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Résumé

Ce mémoire porte sur l’utilisation des images radar Sentinel-1 pour la détection et l’ana-
lyse des changements de la couverture terrestre après des incendies de forêt. L’étude a été
appliquée à la wilaya d’El Tarf, en Algérie, une région particulièrement exposée aux feux
ces dernières années. Grâce à la technologie du radar à synthèse d’ouverture (SAR), nous
avons pu suivre l’évolution du paysage indépendamment des conditions météorologiques.
À l’aide du logiciel SNAP et d’outils de classification comme Random Forest, les images
ont été prétraitées, classifiées et comparées entre deux dates pour détecter les zones
touchées. Les résultats obtenus montrent l’efficacité des images SAR pour la surveillance
environnementale post-incendie.

Abstract

This thesis focuses on the use of Sentinel-1 radar images to detect and analyze land
cover changes following forest fires. The study was conducted in the El Tarf province of
Algeria, a region heavily affected by wildfires in recent years. Using Synthetic Aperture
Radar (SAR) technology, we were able to monitor landscape changes regardless of weather
conditions. With SNAP software and classification methods like Random Forest, the radar
images were preprocessed, classified, and compared between two dates to identify affected
areas. The results demonstrate the effectiveness of SAR imagery in post-fire environmental
monitoring.
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1.2 Radar à synthèse d’ouverture . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Principe de formation des images SAR . . . . . . . . . . . . . . . . . . . . 3
1.4 Le satellite SENTINEL-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Orbite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Résolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Résolution radiale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Résolution azimutale . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Bruit de l’image SAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 L’équation Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 La polarimétrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1.2 Antenne non statique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Principe d’acquisition d’image radar . . . . . . . . . . . . . . . . . . . . . . 5
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Introduction Générale

Dans un contexte mondial où la surveillance et la gestion durable des ressources naturelles
sont devenues des préoccupations majeures, la télédétection satellitaire s’affirme comme
un outil incontournable pour l’observation de la surface terrestre. Parmi les technologies
les plus performantes, le radar à synthèse d’ouverture (SAR) se distingue par sa capacité à
acquérir des images de haute résolution quelles que soient les conditions météorologiques
ou d’éclairement. La mission Sentinel-1, développée par l’Agence Spatiale Européenne
(ESA), met à disposition une grande quantité de données SAR qui ouvrent de nouvelles
perspectives pour la cartographie et la détection des changements environnementaux.

Ce mémoire s’inscrit dans cette dynamique en exploitant les images SAR de Sentinel-1
pour la télédétection et la classification de la couverture terrestre, avec un focus particulier
sur l’évaluation des changements post-incendie dans les zones forestières.

Le présent travail est structuré en trois chapitres :

Le premier chapitre introduit les notions fondamentales des images SAR. Il décrit le
principe de fonctionnement du radar à synthèse d’ouverture, le satellite Sentinel-1 et ses
caractéristiques techniques, la résolution des images, le traitement du bruit speckle et les
concepts de polarimétrie qui permettent une meilleure interprétation des données radar.

Le deuxième chapitre est consacré aux différentes méthodes de classification utilisées pour
l’analyse des images SAR. Il présente à la fois les approches supervisées (comme les SVM,
les réseaux de neurones et les forêts aléatoires) et non supervisées (telles que le K-means
et le Mean Shift), en détaillant leurs principes, leurs avantages et leurs limites.

Le troisième chapitre expose l’application pratique du traitement et de la classification des
images SAR sur la zone d’étude. Il décrit le site d’étude, le prétraitement des données, le
processus de classification réalisé sur SNAP et Python, et présente les résultats obtenus,
accompagnés d’une analyse des changements détectés suite aux incendies.

À travers cette étude, nous mettons en évidence l’apport des images radar Sentinel-1 et
des techniques de classification pour la surveillance et l’évaluation des impacts environne-
mentaux, contribuant ainsi à une meilleure gestion des écosystèmes forestiers vulnérables.
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Chapitre 1

Les Images SAR

1.1 Introduction

Un radar est un dispositif électronique permettant de détecter, localiser et suivre des
objets à distance grâce à l’utilisation d’ondes radio ou de micro-ondes. Le terme radar est
l’abréviation de l’expression anglaise Radio Detection And Ranging, qui signifie en français
Détection et Télémétrie par ondes radio. Son fonctionnement repose sur l’émission d’un
signal électromagnétique, généralement constitué d’ondes radio ou de micro-ondes, qui se
propage dans l’espace et se réfléchit lorsqu’il rencontre un obstacle. En analysant le temps
écoulé entre l’émission et la réception du signal réfléchi, le radar est capable de mesurer
la distance de l’objet détecté. Il peut également déterminer sa vitesse, sa direction de
déplacement, et parfois même sa taille ou sa forme. Grâce à leur efficacité et leur précision,
les radars sont utilisés dans de nombreux domaines, notamment la navigation aérienne,
maritime et terrestre, la météorologie, les applications militaires, la surveillance du trafic,
la détection d’obstacles ainsi que l’analyse des zones forestières. . . etc.

