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الكهربائي    :ملخص النظام  استقرار  منظمات  تحسين  دراسة  هو  الموضوع  هذا  من  الرئيسي  خوارزميات    باستخدام (PSS)الهدف 

ميتاهيرستية متقدمة لتعزيز التخميد والاستقرار في أنظمة الطاقة، وخاصة في ظل ظروف الأعطال الشديدة مثل الأعطال من النوع ثلاثي 

 باستخدام خوارزمية PSS الطور إلى الأرض. يهدف البحث إلى تحسين الأداء الديناميكي لأنظمة الطاقة من خلال تحسين معلمات الـ

"MPA"  وخوارزمية "MDBO" المعدلة لتهدئة النظام. من خلال مقارنة فعالية هذه الخوارزميات في ضبط الـ PSS  يهدف البحث ،

تحسين الأداء العام للنظام، والذي يمكن التحقق من صحته من خلال  إلى تحقيق استقرار أفضل للنظام، وتحسين سرعة استعادة الأعطال، و

 ة,المحاكاة واختبار الأجهزة في الحلق

 ة. اختبار الأجهزة في الحلق,  الاستقرار,  التحسين ,الخوارزميات الميتاهيرستية, (PSS)منظمات استقرار النظام الكهربائي: مفتاحية كلمات  

Abstract: 

The main objective of this topic is to study the optimization of Power System Stabilizers (PSS) using 

advanced metaheuristic algorithms to enhance the damping and stability of power systems, 

particularly under severe fault conditions such as three-phase-to-ground faults. The research aims to 

improve the dynamic performance of power systems by optimizing the parameters of PSS through 

the Marine Predator Algorithm (MPA) and the Modified Dung Beetle Optimizer (MDBO). By 

comparing the effectiveness of these algorithms in tuning PSS, the goal is to achieve better system 

stability, faster fault recovery, and improved overall system performance, which can be validated 

through simulations and hardware-in-the-loop testing. 

Key words: Power System Stabilizers (PSS), Metaheuristic Algorithms, Optimization, Stability, 

Hardware-in-the-Loop Testing. 

Résumé : 

L'objectif principal de ce sujet est d'étudier l'optimisation des stabilisateurs de système de puissance 

(PSS) en utilisant des algorithmes métaheuristiques avancés pour améliorer l'amortissement et la 

stabilité des systèmes électriques, en particulier dans des conditions de défaut sévères telles que les 

défauts triphasés à la terre. La recherche vise à améliorer la performance dynamique des systèmes de 

puissance en optimisant les paramètres des PSS à l'aide de l'algorithme Marine Predator Algorithm 

(MPA) et du Modified Dung Beetle Optimizer (MDBO). En comparant l'efficacité de ces algorithmes 

dans le réglage des PSS, l'objectif est d'obtenir une meilleure stabilité du système, une récupération 

plus rapide après un défaut et une amélioration globale de la performance du système, ce qui peut 

être validé par des simulations et des tests en boucle matérielle. 

Mots clés : Stabilisateurs de Système de Puissance (PSS), Algorithmes Métaheuristiques, 

Optimisation, Stabilité, Test en Boucle Matérielle. 

 

 

 



 

Acknowledgment 

 

    Foremost, i would like to give my sincere gratitude to Allah Almighty for giving me ability, 

knowledge and strength to complete my doctoral research study. Without His continuous 

blessings, it would not be possible. 

 

     I would like to express my sincere and deepest appreciation to my advisor Pr. BRADAI 

Rafik and to my co-advisor Pr. KHELDOUN Aissa, for their help and continuous invaluable 

support, for their patience, and their infinite constructive guidance and advices. For their 

motivation and their belief in us and the final fruit we have been working on. 

 

      I also like to extent my heartfelt thanks to the members of the board of examiners for 

proofreading and examining my thesis. 

  

   My extended deep thanks to KHETTAB Soufian for his help during this work. Without 

mentioning my family and their unconditional love and support, my friends and their 

meaningful backup, and everyone who has believed in me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dedication  
 
First of all , I would like to thank the person who never stopped 

to support me, to believe in me, to watch over my success from a 

very young age, to whom I owe what I became today, and what 

I will become in the future, my precious mother. 

   I dedicate this work  

To my late father, whom I hope to be proud of me, may God 

welcomes him into his vast paradise. 

To my brother KARIM, my confident, the person who always 

takes care of me, may god bless him. 

To my sisters CHAYMA and NOOR who are always there for 

me. 

To my fiancé, who has been my source of motivation and my 

unstoppable support through every challenge. Your patience, 

encouragement, and belief in me have been a push during 

difficult times. I am forever thankful for your steadfast presence. 

You have been my greatest ally, and I am truly blessed to have 

you by my side. 

To my best friend Aya who never stopped believing in me. 

 

 

 



 

 

 

 

 

Table of contents 

   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of content 

LIST OF TABLES 

TABLE OF FIGURES 

LIST OF SYMBOLS AND ACRONYMS 

GENERAL INTRODUCTION ............................................................................................. 1 

CHAPTRE I: STATE OF THE ART OF POWER SYSTEM STABILITY & TUNING PSS    

USING METAHEURISTIC ALGORITHMS  

I.1 INTRODUCTION .............................................................................................................. 5 

I.2 STATE OF THE ART OF POWER SYSTEM STABILITY .............................................................. 5 

I.2.1 Classification of power system stability ............................................................ 6 

I.2.2 Synchronization and Damping: Key Factors in Power System Stability........... 8 

I.2.3 Progressions in Power System Stabilizer ......................................................... 10 

I.3 PSS CONTROLLER PARAMETER TUNING USING METAHEURISTIC ALGORITHMS .................... 12 

I.4 CONCLUSION ................................................................................................................ 13 

CHAPTRE II:  DYNAMIC MODELLING OF POWER SYSTEM 

II.1 INTRODUCTION ............................................................................................................ 14 

II.2 GENERATOR’S MODEL ................................................................................................... 14 

II.3 EXCITATION SYSTEM .................................................................................................... 25 

II.4 LOADS ........................................................................................................................ 28 

II.5 TRANSMISSION LINE MODELING ...................................................................................... 29 

II.6 POWER SYSTEM STABILIZER .......................................................................................... 31 

II.7 DOUBLE FED INDUCTION GENERATOR(DFIG) MODEL ....................................................... 32 

II.7.1 Wind turbine modelling .................................................................................. 32 

II.7.2 Doubly fed induction generator ...................................................................... 33 

II.7.3 LCL filter ....................................................................................................... 34 

II.7.4 Back-to-back capacitor .................................................................................. 35 

II.7.5 Machine-side converter controller ................................................................... 35 

II.7.6 Grid-side converter controller ......................................................................... 35 

II.8 CONCLUSION ................................................................................................................ 36 

CHAPTRE III:  DESIGN OF PSS FOR CONVENTIONAL POWER SYSTEM 

III.1 INTRODUCTION ............................................................................................................ 38 

III.2  POWER SYSTEM TESTS ................................................................................................. 38 

III.2.1 Test system 1: SMIB ................................................................................... 39 

III.2.2 Test system 2: Three-Machine Power System.............................................. 39 

III.2.3 Test system 2: Ten-Machine Power System ................................................. 40 

III.3 PROBLEM OPTIMIZATION .............................................................................................. 40 

III.3.1 Marine Predator Algorithm (MPA) ............................................................. 41 



III.3.2 Fitness function .......................................................................................... 43 

III.4 SIMULATION AND RESULTS ............................................................................................ 45 

III.4.1 Test System 1 ............................................................................................. 45 

III.4.2 Test system 2 .............................................................................................. 50 

III.4.3 Test system 3 .............................................................................................. 60 

III.4.4 Hardware in the loop validation ................................................................. 65 

III.5 CONCLUSION ................................................................................................................ 68 

CHAPTRE IV:  DESIGN OF PSS FOR POWER SYSTEM INTEGRATING PV AND DGS 

IV.1 INTRODUCTION ............................................................................................................ 98 

IV.2 POWER SYSTEM TESTS .................................................................................................. 98 

IV.3 TID BASED PSS CONTROLLER ........................................................................................ 99 

IV.4 PROBLEM OPTIMIZATION .............................................................................................. 99 

IV.4.1 Zebra optimization algorithm ......................................................................... 99 

IV.4.2 Objective function ........................................................................................ 100 

IV.5 SIMULATION AND RESULTS .......................................................................................... 100 

IV.6 CONCLUSION .............................................................................................................. 103 

APPENDIX…………….. ............................................................................................... 112 

 



 

 

 

 

 

 

 

List of figures 

   



 

 

 

List of figures 
 
Figure I-1: Classification of power system stability [28]. ......................................................... 7 
Figure I-2: Synchronizing and Damping Torques[36] ................................................................. 9 
Figure I-3: Bloc diagram of CPSS .............................................................................................. 10 
Figure I-4: Block diagram of a PSS2B ....................................................................................... 10 
Figure I-5: Block diagram of speed transformer of PSS2B stabilizer[33]. ................................ 11 
Figure I-6: Block diagram of hybrid of fuzzy logic type 2 based PSS and the FOPID 

controller[5]. .............................................................................................................................. 11 
Figure I-7: Block Diagram of optimal tuned Power system stabilizer in power system ............ 13 
Figure II-1: Synchronous generator schematic[43] .................................................................... 15 
Figure II-8: The equivalent PI-circuit of long transmission line ........................................... 31 
Figure III-1:Schematic of SMIB system. .................................................................................. 39 
Figure III-2: WSCC power test system. .................................................................................... 39 
Figure III-3: the New England power system .......................................................................... 40 
Figure III-4: Tuning process of PSS parameters using metaheuristic optimization. ............. 41 
Figure III-5: MPA flow chart. ................................................................................................... 43 
Figure III-6: D-shape schema. ................................................................................................... 44 
Figure III-8: Simulation results of Eigen plots for different cost function. (a): F1, (b): F2, 

(c): ITAE, (d): ITSE. ................................................................................................................. 50 
Figure III-9: Normal loading, time domain simulation for rotor speed of generators G1, G2, 

and G3.  (a): w1, (b): w2, (c): w3. .............................................................................................. 52 
Figure III-10: Heavy loading, time domain simulation for rotor speed of generators G1, G2, 

and G3.  (a): w1, (b): w2, (c): w3. .............................................................................................. 53 
Figure III-11: Light loading, time domain simulation for rotor speed of generators G1, G2, 

and G3.  (a): w1, (b): w2, (c): w3. .............................................................................................. 54 
Figure III-12 : Comparison of performance indices settling time for rotor speed of 

generators G1, G2, and G3.  (a): w1, (b): w2, (c): w3 under three different operating point.55 
Figure III-13: Time domain simulation for rotor speed in areas 1, 2 and 3 for generators G1, 

G4, and G10.  (a): w1, (b): w4, (c): w10. ................................................................................... 62 
Figure III-14: Simulation results of Eigen plots for different controllers. ............................ 62 
Figure III-15: Experimental set-up in Real-time CU-SLRT ................................................. 66 
Figure III-16: Identification of input/output features of: (a)Power system, (b) Power 

system stabilizer PSS. ............................................................................................................... 67 
Figure III-17: Schematic diagram of the HIL simulation or the proposed system, with the 

main components and signals. .................................................................................................. 67 
Figure III-18: The rotor Speed for SMIB and its zoom via real time. ................................... 68 
Figure IV-1: structure of modified kundur power system ...................................................... 99 
Figure IV-2: speed deviation of generators without PSS controller for (a) classic power 

system, (b) modified power system. ....................................................................................... 101 
Figure IV-3: Rotor angle deviations of synchronous generators optimized by the PSO, 

GOOSE and ZOA (a) dw1, (b) dw2 and (c) dw3 .................................................................... 103 
 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List of tables 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 List of tables  

 

 

Table III-1: PSS's optimal parameter values on the SMIB system. ................................... 46 

Table III-2:  Eigen values and damping ratio comparison for various controllers and cost 

functions ........................................................................................................................... 49 

Table III-3: Operating conditions for the WSCC test system ............................................. 51 

Table III-4:  Eigenvalues Analysis of the PSS based PSO, WOA, WHO, FPA, AVOA and 

MPA optimization techniques for Three Loading Cases of WSCC System ......................... 56 

Table III-5: Table 6: State Variables of the WSCC Power System. .................................... 57 

Table III-6 : "Comparative Analysis of Participation Factors for Different PSS 

Configurations .................................................................................................................. 58 

Table III-7: State Variables of the New England Power System. ...................................... 63 

Table III-8: Comparative Analysis of Participation Factors for Different PSS 

Configurations. ................................................................................................................. 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

List of symbols and 

acronyms 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

List of symbols and acronyms 
 

A: state or plant matrix of size n×n 

 

AVOA: African Vulture Optimization Algorithm 

 

B: control or input matrix of size n×r 

 

C: output matrix of size m×n / line-to-neutral capacitance per km (contexte différent) 

 

D: (feed forward) matrix, size m×r 

 

DBO: Dung Beetle Optimization 

 

EO: Equilibrium Optimizer 

 

𝑬𝒇𝒅: the field voltage input (from the exciter) 

 

FOPID: Fractional Order PID 

 

FOFPID: Fractional Order fuzzy PID 

 

FO-TSF-PID: Fractional Order Takagi-Sugeno Fuzzy-proportional–integral–derivative 

 

FPA: Flower Pollination Algorithm 

 

GOOSE: GOOSE-inspired Optimization Algorithm 

 

H: inertia constant in sec 

 

HIL: Hardware-in-the-Loop 

 

𝐈𝒅, 𝐈𝒒, 𝐈𝟎: stator currents in dq0 reference 

 

𝐈𝒓: current at the receiving end 

 

𝐈𝒔: current at the sending end 

 

𝐊𝑨: Regulator gain in pu 

 

𝐊𝑬: Exciter constant related to self-excited field in pu 

 

𝐊𝒇: Feedback gain in pu 

 

𝐊𝑬, 𝐊𝒅: fuzzy input scaling factors 

 

𝐊𝑷𝑫, 𝑲𝐏𝐈: fuzzy output scaling factors 



 

 

 

𝑲𝐃: proportional gain 

 

𝑲𝐈: integral gain 

 

𝑲𝐭: differential tilt gain 

 

𝑲𝐭𝐠: shaft stiffness of the drive train 

 

𝐻: generator inertia 

 

λ, 𝝁: Fractional order of derivation and integration 

 

L: line inductance per km 

 

l: line length in km 

 

LFO: Low Frequency Oscillation 

 

MPA: Marine Predator Algorithm 

 

MDBO: Modified Dung Beetle Optimization 

 

N: number of eigenvalues 

 

𝑷𝐟: Participation Factor 

 

PID: Proportional-Integral-Derivative 

 

Pmech: mechanical power input from turbine/governor 

 

PSO: Particle Swarm Optimization 

 

PSS: Power System Stabilizer 

 

𝐑𝒔: armature resistance in pu 

 

𝐒𝑬: Exciter saturation function 

 

SMIB: Single Machine Infinite Bus 

 

𝐒𝒗: state variable 

 

σi: real part/damping factor of the ith eigenvalue 

 

𝐓𝑨: Regulator time constant in sec 

 

𝑻𝐝𝟎
′ : d-axis open circuit transient time constant 



 

 

 

𝑻𝐝𝟎
" : d-axis open circuit sub-transient time constant 

 

T’
q0: q-axis open circuit transient time constant 

 

T”
q0: q-axis open circuit sub-transient time constant 

 

𝐓𝑬: Exciter time constant 

 

𝐓𝑭: Feedback time constant 

 

TID: Tilt-Integral-Derivation 

 

𝐓𝑹: Filter time constant 

 

u: input vector of dimension r 

 

𝐕𝑹: Regulator output voltage 

 

𝐕𝑹𝒎𝒂𝒙: Maximum voltage regulator output in pu 

 

𝐕𝑹𝒎𝒊𝒏: Minimum voltage regulator output in pu 

 

𝐕𝒔: voltage at the sending end 

 

𝐕𝒓: voltage at the receiving end 

 

𝐕𝑻: Generator terminal voltage 

 

𝐕𝒅𝒕𝒆𝒓𝒎, 𝐕𝒒𝒕𝒆𝒓𝒎, V0term: stator voltages in dq0 reference 

 

WHO: Wild Horse Optimization Algorithm 

 

𝜔 : generator rotor speed 

 

𝝎𝒃: electrical base speed 

 

𝝎𝒔: synchronous speed (2πf) 

 

WOA: Whale Optimization Algorithm 

 

WSCC: Western System Coordinating Council 

 

x(1)...x(5): centers and widths of triangular membership functions 

 

𝑿𝒅, 𝑿𝒒: synchronous reactances 

 



 

 

𝑿𝒅
′ , 𝑿𝒒

′ : transient reactances 

 

𝑿𝒅
" , 𝑿𝒒

" :: sub-transient reactances 

 

𝜻𝒊: damping ratio of the ith eigenvalue 

 

𝝍𝒅, 𝝍𝒒, 𝝍𝟎: stator flux in dq0 reference 

 

𝝍𝒅
′ ,𝝍𝒒

′ : rotor flux in dq0 reference 

 

ZOA: Zebra Optimization Algorithm 

 

∆x: state vector of dimension n 

 

∆y: output vector of dimension m 

 

∆u: input vector of dimension r 

 

Δω: speed deviation 

 

𝚫𝛚̇: acceleration 

 

𝑇: torque 

 

𝜃𝑡𝑔: generator shaft angle twist 

 

𝐶𝑡𝑔: damping coefficient of the drive train 

 

 

 

 



 

 

 

 

 

 
General introduction  

   
 

 

 

 



 

1 

 

 

 General introduction   

 

In recent times, power systems have become more sophisticated due to the complexity 

and nonlinearity of their components. These systems encompass various elements, such as 

generating units, distribution and transmission lines, protective devices, transformers, and 

diverse loads. This complexity has rendered power systems more susceptible to a range of 

disturbances, including faults, load variations, lightning strikes, equipment failures, and the 

activation of protective devices. The electrical power output from the generator varies 

rapidly with the slowly varying mechanical input. With the mechanical input changing 

slowly, the generator produces different amounts of electrical power output. The change in 

shaft torque, which results in low-frequency oscillations (LFOs) in the range of 0.2–3 Hz, is 

caused by the imbalance between the generator's input and output powers[1].These 

electromechanical oscillations are of two types: local mode for 1– 3Hz or interarea mode in 

the range of less than 1 Hz. The LFOs are undesirable and must be damped out as quickly as 

possible to guarantee system stability and efficiency. The lead-lag phase compensation 

structure of the conventional power system stabilizer (CPSS) is employed to dampen out 

such oscillations in multimachine power systems (MMPS) and single machine infinite bus 

(SMIB) systems [2],[1]. 

