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 ملخص

يعدّ التنبؤ بالطاقة في البنيات البلورية باستخدام الذكاء الاصطناعي من مجالات البحث المهمة لميداني 

علوم المواد والصناعة. تقدّم هذه الأطروحة دراسة متعددة التخصصات من أجل تعزيز المفاهيم العلمية 

لمصنعين على السعي لتطوير تقنيات وتطبيقاتها في الحياة اليومية، مما يعزز الابتكار ويمكّن الباحثين وا

أكثر تقدماً واستدامة. توفر هذه الدراسة أدوات دقيقة لتصميم المواد بخصائص محددة، مما يقلل إلى حد 

كبير من مدة الإنجاز مقارنةً بالأساليب التقليدية. تهدف هذه الدراسة إلى استخدام نماذج الذكاء الاصطناعي 

كبديل فعاّل للطريقة المختبرية. لتحقيق هذه الغاية، تمّ تحويل البيانات الأولية )تعلم الآلة والتعلم العميق( 

المعقدة والخام للمواد المجمعة إلى مدخلات قابلة للقراءة من قبل الآلة، من خلال استخدام دوال التوزيع 

ية المجمعة من أجل الثنائية والثلاثية للجسم الذري، لاستخراج الخصائص البنيوية والذرية للبيانات البلور

تحويلها إلى مدخلات يمكن قراءتها آلياً. بعد ذلك، تمّ استخدام خوارزميات الذكاء الاصطناعي، التي تشمل 

الشبكة العصبية العميقة، آلة الدعم الناقل، الغابة العشوائية، والانحدار البايزي والمرن، لتمثيل العلاقة بين 

وة على ذلك، تمّ اقترا  وتنفيذ بنية يير تقليدية للشبكة العصبية خاصية الطاقة والمدخلات البنيوية. علا

العميقة لدعم المميزات الذرية. في مرحلة لاحقة، تمّ ضبط المعاملات الأساسية للنماذج المقترحة من أجل 

الحصول على أحسن أداء ممكن. بالإضافة إلى ذلك، تمّ تطبيق مقاييس التقييم من أجل اختبار النماذج 

يار المميز الأقوى للنموذج المتحصل عليه في التنبؤ بالطاقة. أظهرت النتائج المتحصلة علمياً من هذه واخت

الأطروحة أن الجمع بين دوال التوزيع الذرية الثنائية والثلاثية للجسم، ونموذج الشبكة العصبية المقتر ، 

                                                                                                                 .أعطى أدق وأفضل النتائج

 

.بالطاقةالذكاء الاصطناعي، تعلم الآلة، التعلم العميق، مزايا البنيات البلورية، التنبؤ   :   كلمات مفتاحية
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Abstract 

Crystal structure energy prediction with Artificial Intelligence (AI) 

algorithms is a significant research for both materials science and 

industry. This thesis reports a multidisciplinary study to enhance 

scientific understanding and real-world applications, making it important 

for researchers and industries seeking more effective technologies. It 

provides accurate tools for designing materials with tailored properties, 

considerably reducing the time consuming and resource-intensive testing 

of conventional approaches. This work investigates artificial intelligence 

models (machine learning-ML and deep learning-DL) to substitute the 

laboratory crystal structure energy prediction. To this end, two- and three-

body distribution functions were used to transform raw, complex material 

details of the collected data into machine-readable inputs, resulting in 

structural and atomic descriptors. Then, ML/DL algorithms, namely: 

ElasticNet, Bayesian ridge, random forest, support vector machine, and 

deep neural networks were used to model the relationship between the 

energy property and the structural descriptors. Moreover, a non-

conventional deep neural networks topology was proposed and 

implemented to support atomic descriptors. Hyper-parameter tuning was 

performed on each model for optimization purpose. Additionally, quality 

assessment metrics were used to test and evaluate the energy prediction 

yielded by the investigated models in order to select the most robust 

descriptors and the best performing model. The obtained results revealed 

that the most accurate energy prediction was achieved by combining two- 

and three body atomic distribution functions as a descriptor, and the 

proposed deep neural networks model. 

 

Key words: Artificial Intelligence, Machine Learning, Deep Learning, Crystal 

Structure Features Descriptors, Energy Prediction. 
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Résumé 

La prédiction de la propriété d’énergie des structures cristallines en utilisant 

l’intelligence artificielle est un domaine de recherche significatif, à la fois pour la 

science des matériaux et l’industrie. Cette étude multidisciplinaire améliore la 

compréhension scientifique et présente des applications réelles, ce qui la rend 

importante pour les chercheurs et les industries à la recherche de technologies plus 

efficaces. Elle fournit des outils précis pour concevoir des matériaux aux propriétés sur 

mesure, réduisant considérablement le temps d’exécution et les ressources coûteuses 

nécessaires aux tests traditionnels. Ce travail explore des modèles d’intelligence 

artificielle (apprentissage automatique et apprentissage profond) pour remplacer la 

prédiction de l’énergie des structures cristallines en laboratoire. A cette fin, des 

fonctions de distribution à deux et trois corps ont été utilisées pour transformer les 

détails complexes et bruts des matériaux collectés en entrées lisibles par machine, 

résultant en des descripteurs structurels et atomiques. Ensuite, des algorithmes 

d’apprentis sage automatique/profond, à savoir ElasticNet, Bayesian ridge, forêt 

d’arbre de décision, machine à vecteurs de support et réseaux de neurones profonds, 

ont été utilisés pour modéliser la relation entre la propriété de l’énergie et les 

descripteurs structurels. De plus, une topologie non conventionnelle de réseaux de 

neurones profonds a été proposée et implémentée pour prendre en charge les 

descripteurs atomiques. Un ajustement des hyperparamètres a été réalisé sur chaque 

modèle à des fins d’optimisation. De plus, des métriques d’évaluation ont été utilisées 

pour tester et évaluer la prédiction d’énergie obtenue par les modèles étudiés afin 

d’identifier les descripteurs les plus robustes et le modèle le plus performant. Les 

résultats de cette étude ont révélé que la prédiction d’énergie la plus précise a été 

obtenue en utilisant la combinaison des fonctions de distribution atomique à deux et 

trois corps en tant que descripteur, ainsi que le modèle de réseaux de neurones 

profonds proposé.  

 

Mots clés : Intelligence Artificielle, Apprentissage Automatique, Apprentissage Profond, 

Descripteurs de Caractéristiques des Structures Cristallines, Prédiction d’énergie. 
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General Introduction

Context and motivation

In the realm of materials science, an intricate landscape made up of threads of atoms and
molecules, crystal structures are the masterpieces unlocking remarkable properties and appli-
cations. One of the biggest ambitions of materials scientists and researchers has long been the
understanding of these structures and their behaviors that are closely linked to their prop-
erties. One of the paramount properties of a crystal structure is its energy, as it is directly
related to its stability and from which various other properties can be derived [1, 2, 3].

What defines the behavior of materials is indeed their crystal structures and the resulting
properties. This behavior is defined in terms of responses to external influences. In real life
applications, materials are selected based on their properties therefore, how they respond to
the specific influences within the application [4]. Consequently, predicting crystal structure
properties is vital in many fields that we may encounter in our daily lives. To achieve the
best performance in a certain application, we must choose materials with characteristics that
are specifically tailored for the application at hand. This requires the discovery of materials
with the right properties, making property prediction an essential tool for innovation and
efficiency across a wide range of sectors and applications.

In this thesis, we set out on a journey to the core of crystal structure energy prediction
where the grace of crystallography meets cutting-edge machine learning techniques. In this
context, data, algorithms, and this field’s knowledge come together to unveil the profound
mysteries held inside crystal structures.

Problem statement

In materials science, the two widely adopted conventional methods are recognized to be ex-
perimental measurement and computational simulation. Experimental measures, in addition
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General introduction

to their lengthy execution time, impose significant demands on tools and equipments, proper
experimental environment, and the researcher’s expertise, rendering the method inefficient
[5]. Consequently, rather than undertaking laborious and costly experiments, materials sci-
entists use quantum mechanics methods, as an alternative, to investigate and preliminarily
assess novel materials. Ab-initio methods, such as Density Functional Theory in particular,
are adopted to thoroughly understand materials properties through computer analysis, before
engaging in physical synthesis and experimentation [6].

As opposed to experimental measures which take a period ranging from 10 to 20 years
for a materials discovery (from study to first usage), computational methods can reduce this
long, overwhelming time to 18 months [5]. Nevertheless, this reduced amount of time is still
considered lengthy and not optimal. Therefore, a direct and alternate approach of access-
ing the relevant physical properties of crystal structure, without resorting to experimental
measurements or computations, is unquestionably required.

In contrast with conventional methods, data-centered approaches use prior results to
comprehend new situations. These data-centered approaches call for the use of Artificial
Intelligence (AI) tools, more specifically, the machine learning (ML) process [6]. It typically
uses algorithms designed to recognize and understand patterns within data, then use that
learning to make predictions of new introduced data. The far-reaching applications of ma-
chine learning have been continuously evolving in different fields [7]. Indeed, the enormous
amount of data being available has made the application of this set of statistical tools in
many fields possible, or even essential [8], and the materials science field makes no exception
[9, 5]. The problem to be addressed in this thesis involves the automatic learning of corre-
lations existing between the collected data and the energy property, with the aim of making
use of the acquired knowledge for the prediction of this property in potential new crystal
structures.

Scope and limitations

In this study we focus on predicting the energy in crystal structures using machine learning-
based techniques. While we aim for broad applicability, our work is limited to specific crystal
systems and materials, facing the limitation and constraints of availability of crystallographic
data and computational resources.

Our research tackles several key questions, including: how can machine learning ap-
proaches be employed to predict the energy property in crystal structures? What correla-
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tions exist between the energy property and crystallographic features? Can we identify and
validate a machine learning model that accurately predicts the energy property of crystal
structures?

This thesis is expected to contribute to the field of crystal structure prediction by demon-
strating the efficiency of machine learning-based techniques in predicting the energy property
of crystalline materials. It will offer insights into the relationship and correlations between
crystallographic features and energy, guiding the way to potential advancements in materials
science and engineering.

Objectives and contributions

After a thorough analysis of the state of the art in crystal structure prediction, a clear idea
of the challenges that still arise has been formulated. First and foremost, a critical challenge
is to define the right crystal structure input for the learning process. This task is undeniably
crucial since it has a relevant impact on the prediction outcome. Crystal structure databases
(experimental or computational) present data under its raw form; in order to use this data
for ML purposes, one has to first, extract numerical relevant information through a features
engineering process. The result of such a process represents a suitable input for the modeling
step. To this end, we have adopted two approaches for the representation of crystal structures:
a structural approach and an atomic approach, both based on functions producing descriptors
that are invariant with respect to rotation, reflection, permutation, and translation.

The second identified crystal structure prediction challenge is the modeling of the desired
property. In this study, we investigate the modeling of the crystal structure energy property
using machine learning-based techniques. Following the features engineering process, we
propose two approaches to address this objective. The first one is a structural modeling
approach which takes the structural descriptors as inputs and predicts the energy property
by means of machine/deep learning algorithms. The second one is an atomic modeling of
the relationship between the energy property and the atom-wise representation. We propose
here a non-conventional deep neural network topology to support these descriptors.

In order to position this work within the context of the state of the art in crystal structure
prediction, we assess the various implemented models to select the best-performing one and
thereby validate it.
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Thesis organization

The remainder of this thesis is organized into five chapters. The description of each chapter
is presented hereafter.

The opening chapter of the present manuscript represents an intellectual pillar, offering
a strong foundation for our investigation on crystal structure prediction within the materials
science field. To ensure that readers from different backgrounds can seamlessly explore the
next chapters, we carefully clarify the key concepts and terminology that underlie the area
of research of this study. The main basic concepts carefully defined in this chapter are the
fundamentals of crystal structures and their properties, a brief history of crystallography and
quantum crystallography, as well as their role in crystal structure prediction.

The second chapter of this thesis provides a comprehensive overview of the ever evolv-
ing field of crystal structure prediction. It develops into two different yet linked sections,
each examining an important aspect of the area. First, an analysis of crystal structure
representation-related studies is conducted, revealing the distinct approaches adopted to
model and represent crystalline matter. Then, we continue our survey by exploring crystal
structure property prediction-related studies. This section covers recent cutting-edge ma-
chine learning-based approaches proposed to predict materials properties with impressive
accuracy. These two sections together highlight the current state of the art and lay the
ground for future innovative contributions.

The third chapter is where we initiate our own journey into the intricacies of crystal
structure prediction. As a response to the first objective of our work, we delve deeper into the
features engineering process of crystal structures in order to transform the raw collected data
into powerful descriptors to fuel predictive models. Moreover, in the purpose of unveiling the
nature of the relationship between dependent and independent data, the correlation between
inputs and outputs of the resulting descriptors was investigated; thus, revealing more insights
for the modeling step.

To address the previously mentioned second challenge, we present the fourth chapter
intended for the modeling stage of our study. To this end, we proposed two approaches
to model the relationship between the input data and the energy property. We investigated
different ML algorithms for the first approach according to the input type and the correlation
nature between the descriptors and the energy property to be predicted. In addition, we
proposed a novel deep neural network topology that aligns with the data type of the second
approach.

The last chapter is dedicated to the presentation of the results we obtained in crystal
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structure prediction using the proposed machine learning-based solutions. As we navigate
through a range of numerical data and graphical representations, the remarkable accuracy of
our models is revealed. The evaluation of the models was performed using adequate strategies
for proper analysis and rigorous assessment metrics. We further engage in deep discussions
about the achieved energy property prediction results and their implications as related to
the validation of the best performing model and the most robust descriptors.

We end this thesis with a general conclusion in which we provide a comprehensive overview
of our main contributions, addressing each objective. Additionally, we set the stage for future
advancements in crystal structure energy prediction as we present our perspectives.
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Chapter 1

Crystal Structure Prediction
Problematic Background

“Materials are probably more deep-seated in our culture than most of us realize.”
– William D. Callister, Jr.

1.1 Introduction

Crystal structure prediction (CSP) has become a key area of research in the field of materials
science. The quest for CSP was, and still is, mainly driven by the urgent need to create unique,
novel materials with functional properties for applications spanning medicines, renewable
energy technologies, and many other fields.

Our first chapter establishes the context before we get into the core of our research journey
by examining the problematic background that motivates our study. The main objective
of this chapter is to help the reader better grasp the contexts of the present study. For
this purpose, the key elements of the crystal structure prediction field of research will be
defined, starting from crystal structures and their fundamentals to their properties and a
brief introduction to the history of crystallography as a classic, conventional CSP approach.
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Figure 1.1: Representative depiction of the arrangement of atoms in a crystal structure. (a)
Pattern, (b) arrangement, (c) motif [4].

1.2 Fundamentals of crystal structures

1.2.1 Crystal structures

A crystal structure is a solid material distinguished by the repetitive arrangement of its
constituents. From a point of (Democritus’s – Greek philosopher) view, a matter is composed
of a unique combination of an infinite number of atoms. Long ago, a material was considered
to be crystalline or amorphous according to whether it has a long range periodicity or a
random arrangement of its atoms [10]. Later on, in the beginning of the nineteenth century,
the matter’s atomic nature and its details related to microscopic arrangements have become
well established. Then, in 1869, Dmitri Ivanovich Mendeleev (Russian chemist) proposed the
periodic table with all the elements arranged which is still acknowledged to be correct by
now [10].

The particular regular arrangement of the atoms in a material is what defines a crystal
structure. In order to understand this concept more intuitively, let’s consider the drawing
illustrated in Figure 1.1 (which itself does not represent a real crystal structure).

In Figure 1.1, we notice in (a) the repetitive appearance of the pattern (c) along the
arrangement (b). Similarly, a crystal structure is composed of a motif (illustrated by c) that
is translated from one point considered as the origin, to the other points (shown in b) to
form a 3D structure as represented in (a).
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1.2.2 Lattice and unit cell

If we project our previous example (described in Figure 1.1) on a material, a crystal structure
can be defined by two elements: the arrangement that is referred to as “lattice” and the motif.
Thus, in a crystal structure, the space lattice is a mathematical concept with a periodic
pattern of points where each lattice point (node) is decorated with a motif [10, 4]. It is worth
mentioning that the complexity of a material is not related to the lattice itself; a complex
protein crystal structure and a simple pure metal one may share the same description with
regards to lattice space, the motif however in each lattice point may range from 1 atom to
thousands [11].

When we characterize the motif with geometrical parameters, we refer to it as “unit cell”.
It is defined as the simplest, smallest portion which is repeated in space. Since it is a three-
dimensional space, we have three axes x, y, and z; the unit cell parameters are the length of
the unit cell edges from the origin in the three directions noted as a, b, and c, and the angles
between them labelled α, β, and γ such as [12]:

• a, b, and c are the lengths along x, y, and z axes, respectively

• α is the angle between b and c

• β is the angle between a and c

• γ is the angle between a and b

In order to visualize the above-mentioned parameters, we introduce Figure 1.2.
As we can observe, Figure 1.2 (a) represent a portion of a crystal lattice while Figure 1.2

(b) shows a body centered cubic (which will be discussed later in this chapter) unit cell with
its parameters and atoms coordinates according to the illustrated origin.

If we take any lattice point (illustrated by orange circles in Figure 1.1 (a)) as the origin,
we can jump to any other point in the crystal by translation. The translation vector (also
called lattice vector) is defined as follows [4]:

t = ax+ by + cz (1.1)

There are four types of unit cells divided into two categories: primitive and centered, as
explained in Figure 1.3.
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Figure 1.2: Schematic representation of a crystal lattice where (a) illustrates an example of
a portion of the crystal lattice and (b) a cubic unit cell.

Figure 1.3: Types of unit cells and their categories.
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1.2.3 Bravais lattices

Auguste Bravais has defined a number of lattice types to classify crystal structures. According
to him, there are seven crystal systems designated as: Cubic, Tetragonal, Orthorhombic,
Monoclinic, Triclinic, Trigonal, and Hexagonal. These seven crystal systems, along with
the four types of unit cells make up twenty eight (28) lattice combinations; however, only
fourteen (14) of those are possible called Bravais lattices from which we can build any crystal
structure. Table 1.1 presents the different possible Bravais lattices and their parameters
[10, 13].

All crystal systems share the feature of having a six-face shape except for the Hexagonal
system having eight faces where the end faces have a six-side shape (hexagon), in this case
the (x, y, z) axes are highlighted in red in Table 1.1.

The number of atoms (n) in a unit cell depends both on its type and its crystal system. In
six-face shape crystal systems, the atoms at the corners of a primitive (p) unit cell make up
one atom. Indeed, each corner atom is shared between eight adjacent unit cells (four on the
top and four on the bottom) as illustrated in Figure 1.2 (a) by the red circle in the middle,
thus:

np = 8 × 1
8 = 1 (1.2)

In an eight face shape crystal system (Hexagonal), the corner atoms make up two atoms
since each corner atom is shared between six unit cells (three on the top and three on the
bottom) in addition to the two atoms at the top and bottom center that are each shared
between two unit cells (one above and one below). The Hexagonal primitive unit cell is not
to be confused with an end centered one; even though it has two atoms each placed at the
center of the end faces, these are in fact corner atoms shared between the 3 adjacent six-face
shapes which constitute a single Hexagonal. Therefore:

np = 12 × 1
6 + 2 × 1

2 = 3 (1.3)

If the unit cell is not primitive, the number of atoms becomes:

• Body centered (bc): nbc = np + 1 (for the additional atom in the center)

• Face centered (fc): nfc = np + 6 × 1
2 = np + 3 (for the additional six atoms in the

center of the six faces, each shared between two unit cells - case that does not appear
in a hexagonal)
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System Primitive
Body
centered

Face
centered

End
centered

Parameters

Cubic
a = b = c

α = β = γ = 900

Tetragonal
a = b ̸= c

α = β = γ = 900

Orthorhombic
a ̸= b ̸= c

α = β = γ = 900

Monoclinic
a ̸= b ̸= c

α = β = 900 ̸= γ

Triclinic
a ̸= b ̸= c

α ̸= β ̸= γ

Trigonal
a = b = c

α = β = γ < 1200

̸= 900

Hexagonal
a = b ̸= c

α = β = 900,

γ = 1200

Table 1.1: The fourteen (14) Bravais lattices with their unit cell parameters [14].
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• End centered (ec): nec = np +2× 1
2 = np +1 (for the additional two atoms in the center

of the end faces, each shared between two unit cells)

1.3 Crystallography

1.3.1 Birth of crystallography

Crystallography as a science has a long history which dates back to the 17th century. The
crystals’ exquisite symmetry has always raised the possibility of some sort of underlying
order. Although only few humble experiments were conducted in this matter, it was obvious
for scientists to claim that crystals must be composed of organized arrangements of tiny
particles (known today as atoms and molecules) based on their symmetry and shape [15].

In 1895, the discovery of X-rays revolutionized the field of crystallography and was crit-
ically significant for its advancement. Two decades later, while scientists were debating
whether or not X-rays were electromagnetic waves, a group of German physicists including
Max von Laue, Paul Knipping, and Walter Friedrich were conducting experiments on X-rays
and crystals. In 1912, two stunning discoveries were made by these physicists by beaming
the X-rays through the crystals. Indeed, after the radiation scatter was captured on pho-
tographic plates, it was first confirmed that X-rays were in fact waves since they diffracted,
thus settling a 17 years-old controversy, and secondly, this provided concrete proof of the
atoms’ underlying order in the shape of a lattice. This experimentation awarded Max von
Laue a Nobel prize in 1914 [16].

In the summer of 1912, the physicist William Henry Bragg, after receiving an interesting
letter describing Max von Laue’s lecture, worked eagerly on X-ray diffraction in the University
of Leeds, where he was a physics professor, with his son William Lawrence Bragg, a 22 years-
old graduate student who happened to be on a holiday with his parents. Once returned
to the University of Cambridge, W. L. Bragg had a sensational idea. He realized that, in
addition to the existing component order of a crystal, its exact atoms arrangement could be
deduced from the X-ray experiment initiated by Laue [17].

The Braggs demonstrated that the positions of atoms could be accurately determined
by revealing the diamond’s 3D crystal structure [15]. Moreover, the younger Bragg soon
mathematically explained Laue’s diffracted images which became known as Bragg’s Law
[17].

nλ = 2dsinθ (1.4)
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The Equation 1.4 above illustrates how the X-rays wavelength λ, the interplanar separa-
tion d, and the angle of diffraction θ are related.

