improve all efficiency.

2.3 Linear Programming

Linear programming, also known as linear optimization, involves maximizing or min-
imizing a linear objective function subject to a set of linear constraints. These con-

straints can be expressed as either equalities or inequalities. Typically, such optimiza-

14

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

tion problems are used to analyze scenarios involving profit and loss calculations.
Linear programming represents a crucial category of optimization problems. It
helps identify the feasible region defined by the constraints and determines the opti-
mal solution that yields the highest or lowest possible value of the objective function.
In simpler terms, linear programming is an optimization technique aimed at max-
imizing or minimizing a given objective function within a mathematical model. This
model is governed by a set of requirements or restrictions, all expressed through lin-
ear relationships. The primary goal is to find the best possible solution that satisfies

all these conditions.

2.3.1 Characteristics of Linear Programming

The following are the five characteristics of the linear programming problem:

Constraints — The limitations should be expressed in the mathematical form, re-
garding the resource.

Objective Function — In a problem, the objective function should be specified in a
quantitative way.

Linearity — The relationship between two or more variables in the function must be
linear. It means that the degree of the variable is one.

Finiteness — There should be finite and infinite input and output numbers. In case,
if the function has infinite factors, the optimal solution is not feasible.

Non-negativity — The variable value should be positive or zero. It should not be a
negative value.

Decision Variables — The decision variable will decide the output. It gives the ulti-
mate solution of the problem. For any problem, the first step is to identify the decision

variables.

2.3.2 General Form of LP

Linear Programming deals with optimizing a linear objective function subject to linear
equality and inequality constraints. All decision variables are continuous (real num-
bers).

Minimize or Maximize Z = ¢’ x (2.1)

15

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

Subject to:
Ax<b (2.2)
Dx=e (2.3)
x>0 (2.4)
where:

¢ nis the number of decision variables.

* m is the number of inequality constraints.

p is the number of equality constraints.

x is the vector of decision variables (x € R").

c is the vector of coefficients for the objective function (¢ € R").

A and D are matrices of coefficients for the inequality and equality constraints,

respectively (A € R™" and D € RP*").

* b and e are vectors of constants for the inequality and equality constraints, re-

spectively (b € R™ and e € RP).

+ cTx denotes the dot product (scalar product).

2.3.3 Limitations of LP in Real-World Problems

Linear programming (LP) offers a systematic approach to optimization; however, it
comes with several limitations that restrict its application in real-world scenarios:
such as its inability to handle integer solutions, non-linear relationships, and multi-
objective scenarios. Due to that, we transition to mixed-integer linear programming
(MILP) and mixed-integer non-linear programming (MINLP). These methods address
real-world complexities more effectively, offering greater flexibility and practical ap-
plicability. This progression ensures optimization models align better with dynamic

and diverse challenges.

2.3.4 Linear Programming Method

The linear programming problem can be solved using different methods, such as the

graphical method, simplex method, or by using tools such as R, open solver etc. Here,

16

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

we will discuss the two most important techniques called the simplex method and

graphical method in detail [16].

1. Simplex Method Algorithm:

The simplex method is one of the most popular methods to solve linear program-

ming problems. It is an iterative process to get the feasible optimal solution. In

this method, the value of the basic variable keeps transforming to obtain the

maximum value for the objective function. The algorithm for linear program-

ming simplex method is provided below [16]:

()

(b)

(c)

(f)
(g)

(h)

Step 1: : Establish a given problem. (i.e) write the inequality constraints

and objective function.

Step 2: Convert the given inequalities to equations by adding the slack vari-

able to each inequality expression.

Step 3: Create the initial simplex table. Write the objective function at the
bottom row. Here, each inequality constraint appears in its own row. Now,
we can represent the problem in the form of an augmented matrix, which is

called the initial simplex table.

Step 4: Identify the greatest negative entry in the bottom row, which helps
to identify the pivot column. The greatest negative entry in the bottom row
defines the largest coefficient in the objective function, which will help us

to increase the value of the objective function as fastest as possible.

Step 5: Compute the quotients. To calculate the quotient, we need to divide
the entries in the far right column by the entries in the first column, ex-
cluding the bottom row. The smallest quotient identifies the row. The row
identified in this step and the element identified in the step will be taken as

the pivot element.
Step 6: Carry out pivoting to make all other entries in column is zero.

Step 7: If there are no negative entries in the bottom row, end the process.

Otherwise, start from step 4.

Step 8: Finally, determine the solution associated with the final simplex

table.

17

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

2. Graphical Method:

The graphical method is used to optimize the two-variable linear programming.
If the problem has two decision variables, a graphical method is the best method
to find the optimal solution. In this method, the set of inequalities are subjected
to constraints. Then the inequalities are plotted in the XY plane. Once, all the
inequalities are plotted in the XY graph, the intersecting region will help to de-
cide the feasible region. The feasible region will provide the optimal solution as
well as explains what all values our model can take. Detailed examples of the

described methods are provided in [16].

2.4 Non-Linear Programming

Nonlinear Programming (NLP) is a field of mathematical optimization, specifically
tackling problems where the objective function and/or constraints involve nonlinear
behavior. It takes linear programming a step further by accommodating more intricate
and realistic models that truly capture how real-world systems behave.

As optimization theory evolved in the mid-20th century, it became evident that
many real-world challenges couldn’t be effectively represented using just linear equa-
tions. In fields like engineering, economics, finance, and logistics, numerous sys-
tems display nonlinear characteristics—think economies of scale, nonlinear produc-
tion rates, or curved cost functions.

While linear programming offered some powerful tools, it was confined to simpler
scenarios. This limitation paved the way for nonlinear programming, which brought

in a whole new level of modeling flexibility and accuracy.

2.4.1 General Form of NLP

Nonlinear Programming deals with optimizing an objective function subject to non-
linear and/or linear constraints. If either the objective function or any constraint is
nonlinear, the problem is classified as a Nonlinear Programming (NLP) problem. All

decision variables are continuous.

Minimize or Maximize f(x) (2.5)

18

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

Subject to:
gi(x)<0 fori=1,...,m (2.6)
hj(x)=0 forj=1,...,m; (2.7)
x€XCR" (2.8)
where:

i is the index for inequality constraints (i = 1,2,...,my).

j is the index for equality constraints (j = 1,2,...,m;).

x is the vector of decision variables (x € R").

f (x) the nonlinear objective function.
* gi(x) nonlinear inequality constraint functions.

* hj(x) nonlinear equality constraint functions.

If f(x), gi(x), and h;(x) are all convex (for minimization problems), the problem
is a Convex Nonlinear Program, which is generally easier to solve. Otherwise,

it’s a Non-convex Nonlinear.

2.4.2 Nonlinear Programming Methods

Several methods have been developed to solve nonlinear programming problems, de-
pending on the structure and complexity of the objective function and constraints.
These include Gradient Descent, Newton-based methods, Interior Point methods, and
metaheuristic approaches [2]. In practice, solvers such as IPOPT, KNITRO, SCIP, and

MATLAB’s fmincon are commonly used for solving such problems efficiently [32].

¢ Gradient-Based:

Gradient-based methods are iterative optimization techniques that use the gra-
dient of the objective function to guide the search toward a minimum. At each
step, the algorithm moves in the direction opposite to the gradient, aiming to
reduce the function’s value. The efficiency of these methods depends heavily on
the choice of step size, which controls how far the algorithm moves at each itera-

tion. These methods are well-suited for smooth, differentiable functions and are

19

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

commonly used in engineering and applied optimization. However, they may
converge to local minima in non-convex problems. Despite this, they remain

fundamental tools for solving large-scale nonlinear problems efficiently [7].

* Interior-point methods:

Interior-point methods are optimization algorithms used in nonlinear program-
ming to find solutions by iterating from within the feasible region. They incorpo-
rate barrier functions to manage inequality constraints and follow a central path

to reach the optimal solution [35].

2.5 Integer Linear Programming

Integer Linear Programming (ILP) is an optimization technique that deals with prob-
lems involving linear relationships and integer variables. It extends Linear Program-
ming (LP) by restricting decision variables to integer values. The objective in ILP is to
find the optimal solution to a linear objective function while satisfying a set of linear
constraints, with the added challenge of integer-only variables.

ILP finds applications in resource allocation, production planning, scheduling, net-

work optimization, and other areas requiring discrete decisions.

2.5.1 General Form of ILP

Integer Linear Programming (ILP) is a subclass of linear programming where some or
all of the decision variables are constrained to take integer values. When all decision
variables are integers, the problem is called a pure ILP. If only a subset are integers and
the rest are continuous, the model becomes a Mixed-Integer Linear Program (MILP).

The standard mathematical formulation of a pure ILP is:

Minimize or Maximize Z = ¢ x (2.9)
Subject to:
Ax<b (Inequality constraints) (2.10)
Dx=e (Equality constraints) (2.11)
xeZ" (Integer constraints) (2.12)
x>0 (Non-negativity) (2.13)

20

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

Where:
* x € Z": vector of integer decision variables.

* c € R"™: cost coefficients of the objective function.

A e R™M*" D e R™*": constraint coefficient matrices.

b € R™, e € R™: right-hand side vectors.

Due to the discrete nature of decision variables, ILP problems are NP-hard [3],
meaning that the solution time can grow exponentially with problem size. Conse-
quently, specialized techniques like Branch and Bound, Cutting Planes, and Branch

and Cut are used to solve them.

2.5.2 ILP Solution Algorithms

¢ Branch-and-Bound:

A tree-based algorithm that solves Integer Linear Programs (ILPs) by recursively
dividing the problem into subproblems (branching), solving their linear relax-
ations, and pruning branches that cannot yield better integer solutions (bound-
ing) [36].

* Cutting-Plane Method:

An iterative method that solves ILPs by solving the LP relaxation and progres-
sively adding valid inequalities (cuts) to exclude fractional solutions, continuing

until an integer optimal solution is found [36].

¢ The Branch and Cut method:

Branch-and-Cut is a hybrid algorithm that combines branch-and-bound with
cutting-plane techniques to solve Integer Linear Programming (ILP) and Mixed

Integer Linear Programming (MILP) problems [31].

It strengthens the linear programming relaxation by iteratively adding valid in-
equalities (cuts), while exploring the solution space via branching. This dual
strategy makes Branch-and-Cut highly effective for large-scale combinatorial prob-
lems. The algorithm proceeds as follows: it solves LP relaxations of subproblems;
if the solution is fractional, it attempts to generate cutting planes to eliminate it.

If no cuts are found, the algorithm branches into subproblems. Integer feasible

21

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

solutions are compared and the best one is retained. This process repeats un-
til all subproblems are either solved or pruned. Algorithm 1 outlines the full

procedure:

Algorithm 1 Branch and Cut algorithm

1: Add the initial ILP to L, the list of active problems
2: Set x* =null and v* = —c0
3: while L is not empty do

4: Select and remove (dequeue) a problem from L
5: Solve the LP relaxation of the problem
6: if the solution is infeasible then
7 Go back to Step 3
8: else
9: Denote the solution by x with objective value v
10: if v <v* then
11: Go back to Step 3
12: end if
13: if x is integer then
14: Set v* « v, x" « x and go back to Step 3
15: end if
16: if desired, search for cutting planes that are violated by x then
17: if any are found then
18: Add them to the LP relaxation and return to Step 5
19: end if
20: end if
21: Branch to partition the problem into new problems with restricted feasible regions. Add
these problems to L and go back to Step 3
22: end if

23: end while
24: return x*

Parameter Definitions:
L List (or queue) of active ILP subproblems to explore
x Current solution of the LP relaxation
x* Best (incumbent) integer solution found so far
v Objective value of the current solution x

v* Objective value of the incumbent solution x*

2.6 Mixed Integer Linear Programming

Mixed-Integer Linear Programming (MILP) is a mathematical method that aims to

minimize or maximize a linear function within a defined subset of IR”, The subset is

22

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

shaped by a system of linear equalities and inequalities, with the distinct requirement
that some of the decision variables take integer values, while others can remain con-
tinuous.

MILP originates from Linear Programming (LP), which focuses purely on continu-
ous variables. While LP allows for optimization within linear constraints, it couldn’t
address scenarios requiring discrete decisions, such as determining whether to build
a factory (binary choice: yes or no) or allocating whole units of a resource (integer
quantities). Recognizing this gap, MILP was introduced to incorporate integrality con-
straints, expanding its applicability to more complex, real-world problems.