1.2 Radar à synthèse d’ouverture

Radar à synthèse d’ouverture SAR : Le Radar à synthèse d’ouverture appelé en an-
glais Synthetic Aperture Radar est une technologie radar capable de capturer et générer
des images synthétiques de régions peu importe l’heure de la journée ou les conditions
météorologiques de cette dernière. Le radar SAR a connu plusieurs systèmes d’acqui-
sition à travers les années que ce soit des systèmes aériens (FSAR, AIRSAR) ou des
systèmes spatiaux comme ceux des agences publiques telles que l’ESA avec Sentinel-1
et RADARSAT-2 et la NASA avec NISAR. Les premiers systèmes d’imagerie radar à
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1.3 Principe de formation des images SAR 3

synthèse d’ouverture (SAR) ont vu le jour au début des années 1950, etc les premières
captures ont été réalisées à la fin de cette période. La figure 1.1 présente la toute première
image SAR, produite en 1957 par l’Université du Michigan à l’aide de lampes au mercure.
Ce n’est qu’avec l’apparition du laser et les progrès en électronique et en informatique que
la qualité des images s’est significativement améliorée. Depuis le lancement de SEASAR
en 1978, premier radar SAR numérique embarqué sur un satellite, ces technologies ont
apporté une quantité précieuse d’informations pour l’étude de notre planète.

[2]

Figure 1.1 – Première image SAR acquise en 1957 par l’université du Michigan

Ce système fonctionne généralement entre la bande P et la bande Ka et particulièrement
dans la bande de fréquence L et la bande de fréquence C comme présenté dans le tableau
ci-dessous.

P 0.025-0.390 GHz 133-76.9 cm
L 0.39-1.55 GHz 76.9-19.3 cm
S 1.55-4.20 GHz 19.3-7.1 cm
C 4.20-5.75 GHz 7.1-5.2 cm
X 5.75-10.90 GHz 5.2-2.7 cm

Ku 12.0-18.0 GHz 2.7-1.36 cm
Ka 22.0-36.0 GHz 1.36-0.83 cm

Table 1.1 – Table des bandes de fréquences radar

1.3 Principe de formation des images SAR

L’imagerie SAR (Synthetic Aperture Radar) repose sur l’utilisation d’un radar à antenne
synthétique pour obtenir des données précises sur une zone donnée. Contrairement aux
radars classiques dotés d’une antenne fixe, le SAR utilise une antenne en mouvement par
rapport à la scène observée, ce qui permet d’améliorer la résolution des images.
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Figure 1.2 – Antenne non statique

Le processus de formation d’une image SAR se déroule en plusieurs étapes :
1. Émission du signal : Le radar SAR envoie des impulsions électromagnétiques (ondes
radio ou micro-ondes) vers la scène cible. Ces impulsions sont émises de manière répétée
selon une fréquence de répétition des impulsions (PRF), synchronisée avec la vitesse de
déplacement de l’antenne.
2. Réception du signal réfléchi : L’antenne capte les signaux réfléchis par les objets présents
dans la scène. Ces signaux contiennent des informations sur la distance des objets, l’in-
tensité (amplitude) et la phase de l’onde réfléchie.
3. Échantillonnage et enregistrement des données : Les signaux reçus sont échantillonnés
et enregistrés à différents instants, formant des échos radar. La fréquence de répétition
des impulsions (PRF) influence la densité d’échantillonnage et la précision des données
collectées.
4. Compression du signal : Pour optimiser le stockage et le traitement des données, les
signaux bruts subissent une compression, généralement basée sur les caractéristiques du
signal radar.
5. Correction des effets atmosphériques et topographiques : Les signaux enregistrés peuvent
être altérés par des effets atmosphériques (comme l’humidité ou la pression) et des va-
riations topographiques. Des corrections sont appliquées afin d’améliorer la précision de
l’image finale.
6. Traitement de l’antenne synthétique : Le SAR simule une antenne virtuelle plus grande
en combinant les échos captés sur une longue distance. Ce procédé améliore considérablement
la résolution spatiale des images en traitant les données acquises à différents moments.
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7. Traitement et génération de l’image : Les données traitées sont converties en une image
exploitable grâce à des algorithmes spécifiques, comme la transformation de Fourier et
des techniques de filtrage.
L’image SAR obtenue offre une haute résolution et permet d’analyser la structure, la topo-
graphie et les caractéristiques des objets présents dans la scène observée. Cette technologie
est largement utilisée dans divers domaines, notamment la cartographie, la surveillance
environnementale, l’observation des ressources naturelles et la gestion des catastrophes
naturelles.

[3]

Figure 1.3 – Principe d’acquisition d’image radar

1.4 Le satellite SENTINEL-1

l’engin spatial est caractérisé par des capteurs solaires, étoilés, gyro et magnétiques, un
ensemble de quatre roues de réaction dédiées au contrôle de l’orbite et de l’attitude et
trois tiges de couple en tant qu’actionneurs pour fournir des capacités de braquage sur
chaque axe. Le satellite est équipé de deux ailes de panneaux solaires capables de produire
5 900 W (en fin de vie) pour être stockées dans une batterie modulaire, la capacité de la
batterie est de 324 Ah. Le satellite est basé sur le bus PRIMA (Piattaforma Italiana Multi
Applicativa), qui s’appuie sur l’expérience acquise auprès de RADARSAT-2 et COSMO-
SKYMED, qui utilisent le même bus. Le bus fournit des connaissances de pointage très
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précises (mieux-contre 0,04) sur chaque axe, une grande précision d’attitude (environ 0,01
degré sur chaque axe) et une détermination de l’orbite en temps réel, ainsi qu’un système
de propulsion dédié pour un contrôle précis de l’orbite. [4]

Figure 1.4 – Vue schématique de l’intensité spatiale Sentinel-1

L’orbite de référence sera maintenue à l’intérieur d’un tube orbital fixe sur la Terre d’un
diamètre de 120 m (RMS) pendant l’exploitation normale.