Not only their discovery has launched a brand-new scientific field named X-ray crystal-
lography, father and son Braggs have also been awarded a Nobel prize in 1915 for their work,
making William Lawrence Bragg, to this day, the youngest (scientific) Nobel prize recipient
at the age of 25 [17].

1.3.2 Symmetry in crystal structures

A crystal structure possesses a symmetry that allows one to interchange a part of it with
another while this material remains unmodified. A symmetry is defined by two items: the
symmetry operation and the symmetry element. The former is an action performed on
the body with respect to the latter such that the before and after positions of the body
are indistinguishable. The geometrical object representing the symmetry element may vary
between a point, a plane, or an axis [12].

If we omit the identity operator, there are four main symmetry operations defined as
follows:

Translation. It includes moving the crystal in a way that each atom is replaced by a
neighbor that is identical. As previously discussed in the definition of a crystal structure
and unit cells, a translation symmetry operation is characterized by a translation vector
considered as the symmetry element. It is noteworthy that only in an infinite solid can a
translation be considered a real symmetry operation [4].

Rotation. This symmetry operation causes the crystal to revolve around a symmetry
axis, representing the symmetry element, that runs through the crystal. It is characterized
by the angle and the direction of the rotation which is positive for counterclockwise. The
rotation angle is most commonly written as a fraction (2π

n
) with n representing the order

of the rotation. Theoretically, the value of n ranges between one (1) and infinity (∞) [4].
Figure 1.4 presents examples of rotation symmetry.

Figure 1.4 (a) and (b) illustrate two rotation symmetry operations of order three and six,
respectively; while Figure 1.5 (a) describes a realistic example of a material with a rotation
symmetry where we can clearly see how the rotation axis (element) passes through it.

Reflection. This operation is the most intuitive since we daily encounter a real example
of it while using a mirror. In a solid, a reflection symmetry operation swaps out the crystal’s
parts on each side of a symmetry plane element referred to as mirror plane [4]. Figure 1.5
(b) reproduces the same realistic rotation example but with a reflection operation.
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Figure 1.4: Examples of a rotation symmetry where (a) n = 3 and (b) n = 6 [4].

Inversion. Every atom is moved by inversion to a different location such as the before
and after positions of the atom are lined up. The center of the lines holding as ends the old
and new locations of atoms is the center of the inversion which is the element of the symmetry.
Figure 1.5 (c) is an example of an inversion operation with its element highlighted in red.

In addition to four above-mentioned symmetry operations, we identify two more known
as improper rotation: roto-reflection and roto-inversion. The former represents a rotation
operation followed by a reflection one, and the latter a rotation operation followed by an
inversion.

In addition to the fact that a crystal structure belongs to one of the fourteen Bravais
lattices, and therefore, one of the four unit cell types and one of the seven crystal systems, it
also can be categorized according to its symmetry. Bravais lattices can be classified into 32
different crystal classes referred to as point groups each corresponding to a certain possible
combination of inversions, reflections, and rotations (pure and improper). If we include the
translation symmetry, it is mathematically possible to produce 230 different arrangements of
atoms in a periodic pattern; these are called space groups [10].

1.3.3 Quantum crystallography

Following the success of X-ray crystallography, theorists began to activate in this field using
quantum mechanics. However, this task turned out to be far too complicated. Indeed, in
quantum mechanics, in order to compute the crystal structure or the properties of a given
system, we need to get all the information which is provided by the electron wavefunction. For
this matter, we need to solve the Schrodinger equation of that system. The main problem of
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Figure 1.5: Examples of three symmetry operations with their elements, including (a) a
rotation and its axis, (b) a reflection and its plane, and (c) an inversion and its center [4].

this equation is its complexity; it increases enormously with the system’s constituent particle
number. A crystal typically has 1025 valence electrons, which interact with each other; it
requires a simultaneous resolution of more than 1025 variables. Thus, an approximation of
the Schrodinger equation’s solution of a many-body system is strongly needed [18].

It all started with the Schrodinger equation below:

iℏ
∂

∂t
Ψ = ĤΨ (1.5)

With i, ℏ, ψ, and Ĥ representing the imaginary number, a constant, the wave function
and the Hamiltonian, respectively. Schrodinger states that the total energy is the sum of the
potential energy V and the kinetic energy K (Equation 1.6) [19].

E = V +K (1.6)

Where:

V (r⃗) = −e2

r⃗
, K =

∣∣∣P⃗ ∣∣∣2
2m , P⃗ = ℏ

i
∇,∇ = ( ∂

∂x
,
∂

∂y
,
∂

∂z
) (1.7)

With e, r, P , m, and ∇ being the charge, the distance, the momentum, the mass, and
the gradient, respectively.

In 1927, Thomas and Fermi described a model for calculating atomic properties which
was purely based on the electron density. Their model is an approximate method for finding
the electronic structure of atoms using just the one electron ground-state density; as for the
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kinetic energy, they adopted a local density (LD) approximation. However, this model had
some severe deficiencies because of its poor description of the outer regions of an atom and
was too crude to bind molecules [20].

In the same year (1927), Born-Oppenheimer approximation was introduced; it assumes
that the motion of atomic nuclei and electrons in a molecule can be separated since the nuclei
havs much slower motion than electrons due to their mass difference, meaning that it allows
the wavefunction of a molecule to be broken into its electronic and nuclear components [21].

Ĥψ = Eψ (1.8)

Ĥ = −
Ne∑
i=1

ℏ2

2m∇2
i −

Nn∑
i

Ne∑
j

e2Zi∣∣∣r⃗j − R⃗i

∣∣∣ +
Nn∑
i<j

e2ZiZj∣∣∣R⃗i − R⃗j

∣∣∣ +
Ne∑
i<j

e2

|r⃗i − r⃗j|
(1.9)

With Ne electrons at positions ri and Nn nuclei at positions Ri and charge Zi.
As we can see in the Born-Oppenheimer Hamiltonian (Equation 1.9), there are four

terms, the kinetic energy (nuclei considered as immobile), the electron-nuclei interaction, the
interaction between nuclei and the interaction between electrons [21].

A year later (1928), Dirac added an exchange energy functional term to the Thomas-
Fermi model. The model (TFD) is however inaccurate because the representation of the
kinetic energy functional term is just an approximation and the electron correlation effect is
completely neglected [22].

The same year in 1928, the Hartree-Fock (HF) method was introduced as an approximate
solution to the Schrodinger equation. The equations in this method are obtained by varying
one-electron wavefunctions [21]. The HF, despite being far more beneficial than TFD, is still
insufficiently precise for the prediction of energy in chemistry because of the underestimation
of bond energies [23].

In 1951, Slater proposed the so-called Hartree-Fock-Slater approximation as a simplifica-
tion of the Hartree-Fock method by combining it with Thomas and Fermi’s theory [20].

1964 is considered to be the birth year of density functional theory (DFT) where Ho-
henberg and Kohn proposed to substitute the complicated many-electron wavefunction con-
taining 3Ne variables, with the functional of electron density, which only contains 3 spacial
variables. Two theorems were introduced stating that 1) the ground state properties of
a many electron system depend only on the electronic density [21, 23] and 2) the correct
ground state (GS) density is the one that minimizes the total energy (E) (Equation 1.10)
[24, 22].
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EGS = minE[n, Vext] (1.10)

Where n is the electronic density, and Vext is the external potential.
Kohn and Sham introduced a year later the concept of a system of non-interacting par-

ticles moving in an external potential [25]. Ever since and until today, DFT has become an
inevitable tool in most branches of chemistry and solid state physics.

1.3.4 Density functional theory

Density functional theory is in principle an exact theory to describe the electronic structure
because it’s purely based on the electron density distribution, instead of the many-electron
wave function. Indeed, Density Functional formalism shows that ground state and other
properties of a system of electrons in an external field can be determined just by knowledge
of the electron density distribution [22].

In quantum mechanics, the electron density is defined by the probability measure that
an electron occupies a very small space surrounding a certain point. It is a scalar quantity
depending upon three spatial variables [26]. Whereas, a functional is simply a function that
depends on another function. Since the starting point of DFT, many researchers focused on
functionals. Today, a lot of different functionals exist; these functionals can all be grouped
into four main families, namely: LDA, GGA, meta-GGA, and hybrid functionals [27].

1.3.4.1 Local Density Approximation (LDA)

In physics, the most widely used approximation is the local-density approximation, where
the functional depends only on the local density at a given point, that is the coordinate
where the functional is evaluated. This means that the exchange-correlation energy density
at every position in space for the molecule is the same. In LDA, the exchange–correlation
energy is typically separated into the exchange part and the correlation part (Equation 1.11)
[28].

ELDA
XC [n] = ELDA

X [n] + ELDA
C [n] (1.11)

Since LDA assumes density is the same everywhere, it has a tendency to underestimate
the exchange energy and over-estimate the correlation energy [28]. The errors due to the
exchange and correlation parts tend to compensate each other to a certain degree. But in
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order to correct this tendency, it is more common to expand in terms of the gradient of the
density [29].

The performance of LDA on structural, elastic, and vibrational properties is considered to
be good enough. However, there’s an overbinding problem with binding energies. In addition,
the activation energies in chemical reactions are unreliable and the relative stability of crystal
bulk phases can be uncertain [29, 28].

1.3.4.2 Generalized Gradient Approximation (GGA)

The generalized Gradient Approximation’s functional is a way to improve the accuracy pro-
vided by the LDA one. It depends, not only on the local density, but also on its gradient.
In fact, Most of GGA functionals are constructed in the form of a correction term which is
added to the LDA functional (illustrated by the second term of Equation 1.12) [28].

EGGA
XC [n] = ELDA

XC [n] + ∆EEX

[
|∇n(r)|
n

4
3 (r)

]
(1.12)

GGA functionals successfully corrected the overbinding problem of the LDA ones and
improved both the activation energies in chemical reactions and relative stability of crystal
bulk phases’ description. However, GGA’s workfunctions for several metals turn out to
be somewhat smaller than in LDA, and more importantly, Van der Waals forces are not
included (which is a major limitation especially for applications in chemical field and it is
not universally acceptable) [30].

1.3.4.3 Meta-GGA

Potentially more accurate than the GGA functionals are the meta-GGA functionals. This
accuracy comes from the fact that they include the second derivative of the electron density
which is the Laplacian ∇2n(r) whereas GGA includes only the density and its first derivative
in the exchange–correlation potential [31].

In practice, instead of using the Laplacian in Meta-GGA, one usually includes the kinetic
energy density (Equation 1.13) since it is more stable numerically [32].

τ(r) = 1
2

∑
i

|∇ϕi(r)|2 (1.13)
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1.3.4.4 Hybrid functionals

Hybrid functionals Include fractions of exact Hartree-Fock exchange energy, calculated as a
functional of the Kohn-Sham molecular orbitals as illustrated in Equation (1.14) where the
first term represents an LDA or GGA exchange correlation, and the second is the Hartree-
Fock exchange [33].

EXC = (1 − a)EDF T
XC + aHF

X (1.14)

As a brief comparison between the different functionals, LDA functionals are the simplest
of the 4 families; however, they have the least accuracy. On the other hand, hybrid func-
tionals are the most accurate but the least simple. The GGA and meta-GGA functionals are
somehow in between having and average simplicity-accuracy ratio.

1.4 Formation of crystal structures

As previously explained, a crystal structure is defined by the arrangement of its atoms pe-
riodically in a crystal lattice. Atoms are stacked tightly together in result of their chemical
reactions due to the attractive force between atomic nuclei and electrons. This atomic bond-
ing constitutes the essence of the formation of crystal structures. The type of the atomic
bonding determines the sort of interaction an atom has with its neighbors according to which
an atom might exist in several energy states [11]. Moreover, we should emphasize that the
potential energy is a key element in crystals since their formation is directly related to the
utterly ordered state of minimal potential energy [34].

The atomic bonding responsible for the formation of crystal structures can be categorized
into two main classes. The first one (and most commonly encountered) comprises ionic,
covalent, and metallic bonding where ionic and covalent bonding are the strongest. The
second less common class which has a weak force of attraction includes hydrogen and van
der Waals type of bonds [11].

Ionic bonding. In this type of bonding, two or more atoms attract each other in a
way that one loses one or more electrons for others to gain them. The formed molecule
is neutrally charged and each atom has the configuration of a noble gas. For example, in
the NaCl molecule, the Sodium atom (Na) loses one electron in order to reach the Neon
(Ne) noble gas configuration for the Chlorine (Cl) atom to gain it so that it reaches Argon
(Ar) configuration. The balance of the attracting and repellent electrostatic forces forms
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the foundation of the bond. In a crystal, ions are arranged in a non-directional way that
produces a macroscopically neutral material [11].

Covalent bonding. Atoms in this case bond by sharing electrons in a manner that
the molecule they form is neutrally charged and each atom has one of the noble gases’
configuration. For instance, the Oxygen atoms in the O2 molecule each shares two electrons;
with that bonding, they each reach the configuration of the Neon (Ne) noble gas and the total
charge of the O2 molecule is neutral. In crystals or molecules, the electrons that are shared
are within the direct line between the atoms which is caused by the density of electrons that
are concentrated between the nuclei. The interactions caused by a covalent bonding can be,
in organic compounds, of saturated or unsaturated nature: saturated bond is basically a
single bond while unsaturated bond contain one or more double bonds or even a triple bonds
[11].

Metallic bonding. Unlike ionic and covalent bonds which are chemical-valence-based,
a metallic bond is considered as force that holds metal ions together forming an electrostatic
force. The force of attraction acts between positive ions and electrons of either identical or
different atoms as observed in many alloy structures formation. The metallic bonds typically
act between atoms and their eight or twelve first neighbors, reaching, thus, a more stable
configuration by sharing their outer shell electrons [11].

Hydrogen bonding. Also referred to as H-bond, is a type of intermolecular force
occurring between hydrogen-based molecules. It results from the attractive force between a
hydrogen atom covalently bonded to a very electronegative atom such as a nitrogen, oxygen
or fluorine atom and very electronegative atom. H2O (water) molecules for example are
bonded through hydrogen bonding [35].

Van der Waals forces. An attractive force between close neutral molecules due to
polarization resulting from instantaneous redistribution of charges. Even when other bonds
(ionic, covalent, and metallic) are absent, this electrostatic attraction / repulsion, called Van
der Waals force, can be present between any two molecules [4]. In other words, when a
molecule has a dipole (separated charges resulting from an uneven electron distribution), it
possesses two ends one of which is positive and the other negative. Like magnets, these poles
attract and repel opposite charges and like ones, respectively [13].
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1.5 Materials properties

The essence of the materials science field is to study materials properties. Such studies
must indeed be conducted at the atomic scale. In fact, what determines the properties of a
material are the atoms it is composed of and the types of bonds that connect them. First,
among the features of an atom, the shape of it is an important aspect in this context [10].
In addition to that, the distribution and arrangement of atoms make up the uniqueness
of a material [4]. These elements are undeniably crucial to understand the properties of a
structure. Second, there is a direct relationship between the atomic bonds of a material and
its behavior. If we take the covalent bond as an example, as it hooks atoms very firmly, it
makes up strong materials when there is not another weaker intermolecular force binding
molecules. For instance, diamond, which is known to be the hardest material, is composed of
carbon atoms all bonded together through covalent bonding. Water however is not a strong
material since, even though Hydrogen is covalently bonded to oxygen (intramolecular), the
H2O molecules are bonded through hydrogen intermolecular forces which are much weaker
and keep braking and reforming. While materials with covalent bonds are characterized by
insulative or semi-conductive property [11], ionic crystals, whether dissolved in water or in a
molten state, conduct electricity because of the dissociation of the crystal ions. Ions, once free,
move to positive poles and negative ones carrying the electrical charge. Moreover, as strong
bonds typically make strong/hard solids, the weaker attraction forces make materials with
corresponding characteristics. As in case of graphite, the softness and lubricating properties
are caused by the weak Van der Waals forces [4]. These intermolecular forces, although weak,
are not any less important; in fact, without them, life would not exist as we know it. After
all, it is the hydrogen bond that is responsible for the life-sustaining qualities of water and
protein and DNA structure stabilization.

Crystal structure properties define the behavior of the material under certain conditions.
In other words, when a material is exposed to an external influence, it has a particular
response. The external field might be temperature, electricity, pressure, gravity, magnetism,
etc. An example of a material’s response is the deflection of a steel beam when an external
load is applied to its ends, or the induction of an electrical field in a conductor when it is
moved through an external magnetic field.

In real life applications, materials are chosen according to their properties and thus, how
they behave as a response to the influence present in the application [4]. In industry for
instance, plastic is used for different appropriate characteristics; we find it in toy production
for example since it has the capacity to get molded into various shapes, it is light in weight,
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and it is strong enough to handle small pressures. Similarly, tar is used to coat the ground
and is supposed to hold regardless of the temperature, weather, and vehicles driven over it.

Lately, a great deal of materials science studies is dedicated to determine crystal structure
properties for specific applications, and thus, identify which materials perform better given
a certain application. This has been the case of many industries in order to have more effi-
ciency and less potential cost. As in the pharmaceutical industry, drug discovery has taken
a major role in determining materials with desirable therapeutic properties. In the renew-
able industry, we find that semiconductor materials are adequate for the conversion of solar
energy to electricity; in addition to that, nanomaterials with their large surface properties
are very useful in terms of efficient light absorption [36]. Likewise, materials discovery in the
electronics industry makes no exception in studying solids with desired properties for partic-
ular applications in many fields like; dielectrics [37], ferroelectrics [38], oxides ion-conducting
[39], piezoelectrics [40], pyroelectrics [41], photocatalytics [42], multiferroionics [43], micro-
electromechanical (MEM) devices [42], humidity sensors [43], water purification (due to the
photocatalytic property), spintronics for many state memories [43], etc.

1.6 Conclusion

In closing, this chapter has laid the stage for our investigation into crystal structure predic-
tion. It has emphasized the importance of our research with a focus on crystallography’s rich
history. The essential aspects of crystal structure prediction were explained for a better un-
derstanding of this study’s field of research. This simple, comprehensive overview of crystal
structure prediction ensures that the subsequent chapters are accessible and unambiguous.

In the next chapter, we will explore the pressing contemporary challenges of crystal struc-
ture prediction and how the most relevant works of the state of the art addressed them.
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Chapter 2

State of the Art on Crystal Structure
Prediction

“One of the continuing scandals in the physical sciences is that it remains in
general impossible to predict the structure of even the simplest crystalline solids
from a knowledge of their chemical composition.” - John Maddox.

2.1 Introduction

In the field of materials science, the pursuit to predict and understand crystal structures
has quickly evolved. This is due to the extensive importance that researchers and scientists
accorded to this discipline, leading them to dive deeper into the treacherous waters of crystal
structure prediction. Here, we set out on a quest to investigate the most recent developments,
approaches, and breakthroughs in the area of crystal structure prediction as we seek to situate
our work within this dynamic and ever-evolving scientific field.

As a start, we define and specify the problem and challenges that our study seeks to
solve. Then, we proceed to the literature review to explore both the representation of crystal
structures and their prediction.

2.2 Problem statement

The modeling of the relationship between a structure and its properties illustrated by a be-
havior or an activity is extremely important in the scientific field of materials science. In
addition, it could greatly impact the progress and the improvement of many technological
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fields [5]. There has been a lot of interest in crystal structure property prediction across dis-
ciplines, as it has applications in many different fields. Indeed, crystal structure prediction’s
major role is to assist researchers in finding particular stable compounds characterized by
desirable and application-suitable properties before synthesis in the lab. In industry, com-
peting companies can make use of crystal structure prediction to either protect their own
patents or even break patents of other companies [44].

In materials science, experimental measurement and computational simulation are known
to be the two widely used conventional methods [5]. One way to describe crystal structures
is powder X-ray diffraction (referred to as XRD). This representation as raw data source is
however intricate since the 3D distribution of electron-density becomes 1D powder diffrac-
tion pattern. The crystal symmetry of many low-symmetry phases cannot be accurately
determined from a powder XRD pattern because of this complication [45].

On the other side, experimental measurement is a simple and intuitive approach of ma-
terials research. It typically involves the analysis of microstructure and property, synthetic
experiments, property measurement . . . etc. This method is nonetheless carried out in an
ineffective manner over a lengthy period of time and it places great demands on the tools,
the setting for the experiment, and the researcher’s skill and expertise [5]. Indeed, the time
intensity process of discovering and characterizing new materials is justified by the fact that
untested compounds must be synthesized under a lot of trial-and-error settings, and certain
chemical reactions might take days to weeks to complete. Plus, numerous untested materi-
als include pricey exotic compounds or elements. Then, samples must be characterized and
analyzed for crystal structure and microstructure, which adds to the reagents cost [46].

Considering the seven stages of a new material search from the discovery to the manu-
facturing and deployment, passing by development, optimization of properties, design and
integration of the system, and the certification, the amount of time it takes to find new
materials is astoundingly long, usually 10 to 20 years from start study to first usage. Not
to mention that each one of these stages requires distinguished researchers expertise and/or
expensive elements and reagents [5].

Alternatively, materials scientists, physicists, and chemists increasingly use ab initio (first
principle of quantum mechanics) approaches to anticipate the characteristics of materials us-
ing the basic quantum mechanical equations. Instead of conducting time-consuming/expensive
experiments, these technologies enable scientists to examine and predict novel materials, and
in certain situations, to even suggest brand-new and improved materials [6]. The idea behind
the usage of ab initio methods, such as DFT, is to fully understand the characteristics of ma-
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terials by computing before physical synthesis and testing. Consequently, they have become
commonplace instruments in the field of materials science [47]. The advantage of the com-
putational approaches compared to the experimental process is that there is no need for the
costly experimental aforementioned environment, and the needed period can be shortened
from 10 to 20 years, as determined by conventional procedures, to 18 months [5].

Crystal structure prediction can be separated into two main sub-problems, namely the
search problem and the ranking problem [48]. The former is represented by a sampling
method for the configuration space. This procedure is quite challenging considering the fact
that the number of possibilities to arrange atoms in space is gigantic. Given a unit cell
with N atoms, the corresponding number of possible structures is c ∼ exp(ad), where a

and d represent system-specific constant and the degrees of freedom number, respectively,
with d = 3N + 3 in case all none of the N atoms’ locations are correlated. To significantly
simplify this problem, a relaxation process is introduced. Although the complexity of the
problem would still remain exponential, the number of possible configurations is largely
decreased when each generated structure goes through relaxation by bringing it to a local
energy minimum. The second sub-problem consists in accurately measuring the structural
energies. However, appropriately ordering structures by energy is very arduous since the
energy differences between various polymorphs are frequently quite minor [49].