Since its formalization in the mid-1960s, MILP has evolved into a sophisticated and
widely used optimization tool. Advances in computational algorithms, such as branch-
and-bound and branch-and-cut, have significantly enhanced its efficiency and scalabil-
ity. Today, MILP has become a cornerstone of operations research, supported by robust
commercial software packages like CPLEX [29], Gurobi [25], and FICO Xpress [19].
These tools allow practitioners to model and solve large-scale optimization problems
with precision, reliability, and speed.

The versatility of MILP is evident in its extensive applications across industries,
including logistics, manufacturing, finance, and energy systems [30]. By blending the-
oretical elegance with practical utility, MILP enables decision-makers to find optimal

solutions to challenges involving both discrete and continuous variables.

2.6.1 General Form of MILP

As mentioned above (in ILP), MILP is the general form when some variables are re-

stricted to integers and others are continuous.

T T

Minimize or Maximize Z = c, x+ ¢,y (2.14)
Subject to:
Ayx+Ayy <D (2.15)
Dx+Dyy=e (2.16)
x>0, xeR" (2.17)
v>0, peZP (2.18)
where:

23

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

x is the vector of continuous decision variables.

v is the vector of integer decision variables.

* CyCyare coefficient vectors for the objective function.

. Ax,Ay, D,, Dy are matrices of coefficients for the constraints.
* b,e are vectors of constants.

MILP is inherently a non-convex optimization problem due to the presence of in-
teger variables, which introduce discrete decision spaces. In contrast, if all variables
are required to be integers (p = n), the problem becomes a purely Integer Linear Pro-
gramming (ILP) problem, where any feasible solution is a completely integer vector.
Even in the more general case where p < n, we define an integer solution to (1.7)—(1.9)
as a vector whose last components p are integer values, while the others may remain

continuous.

2.6.2 MILP Solution Techniques

Mixed-Integer Linear Programming (MILP) problems involve both continuous and in-
teger decision variables with linear objectives and constraints. Due to the combinato-
rial complexity introduced by integer variables, exact solving methods are required.
Modern MILP solvers like Gurobi [25], CPLEX [29], and HiGHS [27] implement a
combination of foundational algorithms enhanced with heuristic and machine learn-
ing techniques to improve performance.

1- Branch and Bound Method:

The Branch and Bound (B&B) algorithm is a widely used method for solving Mixed-
Integer Linear Programming (MILP) problems. It combines relaxation, branching,
and bounding to systematically explore the feasible solution space. At each step, the

algorithm:
* Solves a relaxed version of the MILP (without integrality constraints).
* If the solution is integer feasible, it updates the best known solution.

* If not, it selects a variable with a fractional value and branches on it, creating two

new subproblems with additional constraints.

24

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

* Subproblems whose relaxed solution cannot improve the current best solution

are discarded (pruned).

The process continues until all nodes are either pruned or solved, ensuring that the

optimal integer solution is found.

Algorithm 2 Branch and Bound Algorithm for MILP

1: Initialize best_solution < oo

2: Initialize queue with root node

3: while queue not empty do

4: current_node « SelectNode(queue)

5: Solve LP relaxation at current node
6: z « objective value, x* « solution
7 if z > best_solution then
8: Prune node
9: else if x* is integer feasible then
10: Update best_solution < min(z, best_solution)
11: else
12: Select fractional variable x;
13: Create left node: x; < |x7]
14: Create right node: x; > [x]
15: Add both nodes to queue
16: end if

17: end while
18: return best_solution

where z is the variable that holds the optimal solution value (in this case, for the re-
laxation problem) in each iteration of the algorithm, x* is the solution to the relaxation
or linearized problem at the current node.

2- Branch and Cut Algorithm for MILP:

The Branch and Cut algorithm is a robust and widely used method for solving
Mixed-Integer Linear Programming (MILP) problems. It extends the classical Branch
and Bound framework by incorporating cutting-plane techniques to tighten the linear
programming (LP) relaxation and reduce the search space [31].

At each node of the search tree, the algorithm solves the LP relaxation. If the so-
lution is not integer-feasible, it attempts to generate cutting planes to eliminate the
fractional solution. If no violated cuts are found, the node is branched on a selected
variable. This combination of bounding, cutting, and branching allows the method to
efficiently explore and prune the solution space. For a detailed structure, see Algo-

rithm 3.

25

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

Algorithm 3 Branch and Cut Algorithm for MILP

1: Initialize best_solution < oo > For minimization
2: Initialize queue with the root node

3: while queue not empty do

4 current_node < select node from queue

5: Solve LP relaxation at current node to obtain z, x*
6: if z > best_solution then
7: Prune current node
8: else
9: if x* is integer feasible then
10: Update best_solution < min(z, best_solution)
11: else
12: Choose variable x; with fractional value in x*
13: Create left node with constraint x; < [x7]
14: Create right node with constraint x; > [x}]
15: Add both nodes to queue
16: end if
17: end if

18: end while
19: return best_solution

where:
x* Solution vector of the LP relaxation at the current node.
z Objective value corresponding to x*.
x; Fractional variable selected for branching.
best_solution Best (lowest) objective value found among integer-feasible solutions.
Queue Set of active subproblems to be processed.

3- Heuristics:

Solving Mixed-Integer Linear Programming (MILP) problems exactly can be com-
putationally challenging, especially for large instances. Heuristic methods provide
practical alternatives by quickly finding high-quality feasible solutions without guar-
anteeing optimality. Among these, Local Branching and Relaxation Induced Neighbor-

hood Search (RINS) are two effective techniques widely used in practice [20].

* Local Branching: This heuristic explores solutions near a given incumbent by
restricting the number of binary variable changes in a neighborhood, enabling

faster improvement searches [20].

26

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

* Relaxation Induced Neighborhood Search (RINS): RINS fixes variables that
have the same values in both the incumbent and LP relaxation solutions and

solves the reduced MILP to find better solutions efficiently [20].

2.7 Mixed Integer Non-Linear Programming

Mixed-Integer Nonlinear Programming (MINLP) represents a robust optimization frame-
work that simultaneously addresses both continuous and discrete variables while con-
sidering nonlinear constraints or objective functions. This versatile approach has gar-
nered substantial attention due to its capacity to model intricate real-world challenges
across diverse domains, including engineering design, operations research, and robotics.

MINLP integrates the complexities of combinatorial and nonlinear optimization,
rendering it an inherently challenging problem class that necessitates the continuous
development of innovative algorithms and specialized software to efficiently address
large-scale instances. Among the prevalent methods devised for solving MINLP prob-
lems are the branch-and-bound algorithm, outer approximation techniques, and hy-
brid approaches. These methodologies frequently leverage advancements in mixed-
integer linear programming (MILP) and nonlinear programming (NLP), significantly
enhancing their computational efficacy.

Mixed-Integer Nonlinear Programming (MINLP) is generally considered an intractable
problem class due to the combination of discrete and continuous decision variables.
As noted by Belotti et al[9]. MINLP encompasses both decidable and undecidable sub-
problems depending on the structure of the constraints and objective function . In
particular, problems involving nonconvex functions or unbounded domains may lead
to formulations that are formally undecidable — meaning no algorithm can guarantee
a solution in finite time — whereas convex or bounded cases tend to remain within
decidable complexity classes. To address this challenge, various heuristic and approx-
imation strategies have been developed, including the Feasibility Pump [12], diving
algorithms [14], and Relaxation Induced Neighborhood Search (RINS) [22], many of
which have been adapted from MILP and customized for MINLP settings.

The evolving landscape of MINLP research continues to yield advancements in al-
gorithms, computational tools, and practical applications. Emerging techniques, such
as the Extended Supporting Hyperplane (ESH) algorithm, demonstrate promise in ad-
dressing convex MINLP problems with improved efficiency [39]. As the demand for

addressing complex optimization scenarios increases across various industries, the role

27

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

of MINLP methodologies is anticipated to expand, offering innovative solutions to in-

creasingly sophisticated real-world challenges.

2.7.1 General form of MINLP

Mixed-Integer Nonlinear Programming combines elements of NLP and ILP, involv-
ing both continuous and integer variables, and at least one nonlinear function in the

objective or constraints.

Minimize or Maximize f(x,y) (2.19)
Subject to:
gi(x,)<0 fori=1,...,m (2.20)
hj(x,)=0 forj=1,...,my (2.21)
xeXCR" (2.22)
yeYczp (2.23)
where:

e x is the vector of continuous decision variables.

v is the vector of integer decision variables.

f(x,v): the objective function to be minimized or maximized,
* gi(x,v) < 0: the set of inequality constraints,
e h:(x,v)=0: the set of equality constraints,

i\ Y q y

If at least one of the following components is nonlinear—the objective function f(x,v),
any inequality constraint g;(x,y), or any equality constraint h;(x,y)—the problem is
classified as a Mixed-Integer Nonlinear Programming (MINLP) problem.

MINLP problems are among the most difficult to solve, as they combine the com-
plexities of nonlinearity with the combinatorial nature of integer variables. Like non-
linear programming (NLP) problems, MINLPs can be either convex or non-convex de-

pending on the characteristics of the functions f, g, and h.

28

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

2.7.2 Solving MINLP

e NLP Branch and Bound for MINLP:

NLP Branch and Bound is an exact global optimization algorithm designed to
solve non-convex Mixed-Integer Nonlinear Programming (MINLP) problems. It
extends the classical Branch and Bound approach by using Nonlinear Program-

ming (NLP) relaxations at each node instead of linear relaxations.

This method recursively partitions the feasible space defined by integer variables
and uses NLP solvers to compute lower bounds. These bounds help eliminate
regions that cannot contain the optimal solution (pruning), while feasible integer
solutions help improve the global upper bound [13].Refer to Algorithm 4 for

further illustration of the method.

Algorithm 4 NLP Branch and Bound for MINLP [13]

1: Initialize: Create list L « {(¢!,u')}, set upper bound z;; « oo, best solution x* «
NONE
2: while L=0do

3: Select and remove a problem N; = (511, uiI) from L
4: Solve NLP relaxation NLP R(Kf , uiI)
5: if infeasible then
6: Continue to next node
7: end if
8: Let %; be solution, and z; = objective(x;)
9: if z; >z then
10: Prune node
11: else if %; is integer feasible then
12: Update z5 « z;, x* < %;
13: Remove from L all nodes with lower bound > z;;
14: else
15: Branch: Select a fractional variable and divide region into subproblems
16: Add new subproblems to L
17: end if

18: end while
19: return x*

where:

X;: solution to the NLP relaxation at node N;.

z;: objective value corresponding to %;.

zyy: current best known upper bound (from integer-feasible solutions).

L: list of active subproblems (nodes).

29

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

- (5{, uiI): bounds on integer variables defining node N;.

* Extended Cutting Plane (ECP) Method:

The Extended Cutting Plane (ECP) method is a widely used algorithm designed
to solve convex Mixed-Integer Nonlinear Programming (MINLP) problems. Un-
like the Outer Approximation (OA) method, which requires solving both NLP
and MILP subproblems, ECP focuses solely on solving a series of MILP relax-
ations. This makes it computationally attractive, especially for large-scale convex

problems[13].

At each iteration, the algorithm linearizes the nonlinear constraints around the
current solution point and adds these linear approximations (cuts) to the MILP
model. By successively tightening the feasible region through these cuts, the
solution gradually approaches the feasible region of the original nonlinear prob-

lem.

Although ECP avoids solving expensive NLP subproblems, it generally requires
more iterations to converge compared to OA or NLP-based approaches. How-
ever, its reliance on linear programming makes it scalable and robust in many

practical settings.

Algorithm 5 Extended Cutting Plane (ECP) for MINLP [13]

10:

1
2
3
4:
5:
6
7
8
9

. Initialize: Choose initial feasible point (x°,°); set k = 0.

: repeat

Linearize nonlinear constraints at (x,*).

Solve MILP relaxation.

if solution violates any nonlinear constraint then
Add corresponding linearizations as cuts.

end if

Update solution to (Y

: until all nonlinear constraints are satisfied

return Feasible solution satisfying all constraints.

xk+1, k+1).