According to the literature, Conventional PSSs (CPSS with fixed parameters) have been 

widely used because of their ease of use and good performance, as efficient damping 

controllers in power systems [2,3]. However, CPSS rely on the linearized theory of control 

systems. However, this approach is primarily effective in mitigating LFOs for a specific 

operating point. Unfortunately,  the large variety of operating conditions found in non-linear 

power systems presents challenges for CPSS designs. Root-locus [4], frequency response [5], 

digital control[6], pole-placement [7], and non-linear & adaptive control methods [8], [9] are 

examples of classical control techniques that work well when applied to non-differentiable 

and non-convex problem functions, but they are not appropriate for solving them. 

Different types of PSSs have been designed for their simplicity, and examples of such designs 

and other controllers are introduced in first chapter.  

The performance of controllers is directly influenced by their parameters, and the 

dynamic flexibility of the controller is affected by the values of these parameters. Their exact 

https://arxiv.org/pdf/2105.08886.pdf
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response is hard to detect and, in certain cases, even impossible to find using conventional 

mathematical methods. Meta-heuristic algorithms are used to determine the optimal or 

nearly optimal parameters in certain scenarios. 

According to the literature, numerous research papers have investigated the application 

of metaheuristic algorithms for the optimal lead-lag-based PSS tuning recently. In fact 

numerous different metaheuristic algorithms are used like, particle swarm optimization[5]–

[6] genetic algorithms,[7] -[8], Jaya algorithm,[10], gray wolf optimizer[11],  bat 

algorithm[12], farmland fertility algorithm[13], African Vultures Optimization 

Algorithm[14], Salp swarm algorithm,[15] , kidney-inspired algorithm[16], whale 

optimization algorithm[17], cuckoo search,[18], Henry gas solubility optimization[19], 

collective decision optimization algorithm,[20], and slime mold algorithm[21]. 

A robust Power System Stabilizer (PSS) necessitates a precise design and a multitude 

of test scenarios for its robustness to be assured and validated. The performance of the PSS 

has been examined by researchers through a range of test cases and different system 

architectures. In the study referenced as[22], a disturbance condition was simulated by 

introducing a 5% step change in mechanical power across a multi-machine power system 

(MMPS). Various loading conditions were explored, with an increasing step load within the 

MMPS as described in[4],The impact of a three-phase fault was examined in [23], where the 

fault persisted for 0.1 seconds in a SMIB power system. A 100 ms 3-phase to ground fault 

was investigated using the MMPS model in[24].  

Several performance indices were used in a comprehensive evaluation of the stability of 

improved Power System Stabilizers (PSSs) within electrical power systems, each associated 

with distinct objective functions to enhance the optimization process. Specifically, 

the Inverse Time Absolute Square of the Error (ITAE) was utilized as an objective function 

in[25]. Additionally, in [26], the Integral of Squared Error (ISE) and Integral of Time-

weighted Squared Error (ITSE) were introduced as cost functions. On the other hand, a 

frequency domain cost function known as the D-shape cost function was proposed in [4] [13] 

to shift eigenvalues towards the left side of the complex plane. The robustness of the 

developed method was assessed using performance metrics such as damping ratio, overshoot, 

settling time, and eigenvalues. 

 In recent times, researchers have leveraged modern technologies and methodologies to 

assess the robustness of their PSS. Among the prevalent techniques are Rapid Control 

https://www.maven-silicon.com/blog/portable-test-and-stimulus-standard/


 

3 

 

Prototyping (RCP), Hardware-in-the-Loop (HIL), and Software-in-the-Loop (SIL) . As 

electrical power networks have grown increasingly complex over the past few decades, there 

has been a corresponding evolution in verification methodologies and related test 

tools. Compared to older techniques, real-time technology now offers benefits like faster 

operations, higher computation powers, high-speed processing, and improved performance. 

Because experimental study is more tractable and reproducible than simulation results, HIL-

based verification approach enables researchers to employ it to test their developed PSS 

model[27]. 

To guarantee the stability of power systems, this study focuses on small-signal stability 

analysis. Different benchmark power systems were utilized to achieve this goal. The research 

involves the use of Power System Stabilizers (PSS) and other controllers, including both 

conventional and proposed topologies, aimed at damping low-frequency oscillations. The 

tuning of these controllers' parameters was carried out using both existing and modified 

metaheuristic algorithms. To ensure practical applicability, the study was validated through 

hardware-in-the-loop (HIL) simulations, allowing for real-world verification of the proposed 

methods and demonstrating their effectiveness in enhancing system stability under various 

operating conditions. 

This thesis is organized into five chapters; they are summarized as follows: 

The first chapter is dedicated to an overview of the Electrical power system by citing 

its different structures then, the power system stability is introduced and its main 

classifications are presented. The chapter is concluded with an overview of Metaheuristic 

algorithm. 

The second chapter is devoted to the Dynamic modeling of power system. A detailed 

modeling of synchronous generator, excitation system, loads, transmission line, power 

system stabilizer and the double fed induction motor is presented. 

In the third chapter, an optimization of Power System Stabilizer (PSS) Using the 

Marine Predator Algorithm (MPA) in Conventional Power Systems is developed. The 

chapter is started by presenting system tests then the problem optimization, the proposed 

algorithm and the fitness function used in this study. After that, the simulation results are 

introduced by interpreting stability analysis in time domain & frequency domain where the 

performance of proposed strategy is evaluated. This chapter is concluded with a Hardware 

in the loop of the proposed controller. 

https://www.maven-silicon.com/blog/portable-test-and-stimulus-standard/
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The last chapter of this thesis is dedicated to the analysis and the simulation of the 

stability of power system when the integration of renewable energy into power system is 

taken on consideration.  

The general conclusion concerns a brief synthesis of the work carried out with the main 

obtained results and some perspectives. 
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CHAPITRE I:           CHAPTER ONE 

I.1 Introduction  

Power system stability is essential for maintaining reliable operation under various 

disturbances. It is generally categorized into rotor angle, voltage, and frequency stability, 

each influencing system performance and security. Among these, low-frequency oscillations 

pose a significant challenge, requiring effective damping strategies. 

Traditional power system stabilizers (PSS) have been widely used but face limitations 

under dynamic conditions. To address these challenges, advanced controllers—such as 

fractional-order, fuzzy logic, and hybrid approaches—have been explored. Additionally, 

metaheuristic optimization techniques have gained attention for enhancing controller 

performance, offering adaptive solutions for stability improvement 

This chapter reviews key developments in power system stability, highlighting the 

evolution of control strategies and optimization techniques aimed at improving system 

resilience and performance. 

I.2  State of the art of Power system stability  

Power system stability is broadly defined as the ability of a power system to remain in a 

state of operating equilibrium under normal conditions and to return to an acceptable 

equilibrium state after being subjected to a disturbance. 

Instability in a power system can manifest in various ways, depending on the 

configuration and operating mode of the system. Traditionally, stability issues have 

primarily focused on maintaining synchronous operation. Since power systems rely heavily 

on synchronous machines for electricity generation, a key condition for stable operation is 

that all synchronous machines remain synchronized—or "in step." This aspect of stability is 

influenced by the dynamics of generator rotor angles and power-angle relationships. 

However, instability can also occur without the loss of synchronism. For instance, in a 

system where a synchronous generator feeds an induction motor load through a transmission 

line, instability may arise due to load voltage collapse. In such cases, the concern shifts from 



 

 

 

6 

 

maintaining synchronism to ensuring voltage stability and control. This type of instability 

is particularly relevant for large systems supplying extensive areas with distributed loads. 

In stability evaluations, the focus is on the behavior of the power system when subjected 

to transient disturbances. These disturbances can range from small, continuous load changes 

to large, severe events such as short circuits, loss of major generators, or subsystem 

disconnections. For the system to function properly, it must handle these disturbances while 

maintaining a reliable energy supply. System responses to disturbances involve numerous 

components, including: 

• Protective relays, which isolate faults and mitigate further damage. 

• Voltage regulators, which adjust voltage variations across generators and 

transmission systems. 

• Prime mover governors, which control speed variations in the system. 

• Generation control systems, which respond to tie-line loading changes. 

Changes in system voltage and frequency can also impact loads, which respond 

differently depending on their characteristics. Protective devices used for specific equipment 

may react to variations in system variables, thereby affecting overall system performance. 

Given the complexity of these interactions, stability analyses often make assumptions 

to simplify the problem, focusing on factors most relevant to the specific type of stability 

being studied. This approach allows for a clearer understanding and classification of stability 

issues across various categories. 

I.2.1 Classification of power system stability 

The suggested power system stability categorization is based on the following considerations:  

• The physical nature of the resulting instability [28].  

• The size of the disturbance considered [28].  
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• The devices, processes, and time span that must be taken into consideration in 

order to determine stability [28].  

• The most appropriate method of calculation and prediction of stability [28].  

The diagram in Figure I.1 depicts the overall picture of the power system stability problem, 

identifying its categories and subcategories. The descriptions of the corresponding forms of 

stability phenomena are as follows. 

 

Figure I-1: Classification of power system stability [28]. 

Perturbations in the power system can be categorized into two types: small-signal 

stability and transient stability. While small signal stability deals with deviations (whose 

magnitude is small and with a longer duration), transient stability deals with large 

disturbances sustaining for a shorter duration. On the other hand, if the physical quantity 

that alters during instability is considered, power system stability is broadly classified into 

three types: voltage stability; Frequency stability, and; Rotor angle stability [29]. 

During heavily loaded conditions of long transmission lines, the reactive power 

consumption increases manifolds [30]. Hence, the voltage profile of that transmission lines is 

not maintained within predefined limits. This can be demarcated by observing a gradual 

decrease in the receiving end voltage over a prolonged period, followed by an accelerated 
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descend in the voltage profile [31]. It can ultimately lead to a complete blackout of the power 

system grid. There is a similar challenge to maintaining the frequency of the complete power 

system within specified limits, i.e., to maintain the overall synchronism of the power system. 

This stability issue occurs mainly due to an imbalance between supply and demand 

[32]. The frequency instability will generate fluctuations in the receiving end voltage due to 

partially destructive interference between voltages of different frequencies due to the use of 

renewable energies [32]. Similarly, rotor angle stability is caused by large disturbances, e.g., 

outage of tie lines, large load fluctuations, loss of generating units, etc. [33] This may lead to 

machines falling out of synchronism, i.e., frequency instability, and, finally, the collapse of 

synchronous machines. This will lead to a steep decrease in voltage and voltage instability. 

One of the aspects of rotor angle instability is the low-frequency oscillations, caused by small 

disturbances and, therefore, challenging the small-signal stability of the power system. These 

oscillations are small in magnitude and remain undetected by the traditional monitoring and 

controlling devices. They keep growing in magnitude, and being, in some cases, not possible 

to bring back the system to the normal operating conditions. 

I.2.2 Synchronization and Damping: Key Factors in Power System Stability 

Several power system controllers have been proposed to deal with these problems of 

instability. They employ methods for optimal tuning of their parameters to obtain maximum 

efficiency with the controllers [34],[35]. Various protecting devices are available to avoid 

large perturbations, but small ones can be undetected and lead to LFO. 

LFOs are caused mainly due to lack of fine adjustment of AVRs to control oscillations, 

electrical load dependency on frequency, negative interaction of controllers, and 

characteristics of the network. These factors mainly depend upon the ability of the power 

system in maintaining equilibrium between mechanical and electromagnetic torques for 

individual alternators. Following a perturbation, deviation in electromagnetic torque can be 

solved into synchronizing and damping torques according to equation,  

                                                ΔTe = 𝑇𝑆∆δ +𝑇𝐷 Δ𝑆𝑚                                                          (I. 1)    
where, ∆Te is the change in the electromagnetic torque, 𝑇𝑆 is the synchronizing torque 

coefficient, 𝑇𝐷 is the damping torque coefficient, ∆δ is the deviation in the rotor angle, Δ𝑆𝑚is 

the deviation in the synchronous speed, 𝑇𝑆∆δ is the synchronizing torque component, 𝑇𝐷 Δ𝑆𝑚 

is the damping torque component.  
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Figure I. 2 shows the synchronizing torque is in the direction of deviation in rotor angle, 

whereas the damping torque component lies in the direction of deviation in synchronizing 

torque.  

 

Figure I-2: Synchronizing and Damping Torques[36] 

If either, or both, of these quantities, is negative, then the system is unstable because the 

negative synchronizing torque creates ‘aperiodic’ non-oscillatory instability, whereas 

negative damping torque creates LFOs [37]. There is a balance between mechanical torque 

and electromagnetic torque of any synchronous machine in operating at equilibrium 

conditions. Nowadays, the electromagnetic torque varies due to uncertain variations in 

operating conditions. It can be resolved into two components after a perturbation: the 

synchronizing torque, and the damping torque. Synchronizing torque helps in maintaining 

synchronism followed by a disturbance, whose deficiency can lead to non-oscillatory 

instability, whereas lack of damping torque leads to LFO Depending upon the location of 

oscillations, LFO can be classified as [1]; local mode for 1– 3Hz and interarea mode in the range 

of less than 1 Hz..  

According to the literature, Conventional PSSs (CPSS with fixed parameters) have been 

widely used because of their ease of use and good performance, as efficient damping 

controllers in power systems [2],[3]. However, CPSS rely on the linearized theory of control 

systems. However, this approach is primarily effective in mitigating LFOs for a specific 

operating point. [2] established the relationship of damping capability of the power system and 

stability of synchronous generator during small perturbations with its field excitation. A PSS was 
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designed to control the field excitation of a synchronous generator by providing a supplementary 

feedback signal that stabilizes the system [39];[40]. 

I.2.3 Progressions in Power System Stabilizer 

The PSS is the most employed controller in power systems, created in 1967 [41]. Studies had 

established the relation between the damping capacity and the alternator excitation system. Since 

then, many improvements have been made according to its design, there is a different version of 

PSS as compared to the conventional PSS (CPSS). The basic model (block diagram) of a PSS is 

shown in Figure I.3 According to this diagram, a PSS works on the feedback mechanism, where 

the angular velocity of the rotor of the alternator is taken as an input signal of PSS. Based on this 

deviation, an appropriate signal is generated as output and given as the excitation control signal 

to adjust the excitation to damp out the oscillations. 

 

Figure I-3: Bloc diagram of CPSS  

In addition to conventional PSS designs, the IEEE standard PSS2B stabilizer offers an 

alternative approach to improving power system stability. Unlike traditional PSS, which 

relies solely on rotor speed deviations, the PSS2B utilizes two input signals—angular velocity 

deviations (Δ𝜔) and generator active power (Pe). This stabilizer enhances damping 

performance by incorporating a transformer at the input stage and employing components 

such as a sensor, washout filter, gain, and output limiter. The block diagram of PSS2B is 

shown in Figure I.4, while Figure I.5 illustrates its input transformer. 

 

Figure I-4: Block diagram of a PSS2B 



 

 

 

11 

 

 

Figure I-5: Block diagram of speed transformer of PSS2B stabilizer[33]. 

Nonetheless, previous studies have demonstrated that the CPSS's effectiveness 

deteriorates during continuous and large disturbances [1],[4]. PSSs based on proportional 

integral derivatives (PIDs) have also been used to improve stability in power system [10],[11] 

due to their simple structure and fewer parameters. Because fractional order controllers offer 

greater freedom and flexibility than traditional proportional integral (PI) or PID controllers, 

researchers have also employed them for power system stability studies[12], [13] and [14]. 

However, due to the trial-and-error techniques used to choose and adjust their gain 

parameters, the PID/fractional order PID (FOPID) controllers might not offer the required 

performance under changing operating conditions. Thus, fuzzy logic control-based 

approaches have been suggested to improve the power system's dynamic stability[15]. To 

improve the transient stability in a SMIB power system, a hybrid of fuzzy logic type 2 based 

PSS and the FOPID controller has been proposed in [16].  

 

Figure I-6: Block diagram of hybrid of fuzzy logic type 2 based PSS and the FOPID 

controller[5]. 
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It can be concluded that there is a great evolution of the concept of designing PSS. The 

research works of many authors have been produced in a timeline way. 

I.3  PSS Controller Parameter Tuning using Metaheuristic Algorithms 

The performance of devices is directly dependent upon their parameters, and its dynamic 

response would be affected by the values of these parameters. They are complex, given by 

dynamic and nonlinear state equations, finding their exact solution is complicated and, in some 

cases, not even possible by using classical mathematical methods. In these cases, meta-heuristic 

algorithms are being used for finding the optimal, or close to the optimal, parameter. They 

became successful in one condition, but they fail in others. [39] utilized Particle Swarm 

Optimization (PSO) technique to find optimal values of parameters of PSS, using eigenvalues 

analysis in three-machine nine-bus and 10-machine 39-bus (New England) systems for damping 

low-frequency oscillations. This was also of decentralized nature, i.e., based on local 

measurements. The designed con troller could work well over a wide range of operating 

conditions and system configurations. The novel Orthogonal Learning Artificial Bee Colony 

(OLABC) algorithm-based PSS was studied by [42]. The selected test system was SMIB, where 

the performance was measured through performance indices IAE, ITAE, ISE and ITSE for light, 

normal and heavy loading conditions. The results obtained were better than Artificial Bee Colony 

PSS (ABCPSS) having less overshoot and short settling time, that was tested on SMIB system 

with IEE DC1 exciter. In comparison to PSO-PI-PSS and PSO-PID-PSS, a better damping ratio 

was obtained by using ISE as a performance index. [34] proposed an FOPID-PSS and evaluated 

its robustness on a Single Machine Infinite Bus (SMIB) system under different disturbances and 

operating conditions. The study compared the performance of FOPID-PSS with conventional 

PID-PSS and PSS controllers. Furthermore, the proposed FOPID-PSS, optimized using the Bat 

Algorithm (BA), was compared with a Firefly Algorithm (FFA)-based FOPID-PSS. Simulation 

results demonstrated the effectiveness of BA in tuning FOPID-PSS, achieving superior 

robustness and improved power system stability across different scenarios. [5] proposed a hybrid 

Firefly Algorithm-Particle Swarm Optimization (FAPSO) approach for tuning an Interval Type-

2 Fractional Order Fuzzy PID (IT2FOFPID)-based power system stabilizer (PSS) to mitigate 

low-frequency oscillations. The IT2FOFPID-PSS was designed using speed deviation and 

acceleration as input signals. To evaluate its effectiveness, simulations were conducted on both 

a Single Machine Infinite Bus (SMIB) system and the New England 10-machine 39-bus system, 

demonstrating improved damping performance compared to conventional methods. 
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Figure I-7: Block Diagram of optimal tuned Power system stabilizer in power system 

I.4 Conclusion  

The continuous evolution of power systems necessitates robust and adaptive control 

strategies to ensure stability under various operating conditions. While conventional 

stabilizers remain widely used, their performance can be improved through advanced control 

techniques such as fractional-order, fuzzy logic, and hybrid approaches. 