Unfortunately, due to the inherent limits of both experimental and theoretical approaches,
it is challenging to employ either of these two methodologies to speed up the materials
discovery and design process [5]. In addition to the previously mentioned drawbacks of
experimental methods, Quantum mechanical methods such as DFT come with a significant
computational cost. The complexity of its calculations increases cubically with the atoms
number, and these calculations are repeatedly performed throughout structural relaxation
[48].

Consequently, there is an undeniable need for a direct and alternative method to access
the physical property of interest without having to solve the Kohn-Sham density functional
theory (KS-DFT) equations [50]. As opposed to quantum mechanical methods, which do
not incorporate earlier computations when examining a new system, data-centered methods
make use of previous results to understand novel situations [6].

One way to do that is by codifying information gathered from prior experience (compu-
tational or experimental) to make automatic informed estimates about compounds that are
likely to arise in a new unknown system [47]. An appealing option of this kind is provided
by machine learning approaches. After the ML model has been trained on a representative
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training set of crystal structures, ML-based computations are extremely quick, generally able
to predict a particular material’s properties in fractions of a second [50].

2.3 Literature review on crystal structure prediction
with machine learning

Machine learning is a powerful tool considered as an effective substitute to the time consuming
classic quantum mechanical operations. With the huge number of data that is nowadays
available, it has become almost necessary to lean towards automatic approaches. Although
many works have focused on machine learning to solve materials science prediction problems,
this field still presents many challenges. The two main tracks of crystal structure prediction
via machine learning are 1) ML-suitable crystal structure data representation, and 2) ML-
based modeling and optimization of crystal structure prediction [51].

2.3.1 Representation of crystal structures

This task is undeniably crucial since it has a relevant impact on the prediction outcome.
Computational and experimental databases present data under its raw form; in order to use
this data for ML purposes, one has to first extract numerical relevant information through a
features engineering process. The result of such a process represents a suitable input for the
modeling step [51, 52].

The Bravais matrix with the system’s coordinate is not enough to represent a system; in
fact, it is also not suitable for a learning process. Indeed, for a single crystal structure, there
is an infinite number of representations that the computer would treat as distinct materials
because of the symmetry operations of crystal structures [50].

The representation of crystal structure features is most commonly referred to as “descrip-
tors” [53]. Below are the most recognized descriptors in the field of materials science.

2.3.1.1 Coulomb matrix

It is a straightforward global descriptor that replicates nuclear electrostatic interaction. It is
represented through an n×n matrix, where n is the number of atoms. It was first introduced
by M. Rupp et al. [53] to represent and describe molecules. The Coulomb matrix is defined
as follows:

University of Blida 1 - Computer Science: 2025 26



State of the Art on Crystal Structure Prediction

Figure 2.1: Coulomb matrix representation of C2H4 molecule [54].

xij =
0.5Z2.4

i fori = j
ZiZj

|Ri−Rj | fori ̸= j
(2.1)

Where Z and R represent the nuclear charges and Cartesian coordinates, respectively.
Figure 2.1 is an illustration of the C2H4 molecule represented through a Coulomb matrix.
Unfortunately, there is no atom ordering definition in the Coulomb matrix; which means

that by permuting atoms in matrix’s rows and columns, one would end up with many different
Coulomb matrices for the same molecule. Authors in [54] have fixed this issue by introducing
“dummy atoms” to get a well-defined atom ordering resulting in a unique Coulomb matrix for
each molecule. However, this representation is not suitable for learning purpose since, given
a database with materials having different number of atoms, it would result in Coulomb ma-
trices with different dimensionalities [54]. Moreover, Coulomb matrix representation cannot
be used to directly describe infinite periodic crystals [50].

F. Faber et al. proposed in [55] a generalization of the Coulomb matrix to overcome its
infinite periodic description problem. Indeed, to adapt the Coulomb matrix representation
on crystal structures, the three following generalizations were introduced:

A. Ewald sum-based generalization. A matrix in which every element is connected
to the Ewald sum of two distinct atoms’ electrostatic interactions that is repeated throughout
the lattice in the unit cell. An element of Ewald sum-based Coulomb matrix is defined as
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follows:

xij = x
(r)
ij + x

(m)
ij + x0

ij (2.2)

Where the three terms represent the real space calculations of short range interaction, the
reciprocal space-calculated interaction of long range, and a constant, as defined in Equations
2.3, 2.4, and 2.5, respectively.

x
(r)
ij = ZiZj

∑
L

erfc(a ∥ri − rj + L∥2)
∥ri − rj + L∥2

, (i ̸= j) (2.3)

x
(m)
ij = ZiZj

πV

∑
G

e
−∥G∥
2

2

(2a)2

∥G∥

2

2
cos(G · (ri − rj)), (i ̸= j) (2.4)

x0
ij = −(Z2

i + Z2
j ) a√

π
− (Zi + Zj)2 π

2V a2 , (i ̸= j) (2.5)

Where L and a illustrate the lattice vectors and length parameter, respectively, in Equa-
tion 2.3, and G and V represent the lattice vectors and the volume of the unit cell, respec-
tively, in Equation 2.4.

B. Extended Coulomb matrix generalization. An extension of the representation
matrix size of the traditional Coulomb matrix by considering the neighboring unit cell num-
ber. This form has the advantage that it is easier to evaluate than the Ewald sum matrix.

C. Sine matrix. A simplified matrix that uses a sine function of the atoms’ crystal
coordinates to imitate the periodicity and fundamental characteristics of the elements in the
Ewald sum matrix. The matrix’s elements are defined as:

xij =
 0.5Z2.4

i fori = j

ZiZjΦ̃(ri, rj) fori ̸= j
(2.6)

Φ̃(ri, rj) =
∥∥∥∥∥∥B ·

∑
k=x,y,z

êksin
2[πêkB

−1 · (r1 − r2)]
∥∥∥∥∥∥

−1

2

(2.7)

Where B and êx, êy, êz represent the lattice vectors-based matrix and the unit vectors
coordinates, respectively.

To further prove the effectiveness of these descriptors, authors in [55] conducted a for-
mation energy prediction using each of the three proposed representation as inputs. For
the modeling stage, authors opted for kernel ridge regression (KRR) to train and test data
from the Materials Project (MP) database [56]. The proposed descriptors turned out to be
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suitable for both crystal structure representation and learning purpose where the sine matrix
was acknowledged as the most effective.

2.3.1.2 The partial radial distribution function (PRDF)

PRDF [50] is a material representation which, for each pair of atom type, the pair-wise
distance distribution is examined. If we consider an atom of type α as the center, and an atom
of type β in a shell of radius and width of r and dr, respectively, the PRDF representation
is given by Equation 2.8, as averaged over an atom type.

gαβ(r) = 1
NαVr

Nα∑
i=1

Nβ∑
j=1

θ(dαiβj
− r)θ(r + dr − dαiβj

) (2.8)

Authors in [50] introduced this materials representation and validated it through a case
study of density of electronic states (DOS) prediction at the Fermi energy. For this purpose,
a training set was generated using DFT with an LSDA (Local Spin Density Approxima-
tion) functional. The ML models used were KRR implemented as linear-based, Gaussian-
based, and Laplacian-based which was trained on the generated data and tested on training-
independent data composed of ICSD [57] (Inorganic Crystal Structure Database)-selected
samples, metallic alloys (PbAl), and a CBN (Carbon, Boron, and Nitrogen) solid solution,
in order to validate the study.

2.3.1.3 Elemental and structural descriptors

The work cited in [58] proposed a set of features to represent and describe crystal structures
as well as molecular systems for machine learning. This descriptor represents a compound ξ
through a matrix (Equation 2.9) of size N (ξ)

a ×Nx, i.e. the number of atoms by the number
of features describing each atom, with Nx = Nx(ele) +Nx(st) where the first and second terms
represent elemental and structural features, respectively.

x(ξ) =


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(ξ)
a )

1 x
(ξ,N

(ξ)
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(ξ)
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 (2.9)

Where x(ξ,i)
n illustrates the nth features of the ith atom in the compound ξ.

This matrix results in a high dimensional representation. In order to produce a descriptor
of Nx dimensional space, a transformation is introduced by applying representative quantities
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Figure 2.2: Schematic overview of compound descriptor generation. (a) Compounds, (b)
matrix representation, (c) data points distribution, (d) representative quantities transforming
the distribution into descriptors [58].

such as skewness, covariance, standard deviation, mean, and kurtosis of the distribution as
illustrated in Figure 2.2.

The atomic representations of the X(ξ) matrix defined above are a set of 22 elemental
features combined with a structural representation chosen from PRDF (previously discussed),
GRDF (generalized radial distribution function), BOP (bond-orientational order parameter),
and AFS (angular Fourier series).

The study [58] was validated by implementing KRR, Gaussian process regression, and
Bayesian optimization (BO) to predict the cohesive energy, lattice thermal conductivity
(LTC), and melting temperature using the aforementioned descriptors for input data gathered
from DFT computations and experiments.

2.3.1.4 Topological-based descriptor

A. Fedorov et al. came up with a non-conventional way to describe crystal structure in [59].
They first represent a crystal structure through a graph where nodes correspond to atoms
and edges to bonds. Figure 2.3 is an illustration of such a graph for NaCl.

This topology representation results in a 2D graph for which each node has a set of features
to be provided as input for the ML model. To describe nodes, different features were used to
whether predict the molar heat capacities and standard molar entropy or lattice energy. Data
was gathered from databases including ICSD and COD (Crystallography Open Database)
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Figure 2.3: Representation of (a) NaCl through the (b) proposed graph [59].

[60], on which the proposed descriptor was applied. To validate the study, the resulting data
representation was introduced as an input for an ANN (Artificial Neural Network) model
with an architecture of two hidden layers and BFGS (Broyden-Fletcher-Goldfarb-Shanno)
learning algorithm.

2.3.1.5 Property-Labelled Materials Fragments (PLMF)

PLMF [61] is a universal crystal structure representation constructed by first determining the
atomic connectivity of the material. Then, through a computational geometry approach, the
neighbor search is performed and an infinite periodic graph with property labelling is con-
structed. To better illustrate this process, Figure 2.4 shows the steps of PLMF construction
and its constitution.

The adjacency matrix A is represented through Figure 2.4 (c), its entries are defined as
follows:

xij =
1 for i connected− to− j

0 for i not− connected− to− j
(2.10)

By multiplying this matrix by the reciprocal matrix of square distance D defined as:

xij = 1
r2

ij

(2.11)
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Figure 2.4: PLMF crystal structure descriptor schema. (a) Input crystal structure, (b) neigh-
bors search, (c) infinite periodic graph construction and property labelling, (d) decomposition
into fragments and simple subgraphs [61].
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one will obtain an n × n matrix M = A · D with n being number of atoms in the unit cell.
From this matrix, the descriptors of the reference property denoted as q can be calculated
by the Equations 2.12 and 2.13 for all pairs of atoms (i, j) and only pairs of bonded atoms
(i, j), respectively.

TE =
n−1∑
i=1

n∑
j=i+1

|qi − qj|Mij (2.12)

TE
bond =

∑
{i,j}∈bonds

|qi − qj|Mij (2.13)

The reference properties include several general properties, measured properties, and
other lattice parameters. Authors in [61] proposed and used this descriptor to represent
materials gathered from the AFLOW (automatic flow for materials discovery) database [62]
and classify them as metal/insulator, and to predict properties such as band gap energy,
bulk/shear moduli, Debye temperature, heat capacities. For the modeling stage GBDT
(gradient boosting decision tree) technique was performed.

2.3.1.6 2D diffraction fingerprint

It is well known that CNN (Convolutional Neural Networks) ML model is very powerful for
image classification [63]. A. Ziletti et al. [64] relied on this model for crystal system clas-
sification. For this purpose, they have developed an image-like crystal structure descriptor.
This 2D matrix representation is generated by simulating X-ray radiation on the data at
hand resulting in a simulated XRD pattern as illustrated in Figure 2.5.

2.3.1.7 Machine learning interatomic potentials (MLIP)-based descriptors

This type of descriptors is known as atom-wise representation instead of structure-wise one.
MLIP-based descriptors are very accurate and precise since they include relevant information
about each atom neighboring. They are most suitable for energy prediction as they consider
atom energy contributions to the total energy [65, 66]. Nevertheless, they can be generalized
as universal descriptors for crystal structures with a variety of properties [67].

Table 2.1 summarizes the examined approaches of crystal structure representation for
machine learning purpose.
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Ref. Data type Data source Prediction ML model Descriptor
Faber
[55]
2015

Comput. MP Formation energy KRR
Ewald sum-based
CM, Extended
CM, Sine matrix

Schutt
[50]
2014

Comput.,
experim.

Generated,
ICSD,
PbAl, CBN

DOS KRR PRDF

Seko
[58]
2017

Comput.,
experim.

Generated
Cohesive energy,
LTC, melting
temperature

KRR,
Gaussian
process
regression,
BO

Elemental and
structural
descriptors

Fedorov
[59]
2017

Experim. ICSD, COD

Molar heat
capacities, standard
molar entropy,
lattice energy

ANN
Topological
descriptor

Isayev
[61]
2017

Comput. AFLOW

Metal/insulator,
band gap energy,
bulk/shear moduli,
Debye temperature,
heat capacities

GBDT PLMF

Ziletti
[64]
2018

Comput. AFLOW Crystal system CNN
2D diffraction
fingerprint

Table 2.1: Summary of crystal structure representation approaches for the use of machine
learning.
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Figure 2.5: X-ray radiation simulation on crystallographic data. (a) 2D diffraction fingerprint
computation, (b) resulting image-like 2D diffraction patterns [64].

2.3.2 Crystal structure prediction approaches with machine learn-
ing

In materials science, one of the most challenging problems is crystal structure prediction [68],
whether it is about the discovery of new materials or the prediction of crystal structures’ prop-
erties. Lately, machine learning has become a key solution to laborious and time consuming
problems. Its applications are found in any imaginable field. In the research field of the
present study, ML methods and algorithms have been widely employed. The subsections
below represent a review of current studies related to crystal structure prediction.

2.3.2.1 Decision tree-based approaches

As their name suggests, decision trees are used to formally and graphically reflect decisions
and decision making using a decision-tree-like approach. They include several models in
machine learning. A decision tree is composed of a root node representing the condition,
intermediate nodes which are children-node-alternatives for their father-node, and leaf nodes
of the decision.

W. Tong et al. [69] conducted a machine learning-based study for the prediction of the
elastic modulus property. For this purpose, authors first examined different machine learning
models to predict other properties in order to determine the best performing model. Random
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Forest (RF), Support Vector Machine (SVM) as a regressor, and a Deep Neural Network
(DNN) were used for the prediction of bulk modulus, Young’s modulus, and shear modulus
properties. The main aim for this study is to accelerate properties prediction in the materials
search process. As depicted in Figure 2.6, after the structure generation computation that was
performed using CALYPSO code [70], and once the structures are optimized, the selected ML
model is used to replace the time consuming DFT-based calculation for properties prediction.

Carbon materials were extracted from the SACADA (Samara Carbon Allotrope Database)
database [71] and represented through 15 MATMINER-based [72] descriptors. random forest
algorithm is reported to have given the best performance among other models and was
selected for the prediction of the elastic modulus property. The full execution of this process
resulted in the discovery of a brand-new carbon phase which has never been reported before.

M. Amsler et al. [73] have also used random forest and decision trees to predict band gap
energy and formation enthalpy. They selected ternary compound from the computational
Open Quantum Materials Database (OQMD) and used Magpie (Materials-Agnostic Platform
for Informatics and Exploration)-based features to represent ML inputs. For the modeling
stage, data was first divided into subsets of similar materials and each subset was trained
separately using decision trees to predict the band gap energy. In addition, random forest
algorithm was used for the prediction of the formation enthalpy.

Decision trees-based approaches can also be used for classification problems. Several
studies on crystal structure prediction in the literature relied on decision trees classifiers. In
[74], binary compound data was collected from OQMD labelled with the crystal system. For
ML purpose, the data was represented by a set of 8 features including the number of atoms
of type A, the number of atoms of type B, atomic numbers of A and B, electro-negativities
of A and B, and atomic radius of A and B. First, an unsupervised machine learning model
based on Gaussian mixture was applied to expose material data structure. As a result, two
data clusters were revealed; the first cluster contains data fitting into the predefined 492
prototype structures, and the second represents the data that does not fit in. Then, random
forest algorithm with a 100 trees was trained in a supervised manner on the first cluster
of data, where each material has been labelled with one of the 492 prototypes. The label
was used to classify this data according to the assigned prototype structure. The average
cross-validation accuracy achieved for the multi-class classification in this work is of 79%.

Authors in [75] conducted a study on perovskites materials generated computationally.
The data is labelled according to the crystal system as the target value. It is to be mentioned
that only four crystal systems were considered, namely cubic, orthorhombic, tetragonal, and

University of Blida 1 - Computer Science: 2025 36



State of the Art on Crystal Structure Prediction

Figure 2.6: The proposed flow chart for an accelerated prediction of crystal structures using
machine learning [69].
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rhombohedral, the rest of the crystal systems were omitted since they do not satisfy the
perovskite structural criterion. A set of 13 features were used as descriptors to represent
the examined data. For this multi-class classification task, Light GBM (Gradient Boosting
Machine) algorithm was selected. It is a decision tree-based algorithm which combines a series
of individual trees to form a strong learner where each new tree’s mission is to minimize the
previous trees’ error. Moreover, rather than growing vertically (level-wise) like other tree-
based models, Light GBM grows horizontally (leaf-wise) where the leaf that is selected to
grow on is the one with the greatest delta loss. The classification accuracy achieved by Light
GBM on the generated perovskites is 80.3%.

Random forest in particular had proved to be quite successful in terms of multi-class
classification in crystal structure prediction, especially in terms of crystal system and space
group classification. Authors in [76, 77] have extracted data from the MP database labelled
with the crystal system and the space group. In an effort to define enhanced descriptors
to represent the data, Y. Li et al. [76] proposed composition-based features combined with
Magpie. For the modeling stage, random forest, XGBoost (Extreme Gradient Boosting),
and deep neural networks were used for learning and classifying data according to the crystal
system and space group. The three models’ hyperparameters and architecture were defined
as follows:

• entropy was selected as criterion, number of trees set to a 100, number of features to
80, the max depth to None, and finally, 2 and 1 as min samples split and min samples
leaf, respectively.

• XGBoost: the booster was selected as “gbtree” with 6 as max depth, and the number
of trees was 180. Alpha, gamma, lambda, and learning rate were defined as 0, 0, 1, and
0.3, respectively.

• DNN: the architecture of the network was chosen to have 7 fully connected layers all
activated with ReLU (Rectified Linear Unit) in addition to Dropout and BatchNorm
after every layer except the last one with the purpose to avoid overfitting. Cross entropy
and Adam (adaptive moment estimation) optimizer were used as the loss function and
optimization algorithm, respectively, while the hyperparameters were tuned by setting
the number of epochs, the batch size, and the learning rate to 2000, 255, and 10e−2,
respectively.

The results of this study show that the random forest model yielded the best results with
a score of (0.835 – 0.829) for the metrics (Accuracy – F1-score).
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Y. Zhao et al. [77] worked on the same classification task of space group and crystal
system. They opted for a Multi-Layer Perceptron (MLP) and random forest to map the
MP gathered data representation to the output classes. Three different features descriptors
were selected, namely Magpie, atom vector, and atom frequency. The three descriptors were
combined with the two learning algorithms in order to select the best descriptor-algorithm
combination for the classification of crystal system and space group. The ML models were
used as follows:

• MLP: two architectures were selected depending on whether the classification is one-
versus-all-based or multilabel-based. The first architecture has a total of 11 layers while
the second one is composed of 13 ones. ReLU is used as an activation function for all
layers except the last ones in each architecture. The last layers were activated using
sigmoid or softmax.

• RF: the number of decision trees was defined as 50 where each was trained on a subset
with sample features that are randomly selected.

As a result, the random forest model combined with Magpie outperformed all other
combinations in terms of crystal system and space group classification with a score of (0.650
– 0.591) and (0.765 – 0.566), respectively, for the metrics (F1-score – MCC).

Another type of input to consider is XRD patterns. In [78, 79], authors have used such
inputs simulated from the ICSD database. Y. Suzuki et al. [78] chose to represent this
data using ten peaks-based information as well as diffraction peaks number. This descriptor
was fed to a random forest model for the task of XRD patterns classification into their
respective crystal system and space group. The implemented RF model was able to perform
this classification with an accuracy of 93.07% and 83.62% for crystal system and space group
prediction, respectively.

In [79], a set of five ML models including logistic regression (LR), K-nearest neighbor
(KNN), DT, RF, and extremely randomized trees (ExRT) were implemented to perform the
same classification task on the same type of data. An eleven features set based on peaks
information was used to describe the XRD patterns and fed to the previously mentioned
algorithms tuned by random search. The ML models trained and tested on the describe
data were compared in terms of crystal system and space group classification. ExRT, the
RF-based ML model yielded the best performance; the edge it took over the other models is
due to its randomly chosen decision-making variables which significantly reduce overfitting.
The accuracy achieved for crystal system and space group classification is 90% (except for
triclinic system being rare in ICSD) and 88%, respectively.
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The summary of the examined studies related to DT-based crystal structure prediction
is presented in Table 2.2.

2.3.2.2 Support vector machine-based approaches

SVM learning algorithm is considered as a powerful classification/regression model. It is
favored for its significant accuracy with a low computational power. Its applications cover
many fields including that of materials science. As an example of SVM classification in
crystal structure prediction, authors in [80] have proposed expandable features to describe
alloy materials. This descriptor is generated by transforming {n(N)

d , σ
(N)
d } (orbital occupancy,

orbital spin) to {nex
d , σ

ex
d } using regression tree ensembles (Figure 2.7 (b)). The dataset is

composed of binary and ternary alloys as well as high entropy alloys (HEA), where only binary
alloys were considered for the training process (Figure 2.7 (a)). The dataset was generated
using DFT-based Akai-KKR-CPA (Akai-coherent potential approximation to korringa-kohn-
rostoker) code. In the modeling stage, SVM algorithm with ECOC (error-correcting output
coding) and Gaussian kernel function were used to classify data according to its structural
phase (Figure 2.7 (c)).

The resulting performance of the implemented SVM achieved an accuracy of 80.56% for
structural phase classification of alloys and 84.20% for that of HEA.