La plate-forme satellite fournit des caractéristiques pour la gestion des systèmes de contrôle
d’attitude et d’orbite, le traitement des données scientifiques avec une capacité de sto-
ckage de 1 410 Gb, la propulsion, la puissance, le contrôle thermique, l’autonomie des
engins spatiaux et l’identification et la récupération de la détection des défaillances, et la
communication avec le sol via la liaison descendante de données en X et la liaison optique
par l’EDRS pour les données utiles à 520 Mbit/s. La masse totale de l’engin spatial au
lancement est d’environ 2 300 kg (dont 130 kg de carburant).

1.4.1 Orbite

Sentinel-1 est sur une orbite proche de la polaire avec un cycle de répétition de 12 jours et
175 orbites par cycle pour un seul satellite. Sentinel-1A et Sentinel-1B partagent le même
plan orbital avec une différence de phasage orbital de 180 degrés. Avec les deux satellites
en fonctionnement, le cycle de répétition est de six jours.[5]
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Figure 1.5 – Constellation de sentinel-1

Voici un tableau qui résume les paramètres orbitaux du satellite :

Altitude Inclinaison Période Cycle Déviation Heure AN
(km) (°) (min) (jours) (m) (h)

693 98.18 98,6 12 120 18

Table 1.2 – Paramètres orbitaux du satellite

1.5 Résolution

La sortie spatiale compte pour un grand pourcentage avec des systèmes d’imagerie où c’est
la définition qui permet de distinguer les objets rapprochés. Une résolution élevée permet
de distinguer et de commencer à séparer des objets jumeaux dans des cellules séparées
et qu’une faible résolution conduit à la fusion des mêmes objets dans la même cellule.
On refait principalement deux types de résolution : la résolution radiale et la résolution
azimutale qui correspondent à la séparation des objets dans le plan orthogonal à l’axe de
l’antenne.
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1.5.1 Résolution radiale

La résolution radiale est valable pour la discrimination rejet des objets sur la longueur de
l’axe de l’antenne. La distance radiale au sol Rd fonction de l’angle d’incidence θ et de la
durée des impulsions radar τ est donnée par : Rd = c τ

2sinθ
Pour obtenir une résolution

spatiale optimale, on a besoin de systèmes radar à vision latérale (SLAR) car le pointeur
nul n’apporte pas de résolution. La fantaisie d’un signal chirp (Compressed High Intensity
Radar Pulse) a le résultat de l’amélioration de la résolution. Ce signal est exprimé par :

c(t) = p(t) cos(w0 + 0.5αt)t = p(t) cos(w0t + 0.5αt2) = p(t) cos(2πf0t + 0.5αt2) (1.1)

La montée de la résolution est due pour le reste à la compression impulsionnelle, faite par
la corrélation entre le signal émis et le signal reçu.

Figure 1.6 – Principe de la compression d’impulsion

1.5.2 Résolution azimutale

La résolution azimutale reflète la capacité à distinguer deux objets situés parallèlement
à la trajectoire du radar. Elle correspond approximativement à la moitié de la longueur
réelle de l’antenne, exprimée par la formule suivante : Ra = l

2 L’approche la plus simple
pour améliorer cette résolution consiste à accrôıtre la hauteur de l’antenne. Cependant,
dans la pratique, augmenter la taille de celle-ci s’avère souvent complexe et peu efficace.
C’est dans ce contexte que la technologie SAR (Synthetic Aperture Radar) entre en jeu.
Elle permet de générer une ouverture synthétique en combinant les signaux rétrodiffusés
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[6]

Figure 1.7 – Modes d’acquisitions d’images SAR

captés tout au long de la trajectoire du radar. Cette méthode simule ainsi une antenne bien
plus grande que celle réellement utilisée. Les images produites par le SAR, tout comme
les autres images numériques, sont constituées de pixels adjacents. La valeur attribuée à
chaque pixel est déterminée par l’intensité du signal radar émis et réfléchi par la surface
observée.

1.6 Bruit de l’image SAR

Lorsque l’onde radar est émise en direction de la cible, celle-ci renvoie non pas une seule
onde mais plusieurs ondes qui interfèrent au niveau du radar de façon destructive, ces
interférence affaiblies les images produites par le SAR par un bruit appelé speckle.Le
speckle a les caractéristiques d’un bruit multiplicatif .pour bien extraire les informa-
tion thématique et bien exploiter les images il faut réduire ou éliminer ce bruit. D’où
le développement de nombreuses méthodes de réduction du speckle, parmi ces méthode
le filtrage des images SAR. Un filtre idéal qui éliminerait tous les bruit n’existe pas en
pratique, mais certains s’en rapprochent.