Metaheuristic optimization has emerged as a powerful tool for tuning these controllers, 

offering flexibility and improved dynamic response. Despite significant advancements, 

challenges remain in developing more efficient, scalable, and real-time applicable solutions. 

Future research should focus on integrating these techniques with modern power grids, 

considering the growing penetration of renewable energy sources and the need for enhanced 

resilience. 
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CHAPITRE II:                CHAPTER TWO 

II.1  Introduction  

Dynamic modeling is a fundamental step in analyzing and understanding the behavior 

of power systems under varying conditions. This chapter delves into the mathematical 

representation of key components of the power system, enabling the study of their 

interactions and dynamic responses. The synchronous generator, as the backbone of power 

generation, is modeled in detail, along with its excitation system that governs voltage 

regulation. Additionally, the dynamic behavior of loads, transmission lines, power system 

stabilizers, and the double-fed induction motor is examined, highlighting their roles in 

maintaining system stability and performance. These models serve as the foundation for 

advanced analysis and controller design. 

II.2  Generator’s model 

The synchronous generators are the main source of the electrical energy in power 

systems. They are at the heart of any power system, therefor, a necessary condition for a 

system to operate properly is that all synchronous machines remain in synchronism (in step) 

[1]. 

Synchronous generator consists of two parts rotor and stator. The rotor part consists of 

field windings and stator part consists of armature conductors. The field winding is excited 

by direct current. The rotation of field poles in the presence of armature conductors induces 

an alternating voltage which results in electrical power generation [43]. The frequency of the 

stator electrical quantities is thus synchronized with the rotor mechanical speed: hence the 

designation “synchronous machine”. [1] 

 As shown in Fig II.1, the armature windings which are located on stator, are the three 

phase windings (a, b, c) which are distributed 120° apart in space so that, with uniform 

rotation of the magnetic field, voltages displaced by 120° in time phase will be produced in 

the windings [1]. Whereas, the four windings on the rotor are: 

• The field winding connected to the exciter (fd).  
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• The d-axis damper (1d):  

                 d: direct axis, which is a spinning axis directly in line with the “north pole” of 

the field winding.  

• Two q-axis dampers (1q, 2q):  

q: quadrature axis, which is a spinning axis 90 degrees out of phase with the 

d-axis. 

The damper windings (d and q axis dampers); also called amortisseur windings, are extra 

windings that provide start-up torque and damping for the machine, they also create a force 

that attempt to bring the machine to 60Hz or 50 Hz [36]. Some conventions are made in 

order to proceed the modeling are: q-axis leads the d-axis and the rotor angle Ɵshaft is the 

angle between phase a axis and q-axis and all equations will be written for a p-pole machine 

(because different sources make different conventions). The equations of the model presented 

in this chapter are quoted from [43]. 

 

 

 

 

 

 

 

Figure II-1: Synchronous generator schematic[43] 

Application of fundamental Kirchhoff’s, Faraday’s and Newton’s laws give the following 

equations for the stator, the rotor, and the shaft: 
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Stator: Rotor: Shaft: 

𝑣𝑎 = 𝑖𝑎𝑟𝑠 +
𝑑𝜆𝑎

𝑑𝑡
(𝐼𝐼. 1) 

 

𝑣𝑏 = 𝑖𝑏𝑟𝑠 +
𝑑𝜆𝑏

𝑑𝑡
(𝐼𝐼. 2) 

 

𝑣𝑐 = 𝑖𝑐𝑟𝑠 +
𝑑𝜆𝑐

𝑑𝑡
(𝐼𝐼. 3) 

𝑣𝑓𝑑 = 𝑖𝑓𝑑𝑟𝑓𝑑 +
𝑑𝜆𝑓𝑑

𝑑𝑡
(𝐼𝐼. 4) 

𝑣1𝑑 = 𝑖1𝑑𝑟1𝑑 +
𝑑𝜆1𝑑

𝑑𝑡
(𝐼𝐼. 5) 

𝑣1𝑞 = 𝑖1𝑞𝑟1𝑞 +
𝑑𝜆1𝑞

𝑑𝑡
(𝐼𝐼. 6) 

𝑣2𝑞 = 𝑖2𝑞𝑟2𝑞 +
𝑑𝜆2𝑞

𝑑𝑡
(𝐼𝐼. 7) 

 

𝑑𝜃𝑠ℎ𝑎𝑓𝑡

𝑑𝑡
=

2

𝑝
 𝑤 (𝐼𝐼. 8) 

𝐽
2

𝑝
 
𝑑𝑤

𝑑𝑡
= 𝑇𝑚 − 𝑇𝑒 − 𝑇𝑓𝑤 (𝐼𝐼. 9) 

 

Where 𝜆  is flux linkage, r is winding resistance, J is the inertia constant, P is the number of 

magnetic poles per phase, 𝑇𝑚 is the mechanical torque applied to the shaft, 𝑇𝑒 is the torque 

of electrical origin, and 𝑇𝑓𝑤 is a friction-windage torque.  

        Special transformations are done to transform the abc phase quantities into another 

reference frame Called the dq0 transformation. The transformation is very similar to that of 

symmetrical components when dealing with fault analysis [9]. 

  𝑉𝑑𝑞0 = [

𝑉𝑑

𝑉𝑞
𝑉0

] = 𝑇𝑑𝑞0 𝑉𝑎𝑏𝑐 = 𝑇𝑑𝑞0 [

𝑉𝑎
𝑉𝑏

𝑉𝑐

] (𝐼𝐼. 10)                                            

𝑉𝑎𝑏𝑐 = [
𝑉𝑎
𝑉𝑏

𝑉𝑐

] =  𝑇𝑑𝑞0
−1  𝑉𝑑𝑞0 = 𝑇𝑑𝑞0

−1 [

𝑉𝑑

𝑉𝑞
𝑉0

] (𝐼𝐼. 11) 

  

The same is applied for the current i and for the flux. 

The matrix Tdq0 defined as: 

𝑇𝑑𝑞0 ≜
2

3
 

[
 
 
 
 sin (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡) sin (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 −

2𝜋

3
) sin (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 +

2𝜋

3
)

cos (
𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡) cos (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 −

2𝜋

3
) cos (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 

(𝐼𝐼. 12)    



 

 Dynamic Modelling of Power System 

17 

 

The inverse 𝑇𝑑𝑞0
−1  is then calculated: 

𝑇𝑑𝑞0
−1  =  

[
 
 
 
 
 sin (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡) cos (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡) 1

sin (
𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 −

2𝜋

3
) cos (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 −

2𝜋

3
) 1

sin (
𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 +

2𝜋

3
) cos (

𝑃

2
 𝜃𝑠ℎ𝑎𝑓𝑡 +

2𝜋

3
) 1]

 
 
 
 
 

(𝐼𝐼. 13) 

After evaluation, the system in dq0 coordinates has the form 

Stator: Rotor: 

𝑣𝑑 = 𝑟𝑠𝑖𝑑 − 𝑤𝜆𝑞 +
𝑑𝜆𝑑

𝑑𝑡
(𝐼𝐼. 14) 

𝑣𝑞 = 𝑟𝑠𝑖𝑞 + 𝑤𝜆𝑞 +
𝑑𝜆𝑞

𝑑𝑡
(𝐼𝐼. 15) 

 

𝑣0 = 𝑟𝑠𝑖0 +
𝑑𝜆0

𝑑𝑡
(𝐼𝐼. 16) 

𝑣𝑓𝑑 = 𝑟𝑓𝑑𝑖𝑓𝑑 +
𝑑𝜆𝑓𝑑

𝑑𝑡
(𝐼𝐼. 17) 

 

𝑣1𝑑 = 𝑟1𝑑𝑖1𝑑 +
𝑑𝜆1𝑑

𝑑𝑡
 (II. 18) 

𝑣1𝑞 = 𝑟1𝑞𝑖1𝑞 +
𝑑𝜆1𝑞

𝑑𝑡
(II. 19) 

𝑣2𝑞 = 𝑟2𝑞𝑖2𝑞 +
𝑑𝜆2𝑞

𝑑𝑡
(II. 20) 

Shaft: 

𝑑𝜃𝑠ℎ𝑎𝑓𝑡

𝑑𝑡
=

2

𝑝
 𝑤 (II. 21) 

𝐽
2

𝑝
 
𝑑𝑤

𝑑𝑡
= 𝑇𝑚 − 𝑇𝑒 − 𝑇𝑓𝑤 (II. 22) 

  

The expression of Te is derived after considering the overall energy or power balance for the 

machine. This is an electromechanical system that can be divided into an electrical system, 

a mechanical system, and a coupling field [43]. Figure II-2 shows a diagram for such power 

balance for a single machine. 
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Figure II-2: Synchronous machine power balance[43] 

The expression of electrical torque  𝑇𝑒is derived after considering that the electrical system 

losses are in the form of resistance and the mechanical system losses are in the form of friction. 

The coupling field is assumed to be lossless, hence the movement of energy between the 

electrical and mechanical systems can be tracked easily[36]. 

Telec = −
3

2
 
P

2
 (λdIq − λqId) (𝐼𝐼. 23) 

To complete the dynamic model in the transformed variables it desirable to define an 

angle that is constant for constant shaft speed. It is defined as follows [10]:                                              

δ ≜  
P

2
 θshaft − wst (II. 24) 

where ws is a constant normally called rated synchronous speed in electrical radians per 

second, giving: 

dδ

dt
= ω − ωs (II. 25) 

J
2

P

dw

dt
= Tm +

3

2
 
P

2
 (λdiq − λqid) − Tfω (II. 26) 

The model of the per-unitized equations is presented as follows (keeping in mind that the 

coupling field is assumed to be lossless): Mechanical dynamic equations: 
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dδ

dt
= ∆ωPu ∗ ωs (II. 27) 

2H
dω

dt
=

Pmech

1 + ∆ωPu
− (ѱdIq − ѱqId) − Tfω (II. 28) 

Stator dynamic equations: 

1

ws

dѱd

dt
= RsId + (1 + ∆ωPu)ѱq + Vdterm (II. 29) 

1

ws

dѱq

dt
= RsIq − (1 + ∆ωPu)ѱd + Vqterm (II. 30) 

1

ws

dѱ0

dt
= RsI0 + V0term (II. 31) 

Rotor dynamic equations: 

T′
d0

dE′
q

dt
= Efd − E′

q − (Xd − X′
d) (Id −

X′
d − X′′

d

(X′
d − Xl)2

(+ѱ′
d
+ (X′

d − Xl)Id − E′
q)) (II. 32) 

 

T′
q0

dE′
d

dt
= −E′

d − (Xq − X′
q) (Iq −

X′
q−X′′

q

(X′
q−Xl)

2 (−ѱ′
q
+ (X′

q − Xl)Iq − E′
d)) (II. 33)           

T′′
d0

dѱ′
d

dt
= −ѱ′

d
− (X′

d − Xl)Id + E′
q (II. 34) 

T′′
q0

dѱ′
q

dt
= −ѱ′

q
− (X′

q − Xl)Iq + E′
d (II. 35) 

Algebraic relationship between stator and rotor fluxes: 

ѱd = −IdX
′′
d
+ E′

q

X′′
d − Xl

X′
d − Xl

+ ѱ′
d

X′
d − X′′

d

X′
d − Xl

(II. 36) 

ѱq = −IqX
′′
q
+ E′

d

X′′
q − Xl

X′
q − Xl

+ ѱ′
q

X′
q − X′′

q

X′
q − Xl

(II. 37) 
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In the stator differential equations, regardless of what the derivative of these fluxes are, 

they are multiplied by a very small number (
1

ωs
 ) and thus the left-hand side is near zero 

anyway, so an approximation is made: 

1

ωs

dѱd

dt
≈ 0 = RsId + (1 + ∆ωPu)ѱq + Vdterm (II. 38) 

1

ωs

dѱq

dt
≈ 0 = RsIq − (1 + ∆ωPu)ѱd + Vqterm (II. 39) 

1

ωs

dѱ0

dt
≈ 0 = RsI0 + V0term (II. 40) 

This gives the following: 

Vdterm = −RsId − (1 + ∆ωPu)ѱq (II. 41) 

Vqterm = −RsIq + (1 + ∆ωPu)ѱd (II. 42) 

Replacing equations (II.37) and (II.36) in equations (II.43) and (II.44) respectively 

gives: 

Vdterm = −RsId − (1 + ∆ωPu) (−IqX
′′
q
+ E′

d

X′′
q − Xl

X′
q − Xl

+ ѱ′
q

X′
q − X′′

q

X′
q − Xl

) (II. 43) 

Vqterm = −RsIq + (1 + ∆ωPu) (−IdX
′′
d
+ E′

q

X′′
d − Xl

X′
d − Xl

+ ѱ′
d

X′
d − X′′

d

X′
d − Xl

) (II. 44) 

This implies: 

Vdterm = −RsId + (1 + ∆ωPu)IqX
′′
q
+ (1 + ∆ωPu) (+E′

d

X′′
q − Xl

X′
q − Xl

+ ѱ′
q

X′
q − X′′

q

X′
q − Xl

) (II. 45) 

Vqterm = −RsIq − (1 + ∆ωPu)IdX
′′
d
+ (1 + ∆ωPu) (+E′

q

X′′
d − Xl

X′
d − Xl

+ ѱ′
d

X′
d − X′′

d

X′
d − Xl

) (II. 46) 

Setting: 

E′′
d = +E′

d

X′′
q−Xl

X′
q−Xl

+ ѱ′
q

X′
q−X′′

q

X′
q−Xl

(II. 47)                                                 
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E′′
q = +E′

q
X′′

d−Xl

X′
d−Xl

+ ѱ′
d

X′
d−X′′

d

X′
d−Xl

(II. 48)                                                 

Gives the following: 

Vdterm = −RsId + (1 + ∆ωPu)IqX
′′
q
+ (1 + ∆ωPu)E

′′
d (II. 49) 

Vqterm = −RsIq − (1 + ∆ωPu)IdX
′′
d
+ (1 + ∆ωPu)E

′′
q (II. 50) 

The term (1 + ∆wPu) is removed because multiplying all the transmission line X values 

by per unit frequency to scale the network impedances as system frequency changes cannot 

be done in stability studies [36]. 

Vdterm = E′′
d(1 + ∆ωPu) − RsId + IqX

′′
q

(II. 51) 

Vqterm = E′′
q(1 + ∆ωPu) − RsIq − IdX

′′
d

(II. 52) 

The final complete model of per-unitized equations is: 

Algebraic relationships: 

E′′
d = +E′

d

X′′
q − Xl

X′
q − Xl

+ ѱ′
q

X′
q − X′′

q

X′
q − Xl

(II. 53) 

E′′
q = +E′

d

X′′
d − Xl

X′
d − Xl

+ ѱ′
d

X′
d − X′′

d

X′
d − Xl

(II. 54) 

ѱd = −IdX
′′
d + E′′

d (II. 55) 

ѱq = −IqX
′′
q + E′′

q (II. 56) 

Vdterm = E′′
d(1 + ∆ωPu) − RsId + IqX

′′
q

(II. 57) 

Vqterm = E′′
q(1 + ∆ωPu) − RsIq − IdX

′′
d

(II. 58) 

Differential equations: 

dδ

dt
= ∆ωPu ∗ ωs (II. 59) 



 

 Dynamic Modelling of Power System 

22 

 

 

2H
dω

dt
=

Pmech

1 + ∆ωPu
− (ѱdIq − ѱqId) (II. 60) 

T′
d0

dE′
q

dt
= Efd − E′

q − (Xd − X′
d) (Id −

X′
d − X′′

d

(X′
d − Xl)2

(+ѱ′
d
+ (X′

d − Xl)Id − E′
q)) (II. 61) 

T′
q0

dE′
d

dt
= −E′

d − (Xq − X′
q) (Iq −

X′
q − X′′

q

(X′
q − Xl)

2 (−ѱ′
q
+ (X′

q − Xl)Iq − E′
d)) (II. 62) 

T′′
d0

dѱ′
d

dt
= −ѱ′

d
− (X′

d − Xl)Id + E′
q (II. 63) 

T′′
q0

dѱ′
q

dt
= −ѱ′

q
− (X′

q − Xl)Iq + E′
d (II. 64) 

The field voltage Efd is an input from the exciter. The equation of the product of the field 

current and the mutual inductance LabIfd is given as follows: 

The transformation is done as follows: 

[

VD

VQ

V0

] = TsyncVabc = Tsync [
Va

Vb

Vc

] (II. 67) 

 

Tsync =
2

3

[
 
 
 
 
 cos(ωst)        cos (ωst −

2π

3
)          cos (ωst +

2π

3
)

− sin(ωst)      − sin (ωst −
2π

3
)    − sin (ωst +

2π

3
)

1

2
                               

1

2
                                       

1

2 ]
 
 
 
 
 

(II. 68) 

T−1
sync =

2

3

[
 
 
 
 
cos(ωst)                       − sin(ωst)                        1

cos (ωst −
2π

3
)          − sin (ωst −

2π

3
)            1

  cos (ωst +
2π

3
)        − sin (ωst +

2π

3
)              1]

 
 
 
 

(II. 69) 
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[
Va

Vb

Vc

] =

[
 
 
 
 