When applied in regression tasks, SVM is usually referred to SVR (Support Vector Re-
gressor). S. Jarin et al. [81] used SVR-based approach among other models to predict the
lattice parameters of perovskite materials. For this purpose, authors gathered a total of
2225 experimental and theoretical ABO3 from [82] and represented them with a set of 12
atom-based features. Data was first classified according to its crystal system using RF, SVM
genetic algorithm (GA)-SVM, NN, GA-NN. These ML models were tuned as follows:

• RF: number of trees with 200 estimators, minimum sample split and maximum depth
set to 2 and 29, respectively.

• SVM: C and γ parameters were set through grid search to 0.853 and 0.003, respectively.

• NN: Levenberg–Marquardt training algorithm was used for the backpropagation process
and sigmoid for transfer function.

GA-NN model was able to outperform other models in crystal system classification with
an accuracy score of 88%.

Once the crystal system predicted, authors proceeded to lattice parameters prediction
using SVR and GA-SVR with RBF (radial basis function) kernel. Both models yielded good
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Ref. Data type Data source Prediction ML model Descriptor

Tong
[69]
2020

Comput. SACADA

Bulk modulus,
Young’s
modulus, shear
modulus

RF, SVM,
DNN

MATMINER-
based

Amsler
[73]
2019

Comput. OQMD
Band gap energy,
formation
enthalpy

RF, DT Magpie-based

Takahashi
[74]
2019

Comput. OQMD
Prototype
structure

Gaussian
mixture,
RF

Defined

Behara
[75]
2021

Comput.
Generated
perovskites

Crystal system Light GBM Defined

Li
[76]
2021

Comput. MP
Crystal system,
space group

RF,
XGBoost,
DNN

Composition-
based combined
with Magpie

Zhao
[77]
2021

Comput. MP
Crystal system,
space group

MLP, RF
Magpie, atom
vector, atom
frequency

Suzuki
[78]
2018

XRD ICSD
Crystal system,
space group

RF Defined

Suzuki
[79]
2020

XRD ICSD
Crystal system,
space group

LR, KNN,
DT, RF,
ExRT

Defined

Table 2.2: Summary of DT-based crystal structure prediction approaches.
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Figure 2.7: Flowchart of the expandable features generation and structural phase classifier.
(a) Training/testing sets, (b) raw features into expandable features transformation, (c) SVM
classifier [80].
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Ref. Data type Data source Prediction ML model Descriptor
Jin
[80]
2021

Comput.
Generated
alloys

Structural phase SVM
Defined
expandable
features

Jarin
[81]
2022

Comput.,
experim.

ABO3 [82]
Crystal system, lattice
parameters

RF, SVM,
GA-SVM,
NN, GA-NN

Defined

Table 2.3: Summary of SVM-based crystal structure prediction approaches.

prediction results for the lattice parameters (a, b, and c) with an accuracy of 95% for the
GA-SVR model.

Summarized details of SVM-based crystal structure prediction approaches are presented
in Table 2.3.

2.3.2.3 Neural network-based approaches

Neural networks are ML models for which the structure and nomenclature are modeled after
the human brain. They reflect and mirror the communication and signalization between bio-
logical neurons. NN models are very powerful and form the core of deep learning algorithms.
They have been used extensively for crystal structure prediction problems.

M. Kusaba et al. proposed in [83] a metric learning framework using ML models includ-
ing MLP. For a given chemical composition, the proposed framework is able to automatically
choose template structures by element substitution for the unknown stable structure. Au-
thors first gathered data from the MP database and constructed a labelled dataset where
an instance input corresponds to a pair of chemical compositions and the output to whether
this pair is identical or not. Two chemical compositions are considered identical if they’re
similar to a certain extent. Among the applied models (Siamese network, keep it simple and
straightforward-KISS, MLP classifier, and MLP regressor) to perform this binary classifica-
tion; the binary classification based on MLP yielded the best performance. The descriptor
used to represent the chemical compositions is a XenonPy-based 58×5 (290-dimensional)
vector. The result this framework achieved is a score of 0.991, 96.4%, 96.3%, and 96.6% for
the metrics AUC (area under ROC curve), accuracy, sensitivity, and specificity, respectively.

In the work cited in [68], a deep neural-network model was implemented to compare
the atomic sites topologies in known crystal structures and use the information learned from
such comparison to forecast potential compositions of unidentified substances that a synthetic
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Figure 2.8: Proposed approach scheme for chemical elements classification [68].

chemist may explore. For this purpose, experimental data was gathered from the ICSD and
COD databases. Data was represented through atomic fingerprints (AFP) inspired from
CSFP (crystal structure fingerprint) [68] and defined as follows:

AFP k
i (R) =

∑
j

δ(R −
Rk

ij

Ri0
) (2.14)

Where i represents the atom at perspective k, δ denotes a delta function, Rij and Ri0

are the distance between atoms i and j and the distance between i and i’s nearest neighbor,
respectively.

Before feeding this input to the DNN classifier several steps were performed as highlighted
in Figure 2.8.

The extracted AFP goes through a VAE (variational autoencoder) in order to allow
the DNN to learn a simplified 64-dimensional representation of AFPs. In addition to this
generated representation, normalized geometric descriptors including non-normalized Ri0,
and the crystal structure’s smallest interatomic ration to Ri0 are fed to a sigmoid classifier
with 5 layers. The number of the classifier’s outputs corresponds to the number of chemical
elements in the periodic table (118). The resulting output combined with the non-normalized
geometric descriptors are then introduced as input to a softmax classifier with five layers and
the same number of outputs as the former one.

Adam optimizer was used to train the DNN where the learning rate was initially set to
3 × 10−7 then it was increased to 3 × 10−5 by a step of 3 × 10−10 every batch. Dropout layers
were added with a 0.05 probability with regularization L2 = 5 × 10−4 and a batch size of
16. The obtained results show that this scheme is able to predict chemical elements with an
error rate of 31%.
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Figure 2.9: Example of two XRD patterns of two different crystal systems (cubic in orange
and tetragonal in blue) [84].

Another classification problem was examined in [45, 84]; similar to previously discussed
studies, authors in [45, 84] proposed a CNN-based approache to classify crystal structures.
The input data represents XRD patterns extracted from ICSD. Figure 2.9 depicts two dif-
ferent crystal system XRD patterns.

In [45], authors attempted to classify crystal structures according to their crystal system,
extinction group, and space group. Unlike the majority of XRD-based crystal structure
prediction studies, this work considers the XRD pattern raw images as the final input of the
ML model without a features engineering process. Three CNN models were developed to
classify crystal structures into their respective crystal system, extinction group, and space
group. The common architecture between the three CNNs is composed of an input layer, three
convolutional layers followed each by an average pooling layer, and the flattened resulting
multi-dimensional vector. Then each CNN architecture is followed by two fully connected
layers and an output layer where the number of nodes differ from one architecture to another
considering the fact that the number of classes is different from one case to another. ReLU
is used as an activation function and dropout layers were added with a 30% probability. The
classification accuracy achieved 81.14%, 83.83%, and 94.99% for crystal system, extinction
group, and space group, respectively.

A. Chakraborty et al. in [84] conducted a study for crystal system classification. The data
was converted into a vector to be considered as an input for the learning process. Several ML
models namely NB (Naïve Bayes), KNN, LR, RF, SVM, GBRT (gradient boosted regression
trees), and MLP were implemented for comparison with the proposed CNN-based approach.
The designed all-Convolutional Neural Network, referred to as a-CNN is distinguished from
other CNNs by the fact that its architecture does not include max-pooling layers between
convolutional ones. The crystal system classification performance achieved by a-CNN exceeds
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Figure 2.10: AlphaCrystal’s flow chart for crystal structure reconstruction using residual
neural networks [85].

that of all other implemented ML models with an accuracy and F1-score of 95.6% and 0.949,
respectively.

J. Hu et al. in [85] have used another type of deep neural networks to resolve a classifica-
tion problem related to crystal structure prediction. First, computational data was gathered
from the MP database, and represented through a defined 11D-element-wise features de-
scriptor. Then, residual neural networks are used to predict the contact map, space group,
along with lattice constants. The proposed framework named AlphaCrystal is able to learn
geometric patterns and the distribution of atom interactions and use this hidden knowledge
to predict the contact map. Once the contact map predicted, the 3D target crystal struc-
ture can be reconstructed using genetic algorithms. For the validation process, the predicted
structures were relaxed using the DFT-based VASP (Vienna ab initio simulation package)
tool. Figure 2.10 illustrates the general scheme of this approach.

According to the learnt knowledge about atomic interaction distribution, the contact map
(matrix) can be defined as follows:

xij =
1, ifRij ∈ [a+ b− 0.4, a+ b+ 0.4]

0, else
(2.15)

Where i and j are the pair of atoms, Rij the distance between them, and a and b the
covalent radius of i and j, respectively. Figure 2.11 shows a predicted contact map matrix
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Figure 2.11: Example of a contact map prediction (real Vs. predicted) [85].

compared to a real one.
ReLU activation function was used in the residual neural network with Adam optimizer

and the cross-entropy loss function since it’s adapted for a binary output. The number of
epochs was set to 125 and the learning rate to 10−3. The obtained results achieved an average
accuracy of 0.8543 and an average score of 0.2407 and 0.193 for the metrics RMSD (root mean
square distance) and MAE (mean absolute error), respectively.

Table 2.4 summarizes the examined NN-based crystal structure prediction approaches.

2.3.2.4 Graph network-based approaches

GNNs, short for Graph Neural Networks, are a family of deep learning algorithms that were
created to perform inference on graph-represented data. It is composed of nodes and edges
representing the data features and the relationship between the data points [86].

GNNs are defined as neural networks that may be used to analyze graphs directly; they’re
found in applications where data instances are related to each other such as social networking.
As powerful as CNNs can be, they fail at what GNNs can do. The reason is that CNNs cannot
be directly performed on graphs because of their complex topology and size. In addition, the
order of nodes varies and, unlike GNNs, CNNs cannot deal with unfixed ordering.

Since crystal structures are composed of atoms bonded together through different types
of bonds, GNNs might be adequate candidates to represent them. In [87] T. Xie et al.
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Ref. Data type Data source Prediction ML model Descriptor

Kusaba
[83]
2022

Comput. MP
Similarity
(identity)

MLP classifier,
MLP regressor
Siamese
network, KISS

XenonPy-
based
features

Ryan
[68]
2018

Experim.
ICSD,
COD

Chemical
elements

DNN AFP

Park
[45]
2017

XRD ICSD

Crystal system,
extinction
group, space
group

CNN
XRD
patterns

Chakraborty
[84]
2022

XRD ICSD Crystal system

a-CNN, NB,
RF, KNN, DT,
SVM, GBRT,
MLP

Defined

Hu
[85]
2021

Comput. MP
Contact map,
space group,
lattice constants

Residual NN Defined

Table 2.4: Recapitulation of NN-based crystal structure prediction approaches.
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Figure 2.12: Depiction of the crystal graph convolutional neural network. (a) Crystal graph
construction, (b) convolutional neural network built on top of the graph [87].

proposed a GNN-based approach for crystal structure property prediction named CGCNN
(Crystal Graph Convolutional Neural Network). The general scheme of their approach is
illustrated in Figure 2.12.

In the constructed crystal graph, nodes correspond to atoms and edges to bonds. Nodes
and edges are both represented through a vector. Convolutional hidden layers are applied
on top of this constructed graph resulting in another graph. Then, pooling and other hidden
layers are applied to the second graph in order to predict the output. To validate this
framework, data was gathered from the MP database for the prediction of seven different
properties. The MAE score achieved for formation energy, absolute energy, Fermi energy,
band gap, bulk moduli, shear moduli, and Poisson ratio prediction is of 0.039, 0.072, 0.388,
0.363, 0.054, 0.087, and 0.03, respectively.

An extension of this work was conducted by S. Louis et al in [88]. They used the same
crystal-to-graph transformation and examined the same set of properties to predict, while the
architecture of the GNN was based on graph attention (GAT). GAT networks however present
limitations with regard to edge information in contrast with neighboring nodes information
which is well characterized. Consequently, authors in this study augmented GAT layers with
connecting edges information; these layers are referred to as AGAT. In addition, a global
attention layer is proposed in the architecture added after the AGAT layer. This new layer is
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Figure 2.13: Architecture scheme of the proposed global attention graph CNN model (GAT-
GNN) [88].

added with the purpose to translate the locally learned information from node and edge level
to graph level for better interpretability. Figure 2.13 presents the proposed GNN architecture.

The output of the regression is predicted by applying a global pooling layer on global
attention one, then, some hidden layers to the global pooled resulting layer. The model was
trained for 500 epochs at most, the loss function and optimization algorithm were set to
Smooth L1loss and Adam. The learning rate was initiated at 5 × 10−3, then it was decreased
to 5 × 10−4, and then to 5 × 10−5, and finally, the batch size was set to 256. The results
obtained achieved an MAE score of 0.039, 0.048, 0.33, 0.322, 0.047, 0.085, and 0.029 for the
properties formation energy, absolute energy, Fermi energy, band gap, bulk moduli, shear
moduli, and Poisson ratio, respectively.

Crystal Graph-based models can predict a wide range of properties with high accuracy.
Although they encode interatomic interactions, they ignore traits that include features of
orbital-orbital interaction. For this particular reason, authors in [89] proposed Orbital Graph
Convolutional Neural Network, referred to as OGCNN, which involves orbital-orbital inter-
actions. For this purpose, orbital-field matrix (OFM) was used to represent data generated
computationally using DFT calculations. In order to predict the formation energy, band
gap, and Fermi energy, OGCNN was trained for 100 epochs with an MSE (mean squared
error) loss function and SGD (stochastic gradient descent) optimization algorithm. OGCNN
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Ref. Data type Data source Prediction ML model Descriptor

Xie
[87]
2018

Experim. ICSD

Formation energy,
absolute energy,
Fermi energy,
band gap, bulk
moduli, shear moduli,
Poisson ratio

GNN-based
CGCNN

Defined

Louis
[88]
2020

Comput. MP

Formation energy,
absolute energy,
Fermi energy,
band gap, bulk
moduli, shear moduli,
Poisson ratio

GNN-based
GATGNN

Defined

Karamad
[89]
2020

Comput. Generated
Formation energy,
band gap, Fermi
energy

GNN-based
OGCNN

OFM

Cheng
[90]
2022

Comput.,
experim.

OQDM,
MatB

Formation enthalpy GNN-based Defined

Table 2.5: Summary of graph network-based crystal structure prediction approaches.

achieved an average MAE of 0.0466 for the formation energy prediction and 0.32 and 0.38
for band gap and Fermi energy, respectively.

Another graph network-based approach for crystal structure prediction was proposed in
[90]; it is a framework in the form of (database + GN + optimization algorithm). The
databases separately used are OQMD and MatB (Matbench) [91] with a graph network,
while the selected optimization algorithms are random searching (RAS), particle swarm op-
timization (PSO), and Bayesian optimization (BO). A total of two graph networks were
implemented, one for each database, to map the correlation between the input data and the
formation enthalpy as the output to predict. Several GN architectures were tested and the
ones yielding the smallest prediction error were selected. The results achieved by this frame-
work are MAE values of 0.016 and 0.031 for the OQMD and MatB databases, respectively.

The previously investigated graph network-based approaches are briefly reviewed in Table
2.5.
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2.3.2.5 Interatomic potential-based approaches

Interatomic potentials describe the interaction between a pair of atoms or an atom and
a group of atoms. They possess both attractive and repulsive components. Interatomic
potentials provide the energy of the system as a function of the atomic positions. They
are extremely accurate especially in terms of energy, forces, and stress prediction. In PES
(potential energy surface) the energy of the system is considered to be the sum of atomic
energies. Therefore, accurate and unique atom-wise descriptors are necessary.

H. Wang et al. proposed a deep potential-based approach for crystal structure prediction
of (AlMg) binary alloys [92]. For this purpose, authors generated AlMg structures using
DFT calculations and described the data using atom-wise local environment information.
The modeling stage includes two embedded neural networks; the first one is the embedding
NN generating symmetry-reserving descriptors and the second one is the fitting NN mapping
the atomic energy to these descriptors. The RMSE (root mean square error) score for the
formation energy prediction reached 0.006.

Authors in [93] trained machine learning potentials to predict crystal structures’ ener-
gies, forces, and stress. They proceeded by computationally generating a set of materials
using DFT-based calculation through VASP tool. Data was then represented using Behler-
Parrinello’s atom centered descriptors [94]. PCA (principal component analysis) was used in
ordered to make the input vectors uncorrelated. Neural networks model was used to train
this data with Adam optimizer and MSE loss function with L2 regularization term to prevent
overfitting. The epoch size is determined in accordance with the MSE value; the training
stops when the validation RMSE reaches the value of 0.01 for the energy prediction.

A moment tensor potential (MTP)-based [95] approach was proposed in [48] for crystal
structure energy prediction on-the-fly. To this end, computational data was generated and
represented through atomic neighborhood-based descriptors. In addition, authors proposed
a new concept allowing ML potentials transferability with an active learning approach. The
idea behind this concept is to prevent inaccurate predictions when the introduced data to
be predicted is farfetched from the model’s learning set. The learning stage of MTP uses a
regularized linear regression algorithm. The scheme of the proposed approach is illustrated
in Figure 2.14.

The input data configuration is first tested to whether it needs to be actively learned or
not by checking if a computed parameter named extrapolation grade exceeded the predefined
extrapolation threshold or not. If it does, then DFT is used for the prediction and this
instance is added to the learning set and the configuration is learned. If not, then energies,
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Figure 2.14: Flowchart of the proposed MTP-based approach [48].

forces, and stress are predicted using MPT. This approach was tested with carbon, sodium,
and boron allotropes and it yielded an RMSE of 0.011.

To briefly summarize the aforementioned studies, Table 2.6 presents details of the MLIP-
based approaches.

2.4 Summary and discussion

As seen in the previous sub-section, many ML-based approaches have been proposed and
implemented to solve different crystal structure prediction problems. It is however difficult
to fairly compare the reviewed studies because of the diversity of the investigated database,
the property to predict, as well as the used performance metrics. Nevertheless, we can divide
crystal structure prediction problems into two main families. The first one is classification-
based predictions such as the classification of the crystal system, space group, structural
phase, etc. In terms of crystal system classification, we notice that all approaches yielded
an accuracy above 80%. The studies [78, 79, 45, 84] used the same database (ICSD), where
[78, 79] employed RF and [45, 84] CNN-based models. Results achieved by [78] (93.07%)
exceed those of [79] (90%) because of the employed descriptors that are more suitable for
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Ref. Data type Data source Prediction ML model Descriptor
Wang
[92]
2020

Comput.
Generated
Al-Mg

Energy,
force

NN
potentials

Atom-wise local
environment-based

Hong
[93]
2020

Comput. Generated
Energy,
force,
stress

NN
potentials

Behler-Parrinello’s
atom centered-based

Podryabinkin
[48]
2019

Comput. Generated
Energy,
force,
stress

MTP Defined

Table 2.6: Outline of MLIP-based crystal structure prediction approaches.

crystal system classification. Likewise, [45] achieved 94.99% accuracy compared to [84]’s
95.6% accuracy which reflects the robustness of the CNN modified architecture and the
descriptors used with regard to crystal system classification. In addition, the work proposed
by [64] was able to achieved the highest crystal system accuracy (100%) also using CNN,
thus proving the effectiveness of the 2D diffraction fingerprint descriptors.

The second family is regression-based predictions such as the prediction of energy, bulk
moduli, shear moduli, etc. Among all reviewed regression-based studies, the best performing
crystal structure representation approaches are [50] and [58] using PRDF and elemental-
structural descriptors; they yielded a score of 0.0077 in terms of MAE and 0.0071 in terms of
RMSE, respectively. Moreover, the NN potentials-based approach proposed by [92] achieved
the best score of 0.006 in terms of RMSE among ML-based crystal structure prediction
approaches.

To summarize, we conclude that:

• Deep learning-based approaches through CNN modeling are very powerful with regard
to classification tasks especially when the input data is 2D.

• PRDF and elemental-structural descriptors are suitable for regression tasks.

• NN potentials-based approaches are very accurate for the energy prediction (regression
task).
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2.5 Conclusion

As we conclude the inspection and analysis of the state of the art in CSP, we stand at
the crossroads of discovery and innovation. In this chapter, the dynamic environment of
CSP research has been revealed, demonstrating the noteworthy advancements, cutting-edge
methods, and ongoing challenges that characterize this discipline. Our journey through recent
growth, discoveries, and the evolving methodologies has provided us with a comprehensive
understanding of the current state of CSP.

With the knowledge acquired from the CSP state-of-the-art, we have drawn conclusions
of the potential challenges and opportunities that still arise. In the next couple of chapters,
we move forward with our contribution in the crystal structure prediction field, where the
data representation and the modeling approaches adopted are an outcome of synthesizing
the insights gained in this chapter.
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Chapter 3

Crystal Structure Features
Engineering

“Torture data and it twill confess to anything.” - Ronald Coase.

3.1 Introduction

In machine learning, one of the most essential issues, that is as important as learning, opti-
mization, or generalization, is to define the right input for the learning process. This task is
unquestionably important since it directly affects the outcome of the prediction. Likewise,
the key to crystal structure prediction success is the ability to uncover the intricate details
and hidden patterns that exist within crystal structures.

The previous chapter provided a clearer picture of advantages and drawbacks of existing
crystal structure representation approaches. Upon this knowledge, we present in this chap-
ter the features engineering process that we adopted for the transformation of raw crystal
structure data into informative, numeric descriptors.

3.2 Experimental and computational data

Crystal structure data comes from two possible sources, namely experimental or computa-
tional. The former is data that we obtain from real measurements such as electrical, energetic,
XRD, PND (powder neutron diffraction) . . . etc. There are many different types of mea-
surements depending on what we want to measure as properties on real materials that are
synthesized in a laboratory, or that are found in their natural state (in situ).
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Computational data, on the other hand, comes from an “in silico” experience (by means of
computer modelling / simulation) on a computer, using codes that have managed to simulate
physical and chemical reality by modeling the theory. The characterization of this data and
its properties is performed using quantum mechanical techniques like DFT.

Take XRD data as an example; this data is experimental, but we can very well have
a computationally simulated XRD. It is then to be compared with experimental data to
validate the simulation. Indeed, in general, it is mandatory to validate our computational
data with experimental data, provided the latter exists. It is absolutely possible to have
purely computational XRDs, such as XRDs of pressurized terrestrial magma (inside the
earth) that one cannot have in reality. However, to trust computational data that cannot
be compared to experimental data, it is necessary to be rigorous in the theories of physics
that are modeled in the computerized code. Both of these types of data are important in
materials science as they complement each other to provide a comprehensive understanding
of materials.