Les trois méthodes de filtrage du speckle sont :

• Méthode multi vues ou multi-looks : Il y a deux techniques pour cette méthode,
la première est une technique spectrale qui permet de réduire la variance du spe-
ckle d’un facteur N au détriment de la résolution spatiale de l’image originale. La
deuxième technique est une technique spatiale qui consiste à acquérir une image
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pleine résolution SLC et à effectuer une moyenne de N pixels adjacents pour former
une image basse résolution avec atténuation du speckle.

• Méthode Multifréquence, Multi-polarisation : utilise la matrice de covariance et les
statistiques locales pour une zone homogène.

• Méthodes spatiales : Ces méthodes se subdivisent en deux familles, la première
comporte les méthodes heuristiques qui permettent de réduire le speckle sans tenir
compte de son caractère multiplicatif et sans connaissance à priori de ses lois de
probabilité. La deuxième famille comporte les méthodes homomorphiques qui sont
fondées sur le caractère multiplicatif du speckle.

1.7 L’équation Radar

L’équation radar est une formule fondamentale utilisée en télédétection et en radar pour
déterminer la puissance du signal réfléchi par une cible et reçu par l’antenne du radar.
Elle permet de comprendre comment la puissance du signal radar varie en fonction des
paramètres du système et de l’environnement.

Voici la forme générale de l’équation radar :

Pr = Pt · Gt · Gr · λ2 · σ

(4π)3 · R4 · L
(1.2)

Cette équation est essentielle pour concevoir des systèmes radar efficaces et comprendre
leurs limites opérationnelles, évaluer la détectabilité des cibles, et optimiser les perfor-
mances pour des applications spécifiques (militaires, météorologiques, civiles, etc...).

1.8 La polarimétrie

La polarimétrie est une technique qui exploite les propriétés de polarisation des ondes
électromagnétiques pour améliorer la transmission et la réception des signaux. Elle est
notamment utilisée dans les systèmes radar. La polarisation d’une onde décrit l’orienta-
tion du champ électrique dans l’espace (linéaire, circulaire ou elliptique).
En polarimétrie, on utilise différentes polarisations pour :
- Augmenter la capacité des canaux de communication (multiplexage polarimétrique).
- Réduire les interférences entre plusieurs signaux.
- Améliorer la détection dans les systèmes radar (discrimination des cibles).
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1.8.1 Les ondes électromagnétiques

Les ondes électromagnétiques (OEM) sont des perturbations couplées des champs électrique
(E) et magnétique (B) qui se propagent dans le vide ou dans un milieu matériel sans
nécessiter de support matériel. Elles transportent de l’énergie et de l’information. Les lois
fondamentales de l’électromagnétisme, telles que la propagation des ondes et leur inter-
action avec la matière, sont décrites par les équations de Maxwell.
Les équations de Maxwell expriment les relations fondamentales suivantes :[1]

∇⃗ × E⃗ = −∂B⃗

∂t
(1.3)

∇⃗ × B⃗ = µ0J⃗ + µ0ε0
∂E⃗

∂t
(1.4)

∇⃗ · E⃗ = ρ

ε0
(1.5)

∇⃗ · B⃗ = 0 (1.6)

ε0 : permittivité de vide.
µ0 : perméabilité magnétique dans le vide.
ρ : densité de charge.
J : densité de charge.
Dans le cas d’absence de charge ρ = 0 , J = 0 et pour un milieu homogène, on peut
obtenir une seule équation en combinant ces équations qui décrit la propagation du champ
électrique, formulée de la manière suivante :

∇2E⃗ + 1∂2E⃗

c∂t2 (1.7)

1.8.2 Les types de polarisation

La polarisation est une propriété de la lumière. Cette dernière est une onde électromagnétique
se déplaçant dans le vide à la vitesse c=299 792 458 m/s. Elle est composée d’un champ
électrique (noté généralement E) et d’un champ magnétique (noté B), orthogonaux. À
travers les équations de Maxwell, les champs E et B sont liés : la connaissance de l’un
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suffit pour connaitre l’autre. Aussi, pour simplifier — et c’est aussi la convention choisie
en polarimétrie — on ne raisonne que sur le champ E.
Une onde électromagnétique plane se définit notamment par sa direction de propagation.
Le plan perpendiculaire à la direction de propagation est appelé le plan d’onde. C’est
dans le plan d’onde qu’évolue le champ E (et le champ B, mais nous n’en parlerons plus).
À chaque instant, le champ E a une amplitude et une direction différente dans le plan
d’onde. Dit autrement, si l’onde se propage en direction de l’observateur ce dernier verra
le champ E former différents motifs dans le plan d’onde pendant son évolution temporelle.
C’est cela qui va définir la polarisation de l’onde.
1. Polarisation elliptique : Si le champ E dessine une ellipse dans le plan d’onde, on
parle de polarisation elliptique.
C’est le cas le plus général. On peut alors décomposer le champ électrique selon deux
composantes perpendiculaires :

Ex = Ex0 cos(kz − ωt) (1.8)

Ey = Ey0 cos(kz − ωt + φ), où ω = 2πλ

c
(1.9)

est la pulsation de l’onde électromagnétique.

k = 2π

λ
(1.10)

le nombre d’onde et φ le déphasage entre les deux composantes.