* Outer Approximation (OA): Outer Approximation is an iterative algorithm de-
signed for convex MINLP problems. It alternates between solving a nonlin-
ear programming (NLP) subproblem and a mixed-integer linear programming
(MILP) master problem. In each iteration, the NLP subproblem is solved to ob-
tain a feasible solution, and linear approximations (cuts) of the nonlinear con-
straints are added to the MILP master problem to refine the search space. This

process continues until convergence to an optimal solution .[13]

30

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

* Neural Network Methods for Solving MINLP:

With the increasing complexity of Mixed-Integer Nonlinear Programming (MINLP)
problems [9], neural networks have emerged as powerful tools to assist tradi-
tional solvers. Deep learning and graph-based models help handle non-convex

and combinatorial aspects by:

Predicting branching or node priorities in Branch-and-Bound.

Approximating objectives or feasible regions.

Guiding heuristics or cut generation.

Reducing runtime by pruning poor regions.

Though not always exact, these models can significantly speed up the computa-
tional time, especially when many similar instances are solved repeatedly. This

reflects the rise of learning-augmented optimization [13].

* Modern developments related to MINLP:

In recent years, significant advancements have been made in solving Mixed-
Integer Nonlinear Programming (MINLP) problems, with the development of
modern algorithms that extend beyond classical methods such as Branch and
Bound and Outer Approximation. These contemporary approaches aim to en-
hance computational efficiency, scalability, and robustness, particularly when
addressing large-scale, non-convex, or highly constrained problems encountered

in real-world applications[10].

- Global Optimization-Based Solvers: Modern solvers like BARON, ANTIGONE,
and SCIP use global optimization techniques, including spatial Branch and
Bound, convex relaxations, and cutting-plane generation to find global op-

tima even for non-convex MINLPs.

— Decomposition Methods: Techniques like Benders Decomposition and Gen-
eralized Benders Decomposition decompose the problem into master and
subproblems, enabling parallel processing and better handling of compli-

cating variables.

— Surrogate and Metaheuristic Approaches: Surrogate models (e.g., Gaus-

sian processes or neural networks) approximate objective and constraint

31

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

functions to reduce evaluation costs. Metaheuristics such as Genetic Al-
gorithms, Particle Swarm Optimization, and Simulated Annealing are also

employed when optimality guarantees can be relaxed.

- Learning-Augmented Optimization: Machine learning models, including
neural networks and graph neural networks (GNNs), are increasingly in-
tegrated into solvers to predict branching decisions, generate feasible solu-
tions, or approximate relaxations. This hybridization improves performance

on specific problem classes.

— Solver Frameworks with Modular Architectures: Recent frameworks like
Pyomo [44], JuMP, and MINLPy support customization and integration of clas-
sical and ML-based methods, allowing researchers to design and experiment

with new strategies quickly.

These modern approaches are particularly useful for real-time applications,
black-box optimization problems, or domains where exact methods become

computationally prohibitive.

2.8 Problem Complexity and Classification

In computational complexity theory, problems are categorized according to the com-
putational resources required to solve them. These resources primarily include time

and memory [4]. The most commonly discussed complexity classes are:

Class P (Polynomial Time)

Class P includes all decision problems that can be solved by a deterministic Turing
machine in polynomial time. These problems are considered "tractable" or efficiently

solvable.

Class NP (Nondeterministic Polynomial Time)

Class NP includes all decision problems for which a proposed solution can be verified
in polynomial time by a deterministic Turing machine, even if finding the solution

itself may not be feasible in polynomial time.

32

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

NP-Complete Problems

A problem is said to be NP-complete if:

* It belongs to NP.

* Every problem in NP can be reduced to it in polynomial time.

NP-complete problems are the hardest problems in NP. Solving any one of them in

polynomial time would imply P = NP.

NP-Hard Problems

NP-hard problems are at least as hard as the hardest problems in NP but may not
belong to NP themselves. They might not even be decision problems or verifiable in

polynomial time.

Does P = NP?

One of the most important open problems in theoretical computer science is:
Is P equal to NP?

This question asks whether every problem whose solution can be verified quickly
can also be solved quickly. It remains unresolved and is one of the seven Millen-
nium Prize Problems. And no polynomial-time algorithm has yet been found to solve
them—unless, as the hypothesis suggests, P = NP. Due to the importance of solving
such problems, scientists continue to develop approximation, heuristic, and meta-
heuristic methods to tackle them. (See figure 2.1).

Computational
Complexity Theory

NP - Hard THardest

NP - Complete Hard

NP

Figure 2.1: Visual representation of complexity classes: P, NP, NP-Complete, and NP-
Hard

33

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

2.9 Comparison between Optimization models

Table 2.1 presents a comprehensive comparison of major mathematical optimization
paradigms used in operations research and computational optimization. The com-
parison spans from Linear Programming (LP), the most basic and computationally
tractable form, to the highly complex Mixed Integer Nonlinear Programming (MINLP)
that combines both integer variables and nonlinear functions. Each model represents a
different trade-off between expressiveness and computational efficiency, with increas-
ing modeling power generally coming at the cost of solution difficulty. This system-
atic comparison highlights the key characteristics that differentiate these optimization
approaches and guides practitioners in selecting the appropriate model for specific

problem domains.

34

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

Table 2.1: Comparison of Optimization Models

Feature Linear Pro- | Nonlinear Integer Linear | Mixed Inte- | Mixed Inte-
gramming (LP) | Programming | Programming | ger Linear | ger Nonlinear
(NLP) (ILP) Programming | Programming
(MILP) (MINLP)
Decision Continuous Continuous Integer Mix of integer | Mix of integer
Variables and continuous | and continuous
Objective Linear Nonlinear Linear Linear Nonlinear
Function
Constraints | Linear Can be nonlin- | Linear Linear Can be nonlin-
ear ear
Complexity | Polynomial NP-hard in gen- | NP-hard NP-hard NP-hard
time (easy) eral
Possible So- | Simplex, Gradient de- | Branch and | Branch and | Outer approx-
lution Meth- | Graphical scent, Interior | bound, Cutting | bound, Branch | imation, NLP
ods method point methods | plane and cut Branch&Bound,
Neural Net-
work
Typical Fast Moderate to | Slow (problem | Slow (problem | Very slow
Solve Time slow (depends | size dependent) | size dependent)
on problem
structure)
Global Opti- | Always guaran- | Only for convex | Guaranteed (if | Guaranteed (if | Only in special
mality teed problems solved to com- | solved to com- | cases
pletion) pletion)
Common Resource allo- | Engineering Scheduling, Supply chain, | Process synthe-
Applica- cation, Portfolio | design, Process | Assignment Network de- | sis, Engineering
tions optimization, control, Ma- | problems, Fa- | sign, Produc- | design with dis-
Production chine learning | cility location tion planning | crete choices
planning with setup
times
Software CPLEX, Gurobi, | IPOPT, SNOPT, | CPLEX, Gurobi, | CPLEX, Gurobi, | BARON,
Tools GLPK KNITRO CBC SCIP Couenne,
DICOPT
Strengths Efficient al- | Can model non- | Can model | Combines Most general
gorithms, linear relation- | indivisible power of in- | form, can han-
Fast solution, | ships, More re- | resources or | teger and | dle complex
Widely avail- | alistic in many | yes/no deci- | continuous real-world sys-
able solvers applications sions variables tems
Limitations | Cannot handle | May converge | Limited to | Limited to | Very difficult to
nonlinear rela- | to local optima, | linear relation- | linear relation- | solve, Often re-
tionships, inte- | Harder to solve | ships ships, Solution | quires problem-
ger variables time grows | specific decom-
with integer | position
variables
Convexity Always convex | Can be convex | Discrete (non- | Discrete (non- | Usually non-
or non-convex | convex) convex) convex

35

CHAPTER 2. EVOLUTION OF OPTIMIZATION TECHNIQUES

2.10 Conclusion

This chapter traced the evolution of optimization models from the linear and con-
tinuous world of LP to the expressive, hybrid nature of MINLP. Each advancement in
model formulation—NLP, ILP, MILP, and finally MINLP—has enabled practitioners to
address increasingly complex decision problems involving both discrete and nonlinear
elements. These techniques not only offer richer modeling capacity but also present
new computational challenges, particularly in terms of scalability and tractability.

As highlighted by Grossmann [23], the development of global optimization algo-
rithms such as branch-and-bound, outer approximation, and generalized disjunctive
programming has significantly improved the solvability of large-scale MINLP prob-
lems. Moreover, the emergence of hybrid heuristics and decomposition strategies has
made these methods more applicable to real-time and industrial environments.

The insights gained from this chapter form the theoretical bedrock for the model-
ing choices and solver selection presented in subsequent parts of this thesis. Specif-
ically, they justify the use of MINLP and the adoption of the SCIP solver for solving
Cut Order Planning problems—a context where complex combinatorics and nonlinear

constraints must be addressed simultaneously.

36

CHAPTER 3

L MATHEMATICAL MODELING OF THE PROBLEM

3.1 Introduction

This chapter presents the mathematical formulation used to solve the Cut Order Plan-
ning (COP) problem in the apparel industry, where efficient fabric utilization is critical
due to its significant contribution—typically 50-60%—to total production costs. The
model aims to determine the most efficient way to allocate and cut fabric to fulfill
varying customer demands across multiple garment sizes and styles.

The formulation used in this study is based on the work of Unal and Yiiksel [48],
who proposed a Mixed-Integer Nonlinear Programming (MINLP) approach to COP
in a mid-sized apparel company. Their model captures key operational aspects such
as fabric spreading limits, marker lengths, and demand fulfillment while minimiz-
ing fabric waste. It integrates both discrete decisions (e.g., number of plies, garment
counts) and continuous ones (e.g., marker lengths), making it suitable for real-world
garment production environments.

In this chapter, we present the model reimplementation using the open-source
SCIP solver through the Pyomo modeling library in Python. Compared to the origi-
nal LINGO-based formulation, this implementation is more transparent, reproducible,
and accessible—especially for small and medium-sized enterprises seeking cost-effective
optimization solutions.

The chapter is organized as follows:
* Problem context and key production constraints,

* Definition of sets, parameters, and decision variables,

37

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

Mathematical formulation of the objective function and constraints,

* Discussion of model complexity and classification as MINLP,

Feasibility justification and real-world applicability,
* Optimization workflow and execution environment.

This model forms the foundation for the case study presented in Chapter ??, where
it is tested on real production data from the apparel industry and compared to both

LINGO and other open-source solvers.

3.2 Problem Context

In garment manufacturing, the cutting department is tasked with converting raw fab-
ric into cut components that fulfill a variety of customer orders. In a typical apparel
factory, fabrics arrive in bulk rolls and are processed in the cutting department ac-
cording to pre-planned marker layouts. These layouts dictate how different sizes and
styles are arranged across layers of fabric. The key constraints include the maximum
length and width of fabric lays, the grouping of sizes for production efficiency, and the
balancing of order fulfillment across order items.

The challenge in COP lies in the trade-off between fabric efficiency and operational
feasibility. For instance, combining too many size-color-style combinations in a single
marker may increase fabric efficiency but make spreading and cutting operations more
difficult. Conversely, creating separate markers for each SKU is operationally easier
but highly wasteful.

This operational modeling aligns with the objectives defined in Chapter 1, partic-

ularly in addressing fabric utilization through advanced mathematical techniques.

3.3 Mathematical Model Formulation

The objective of the Cut Order Planning (COP) model is to determine an optimal
combination of garments across markers and fabric lays to minimize total fabric con-
sumption while meeting all customer demands. The model captures the practical con-
straints of fabric spreading and cutting operations typically encountered in apparel
production.