3.3 Features engineering

The extraction of features which may be used for model development is a crucial stage in the
automated recognition of patterns and relationships from huge data sources. A feature, in
general, represents a quality that was obtained from data input in its raw form in order to pro-
vide an appropriate representation. Therefore, features extraction seeks to identify elements
of variation pertinent to the overall learning job and maintain discriminating information
[96].

ML models strongly rely on these well-defined characteristics; the effectiveness of the
extraction procedure will determine how well models perform. With time, a variety of features
extraction methods that work with various data sources have evolved [96]. The features
representing input data need to be suitable for ML modeling and must meet certain criteria.

The proposed features engineering process of the present work is illustrated in Figure 3.1.

3.3.1 Data collection

The data used in this study is of a computational type generated using USPEX [97, 98, 99]
code. “Universal Structure Predictor: Evolutionary Xtallography” referred to as USPEX
(pronounced as “uspekh”, literally meaning “success” in Russian) is a method which was
first developed in 2004 by the Oganov laboratory. USPEX is a computer program that is
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Figure 3.1: Proposed crystal structure features engineering process. (a) Collected databases,
(b) data preprocessing, (c) extracted features categorized into six datasets.
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Database LiAg LiAt LiAu LiBa LiBi LiBr LiCa LiCd Total
Number of entries 1397 1379 1452 1404 1197 432 1247 1227 9717

Table 3.1: Investigated databases with their respective number of entries.

able to solve the crystal structure prediction problem under arbitrary pressure-temperature
conditions using simply the material’s chemical composition. It is based on evolutionary
algorithm to search through a large number of possible crystal structures and find the most
stable ones. In addition, it incorporates other external computational chemistry tools such
as VASP, QUANTUM ESPRESSO, and Gulp.

USPEX was used to generate a total of eight databases that were considered for this
study. As illustrated in Figure 3.1 (a), each of the databases comprises materials of one
of these systems: Lithium Silver (LiAg), Lithium Astatine (LiAt), Lithium Gold (LiAu),
Lithium Barium (LiBa), Lithium Bismuth (LiBi), Lithium Bromine (LiBr), Lithium Calcium
(LiCa), and Lithium Cadium (LiCd). The number of instances in each of the aforementioned
databases is given in Table 4.1.

3.3.2 Data preprocessing

The data extracted from USPEX (or other data sources) comes in its raw form. It is provided
through a CIF (Crystallographic Information File) or a POSCAR file. Figure 3.2 represents
a POSCAR file of the material Li6Bi2.

The POSCAR file presented in Figure 3.2 contains atom types of the crystal structure
with their respective number as well as its geometric information. In addition, it has the
output value of the target property to be predicted which, in this example, is the energy
property with a value of -57.576002.

In order to perform machine learning modeling, one needs to select inputs and outputs
and feed them separately to the model for the learning process. Therefore, it is required to
identify the inputs from the outputs in POSCAR files. To this end, a preprocessing step was
performed using simple NLP (Natural Language Processing) techniques.

3.3.3 Descriptors

In the case of crystal structures, features representing inputs are called descriptors [100, 101].
In order to have effective descriptors to be considered as machine learning model inputs, the
features extraction process must insure that the data representation satisfies the following
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Figure 3.2: Example of a raw POSCAR file representing a data entry of the material Li6Bi2.
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specific requirements [55]:

• Machine-readable representation.

• Complete: the representation must best describe a data without loss of information
that is pertinent to the underlying issue.

• Compact: the representation should have the least redundant features.

• Unique and Nondegenerate: each data instance must have a unique representation
and each representation must represent a single instance. For a representation to be
unique and Nondegenerate, it must be invariant with respect to rotation, reflection,
permutation and translation.

• Descriptive: two “close” instances having similar outputs must be represented through
input features that are close in terms of distance.

• All representations of data in a dataset must be standardized and uniform.

Obviously, the example of crystal structure information given in Figure 3.2 cannot be
used as a descriptor. Considering the fact that if a symmetry operation, such as rotation,
is applied to the crystal structure, it would result in different atom coordinates for the
same input, the information provided by the POSCAR file is not unique and nondegenerate.
Moreover, extracting information from a POSCAR file, as it is, is not considered complete as
there are many other data one could obtain using simple libraries such as Pymatgen [102]. In
addition, materials differ in terms of atoms number which would make inputs not uniform.

In the previous chapter (chapter 2: State of the Art on Crystal Structure Prediction), an
analysis on different crystal structure descriptors was investigated. Two important crystal
structure descriptor-related conclusions were drawn, specifically: 1) PRDF is one of the most
suitable descriptors for regression tasks (which is the type of prediction we are seeking in
this work) and 2) MLIP-based approaches are dominant with regards to energy prediction
(target property of our study) which implies that the descriptors used with these approaches
are atom-wise ones.

Based on the aforementioned conclusions, the choice of crystal structure descriptors se-
lected in this work is atom-wise distribution function-based descriptors as defined in [67].
The advantage with this choice is that it had been proven in previous studies that distribu-
tion function-based descriptors are effective. Moreover, atom-wise descriptors allow one to
use MLIP modeling which has been demonstrated to be very accurate.
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However, atom-wise descriptors are difficult to manage since they require developing a
non-conventional machine learning topology. Therefore, we propose to investigate two types
of distribution function-based descriptors, namely structural (structure-wise) descriptors and
atomic (atom-wise) descriptors.

3.3.4 Two- and three-body distribution functions

As previously stated, machine learning interatomic potentials consider contributions of atoms
in terms of energy as defined in the following equation.

E =
n∑

i=1
Ei (3.1)

Such as E denotes the total energy of a material, Ei is the energy contribution of the ith

atom, and n is the number of atoms in the material.
In quantum interactions, two- and three-body interactions often account for the majority

of the energy variation. If we focus on these two types of interactions, the energy would be
formulated as follows:

E =
∑
i<j

E2(r⃗i, r⃗j) +
∑

i<<kj

E3(r⃗i, r⃗j, r⃗k) (3.2)

Where E2 and E3 are pair and triple interactions energies, i, j, k run through the mate-
rial’s atoms, and r⃗ are the atoms positions.

By considering the interatomic potentials that describe the interaction between two or
more atoms, we take into account various physical and chemical factors that affect the bond
between atoms, including the attraction between the nuclei and electrons, the distribution of
electrons in the orbitals, and the repulsive forces between electrons. The bond between atoms
is determined by the balance of these interatomic potentials. Stronger bonds result from a
more negative interatomic potential, indicating a greater attraction between the atoms, while
weaker bonds result from a less negative interatomic potential.

Similarly, the type of bond between two atoms affects the distance between them due to
the forces of attraction between the atoms’ nuclei and electrons. Stronger bonds, such as
covalent bonds, result in shorter distances between the atoms, while weaker bonds, such as
hydrogen bonds, result in longer distances. By taking distances (determined by the positions
r⃗), we get the equation below:

E =
∑
i<j

Q2(|r⃗i − r⃗j|) +
∑

i<j<k

Q3(|r⃗i − r⃗j| , |r⃗i − r⃗k| , |r⃗j − r⃗k|) (3.3)
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Such as Q2 and Q3 represent two- and three-body potentials through one and three
dimensional functions, respectively.

However, it should be noted that the complexity resulting from the summations of Equa-
tion 3.3 is O(N3), with N being the number of atoms. In order to reduce this complexity,
two cut-off radii are introduced. The first one is R2

cut denoting the limit distance that sepa-
rates two atoms and above which all other pairs of atoms are ignored. The selected pairs of
atoms meeting this criterion are denoted P (R2

cut). Similarly, the triplets of atoms that are
considered are defined using the second cut off radii R3

cut through two variants: 1) a variant
where all sides of the triangle forming a triplet of atoms do not exceed R3

cut, and 2) a variant
where the maximum length between at least two sides of the triangle is R3

cut. Both variants’
selected triplets of atoms meeting these criteria are designated as T (R3

cut). This simplification
results in an important decrease of the complexity to O(N).

The right choice for R2
cut and R3

cut values depends on how much one would compromise
the effectiveness of the descriptors with regard to the speed. Choosing a higher value for the
cut offs would result in a higher accuracy but a slower potential and vice-versa.

The strategy chosen for this study in terms of descriptors is to represent data using dis-
tribution function-based potentials through a structural approach and an atomic approach.
In these two approaches, descriptors based on two-body distribution function (2BDF), three-
body distribution function (3BDF), and a combination of both two- and three-body dis-
tribution functions (2-3BDF) will be used. This strategy results in a total of six different
descriptors, all invariant with respect to rotation, reflection, permutation, and movement, to
be investigated, analyzed and compared for crystal structure data representation.

The features extraction process will be performed on the eight merged databases produc-
ing six databases each of nearly 10,000 entries. The six databases are obtained using 2BDF,
3BDF, and 2-3BDF of both (2D) structural and (3D) atomic approaches resulting in different
features of the materials data.

3.3.4.1 Structural descriptors approach

In this approach, the descriptors are structure-wise, meaning that each structure is repre-
sented by a single descriptor as an input to which corresponds an energy value as a target.
The mathematical representation of a structural descriptor is as follows:

Si : [v1, v2, · · · , vn]
where Si is the ith structure in the dataset and vj (1 ≤ j ≤ n) is the jth element of the

descriptor vector of size n.
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Figure 3.3: Overview of the three structural descriptors data distribution with the scatter
chart of (a) 2BDF-St, (b) 3BDF-St, and (c) the 2-3BDF-St.

The size of the structural descriptor n depends on the applied data representation. Indeed,
the number of elements of structural descriptor is either 60, 364, or 424 (60 + 364) for the
structural two-body distribution function (2BDF-St), the structural three-body distribution
function (3BDF-St), or the structural two- and three-body distribution functions combined
(2-3BDF-St), respectively.

In order to make informed data-based decisions, it is essential to master the data at hand.
One way to do that is through data visualization. By the use of different graphs and plots,
large and complex data can be made easier to understand while allowing more meaning-
ful insights. Therefore, we proceed hereafter to data visualization of the three structural
descriptors 2BDF-St, 3BDF-St, and 2-3BDF-St.

Figure 3.3 represents the scatter plot of the eight databases features combined and repre-
sented through (a) the 2BDF-St descriptor, (b) the 3BDF-St descriptor, and (c) the 2-3BDF-
St descriptor.

A scatter plot of input features against output in data visualization can be very practical
in terms of revealing the relationship between the input features and the output. It can
expose the power and direction of the relationship, as well as eventual non-linearities. The
scatter plots in Figure 3.3 (a), (b), and (c) illustrate data points of the 2BDF-St, 3BDF-St,
and 2-3BDF-St descriptors, respectively, as the input data average against the corresponding
normalized energy output value.

As opposed to a linear relationship between inputs and outputs, which is illustrated by
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Figure 3.4: Bar chart illustration of the 2BDF-St features’ correlation with the energy prop-
erty.

a clear pattern of points forming a straight line in the scatter plot, a non-linear relationship
is represented by a curved pattern or clusters of points. From the plots in Figure 3.3, a
non-linear behavior is clearly discernible by clusters of points. The data point distribution
is concentrated in the intervals [0.005-0.035, 0.1-0.5], [0-0.005, 0.1-0.5], and [0-0.01, 0.1-0.5]
for 2BDF-St, 3BDF-St, and 2-3BDF-St descriptors, respectively, while it’s lightly scattered
outside these intervals. Compared to 2BDF-St descriptor scatter, the 3BDF-St one is even
less proportionate, and thus, less linear, while the third structural descriptor is a combination
of the former two. It is constructed by the horizontal concatenation of 2BDF-St and 3BDF-St
and therefore has the characteristics of both.

In order to make sure that the data representation of 2BDF-St, 3BDF-St, and 2-3BDF-
St descriptors is adequate for crystal structure energy prediction, the correlation between
the inputs and the corresponding outputs needs to be analyzed. In machine learning, this
correlation refers to the relationship between the input features of a data set and the target
variables to be predicted. The strength of the correlation between inputs and outputs affects
the ability of an ML model to generalize and make effective accurate predictions; the stronger
the correlation, the better the model performance. Figures 3.4, 3.5, and 3.6 illustrate the cor-
relation between 2BDF-St, 3BDF-St, and 2-3BDF-St descriptors features of the investigated
dataset, respectively, with the energy value.

As depicted in Figures 3.4, 3.5, and 3.6, the features of 2BDF-St, 3BDF-St, and 2-
3BDF-St descriptors of sizes 60, 364, and 424 have different correlation values with the
energy, ranging from [-0.053, 0.4358], [-0.0307, 0.4009], and [-0.053, 0.4358], respectively.
The 3BDF-St correlation interval being smaller than that of 2BDF-St descriptor confirms
the stronger non-linearity. The 2-3BDF-St features-energy correlation interval is the same as
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Figure 3.5: Bar chart representing the 3BDF-St features’ correlation with the output energy
property.

Figure 3.6: Bar chart depiction of the correlation between the 2-3BDF-St features and the
energy property.
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Figure 3.7: Scatter plot of three features samples of the 2BDF-St descriptor. (a) Strong
positively correlated feature, (b) average positively correlated one, (c) negatively correlated
one.

that of 2BDF-St descriptor since it is larger and includes the 3BDF-St one. It is to be noted
that negative correlations are as important as positive ones. Where a positive correlation
refers to the fact that, as the values of the input increase, those of the output variable also
increase, a negative correlation refers to the opposite relationship, i.e. an increase in the
input causes a decrease in the output. Since it is difficult and not appropriate for this data
to be fully graphically presented, the choice of a normalized-based sampling representation
of the data was adopted by selecting specific samples of features based on their correlation
with the energy. To better visualize the non-linearity of data, we chose to plot three features
samples, namely: 1) a strong positively correlated feature highlighted by a blue frame, 2)
an average positively correlated feature highlighted by a green frame, and 3) a negatively
correlated feature highlighted by a red frame in Figures 3.4, 3.5, and 3.6. These features
samples’ scatter plots are presented in Figures 3.7, 3.8, and 3.9.

We can clearly notice that each sample scatter of one of the three descriptors differs from
the others in terms of data distribution. In addition, the three sub-plots from Figures 3.7,
3.8, and 3.9 further prove the data non-linearity behavior. Moreover, although the data
distribution is non-linear and disproportionate, we notice that all the randomly selected
samples representing positive correlation features form the same pattern shape for the three
descriptors which appears like a “V” shape. Likewise, the chosen samples that indicate a
negative correlation form a similar pattern appearing like an “A” shape (or an inversed “V”)
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Figure 3.8: Scatter plot of three features samples of the 3BDF-St descriptor. (a) Strong
positively correlated feature, (b) average positively correlated one, (c) negatively correlated
one.

Figure 3.9: Scatter plot of three features samples of the 2-3BDF-St descriptor. (a) Strong
positively correlated feature, (b) average positively correlated one, (c) negatively correlated
one.
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mirroring the opposite relationship of a positive correlation between the input features and
the output data.

3.3.4.2 Atomic descriptors approach

Unlike the structural approach, in the atomic approach, each atom has its own descriptor
vector, resulting in a structure with as many descriptor vectors as the number of atoms. An
atom-wise descriptor for a given structure Si is mathematically represented as follows:

Si :



v11, v12, · · · , v1n

v21, v22, · · · , v2n

... ... ... ...
vm1, vm2, · · · , vmn


Where Si is the ith structure in the dataset and vjk(1 ≤ j ≤ m, 1 ≤ k ≤ n) is the kth

element of the descriptor vector of the jth atom, with n and m representing the size of the
descriptor vector and the number of atoms in structure Si, respectively.

Similar to the structural approach, three different atomic data representations are used.
The number n representing the size of an atomic descriptor depends on which data represen-
tation is applied. According to whether an atomic two-body distribution function (2BDF-At),
an atomic three-body distribution function (3BDF-At), or the combination of the two former
ones as an atomic two- and three-body distribution function (2-3BDF-At) is utilized, the
number of elements of the atomic descriptor is either 60, 468, or 528 (60 + 468), respectively.

For this atomic approach, we use the same data visualization strategy to reveal and
illustrate the relationship between 2BDF-At, 3BDF-At, and 2-3BDF-At descriptors with the
energy output. Indeed, investigating the relationship between the input features and the
output is an important step in the machine learning process, as it can help to boost the
performance and interpretability of the model, and more importantly, identify any potential
issues with the data or model.

In Figure 3.10 (a), (b), and (c), we proceed to depict the scatter plot of the input features
represented through 2BDF-At, 3BDF-At, and 2-3BDF-At descriptors, respectively.

The scatter plots in Figure 3.10 show the data distribution of the three different atomic
descriptors. We notice that, from a plot to another, the scatter pattern changes. The data
distribution is concentrated in the intervals [0.012-0.075, 0.1-0.5], [0-0.01, 0.1-0.5], and [0-
0.03, 0.1-0.5] for the descriptors 2BDF-At, 3BDF-At, and 2-3BDF-At, respectively. As the
scatter appears like clusters of points, the relationship between the input features represented
through the three atomic descriptors with the energy output is non-linear.
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Figure 3.10: Overview of the three atomic descriptors data distribution with the scatter chart
of (a) 2BDF-At, (b) 3BDF-At, (c) 2-3BDF-At.

To further examine this relationship, we investigate the correlation of the data features
extracted using 2BDF-At, 3BDF-At, and 2-3BDF-At descriptors with the energy in Figures
3.11, 3.12, and 3.13, respectively.

The Figures 3.11, 3.12, and 3.13 depict the output-features correlation using 2BDF-At,
3BDF-At, and 2-3BDF-At descriptors of size 60, 468, and 528, respectively. The correlations
of the three descriptors 2BDF-At, 3BDF-At, and 2-3BDF-At with the energy range between
[-0.053, 0.4358], [-0.0241, 0.4425], and [-0.053, 0.4425], respectively. In each of these three
correlation plots, we highlighted three features samples in blue, green, and red representing
a strong positive, an average positive, and a negative correlation with the energy output,
respectively. These correlations are to be inspected in Figures 3.14, 3.15, and 3.16.

We observe in the strong positively correlated feature plots of 2BDF-At, 3BDF-At, and
2-3BDF-At the same behavior as for the structural descriptors; i.e. the data distribution
forms a pattern in the shape of a “V”. Likewise, negatively correlated feature plots show the
reversed behavior illustrated by a data distribution pattern arranged in the shape of an “A”
(or an inversed “V”). This proves that the various types of correlation between the input
data of the three different descriptors are consistent and show no discrepancy.
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Figure 3.11: Bar chart representing the 2BDF-At features’ correlation with the output energy
property.

Figure 3.12: Bar plot illustration of the correlation between the 3BDF-At features and the
energy property.

Figure 3.13: Bar plot depiction of the 2-3BDF-At features’ correlation with the output energy
property.
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Figure 3.14: Scatter plot of three features samples of the 2BDF-At descriptor, (a) Strong
positively correlated feature, (b) average positively correlated one, (c) negatively correlated
one.

Figure 3.15: Scatter plot of three features samples of the 3BDF-At descriptor, (a) Strong
positively correlated feature, (b) average positively correlated one, (c) negatively correlated
one.
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Figure 3.16: Scatter plot of three features samples of the 2-3BDF-At descriptor. (a) Strong
positively correlated feature, (b) average positively correlated one, (c) negatively correlated
one.

3.4 Summary and discussion

The significance of examining the correlation between the input features and the output
can help to acquire understanding of the fundamental relationship between the input and
output; thus, making it simpler to interpret the model’s predictions. Moreover, analyzing the
correlation between the input features and the output can help spot overfitting and prevent it.
Indeed, if the input features are highly correlated with the output, the ML model may overfit
the testing data and underperform on new, unseen data. In contrast, if the input features are
weakly correlated with the output, it may indicate that more features or additional rigorous
features engineering methods are required to boost the performance of the ML model. In
our case, the highest correlation recorded is 0.4425 which is very a suitable correlation value
since it is more likely to be moderate than high or weak.

In summary, the response of all plots illustrates the non-linear relationship nature where
the output (energy) is indirectly proportional to the input (features), and any change in
the input produces a disproportionate change in the output, as evidenced by energy plotted
versus features properties using both structural and atomic representations.
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3.5 Conclusion

This chapter has unveiled the need of engineering significant features and shown how the raw
crystal structure data can be transformed into an ML-suitable, numeric representation. The
two- and three- body distribution functions have been used for this purpose with structural
and atomic approaches.

As we venture forward, the conclusions drawn about the nature of the relationship between
the dependent and independent data, as well as the understanding gained from the CSP state-
of-the-art, are considered a valuable foundation for informed decision-making in the modeling
stage which will be covered in the next chapter.
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Chapter 4

Proposed Crystal Structure Energy
Prediction Modeling with Machine /
Deep Learning

“Predicting the future is not magic, it’s artificial intelligence.” – Dave Waters.

4.1 Introduction

With its ability to identify complex patterns within data, machine learning has become an
essential tool in the search for predictive accuracy. In the field of materials science, the fusion
of data and learning has the potential to solve the riddles of crystal structures. The present
modeling stage focuses on creating prediction models that give the insights acquired from
the features engineering process a deeper significance. The meticulously engineered features
from the previous chapter now serve as inputs for our prediction models. As the connections
between crystal structures and the desired energy property are uncovered, prediction models
that harness the power of data are built.

In this chapter, following the features engineering course, we will carry on with the crystal
structure energy prediction through two approaches: structural modeling with machine/deep
learning using the structural descriptors and atomic modeling with deep learning using atomic
descriptors.
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4.2 Machine learning predictions

The machine learning method employs algorithms made to identify and learn patterns in
data and provide predictions using that learning. The general mechanism of machine learning
consists in 1) reading input data that is represented by a number of characteristics (features),
2) training a machine learning algorithm to discover patterns or a data structure, or to learn
the correlations between the characteristics in the input data and the target variable, 3)
adjusting the parameters of the model that determine the weight and intensity of certain
features in a way that minimizes the learning error, and 4) proceeding to the prediction
process on new, unseen data using the built model that has been trained on the input data.

Depending on the prediction type, machine learning modeling is divided into supervised
learning and unsupervised learning [103]. Unsupervised learning models are only provided
with unlabeled data; their objective is to detect patterns or structure in the data, such as
grouping instances together based on similarity or determining underlying variables that
explain the data [104]. Clustering is one among various unsupervised learning techniques
with the aim of arranging and grouping the data into clusters so that the instances inside
each cluster are similar to one another and distinct from other clusters’ instances [105].