Figure 1.8 – Polarisation élliptique

2. Polarisation circulaire : Si le champ E dessine un cercle dans le plan d’onde, on parle
de polarisation circulaire. Le sens de rotation de E définit une polarisation :
- Droite, si l’onde tourne dans le sens trigonométrique.
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- Gauche, si l’onde tourne dans le sens horaire.
On peut se souvenir du sens de rotation en utilisant ses mains. En pointant son pouce
vers soi, on regarde dans quel sens s’enroulent les autres doigts ; en choisissant la main
qui permet de reproduire le sens de rotation de l’onde polarisée (main gauche ou main
droite), on détermine le sens de la polarisation.
On peut alors écrire les composantes du champ électrique comme suit :

Ex = E0 cos(kz − ωt) (1.11)

Ey = E0 sin(kz − ωt) (1.12)

où E0 est l’amplitude commune et φ = π
2 .

Figure 1.9 – Polarisation circulaire

3. Polarisation linéaire : Si le champ E décrit un segment dans le plan d’onde, on dit
que la polarisation est linéaire. On peut la voir comme une polarisation elliptique pour
laquelle l’un des deux axes de l’ellipse de polarisation serait réduit à un point, comme
montré dans la figure 1.10 Le champ électrique s’écrit alors :

Ex = Ex0 cos(kz − ωt)Ey = Ey0 cos(kz − ωt) avec Ex0

Ey0
= cste et φ = 0. (1.13)

4. Polarisation aléatoire : Le champ E varie de manière imprévisible sans direction
privilégiée (lumière naturelle, sources thermiques ).

On peut combiner les polarisations des ondes transmises et reçues en utilisant les pa-
ramètres H et V dont l’interrelation est bien définie. C’est pourquoi les systèmes qui
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Figure 1.10 – Polarisation linéaire

transmettent et reçoivent ces deux polarisations linéaires sont couramment utilisés. Avec
ce type de radar, il existe quatre combinaisons de polarisations de transmission-réception :
HH - transmission et réception horizontales
VV - transmission et réception verticales
HV - transmission horizontale et réception verticale, et
VH - transmission verticale et réception horizontale.

Polarisation Description

Polarisation simple - HH ou VV (éventuellement HV ou VH)
Bipolarisation - HH et HV, VV et VH ou HH et VV
Polarisation alternée - HH et HV alternant avec VV et VH
Polarimétrique - HH, VV, HV et VH

Table 1.3 – Types de polarisation et leurs descriptions

1.8.3 La matrice de Jones

Le vecteur de Jones est un outil fondamental pour décrire mathématiquement l’état de
polarisation d’une onde électromagnétique complètement polarisée. Les polarisations ho-
rizontale (H) et verticale (V) en sont les bases utilisées dans l’imagerie SAR.
Pour une onde plane se propageant selon l’axe Z le champ électrique s’écrit :

E(t) =
Ex(t)

Ey(t)

 =
|Ex|ei(ϕx−ωt)

|Ey|ei(ϕy−ωt)

 (1.14)
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Donc, sans la dépendance temporelle, le vecteur de jones s’écrit de la manière suivante :

J =
Ex

Ey

 =
|Ex|eiϕx

|Ey|eiϕy

 (1.15)

1.8.4 La matrice de diffusion

La matrice de diffusion ou matrice S appelé aussi matrice de SINCLAIR est un outil
central pour décrire les interactions entre particules. Elle permet de calculer les amplitudes
de transition entre des états asymptotiques (avant et après une interaction). Lorsque des
ondes électromagnétiques se déplacent et entrent en contact avec un obstacle, elles inter-
agissent avec l’obstacle en question. Au cours de cette rencontre, une partie de l’énergie
de l’onde peut être absorbée par l’objet, tandis que le surplus est renvoyé sous forme
de réflexion ou de diffusion. Ces phénomènes peuvent altérer la polarisation de l’onde
réfléchie comparativement à celle de l’onde incidente. En analysant ces variations, on
peut en déduire certaines caractéristiques de l’objet touché par le rayonnement. Dans
l’imagerie SAR, on émet deux polarisations H ou V et la réception se fait sur deux ca-
naux H et V .

Polarisation de l’onde émise Polarisation de l’onde reçue Composante mesurée

H H SHH

V SHV

V H SV H

V SV V

Table 1.4 – Tableau des composantes de polarisation des ondes émises et reçues

La matrice de diffusion est représentée par S =
S11 S12

S21 S22

 en plus de ses complexes Sij,

les coefficients S11 et S22. représentent la même polarisation en émission et en réception,
tandis que les coefficients S12 et S21 représentent une polarisation opposée entre émission
et réception comme présentés dans la matrice ci-dessous :

S =
SHH SHV

SV H SV V



1.8.5 Le vecteur cible

Le vecteur cible constitue une représentation compacte de l’information polarimétrique
contenue dans la matrice de diffusion S. Sa construction repose sur une projection mathématique
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permettant d’extraire les caractéristiques essentielles de la cible observée.