Vtcos(ωst + α)

Vtcos (ωst + α −
2π

3
)

Vtcos (ωst + α +
2π

3
)
]
 
 
 
 

(II. 70) 

is chosen an input for the system, the result is going to be: 

[

VD

VQ

V0

] = [
+Vtcos(α)

+Vtsin(α)
0

] (II. 71) 

It can be easily remarqued that all the (wst) terms cancel out. This means that the new 

reference frame can be treated like a complex number: 

VD + jVQ = Vtcos(α) + j Vtsin(α) = Vte
jα (II. 72) 

The abc quantities are converted to machine reference frame (dq0 reference), there is a 

need for the dqo quantities to be transformed to the network reference: 

[
Va

Vb

Vc

] = T−1
dq0i [

Vdi

Vqi

V0i

] (II. 73) 

[

VD

VQ

V0

] = Tsync [
Va

Vb

Vc

] = TsyncT
−1

dq0i [

Vdi

Vqi

V0i

] (II. 74) 

 

Therefore, a direct conversion from the machine reference frame into the network 

reference frame without passing by the abc phase reference. 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑎𝑚𝑒 →  [

VD

VQ

V0

] = TsyncT
−1

dq0i [

Vdi

Vqi

V0i

] ← 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑎𝑚𝑒(II. 75) 

As mentioned in (II.13) and in (II.24) that: 
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Tdq0
−1 =

2

3

[
 
 
 
 
             sin (

P

2
θshaft)                   cos (

P

2
θshaft)                       1

   sin (
P

2
θshaft −

2π

3
)             cos (

P

2
θshaft −

2π

3
)               1

  sin (
P

2
θshaft +

2π

3
)              cos (

P

2
θshaft +

2π

3
)              1 ]

 
 
 
 
 

(II. 76) 

This makes the inverse matrix Tdq0i
−1 for a particular machine “i” looks like the following: 

Tdq0i
−1 =

2

3

[
 
 
 
 
            sin(ωst + δi)                   cos(ωst + δi)                       1

   sin (ωst + δi −
2π

3
)             cos (ωst + δi −

2π

3
)               1

  sin (ωst + δi +
2π

3
)              cos (ωst + δi +

2π

3
)              1 ]

 
 
 
 

(II. 77) 

The matrix TsyncTdq0i
−1 multiplication end up as follows: 

TsyncTdq0i
−1 = [

+sin(δi)

−cos(δi)
0

   
+cos(δi)

+sin(δi)
0

   
0
0
1
] (II. 78) 

The conversion from network to machine reference frame also can be done by the matrix: 

Tdq0iTsync
−1 = (TsyncTdq0i

−1)
−1

= [
+sin(δi)

+cos(δi)
0

   
−cos(δi)

+sin(δi)
0

   
0
0
1
] (II. 79) 

 

The subscript “i” for all variables and parameters to denote machine i. The final relation 

between the machine reference frame and the network reference frame, after omitting the 

zero values will look like this: 

[
Vdnetwork

Vqnetwork
] = [

+sin(δi)

−cos(δi)
   
+cos(δi)

+sin(δi)
] [

Vdmachine

Vqmachine
] (II. 80) 

[
Vdmachine

Vqmachine
] = [

+sin(δi)

+cos(δi)
   
−cos(δi)

+sin(δi)
] [

Vdnetwork

Vqnetwork
] (II. 81) 

As a result, the dq values can be treated as real and imaginary numbers and the 

conversion is then simple complex number rotation: 
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(Vdnetwork + jVqnetwork) = (Vdmachine + jVqmachine)e
+j(δ−

π

2
) (II. 82) 

(Vdmachine + jVqmachine) = (Vdnetwork + jVqnetwork)e
−j(δ−

π

2
) (II. 82) 

The equations that model the connection of the generator to network are 

Vdterm = E′′
d(1 + ∆ωPu ) − RsId + IqX

′′
q

(II. 83) 

Vqterm = E′′
q(1 + ∆ωPu) − RsIq − IdX

′′
d

(II. 84) 

After making the assumption that jX′′
d
 = X′′

q , it gives a simple circuit equation: 

Vdterm + jVqterm = (1 + ∆wPu)(E
′′
d + jE′′

q) − (Rs + jX′′
d
)(Id + jIq) (II. 85) 

Converting from the “dq” reference to the network reference gives: 

Vr + jVi = (1 + ∆ωPu)(E
′′
d + jE′′

q)e
+j(δ−

π

2
) (II. 86) 

Ir + jIi = (Id + jIq)e
+j(δ−

π

2
) (II. 87) 

Vrterm + jViterm = (Vr + jVi) − (Rs + jX′′
d
)(Ir + jIi) (II. 88) 

II.3  Excitation System 

The basic function of an excitation system is to provide direct current to the synchronous 

machine field winding. In addition, the excitation system performs control and protective 

functions essential to the satisfactory performance of the power system by controlling the 

field voltage and thereby the field current. [44] 

The control functions include the control of voltage and reactive power flow, and the 

enhancement of system stability. The protective functions ensure that the capability limits 

of the synchronous machine, excitation system, and other equipment are not exceeded. [8] 

There are three distinct types of excitation systems based on the power source for exciter.  

1- DC Excitation Systems (DC) which utilize a DC generator with commutator. 
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2- AC Excitation Systems (AC) which use alternators and either stationary or rotating 

rectifiers to produce the direct current needed. 

3- Static Excitation systems (ST) in which the power is supplied through transformer 

and rectifiers. [43] The first two types of exciters are also called rotating exciters 

which are mounted on the same shaft as the generator and driven by the prime 

mover. [15]  

 

Figure II-3: Functional Block Diagram of a Synchronous Generator Excitation Control 

System[44] 

The following is a brief description of the various subsystems identified in Fig. II.3:  

(1) Exciter: provides dc power to the synchronous machine field winding, constituting 

the power stage of the excitation system. [28] 

 (2) Regulator: processes and amplifies input control signals to a level and form 

appropriate for control of the exciter. This includes both regulating and excitation system 

stabilizing functions. [5]  

(3) Terminal voltage transducer and load compensator: senses generator terminal 

voltage, rectifies and filters it to dc quantity, and compares it with a reference which 

represents the desired terminal voltage. In addition, load compensation may be provided, if 
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it desired to hold constant voltage at some point electrically remote from the generator 

terminal. [5] Its block diagram is shown in Fig. II.4: 

 

Figure II-4: Transducer and load compensator block diagram[44] 

(4) Power system stabilizer: provides an additional input signal to the regulator to damp 

power system oscillations. Some commonly used input signals are rotor speed deviation, 

accelerating power, and frequency deviation. [5] 

 (5) Limiters and protective circuits: These include a wide array of control and protective 

functions which ensure that the capability limits of the exciter and synchronous generator 

are not exceeded. [5] 

 One type of the excitation system is the IEEE Type 1 Excitation System is shown in 

Fig. II.5. 

 

Figure II-5: IEEE Type 1 Excitation System 

The state equations for the system are given below: 

𝑑𝐸𝑓𝑑

𝑑𝑡
=

1

𝑇𝑒
([𝐾𝑒 + 𝑆𝐸(𝐸𝑓𝑑)]𝐸𝑓𝑑 + 𝑉𝑅) (𝐼𝐼. 89) 
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𝑑𝑉2

𝑑𝑡
=

1

𝑇𝐹
(−𝑉2 +

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑) (90) 

𝑑𝑉1

𝑑𝑡
=

1

𝑇𝑅

(−𝑉1 + 𝑉𝑇) (91) 

𝑉𝐸𝑅𝑅 = 𝑉𝑅𝐸𝐹 − 𝑉1 (92) 

𝑉𝐹 =
𝐾𝐹

𝑇𝐹
𝐸𝐹𝐷 − 𝑉2 (93) 

𝐹𝑅 =
1

𝑇𝐴
([−𝑉𝑅 + 𝐾𝐴(𝑉𝐸𝑅𝑅 + 𝑉𝑆 − 𝑉𝐹)]) (94) 

The limiter of these state equations is a non-windup limiter and is defined as follows: 

If  𝑉𝑅 > 𝑉𝑅𝑚𝑎𝑥  set  𝑉𝑅 = 𝑉𝑅𝑚𝑎𝑥 

If   𝑉𝑅 = 𝑉𝑅𝑚𝑎𝑥  and 𝐹𝑅 > 0,   set 
𝑑𝑉𝑅

𝑑𝑡
= 0 

If  𝑉𝑅 < 𝑉𝑅𝑚𝑖𝑛  set  𝑉𝑅 = 𝑉𝑅𝑚𝑖𝑛 

If    𝑉𝑅 = 𝑉𝑅𝑚𝑖𝑛  and 𝐹𝑅 < 0,   set 
𝑑𝑉𝑅

𝑑𝑡
= 0 

Otherwise  
𝑑𝑉𝑅

𝑑𝑡
= 𝐹𝑅 

II.4 Loads 

In general, to perform power system analysis, models must be developed for all pertinent 

system components. Inadequate modelling causing under/over-building of the system or 

degrading reliability between generated power and demand power by loads must be 

maintained to keep the system continuously in stable operation. Therefore, load 

characteristics are of crucial importance to be employed in system analysis as they have a 

significant effect on system performance and highly impact the stability results [45]. Load 

modeling refers to the mathematical representation of the relationship between the power 



 

 Dynamic Modelling of Power System 

29 

 

and voltage in a load bus. Load models can be classified into two main categories: static and 

dynamic models [46]. 

II.5  Transmission line modeling 

Electrical power is transferred from generating stations to consumers through transmission 

lines, which are characterized by four parameters: series resistance R due to the conductor 

resistivity, shunt conductance G due to leakage current between the phases and ground, series 

inductance L due to magnetic field surrounding the conductors, and shunt capacitance C due to 

the electric field between conductors [44].  

Transmission lines can be classified according to their lengths as: 

Short line model: For lines less than about 80 km (50 miles), the capacitance may be 

ignored without causing appreciable error in calculating the voltage and current. Therefore, 

the short line model is obtained by multiplying the series impedance per unit length by the 

line length. 

Where r and L are respectively the resistance and the inductance per unit of length of the 

transmission line. l is the line length. 

 The Figure below shows the short line model on a per-phase basis: 

 

Figure II-6: The equivalent PI-circuit of short transmission line 

The equations for this model are: 

𝑰𝑺 = 𝑰𝑹 (𝑰𝑰. 𝟗𝟓) 
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𝑽𝑺 = 𝑽𝒓 + 𝒁. 𝑰𝑹 (𝑰𝑰. 𝟗𝟔) 

 

1. Medium line model: As the length of the line increases, the line charging current 

becomes appreciable and the shunt capacitance must be considered. Lines above 

80km (50miles) and below 250 km (150miles) in length are termed as medium length 

lines. For medium length lines, half of the shunt capacitance may be considered to 

be lumped at each end of the line. This is referred as the nominal π model as shown 

in the following figure: 

 
Figure II-7: The equivalent PI-circuit of medium transmission line 

Equations for this model are: 

𝐼𝑆 = 𝑌. (1 +
𝑍𝑌

4
)𝑉𝑅 + (1 +

𝑍𝑌

2
) 𝐼𝑅 (II. 97) 

 

𝑉𝑆 = (1 +
𝑍𝑌

2
)𝑉𝑅 + 𝑍. 𝐼𝑅 (𝐼𝐼. 98) 

𝑌 = (𝑔 + 𝑗𝐶𝑤). 𝑙 = 𝑗𝐶𝑤𝑙(1.106) as the conductance is neglected g=0. 

𝑍 = (𝑟 + 𝑗𝑤𝑙). 𝑙 (II. 99) 

Long line model: For 250 km (150mile) lines and longer, the effect of distributed parameters 

must be considered.  

The Figure below shows the equivalent PI-circuit of long Transmission line: 
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Figure II-3: The equivalent PI-circuit of long transmission line 

The equations of this model are: 

 

𝐼𝑆 = 𝑌′. (1 +
𝑍′𝑌′

4
)𝑉𝑅 + (1 +

𝑍′𝑌′

2
) 𝐼𝑅 (𝐼𝐼. 100) 

𝑉𝑆 = (1 +
𝑍′𝑌′

2
)𝑉𝑅 + 𝑍′. 𝐼𝑅 (𝐼𝐼. 101) 

𝑊ℎ𝑒𝑟𝑒: 

𝑍′ = 𝑍.
sinh 𝛾𝑙

𝛾𝑙
(𝐼𝐼. 102) 

𝑌′ = 𝑌.
tanh

𝛾𝑙

2
𝛾𝑙

2

(𝐼𝐼. 103) 

𝛾 Knowns as the propagation constant, is a complex expression given by : 

𝛾 = √𝑧𝑦 = √(𝑟 + 𝐽𝑊𝐿)(𝑗𝐶𝑤) (𝐼𝐼. 104) 

II.6  Power system stabilizer 

The basic function of a power system stabilizer is to extend stability limits by 

modulating generator excitation to provide damping to the oscillations of synchronous 

machine rotors relative to one another. Insufficient damping of these oscillations may limit 

the ability to transmit power [47]. To provide damping, the stabilizer must produce an 

electrical torque in phase with the rotor speed deviations [8]. 
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The general block diagram of the PSS is presented in Fig. II.11. 

 

Figure II-9: Block diagram of PSS 

II.7  DFIG model 

       Doubly fed induction generator model which is divided into six for modeling purposes, 

there include the Turbine, the generator itself, the LCL filter, back-to-back capacitor 

(B2BC), the rotor/machine side converter, and the grid side converter.[36] 

II.7.1 Wind turbine modelling 

Wind speed is fed to the wind turbine and electrical torque inputs; in turn, it provides 

generator speed as output. The turbine relates wind speed to the induction generator rotor 

speed. 

It is divided into two subsystems. 

(i) An aerodynamic model: it converts the wind speed in the turbine to mechanical 

output. The mechanical output of the turbine can be represented in Equation 

(II.105). 

𝑷𝒕 = 𝟎. 𝟓𝝆𝝅𝑹𝟐𝑪𝒑(𝜷, 𝝀)𝒗𝝎
𝟑 [𝑾] (𝑰𝑰. 𝟏𝟎𝟓) 

Where the air density is given as 𝜌, the wind speed is given by 𝒗𝝎 , 𝑅 is the turbine blade 

length, 𝑝(𝛽,𝜆) represent the blade's power coefficient which is part of wind power that 

can be extracted by the turbine, and it depends on the functions 𝛽,𝜆. In a practical setup, 

the performance curve of the turbine is specified through the tested field data. However, 

for simulation purpose, Equations representing numerical approximations adopted from 

the study [48] is given in Equation (II.106) 

𝑪𝒑(𝜷, 𝝀)= 0.5176(
𝟏𝟏𝟔

𝝀+𝟎.𝟖𝜷
−

𝟒.𝟎𝟔

𝟏+𝜷𝟑 − 𝟎. 𝟒𝜷𝟓)𝒆
(

−𝟐𝟏

𝝀+𝟎.𝟎𝟖𝜷
+

𝟎.𝟕𝟑𝟓

𝟏+𝜷𝟑) + 𝟎. 𝟎𝟎𝟔𝟖𝝀                   (𝑰𝑰. 𝟏𝟎𝟔) 

Where the blade pitch angle is 𝛽 , 𝜆 is the tip turbine speed ratio; 
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(ii) The drive train model uses the mechanical power output to drive the induction 

generator. The drive train model uses two masses attached to the shaft adopted 

from the study [49] shown in Equation (II.107 –II.110). 

𝑑

𝑑𝑡
𝜔𝑔 =

1

2𝐻𝑔
(𝑇𝑠 − 𝑇𝑔) (𝑰𝑰. 𝟏𝟎𝟕) 

𝑇𝑠 = 𝑘𝑡𝑔𝜃𝑡𝑔 + 𝑐𝑡𝑔
𝑑

𝑑𝑡
𝜃𝑡𝑔 (𝑰𝑰. 𝟏𝟎𝟖) 

𝑑

𝑑𝑡
𝜃𝑡𝑔 = 𝑤𝑒𝑙𝐵(𝜔𝑡 − 𝜔𝑔) (𝑰𝑰. 𝟏𝟎𝟗) 

𝑑

𝑑𝑡
𝜔𝑡 =

1

2𝐻𝑡

(𝑇𝑡 − 𝑇𝑠) (𝑰𝑰. 𝟏𝟏𝟎) 

II.7.2 Doubly fed induction generator 

the generator takes the rotor speed from the generator ( ω𝑔), the bus voltage of the 

generator (𝑉𝑔) from the network model as inputs and in turn, generate the output current 

(𝑖𝑔) and electrical torque (𝑇𝑔). The name DFIG means it has two feeds the stationary part 

stator and the rotating part rotor. The stator windings are arranged such that the output 

stator currents produce a magnetic field that is rotating at angular speed in the air gap. The 

stator currents (𝑖𝑠𝑑,𝑖𝑠𝑞) in dq reference (same as the SMIB conversion process) produced in 

the generator can be represented by Equations (II.111 –II.112). 

𝐿𝑠
′

𝜔𝑒𝑙𝐵

𝑑

𝑑𝑡
𝑖𝑠𝑑 = −𝜔𝑠𝐿𝑠

′ 𝑖𝑠𝑞 − 𝑅1𝑖𝑠𝑑 +
𝑒𝑠𝑞
′

𝜔𝑠𝑇𝑟
+

𝜔𝑔𝑒𝑠𝑑
′

𝜔𝑠
− 𝑣𝑠𝑑 + 𝐾𝑚𝑟𝑟𝑣𝑟𝑑 (𝑰𝑰. 𝟏𝟏𝟏) 

 

𝐿𝑠
′

𝜔𝑒𝑙𝐵

𝑑

𝑑𝑡
𝑖𝑠𝑞 = −𝑅1𝑖𝑠𝑞 + 𝜔𝑠𝐿𝑠

′ 𝑖𝑠𝑑 +
𝜔𝑔𝑒𝑠𝑞

′

𝜔𝑠
−

𝑒𝑠𝑑
′

𝜔𝑠𝑇𝑟
− 𝑣𝑠𝑞 + 𝐾𝑚𝑟𝑟𝑣𝑟𝑞 (𝑰𝑰. 𝟏𝟏𝟐) 

 

Voltages behind transient impedances (𝑒𝑠𝑞 ′ ,𝑒𝑠𝑑 ′ ) are represented in Equations (II.113 –

II.114).