The full mathematical formulation is presented below:

38

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

Sets and Indices

» i el: Set of spreadings (layers), i ={1,2,...,n}

* j€]: Set of garment sizes, j ={1,2,...,m]}

Parameters

* §j: Order quantity for size j (pieces)
* Bj: Estimated length per piece of size j in marker plan (meters)
e M: Cutting table length (meters)

* Kpax: Maximum piles allowed per spreading (integer)

P: Allowed excess cutting rate (ECR) (%)

Decision Variables

* K;: Number of piles in spreading i (integer)
* A;j: Number of pieces of size j in each pile of spreading i (integer)

* T;: Length of marker plan for spreading i (continuous)

Objective Function

Minimize the total fabric usage:

n
Minimize > K;-T;
i=1

Constraints

1. The number of plies for each spreading must not exceed the maximum allowed:

Ki—Kpax <0 Yi=1,2,...,n

2. The total number of cut pieces must be at least equal to the order quantity for

each size:

n
ZKi'AijZSj Vji=1,2,...,m
i=1

3. The total number of cut pieces must not exceed the order quantity plus the excess

39

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

cutting share:

= P
thKlAl]SS](l—l—m) Vj:l,Z,...,m
1=

4. The length of the marker plan must be shorter than the table length for any
spreading;:
m
) AyBj<M Yi=12..,n

j=1

5. The number of plies decreases as the spreading index increases:

Ki-K;j>0 VYi>j

6. The length of each spreading is determined by the marker plan:

m

ZA’]B]_TZ:O Vi:1,2,...,n

=1
7. All variables are non-negative:

Aij,Ki, Ty, S, Bjy Kinays P, M 2 0

ijr
This model effectively balances precision and computational tractability while ad-
dressing key operational constraints in cut order planning. It captures critical rela-
tionships between garment sizes, marker layouts, fabric usage, ply counts, and spread-
ing length, all of which are essential for minimizing total fabric consumption. Given
the combinatorial nature of size assignment and the nonlinear dependencies in fabric
length calculations, the formulation justifies the adoption of a Mixed Integer Nonlin-

ear Programming (MINLP) approach.

3.4 Model Type and Complexity

The Cut Order Planning (COP) problem formulated in this thesis is classified as a
Mixed-Integer Nonlinear Programming (MINLP) problem, based on two defining

characteristics:

* Nonlinearity: The model includes bilinear terms such as K; - A;;, which appear

7’
in constraints governing the number of cut pieces and the marker length calcu-

40

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

lation. These expressions represent real-world relationships where the number
of piles and the number of pieces per size jointly determine fabric usage. Addi-
tionally, constraints like Z]- A;j-Bj = T; introduce dependencies between decision

variables, making the model nonlinear.

* Mixed-Integer Nature: The decision variables A;; and K; are integer-valued, re-
flecting quantities such as garment counts and pile numbers, while T; is a con-
tinuous variable representing marker lengths. This combination of discrete and

continuous decisions is typical of MINLP models.

From a computational standpoint, COP is an NP-hard problem. The COP problem
belongs to the class of NP-hard problems because it involves both discrete decisions
and nonlinear constraints, and it generalizes the classical cutting stock and bin pack-
ing problems. As a result, its solution space grows exponentially, making it compu-
tationally intractable for large instances without advanced optimization techniques.
The search space expands combinatorially with each additional size or layer, making
brute-force enumeration infeasible. Efficient solving requires specialized algorithms
capable of navigating this large, complex space [40].

Given the complexity of the model, careful attention must be paid to instance siz-
ing, data structuring, and constraint formulation. In real-world applications, it may be
beneficial to use hybrid approaches that combine exact optimization with heuristics to

handle large-scale problems effectively.

3.5 Feasibility and Justification

The feasibility of the COP model has been validated through logical consistency checks,

constraint verification, and comparison with real-world data.

Validation of Model Logic

The model ensures that:

- All constraints — including ply limits, table length, and excess cutting rate — are
respected,

- Total cut pieces meet or slightly exceed demand within an acceptable margin,

- Marker lengths do not exceed available table length,

- Ply counts decrease with spreading index to avoid inefficiencies.

41

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

Logical verification shows that the model behaves correctly under various test cases

and adheres to the principles of efficient fabric utilization.

Reasonableness of Assumptions

Key assumptions made in the model include:

- Fixed order quantities — common in mass production settings where orders are
confirmed before cutting begins.

- Uniform fabric width — applicable when working with consistent rolls; can be
extended to variable widths in future work.

- Constant garment sizes — minor variations exist but do not significantly affect
layout efficiency.

- Deterministic Excess Cutting Rate (ECR) — practical for planning purposes, though
probabilistic values could be used in highly dynamic environments.

These assumptions simplify computation and are valid for most batch-style apparel

production scenarios.

Real-World Alignment

The model has been tested using datasets derived from two real-world apparel compa-
nies producing garments such as shirts, coats, trousers, and sweatshirts. Results show
that:

- The model consistently reduces fabric usage compared to manual planning (aver-
age saving: 7%, up to 13% in some cases),

- Longer marker plans lead to better fabric utilization — confirming an important
insight from industry practice,

- Using open-source solvers like SCIP achieves similar or better performance than
proprietary tools like LINGO, with added benefits in transparency and adaptability.

These findings demonstrate that the model is not only mathematically valid but

also operationally relevant and industrially applicable.

Computational Efficiency and Practical Applicability

By reimplementing the original LINGO-based MINLP model in Python using Pyomo
and SCIP, we achieved:

- Faster solution times.

42

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

- Greater flexibility in modifying input parameters and constraints.
- Improved reproducibility for researchers and practitioners.

This confirms the suitability of the model for industrial use and supports the the-
sis’s broader objective of promoting open-source optimization tools in small-to-medium

enterprises.

3.6 Implementation Framework and Solver Environment

3.6.1 Optimization Workflow Overview

Python Environment

,,,

Input !
Data Preparation Model Definition Solution Parsing
(Pyomo)
Processing | |
. SCIP Solver | _~ .. .
Solver l

Optimized Results

Output

Figure 3.1: Flowchart of Optimization Framework Using Python and SCIP

Figure 3.1 illustrates the overall workflow for solving the Cut Order Planning (COP)
problem using Python and the SCIP solver. The process begins with data preparation,
where order quantities and garment specifications are structured as input parameters.
This is followed by model definition using the Pyomo modeling framework, which
encodes the objective function and all constraints. The formulated problem is then
passed to the SCIP solver, which executes the optimization process. Upon completion,
solution parsing is performed to extract fabric usage, spreading configurations, and
other decision variables. The final results are made available for reporting and further
analysis. The modular structure allows easy experimentation and solver replacement
if needed.

For a detailed step-by-step example demonstrating the implementation of this op-

timization workflow using Pyomo and SCIP, refer to Appendix A.

43

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

3.6.2 Model Execution Environment

The COP model was implemented using Python, an open-source high-level program-
ming language widely adopted in scientific computing and data analysis due to its
readability and extensive ecosystem of libraries.

To model the optimization problem, we used Pyomo, an open-source Python-based
algebraic modeling language that supports the formulation and analysis of linear, non-
linear, and mixed-integer mathematical programming problems [44]. Pyomo provides
a high-level syntax for defining optimization variables, constraints, and objectives in a
way that closely resembles the mathematical formulation.

To solve the model, we used SCIP (Solving Constraint Integer Programs), one of
the most advanced non-commercial solvers for mixed-integer nonlinear programming
(MINLP). Developed by the Zuse Institute Berlin, SCIP integrates constraint program-
ming, branch-and-bound, and presolving techniques to handle nonconvex and discrete
optimization problems efficiently [1].

The SCIP solver (version 9.2.2) was integrated via Pyomo’s SolverFactory inter-

face and executed locally as shown below:

solver = SolverFactory(’'scip’,

executable="/home/lenovo/scipoptsuite-9.2.2/build/bin/scip’)

All experiments were executed using the same data structure described earlier to
ensure fair comparison between solvers. No solver parameter tuning was applied, in
order to preserve default behavior and isolate solver performance from manual con-
figuration.

Experiments were conducted in a Python 3.12.3 virtual environment under the
Windows Subsystem for Linux (WSL), running Ubuntu. The Python interpreter path

was:

/home/lenovo/venv/scip-env/bin/python

Model development, testing, and debugging were carried out using PyCharm 2025.1.1
Academic Edition, an integrated development environment (IDE) developed by Jet-
Brains and widely used in scientific and industrial Python projects. PyCharm offers
features such as intelligent code completion, syntax highlighting, environment man-
agement, and built-in terminal support, which facilitate efficient and organized model

implementation.

44

CHAPTER 3. MATHEMATICAL MODELING OF THE PROBLEM

3.7 Conclusion

This chapter introduced a mathematical model for the Cut Order Planning (COP)
problem in the apparel industry, structured as a Mixed-Integer Nonlinear Program-
ming (MINLP) formulation. The model, originally proposed by Unal and Yuksel [48],
addresses the trade-off between fabric efficiency and production feasibility by model-
ing real-world constraints such as table length, ply limits, and marker layouts.

We reimplemented the model using the Pyomo library and SCIP solver in Python,
providing an open-source alternative to the original LINGO-based implementation.
This adaptation enhances transparency, flexibility, and reproducibility—essential qual-
ities for practical adoption by small and medium-sized apparel manufacturers.

The model’s NP-hard classification was discussed in relation to its nonlinear and
combinatorial structure, reflecting the underlying complexity of the problem. The
formulation’s validity and feasibility were supported through constraint verification,
assumption analysis, and alignment with industry practices.

Ultimately, this model provides a robust and scalable framework for optimizing
fabric consumption in garment production. The next chapter builds upon this work
by applying the model to real-world apparel datasets and analyzing the resulting per-

formance in comparison to alternative solvers.

45

CHAPTER 4

CASE STUDY

4,1 Introduction

The primary goal of this chapter is to identify a computationally efficient solution
strategy for solving the Cut Order Planning (COP) model introduced in Chapter 3.
While several solvers are available for MINLP problems, their performance can vary
significantly depending on problem size and structure. In this work, we test multiple
open-source solvers, including Couenne, Bonmin, and SCIP, with a particular focus on
their ability to solve the benchmark coat production case from Unal and Yiiksel.
Preliminary experiments revealed that both Couenne and Bonmin failed to produce
a solution for the coat production instance, even after extended runtimes exceeding
two hours. This confirms the need for a more robust and efficient solver. SCIP, on the
other hand, was able to provide a feasible solution in significantly less time, making it
the preferred solver for our implementation. The rest of this chapter outlines the data
structure, software environment, implementation approach, and validation strategy

using SCIP.

4.2 Description Of The Case Study:

The case study focuses on a mid-sized apparel manufacturing company located in a
textile production hub in Turkey, as described in the study by Unal and Yiiksel [48].
This company specializes in producing both basic and fashion-oriented garments such
as shirts, trousers, coats, and sweatshirts. With approximately 450 employees, the

company operates under a make-to-order production strategy, aiming to meet domes-

46

CHAPTER 4. CASE STUDY

tic and international demand with flexibility and minimal inventory. It is equipped
with a dedicated cutting department, which plays a critical role in overall fabric effi-
ciency. Improving operations within this department—particularly through optimized
Cut Order Planning (COP)—has a direct impact on production costs, as fabric typically

accounts for 50-60% of total manufacturing expenses.

The primary objective is to enhance operational efficiency in the cutting depart-
ment, recognized as one of the most fabric-intensive stages of production. As fabric

costs continue to escalate, optimizing material utilization has become critical.

Currently, the company employs manual planning methods supported by basic
spreadsheet tools. This approach relies heavily on the expertise of cutting room super-
visors, often resulting in fabric over-consumption due to suboptimal spreading and
cutting schedules. Additionally, managing multiple garment sizes per order intro-
duces complexity to manual planning, increasing risks of exceeding order tolerances

or material waste.
Key operational challenges include:

* Balancing multiple garment sizes within single markers
e Adhering to maximum table lengths and fabric ply limitations
* Meeting strict delivery timelines

* Minimizing fabric waste while preventing garment shortages

To address these challenges, Unal and Yiiksel has adopted a mixed-integer non-
linear programming (MINLP) framework using the LINGO solver to optimize its Cut
Order Planning (COP) process. In this work, we aim to replace it with a modern SCIP-
based optimization framework implemented in Python, with the objective of improv-

ing solver efficiency and flexibility.

4.3 Input Data Used:

The input parameters used in this study cover four product categories: shirts, coats,
trousers, and sweatshirts. These are summarized in the following tables, which detail

the order quantities and estimated fabric lengths required for each size.

All input data were adapted directly from the original Cut Order Planning case
study presented by Unal and Yiiksel [48].