Principe de construction

Le vecteur cible est obtenu par projection de la matrice S sur une base orthogonale de
matrices ψ appartenant à un groupe spécial unitaire [?, ?]. Cette opération s’exprime
par :

k = 1
2Trace(Sψ) = [k0, k1, k2, k3]T (1.16)

Bases de projection usuelles

Deux bases principales sont couramment utilisées :

a) Base lexicographique (ψL) : Représentation directe des éléments de la matrice
S :

ψL =
2

1 0
0 0

 , 2
0 1
0 0

 , 2
0 0
1 0

 , 2
0 0
0 1

 (1.17)

b) Base de Pauli modifiée (ψP ) : Représentation physique des mécanismes de dif-
fusion :

ψP =
√

2


1 0
0 1

 ,

1 0
0 −1

 ,

0 1
1 0

 ,

0 −j

j 0

 (1.18)

Expressions des vecteurs cibles

Forme générale (bistatique) :

kL = [Shh Shv Svh Svv]T (1.19)

kP = 1√
2

[Shh + Svv Shh − Svv Shv + Svh j(Shv − Svh)]T (1.20)

Cas monostatique (Shv = Svh) :

kL = [Shh

√
2Shv Svv]T (1.21)

kP = 1√
2

[Shh + Svv Shh − Svv 2Shv]T (1.22)



1.9 Les matrices de cohérence et de covariance 17

Relation entre représentations

Les vecteurs kL et kP sont reliés par une transformation linéaire :

kL = AkP = 1√
2


1 1 0
0 0

√
2

1 −1 0

 kP (1.23)

Cette formulation matricielle permet de convertir aisément entre les différentes représentations,
offrant ainsi une grande flexibilité dans le traitement des données polarimétriques.

1.9 Les matrices de cohérence et de covariance

En polarimétrie radar, les matrices de covariance et de cohérence constituent deux représentations
fondamentales d’une cible. Leur intérêt réside dans leurs propriétés mathématiques remar-
quables. Ces deux matrices sont complexes, de taille 3 × 3 [7].

1.9.1 Matrice de covariance

La matrice de covariance C est définie à partir du vecteur cible kL :

C = ⟨kLk∗T
L ⟩ =


⟨ShhS∗

hh⟩
√

2⟨ShhS∗
hv⟩ ⟨ShhS∗

vv⟩
√

2⟨ShvS∗
hh⟩ 2⟨ShvS∗

hv⟩
√

2⟨ShvS∗
vv⟩

⟨SvvS∗
hh⟩

√
2⟨SvvS∗

hv⟩ ⟨SvvS∗
vv⟩

 (1.24)

1.9.2 Matrice de cohérence

De façon équivalente, la matrice de cohérence T peut être exprimée à partir du vecteur kP :

T = ⟨kP k∗T
P ⟩ =


⟨(Shh + Svv)(Shh + Svv)∗⟩ ⟨(Shh + Svv)(Shh − Svv)∗⟩ 2⟨S∗

hv(Shh + Svv)⟩
⟨(Shh − Svv)(Shh + Svv)∗⟩ ⟨(Shh − Svv)(Shh − Svv)∗⟩ 2⟨S∗

hv(Shh − Svv)⟩
2⟨Shv(Shh + Svv)∗⟩ 2⟨Shv(Shh − Svv)∗⟩ 4⟨ShvS∗

hv⟩


(1.25)
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1.9.3 La polarimétrie dans Sentinel-1

Sentinel-1 est un système de double polarisation SAR préservant en phase. Il peut émettre
un signal en polarisation horizontale (H) ou verticale (V), puis recevoir à la fois dans les
polarisations H et V. Les produits à double polarisation du complexe à simple appa-
rence (SLC) de niveau 1 contiennent des valeurs complexes. En plus de l’intensité de
rétrodiffusion qui peut être mesurée à partir de chaque polarisation unique, les informa-
tions de phase inter-canaux permettent d’effectuer une analyse améliorée des propriétés
de rétrodiffusion.

Figure 1.11 – Image acquise par Copernicus Sentinel-1A le 2017-11-01 avec d’intenseur VV,
image d’ambiance VH et composite de couleur RGB

1.9.4 le rôle de la polarisation dans les forets

Il est essentiel de considérer la polarisation des ondes radar lorsqu’elles interagissent avec
les forêts, car cela détermine la manière dont le signal interagit avec les troncs et les com-
posantes de la canopée. La Figure 1.12 présente un schéma simplifié montrant comment
les ondes longues et courtes en polarisations horizontale (H) et verticale (V) interagissent
avec les forêts.

Figure 1.12 – schéma des effets de la polarisations dans les forets

L’aspect le plus important est que la rétrodiffusion en co-polarisation (VV, HH) (c’est-à-
dire avec les mêmes composantes d’émission et de réception) est généralement plus forte
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pour les composantes de diffusion de surface, tandis que l’énergie mesurée en polarisation
croisée (VH ou HV) (c’est-à-dire lorsque l’onde reçue est perpendiculaire à l’onde émise)
est associée à la diffusion volumique. Ainsi, pour les applications liées à la biomasse, au
suivi de la dégradation forestière et à l’identification des changements entre volumes et
surfaces, les observations en polarisation croisée avec des images SAR sont indispensables.

Les différences entre les images en co-polarisation et en polarisation croisée (bandes C et
L) d’une plantation de palmiers à huile sont visibles dans la Figure 1.13.

Figure 1.13 – Sentinel-1 C-band imagery (a) CV V , (b)CV H , (c)ratio, and(d)RGBcompositeCV V CV Hratio.