Supervised learning, however, is a type of machine learning where the model is trained on
data which is labeled with the target value, and the objective is to predict new, unforeseen
instances using the patterns discovered from the training data. In supervised learning, every
instance in the training data has a label or target variable associated that denotes the desired
result. The model is trained on a collection of (x, y) pairs, where x represents the independent
variable and y the dependent one, to construct a sort of a complex mathematical function
which is able to predict the target variable y∗ in response to a query x∗ as a new instance
[106].

Supervised learning can be further divided into two sub-categories: classification and
regression. The former consists in predicting a categorical target variable given a set of
features [107]. For example, in the medical field, predicting whether a patient has diabetes
or not based on a set of information such as age, gender, weight, etc. is a binary classification
problem, i.e. a prediction problem with two possible outcome classes. There’s also a multi-
classification problem where the number of outcome classes exceeds 2. A famous practical
case for multi-classification task is the prediction of digits based on handwritten digits image
pixel values.

The goal of regression, on the other hand, is to predict a continuous quantitative target
variable given a set of features. For example, given data on housing prices, the goal might
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be to predict the price of a house based on its size, location, year of construction, and other
factors [108].

In general, regression algorithms are used in a wide range of applications including ma-
terials science, social media, and marketing, to name a few. There are numerous types of
regression models; the choice of a regression model is determined by the nature of the prob-
lem at hand and the characteristics of the data. For instance, linear regression is suitable for
data with a matching simple linear input-target variables relationship, while decision tree re-
gression is more appropriate for data with non-linear relationships and complex interactions
between the input features.

In this study, we seek to predict the energy property, a continuous quantitative value, of
crystal structures that are represented through structural and atomic two- and three-body
distribution functions. These descriptors, as seen in the previous chapter, have a non-linear
relationship with the target variable.

Since the dataset at hand consists of eight databases in which each instance is labeled
with the energy output value, the problem we face herein is a supervised non-linear machine-
learning-based regression.

We proceed hereafter to the modeling stage of the energy property prediction through
structural and atomic approaches using respectively structural and atomic two- and three-
body distribution functions.

4.3 Structural approach modeling

In the modeling stage of the structural approach, we use the structural two- and three-
body distribution functions (2BDF-St, 3BDF-St, and 2-3BDF-St) as inputs. As seen in the
previous chapter, the structural data is suitable for machine learning where each structure
in the database is represented through a vector of 60, 364, or 424 depending on the used
descriptor. Therefore, we can proceed to the modeling by selecting appropriate regression
models to predict the energy value, as depicted in Figure 4.1.

The input data extracted from 2BDF-St, 3BDF-St, and 2-3BDF-St is a complex data
with different levels of non-linearity. When selecting machine learning algorithms for the
modeling stage, one would trivially select models according to the nature of the input data;
i.e. linear models for linear data and non-linear models for non-linear data. However, it is
sometimes interesting to explore more and think outside the box. In case of linear data, the
problem does not arise, since linear models are well suited and enough to solve the problem.
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Figure 4.1: Structural approach modeling for the prediction of the energy property. (a)
Inputs, (b) selected machine/deep learning algorithms, (c) output.

In fact, choosing a non-linear model for linear data would most probably cause overfitting.
If not, it would simply be overkill, thus wasting energy and resources.

On the other hand, when data is non-linear, there is room for inspection. It is true
that linear models assume that the relationship between the input and the output variables
is linear. This means that the output variable can be expressed as a combination of the
input variables with some coefficients that is of a linear nature. These coefficients essentially
govern the strength (or weight) and direction of the relationships. However, linear models
can sometimes work surprisingly well on non-linear data. This might be the case when
non-linear relationships may not be very strong. Indeed, when the non-linear relationships
between the input and output variables are relatively weak, a linear model can nevertheless
account for the majority of the variance in the data. A linear model can also capture certain
non-linearities in the data, in case the input variables are highly correlated with each other,
or in case the features engineering process has transformed input data that was originally
linear into new features that have non-linear relationships with the output variable.

The main reason one would first reach out to linear solutions is the computational cost.
Indeed, linear models are simpler algorithms which do not require a lot of data preprocess-
ing such as scaling or normalization. Such procedures might very well be computationally
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expensive in case of a large dataset. Moreover, linear algorithms have fewer parameters to
estimate than non-linear ones; thus, decreasing the complexity and the computational effort
to fit the model. In addition, when a linear model is built and trained, making off-line predic-
tions is typically computationally less costly than for non-linear models. This is because, in
contrast to non-linear models, which frequently necessitate more sophisticated computations,
non-linear models just require a matrix multiplication as the computation needed to generate
a prediction.

In the following sub-sections, we will present the theory of the investigated machine
learning models that were considered for the structural approach modeling. We will start
with linear models and make our way to non-linear ones which proved their efficiency in the
state of the art.

4.3.1 ElasticNet

ElasticNet (EN) is a linear machine learning algorithm which uses linear regression. The
linear regression algorithm seeks to define the relationship between the input and output
variables by finding the best-fit line through the data. The best-fit line of a simple linear
regression (having only one independent variable) is defined as follows (see equation below):

y = β0 + βx (4.1)

Where y is the dependent variable (to be predicted), x is the independent variable (the
features), β is the slope of the line (how steep the line is), and β0 is the y-intercept of the
line. The main goal of linear regression is to find the values of β0 and β in such a way that
the difference (error) between the predicted values of y and the actual y target values is
minimized.

As opposed to simple linear regression, multiple linear regression is when the input feature
is composed of two or more variables. In this case, the equation above becomes as follows:

y = β0 + β1x1 + β2x2 + · · · + βnxn = β0 +
n∑

i=1
βixi (4.2)

Where xi, 1 ≤ i ≤ n with n being the number of features, are the independent variables
and βi are the regression coefficients determining the weight of each independent variable
(variable contribution to the value of y). In order to find the best-fit line, one needs to
determine βi in a way to minimize the cost function defined in the equation below [109]:
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β̂ = argmin
m∑

i=1
(yi − (β0 +

n∑
j=1

βjxij))2 (4.3)

However, linear regression as defined might suffer from several drawbacks, such as model
complexity in case of a dataset with a large number of features and overfitting. In order to
fix these problems, two linear regression-based algorithms are introduced, namely: LASSO
(least absolute shrinkage and selection operator) and ridge regression. In LASSO regression, a
penalty term (L1 regularization) is added to the linear regression’s cost function (see Equation
4.4). This penalty pushes the model to shrink the least important features’ coefficients to
zero [109].

β̂L = argmin(
m∑

i=1
(yi − (β0 +

n∑
j=1

βjxij))2) + λ
∑

j

|βj| (4.4)

Where the λ parameter controls the strength of the regularization; a larger lambda value
implies that more coefficients are shrunk towards zero and thus irrelevant features removed.

Compared to linear regression, LASSO regression has the advantage to cope with high-
dimensional datasets having many features. Also, by only focusing on the most crucial
features for prediction, it can produce a model that is easier to understand.

Ridge regression is also a linear regression-based algorithm. Its most important advantage
is avoiding overfitting. Similar to LASSO regression, a penalty term (L2 regularization) is
added to the cost function of linear regression as shown in Equation 4.5 below [109]:

β̂R = argmin(
m∑

i=1
(yi − (β0 +

n∑
j=1

βjxij))2) + λ
∑

j

(βj)2 (4.5)

One way to benefit from both LASSO and ridge regressions advantages is to use ElasticNet
ML algorithm. Indeed, EN is an algorithm based on linear regression that couples LASSO
and ridge regressions. Given that it combines the ridge and LASSO regression techniques,
the ElasticNet plot, when displayed on a Cartesian plane, lies between them.

Mathematically, by combining the penalties of both L1 and L2 regularizations, EN can
produce more accurate predictions than either L1 or L2 regularization alone. Its estimator
is defined in the following equation [109]:

β̂EN = argmin(
m∑

i=1
(yi − (β0 +

n∑
j=1

βjxij))2 + λ(α
∑

j

|βj| + (1 − α)
∑

j

(βj)2)) (4.6)

Where α represents a tuning parameter that can regulate the ratio of L1 and L2 regular-
izations. This parameter, along with λ, allow for fine-tuning of the model.
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Therefore, EN model can benefit from both LASSO and ridge regressions’ strengths which
are respectively known to be 1) removing low relevance features and 2) reducing the chance
of data overfitting [110].

4.3.2 Bayesian Ridge (BR)

Bayesian ridge is a model combining both the Bayesian regression and the previously ex-
plained ridge regression. The Bayesian regression is a statistical approach based on Bayes’
theorem. This method brings interesting assets to the linear regression as it can take into
account interactions between inputs variables and, more importantly, nonlinear relationships
between the independent variables and the response variable. Plus, one can rely on Bayesian
regression to account for uncertainty.

Starting from the following fundamental equation of a linear regression model [111]:

y = βX + ϵ, ϵ ∼ N(0, σ2) (4.7)

where y and X are respectively the response and predictor variables, β the weight co-
efficients, and ϵ an error exhibiting a normal distribution with a mean of 0 and variance
σ2. What a Bayesian regression model tries to predict is the parameter vector β (weight
coefficients which can solve Equation 4.7) based on some observed data y. This is called the
posterior distribution and it’s illustrated in Equation 4.8.

β̂ = argmax(P (β|y)) (4.8)

By applying Bayes theorem, we obtain the following equation:

β̂ = argmax(P (y|β) × P (β)
P (y) ) = argmax(P (y|β) × P (β)) (4.9)

In Equation 4.9, the denominator P (y) was ignored because it has no relation with β,
which leaves us with the likelihood (1st term of the equation) and the prior distribution (2nd

term of the equation). This Bayesian-based method primarily allows for any prior knowledge,
information or beliefs that one may have on the model’s parameters to be reflected [112].

A variety of Bayesian regression called Bayesian ridge regression utilizes a ridge penalty
on the model coefficients in order to incite shrinkage towards zero. The ridge penalty may
be viewed as a method of accounting for the prior belief that the coefficients should be small
unless there is compelling evidence to the contrary.
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In Bayesian ridge, the parameters’ prior distribution is modeled with a Gaussian distribu-
tion with a mean of 0 and λ. The parameters’ prior knowledge is represented by the precision
λ which also regulates how much shrinkage is applied to the coefficients. In practice, the
Bayesian ridge model allows to control both the L1 and L2 regularizations for a stronger
performance.

4.3.3 Random forest

Decision trees are simple, straightforward statistical-based algorithms that can perform both
classification and regression tasks accurately [113, 114]. The primary feature of decision trees
is the recursive partitioning of datasets into descendant data subsets based on the values of
associated predictors [115]. The general algorithm of a decision tree is composed of three
main steps. The first step consists in selecting a feature that most effectively divides the
data into two subsets. For this step of the algorithm, the key element is to best choose the
feature for splitting the data. To this end, in case of classification, the feature is selected
using metrics such as information gain that measures how much the uncertainty is reduced
(the higher the value of information gain the better) [116] or Gini impurity which typically
calculates the probability of a randomly chosen data being misclassified (the lower the value
of Gini impurity the better) [117].

In case of regression however, this step consists in choosing a split point on a certain
feature in a way to best split the data into subsets. The split point can be any value ranging
from the minimum to the maximum value of the selected feature xi. The metric used for
this selection is of an error type such as Mean Squared Error or Mean Absolute Error (the
lower the value of the error measure the better). Once the feature and split point have been
selected, the second step of the algorithm is to divide the data of the current node into
subsets according to the chosen feature and split point. Then, steps 1 and 2 are repeated
until a stopping criterion is met. This criterion represents the third step of the algorithm.
Each time new subsets are created through step two’s data splitting, the stopping criterion
is tested to whether it is met or not. It can be chosen to be defined by the minimum number
of samples in a leaf node, maximum tree depth, etc.

Random forest [118] is a decision tree-based ensemble method [119]. It is applied for
classification as well as regression problems using multiple decision trees for the prediction
process. It consists of an ensemble of n decision trees where each tree Ti(X), i = 1, · · · , n
with X = x1, · · · , xm being the features vector of a data, is generated using a random vector
that is independent from the input vector [120].
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The training algorithm of random forest is the following [121]:

1. Draw bootstrap samples from the training data.

2. For each sample, grow an unpruned tree where each node consists of the best chosen
split among a randomly selected subset of descriptors.

3. Predict new data by aggregating (average for prediction) the predictions from all trees.

The prediction of random forest produces n outputs (one per each tree) and the final
output is the aggregation of all trees’ outputs [122]. The random forest prediction is defined
in Equation 4.10 as the unweighted average over the tree collection [123].

h(x) = 1
N

N∑
i=1

h(x,Θi) (4.10)

Where x stands for the observations with associated random vector, and Θk represents
independent and identically distributed random vectors.

The generation of bootstraps sample, the features subsets that are randomly chosen, and
the prediction aggregation are the three key components that make a random forest model
robust. Although random forests are typically more complex and less interpretable compared
to single decision trees, they provide more accurate predictions, less overfitting, and noise
resilience [124].

4.3.4 Support vector machine

Support vector machine is an ML model that is mainly used for binary classification problems.
Nevertheless, the general principle of SVM can be applied the same way on a regression task.
Indeed, since the relationship between a multidimensional input vector x and the output is
most likely to be non-linear, it is necessary for the data features to be mapped into a high
dimensional space in order to create a linear hyperplane [125] by the use of an SV kernel
[126]. Then, rather than using the hyperplane as a decision boundary in a classification task
to distinguish between patterns, SVM (also referred to as SVR short for Support Vector
Regressor when applied to regression problems) looks for a match between the input vector
and its position in the curve in order to predict a continuous real value. Its main goal is
to construct the hyperplane such that it lays close to the data points. This translates to
choosing a hyperplane with small norm while the sum of the distances from the hyperplane
to the data points is minimized [127].
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Given the training points (xi, yj), the general form of the hyperplane is defined by the
equation below [125]:

f(x) = wx+ b (4.11)

The regularized risk functional which needs to be minimized is defined as:

min
1
2 ∥w∥2 + c

n

n∑
i=1

Lϵ(yi, f(xi)) (4.12)

The first term is the regularization term that is related to the model complexity as
explained in Cortes and Vapnik [128]. In the second term, the loss function Lϵ ignores the
prediction error if the difference between the predicted value f(xi) and the actual value yi

is smaller than ϵ [125]; and C ≥ 0 represents the tradeoff between prediction accuracy and
cost.

We have yi − wxi − b ≤ ϵ and wxi + b − yi ≤ ϵ for data points within / on the margin
of tolerance that are above and below the hyperplane, respectively. Then, we introduce
slack variables ξi, ξ

∗
i ≥ 0 representing the distance (error) between the margins of tolerance

and data points that are outside the margins of tolerance above and below the hyperplane,
respectively. Since the margin of tolerance is ignored, it only leaves us with the new slack
variables:

min
1
2 ∥w∥2 + c

n

n∑
i=1

(ξi + ξ∗
i ) (4.13)

After applying the Lagrangian function and simplifying the formulated dual problem, we
obtain:

w =
n∑

i=1
(λi − λ∗

i )xi (4.14)

Where λi and λ∗
i result from the Lagrangian formulation. Then, after applying Equation

4.14 to Equation 4.11 we get:

f(x) =
n∑

i=1
(λi − λ∗

i )xix+ b (4.15)

By defining the kernel function K, K(xix) = ϕ(xi) ·ϕ(x), with ϕ denoting the type of the
kernel function (linear, polynomial, Gaussian, or sigmoid), we get:

f(x) =
n∑

i=1
(λi − λ∗

i )K(xix) + b (4.16)
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4.3.5 Deep neural networks

Artificial neural networks are modeled after the human brain’s biological neural networks.
They are extensively used in machine learning applications for different prediction tasks such
as pattern recognition, classification, and regression [129].

An ANN is composed of three types of layers, namely: input layer, hidden layer(s), and
output layer; a DNN is an ANN with two or more hidden layers [130]. The NN layers consist
in a network of linked nodes known as neurons. Each neuron receives an input, processes it
mathematically, and then produces a value. The inputs to the neurons in a layer come from
the outputs of the neurons in the previous layer. This process goes on until the output layer
is attained.

The neurons of the input layer (layer 0) are fed with the input data x(0)
i , 1 ≤ i ≤ N . The

rest of the layers’ values (including the output layer) are defined as follows [131]:

x
(k)
i = f(

m∑
j=1

x
(k−1)
i w

(k)
ij + bi) (4.17)

The equation above represents the feedforward process of a neural network where the
layers’ nodes have each a value x, and a transfer function f . An activation function is what
allows the neural network to learn complex relationships between dependent and independent
variables through the non-linearities that are introduced. The nodes between layers are linked
with connections which are characterized by the strength w that excites or inhibits nodes
[129]. At the end of the feedforward process, the error value is measured through the loss
function between the predicted value of the output layer and the actual desired output. The
primary goal of a neural network is to optimize the error value and minimize it, in order to
have a predicted output that is as close as possible to the desired output.

A crucial procedure for neural network training is backpropagation, which iteratively
modifies the weights depending on the error measure obtained during forward propagation.
The weights of the network are updated (see Equation 4.18) in a way that minimizes the
error value E [132].

w
′(k)
ij = w

(k)
ij − α

∂E

∂w
(k)
ij

(4.18)

4.4 Atomic approach modeling

As mentioned above, atomic approach features descriptors are not uniform since each material
has as many descriptors as its number of atoms, and materials do not have the same number of
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atoms. Therefore, standard ML algorithms (including the previously mentioned ones) cannot
be used on such data. To this end, a specific deep neural network topology was implemented
for each atomic database to support atomic approach features descriptors. To achieve this,
a modification was made in the feedforward process of the neural network. Given that an
instance (Si) from an atomic dataset is defined as the following, without considering the red
variables:

Si :



d1 = [v11, v12, · · · , v1n] → e1

d2 = [v21, v22, · · · , v2n] → e2
... ... ... ...

dm = [vm1, vm2, · · · , vmn] → em


→ Ei

A typical neural network should learn from the output Ei. In our case, the modification
lays in the fact that our neural network does not learn from one output per structure but
from as many outputs as there are atoms in a structure. In other words, for a particular
structure, the neural network learns from each atom its atomic energy contribution to the
total energy, which is referred to as ej(1 ≤ j ≤ m) in the representation above. The training
process of such a neural network is described by the following algorithm:

For each structure Si:

1. Create m (number of atoms) mini DNNs, each fed by its atomic descriptor dj(1 ≤ j ≤
m).

2. Predict the atomic energy contributions ej(1 ≤ j ≤ m) of all DNNs from step 1 using
Equation 4.17.

3. Sum up all atomic energy contributions ej(1 ≤ j ≤ m) from step 2, and calculate the
error E(∑m

j=1 ej, Ei).

4. Update DNNs’ weights using Equation 4.18, and repeat steps 2, 3, and 4 until the
desired error is achieved.

Figure 4.2 illustrates the aforementioned algorithm.

4.5 Machine learning training process

The general process (see Figure 4.3) of machine learning prediction takes the features engi-
neered dataset as an input for the selected models. The hyper-parameters of the models are
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Figure 4.2: Proposed atomic deep neural network topology scheme for the energy property
prediction.

set beforehand based on the best practices according to the state of the art. The models are
then trained and evaluated through performance metrics. Depending on whether the models
evaluation is satisfying or not, one would either proceed to the prediction process or return
to the models settings in order to tune the hyper-parameters for better results.

In order to predict the energy property, the previously mentioned algorithms in this
chapter were used as regression models. The general prediction formula is defined as follows:

Ei = RMhp(DVi) (4.19)

Where:

1. Ei is the output energy value of structure i.

2. RMhp is the regression model (EN, BR, RF, SVM, or DNN) built by learning the
correlations between input data and target in the learning set. In order to optimize the
investigated models and get the closest output to the target value, the hyper-parameters
(HP) of the models were selected using a hyper-parameter tuning procedure, and out
of all combinations, the configuration yielding the highest accuracy was chosen.

3. DVi = x1, x2, · · · , xn is the structure i’s input descriptor vector of size n (60, 364 ,424,
60, 468, or 528) for the three structural/atomic datasets respectively generated using
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Figure 4.3: Flow chart of the training/testing process for the energy property prediction.

(2BDF-St, 3BDF-St, 2-3BDF-St, 2BDF-At, 3BDF-At, 2-3BDF-At) descriptors on the
total eight merged raw databases.

Hyper-parameters are configuration options that are chosen before the model is trained
and are not learnt from the data. They have substantial influence over the model’s per-
formance and have control over a number of learning-related variables. Therefore, hyper-
parameter tuning is a crucial stage in machine learning since it may greatly enhance the
model’s performance and its capability for generalization. It allows to identify the ideal bal-
ance between model complexity and overfitting, thus producing better outcomes and more
accurate predictions.

One of the most exhaustive hyper-parameter tuning strategies is the grid search. After
defining a search space by specifying the potential values for each hyper-parameter, the grid
search strategy consists in defining all possible combinations of hyper-parameters and train
the ML model with each combination. Then, the hyper-parameters combination yielding the
best performance is selected to build the model. While this strategy is very efficient since it
explores every possible combination, it would most probably be computationally out of reach
[133].

One could reduce the computational time and cost by using the random search strategy
instead of the grid search one [133]. Although this strategy defines all possible combinations
of hyper-parameters as well, it only trains the ML model with randomly selected subsets of
the hyper-parameter combinations. While random search is less computationally costly, it is
definitely less efficient since it does not cover all possible hyper-parameter combinations and
thus, it may never reach the best performing hyper-parameter combination.
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For this purpose, another method was used for hyper-parameter tuning in this study.
It is called grid search cross validation [134]; it allows one to fully benefit from the grid
search strategy while reducing the computational cost. This is achieved by dividing the
input dataset and the hyper-parameter combination set into a number (k) of folds. Then, a
hyper-parameter combination subset is attributed to each input fold for the model training.
Finally, the hyper-parameter combination subset attributed to the best performing fold is
selected.

In this study, a total of 18 (5 previously mentioned structural approach ML algorithms ×
3 structural approach’s features descriptors + 1 atomic approach ML algorithm × 3 atomic
approach’s features descriptors) models were implemented to predict the energy value. Their
architecture and configuration respectively depend on the features descriptor size and hyper-
parameter tuning outcome. Table 4.1 summarizes the investigated ML models along with
their respective configurations.

In this study, the different investigated algorithms are tuned as follows:

• ElasticNet: to fully benefit from L1 and L2 penalties, the λ value was set to 1; also,
the alpha hyper-parameter was set 0.5 in order to equally take advantage from both
penalties.

• Bayesian ridge: the α1 and α2 parameters respectively representing the prior distri-
bution precision for the weights and the noise were set to small values for a stronger
regularization.