47

CHAPTER 4. CASE STUDY

Table 4.1: Input Data for Shirt Production

Size | Sj=Order Quantity (pieces) | Bj=Estimated Length (cm)
T39 69 127.28
T41 96 127.28
T43 90 127.28
T45 45 127.28
Table 4.2: Input Data for Coat Production
Size | Sj=Order Quantity (pieces) | Bj=Estimated Length (cm)
T48 37 205.49
T50 84 205.49
T52 84 205.49
T54 84 205.49
T56 59 205.49
T58 38 205.49
T60 22 205.49
T62 8 205.49
Table 4.3: Input Data for Trouser Production
Size | Sj=Order Quantity (pieces) | Bj=Estimated Length (cm)
T24 40 112.22
T26 205 112.22
T28 35 112.22
T30 10 112.22
T32 10 112.22
Table 4.4: Input Data for Sweatshirt Production
Size | Sj=Order Quantity (pieces) | Bj=Estimated Length (cm)
S 130 100
M 348 100
L 444 100
XL 304 100
XXL 152 100

4.4 Results and Discussion

4.4.1 SCIP vs. LINGO: Comparative Analysis Across Products

This subsection presents a detailed comparison between the results obtained from

SCIP and the original LINGO-based implementation from Unal and Yiiksel across

48

CHAPTER 4. CASE STUDY

four COP scenarios: shirt, coat, trouser, and sweatshirt. The comparison focuses on
total fabric usage, number of spreadings, and solution efficiency (measured by solver
iterations). The aim is to assess whether the open-source SCIP solver can match or
outperform the commercial LINGO environment in terms of both optimality and com-

putational practicality.

4.4.1.1 Shirt Production: SCIP vs. LINGO

The shirt production case involves four size categories (T39, T41, T43, T45), with a
maximum table length of 1600 cm and a fabric ply capacity of up to 200 layers. The
average fabric length per piece is 127.28 cm. The goal is to fulfill demand while mini-
mizing total fabric usage.

Note: The maximum number of plies used in this case was K, = 200.

Table 4.5: LINGO Result — Shirt Case (Unal & Yiiksel)

Sizes T39 | T41 | T43 | T45 | No. of piles | Marker plan length(cm)
Total order 69 | 96 | 90 | 45

1. Spreading | 2 2 3 0 30 891.01*

2. Spreading | 1 4 0 5 9 1272.8%

No. of pieces | 69 | 96 | 90 | 45 Total length, cm

EQR, % 0 0 0 0 38752.32

Table 4.6: SCIP Result — Shirt Case

Sizes T39 | T41 | T43 | T45 | No. of piles | Marker plan length(cm)
Total order 69 | 96 | 90 | 45

1. Spreading 3 0 6 3 15 1527.36

2. Spreading | 2 8 0 0 12 1272.80

No. of pieces | 69 | 96 | 90 | 45 Total length, cm

EQR, % 0 0 0 0 38184.00

As shown in Tables 4.6 and 4.5, the SCIP solver not only replicated the structure of
the LINGO solution but also achieved better material utilization. SCIP required only
38184.00 cm of fabric, compared to 38752.32 cm in the LINGO solution — a saving of
568.32 cm. Both solutions used two spreadings and achieved full order coverage with
0% excess cutting rate.

In terms of computational performance, SCIP achieved optimality in just 30 search
nodes and 396 iterations, while LINGO required 3082 iterations. the difference in

solver steps clearly indicates SCIP’s superior computational efficiency. Furthermore,

49

CHAPTER 4. CASE STUDY

SCIP’s solution grouped sizes more compactly in Spreadings 1 and 2, avoiding the

fragmented pattern assignment observed in the LINGO layout.

4.4.1.2 Coat Production: SCIP vs. LINGO

The coat production case represents the most complex scenario in this study, involving
eight different garment sizes (T48 to T62). The average piece length is 205.49 cm, and
the maximum number of fabric plies Kmax is 50. The planning must be executed
across four spreadings, all constrained by a 1600 cm table limit.

Table 4.7 shows the LINGO results as reported by Unal and Yiiksel [48], which

required over 3 million iterations and achieved a total fabric usage of 85486.51 cm.

Table 4.7: LINGO Result — Coat Case (Unal & Yiiksel)

Sizes T48 | T50 | T52 | T54 | T56 | T58 | T60 | T62 | No. of piles | length, cm
Total order 37 | 84 | 84 | 84 | 59 | 38 | 22 8

1. Spreading | 0 2 1 2 1 1 0 0 36 1438.48
2. Spreading | 2 0 2 0 1 0 2 0 11 1438.48
3. Spreading | 0 1 3 1 0 0 0 1 8 1232.98
4. Spreading | 3 0 0 2 0 0 0 5 1027.48
No. of pieces | 37 | 84 | 84 | 84 | 59 | 38 | 22 8 Total length, cm
EQR, % 0 0 0 0 0 0 0 0 85486.51

SCIP was applied to the exact same model and data under a Python-Pyomo envi-
ronment. The result, displayed in Table 4.8, was a marginally better total fabric usage
of 85483.84 cm—saving 2.67 cm compared to LINGO—with a significantly lower com-

putational effort.

Table 4.8: SCIP Result — Coat Case

Sizes T48 | T50 | T52 | T54 | T56 | T58 | T60 | T62 | No. of piles | length, cm
Total order 37 | 84 | 84 | 84 | 59 | 38 | 22 8

1. Spreading | 0 1 0 0 0 41 1438.43
2. Spreading | 2 1 1 1 1 0 0 0 2 1232.94
3. Spreading 0 0 2 2 0 1 8 1027.45
4. Spreading | 3 0 0 0 0 2 2 0 11 1438.43
No. of pieces | 37 | 84 | 84 | 84 | 59 | 38 | 22 8 Total length, cm
EQR, % 0 0 0 0 0 0 0 0 85483.84

Although the fabric savings between SCIP and LINGO appear small, the reduction
in search effort is dramatic. LINGO’s solution took over 3,087,495 iterations, while

SCIP reached optimality with only 2,496 nodesand 18162 iterations. This validates

50

CHAPTER 4. CASE STUDY

the effectiveness of SCIP in solving large-scale, nonconvex MINLP problems in apparel

production.

4.4.1.3 Trouser Production: SCIP vs. LINGO

This case evaluates trousers in five size categories (T24, T26, T28, T30, T32). The aver-
age piece length is 112.22 cm, and all constraints remain consistent with the previous
models (table length = 1600 cm, 0% ECR). LINGO results from Unal and Yiiksel [48]
are shown in Table 4.9, where the solution used two spreadings and achieved a total
fabric consumption of 33,667.85 cm in 2549 iterations.

Note: The maximum number of plies used in this case was K, = 100.

Table 4.9: LINGO Result — Trouser Case (Unal & Yiiksel)

Sizes T24 | T26 | T28 | T30 | T32 | No. of piles | Marker plan length (cm)
Total Order 40 | 205 | 35 | 10 | 10

1. Spreading | 2 9 1 0 0 15 1346.71

2. Spreading | 1 7 2 1 1 10 1346.71

No. of pieces | 40 | 205 | 35 | 10 | 10 Total length, cm

EQR, % 0 0 0 0 0 33667.85

SCIP, applied to the same dataset, generated a similar result using two spreadings.
However, it reduced fabric usage slightly to 33,666.00 cm, as shown in Table 4.10.
While the savings are marginal (1.85 cm), SCIP achieved this in a single node and only

and 9 iterations, showcasing its high performance and efficiency.

Table 4.10: SCIP Result — Trouser Case

Sizes T24 | T26 | T28 | T30 | T32 | No. of piles | Marker plan length (cm)
Total Order 40 | 205 | 35 | 10 | 10

1. Spreading 0 5 1 0 0 35 673.32

2. Spreading | 4 3 0 1 1 10 1009.98

No. of pieces | 40 | 205 | 35 | 10 | 10 Total length, cm

EQR, % 0 0 0 0 0 33666.00

Although the difference in material usage is minor, SCIP’s computational speed
and simplicity of implementation offer strong justification for its adoption in practical

applications.

4,41.4 Sweatshirt Production: SCIP vs. LINGO

The sweatshirt production problem involves five size categories (S, M, L, XL, XXL),
with a maximum table length of 2000 cm and a fabric ply capacity (Kmax) up to 45

51

CHAPTER 4. CASE STUDY

layers. Each garment has a uniform average length of 100 cm. The goal is to fulfill
all customer demands while minimizing total fabric consumption, without exceeding

order tolerances.

Table 4.11: LINGO Result — Sweatshirt Case (Unal & Yiiksel)

Sizes S M L XL | XXL | No. of piles | Marker plan length, cm
Total Order | 130 | 348 | 444 | 304 | 152

1. Spreading | 1 1 6 8 4 38 2000

2. Spreading | 3 10 7 0 0 31 2000

No. of pieces | 131 | 348 | 446 | 304 | 152 Total length, cm

EQR, % 076 | 0 [022| O 0 138000

Table 4.12: SCIP Result — Sweatshirt Case

Sizes S M L | XL | XXL | No. of piles | Marker plan length, cm
Total Order | 130 | 348 | 444 | 304 | 152

1. Spreading | 1 1 6 8 4 38 2000

2. Spreading | 3 10 7 0 0 31 2000

No. of pieces | 131 | 348 | 446 | 304 | 152 Total length, cm

EQR, % 076 | 0 [0.22] O 0 138000

Both SCIP and LINGO generated identical results in terms of total fabric used and
the structure of the solution (number of plies, spreading lengths, and piece alloca-
tions). However, SCIP achieved this result in just 1609 iterations, while LINGO re-
quired over 57277 iterations to converge to the same optimum. For both solvers, the
Estimated Cutting Ratio (ECR) was 0.76% for size S and 0.22% for size L, confirming

the consistency of solution quality across tools.

4.4.1.5 Fabric and solver iterations Comparison: SCIP vs. LINGO

To provide a more intuitive understanding of solver performance, Figures 4.1 and 4.2
present visual comparisons between LINGO and SCIP across the four product cate-
gories studied.

Figure 4.1 shows that both solvers achieved very close fabric utilization results
across all product categories. Notably, SCIP managed to slightly outperform LINGO in
terms of fabric savings for shirts and trousers, with equivalent performance for coats
and sweatshirts. These results validate that SCIP can match or even exceed the solution
quality of LINGO.

Figure 4.2 highlights a critical advantage of SCIP: computational efficiency. Dis-

played on a logarithmic scale, the total number of iterations or search nodes used by

52

CHAPTER 4. CASE STUDY

Fabric Usage Comparison by Product

Solver Iteration Comparison

1000

2
§
E 800

3
& 4
] % 100
E g
g 00 o
4 E
2 10°
200
N 107
200
0 . - . - 10!
shirt Coat Trouser Sweatshirt T
shirt ot 5

Figure 4.1: Fabric Usage Comparison by
Product

Figure 4.2: Solver iterations Comparison

each solver demonstrates that SCIP required significantly fewer computational steps
across all cases.

While LINGO used over three million iterations for the coat and sweatshirt cases,
SCIP was able to find optimal or near-optimal solutions using only thousands of nodes.
In the trouser case, SCIP reached optimality with a single node. This performance can
be attributed to SCIP’s use of advanced branch-and-bound and presolving techniques,

along with strong cutting planes and constraint propagation.

Why SCIP Performs Better:

* Integrated MINLP Solving: SCIP natively handles mixed-integer nonlinear prob-

lems using dedicated algorithms, without relying on external solvers.

* Efficient Branch-and-Bound: SCIP applies a hybrid of constraint programming

and branch-and-cut, enabling it to prune large parts of the search space early.

» Strong Presolving: The presolving phase eliminates redundant variables and

tightens bounds before branching starts, significantly reducing solve time.

* Flexibility with Cuts and Heuristics: SCIP generates domain-specific cuts and

employs primal heuristics that accelerate convergence.

These advantages make SCIP an effective and scalable open-source alternative to
commercial solvers like LINGO, especially in industrial applications such as Cut Order
Planning.

Hardware Consideration:

To provide a fair and consistent performance evaluation, solver efficiency is as-

sessed based on iteration counts rather than wall-clock execution time. This choice

53

CHAPTER 4. CASE STUDY

was made because the original study by Unal and Yiiksel [48] did not disclose the
hardware used, making direct time-based comparisons unreliable. Our tests were per-
formed on a system equipped with an Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz,
16 GB of RAM, and a 64-bit operating system. By focusing on iteration counts—which
are unaffected by hardware speed—we ensure a hardware-independent benchmark of

solver efficiency.