On observe clairement, aussi bien en L-HH qu’en C-VV, des ambigüıtés importantes
dans les niveaux de gris entre les canopées forestières et les zones non forestières. En re-
vanche, ces distinctions sont plus nettes et moins ambiguës dans les images en polarisation
croisée.[8]
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1.10 La décomposition polarimétrique

La décomposition polarimétrique est une technique essentielle en télédétection radar, per-
mettant d’analyser la diffusion des ondes électromagnétiques par une cible. En exploitant
les informations de polarisation, cette méthode décompose la matrice de diffusion en
éléments cohérents ou incohérents, révélant ainsi les propriétés physiques et géométriques
des surfaces observées. Les décompositions courantes, comme celles de Pauli, Krogager ou
Freeman, facilitent l’interprétation des données polarimétriques pour des applications en
agriculture, foresterie ou surveillance environnementale. Cette approche améliore signifi-
cativement la caractérisation des cibles et leur classification.

1.10.1 Décomposition de pauli

Décomposition de Pauli La décomposition de Pauli est une méthode fondamen-
tale en imagerie polarimétrique radar, utilisée pour décomposer la matrice de diffusion
(ou matrice de Mueller) d’une cible en une somme de composantes élémentaires corres-
pondant à des mécanismes de diffusion simples. Elle repose sur les matrices de Pauli,
une base de matrices 2 × 2 utilisées en mécanique quantique et en traitement du signal
radar.

Dans le cas d’une cible décrite par la matrice de diffusion [S], la décomposition de
Pauli l’exprime comme une combinaison linéaire de trois composantes principales :

— Diffusion simple (ou surface) : associée à une réflexion simple (typiquement une
surface plane).

— Diffusion double (ou dièdre) : correspondant à une réflexion double (comme un
coin formé par deux surfaces).

— Diffusion volumique (ou helix) : liée à des interactions multiples (végétation,
forêt).

Cette décomposition permet une visualisation en fausses couleurs (RGB) où chaque
mécanisme est représenté par une couleur distincte, facilitant l’interprétation des données
polarimétriques. Elle est particulièrement utile pour la classification des sols, la détection
de structures artificielles et l’analyse de la végétation. La base de Pauli en imagerie
radar polarimétrique s’exprime sous la forme :

BP = {SP 1, SP 2, SP 3, SP 4}
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avec les matrices de base définies par :

BP =


1 0
0 1

 ,

1 0
0 −1

 ,

0 1
1 0

 ,

0 −j

j 0


En configuration monostatique, le principe de réciprocité s’applique, conduisant à l’égalité
SHV = SV H .

La décomposition de la matrice de diffusion S dans cette base s’écrit :

S = αSP 1 + βSP 2 + γSP 3

où les coefficients complexes sont déterminés par :


α = SHH+SV V

2

β = SHH−SV V

2

γ = SHV

Cette décomposition admet une double interprétation physique :

— SP 1 représente la diffusion par un trièdre (mécanisme de simple rebond)
— SP 2 correspond à un dièdre à 0◦ (mécanisme de double rebond)
— SP 3 modélise un dièdre à 45◦ (phénomène de dépolarisation)

Les éléments de la base de Pauli permettent ainsi une analyse physique des mécanismes
de diffusion dominants dans une image radar polarimétrique.

1.10.2 Méthodes de Décomposition en Dual-Pol

Plusieurs méthodes existent pour décomposer le signal Dual-Pol et extraire des informa-
tions :

Décomposition de Pauli (adaptée à Dual-Pol)

Permet de séparer les mécanismes de diffusion dominants :


k1 = SHH+SV V√
2 (Diffusion surfacique)

k2 = SHH−SV V√
2 (Diffusion dièdre)

k3 = SHV +SV H√
2 (Diffusion volumique)
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(En Dual-Pol, certaines composantes sont absentes, donc on adapte les équations.)

Décomposition en Cohérence (Dual-Pol Entropy/Alpha)

Utilisée pour estimer le degré d’aléatoire de la diffusion :

— Entropie (H) : Mesure le désordre de la diffusion
— Angle Alpha (α) : Indique le type de mécanisme dominant (surface, volume,

dièdre)

Décomposition de Freeman-Durden (adaptée)

Sépare la diffusion en trois composantes :

— Diffusion de surface (sol lisse, eau)
— Diffusion de volume (forêt, végétation dense)
— Diffusion double-reflet (bâtiments, troncs d’arbres)

(En Dual-Pol, cette décomposition est simplifiée car certaines polarisations manquent.)