1

𝜔𝑠𝜔𝑒𝑙𝐵

𝑑

𝑑𝑡
𝑒𝑠𝑑
′ = −𝑅2𝑖𝑠𝑞 − (1 −

𝜔𝑔

𝜔𝑠
) 𝑒𝑠𝑞

′ −
𝑒𝑠𝑑
′

𝜔𝑠𝑇𝑟
+ 𝐾𝑚𝑟𝑟𝑣𝑟𝑞 (𝑰𝑰. 𝟏𝟏𝟑) 

1

𝜔𝑠𝜔𝑒𝑙𝐵

𝑑

𝑑𝑡
𝑒𝑠𝑞
′ = 𝑅2𝑖𝑠𝑑 −

𝑒𝑠𝑞
′

𝜔𝑠𝑇𝑟
+ (1 −

𝜔𝑔

𝜔𝑠
) 𝑒𝑠𝑑

′ + 𝐾𝑚𝑟𝑟𝑣𝑟𝑑 (𝑰𝑰. 𝟏𝟏𝟒) 
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Rotor currents 𝑖𝑟𝑞 and 𝑖𝑟𝑑 are given by Equation (II.115 –II.116). and shown  

𝑖𝑟𝑞 = −(
𝑒𝑠𝑑
′

𝑋𝑚
) − 𝐾𝑚𝑟𝑟𝑖𝑠𝑞 (𝑰𝑰. 𝟏𝟏𝟓) 

𝑖𝑟𝑑 = −(
𝑒𝑠𝑞
′

𝑋𝑚
) − 𝐾𝑚𝑟𝑟𝑖𝑠𝑑 (𝑰𝑰. 𝟏𝟏𝟔) 

Rotor active power 𝑃𝑟, stator reactive power 𝑄𝑠 and electrical torque 𝑇𝑔 are given as 

Equations (II.118–II.119) and (II.121).. 

𝑃𝑆 = 𝑣𝑠𝑞𝑖𝑠𝑞 + 𝑣𝑠𝑑𝑖𝑠𝑑 (𝑰𝑰. 𝟏𝟏𝟕) 

𝑃𝑟 = 𝑣𝑟𝑞𝑖𝑟𝑞 + 𝑣𝑟𝑑𝑖𝑟𝑑 (𝑰𝑰. 𝟏𝟏𝟖) 

𝑄𝑆 = −𝑣𝑠𝑞𝑖𝑠𝑞 + 𝑣𝑠𝑑𝑖𝑠𝑑 (𝑰𝑰. 𝟏𝟏𝟗) 

𝑄𝑟 = −𝑣𝑟𝑞𝑖𝑟𝑞 + 𝑣𝑟𝑑𝑖𝑟𝑑 (𝑰𝑰. 𝟏𝟐𝟎) 

𝑇𝑔 = 𝐿𝑚(𝑖𝑠𝑞𝑖𝑟𝑑 − 𝑖𝑠𝑑𝑖𝑟𝑞) (𝑰𝑰. 𝟏𝟐𝟏) 

II.7.3 LCL filter 

To complete the DFIG, the power grid system is linked to the rotor winding, the rotor 

winding consists of a back-to-back capacitor, filter, and converters. An inductor-capacitor 

inductor (LCL) type of filter is used in this study. It is made of two inductors (𝐿𝑖,𝐿𝑔), a 

damping resistor (𝑅𝑐) and a capacitor (𝐶𝑓). The LCL model takes inverter voltage (𝑣𝑖𝑞,𝑣𝑖𝑑) 

and stator voltage (𝑣𝑠𝑞,𝑣𝑠𝑑) as inputs and provides the current injected into the grid through 

the filter (𝑖𝑔𝑞, 𝑖𝑔𝑑) as outputs. The filter Equations are shown from (II.126 –II.127). 

𝐿𝑖

𝜔𝑏

𝑑

𝑑𝑡
𝑖𝑖𝑞 = 𝑣𝑖𝑞 − 𝑣𝑐𝑞 − (𝑅𝑖 + 𝑅𝑐)𝑖𝑖𝑞 + 𝜔𝐿𝑖𝑖𝑖𝑑 + 𝑅𝑐𝑖𝑔𝑞 (𝑰𝑰. 𝟏𝟐𝟐) 

𝐿𝑖

𝜔𝑏

𝑑

𝑑𝑡
𝑖𝑖𝑑 = 𝑣𝑖𝑑 − 𝑣𝑐𝑑 − (𝑅𝑖 + 𝑅𝑐)𝑖𝑖𝑑 − 𝜔𝐿𝑖𝑖𝑖𝑞 + 𝑅𝑐𝑖𝑔𝑑 (𝑰𝑰. 𝟏𝟐𝟑) 

𝐿𝑔

𝜔𝑏

𝑑

𝑑𝑡
𝐼𝑔𝑞 = 𝑣𝑐𝑞 − 𝑣𝑔𝑞 − (𝑅𝑔 + 𝑅𝑐)𝐼𝑔𝑞 + 𝜔𝐿𝑔𝐼𝑔𝑑 + 𝑅𝑐𝐼𝑖𝑞 (𝑰𝑰. 𝟏𝟐𝟒) 

𝐿𝑔

𝜔𝑏

𝑑

𝑑𝑡
𝐼𝑔𝑑 = 𝑣𝑐𝑑 − 𝑣𝑔𝑑 − (𝑅𝑔 + 𝑅𝑐)𝐼𝑔𝑑 − 𝜔𝐿𝑔𝐼𝑔𝑞 + 𝑅𝑐𝐼𝑖𝑑 (𝑰𝑰. 𝟏𝟐𝟓) 

𝐶𝑓

𝜔𝑏

𝑑

𝑑𝑡
𝑣𝑐𝑞 = 𝐼𝑖𝑞 − 𝐼𝑔𝑞 − 𝜔𝐶𝑓𝑉𝑐𝑑 (𝑰𝑰. 𝟏𝟐𝟔) 

𝐶𝑓

𝜔𝑏

𝑑

𝑑𝑡
𝑣𝑐𝑑 = 𝐼𝑖𝑑 − 𝐼𝑔𝑑 + 𝜔𝐶𝑓𝑉𝑐𝑞 (𝑰𝑰. 𝟏𝟐𝟕) 
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Measure 𝑃 and measure 𝑄 represent the converter terminal active power output and output 

reactive power at the filter terminal. It is modeled as seen in Equations (II.128 –II.129). 

𝑃𝑔𝑠𝑐 = 𝑣𝑖𝑞𝑖𝑖𝑞 + 𝑣𝑖𝑑𝑖𝑖𝑑 (𝑰𝑰. 𝟏𝟐𝟖) 

𝑄𝑔𝑠𝑐 = −𝑣𝑖𝑞𝑖𝑔𝑑 + 𝑣𝑠𝑑𝑖𝑔𝑞 (𝑰𝑰. 𝟏𝟐𝟗) 

II.7.4 Back-to-back capacitor 

This B2BC connects the rotor windings to the power grid system through the LCL filter. 

The capacitor has a dc link, the capacitor voltage can be represented by Equation (II-130) 

1

𝐶𝑑𝑐
𝑝𝑉𝑑𝑐 =

1

𝑉𝑑𝑐
(𝑃𝑚𝑠𝑐 − 𝑃𝑔𝑠𝑐) (𝑰𝑰. 𝟏𝟑𝟎) 

Where 𝑃𝑚𝑠𝑐 is the machine side converter active power, 𝑃𝑔𝑠𝑐 is the grid-side converter 

active power. The capacitor voltage 𝑉𝑑𝑐 , the capacitance is 𝐶𝑑𝑐 .  

II.7.5 Machine-side converter controller 

The converter or controller model receives voltages, generator rotor speed and current in 

the form of electrical signals and produces corresponding switching signals for the converter. 

The vector control method through which independent control of active and reactive power, 

torque, and voltage control is achieved is adopted in this study. However, this vector control 

is possible only when one of the 𝑑𝑞 axes is aligned to the stator voltage. The DFIG power 

test system developed so far has the 𝑞-axis aligned to the infinite bus voltage. The 

measurements of the voltage and current must be aligned to a new reference frame which is 

inside the power test system controllers. The controllers adopted in this study have a simple 

model of two cascaded proportional-integral (PI). 

II.7.6 Grid-side converter controller 

Like the machine side converter/controller, it also has two cascaded proportional-integral 

(PI) controllers regulating the voltage capacitor and reactive power flow from the grid side 

controller at the wind turbine generator bus. Rotor power is transferred to the grid (𝑃𝑟 = 

𝑃𝑔𝑠𝑐), by regulating the capacitor voltage reference value.  
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II.8  Conclusion  

 

In this chapter, a comprehensive dynamic modeling of critical power system components has 

been developed, laying the groundwork for in-depth stability and performance analysis. By 

representing the synchronous generator, excitation system, loads, transmission lines, power 

system stabilizers, and double-fed induction motors, the intricate interactions within the 

power system are captured. These models are essential for understanding system dynamics, 

designing effective control strategies, and ensuring reliable operation under both normal and 

fault conditions. The insights gained here will be instrumental in subsequent chapters, which 

focus on system stability and controller optimization.
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CHAPITRE III:         CHAPTER THREE 

III.1 Introduction  

    This study proposes a Marine Predator Algorithm (MPA) approach to optimize PSS 

parameters to enhance small signal stability in power systems. The MPA stands out for its 

robustness and adaptability across a range of optimization problems. MPA has demonstrated 

its success in various domains, including blade shape optimization of Savonius wind turbines 

[48], parameter estimation of photovoltaic systems, and energy efficiency optimization in 

buildings with solar panel systems[49]. Furthermore, it has been effectively applied to 

pavement maintenance and rehabilitation planning [50] and optimal allocation of active and 

reactive power resources in power distribution networks [51]. These diverse applications 

highlight the versatility of the MPA in addressing both engineering challenges and resource 

optimization problems, establishing its potential for broader applications. This chapter 

provides a comprehensive analysis of the application of the Marine Predator Algorithm 

(MPA) in optimizing power system stabilizers (PSS). It begins with an introduction to the 

system tests, detailing the power systems under study, their configurations, and the 

parameters used for analysis. An overview of the MPA and its cost function is presented, 

highlighting the optimization mechanism and objectives. The simulation results demonstrate 

the application of MPA and other metaheuristic algorithms for PSS parameter optimization, 

discussing the performance improvements achieved. Experimental validation of the MPA-

optimized PSS is conducted to emphasize its practical applicability. The chapter concludes 

by summarizing the key findings from both simulation and experimental results, 

underscoring the contributions of the MPA-optimized PSS to enhancing power system 

stability.  

III.2 Power System Tests 

The effectiveness of the proposed Algorithm was tested on three different power 

systems, The SMIB, the Western Systems Coordinating Council (WSCC) 3-machine and 9-

bus power system and 10-machine 39-bus New England power system.  
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III.2.1 Test system 1: SMIB  

In this system, the synchronous machine is connected via a line to an infinite bus, as 

shown in Figure III.1. An infinite bus is a bus, which has a fixed voltage (both magnitude 

and angle) and frequency. The infinite bus can be used to represent the connection to a strong 

grid, which will absorb the injected power at the infinite bus connection point, without a 

noticeable change in the voltage or frequency. While the voltage angle and magnitude at Bus 

2 is fixed, the voltage magnitude and angle at Bus 1 varies according to the current injected 

at Bus 1. The system’s parameters used in the simulation are given in Table A.1 in Appendix 

A. 

 

Figure III-1:Schematic of SMIB system. 

III.2.2 Test system 2: Three-Machine Power System 

In the second test system, a widely used Western Systems Coordinating Council (WSCC) 

3-machine, 9-bus power system is considered [3]. Line diagram of the WSCC power system is 

shown in Figure III_2 . The G1 is the slack bus generator and its rotor angle (δ1) is selected 

as the reference angle. The generators are represented as fourth-order models. All dynamic 

parameters of the WSCC power system are given in Table A.2 in Appendix A. 

 

Figure III-2: WSCC power test system. 
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III.2.3 Test system 2: Ten-Machine Power System 

The second test system is a complex inter-area power system, comprising 10 generators and 

39 buses as shown in Figure III , commonly known as the New England Power System. 

Generator G2 serves as the slack bus, with its rotor angle (δ2) designated as the reference angle. 

The generators are modeled using fourth-order representations to accurately capture dynamic 

behavior. All relevant dynamic parameters for this system are detailed in Tables A.3 in 

Appendix A.  

 

Figure III-3: the New England power system 

III.3 Problem Optimization 

In this study, we suggest an optimal tuning approach for power system stabilizers (PSSs) 

to enhance LFO damping. The goal is to achieve coordinated tuning of the PSS parameters 

using a robust and effective optimization technique. Tuning PSSs can be challenging due to 

the numerous parameters involved, especially in MMPS. Since power systems exhibit non-

linear behavior and have a high number of optimization parameters, we employ the MPA in 

this study. The MPA algorithm, as an evolutionary technique, is known for finding optimal 

solutions even in non-linear and high-dimensional problems. Further, the tuning process of 
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PSS parameters using metaheuristic optimization is presented in Figure III_4 and the MPA 

parameters are given in Tables A.4 in Appendix A.  

  

 

 

 

 

 

 

 

 

 

 

 

III.3.1 Marine Predator Algorithm (MPA)  

The foraging movements of marine predators’ act as an inspiration for MPA. Predators 

frequently alternate between two motion patterns: Brownian motion, which is continuous 

steps in the same vacancy that enhances exploitation, and Levy motion, which includes brief 

movements followed by high jumps that boosts exploration. Figure (III-5) illustrates the 

vital phases of the MPA and can be summarized as follows; see [52] for more details. 

[1]  Initialization: the search space is first filled with a uniformly and randomly 

distributed initial solution. 

Figure III-4: Tuning process of PSS parameters using metaheuristic optimization. 
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[2] The Prey matrices are updated in Phase (1), the first third of iterations. 

𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑆𝑡𝑒𝑝𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − (𝑅𝐵 ⃗⃗⃗⃗⃗⃗ ⊗ 𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )) (𝐼𝐼𝐼. 1) 

𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + ( 𝑃. 𝑅⃗ − (𝑅𝐵 ⃗⃗⃗⃗⃗⃗ ⊗ 𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   )) (𝐼𝐼𝐼. 2) 

where RB is a vector of arbitrary numbers based on the normal distribution of 

Brownian motion, P = 0.5, and R is a vector of uniform random integers between [0,1]. 

The prey uses Brownian motion to move. (Note: The Prey matrix is multiplied by RB.) 

[3] Phase (2), or the second third of the iterations, is characterized by the following equation 

updating the first half of the population: the predator moves in Brownian motion while 

the prey moves by Levy motion. 

𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑅𝐿 ⃗⃗ ⃗⃗  ⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − (𝑅𝐿 ⃗⃗ ⃗⃗  ⃗ ⊗ 𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )) (𝐼𝐼𝐼. 3) 

𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + ( 𝑃. 𝑅⃗ ⊗ 𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ) (𝐼𝐼𝐼. 4) 

where RL, a vector of values that are random based on Levy's motion normal 

distribution, is multiplied by the Prey in the step equation. As the remaining 50% of the 

population is up 

𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑅𝐵 ⃗⃗⃗⃗⃗⃗ ⊗ ((𝑅𝐵 ⃗⃗⃗⃗⃗⃗ ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) − 𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (𝐼𝐼𝐼. 5) 

𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝐸𝑙𝑖𝑡𝑒𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑃. 𝐶𝐹 ⊗ 𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ) (𝐼𝐼𝐼. 6) 

Where RB and CF multiply the Elite matrix to get the following result: 

𝐶𝐹 = [1 − (1./𝑀𝑎𝑥𝐼𝑡𝑒𝑟)](
2𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (𝐼𝐼𝐼. 7) 

[4] Phase 3, the final third of iterations: The Prey matrix is updated as follows, and the 

predator moves using Levy motion, which is calculated by multiplying the Elite matrix 

by RL: 

𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑅𝐿 ⃗⃗ ⃗⃗  ⃗ ⊗ ((𝑅𝐿 ⃗⃗ ⃗⃗  ⃗ ⊗  𝐸𝑙𝑖𝑡𝑒𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) − 𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (𝐼𝐼𝐼. 8) 

𝑃𝑟𝑒𝑦𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝐸𝑙𝑖𝑡𝑒𝑖 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑃. 𝐶𝐹 ⊗ 𝑆𝑡𝑒𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ) (𝐼𝐼𝐼. 9) 

 

[5] Finalizing: The best solutions are constantly added to the Elite matrix following each 

iteration. Once the maximum number of iterations is reached, the final solution with the 

best fitness function will become apparent. 
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Figure III-5: MPA flow chart. 

III.3.2 Fitness function 

In order to reduce the error signal, specifically low-frequency oscillations (LFOs), a 

distinct cost function has been adopted for comprehensive analysis. The integral of time-

weighted absolute error (ITAE) and the integral time square error (ITSE) are utilized as time 

domain cost functions to gauge performance. Additionally, two other cost functions, denoted 

as F1 and F2, are employed. 

𝐼𝑇𝐴𝐸 = ∫ 𝑡 × |𝑒(𝑡)𝑑𝑡| 
𝑇𝑠

0

(𝐼𝐼𝐼. 10) 

𝐼𝑇𝑆𝐸 = ∫ 𝑡 × 
𝑇𝑠

0

𝑒(𝑡)2𝑑𝑡 (𝐼𝐼𝐼. 11) 
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 F1 and F2 are two cost functions that have been adapted from [5] and [13] respectively. 

Both of these formulations involve considering the eigenvalues of the system, which are 

essentially the “natural frequencies” of its dynamic response. By adjusting crucial 

parameters such as damping ratios, damping factors, and frequency parameters, these cost 

functions aim to achieve a specific outcome: As illustrated in Figure III_6, the eigenvalues 

are moved to the left half of the complex s-plane. Complex numbers in the left half plane 

decay over time, with time, indicating a damped and steady system response, and this 

displacement indicates increased stability. 
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𝜎𝑖 ≤ 𝜎0

𝜁𝑖 ≥  𝜁0

 

𝜎0 
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Figure III-6: D-shape schema. 