4.4.2 Solvers Comparison Summary — All Products

Table 4.13: Solver Performance Comparison Across All Products

Product Solver | Fabric Used (cm) | Solve Time (s) Nodes
SCIP 38184.00 0.15 30
Shirt Bonmin 38184.00 299.86 6669
Couenne 38184.00 0.96 700
SCIP 85483.84 3.24 2,496
Coat Bonmin — >7200 >3,000,000 (no result)
Couenne — >7200 >2,500,000 (no result)
SCIP 33666.00 0.13 1
Trouser Bonmin 33666.00 2243.32 54641
Couenne 33666.00 3.05 3,398
SCIP 138000.00 0.21 142
Sweatshirt | Bonmin 138000.00 1375.55 86258
Couenne 138000.00 108.17 114,360

Table 4.13 presents a detailed comparison of solver performance across the four prod-
uct cases analyzed in this study: shirt, coat, trouser, and sweatshirt. The SCIP solver
consistently outperformed Bonmin and Couenne in terms of both computation time
and reliability. For the shirt and trouser cases, all solvers reached the same opti-
mal solution, but SCIP achieved it in a fraction of the time. Bonmin, while accurate
when it converges, suffered from excessive computation time, particularly for trousers
and sweatshirts. Notably, both Bonmin and Couenne failed to solve the coat instance
within a reasonable time frame (over 2 hours), whereas SCIP provided a feasible solu-
tion in just 3.24 seconds. This highlights SCIP’s superior scalability and efficiency for
complex mixed-integer nonlinear programming problems in the Cut Order Planning

context.

54

CHAPTER 4. CASE STUDY

Solver Runtime Comparisan (Leg Scale)

107 4 - 5CP
Bonmin
N Couenne
107 4
]
£ 107
o
o
k)
a©
E
':
ERRTLE
[=]
Wi
107
oy I [El
Shurt Coat Trouser Sweatshirt

Product

Figure 4.3: Comparison of solver runtime between SCIP, BONMIN and COUENNE.

Comparison of solver runtime between SCIP, BONMIN and COUENNE

Figure 4.3 illustrates the runtime performance of SCIP, Bonmin, and Couenne across
the four Cut Order Planning (COP) scenarios. As clearly shown, SCIP consistently
outperforms the other solvers in terms of computational speed. For all products, SCIP
achieved optimal solutions in less than 4 seconds, while Bonmin and Couenne re-
quired significantly more time—often by several orders of magnitude. In the trouser
and sweatshirt cases, for example, Bonmin needed over 2243 and 1375 seconds, re-
spectively, whereas SCIP solved both in under a second. Most notably, both Bonmin
and Couenne failed to return a result for the coat case even after two hours, highlight-
ing their scalability limitations. This remarkable performance of SCIP is attributed to
its efficient branch-and-bound framework, enhanced by aggressive presolving, sym-
metry detection, and dynamic cut generation. These features enable SCIP to handle
large-scale MINLPs effectively, making it the most practical and reliable solver for

real-world apparel production planning.

4.5 Conclusion

This chapter provided an in-depth evaluation of various optimization solvers applied
to the Cut Order Planning (COP) problem in the apparel industry. Through a series

of comparative experiments on four distinct product categories—shirt, coat, trouser,

55

CHAPTER 4. CASE STUDY

and sweatshirt—we demonstrated the strengths and limitations of three widely used
solvers: SCIP, Bonmin, and Couenne.

The results clearly show that SCIP outperforms both Bonmin and Couenne in terms
of runtime efficiency, robustness, and scalability. SCIP was able to deliver optimal so-
lutions with minimal computational effort, even for the most complex instance (coat),
where Bonmin and Couenne both failed to converge within acceptable time limits. In
contrast, Bonmin and Couenne struggled with larger problem sizes, requiring exces-
sive time and iterations, or failing to return a solution altogether.

This superior performance is largely due to SCIP’s hybrid solving approach, which
integrates constraint programming, branch-and-bound, presolving, and symmetry han-
dling. Its ability to exploit problem structure and apply dynamic cutting planes allows
it to solve MINLPs more effectively than general-purpose nonlinear solvers.

In summary, this chapter validates SCIP as a reliable and efficient solver for com-
plex COP problems. It offers an open-source, high-performance alternative to com-

mercial tools like LINGO, making it a practical choice.

56

GENERAL CONCLUSION

This thesis explored the application of advanced mathematical optimization techniques
to solve the Cut Order Planning (COP) problem in the apparel industry, a critical phase
in garment manufacturing that significantly impacts material utilization and produc-
tion costs. The work was grounded in the MINLP model proposed by Unal and Yiik-
sel [48], which was re-implemented in Python using the open-source solver SCIP. This
shift from proprietary software (LINGO) to a transparent and accessible environment
enhanced the model’s reproducibility, adaptability, and industrial applicability.

Through a comparative study involving real production scenarios—shirts, trousers,
coats, and sweatshirts—we evaluated the performance of three solvers: SCIP, Bonmin,
and Couenne. SCIP consistently outperformed the others in terms of runtime, scal-
ability, and solution quality. It successfully solved all instances, including the com-
putationally intensive coat scenario where Bonmin and Couenne failed to converge
within a reasonable timeframe. This demonstrated SCIP’s robustness and efficiency in
handling large-scale MINLP problems with both nonlinear and integer constraints.

The literature review highlighted critical research gaps, such as the limited use of
open-source solvers, underutilization of full MINLP formulations, and lack of repro-
ducibility in existing studies. This thesis contributes to addressing these gaps by pro-
viding a validated, accessible implementation that aligns closely with real industrial
data.

The evolution of optimization methods was also thoroughly reviewed, from clas-
sical LP and MILP models to nonlinear and mixed-integer nonlinear formulations.
Special emphasis was placed on solver strategies such as branch-and-bound, cutting
planes, and heuristics like local branching and Relaxation Induced Neighborhood Search
(RINS).

57

CHAPTER 4. CASE STUDY

The mathematical model was validated against both LINGO benchmarks and prac-
tical manufacturing data, confirming its feasibility, logic, and real-world relevance.
The shift to open-source tools not only improved computational performance but also
democratized access to advanced optimization techniques for small and medium-sized
enterprises.

Future work may explore hybrid methods that combine exact and heuristic tech-
niques—such as genetic algorithms, simulated annealing, or local branching—to im-
prove scalability on large datasets. Additionally, the integration of neural networks
and machine learning approaches holds significant potential. These techniques could
assist in learning cutting patterns, predicting near-optimal marker configurations, or
guiding solver heuristics based on prior problem structures. For instance, deep learn-
ing models or graph neural networks (GNNs) could be used to predict promising
branching variables or approximate relaxation bounds, helping reduce solver time in
complex MINLP scenarios. Incorporating uncertainty modeling through stochastic
programming, or developing adaptive systems that respond to real-time production
changes, could further enhance robustness and responsiveness in dynamic manufac-
turing environments.

Overall, this thesis demonstrates that a rigorous, open-source, and optimization-
based approach to Cut Order Planning can yield tangible benefits in both operational
efficiency and research transparency, setting a solid foundation for future exploration

in data-driven textile production.

58

APPENDIX A

OPTIMIZATION WORKFLOW EXAMPLE

A.1 Introduction

This appendix presents a complete example of how the optimization workflow was
implemented using Pyomo and SCIP to solve shirt (COP) model. Each step is explained

with accompanying Python code.

A.2 Problem Setup

The input data and problem structure in this example are based on the case study
presented by Unal and Yiiksel [48], which addresses the Cut Order Planning (COP)
problem in the apparel industry. Their model serves as a reference for the demand
distribution and average fabric requirements used here.

We consider an order for four shirt sizes:

Size | Demand
T39 69
T41 96
T43 90
T45 45

Additional Parameters:
* Average fabric per piece: 127.28 cm
* Max spreading length: 1600 cm

59

APPENDIX A. OPTIMIZATION WORKFLOW EXAMPLE

* Max plies per spreading: 200

* Number of spreadings: 2

A.3 Step-by-Step Workflow with Code

A.3.1 Step 1 - Model Initialization

model = ConcreteModel ()

model.I = RangeSet(0, num_spreads - 1) # spreadings

model.J = RangeSet (0, num_sizes - 1) # sizes

model .K = Var(model.I, domain=NonNegativelntegers, bounds=(0, K_max)) #
plies

model .A = Var(model.I, model.J, domain=NonNegativelntegers, bounds=(0,
max_pieces_per_spreading)) # pieces

model.T = Var(model.I, domain=NonNegativeReals) # marker length

Listing A.1: Defining sets and decision variables

A.3.2 Step 2 - Objective Function

def objective_rule(model):
return sum(model .K[i] * model.T[i] for i in model.I)

model .obj = Objective(rule=objective_rule, sense=minimize)

Listing A.2: Minimize total fabric used

A.3.3 Step 3 — Constraints

(a) Demand Satisfaction

model .demand = ConstraintlList()
for j in model.J:
model .demand.add(sum(model .K[i] * model.A[i, j] for i in model.I) ==
order|[j])

(b) Spreading Length Limit

model .spread_length = ConstraintList()

for i in model.I:

60

APPENDIX A. OPTIMIZATION WORKFLOW EXAMPLE

model .spread_length.add(sum(model .A[i, j] * B[j] for j in model.J) <= M
)

(c) Marker Length Definition

model .marker_link = ConstraintlList()
for i in model.I:
model .marker_link.add(model.T[i] == sum(model.A[i, j] * B[j] for j in
model . J))

(d) Symmetry Breaking

model .symmetry_breaking = ConstraintList ()
for i in range(num_spreads - 1):

model .symmetry breaking.add(model.K[i] >= model.K[i + 1])

A.3.4 Step 4 - Solver Execution

solver = SolverFactory(’'scip’, executable='/home/lenovo/scipoptsuite-9.2.2/
build/bin/scip’)

result = solver.solve(model, tee=True)

Listing A.3: Solving with SCIP

A.3.5 Step 5 - Output Interpretation

if result.solver.status == ‘ok’ and result.solver.termination_condition ==
"optimal ’:
print(f"Total fabric used: {model.obj():.2f} cm")
for i in model.I:
k_val = model.K[i].value
t_val = model.T[i].value
if k_val > 0:
print(£"\nSpreading {i + 1}: {k_val} plies, Length = {t_val:.2f
} oem”)
for j in model.J:
a_val = model.A[i, j].value
if a_val > O:
print(£f" Size {j + 1}: {int(a_val)} pieces per ply
Total: {int(k_val = a_val)}")

Listing A.4: Displaying the optimal result

61

APPENDIX A. OPTIMIZATION WORKFLOW EXAMPLE

A.4 Conclusion

This example demonstrates how the optimization workflow was implemented and

solved. The results confirm that:
* All size demands are exactly fulfilled.
* Total fabric usage is minimized.
* The solution uses only two spreadings with smart piece allocation.