• Random forest: no pruning was performed in the random forest training to let the
trees grow to their maximum depth which allows to capture tricky and complex re-
lationships in the data. The selected criterion was the MSE loss and the bootstrap
Boolean parameter was set to “True” to allows to introduce diversity and randomness.

• Support vector machine: the “C” parameter controlling tradeoff between prediction
accuracy and cost was set to 1, the epsilon tolerance margin to 0.01, and the chosen
kernel is RBF for its strong ability to model non-linearities.

• Deep neural network: For the DNN models’ architecture (of both the structural and
atomic approaches), the hidden layers number is comprised between 2 and 6 (depending
on the structural and atomic descriptors used); the transfer function (TF) used in the
input and hidden layers is ReLU which has proven to be very effective in deep learning
[135]. As for the output layer, the Linear Activation function, most suitable transfer

University of Blida 1 - Computer Science: 2025 89



Proposed Crystal Structure Energy Prediction Modeling with Machine / Deep Learning

Approach Model Features Description Hyper-parameters

Structural

EN
2BDF In= 60,Out= 1 λ = 1

L1ratio = α = 0.5
Selection = cyclic

3BDF In= 364,Out= 1
2-3BDF In= 424,Out= 1

BR
2BDF In= 60,Out= 1

α1 = α2 = α3 = 1e−6

λ1 = λ2 = λ3 = 1e−63BDF In= 364,Out= 1
2-3BDF In= 424,Out= 1

RF
2BDF In= 60,Out= 1 Ccpalpha = 0

criterion = MSE
bootstrap = True

3BDF In= 364,Out= 1
2-3BDF In= 424,Out= 1

SVM
2BDF In= 60, Out= 1 C = 1

epsilon = 0.01
Kernel = RBF

3BDF In= 364, Out= 1
2-3BDF In= 424, Out= 1

DNN
2BDF In= 60,HL= 2, Out= 1 TF: ReLU, Linear

LA: Adam
LF: MSE

3BDF In= 364, HL= 4, Out= 1
2-3BDF In= 424, HL = 5, Out= 1

Atomic DNN
2BDF In= 60, HL= 2, Out = 1 TF: ReLU, Linear

LA: Adam
LF: MSE

3BDF In= 468, HL= 5, Out= 1
2-3BDF In= 528, HL= 6, Out= 1

Table 4.1: Machine learning models investigated in this study with their respective hyper-
parameters.
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Figure 4.4: Schematic representation of the 2-3BDF atomic DNN architecture.

function for regression problems [136], was used. The learning algorithm (LA) and
the loss function (LF) implemented were Adam optimizer and MSE, respectively. To
provide a better understanding of the proposed model, figure 4.4 represents a schematic
representation of the atomic DNN architecture. For a comprehensive overview, the
illustrated model corresponds to that of the 2-3BDF-At DNN.

4.6 Conclusion

Machine learning has the fascinating ability to discern and identify patterns in data. Given
the availability of engineered crystallographic data represented with structural and atomic
descriptors, we began by analyzing the fundamental components of predictive models, in-
cluding approaches, strategies, and algorithms. The strength and power of the latter were
exploited to construct models for the energy property prediction.

To this end, the structural approach consisted of five machine / deep learning models
implementation for the prediction task, to which the three structural descriptors were fed
as an input. Moreover, an unconventional neural network topology was proposed and im-
plemented to support atomic descriptors for the prediction of energy. In the next chapter,
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the evaluation of the several proposed implementations will be performed and the obtained
results will be presented.
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Chapter 5

Results and Discussion of Crystal
Structure Energy Prediction

“There is a magic in graphs. The profile of a curve reveals in a flash a whole
situation.” – Henry D. Hubbard.

5.1 Introduction

Machine learning models are evaluated using statistical measures with the sole purpose of
assessing the effectiveness of a model’s predictive ability. These metrics offer measurable
indicators of a model’s performance. They help one to fairly evaluate many models, choosing
the one that performs the best, and pinpointing potential areas for improvement. The as-
sessment of machine learning predictions is an essential step in the complex world of crystal
structure prediction, as the predictive ability and efficiency of the ML models are carefully
evaluated. In our case, we focus on predicting the energy property of crystal structures
which is a fundamental pursuit in materials science. The results in this chapter summarize
not only the complexity of our crystal structure energy prediction estimates but also the need
of thorough analysis in the field of predictive modeling.

As we move on with this chapter, we will proceed to the evaluation of our implemented
models through well-chosen performance metrics. Our objective is twofold: to select and
validate the strongest crystal structure descriptor, and to identify the best energy prediction
ML model. This evaluation phase is crucial in order to determine the strengths and drawbacks
of the implemented models and to guide the future course of the crystal structure energy
prediction investigation.
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Figure 5.1: Depiction of the data split procedure into 80% training/testing (with 5-fold cross-
validation process) and 20% validation sets.

5.2 Evaluation strategy

In this study, we aim at predicting the energy property of crystal structures. Several ML
algorithms were selected to model the relationship between the features descriptors extracted
from the structure/atom-based approaches and the energy property. In order to evaluate and
validate the prediction process, an evaluation strategy was adopted as explained hereafter.

5.2.1 Data split

For both the structural and atomic approaches, the six datasets resulting from the features
extraction process were each shuffled and divided into two subgroups as depicted in Figure
5.1.

• The first subgroup comprising 80% of the dataset is identified as the training and testing
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set. The performance of this subgroup was examined using five-fold cross validation
(5F-CV) procedure, dividing the dataset into five mutually selected train/test partitions
of equal size. For each of the five test runs, one partition was assigned as the test set
and the remaining samples were used to train the models.

• The second subgroup of the 20% remaining data was used for the final validation stage.

This technique helps one gain insights into the ML model’s generalizability and per-
formance capabilities. In fact, incorporating k-fold cross-validation technique allows us to
assess the extent of a model’s robustness, thus, making the overall prediction performance
more comprehensive to examine and evaluate.

5.2.2 Evaluation metrics

The evaluation procedure of the different investigated algorithms was performed using two
kind of metrics, namely: a graphical-based assessment and a statistical-based assessment.

The graphical-based assessment is represented through the Receiver Operating Charac-
teristics (ROC) and the Area Under Curve index. ROC/AUC is indeed an effective metric to
evaluate the algorithm’s learning ability [137]. In short, ROC provides a systematic analysis
through a graph which expresses the balance between benefits and costs [138] and displays
threshold between the sensitivity (Sn(e,t) placed across the abscissa axis) and 1-specificity
(Sp(e,t) plotted along the ordinate axis) [139] provided by [140]:

Sn(e, t) =
∑
TP (e, t)∑

TP (e, t) + ∑
FN(e, t) (5.1)

Sp(e, t) =
∑
TN(e, t)∑

TN(e, t) + ∑
FP (e, t) (5.2)

With TP, FN, TN, and FP representing True Positive, False Negative, True Negative,
and False Positive, respectively.

The AUC is a measure used to analyze the efficiency of the algorithm; its value is bounded
between 0 and 1 and represents the area under ROC curve of Sn(e, t) or true positive rate
(TPR) versus Sp(e, t) or false positive rate (FPR) [141]. The higher AUC score, the better
the performance.

AUC =
∫ 1

0
TPRd(FPR) (5.3)
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As for the statistical-based assessment, measures such as mean squared error, mean abso-
lute error, and R2 were considered. MSE and MAE are two representations of the difference
(error) between the predicted / expected (ŷi) value and the true / observed (yi) value for an
instance; they are usually used in regression problems and are defined as follows [142]:

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (5.4)

MAE = 1
n

n∑
i=1

|yi − ŷi| (5.5)

R2, also known as coefficient of determination, represents how well a regression model’s
fitness is. Through a scale of 1 to 100%, it measures the strength of the relationship between
the dependent variables and the model; a higher percentage of R2 means a better performance
of the model [143]. The equation used to calculate R2 is [144]:

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2 (5.6)

These metrics were not only used to evaluate the algorithms ability to accurately predict
the energy property, but also to compare the developed alternative models in order to identify
the best performance and, consequently, the best input features from the aforementioned
descriptors for energy prediction.

5.3 Experimental setup

In this study, we aim to conduct an investigation of crystal structure energy predication.
For this purpose, a computational database was generated using USPEX code at Oganov’s
Lab which was used for the training procedure to construct machine learning models. The
modeling stage was performed with Python 3 programming language through the frameworks
Keras-Tensorflow [145] and Pytorch [146] for the structural and atomic approaches respec-
tively using GPU execution mode. Scikit-learn [147] library was used for metrics calculation
to evaluate the models’ performance, and results plots were generated using Matplotlib [148].

5.4 Structural approach results interpretation

This section presents the ML investigation and performance evaluation through an assessment
based on the previously mentioned metrics. The developed structural-based models will be
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analyzed and compared to yield an efficient model for features validation and energy property
prediction. The results of the structural approach will be presented separately according
to the utilized descriptor (2BDF-St, 3BDF-St, and 2-3BDF-St). For each descriptor, the
performance of the learning models will be illustrated through a fold-based and a model-
based comparison visualization.

When analyzing and examining the fold-based and model-based performance results, we
should respectively consider the following two main factors:

• Balanced data distribution. In order to perform a 5-fold cross-validation, data
extracted from the different descriptors is evenly divided into 5 subgroups, each repre-
senting a fold. To make sure that the data distribution is balanced between folds with
respect to data diversity in terms of features, the performance of the folds should not
reveal a significant difference from one another. This is important insofar as the good
performance of a model should not depend solely on the distribution of a certain fold.
Indeed, the model must be able to yield a fair prediction result regardless of the fold,
which insures the model generalizability.

• Metrics harmony. The evaluation of the investigated ML models is carried through
performance metrics including MSE, MAE, R2, and ROC/AUC. In the assessment
process, no discrepancy or inconsistency should occur in the performance metrics values.
This means that, in the fold-based comparison, if a certain fold yields a lower MSE,
it should also yield a lower MAE and a higher R2 and AUC values. Likewise, in
the model-based comparison, the metrics should present with the same harmony and
consistency.

5.4.1 Prediction results of 2BDF-St-based models

2BDF-St is a structural-based descriptor using the two-body distribution function representa-
tion. It is defined by a 60-element vector for each structure. We present herein the prediction
results of the energy property of crystal structures represented through this descriptor.

5.4.1.1 Fold-based results comparison

Figure 5.2 displays the test phase prediction performance of the 2BDF-St models (EN, BR,
RF, SVM, and DNN) with regards to MSE, MAE, and R2 metrics.

Each metric of every subplot of Figure 5.2 is represented by 5 bars (one for each fold),
where the best performing fold is framed in a black edge color. The three metrics were plotted
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Figure 5.2: Bar plots of energy prediction’s testing phase of 2BDF-St models folds perfor-
mance with regards to MSE, MAE, and R2 which values are obtained as ye−1, ye−1, and
y × 100%, respectively.
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using the same scale and their values as mentioned in the subplots’ x axis are obtained as
such: ye−1, ye−1, and y × 100 (as a percentage value), with y being the statistical value on
the y axis for MSE, MAE, and R2, respectively.

The analysis of the bar plots depicting the investigated models performance reveals a
remarkable consistency in the results. Indeed, each fold’s performance of every ML model
stays closely clustered, indicating an almost equivalent predictive ability across the various
dataset subsets. We also observe that Fold 5 has a little edge over the others yielding better
MSE, MAE, and R2 values for the models EN, BR, RF, and SVM. Moreover, Fold 4 exhibits
a marginal advantage over, not only, the other folds of the DNN model but also all the other
folds of all models combined.

For more details, Table 5.1 presents precise MSE, MAE, and R2 values for every model’s
five folds prediction performance.

In Table 5.1, we find, for each 2BDF-St models folds, values that are bold-emphasized.
These values represent the best results of each model (lowest MSE, lowest MAE, and higher
R2). In addition, the best performing fold of all models combined is indicated in underlined
values.

It is clearly noted that the difference between MSE, MAE, and R2 values of every model’s
folds is small; this ensures that the data distribution is well balanced between all five folds
of the 2BDF-St descriptor’s dataset.

5.4.1.2 Model-based results comparison

In order to compare the best performing folds from each 2BDF-St model, we present Figure
5.3.

In Sub-figure 5.3 (a), the MSE, MAE, and R2 values of the (best performing) models EN-
St-F5, BR-St-F5, RF-St-F5, SVM-St-F5, and DNN-St-F4 are plotted together for a better
comparison visibility. Since the statistical metrics MSE, MAE, and R2 are plotted on the
same graph using the same scale (from 0 to 1) on the y axis, their values as mentioned in the
subplots’ legend are obtained respectively as follows: ye−1, ye−1, and y×100 (as a percentage
value), with y being the statistical value on the y axis. Sub-figure 5.3 (b), on the other hand,
illustrates the ROC curve plot of the same previously mentioned models.

We note that the plots of Figure 5.3 exhibit a coherence between the different quality
metrics. Indeed, where MSE and MAE metrics are lower, R2 and AUC values are higher.
This ensures the harmony between these performance metrics which is essential for results
credibility.
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Model Fold MSE MAE R2

EN

Fold 1 0.0116 0.0798 62.76
Fold 2 0.0105 0.0763 65.18
Fold 3 0.0119 0.0803 63.28
Fold 4 0.0109 0.0780 65.01
Fold 5 0.0100 0.0771 68.01

BR

Fold 1 0.0116 0.0798 62.73
Fold 2 0.0105 0.0791 65.16
Fold 3 0.0119 0.0802 63.22
Fold 4 0.0109 0.0778 64.87
Fold 5 0.0099 0.0767 68.14

RF

Fold 1 0.0085 0.0682 72.67
Fold 2 0.0079 0.0659 73.82
Fold 3 0.0088 0.0694 72.91
Fold 4 0.0084 0.0675 72.99
Fold 5 0.0078 0.0659 75.01

SVM

Fold 1 0.0059 0.0504 81.14
Fold 2 0.0060 0.0504 80.00
Fold 3 0.0064 0.0541 80.17
Fold 4 0.0059 0.0499 81.17
Fold 5 0.0057 0.0494 81.20

DNN

Fold 1 0.0058 0.0515 81.55
Fold 2 0.0059 0.0525 80.24
Fold 3 0.0062 0.0545 80.93
Fold 4 0.0055 0.0503 82.36
Fold 5 0.0055 0.0511 82.20

Table 5.1: Numeric results of MSE, MAE, and R2 quality metrics assessing ML performance
used with 2BDF-St features descriptor.
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Figure 5.3: Accuracy assessment of energy prediction’s testing phase of the 2BDF-St models’
best performing fold. (a) MSE, MAE, R2 measures, (b) ROC plot.

The best selected folds of each investigated ML model were all able to perform the energy
prediction using the 2BDF-St descriptors. They all lead to satisfying results where SVM-St-
F5 and DNN-St-F4 had an edge over other models while EN-St-F5 and BR-St-F5 yielded
the least favorable results and RF-St-F5 returned an average outcome. The best recorded
performance is that of DNN-St-F4 with a score of 0.0055, 0.0503, 82.36%, and 0.9720 for
MSE, MAE, R2, and AUC, respectively.

5.4.2 Prediction results of 3BDF-St-based models

In this section, the energy prediction results, as related to the structural three-body distri-
bution function descriptor, will be analyzed. The features of this descriptor are represented
through a vector of size 364. The models EN, BR, FR, SVM, and DNN will be trained and
tested using 5-fold cross-validation technique for the task of energy prediction.

5.4.2.1 Fold-based results comparison

In order to analyze and examine the performance of the investigated ML models using 3BDF-
St in a fold-wise manner, we present the testing phase prediction results of every fold from
each model in Figure 5.4.

The bars of each subplot in Figure 5.4 are gathered into 3 groups of 5 bars, with 3 being
the number of metrics MSE, MAE, and R2 (for which the value is respectively obtained as
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Figure 5.4: Bar plots of energy prediction’s testing phase of 3BDF-St models folds perfor-
mance with regards to MSE, MAE, and R2 which values are obtained as ye−1, ye−1, and
y × 100%, respectively.
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ye−1, ye−1, and y × 100%) and 5 the number of folds.
Upon the examination of the bar chart featuring the models’ testing results with regards

to MSE, MAE, and R2, a noteworthy pattern emerges. We observe a clear uniformity across
the performance of our cross-validation procedure’s five distinct folds. This uniformity indi-
cates a consistent ability to predict across different data subsets. Although all folds yielded
good results, which underlines the investigated models’ robustness in addressing the energy
prediction challenge, it is essential to emphasize that Fold 4 demonstrates a modest per-
formance advantage over the others, showing marginally better outcomes in terms of MSE,
MAE, and R2.

Table 5.2 provides accurate MSE, MAE, and R2 values for the five-fold prediction perfor-
mance of each model.

In Table 5.2, for each examined model, the best performing fold in terms of the selected
quality metrics is emphasized in bold. Moreover, as indicated in underlined values, the 4th

fold of the DNN-St model outperformed all other folds including those of the remaining
models.

In the 3BDF-St descriptor’s dataset, the data is proven to be evenly distributed across
all five folds through the minimal disparities in MSE, MAE, and R2 values of Table 5.2.

5.4.2.2 Model-based results comparison

In the purpose of highlighting the model-based performance comparison, we introduce Figure
5.5.

The subplots (a) and (b) of Figure 5.5 respectively illustrate a visual representation of the
statistical and graphical results of the best performing fold of each investigated ML model.
We observe that Fold 4 outperformed the other folds within every ML model performance;
however, the comparison analysis revealed that this fold’s data distribution yielded distinct
results from one model to another.

The statistical metrics results of EN-St-F4, BR-St-F4, RF-St-F4, SVM-St-F4, and DNN-
St-F4 plotted in Figure 5.5 (a) are obtained using the scale ye−1, ye−1, andy × 100(%) for
MSE, MAE, and R2. This plot shows a consistent behavior with that of the ROC plot of
Figure 5.5 (b). We notice that the lowest MSE and MAE values were recorded for DNN-St-F4
with a score of 0.0120 and 0.0809 respectively. This same model yielded the highest R2 and
AUC score of 62.24% and 0.9249 respectively. The RF-St-F4 and SVM-St-F4 models yielded
approximate average results while the remaining EN-St-F4 and BR-St-F4 models recorded
the highest MSE and MAE values as well as the lowest R2 and AUC ones, making them
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Model Fold MSE MAE R2

Fold 1 0.0159 0.0990 50.05
Fold 2 0.0179 0.1048 40.76
Fold 3 0.0159 0.0992 45.61
Fold 4 0.0153 0.0979 52.19

EN

Fold 5 0.0177 0.1048 45.25
Fold 1 0.0160 0.0993 49.77
Fold 2 0.0179 0.1047 40.89
Fold 3 0.159 0.0994 45.47
Fold 4 0.0153 0.0981 52.05

BR

Fold 5 0.0178 0.1051 4501
Fold 1 0.0135 0.0903 57.70
Fold 2 0.0151 0.0949 50.12
Fold 3 0.0139 0.0916 52.31
Fold 4 0.0129 0.0888 59.70

RF

Fold 5 0.0149 0.0944 53.71
Fold 1 0.0131 0.0855 58.92
Fold 2 0.0150 0.0922 50.53
Fold 3 0.0134 0.0860 54.10
Fold 4 0.0131 0.0868 59.03

SVM

Fold 5 0.0158 0.0935 51.14
Fold 1 0.0136 0.0825 58.03
Fold 2 0.0150 0.0903 50.35
Fold 3 0.0143 0.0865 51.04
Fold 4 0.0120 0.0809 62.24

DNN

Fold 5 0.0143 0.0859 55.77

Table 5.2: Numeric results of MSE, MAE, and R2 quality metrics assessing ML performance
used with 3BDF-St features descriptor.
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Figure 5.5: Accuracy assessment of energy prediction’s testing phase of the 3BDF-St models’
best performing fold. (a) MSE, MAE, R2 measures, (b) ROC plot.

the worst performing models in terms of the energy property prediction for the 3BDF-St
descriptor dataset.

The kinship between the different quality metrics results for the 3BDF-St descriptor
dataset shows no discrepancy, thus proving their harmonic behavior.

5.4.3 Prediction results of 2-3BDF-St-based models

The third dataset of the structural approach for crystal structure’s energy prediction is the
combination the two previously mentioned datasets (2BDF-St and 3BDF-St) which we refer
to as 2-3BDF-St. This dataset is generated using both two- and three-body distribution
functions and is represented through a vector of 424 elements.

The next two subsections present the energy prediction results of the selected ML models
performance using the descriptor 2-3BDF-St in terms of fold- and model-based analysis.

5.4.3.1 Fold-based results comparison

The structural approach’s five ML models were each trained and tested on five folds subsets
of the 2-3BDF-St’s descriptor dataset. The testing performance of these models’ folds with
regards to the selected quality metrics is illustrated in Figure 5.6.

Figure 5.6 shows the testing phase performance results of the several implemented ML
models with the structural descriptor 2-3BDF-St. The results are depicted in terms of the
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Figure 5.6: Bar plots of energy prediction’s testing phase of 2-3BDF-St models folds per-
formance with regards to MSE, MAE, and R2 which values are obtained as ye−2, ye−1, and
y × 100%, respectively.
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Figure 5.7: Accuracy assessment of energy prediction’s testing phase of the 2-3BDF-St mod-
els’ best performing fold. (a) MSE, MAE, R2 measures, (b) ROC plot.

quality metrics MSE, MAE, and R2 which are obtained from the bar plots as follows: ye−2,
ye−1, and y × 100%, respectively.

The examination of bar charts in Figure 5.6 displays that the 2-3BDF-St dataset’s five
folds are undoubtedly well balanced in terms of data distribution. All five folds yielded,
to a certain extent, approximate prediction results. As highlighted, the bars with a black
edge indicate the best performing fold. We notice that Fold 1 surpassed the other ones
for the models EN, BR, SVM, and DNN, while the RF implementation showed that the
outperforming fold was the fifth one.

Detailed quality metrics values of the five models’ testing performance are summarized
in Table 5.3.

As mentioned above, the overall energy prediction performance as related to the 2-3BDF-
St descriptor dataset revealed that FoldS 1 and 5 (highlighted in bold in Table 5.3) had a
slight advantage over the three remaining folds. Among all models, DNN-St’s 1st fold yielded
the best predictive ability of the energy property (as underlined in Table 5.3).

5.4.3.2 Model-based results comparison

After selecting the best performing fold of each investigated model implemented with the 2-
3BDF-St descriptor, we perform a model-based comparison analysis of these folds as shown
in Figure 5.7.