𝐹1 = ∑(𝜎0 − 𝜎𝑖)
2

𝑁

𝑖=1

+ ∑(𝜉0 − 𝜉𝑖)
2

𝑁

𝑖=1

𝑤𝑖𝑡ℎ  𝜎𝑖 ≥ 𝜎0 𝑎𝑛𝑑 𝜉𝑖 ≤ 𝜉0 (𝐼𝐼𝐼. 12)
 

N is the number of eigenvalues. ξi represents the damping ratio of the ith Eigen value, while 

σi represents the real part/damping factor of the ith Eigen value. ξ0 and σ0 represent the 

desired damping ratio and damping factor, respectively Set ξ0=-2 and σ0=0.5. 

In the case of F1, the first part of this objective function focuses on maximizing the real part 

of the eigenvalue, while the second part aims to maximize the damping ratio. This strategy 

shifts the eigenvalues towards the left half of the S-plane, enhancing stability by ensuring 

larger negative real parts with higher damping ratios. 

𝐹2 = 𝑚𝑎𝑥{|𝜆𝑖|, 𝜆𝑖 ∈ 𝐸𝑀𝑠} + 𝑃𝑐 ∑{𝑟𝑒𝑎𝑙(𝜆𝑗)|𝜆𝑗 > 0} 

𝐸𝑀𝑠 = {𝜆𝑘|0 < 𝑓 =
𝑖𝑚(𝜆𝑘)

2𝜋
< 3} (𝐼𝐼𝐼. 13) 

λi represent the eigenvalues and 𝑃𝑐  penalty constant. 
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For F2, its primary objective is to maximize the eigenvalues within the frequency range of 0 

to 3. The first part of the objective function specifically targets the enhancement of the real 

part of eigenvalues falling within this frequency band. The second part applies a penalty to 

any positive eigenvalues, which indicate instability, ensuring these solutions are avoided 

during the optimization process. 

Finally, the optimal tuning of the PSS parameters can be formulated on an optimization 

problem as follows:  

                   min [ITAE, ITSE, F1 or F2 (𝐾𝑝𝑠𝑠𝑖 , 𝑇1𝑖, 𝑇2𝑖 , 𝑇3𝑖 , and 𝑇4𝑖)]                         (𝐼𝐼𝐼. 14) 

                                       Subject to:  

{

0.01 ≤  𝐾𝑝𝑠𝑠𝑖  ≤  50

0.001 ≤  𝑇1𝑖 ≤  1 and 0.001 ≤  𝑇3𝑖  ≤  1.  

 0.02 ≤  𝑇2𝑖  ≤  1 and 0.001 ≤  𝑇4𝑖  ≤  1. [41] 

 

III.4 Simulation and Results 

The MATPOWER toolbox was utilized in this study to calculate the system's power flow 

and beginning conditions. However, MATLAB/SIMULINK was used for performing out 

the model's dynamic simulation. The parameters of the PSS are tuned using PSO, WOA, 

WHO, FPA, AVOA and MPA optimization algorithms to enhance the stability quality 

under three phase symmetrical fault condition. The transient performance of the PSS is 

evaluated based on indices such as settling time, Eigenvalues, damping ratios and Eigen 

plots.  

III.4.1 Test System 1  

Figure III_8 displays the simulation results of the stability analysis that was done on 

the SMIB system. The enhancement in stability that were achieved by applying several 

objective functions (F1, F2, ITAE, and ITSE) for MPA, PSO, WOA, FPA, AVOA, and 

WHO optimizers. Table III_1 presented the PSS's optimal parameter values on the SMIB 

system. 

The simulation results for the rotor speed subjected to four objective function tuning 

(ITAE, ITSE, F1 and F2) are shown in Figure III.8 (a)–(d), respectively.   

Figure III_9's bar chart is used to offer a quantitative analysis based on the settling 

times of the various controllers examined in this article. 
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Table III_2 presents the stability analysis using Eigenvalues and the damping of the 

electromechanical modes based the four objective function tuning (ITAE, ITSE, F1 and F2). 

Table III-1: PSS's optimal parameter values on the SMIB system. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSS PARAMETERS 

Cost fun Controller KG T1 T2 T3 T4 

 

 

 

 

 

F1 

MPA-PSS 33.570 

 

0.123 0.020 0.083 0.02 

PSO-PSS 3.186 0.653 0.02 0.641 0.448 

WOA-PSS 7.471 0.0924 0.020 0.406 0.0740 

FPA-PSS 24.031 0.433 0.999 0.503 0.020 

AVOA-PSS 5.706 0.467 0.0245 0.527 0.360 

WHO-PSS 3.170 0.477 0.020 0.940 0.480 

 

 

 

F2 

MPA-PSS 50 0.094 0.02 0.098 0.02 

PSO-PSS 6.549 0.497 0.02 0.4612 0.419 

WOA-PSS 6.352 0.099 0.054 0.418 0.048 

FPA-PSS 3.611 0.865 0.02 0.949 0.946 

AVOA-PSS 40.783 0.088 0.02 0.104 0.02 

WHO-PSS 5.048 0.321 0.229 0.438 0.02 

 

 

 

ITAE 

MPA-PSS 49.915 0.083 0.02 0.084 0.02 

PSO-PSS 16.798 0.466 0.556 0.436 0.02 

WOA-PSS 15.0120 0.322 0.02 0.042 0.02 

FPA-PSS 47.541 0.207 0.02 0.038 0.02 

AVOA-PSS 32.315 0.151 0.02 0.048 0.020 

WHO-PSS 23.110 0.538 0.999 0.522 ,0.020 

 

 

 

ITSE 

MPA-PSS 49.999 0.083 0.020 0.111 0.020 

PSO-PSS 45.840 0.382 0.020 0.653 0.490 

WOA-PSS 50 1 0.020 0.539 1 

FPA-PSS 50 0.0510 0.020 0.110 0.020 

AVOA-PSS 50 0.723 0.527 0.369 0.020 

WHO-PSS 50 0.495 0.020 0.520 0.507 



Design of PSS for conventional power system 

47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 



Design of PSS for conventional power system 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III_8 illustrates that without PSS, the system lacks adequate damping, which 

hinders its ability to settle. However, the incorporation of PSS enhances the system’s 

damping. The performance of the MPA-PSS, as demonstrated in Figure III_8 (a)-(d), is 

noteworthy. It maintains satisfactory performance indices even when the fitness function 

changes. In comparison to the PSS optimized by PSO/WOA/FPA/AVOA/WHO, the MPA-

PSS minimizes the minimum undershoot, and settling time, thereby showcasing its superior 

performance. 

  

Figure III-9:  Statistical comparison of performance settling time for different controllers 

subjected to different cost function. 

(d) 

Figure III-8: Simulation results of rotor speed in SMIB for different cost function and their 

zoom. (a): F1, (b): F2, (c): ITAE, (d): ITSE. 
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Table III_2 shows that a single pair of eigenvalues without PSS has a negative damping 

ratio and falls in the unstable area of the s-plane. It is clear that PSS causes the 

electromechanical modes to move to the left of the S-plane and greatly increases the damping 

factor values. In comparison to PSS optimized PSO/WOA/FPA/AVOA and WHO 

approaches, MPA-PSS moves the eigenvalues further from the selected D-shape stable area 

in the s-plane with superior damping performance. 

The eigenvalues plot analysis of the SMIB system with No-PSS, MPA-PSS, PSO-PSS, 

WOA-PSS, FPA-PSS, AVOA-PSS, and WHO-PSS subjected to the F1, F2, ITAE, and ITSE 

objective functions is depicted in Figure III_10. The MPA demonstrates its performance 

across all four cost function tests, with the most significant shifts in eigenvalues observed 

with the ITSE and F2 objective functions. 

Table III-2:  Eigen values and damping ratio comparison for various controllers and cost functions 

Controllers (Eig, 

Damping   

ratio) 

F1 F2 ITAE ITSE 

NO-PSS Eig 0.0588 ±8.3601i 

Damping ratio -0.0070 

MPA-PSS Eig -12.8827 

±11.629i 

-8.5675 ± 7.4138i 

-11.2513 ± 

18.096i 

-9.9918 ± 4.5219i 

-7.1754 

±14.5639i 

 

-10.9665 ±18.1205i 

-9.9436 ± 3.4524i 

Damping ratio 0.7423 

0.7562 

0.5280 

0.9110 

0.4420 0.5178 

0.9447 

PSO-PSS Eig -4.7732±7.9261i 

-4.7926 ± 7.8676i 

-4.6874 ± 

10.6114i 

-4.7045 ± 5.6666i 

-4.6652 ± 14.677i 

-3.8899 ± 3.8955i 

-2.0239 -26.3537i 

-1.8283±1.6911 

Damping ratio 0.5159 

0.5202 

0.4041 

0.6388 

0.3029 

0.7066 

0.0766 

0.7341 

WOA-PSS Eig -5.9803±8.9791i 

-4.7710 ± 7.7116i 

-4.9472 ± 9.2219i 

-4.9472 ± 8.1246i 

-7.3356 ± 12.466i 

-4.5116 ± 4.9554i 

-1.5437 ± 27.8950i 

-1.6764 ± 1.7424i 

Damping ratio 0.5543 

0.5261 

0.4727 

0.5201 

0.5072 

0.6732 

0.0553 

0.6933 

FPA-PSS Eig -4.3271±13.4399i 

-4.5978 ±4.2302i 

-4.7429 ± 9.2850i 

-4.7761 ± 6.6103i 

-6.1136 ± 19.507i 

-4.8103 ± 2.563i 

-5.0878 ± 14.9303i 

 

Damping ratio 0.3065 

0.7359 

0.4549 

0.5857 

0.2991 

0.8825 

0.3226 

AVOA-PSS Eig -4.7952±11.4727i 

-4.0076 ±5.3550i 

-10.9568±13.546i 

-10.9568 ± 6.314i 

-5.6822 ± 13.051i 

-7.2047 ± 3.2506i 

-1.6638 ± 27.2003i 

-1.7388 ± 1.5019i 

Damping ratio 0.3856 

0.5992 

0.6289 

0.8664 

0.3991 

0.9115 

0.0611 

0.7568 

WHO-PSS Eig -4.2128±8.6271i 

-5.3744± 7.0621i 

-4.8126 ± 8.4689i 

-4.8023 ± 7.6017i 

-4.5859 

±15.0672i 

-3.8534 ± 3.8221i 

-1.7446 ± 27.2493i 

-1.7832 ± 1.7505i 

Damping ratio 0.4388 

0.6056 

0.4941 

0.5341 

0.2912 

0.7100 

0.0639 

0.7136 
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Figure III-8: Simulation results of Eigen plots for different cost function. (a): F1, (b): F2, 

(c): ITAE, (d): ITSE. 

III.4.2 Test system 2  

Table III_3 illustrates the various operating conditions under which the study was carried 

out using a base value of 100 MVA per unit. The optimal PSS values were found utilizing 

earlier metaheuristic optimizers for generators (G2 and G3). The corresponding rotor speed 

of generators G1, G2, and G3 for normal loading, heavy loading and light loading are 

shown in Figure III.12(a)–(c), Figure III. 13(a)–(c) and Figure III. 14 (a)–(c), respectively. 

(a) (b) 

(c) (d) 

(b) 
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Eigenvalues analysis simulation was run under symmetrical three-phase fault at bus 9 at the end of 

line 8–9 observed at t = 1 s for different operating conditions.  

Figure III. 12(a)-(c) illustrates the rotor speed of generators G1, G2, and G3 respectively 

for normal loading. It is noteworthy that G3 experiences more pronounced oscillations in 

rotor speed compared to G1 and G2, which can be attributed to the influence of the fault. 

However, it is crucial to acknowledge that the fault also impacts G1 and G2. This 

demonstrates the effect of a fault in one region on the others, indicative of interarea 

oscillations. 

 
Table III-3: Operating conditions for the WSCC test system 

 

 

 

 

 

On the comparison of metaheuristic techniques, it's noticeable that that rotor speed for 

all generators with MPA-PSS show fast decaying of oscillations, settling fast therefore better 

stability response. To further substantiate the stability of the MPA-based PSS, we modified 

the operating conditions from those specified in Table III.3.  

From figure.III 13(a)-(c), it’s observable that with an increase in load (heavy loading), 

there’s a corresponding increase in both the amplitude and duration of oscillations in all three 

generators, thereby making the attainment of a stable state more challenging. Furthermore, 

it is noticed that rotor speed for all generators with MPA-PSS performs better results in term 

of damping and return to reverting to a stable state. The system responses under Light 

loading condition are shown in figure III. 14(a)-(c),. The superiority of the MPA-PSS in 

reducing the settling time and suppressing power system oscillations is verified. 

 

 

 

 

 

 

Normal Loading  Heavy Loading  Light Loading 

𝐏𝐋(pu) 𝐐𝐋(pu) 𝐏𝐋(pu)   𝐐𝐋(pu) 𝐏𝐋(pu)   𝐐𝐋(pu) 

1.25 0.5 2 0.8 0.65 0.55 

0.90 0.3 1.8 0.6 0.45 0.35 

1.00 0.35 1.5 0.6 0.50 0.25 
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(b) 

(c) 

(a) 

Figure III-9: Normal loading, time domain simulation for rotor speed of generators G1, 

G2, and G3.  (a): w1, (b): w2, (c): w3. 
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(a) 

(b) 

(c) 

Figure III-10: Heavy loading, time domain simulation for rotor speed of generators 

G1, G2, and G3.  (a): w1, (b): w2, (c): w3. 
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(a) 

(b) 

(c) 

Figure III-11: Light loading, time domain simulation for rotor speed of generators G1, 

G2, and G3.  (a): w1, (b): w2, (c): w3. 
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Figure III.15(a)-(c) presents bar charts comparing the performance index settling time 

of various stabilizers, PSO, WOA, FPA, AVOA, WHO, and MPA-PSS, under three different 

load conditions. The charts almost demonstrate that the MPA-PSS outperforms the other 

stabilizers across various operating points. The bar chart evidently shows that the system 

requires a longer duration to return to a stable state under heavy and light load conditions, 

as compared to normal load conditions. 

 

 

Table III.4 shows the eigenvalues analysis of the WSCC System. It has two local area 

eigenvalues and three interarea eigenvalues. Without a PSS, the system is close to becoming 

unstable. This is shown by the interarea eigenvalues, which are near zero in normal, heavy, 

and light load conditions. This makes the system likely to become unstable if there are 

disturbances. The introduction of a PSS, however, significantly alters the system dynamics. 

It effectively shifts both local and interarea electromechanical modes to the left of the S-

 

 
 

(a) (b) 
 

 
(c) 

 

Figure III-12 : Comparison of performance indices settling time for rotor speed of generators G1, G2, 

and G3.  (a): w1, (b): w2, (c): w3 under three different operating point. 
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plane, thereby enhancing system stability. Among the various PSS optimization techniques, 

the MPA stands out. It relocates the eigenvalues far from the selected D-shape stable region 

in the s-plane, thereby demonstrating superior damping performance. This improvement is 

notably superior when compared to other PSS tuned other optimization techniques such as PSO, 

WOA, FPA, AVOA, and WHO. 

Table III-4:  Eigenvalues Analysis of the PSS based PSO, WOA, WHO, FPA, AVOA and MPA 

optimization techniques for Three Loading Cases of WSCC System 

Eigenvalues 

Normal Loading Heavy Loading Light Loading 

Contro

-llers 

Local area Inter area Local area Inter area Local area Inter area 

NO-

PSS 
-0.6856±12.775i 

0.1229±8.2867i 

-2.3791±2.617i 

-4.6706±1.375i 

-3.5199±1.015i 

-0.8948 ±12.5987i 

-0.2046 ± 8.3076i 

-2.5388 ±2.411i 

 -4.2545±1.432i 

 -3.0828 ±1.26i 

-0.6708±12.77i 

-0.0936±8.011i 

 

-2.3685 ±2.793i 

-4.6969 ± 1.361i 

-3.5279 ±1.018i 

3.63e-16±3.4e8i 

MPA-

PSS 
-5.0969±13.76i 

-3.9664 ±7.697i 

-3.9450±2.487i 

-3.9126±2.336i 

-3.9048±2.310i 

-4.6491±13.5438i 

-8.6557 ± 9.2369i 

-2.8956 ± 4.129i 

-3.9238 ± 1.810i 

-2.8630±1.5121i 

-7.2260±9.214i 

   

-1.9968 ±3.5767i 

-4.3064±2.0697i 

-3.2997 ±1.3202i 

PSO-

PSS 
-2.6645 ±11.28i 

-2.9276 ±11.24i 

-2.3169 ±3.04i 

-4.616 ±1.557i 

-3.421 ± 1.123i 

-2.0665 ±11.8134i  

-4.0967±10.5081i 

-3.0071 ± 3.420i 

-4.0495 ± 1.697i 

-2.9072 ± 1.516i 

-0.0001±0.0001i 

-2.8603±12.18i 

-2.3506±10.02i 

-2.1069±3.0319i 

-4.6487± 1.4224i 

-3.3475± 0.9302i 

-0.0001±0.0001i 

WOA-

PSS 
-0.4066±8.5526i 

-0.4066±8.5526i 

-2.7810 ±3.00i 

-3.5935±2.390i 

-3.696 ± 1.029i 

-2.2939 ±12.0427i 

-3.9926 ±10.7250i 

-3.6344±4.6774i 

-3.755 ± 1.5608i 

-2.7876 ± 1.797i 

-0.0001±0.0001i 

-2.921±12.355i  

-3.1032±10.00i 

-2.5761±3.3218i 

-4.5059 ±2.0462i 

-3.5818 ±1.3878i 

FPA-

PSS 
-3.6646±13.081i 

-1.7314±10.782i 

-2.1782± 3.17i 

-4.5407 ±1.49i 

-3.1835±1.020i 

-1.4247 ±11.9148i 

-3.8398 ±8.1194i 

-2.4936 ± 3.311i 

-4.1246 ± 1.477i 

-2.7360±1.3661i 

-2.0259±12.44i 

-1.9895±9.455i 

-1.9812 ±2.9539i 

-4.5364 ±1.2891i 

-2.7351 ±0.5555i 

AVOA

-PSS 
-2.7512+11.236i 

-2.7476±11.236i 

-2.2379±3.029i 

-4.6044±1.489i 

-3.3727±1.040i 

-2.0077 ±11.7191i 

-3.5466±10.3067i 

-2.2895 ± 2.963i 

-4.1855 ± 1.489i 

-2.9137±1.2023i 

-2.8809±12.35i 

 -2.615±10.04i 

-2.2700 ±3.2151i 

-4.6045±1.6524i 

-3.4066 ±1.1928i 

-0.0001 ±0.0001i 

WHO-

PSS 
-2.5634±11.733i 

-3.3037±11.123i 

-3.0399±3.483i 

-3.9230±1.613i 

-3.5689 ±2.00i 

-2.0373 ±11.8982i 

-4.2707 ±10.5681i 

-3.3588 ± 4.179i 

-3.7982 ± 1.632i 

-2.8560±1.7190i 

-2.7379±12.01i 

-2.6995±10.06i 

-2.1177± 3.1599i 

-4.5879± 1.4480i 

-3.1944± 0.9426i 

 -0.0001±0.0001i 
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An in-depth analysis of the participation factors (Pf) of the state variables (Sv) for the WSCC 

power system in two different configurations—one without a power system stabilizer (NO-

PSS) and the other with a number of optimized PSS algorithms, including MPA-PSS, PSO-

PSS, WOA-PSS, FPA-PSS, AVOA-PSS, and WHO-PSS—is given by the results in Tables 

III. 5 and III.6. A comprehensive examination of the impact of every state variable on the 

critical modes of the system is made possible by this comparative analysis of participation 

factors. Analyzing these variables makes it possible to evaluate how well each PSS technique 

enhances system stability. 