A screenshot of the console output can be found in the following figure:

=== Shirt COP Selutiom ===
Total fabric used: 38184.60 cm

Spreading 1: 15.0 plies, Length = 1527.36 cm
size 1: 3 pleces per ply > Tetal: 48
5i7e 3: 6 pleces per ply > lTetal: 99
Size 4: 3 pieces per ply -2 Total: 45

Spreading 2: 12.0 plies, Length = 1272
Size 1: 2 pleces per ply > Total: 24

Size 2: 8 pieces per ply » Total: 96

Figure A.1: Console output from the COP model solved with SCIP

62

BIBLIOGRAPHY

[1]

[6]

Achterberg, T. (2009). SCIP: Solving Constraint Integer Programs. Math-
ematical Programming Computation, 1(1), 1-41. https://scholar.
google.com/scholar?q=Achterberg,+T.+(2009) .++SCIP:+Solving+
Constraint+Integer+Programs.++\protect\unhbox\voidb@x\bgroup\edef.
{Mathematical+Programming+Computation}\let\futurelet\@let@token)\
let\itshapeMathematical+Programming+Computation\egroup,+1(1),+pp.1%

E£2%80%9341.&h1=en&as_sdt=0&as_vis=1&oi=scholart

Adarshi, G. (2023). Nonlinear Programming Optimiza-
tion. Medium. https://gaurav-adarshi.medium.com/

nonlinear-programming-optimization-df65f0576998

Ali, S. (2017). Integer Linear Programming. ResearchGate. Retrieved from
https://www.researchgate.net/publication/319449795 Integer_Linear_

Programming

Al-Masri, E. (2020). Complexity Theory 101: Problems Classification.
Towards Data Science, Medium. https://towardsdatascience.com/

complexity-theory-101-problems-classification-9793f05e42e1

Avci, S., & Topaloglu, S. (2020). MINLP models for the trim-loss problem with
nonlinear cost structures. Optimization Online. https://optimization-online.

org/wp-content/uploads/2020/10/8078.pdf

Backs, S., Jahnke, H., Liipke, L., Stiicken, M., & Stummer, C. (2020). Supply Chain
Strategies of the Apparel Industry in Research: A Literature Review. SSRN Electronic
Journal. https://doi.org/10.2139/ssrn.3558419

63

https://scholar.google.com/scholar?q=Achterberg,+T.+(2009).++SCIP:+Solving+Constraint+Integer+Programs.++\protect \unhbox \voidb@x \bgroup \edef .{Mathematical+Programming+Computation}\let \futurelet \@let@token \let \itshape Mathematical+Programming+Computation\egroup ,+1(1),+pp.1%E2%80%9341.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=Achterberg,+T.+(2009).++SCIP:+Solving+Constraint+Integer+Programs.++\protect \unhbox \voidb@x \bgroup \edef .{Mathematical+Programming+Computation}\let \futurelet \@let@token \let \itshape Mathematical+Programming+Computation\egroup ,+1(1),+pp.1%E2%80%9341.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=Achterberg,+T.+(2009).++SCIP:+Solving+Constraint+Integer+Programs.++\protect \unhbox \voidb@x \bgroup \edef .{Mathematical+Programming+Computation}\let \futurelet \@let@token \let \itshape Mathematical+Programming+Computation\egroup ,+1(1),+pp.1%E2%80%9341.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=Achterberg,+T.+(2009).++SCIP:+Solving+Constraint+Integer+Programs.++\protect \unhbox \voidb@x \bgroup \edef .{Mathematical+Programming+Computation}\let \futurelet \@let@token \let \itshape Mathematical+Programming+Computation\egroup ,+1(1),+pp.1%E2%80%9341.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=Achterberg,+T.+(2009).++SCIP:+Solving+Constraint+Integer+Programs.++\protect \unhbox \voidb@x \bgroup \edef .{Mathematical+Programming+Computation}\let \futurelet \@let@token \let \itshape Mathematical+Programming+Computation\egroup ,+1(1),+pp.1%E2%80%9341.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=Achterberg,+T.+(2009).++SCIP:+Solving+Constraint+Integer+Programs.++\protect \unhbox \voidb@x \bgroup \edef .{Mathematical+Programming+Computation}\let \futurelet \@let@token \let \itshape Mathematical+Programming+Computation\egroup ,+1(1),+pp.1%E2%80%9341.&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://gaurav-adarshi.medium.com/nonlinear-programming-optimization-df65f0576998
https://gaurav-adarshi.medium.com/nonlinear-programming-optimization-df65f0576998
https://www.researchgate.net/publication/319449795_Integer_Linear_Programming
https://www.researchgate.net/publication/319449795_Integer_Linear_Programming
https://towardsdatascience.com/complexity-theory-101-problems-classification-9793f05e42e1
https://towardsdatascience.com/complexity-theory-101-problems-classification-9793f05e42e1
https://optimization-online.org/wp-content/uploads/2020/10/8078.pdf
https://optimization-online.org/wp-content/uploads/2020/10/8078.pdf
https://doi.org/10.2139/ssrn.3558419

BIBLIOGRAPHY

[7]

[10]

[11]

[12]

[13]

[14]

[15]

Balaji, R. (2006). Gradient-Based Nonlinear Optimization Methods. University
of Colorado. https://civil.colorado.edu/~balajir/CVEN5393/1lectures/

chapter-11.pdf

Behera, B. K., & Chakraborty, S. (2016). The marker planning problem in apparel
cutting: A literature review. Journal of Fashion Technology Textile Engineering, 4(3),

1-6.

Belotti, P, Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A. (2013).
Mixed-integer nonlinear optimization. Acta Numerica, 22, 1-131. Available at:
https://www.researchgate.net/publication/259432162_Mixed-integer_

nonlinear_optimization

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine Learning for Combinatorial
Optimization: A Methodological Tour. European Journal of Operational Research,
290(2), 405-421. https://www.researchgate.net/publication/328997287_
Machine_Learning_for_ Combinatorial Optimization_a_Methodological_

Tour_d%27Horizon

Berkey,]J. O., & Wang, C. (2022). MILP-based approaches for a bin-packing
problem with a fixed-plus-linear charge scheme. ResearchGate. https:
/ /www.researchgate.net/publication/366266574_MILP-based_approaches_

for_a_bin-packing_problem _with_a_fixed-plus-linear_charge_scheme

Bertacco, L., Fischetti, M., & Lodi, A. (2007). A feasibility pump heuris-
tic for general mixed-integer problems. Discrete Optimization, 4(1), 63-76.
https://www.researchgate.net/publication/222662965_A feasibility_

pump_Heuristic_for_general_mixed-integer_problems

Biegler, L. T., Grossmann, I. E., & Westerlund, T. (2012). A compact MINLP tu-
torial. Université Paris-Dauphine MINLP Compact Course. https://jlinderoth.
github.io/papers/Bonami-Kilinc-Linderoth-10.pdf

Bonami, P, Kilinc, M., & Linderoth, J. (2012). Solving Mixed-Integer Nonlinear Pro-
grams by QP-Diving. Technical Report ANL/MCS-P2071-0312, Argonne National
Laboratory. Available at: https://optimization-online.org/2012/03/3409/

Burke, E. K., Kendall, G., & Soubeiga, E. (2004). A hybrid approach for flexible
employee scheduling. Computational Optimization and Applications, 28(1), 31-50.

64

https://civil.colorado.edu/~balajir/CVEN5393/lectures/chapter-11.pdf
https://civil.colorado.edu/~balajir/CVEN5393/lectures/chapter-11.pdf
https://www.researchgate.net/publication/259432162_Mixed-integer_nonlinear_optimization
https://www.researchgate.net/publication/259432162_Mixed-integer_nonlinear_optimization
https://www.researchgate.net/publication/328997287_Machine_Learning_for_Combinatorial_Optimization_a_Methodological_Tour_d%27Horizon
https://www.researchgate.net/publication/328997287_Machine_Learning_for_Combinatorial_Optimization_a_Methodological_Tour_d%27Horizon
https://www.researchgate.net/publication/328997287_Machine_Learning_for_Combinatorial_Optimization_a_Methodological_Tour_d%27Horizon
https://www.researchgate.net/publication/366266574_MILP-based_approaches_for_a_bin-packing_problem_with_a_fixed-plus-linear_charge_scheme
https://www.researchgate.net/publication/366266574_MILP-based_approaches_for_a_bin-packing_problem_with_a_fixed-plus-linear_charge_scheme
https://www.researchgate.net/publication/366266574_MILP-based_approaches_for_a_bin-packing_problem_with_a_fixed-plus-linear_charge_scheme
https://www.researchgate.net/publication/222662965_A_feasibility_pump_Heuristic_for_general_mixed-integer_problems
https://www.researchgate.net/publication/222662965_A_feasibility_pump_Heuristic_for_general_mixed-integer_problems
https://jlinderoth.github.io/papers/Bonami-Kilinc-Linderoth-10.pdf
https://jlinderoth.github.io/papers/Bonami-Kilinc-Linderoth-10.pdf
https://optimization-online.org/2012/03/3409/

BIBLIOGRAPHY

[16] BYJU’S. (n.d.). Linear Programming. https://byjus.com/maths/

linear-programming/

[17] Chang, H., Sahinidis, N. V. (2012). Optimization Formulations and Computational
Studies for Cut Order Planning in Apparel Manufacturing. Argonne National Lab-
oratory Technical Report ANL/MCS-P3060-1112. https://www.mcs.anl.gov/
papers/P3060-1112.pdf

(18] Dantzig, G. B. (1987). Origins of the Simplex Method. Technical Re-
port SOL 87-5. Systems Optimization Laboratory, Department of Op-
erations Research, Stanford University. https://scispace.com/pdf/

origins-of-the-simplex-method-1tuurpfdul.pdf

[19] FICO. (n.d.). FICO Xpress Optimization. Retrieved from https://www.fico.com/

en/products/fico-xpress-optimization

[20] Fischetti, M., & Lodi, A. (2011). Heuristics in Mixed Integer Program-
ming. Wiley Encyclopedia of Operations Research and Management Science.
https://homepages.cwi.nl/~dadush/workshop/discrepancy-ip/papers/

heuristics-survey-fischetti-lodi-11.pdf

[21] Ghasemiran Foundation. (2023). Optimizing decision-making in the ap-
parel supply chain wusing artificial intelligence (Al): From production to
retail. Retrieved from https://www.ghasemiran.org/upload/upload/
1690877639-0ptimizing-decision-making-in-the-apparel-supply-chain-using-artifi
-From-production-to-retail- (W.pdf)

[22] Gomes, T. M., Santos, H. G., & Souza, M. J. E. (2013). A Pre-Processing Aware
RINS Based MIP Heuristic. Technical Report, Universidade Federal de Ouro Preto,
Brazil. Available at: http://www.decom.ufop.br/haroldo/papers/Gomes2013.
pdf

[23] Grossmann, I. E. (2002). Review of Nonlinear Mixed-Integer and Disjunctive Pro-
gramming Techniques. Carnegie Mellon University. https://egon.cheme.cmu.

edu/Papers/GrossmannOptII.pdf

[24] Grossmann, I. E. (2012). Review of nonlinear mixed-integer and disjunctive
programming techniques. Optimization and Engineering, 3(3), 227-252. https:

/ legon.cheme.cmu.edu/Papers/GrossmannReviewNon.pdf

65

https://byjus.com/maths/linear-programming/
https://byjus.com/maths/linear-programming/
https://www.mcs.anl.gov/papers/P3060-1112.pdf
https://www.mcs.anl.gov/papers/P3060-1112.pdf
https://scispace.com/pdf/origins-of-the-simplex-method-1tuurpfdul.pdf
https://scispace.com/pdf/origins-of-the-simplex-method-1tuurpfdul.pdf
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://homepages.cwi.nl/~dadush/workshop/discrepancy-ip/papers/heuristics-survey-fischetti-lodi-11.pdf
https://homepages.cwi.nl/~dadush/workshop/discrepancy-ip/papers/heuristics-survey-fischetti-lodi-11.pdf
https://www.ghasemiran.org/upload/upload/1690877639-Optimizing-decision-making-in-the-apparel-supply-chain-using-artificial-intelligence-(AI)-From-production-to-retail-(W.pdf)
https://www.ghasemiran.org/upload/upload/1690877639-Optimizing-decision-making-in-the-apparel-supply-chain-using-artificial-intelligence-(AI)-From-production-to-retail-(W.pdf)
https://www.ghasemiran.org/upload/upload/1690877639-Optimizing-decision-making-in-the-apparel-supply-chain-using-artificial-intelligence-(AI)-From-production-to-retail-(W.pdf)
http://www.decom.ufop.br/haroldo/papers/Gomes2013.pdf
http://www.decom.ufop.br/haroldo/papers/Gomes2013.pdf
https://egon.cheme.cmu.edu/Papers/GrossmannOptII.pdf
https://egon.cheme.cmu.edu/Papers/GrossmannOptII.pdf
https://egon.cheme.cmu.edu/Papers/GrossmannReviewNon.pdf
https://egon.cheme.cmu.edu/Papers/GrossmannReviewNon.pdf

BIBLIOGRAPHY

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

Gurobi Optimization. (n.d.). Gurobi Optimizer. Retrieved from https://www.

gurobi.com/

Gurobi Optimization. (n.d.). Integer Linear Programming — Gurobi. https://www.

gurobi.com/faqs/integer-1linear-programming/

HiGHS. (n.d.). HiGHS - High-performance open-source optimization software. Re-
trieved from https://highs.dev/

Huang, L., Chen, X., Huo, W., Wang, J., Zhang, F, Bai, B., Shi, L. (2021).
Branch and Bound in Mixed Integer Linear Programming Problems: A Survey of Tech-

niques and Trends. arXiv preprint arXiv:2111.06257. https://arxiv.org/abs/
2111.06257

IBM. (n.d.). IBM ILOG CPLEX Optimization Studio. Retrieved from https://www.