Figure 5.7 (a) represents the statistical quality metrics MSE, MAE, and R2 (with the scale
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Model Fold MSE MAE R2

EN

Fold 1 0.0053 0.0503 83.65
Fold 2 0.0057 0.0521 81.57
Fold 3 0.0068 0.0533 77.03
Fold 4 0.0060 0.0527 81.06
Fold 5 0.0064 0.0513 79.50

BR

Fold 1 0.0053 0.0502 83.54
Fold 2 0.0057 0.0523 81.35
Fold 3 0.0069 0.0533 76.81
Fold 4 0.0061 0.0524 80.90
Fold 5 0.0062 0.0507 80.08

RF

Fold 1 0.0083 0.0683 74.07
Fold 2 0.0080 0.0675 73.78
Fold 3 0.0083 0.0673 71.90
Fold 4 0.0084 0.0680 73.60
Fold 5 0.0081 0.0675 74.03

SVM

Fold 1 0.0042 0.0401 86.99
Fold 2 0.0049 0.0430 83.95
Fold 3 0.0057 0.0441 80.84
Fold 4 0.0050 0.0427 84.38
Fold 5 0.0053 0.0437 82.93

DNN

Fold 1 0.0031 0.0314 90.42
Fold 2 0.0033 0.0321 89.41
Fold 3 0.0038 0.0333 87.05
Fold 4 0.0031 0.0335 90.27
Fold 5 0.0034 0.0333 88.97

Table 5.3: Numeric results of MSE, MAE, and R2 quality metrics assessing ML performance
used with 2-3BDF-St features descriptor.
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ye−2, ye−1, and y × 100%, respectively) obtained by the best performing folds for each ML
model with the 2-3BDF-St descriptor. The comparison analysis shows that the deep neural
network model exceeded the other models in terms of energy predictive ability with a score of
0.0031, 0.0314, and 90.42 for MSE, MAE, and R2, respectively. This leading performance was
followed by that of the support vector machine model. The ElasticNet and Bayesian ridge
models yielded average results, while the random forest model achieved the least satisfactory
outcome.

The acquired statistical quality metrics results pattern is backed up by Figure 5.7 (b)
representing the graphical ROC plot of the same models. The best AUC value score is
that of the DNN-St-F1 model (0.9868) followed by SVM-St-F1, EN-St-F1, BR-St-F1, and
RF-St-F5 in this order.

To summarize, we observed a similar behavior for all three structural-based models. In-
deed, deep neural networks outperformed the other 4 models, followed by SVM as the second-
best performing model in all three cases, while the lowest results were reported by both EN
and BR for 2BDF-St and 3-BDF-St with a similar performance. However, RF achieved av-
erage results for 2BDF-St and 3BDF-St descriptors, but its predictive ability significantly
dropped with the 2-3BDF-St descriptor due to the fact that it cannot handle bigger datasets
(in terms of features number).

In a descriptor-wise analysis, the obtained results show that all the algorithms produced
promising results with the 2BDF-St database, while the 3BDF-St database led to a decrease
in the performance of the algorithms. However, important results were obtained with the 2-
3BDF-St database, with the notable exception of RF, which performed better using 2BDF-St
database.

5.5 Atomic approach results interpretation

This section presents the performance evaluation of the atomic-based deep neural network
developed through an assessment based on the previously mentioned metrics. The developed
atomic-based models will be analyzed and compared to yield an efficient model for features
validation and energy property prediction.

As opposed to the structural approach, in this atomic approach we only dispose of one
model that is a deep neural network. This decision was made based on the fact that atomic
descriptors are not uniform and are unfit for any machine learning process. For this purpose,
an unconventional deep neural network topology was developed to support these descriptors.
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Figure 5.8: Accuracy assessment of energy prediction’s testing phase of the 2BDF-At models’
5-folds. (a) MSE, MAE, R2 measures, (b) ROC plot.

Therefore, in the following subsections, we will proceed with a fold-based comparative analysis
for the energy property prediction.

5.5.1 Prediction results of 2BDF-At-based models

In this section, the results related to the energy prediction using 2BDF-At descriptor are
presented. 2BDF-At is a dataset generated using the two-body distribution function with
the atomic approach. This descriptor is an atom-wise representation of the input data. It is
defined by a structure composed of ni vectors of size 60, with ni being the number of atoms
of the ith crystal structure in the dataset.

Figure 5.8 depicts the statistical and graphical results of the energy prediction produced
by the 2BDF-At’s 5 folds of the cross-validation process.

The analysis of the statistical metrics illustrated in Figure 5.8 (a) as well as the ROC
plot in Figure 5.8 (b) shows that there is a narrow difference between performance results
achieved by the 5 folds of the 2BDF-At model in the testing phase. We also notice that there
is no observable inconsistency when it comes to the patterns of the plotted quality metrics,
thus, ensuring the reliability of the results.

We present in Table 5.4 the numeric values of the testing phase energy prediction of each
2BDF-At DNN’s folds.

The examination of Table 5.4 demonstrates that all five folds of the 2BDF-At model
yielded a strong performance and resulted a promising outcome. With only slight differences
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Model MSE MAE R2 AUC
DNN-At-F1 0.0021 0.0270 93.51 0.9946
DNN-At -F2 0.0031 0.0316 89.76 0.9913
DNN-At -F3 0.0026 0.0301 91.01 0.9914
DNN-At -F4 0.0023 0.0288 92.79 0.9910
DNN-At -F5 0.0022 0.0275 92.86 0.9916

Table 5.4: Numeric results of MSE, MAE, R2, and AUC quality metrics assessing ML per-
formance used with 2BDF-At features descriptor.

in the metric values, the performance throughout the five folds showed a similar pattern. A
score of (0.0021, 0.0270, 93.51%, and 0.9946) for the metrics (MSE, MAE, R2, and AUC,
respectively) was achieved by Fold 1 demonstrating the highest performing model, followed
closely by Fold 5.

5.5.2 Prediction results of 3BDF-At-based models

The three-body distribution function descriptor developed with the atomic approach produces
a dataset defined as follows: every structure of the dataset is associated with a set of vectors
(equal to the number of atoms in that structure), each containing 468 features.

This dataset went through the same 5-fold cross-validation resulting in 5 new train-
ing/testing sets. They were used as inputs to train and test the developed DNN-At model,
and the testing phase results with regards to the quality metrics are reflected in Figure 5.9.

The inspection of the plots in Figure 5.9 affirms that the five folds of the 3BDF-At
descriptor dataset slightly differ from one another in terms of energy prediction performance,
which reflects a well-balanced data distribution. Moreover, the results illustrated in the
graph representing the MSE, MAE and R2 statistics in Figure 5.9 (a) are consistent with
those presented in the ROC plot of Figure 5.9 (b).

The precise values of the assessment metrics with regards to the testing phase performance
of the 3BDF-At’s five folds are listed in Table 5.5.

As evidenced by Table 5.5, the performance of the 3BDF-At’s five folds achieved results
that are satisfactory for the energy prediction task. We notice a small variation between the
different folds performance where Folds 3 and 4 yielded the best results. The best (MSE,
MAE, R2, and AUC) score of (0.0049, 0.0407, 83.07%, and 0.9742, respectively) was recorded
by Fold 4.
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Figure 5.9: Accuracy assessment of energy prediction’s testing phase of the 3BDF-At models’
5-folds. (a) MSE, MAE, R2 measures, (b) ROC plot.

Model MSE MAE R2 AUC
DNN-At-F1 0.0084 0.0663 72.97 0.9519
DNN-At -F2 0.0058 0.0510 82.18 0.9749
DNN-At -F3 0.0049 0.0423 84.42 0.9658
DNN-At -F4 0.0049 0.0407 83.07 0.9828
DNN-At -F5 0.0062 0.0419 80.13 0.9742

Table 5.5: Numeric results of MSE, MAE, R2, and AUC quality metrics assessing ML per-
formance used with 3BDF-At features descriptor.
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Figure 5.10: Accuracy assessment of energy prediction’s testing phase of the 2-3BDF-At
models’ 5-folds. (a) MSE, MAE, R2 measures, (b) ROC plot.

5.5.3 Prediction results of 2-3BDF-At-based models

The last dataset generated through the features engineering process in this study is the 2-
3BDF-At. It uses the two- and three-body distribution functions with the atomic approach.
It represents the largest dataset in terms of features with 528 size descriptor vectors for each
atom in a structure.

After developing a DNN model according to this descriptor, the built model was trained
and tested for the energy prediction. The five pairs of training/testing sets were generated
with the 5-fold cross-validation process. Through Figure 5.10, a reflection of the 2-3BDF-At’s
folds performance is illustrated.

Figure 5.10 (a) represents a plot of the 2-3BDF-At’s testing phase performance with
regards to the statistical metrics MSE, MAE, and R2. It shows that the five folds’ results are
very close to each other with tiny variations differentiating them. The ROC plot in Figure
5.10 (b) complies with the previous plot; it depicts a very narrow distinction between the 5
folds performances.

It is worth noting that the five folds of the 2-3BDF-At model yielded a solid performance
and achieved roust results as reflected by the ROC curves demonstrating each a nearly perfect
right-angled curve.

The quantitative values of the assessment metrics evaluating the performance of the 2-
3BDF-At’s five folds are presented in Table 5.6.

The 2-3BDF-At models, as shown in Table 5.6, attained commendable prediction ability
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Model MSE MAE R2 AUC
DNN-At-F1 0.0007 0.0130 97.62 0.9995
DNN-At -F2 0.0005 0.0111 98.38 0.9996
DNN-At -F3 0.0007 0.0145 97.57 0.9995
DNN-At -F4 0.0005 0.0126 98.44 0.9997
DNN-At -F5 0.0006 0.0122 97.94 0.9996

Table 5.6: Numeric results of MSE, MAE, R2, and AUC quality metrics assessing ML per-
formance used with 2-3BDF-At features descriptor.

of the energy property. The evaluation of all folds indicates that similar results were obtained,
with Fold 4 exhibiting a marginal advantage over the others, followed closely by Fold 3. The
outperforming fold recorded a score of 0.0005, 0.0126, 98.44%, and 0.9997 for MSE, MAE,
R2, and AUC, respectively.

From the examination of this atomic approach, we perceive a familiar behavior of 2-
3BDF-At’s models outperforming the two other atomic-based models, followed by 2BDF-At’s
DNNs, whereas, the performance accuracy drops with the 3BDF-At’s DNNs. Therefore, we
conclude that 3BDF-At descriptor has a subpar data correlation compared to 2BDF-At and
2-3BDF-At descriptors.

5.6 Comparative analysis: Structural VS Atomic

The sole purpose of this study is to identify the best descriptor for crystal structures for the
task of energy prediction. Selecting the outperforming descriptors matches the selection of
the best ML model since the ML models in this study were developed correspondingly to
support each descriptor.

Given the fact that there are six different descriptors (three in each approach), the best
quality measures obtained from all descriptor models applied in terms of structural and
atomic approaches were selected for the purpose of a comparative analysis.

Figure 5.11 illustrates the comparison between the best performing models selected,
namely (2BDF-DNN-St-F4, 3BDF-DNN-St-F4, 2-3BDF-DNN-St-F1, 2BDF-At-F1, 3BDF-
At-F4 and 2-3BDF-At-F4) applied to their corresponding structural and atomic descriptors.
It reflects their predictive ability of the energy property, providing a clear overview of their
relative strengths and weaknesses. The comparison is based on the same set of quality as-
sessment parameters including (a) (MSE, MAE, and R2) statistical measures which values
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Figure 5.11: Performance comparison through: (a) MSE, MAE, R2, and (b) ROC/AUC of
the best selected models from both structural and atomic approaches.

can be obtained as explained in the legend of the plot, and (b) ROC/AUC graph.
The comparison plotted in Figure 5.11 proves that atomic-features-based models out-

performed the structural-features-based ones. Also, in each approach, models implementing
2-3BDF descriptors yielded the best results, followed by 2BDF, then 3BDF as the least
satisfactory models. In addition, the strongest and weakest performances were respectively
presented by 2-3BDF’s atomic-features-based model and 3BDF’s structural-features-based
model.

To summarize, the results show that, (1) regardless of the approach used, models imple-
menting a combination of 2BDF and 3BDF are more efficient and better performing than
models implementing 2BDF or 3BDF separately. (2) Moreover, 2-3BDF-At-F4 outperformed
all other models in both approaches with the highest score on all measures. (3) The accuracy
achieved of this model is due to the choice of the features descriptor. The combination of
2BDF and 3BDF is far more robust since it contains bonds and information about both pairs
and triples of atoms. (4) Also, the atomic-based features extraction generates atom-wise
descriptors, meaning that each structure has as many features descriptors as it has atoms;
thus, these descriptors are considered very precise and accurate.
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5.7 Validation

To validate 2-3BDF-At-F4 as superior to all other models, first, the model is applied to
the entire dataset and then, on the unseen 20% of the remaining validation set in order to
examine its behavior. Figure 5.12 illustrates the performance of the energy prediction when
examining the selected model.

The subplot (e) of Figure 5.12 represents the 2-3BDF-At-F4 model’s fitness of the full
dataset. It is clearly noted that the selected model’s output (in blue circles) matches the
dataset’s target (in red crosses) as they almost seamlessly overlap. In order to make sure
that the dataset’s target has the same pattern underneath the model’s output, we plotted
them separately in the subplots (a) and (c), respectively. This helped us further confirm that
the model’s output and the target set have nearly the same pattern.

The subplots (b) and (d) of Figure 5.12 respectively depict the statistical and graphical
representations the 2-3BDF-At-F4 results with regards to the testing (as previously pre-
sented) and validation stages. We note that the model has a remarkable ability to generalize
to new unseen data, as it yielded robust results in the validation stage that are not too distant
from the testing phase results.

Finally Figure 5.12 (f) shows the regression plot of 2-3BDF-At-F4’s validation stage of the
energy prediction performance, where the target vs. predicted values of only the validation
stage were illustrated in a plot demonstrating an arrangement of the points into a fitting line.

Results of the generalization and the validation stage proved the efficiency of the chosen
features descriptor. The same set of measurements was used for the validation’s evaluation;
the obtained score was 1.1e−3, 1.69e−2, 96.44%, and 0.9976 for MSE, MAE, R2, and AUC,
respectively. Moreover, Table 5.7 presents the comparison of the target values (yi ∈ R) and
output values (ŷi ∈ R) generated by the best selected model for a randomly chosen sample
of each database.

The performance of 2-3BDF-At-F4 shows through the similarity between the observed
energy values and the predicted ones. Indeed, the difference between the normalized target
and output energy values ranges from 9e−7 to 1e−5, while the average difference between the
real target and output energy values is 8e−4.

5.8 Comparison with the state of the art

Conducting a comparative analysis of a study with the state of the art can be crucial since it
offers a foundation for validating the quality and the effectiveness of the proposed approach.
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Figure 5.12: Performance of the best selected model 2-3BDF-At-F4 for the validation stage.
(a, c, e) predicted Vs. targets of the entire dataset, (b, d) comparison between testing and
validation, (f) regression plot of the model on the validation dataset.
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Database sample Normalized target Normalized output Target Output
Li20Ag2 0.3589 0.3589 −40.0670 −40.0673
Li8At18 0.4871 0.4871 −54.3876 −54.3859
Li16Au14 0.7994 0.7994 −89.2555 −89.2563

Li6Ba 0.1038 0.1038 −11.5891 −11.5910
Li10Bi2 0.2449 0.2449 −27.3397 −27.3398
Li6Br10 0.4106 0.4106 −45.8399 −45.8414
Li18Ca4 0.3578 0.3578 −39.9458 −39.9457
Li9Cd5 0.1795 0.1795 −20.0450 −20.0454

Table 5.7: Comparing a sample of each database’s target value with the according output
value generated by 2-3BDF-At-F4.

However, without a proper scale of comparison, the analysis of the state of the art vs. the
proposed approach of a study would be unfair. Most of the studies of crystal structure pre-
diction present unique investigations with respect to datasets, prediction task (classification
or regression), desired property to be predicted, and performance metrics. In our study, we
investigated the prediction of the energy property (regression task) of the databases LiAg,
LiAt, LiAu, LiBa, LiBi, LiBr, LiCa, and LiCd. The validation of the presented approach was
performed locally by applying the built selected model on 20% of the total merged datasets
that was never introduced in the training or testing phases of the model. The performance
of the model was measured using MSE, MAE, R2, and ROC/AUC metrics. To our best
knowledge, a study of these exact databases for the energy property prediction has not been
published before, thus, making our study a unique investigation.

Nevertheless, in order to have a better idea of where this study stands in terms of effective-
ness of its predictive ability and superiority of its innovation, it is still possible to compare its
results with some of state-of-the-art works. The selected relevant studies to compare with are
the ones which focused on the energy property prediction and where the evaluation process
was conveyed using at least one of the quality metrics used in this study (see Table 5.8).

Table 5.8 demonstrates that the approach proposed in this study for the task of energy
prediction achieved better results than the selected state-of-the-art studies.
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Ref. Data type Data source ML model Descriptor MAE
[55]
2015

Comput. MP KRR
Ewald sum-based CM,

Extended CM, Sine matrix
0.07

[87]
2018

Experim. ICSD
GNN-based

CGCNN
Defined 0.039

[88]
2020

Comput. MP
GNN-based
GATGNN

Defined 0.039

[89]
2020

Comput. Generated
GNN-based

OGCNN
OFM 0.0466

[90]
2022

Comput.,
experim.

OQDM,
MatB

GNN-based Defined 0.016

Our work Comput. Generated DNN-At
Defined

(2-3BDF-At)
0.0126

Table 5.8: Comparison of 2-3BDF-At performance with that of the state of the art in terms
of energy prediction and MSE measure.

5.9 Conclusion

In conclusion, we have revealed, in this chapter, the findings of our quest to predict the
energy property of crystal structures which holds the key to understanding the stability of
these materials and their behavior. Crystallography, features engineering, and machine / deep
learning (explored in the previous chapters) all cooperated to predict crystal structural energy
with remarkable accuracy, illuminating the behavior of crystals. Beyond these numbers, there
are significant implications and insights provided in a way to guide the future investigations
of materials research and discovery.

This chapter first explored the strategy and the environment in which the selected machine
learning models were implemented. Then, the results of each model with every descriptor of
the two approaches (structural and atomic) were presented. We displayed the results in a
way to compare approaches, descriptors, and models in order to 1) approve of the strongest
descriptor (making the approach to which it belongs to the strongest of the two), and 2)
validate the best performing model for crystal structure energy prediction. It has been
determined by the previously demonstrated results in this chapter that the 2-3BDF-At-F4
DNN model outperformed all other models, indicating that the combination of the two- and
three-body distribution functions with the atomic approach is considered to be the superior
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descriptor, and that the unconventional deep neural network model developed is the best
among the implemented ML/DL models.
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In the present thesis, we provided an in-depth investigation of crystal structure energy predic-
tion through the lens of machine learning, covering a wide range of computational methods
and materials science. Our study has been driven by the core objective of advancing materials
science through the accurate regression of the energy property within crystalline structures.
We have dived into the complexities of crystallography, revealing the fundamental relation-
ships that govern energy behaviors through diligent and meticulous features engineering, al-
gorithmic innovation, and rigorous model validation. This research marks a ground-breaking
effort that advances our understanding of crystalline matter. Moreover, the insights gained
from our study empower the search for new materials with tailored properties and redefine
the future of materials discovery, eventually advancing materials science and engineering.

In order to meet our main goals and objectives, the path to this journey was marked
by several key phases. As a start, we methodically outlined the scope of our research, pin-
pointing the critical intersection of crystallography, machine learning, and energy property in
materials. During this stage, a thorough examination of the existing literature was conducted
to help us shape our research and formulate our study questions and goals.

With a clear direction, we began with the data collection process, using reliable crys-
tallographic databases. In order to assure data consistency and quality, this step entailed
meticulous data preparation, laying the groundwork for further analysis. The main data
preprocessing and preparation process was performed using simple NLP techniques.

Having preprocessed data at hand, we proceeded with converting complex structural infor-
mation into machine-readable inputs for our models. In this critical phase, we proposed two
approaches to describe crystal structures. The former structural approach defines through a
numerical vector a whole crystal structure and is therefore convenient for any learning pro-
cess. The latter atomic approach however, offers an atom-wise representation, thus defining
a crystal structure with as many vectors as it has atoms making it non-uniform and unfit for
the (direct) learning process. This pivotal phase addressed a key objective of our study, that
is crystal structure features engineering. The resulting features were further analyzed, and
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it was unveiled that the relationship between input descriptors and the energy property is of
a non-linear nature. The acquired information of this analysis is extremely important as an
insightful perception of the machine learning modeling to be performed in the next step.

The heart of our research lay in the development and validation of machine learning
models. We trained and tested a wide range of algorithms through two approaches in accor-
dance with the features engineering process. A total of five different models were used for
the structural modeling approach, including four machine learning-based algorithms, namely:
ElasticNet, Bayesian ridge, random forest, and support vector machine, in addition to a deep
learning-based artificial neural network. In the second, atomic modeling approach, since
the corresponding atom-wise representation is non-uniform, we proposed and developed a
non-conventional deep learning-based artificial neural network topology to support these de-
scriptors. The models from both approaches were refined through hyper-parameter tuning
to optimize their prediction skills.

A thorough evaluation process was performed to assess the accuracy of the investigated
ML algorithms using 5-fold cross-validation technique and performance measures, including
MSE, MAE, R2, and ROC/AUC. Through a sequence of graphical representations and nu-
merical data, we illustrated and analyzed the achieved results. It has been determined from
the examination of our findings that the proposed atomic modeling approach’s deep neural
network outperformed all other models with regards to every performance metrics for the
energy property prediction. In terms of descriptors, the most robust crystallographic repre-
sentation was identified to be the combination of atomic two- and three-body distributions
functions. Moreover, compared to recent studies of the state of the art, our work yielded
remarkable crystal structure energy prediction results.

Throughout this research process, we faced and overcame challenges, adopted novel ap-
proaches, and, most importantly, improved our comprehension of crystal structure energy
prediction. The closing of this thesis marks the conclusion of a research endeavor on one
hand, but the beginning of a future shaped by insights uncovered in the field of crystal struc-
ture prediction. Our future works intend to use the best identified 2-3BDF-At descriptor
with its developed unconventional DNN model on larger sets of data for other properties
and thus, broader applications. Moreover, it is worth mentioning that the computational
complexity of deep learning-based models is particularly high and increases with the number
of data and features. Consequently, in order to avoid the necessity of having huge amount of
data for the modeling process, reducing the computational cost, we seek to develop a more
efficient learning-free regression approach for crystal structure property prediction.
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