Comparing the MPA-PSS to other algorithms and the no-PSS configuration, the analysis of 

the participation factors (Pf) in both local-area and inter-area modes shows that the MPA-

PSS performs better at improving system stability. 

In the local-area mode, without a PSS, critical state variables such as rotor speeds and rotor 

angles for the generators (e.g., 𝜔3 and Delta3) exhibit high participation factors (e.g., 

0.36547 for both 𝜔3 and Delta3), indicating poor control over local oscillations. However, 

with the implementation of the MPA-PSS, the participation factors for these variables are 

drastically reduced to as low as 0.0146 and 0.0069, respectively. This sharp reduction 

demonstrates the MPA-PSS's superior ability to damp local oscillations, significantly 

improving stability compared to other algorithms such as PSO-PSS, which still shows higher 

Pf values (e.g., 0.25828 for 𝜔3), indicating less effective control. 

In the inter-area mode, the no-PSS scenario again exhibits high participation factors, 

particularly for variables such as the transient EMF (e.g., 𝑬𝒒𝟏
′  with a Pf of 0.17103). The 

MPA-PSS, however, reduces these factors considerably (e.g., Pf of 0.0449 for Delta2 and 

0.0438 for 𝑬𝒒𝟐
′ ), highlighting its effectiveness in mitigating inter-area oscillations. In 

contrast, other PSS algorithms like PSO-PSS and WOA-PSS display higher participation 

factors, indicating less damping of critical inter-area modes. 

                                     
Table III-5: Table 6: State Variables of the WSCC Power System. 

1 Rotor angle for G1 “Delta1” 

2 Rotor angle for G2 “Delta2” 

3 Rotor angle for G3 “Delta3” 

4 Rotor speed for G1 “𝜔1” 
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5 Rotor speed for G2 “𝜔2” 

6 Rotor speed for G3 “𝜔3” 

7 the transient EMF of the d-axis for G1 𝐸𝑑1
′  

8 the transient EMF of the d-axis for G2 𝐸𝑑2
′  

9 the transient EMF of the d-axis for G3  𝐸𝑑3
′  

10 the transient EMF of the q-axis for G1  𝐸𝑞1
′  

11 the transient EMF of the q-axis for G2  𝐸𝑞2
′  

12 the transient EMF of the q-axis for G3  𝐸𝑞3
′  

13 the excitation field voltage of G1 “Efd1” 

14 the excitation field voltage of G2 “Efd2” 

15 the excitation field voltage of G3 “Efd3” 

 

 
Table III-6 : "Comparative Analysis of Participation Factors for Different PSS Configurations 

NO-PSS 

 

L
O

C
A

L
-A

R
E

A
 

 

-0.6856±12.77i 

 

Sv 6 3 5 2 

Pf 0.36547 0.36547 0.079926 0.079926 

0.1229±8.2867i 

Sv 5 2 1 4 

Pf 0.26659 0.26659 0.13424 0.13424 

 

IN
T

E
R

-A
R

E
A

 

 

-2.3791±2.617i 

Sv 10 13 11 12 

Pf 0.17103 0.14145 0.088681 0.076538 

-4.6706±1.375i 

 

Sv 15 9 8 14 

Pf 0.22621 0.22396 0.13762 0.093983 

-3.5199±1.015i 
Sv 13 8 14 10 

Pf 0.23974 0.22262 0.20474 0.14064 

MPA-PSS 

 

L
O

C
A

L
-A

R
E

A
 

 

-5.0969±13.76i 

 

Sv 3 6 21 20 

Pf 0.014616  0.0068611 

 

0.002413 0.0023936 

-3.9664±7.697i 

Sv 3 6 5 1 

Pf 0.0080086 0.0033814 0.0021951 0.0019524 

 I N T E R - A R E A
 -3.9450±2.487i Sv 2 11 18 14 
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 Pf 0.044947 0.044758 0.043803 0.043775 

-3.9126±2.336i 

 

Sv 8 15 9 14 

Pf 0.24979 0.24908 

 

0.24905 0.24851 

-3.9048±2.310i 
Sv 13 10 15 21 

Pf 0.21795 0.21679 0.21576 0.21445 

PSO-PSS 

 

L
O

C
A

L
-A

R
E

A
 

 

-2.6645±11.28i 

 

Sv 6 3 5 2 

Pf 0.25828 0.25815 0.22484 0.20993 

-2.9276±11.24i 

Sv 5 6 3 2 

Pf 0.25426  0.23682 0.23672 0.2345 

 

IN
T

E
R

-A
R

E
A

 

-2.3169 ±3.04i 

 

Sv 10 13 12 15 

Pf 0.10857 0.09082 0.069078 0.061447 

-4.616 ±1.557i 

 

Sv 15 8 9 12 

Pf 0.17296 0.091454 0.091435 0.06104 

-3.421 ± 1.123i 
Sv 13 10 8 15 

Pf 0.27642 0.17536 0.16566 0.1012 

WOA-PSS 

 

L
O

C
A

L
-A

R
E

A
 

 

-0.4066±8.5526i 

 

Sv 2 5 4 1 

Pf 0.28328  0.28276 0.08463 0.08463 

-0.4066±8.5526i 

Sv 2 5 4 1 

Pf 0.28328  0.28276 0.08463 0.08463 

 

IN
T

E
R

-A
R

E
A

 

-2.7810 ±3.00i 

 

Sv 10 13 12 15 

Pf 0.15093  0.13319 0.10784 0.09852 

-3.5935±2.390i 

 

Sv 9 15 20 21 

Pf 0.20386 0.17263 0.14889 0.13537 

-3.696 ± 1.029i 
Sv 8 14 13 11 

Pf 0.27598  0.24613 0.1758 0.13591 

FPA-PSS 

 

L
O

C
A

L
-A

R
E

A
 

 

-3.6646±13.08i 

 

Sv 5 6 3 18 

Pf 0.24456 0.17094 0.15765 0.10887 

-1.7314±10.78i 

Sv 6 3 5 4 

Pf 0.27777 0.25621 0.11437 0.084419 

 I N T E R - A R E A
 -2.1782± 3.17i Sv 1 14 12 15 
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 Pf 0.10185 0.10185 0.074203 0.067821 

-4.5407 ±1.49i 

 

Sv 15 9 12 8 

Pf 0.26594 0.20307 0.086975 0.061329 

-3.1835±1.020i 
Sv 13 10 8 14 

Pf 0.28482  0.22479 0.22118 0.12025 

AVOA-PSS 

 

L
O

C
A

L
-A

R
E

A
 

 

-2.7512+11.23i 

Sv 5 6 3 2 

Pf 0.25006 0.24982 0.24982 

 

0.24972 

-2.7476±11.23i 
Sv 6 2 5 3 

Pf 0.2501  0.2501 0.24965 0.24936 

 

IN
T

E
R

-A
R

E
A

 

-2.2379±3.029i 

 

Sv 10 13 12 15 

Pf 0.047692  0.042377 0.0047149 0.0038438 

-4.6044±1.489i 

 

Sv 15 8 12 9 

Pf 0.012413  0.0047105 0.0044985 0.0025798 

-3.3727±1.040i 
Sv 13 10 8 15 

Pf 0.14223  0.084382 0.010832 0.0060458 

WHO-PSS 

 

L
O

C
A

L
-A

R
E

A
 

 

-2.5634±11.73i 

 

Sv 3 6 5 2 

Pf 0.26106  0.26099 0.16107 0.10966 

-3.3037±11.12i 

Sv 5 3 6 2 

Pf 0.23569 0.1973 0.19725 0.15531 

 

IN
T

E
R

-A
R

E
A

 

-3.0399±3.483i 

 

Sv 4 1 11 14 

Pf 0.096741  0.096741 0.092384 0.0833 

-3.9230±1.613i 

 

Sv 15 9 12 13 

Pf 0.25778 0.21735 0.16025 0.13395 

-3.5689 ±2.00i 
Sv 13 8 10 15 

Pf 0.24339 0.22081 0.21198 0.15588 

III.4.3 Test system 3  

The study is carried out under symmetrical three-phase fault at bus 39 in area-1 of the 

MMPS at t=1sec. The optimal PSS parameters obtained for all generators except G2 is an 

equivalent power source. 

The corresponding rotor speed in areas 1, 2 and 3 for generators G1, G4, and G10 are 

shown in Figure. III_16(a)–(c), respectively. Notably, area 1 experiences higher oscillations 

in rotor speed compared to areas 2 and 3 due to the fault’s impact. However, it’s essential to 
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recognize that the fault also affects areas 1 and 2, They represent the interarea oscillations, 

or how a fault in one area affects the other areas. 

These results demonstrate the superior transient performance of the proposed MPA-

PSS when compared with the PSO/WOA/FPA/AVOA/WHO/ optimized PSS 

The eigenvalues plot illustrates in Figure III_ 17 demonstrates the instability of the system 

without a PSS. The eigenvalues are situated in the right half of the D shape, the instable area. 

However, when we integrate the PSS with an optimized metaheuristic algorithm, we observe a 

shift in the eigenvalues to the left side. This shift is noticeable with PSO, WOA, FPA, AVOA, 

and WHO. Despite this shift, the eigenvalues remain in the positive region. This suggests that 

these algorithms may need more than 25 population and 100 iterations to achieve a complete 

shift of all eigenvalues to the left side.  

On the other hand, when the PSS is optimized with the Marine Predator Algorithm (MPA), 

all the eigenvalues, including both local and inter-area eigenvalues, are shifted to the negative 

part, thereby enhancing stability and demonstrating the robustness of the MPA-PSS 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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(a) 

(b) 

Figure III-13: Time domain simulation for rotor speed in areas 1, 2 and 3 for generators 

G1, G4, and G10.  (a): w1, (b): w4, (c): w10. 

 

 

Figure III-14: Simulation results of Eigen plots for different controllers. 

(c) 
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The results in Table III_7 and Table III_8  provide a comprehensive comparison of the 

participation factors (Pf) of the state variables (Sv) for the New England Power System 

across different configurations: without a PSS and with the MPA-PSS. The analysis 

highlights the influence of key state variables on local and inter-area modes in both cases. 

In the NO-PSS configuration, the participation factors (Pf) show that some state variables 

have a significant impact on both local and inter-area modes. For example, rotor angles (Sv 

10 and Sv 20) show the highest participation factor of 0.38809 in the local-area mode with 

an eigenvalue of 0.0689±11.48i, indicating significant contributions to system instability. On 

the other hand, inter-area modes show weaker participation; for instance, the mode 

0.5437±6.13i highlights Sv 19 (transient EMF of d-axis) with a Pf of 0.35494, and Sv 9 with 

a much lower Pf of 0.06225, indicating lower participation. These results suggest that in the 

absence of a PSS, rotor angles dominate local modes, while the transient EMF is more 

important in inter-area modes. 

In case of MPA-PSS integration, the system demonstrates improved stability, as indicated 

by significantly more negative eigenvalues. For instance, in the local-area mode of 

−9.9167±10.07i, the highest participation factors (Pf) are associated with state variables Sv 

20 and Sv 50, with values of 0.21765 and 0.20337, respectively. In the inter-area mode of 

−19.1284±4.45i, the highest Pf is observed for Sv 45 at 0.24856. Overall, these results 

highlight the MPA's effectiveness in reducing participation factors across multiple state 

variables, which contributes to enhanced stability in both local and inter-area modes. 

 

Table III-7: State Variables of the New England Power System. 

1:10 Rotor angle “Delta1- Delta10” 

11:20 Rotor speed “𝜔1- 𝜔10” 

21:30 the transient EMF of the d-axis  "𝐸𝑑1
′ -𝐸𝑑10

′ " 

31:40 the transient EMF of the q-axis "𝐸𝑞1
′ −

𝐸𝑞10
′ ” 

41:50 the excitation field voltage “Efd1- Efd10” 

 
Table III-8: Comparative Analysis of Participation Factors for Different PSS Configurations. 
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NO-PSS 

 

L
O

C
A

L
-A

R
E

A
 

0.0689428+11.4789i Sv 10 20 18 8 

Pf 0.38809 0.38809 0.094414 0.094414 

0.14294+9.634i 
Sv 5 15 14 4 

Pf 0.30735 0.30735 0.15354 0.15354 

0.12795+9.7149i 
Sv 7 17 16 6 

Pf 0.29611 0.29611 0.17349 0.17349 

0.17229+8.378i 

Sv 8 18 10 20 

Pf 0.36476 0.36476 0.069302 0.069302 

0.18726+7.9624i 

Sv 1 11 13 3 

Pf 0.27277 0.27277 0.22127 0.22127 

0.22607+7.5138i 

Sv 4 14 16 6 

Pf 0.179 0.179 0.15751 0.15751 

0.29278-6.6646i 

Sv 13 3 11 1 

Pf 0.19364 0.19364 0.15998 0.15998 

 

IN
T

E
R

-A
R

E
A

 

0.54368+6.1262i 

Sv 19 9 39 4 

Pf 0.35494 0.35494 0.06225 0.026741 

0.2357+4.0777i 
Sv 12 2 6 16 

Pf 0.1811 0.1811 0.053892 0.053892 

MPA-PSS 

 

L
O

C
A

L
-A

R
E

A
 

-9.91671+10.0706i Sv 20 50 46 40 

Pf 0.21765 0.20337 0.1689 0.15499 

-4.97196+10.807i 
Sv 20 19 10 49 

Pf 0.10194 0.10165 0.08498 0.060078 

-1.65452+9.96676i 
Sv 11 1 31 41 

Pf 0.21161 0.13561 0.049554 0.041917 

-4.6198+7.5987i Sv 19 5 15 39 
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Pf 0.11239 0.088979 0.073151 0.061498 

 

-3.8484+6.9004i 

Sv 13 3 45 33 

Pf 0.24162 0.22618 0.19841 0.19121 

 

-19.1284+4.45292i 

Sv 45 15 35 31 

Pf 0.24856 0.15429 0.12936 0.12117 

-12.2041+1.1675i 
Sv 49 58 44 14 

Pf 0.41238 0.40565 0.39296 0.37756 

-4.5112+5.4946i 
Sv 56 50 33 47 

Pf 0.2316 0.22127 0.19022 0.18898 

-6.5706+3.519i 
Sv 40 10 46 50 

Pf 0.16992 0.14406 0.13184 0.10963 

-2.0003+3.6783i 
Sv 6 46 42 36 

Pf 0.17572 0.11945 0.094745 0.068793 

-0.45834+2.7834i 
Sv 12 2 6 44 

Pf 0.22427 0.22427 0.14663 0.084232 

-3.8929+2.1257i 
Sv 47 39 9 49 

Pf 0.23118 0.22215 0.19578 0.089836 

-2.0528+1.7668i 
Sv 7 37 47 6 

Pf 0.29629 0.204 0.17832 0.06057 

-1.9135+1.0967i 
Sv 8 38 49 50 

Pf 0.28553 0.27508 0.24946 0.10532 

III.4.4 Hardware in the loop validation 

The simulation results of the proposed controllers are tested in this section using real-

time digital simulator CU-SLRT Std (DS1104 Equivalent interface+ features) More 

precisely, a Hardware-in-the-Loop (HIL) simulator was used to verify and validate the 

previous study about small signal stability analysis for the SMIB system using the proposed 

PSS controller. The Real-time CU-SLRT board offers the same features as those provided by 

the DS1104 while the computation capabilities are better and more functions are integrated 

as it includes 6-core 2.6 GHz processor, FPGA-based I/Os, 16 analog inputs, 8 analog outputs, 

16 digital I/O ports, and 16 PWM outputs. Additionally, it has two encoders and 
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communication interfaces such as Ethernet and RS232 connectors. Figure 17 shows a 

photograph of the real-time experimental set-up. 

 

Figure III-15: Experimental set-up in Real-time CU-SLRT 

Where: 

1- Power system model using MATLAB 

2018 

2- Host real Time CU-SLRT. 

3- Second real Time CU-SLRT 

 

4- AVR+PSS Controller model using MATLAB 

2020. 

 

Two real-time with same characterization are employed in this setup. The power system, 

encompassing the generator and network, is first modeled on a personal computer via MATLAB as 

depicted in Figure III_19 (a). This model is subsequently deployed on the Real-time CU-SLRT (or 

Host-real time), using Ethernet and RS232 connectors. Inputs and outputs are identified through 

DAC and ADC respectively, with the input being the output of controller (Vpss) and the output being 

the rotor speed (𝜔). 

Simultaneously, the AVR+PSS controller is modeled on a separate computer as shown in 

Figure III_19 (b) and then deployed on a second real-time, also connected via Ethernet and RS232 

connectors. Inputs and outputs are identified through DAC and ADC respectively, with the input 

being the rotor speed (𝜔) and the output being the output (Vpss+avr). 