ibm.com/products/ilog-cplex-optimization-studio

Jonsson, R. (2015). Introduction to Mixed Integer Programming. Department
of Engineering Cybernetics, Norwegian University of Science and Technology
(NTNU). Available at: https://www.itk.ntnu.no/_media/emner/fordypning/
ttk16/introductiontomip2015.pdf

Karamanov, @M. (2006). Branch and Cut: An Empirical Study.
PhD Dissertation, Carnegie Mellon University. https://www.
cmu.edu/tepper/programs/phd/program/assets/dissertations/

2006-operations-research-karamanov-dissertation.pdf

Khan, M. I, et al. (2022). Nonlinear Programming Solvers for Uncon-
strained and Constrained Optimization Problems: A Benchmark Analysis.
International Journal of Applied Science and Engineering, 19(1), 1-18.
https://www.researchgate.net/publication/359890460_Nonlinear_

Programming_Solvers_for_Unconstrained_and_Constrained_Optimization_

Problems_a_Benchmark_Analysis

Kong, S., Lee, Y., Park, J. (2025). MILP-based line balancing and schedul-
ing in garment production. Journal of Manufacturing Systems, In Press.
https://www.researchgate.net/publication/388657748_Line_Balancing_

in_the_Modern_Garment_Industry

66

https://www.gurobi.com/
https://www.gurobi.com/
https://www.gurobi.com/faqs/integer-linear-programming/
https://www.gurobi.com/faqs/integer-linear-programming/
https://highs.dev/
https://arxiv.org/abs/2111.06257
https://arxiv.org/abs/2111.06257
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.itk.ntnu.no/_media/emner/fordypning/ttk16/introductiontomip2015.pdf
https://www.itk.ntnu.no/_media/emner/fordypning/ttk16/introductiontomip2015.pdf
https://www.cmu.edu/tepper/programs/phd/program/assets/dissertations/2006-operations-research-karamanov-dissertation.pdf
https://www.cmu.edu/tepper/programs/phd/program/assets/dissertations/2006-operations-research-karamanov-dissertation.pdf
https://www.cmu.edu/tepper/programs/phd/program/assets/dissertations/2006-operations-research-karamanov-dissertation.pdf
https://www.researchgate.net/publication/359890460_Nonlinear_Programming_Solvers_for_Unconstrained_and_Constrained_Optimization_Problems_a_Benchmark_Analysis
https://www.researchgate.net/publication/359890460_Nonlinear_Programming_Solvers_for_Unconstrained_and_Constrained_Optimization_Problems_a_Benchmark_Analysis
https://www.researchgate.net/publication/359890460_Nonlinear_Programming_Solvers_for_Unconstrained_and_Constrained_Optimization_Problems_a_Benchmark_Analysis
https://www.researchgate.net/publication/388657748_Line_Balancing_in_the_Modern_Garment_Industry
https://www.researchgate.net/publication/388657748_Line_Balancing_in_the_Modern_Garment_Industry

BIBLIOGRAPHY

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Kunwar, R., & Sapkota, H. P. (2022). An Introduction to Linear Programming
Problems with Some Real-Life Applications. European Journal of Mathematics and

Statistics, 3(2). https://doi.org/10.24018/ejmath.2022.3.2.108

Lal, A. (2021). Interior-point method for NLP. Cornell University Opti-
mization Wiki. https://optimization.cbe.cornell.edu/index.php?title=

Interior-point_method_for_NLP

Lancia, G., Serafini, P. (2018). Integer Linear Programming. In Compact Ex-
tended Linear Programming Models. Springer. https://www.researchgate.net/

publication/319449795 Integer_Linear_Programming

LeanStitch. (2024). What is a Cut Order Plan?. Retrieved from https://

leanstitch.com/what-is-a-cut-order-plan/

Liyanage, R., Perera, H., & Karunananda, A. (2020). A genetic programming ap-
proach to optimize workflows in textile industry. International Journal of Advanced

Manufacturing Technology, 108(1-2), 399-414.

Lundell, A., Kronqgvist, J., & Westerlund, T. (2023). The Supporting Hyperplane
Optimization Toolkit for Convex MINLP. Optimization and Engineering. Available
at: https://optimization-online.org/wp-content/uploads/2018/06/6680.
pdf

Orosz, R. P, & Koch, T. (2020). A Survey on Mixed-Integer Nonlinear Program-
ming Techniques. arXiv preprint arXiv:2003.09437. https://arxiv.org/pdf/
2003.09437

Padamwar, B. V., & Pandey, H. (2019). Optimization Techniques in Op-
erations Research: A Review. Turkish Journal of Computer and Mathematics
Education (TURCOMAT), 10(1), 746-752. https://turcomat.org/index.php/
turkbilmat/article/view/ 14604

Pasayev, N. (2010). Investigating the effects of production planning on fabric costs
in confection production. Tekstil ve Konfeksiyon, 20(3), 262-270. https://www.
researchgate.net/publication/289660196_ Investigating_the_effects_

of_production_planning_on_fabric_costs_in_confection_production

Python Software Foundation. (n.d.). The Python Programming Language. Available
at: https://www.python.org/ [Accessed June 2025].

67

https://doi.org/10.24018/ejmath.2022.3.2.108
https://optimization.cbe.cornell.edu/index.php?title=Interior-point_method_for_NLP
https://optimization.cbe.cornell.edu/index.php?title=Interior-point_method_for_NLP
https://www.researchgate.net/publication/319449795_Integer_Linear_Programming
https://www.researchgate.net/publication/319449795_Integer_Linear_Programming
https://leanstitch.com/what-is-a-cut-order-plan/
https://leanstitch.com/what-is-a-cut-order-plan/
https://optimization-online.org/wp-content/uploads/2018/06/6680.pdf
https://optimization-online.org/wp-content/uploads/2018/06/6680.pdf
https://arxiv.org/pdf/2003.09437
https://arxiv.org/pdf/2003.09437
https://turcomat.org/index.php/turkbilmat/article/view/14604
https://turcomat.org/index.php/turkbilmat/article/view/14604
https://www.researchgate.net/publication/289660196_Investigating_the_effects_of_production_planning_on_fabric_costs_in_confection_production
https://www.researchgate.net/publication/289660196_Investigating_the_effects_of_production_planning_on_fabric_costs_in_confection_production
https://www.researchgate.net/publication/289660196_Investigating_the_effects_of_production_planning_on_fabric_costs_in_confection_production
https://www.python.org/

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

Pyomo Documentation. (n.d.). Pyomo: Python Optimization Modeling Ob-
jects. Available at: https://pyomo.readthedocs.io/en/stable/ [Accessed June
2025].

Rose, D., & Shier, D. R. (2007). Cut scheduling in the apparel industry. Com-
puters Operations Research, 34(3), 623-637. https://www.researchgate.net/
publication/223628115 Cut_scheduling_in_the_apparel_industry

Singh, M. K. (2020, April 17). Advantages and Drawbacks of Linear Programming.
Faculty BBA.

Textile Engineering. (n.d.). Cut Order Planning in Garment Man-
ufacturing. Retrieved from https://textileengineering.net/

cut-order-planning-in-garment-manufacturing/

Unal, C., & Yiiksel, A. D. (2020). Cut Order Planning Optimisation in the Apparel
Industry. Fibres Textiles in Eastern Europe, 28(1), 8-13. https://doi.org/10.
5604/01.3001.0013.5851

Utktun, E. (2016). Model and marker plan effect on productivity in ap-
parel production: A case from bathrobe manufacturing. Tekstil ve Kon-
feksiyon, 26(2), 123-130. https://www.tekstilvemuhendis.org.tr/en/
2016_-volume-23-/104/a_study_on_effects_of model_and_marker_
plan_differences_on_fabric_productivity-_case_of_bathrobe---doi-_

10-7216-1300759920162310404

Vashishtha, T. (2021). Complexity Theory 101: Problem Classifica-
tion. Towards Data Science. https://towardsdatascience.com/

complexity-theory-101-problems-classification-9793f05e42e1

Wascher, G., Haufiner, H., & Schumann, H. (2007). An improved ty-
pology of cutting and packing problems. European Journal of Operational
Research, 183(3), 1109-1130. https://www.mansci.ovgu.de/mansci_media/
publikationen/2007/typology-EGOTEC-5t0pvr6fjiflndrdoav60tt612.pdf

68

https://pyomo.readthedocs.io/en/stable/
https://www.researchgate.net/publication/223628115_Cut_scheduling_in_the_apparel_industry
https://www.researchgate.net/publication/223628115_Cut_scheduling_in_the_apparel_industry
https://textileengineering.net/cut-order-planning-in-garment-manufacturing/
https://textileengineering.net/cut-order-planning-in-garment-manufacturing/
https://doi.org/10.5604/01.3001.0013.5851
https://doi.org/10.5604/01.3001.0013.5851
https://www.tekstilvemuhendis.org.tr/en/2016_-volume-23-/104/a_study_on_effects_of_model_and_marker_plan_differences_on_fabric_productivity-_case_of_bathrobe---doi-_10-7216-1300759920162310404
https://www.tekstilvemuhendis.org.tr/en/2016_-volume-23-/104/a_study_on_effects_of_model_and_marker_plan_differences_on_fabric_productivity-_case_of_bathrobe---doi-_10-7216-1300759920162310404
https://www.tekstilvemuhendis.org.tr/en/2016_-volume-23-/104/a_study_on_effects_of_model_and_marker_plan_differences_on_fabric_productivity-_case_of_bathrobe---doi-_10-7216-1300759920162310404
https://www.tekstilvemuhendis.org.tr/en/2016_-volume-23-/104/a_study_on_effects_of_model_and_marker_plan_differences_on_fabric_productivity-_case_of_bathrobe---doi-_10-7216-1300759920162310404
https://towardsdatascience.com/complexity-theory-101-problems-classification-9793f05e42e1
https://towardsdatascience.com/complexity-theory-101-problems-classification-9793f05e42e1
https://www.mansci.ovgu.de/mansci_media/publikationen/2007/typology-EGOTEC-5t0pvr6fjifln4r4oav60tt612.pdf
https://www.mansci.ovgu.de/mansci_media/publikationen/2007/typology-EGOTEC-5t0pvr6fjifln4r4oav60tt612.pdf

	General Introduction
	Literature Review on Cut Order Planning
	Introduction
	Overview of the Apparel Industry Supply Chain
	Literature Review on Cut Order Planning (COP) in the Garment Industry
	Cut Order Planning: Concepts and Challenges
	Applications of MILP and MINLP in Non-Garment Cutting Problems
	Summary of Gaps in Existing Research
	Conclusion
	Evolution of Optimization Techniques
	Introduction
	 Optimization
	Linear Programming
	Characteristics of Linear Programming
	General Form of LP
	Limitations of LP in Real-World Problems
	Linear Programming Method

	Non-Linear Programming
	General Form of NLP
	Nonlinear Programming Methods

	Integer Linear Programming
	General Form of ILP
	ILP Solution Algorithms

	Mixed Integer Linear Programming
	General Form of MILP
	MILP Solution Techniques

	Mixed Integer Non-Linear Programming
	General form of MINLP
	Solving MINLP

	Problem Complexity and Classification
	Comparison between Optimization models
	Conclusion

	 Mathematical Modeling Of The Problem
	Introduction
	Problem Context
	Mathematical Model Formulation
	Model Type and Complexity
	Feasibility and Justification
	Implementation Framework and Solver Environment
	Optimization Workflow Overview
	Model Execution Environment

	Conclusion

	Case Study
	Introduction
	Description Of The Case Study:
	Input Data Used:
	Results and Discussion
	SCIP vs. LINGO: Comparative Analysis Across Products
	Shirt Production: SCIP vs. LINGO
	Coat Production: SCIP vs. LINGO
	Trouser Production: SCIP vs. LINGO
	Sweatshirt Production: SCIP vs. LINGO
	Fabric and solver iterations Comparison: SCIP vs. LINGO

	Solvers Comparison Summary – All Products

	Conclusion

	General Conclusion
	Optimization Workflow Example
	Introduction
	Problem Setup
	Step-by-Step Workflow with Code
	Step 1 – Model Initialization
	Step 2 – Objective Function
	Step 3 – Constraints
	Step 4 – Solver Execution
	Step 5 – Output Interpretation

	Conclusion
	Bibliography