 

3 

2 

1 4 
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(a) (b) 

Figure III-16: Identification of input/output features of: (a)Power system, (b) Power system 

stabilizer PSS. 

In Figure III.19.a, we multiply the speed deviation by a factor of 1/100 before feeding it into 

the DAC of the host real-time system. This adjustment is necessary because the DAC can 

only process values ranging from -10 to 10. In our scenario, the rotor speed value is 377 rad/s; 

hence, we Subsequently, we multiply the speed by 100 before inputting it into the controller 

to safeguard the real value as shown in Figure III.18.b. 

 

 

 

 

 

 

 

 

 

 

 

In essence, the two real-time systems are interconnected. The Host-real time transmits 

input features, such as rotor speed ‘w’, to the second Real-time CU-SLRT which act the 

controller. Upon receipt of this signal, feedback of the AVR+PSS output controller is sent 

back to the Host-real time. Finally, the Host-real time receives Vpss+avr. This entire cycle is 

Figure III-17: Schematic diagram of the HIL simulation or the proposed system, with the main 

components and signals. 
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repeated at each sampling interval, Ts. Furthermore, Figure III.21 illustrates the basic 

components and signal flows of the HIL simulation for the proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The HIL simulation is used to assess the performance of the proposed control schemes in 

damping of the low frequencies oscillations (LFO). The stability analysis is carried out for 

the SMIB system using the PSS controller. In Figure 20 LFOs in the angular speed are 

observed subjected on F1 as cost function. When compared to the PSO, WOA, FPA, AVOA, 

and WHO-PSS, it is found that the MPA-PSS performs better in terms of reducing the LFOs 

during three phase symmetrical fault. This results from the PSS's parameters being optimally 

tuned utilizing the MPA Algorithm. 

III.5 Conclusion  

A damping controller design for the PSS is employed in this research so as to evaluate 

the transient stability and mitigate LFOs after fault effectively. Controller design problem 

is expressed as an optimization problem, and the MPA algorithm is successfully employed to 

search for the optimal solution of the design problem. The performance of the proposed 

controller is demonstrated in both a SMIB system and a MMPS comprising the WSCC and 

New England power systems. through the simulation studies. The time-domain and 

frequency-domain simulation results reveal the proposed controller's effectiveness and its 

ability to yield good damping of low frequency oscillations. The system performance 

Figure III-18: The rotor Speed for SMIB and its zoom via real time. 
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characteristics show that the MPA technique is advantageous over the PSO, WOA, FPA, 

AVOA and WHO, method in terms its solution quality and stability region. The system 

performance characteristics regarding settling time indices and eigenvalues plots show that 

by using the proposed MPA based PSS damping controller, the settling time and power 

system low frequency oscillations are immensely diminished during major severe 

disturbances also the eigenvalues are noticeable shifted toward left of the S-plane when 

compared to other stabilizers in all the cases. The MPA-optimized PSS demonstrates 

significant improvements, with performance enhancements of up to 98.62% compared to 

PSO at 69.42%, WOA at 71.79%, FPA at 72.39%, AVOA at 78.04%, and WHO at 68.57%. 

Validation of the optimal PSS parameters is conducted using CU-SLRT Std, a real-time 

digital simulator, and Hardware-in-the-loop (HIL) implementation for the SMIB test 

system, confirming the MPA's superiority. 

The most important part in the paper was the HIL validation which the optimized PSS 

parameters using the MPA have been implemented in real time operation. The successful 

implementation and obtained performance allow to conclude that the proposed MPA-PSS 

can be implemented in real power system. 
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CHAPITRE IV:             CHPITRE FOUR  

IV.1 Introduction  

In the recent years, the integration of renewable energy resources into the electric 

networks has become one of the most important and challenging subjects of the power 

industry. The grid interaction and impact of renewable energy sources have attracted 

attentions during the past few years. In a proper integration of distributed energy sources, 

power system stability, control, protection, and operational restrictions should be taken into 

account. Wind generation plants and solar cells can add a significant uncertainty in the 

power system load-flow affecting the stability and dynamic behavior. This chapter begins 

with an introduction to the power system under study, detailing its configurations and 

highlighting the integration of renewable energy. It then provides an overview of the TID-

based PSS and its structure, followed by a brief presentation of the algorithms used in the 

optimization process. The simulation results are presented, showcasing the application of the 

TID-based PSS in enhancing power system stability and discussing the performance 

improvements achieved. Finally, the chapter concludes by summarizing the key findings 

from the simulation results, emphasizing the contributions of the ZOA-optimized TID to 

advancing power system stability. 

IV.2 Power system tests 

The IEEE benchmark power test system, originally Kundur’s two-area system, 

comprises four synchronous generators and eleven buses, with synchronous generator 3 

designated as the reference (slack) bus. In this study, the system was modified into a 14-bus 

network by replacing the fourth generator with a Doubly-Fed Induction Generator (DFIG) 

and adding a photovoltaic (PV) system at bus 14 as presented in FigureV.1. The bus and line 

data used for simulations were adopted from Doubly-Fed Induction Generator (DFIG) and 

adding a photovoltaic (PV) system at bus 14 as presented in FigureIV.1. The bus and line 

data used for simulations were adopted from 
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Figure IV-1: structure of modified kundur power system 

IV.3 TID based PSS controller 

In this study, the proposed TID controller is designed for the LFO issue of modern power 

systems. The proposed TID controller has the advantage of being simple, ease of use, and the 

ability to improve the controller’s transient response, particularly the overshoot time, 

without influencing the other parameters. Its transfer function can be expressed as follows: 

𝑇𝐼𝐷 =
𝐾𝑡

𝑆
1

𝑛

+
𝐾𝐼

𝑆
+ 𝑆𝐾𝐷 (𝐼𝑉. 1) 

where 𝐾𝐼 , 𝐾𝐷 and 𝐾𝑡 express the proportion, integral, and differential tilt gain of the 

proportional component. These gains can be tuned in the range of [0.1,50]. Whereas the 

fractional order operator can be tuned in the range of [0, 1]. 

IV.4 Problem Optimization  

IV.4.1 Zebra optimization algorithm  

In this study, various metaheuristic algorithms, including Particle Swarm Optimization 

(PSO), The GOOSE (GOOSE), and Zebra Optimization Algorithm (ZOA), have been 

employed for tuning system controllers. Each of these algorithms has been explored in detail 

in previous studies, specifically referenced in [7], [57], and [58], respectively. These 
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optimization techniques were chosen for their effectiveness in enhancing system stability and 

minimizing oscillations in renewable energy-integrated power systems. 

IV.4.2 Objective function  

In order to reduce the error signal, specifically Low-Frequency Oscillations (LFOs), the 

cost function used in this study is the same adopted in chapter III from [5]. 

IV.5 Simulation and results  

The IEEE benchmark power test system, originally Kundur’s two-area system, 

comprises four synchronous generators and eleven buses, with synchronous generator 3 

designated as the reference (slack) bus. In this study, the system was modified into a 14-bus 

network by replacing the fourth generator with a DFIG and adding a PV system at bus 14. 

The bus and line data used for simulations were adopted from established sources.  

A fault was introduced at bus 8 at 1 second by specifying a large admittance, which led 

to electromechanical oscillations in the system.  

To highlight the influence of renewable energy integration on power system stability, a 

comparative simulation was performed between the classical and modified Kundur two-area 

power systems. FigureIV.2 demonstrates the rotor speed deviations for both systems without 

the incorporation of a PSS. In the classical system, rotor speed oscillations were triggered 

only after the fault occurred. However, in the modified system with integrated renewable 

energy sources, oscillations were observed both before and after the fault. 

 The presence of pre-fault oscillations in the modified system, though smaller than those 

post-faults, is attributed to the zero inertia characteristic of renewable energy sources like 

DFIG and PV. This lack of inertia inherently contributes to system instability even under 

normal, fault-free conditions. These results emphasize the challenges of incorporating 

renewable energy into conventional power grids, where the absence of mechanical inertia can 

exacerbate system oscillations, leading to potential stability issues. 
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Figure IIV-2: speed deviation of generators without PSS controller for (a) classic power 

system, (b) modified power system. 

To address the issue of low-frequency oscillations and enhance transient stability, a TID 

based PSS was incorporated into the system. The parameters of the TID controller were 

optimized using various metaheuristic algorithms, including Particle PSO, GOOSE, and 

ZOA. These advanced optimization techniques helped fine-tune the PSS, minimizing 

oscillations and improving system stability under the influence of renewable energy sources.  

(b)

) 

(a) 
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It is obvious from FigureIV.3 that the incorporation of TID based PSS enhances the 

system’s damping. Also, it’s clear that the TID tuned ZOA offers a minimum settling time 

compared with TID tuned PSO and GOOSE. 
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Figure IV-3: Rotor angle deviations of synchronous generators optimized by the PSO, 

GOOSE and ZOA (a) dw1, (b) dw2 and (c) dw3 

IV.6 Conclusion 

In conclusion, the integration of renewable energy sources, particularly wind and solar, 

introduces new challenges to power system stability due to the lack of inertia in these 

technologies. Through this study, the application of advanced metaheuristic algorithms, 

such as PSO, GOOSE, and ZOA, for the optimal tuning of TID-based Power System 

Stabilizers (PSS) has proven effective in damping low-frequency oscillations. Among these 

methods, ZOA demonstrated superior performance, significantly enhancing overall system 

stability across various operating conditions. These results emphasize the need for adaptive 

control strategies in renewable-integrated grids.



  

 

 

 

 

 

General conclusion 

   



 

General Conclusion  

104 

 

General Conclusion  

 

In power systems, maintaining stability has always been a critical challenge due to the 

complex interactions between various components. To ensure reliable operation, a robust 

control system is essential. One of the main issues in power systems is stability, particularly 

under small perturbations. This is where small-signal stability becomes crucial, as it assesses 

the system's ability to maintain equilibrium under minor disturbances. However, achieving 

effective control in such scenarios is complicated by the inherent complexity of power 

systems, where multiple dynamic elements interact. To address these challenges, advanced 

control strategies are often required, focusing on enhancing system stability and damping 

oscillations to ensure steady and reliable performance. 

In this work, and in order to solve the low frequency oscillation problem discussed in 

chapter I, an optimization of power system stabilizer and other controllers based on PSS 

have been applied to power system using the metaheuristic algorithm. The study was done 

by simulation in the MATLAB/Simulink environment. 

This work is summarized in five chapter, it began with a state of art which provides a 

comprehensive overview of the electrical power system by discussing its various structures. 

It begins with a detailed explanation of the fundamental components and configurations of 

power systems. Following this, the concept of power system stability is introduced, along 

with its main classifications: rotor angle stability, frequency stability, and voltage stability. 

The chapter concludes with an overview of metaheuristic algorithms, emphasizing their 

relevance in optimizing power system operations. 

In the second chapter, the dynamic modeling of power systems is thoroughly explored. 

Detailed models of the synchronous generator, excitation system, loads, transmission lines, 

power system stabilizer (PSS), and double-fed induction motor are presented. Each 

component's role and behavior within the power system are analyzed to provide a 

foundational understanding of system dynamics. 

The third chapter, focuses on the optimization of PSS parameters using the Marine 

Predator Algorithm (MPA) in conventional power systems. The study applies the MPA 

scheme to tune PSS parameters for damping low-frequency oscillations. The performance is 

tested on the Single Machine Infinite Bus (SMIB) system, the Western System Coordinating 

Council (WSCC), and the New England 10-machine 39-bus power system. Comparative 
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analyses with other metaheuristic algorithms, such as Particle Swarm Optimization (PSO), 

Whale Optimization Algorithm (WOA), Flower Pollination Algorithm (FPA), African 

Vulture Optimization Algorithm (AVOA), and Wild Horse Optimization (WHO) algorithm, 

are presented. The MPA-optimized PSS demonstrates significant improvements, with 

performance enhancements of up to 98.62% compared to PSO at 69.42%, WOA at 71.79%, 

FPA at 72.39%, AVOA at 78.04%, and WHO at 68.57%. Validation of the optimal PSS 

parameters is conducted using CU-SLRT Std, a real-time digital simulator, and Hardware-

in-the-loop (HIL) implementation for the SMIB test system, confirming the MPA's 

superiority. 

The fourth chapter; delves into the optimization of Fractional order -Takagi-Sugeno 

fuzzy PID Based on PSS using the modified Dung Beetle Optimization (MDBO) algorithm 

in conventional power systems. It begins with a system test, followed by a detailed 

explanation of the proposed controller structures and algorithm. A novel Fractional Order 

Takagi-Sugeno Fuzzy-Proportional–Integral–Derivative (FO-TSF-PID) controller, tuned 

using MDBO, is developed to enhance the damping of low-frequency oscillations. The MDBO 

algorithm optimizes the membership functions (MFs) and gains of the FO-TSF-PID 

controller, offering a flexible, straightforward, and easily implementable design. The 

controller's performance is evaluated on a two-area power system and compared to 

traditional controllers like Lead-Lag PSS, PID, Fractional Order PID (FOPID), and 

FOFPID, as well as other optimization techniques like PSO, Equilibrium Optimizer (EO), 

and standard Dung Beetle Optimization (DBO). The MDBO-optimized FO-TSF-PID 

controller outperforms all others, particularly in reduced settling time, overshoot, and 

steady-state error, demonstrating its reliability and superiority in power system 

stabilization. 

The last chapter addresses the stability analysis and simulation of power systems with 

renewable energy integration. The study applies three metaheuristic algorithms—Particle 

Swarm Optimization (PSO), GOOSE-inspired Optimization Algorithm (GOOSE), and Zebra 

Optimization Algorithm (ZOA)—for the optimal tuning of tilt-integral-derivative (TID) 

based PSS parameters in a renewable-integrated multi-machine power system. The results 

highlight the superior performance of ZOA in enhancing system stability under three-phase 

symmetrical faults, outperforming both PSO and GOOSE in maintaining system stability. 
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The simulation results presented in this thesis demonstrate the robust efficiency of various 

Power System Stabilizers (PSSs) employed in mitigating Low-Frequency Oscillations 

(LFOs). Additionally, they highlight the superior performance of the metaheuristic 

algorithms used in the optimization process. 

Based on the studies conducted, the optimization techniques utilized in this thesis offer the 

following advantages: 

• The metaheuristic algorithms used provide excellent performance in optimizing 

Power System Stabilizer (PSS) parameters, leading to improved system stability. 

• These algorithms demonstrate robust performance even under varying and severe 

fault conditions, ensuring consistent damping of low-frequency oscillations. 

• The optimization methods can be applied to various power system configurations, 

from single machine infinite bus systems to complex multi-machine systems. 

• The optimized controllers significantly reduce settling time, overshoot, and steady-

state error, contributing to overall system stability and reliability. 

Despite these advantages, the optimization process has some limitations: 

• The optimization process, particularly for large-scale systems, requires significant 

computational time during the offline phase, which can be resource-intensive. 

• The performance of the optimization is influenced by the quality of initial parameters, 

necessitating careful selection and tuning. 

• Implementing these advanced optimization algorithms requires a deep understanding 

of both the algorithmic processes and the system dynamics, which can pose challenges 

in practical applications. 

As a continuation of this work, the following future directions are proposed: 

• Efforts will be made to enhance the efficiency of the optimization algorithms, 

focusing on reducing the time required for the offline optimization process. 

• Further research will explore the application of these optimization techniques to 

systems with high penetration of renewable energy sources, ensuring stability and 

performance under varying conditions. 
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• Combining metaheuristic algorithms with other optimization methods or machine 

learning approaches could further enhance performance and reduce computational 

overhead. 

• The optimized control strategies will be implemented and tested on Field-

Programmable Gate Array (FPGA) platforms for real-time experimental validation, 

ensuring practical applicability and reliability. 
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 APPENDIX A: BENSHMARK POWER SYSTEMS’S 

SIMULINK MODEL AND PARAMETERS OF 3ed  CHAPTER 

 

(a) 

 
(b) 
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(c) 

Figure A- 1 : Simulink model of (a) SMIB power system; (b) WSCC power system and (c)  

 Table A- 1 : Simulation parameters for (a) machine parameters (b) Excitation system 

(c) Transmission line for SMIB (d) operating point information   

(a) 

 

Parameter Name Value 

H 
generator inertia 

constant 
6.4 

D damping coefficient 0.0 

𝑇𝑑0
′  d-axis and q-axis 

open-circuit time 

constants 

6.0 

𝑇𝑞0
′  0.535s 

𝑋𝑑 
the synchronous 

transient of d-axis 

and q-axis 

reactances 

0.8958 

𝑋𝑞 0.8645 

𝑋𝑑
′  

the synchronous 

sub-transient of d-

axis and q-axis 

reactances 

0.1198 

𝑋𝑞
′  0.1969 

 

(b) 

Parameter Name Value 

𝐾𝐴 
excitation static 

gain 
50.0 

𝑇𝐴 
the regulator time 

constant 
0.05s 

 

(c) 

Parameter Name Value 

𝑋𝑇 
the transmission 

line reactance 
0.0625 

𝑋𝐿 

is the inductance of 

the transmission 

line 

0.2pu 

(d) 

 

Parameter Name Value 

𝑃𝑔 power output 1.63pu 
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𝑉1 
the terminal 

voltage 
1.026pu 

𝑉2 Reference voltage 1.025pu 

 

Table A- 2 : Parameter setting for the optimization algorithms using in chapter III 

  

Parameters Value 

Population 40 

Max Iteration 100 

 

 

Appendix B: Benshmark power systems’s Simulink model and Matlab code  of 4TH   

CHAPTER 
  

 

 
 

(a) 

 

‘b) 
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(b) 

Figure B- 2 : Simulink model of (a) Two-area 4 machines power system; (b) Generator+ 

Governor 

 

 

 

 

 
(a) 

 
 

(b)  
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(c) 

Script B- 1 : Matlab script of (a) machine parameters ; (b) bus data (c) excitation and 

governor parameters 

 

 

Table B- 1 : Parameter setting for the optimization algorithms using in chapter IV 

  

Parameters Value 

Population 25 

Max Iteration 100 

 

 

 

Appendix C: Benshmark power system’s Simulink model and parameters of 4th  

Chapter  

 
(a) 
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(b) 

 
(c) 

Figure C- 3 : Simulink model of (a) modified Two-area 4 machines power system; (b) DFIG 

(c) PV
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