Indices Polarimétriques (Dual-Pol)

— Ratio HH/HV : Permet de distinguer les zones urbaines (HH dominant) des forêts
(HV élevé)

— Indice de Différence Normalisé (NDPI) : Utile pour la détection des change-
ments

1.11 Conclusion

Le Chapitre 1 a présenté une analyse approfondie des principes fondamentaux des images
SAR (Synthetic Aperture Radar), en mettant en lumière leur fonctionnement, leurs ca-
ractéristiques techniques et leurs applications. Les points clés abordés incluent :

— Fonctionnement des SAR :

— Utilisation d’antennes en mouvement pour générer des images haute résolution
— Processus complet : émission d’impulsions, réception des signaux, et traitement

des données

— Satellite Sentinel-1 :
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— Caractéristiques techniques et paramètres orbitaux
— Capacités polarimétriques pour l’observation terrestre

— Résolution et bruit :

— Importance de la résolution radiale/azimutale
— Techniques de réduction du bruit de speckle

— Polarimétrie :

— Types de polarisation (HH, VV, HV, VH)
— Matrices de Jones et de diffusion pour l’analyse des cibles

— Applications forestières :

— Polarisation croisée (HV/VH) pour l’étude de la biomasse
— Distinction entre diffusion de surface et volumique

— Décomposition polarimétrique :

— Méthode de Pauli pour séparer les mécanismes de diffusion
— Visualisation en fausses couleurs (RGB)

En résumé, ce chapitre a établi les bases théoriques et techniques de l’imagerie SAR,
essentielles pour des applications en télédétection environnementale. Ces concepts fon-
damentaux préparent le terrain pour les méthodes de classification abordées dans les
chapitres suivants.



Chapitre 2

Méthodes de classification

2.1 introduction

La classification, un des sujets majeurs de l’apprentissage automatique, concerne tout re-
coupage en groupes de choses ou de données conformément à ses attributs. Cette méthode
permet d’expliquer et d’identifier la nature des phénomènes observés, comme ceux qu’il
est possible d’observer dans un image ou une coupure de données radar. La classification
est à distinguer en deux types de classification : supervisée et non supervisée qui per-
met de traiter des gros lots de données de quatre grosses masses de données et de mieux
comprendre les objets terrestres.

• La classification supervisée :

La classification supervisée est l’une des approches les plus répandues en apprentissage
automatique. Elle repose sur un processus dans lequel un algorithme est entrâıné à partir
d’un ensemble de données étiquetées, c’est-à-dire composées d’exemples pour lesquels on
connâıt déjà la classe à laquelle ils appartiennent.

L’objectif principal est de développer un modèle capable de prédire la classe correcte de
nouveaux exemples, encore non étiquetés.

Dans ce cadre, chaque exemple d’apprentissage est défini par :

• Un ensemble de caractéristiques (ou attributs)
• Et une étiquette de classe associée.

L’algorithme d’apprentissage va utiliser ces données pour apprendre une fonction de clas-
sification, c’est-à-dire une fonction capable de faire le lien entre les caractéristiques et les
classes. Une fois ce modèle entrâıné, il peut ensuite être utilisé pour prédire la classe de
nouvelles données.

24
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• Quelques méthodes de classification supervisée :
— SVM (Support Vector Machine) : cette méthode cherche à trouver la frontière opti-

male entre les différentes classes. Elle est très efficace, notamment pour les problèmes
de classification binaire.

— Réseaux de neurones (Neural Networks) : ils sont capables de modéliser des relations
complexes entre les données. Lorsqu’ils sont constitués de plusieurs couches (réseaux
profonds), on parle de Deep Learning, particulièrement efficace dans le traitement
d’images et la reconnaissance de formes.

— Le MLP (Multi-Layer Perceptron) : est un réseau de neurones artificiels utilisé en
apprentissage supervisé pour la classification et la régression, capable de modéliser
des relations complexes entre les données grâce à ses couches cachées.

— Random Forest : c’est un ensemble d’arbres de décision utilisés en parallèle pour
améliorer la précision du modèle. Elle est robuste face au sur-apprentissage et
adaptée aux grandes bases de données.

2.2 Les méthodes de classification supervisées

2.2.1 La méthode de classification SVM (Support Vector Ma-
chine)

Le Support Vector Machine (SVM) est un algorithme d’apprentissage supervisé largement
utilisé pour des tâches de classification et de régression. Il s’est imposé comme un outil
performant en apprentissage automatique, notamment grâce à sa capacité à gérer des
problèmes de classification complexes avec efficacité.
L’objectif du SVM est de maximiser la marge entre les données d’apprentissage les plus
proches de l’hyperplan — appelées vecteurs de support — et l’hyperplan lui-même. Ces
vecteurs de support jouent un rôle crucial, car ce sont eux qui définissent précisément la
position de l’hyperplan optimal.
L’un des grands avantages du SVM réside dans sa capacité à généraliser efficacement,
même à partir d’un nombre restreint d’exemples d’apprentissage. Cela signifie qu’il peut
classer avec précision de nouvelles données jamais vues auparavant, ce qui en fait un outil
particulièrement adapté aux applications à grande échelle.
Le SVM peut traiter aussi bien des données linéairement séparables que non linéairement
séparables :

• Dans le premier cas, un hyperplan linéaire suffit.
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• Dans le second cas, le SVM fait appel à des fonctions noyaux (ou kernels) pour
projeter les données dans un espace de dimension supérieure, où une séparation
linéaire devient possible.

• Dans le troiséme cas, classification SVM multi classes.

• Premier cas : classes linéairement s´séparables
Imaginons un ensemble de données représentant différents types d’avions, caractérisés
par deux attributs principaux : la vitesse maximale et la portée de vol. L’objectif
est de classer ces avions en deux catégories distinctes : ≪ avion de chasse ≫ et
≪ avion de ligne ≫ .

Pour ce faire, on cherche à construire un hyperplan linéaire de la forme :

f(x) = wT ϕ(x) + b (2.1)

Cet hyperplan permet de prédire à quelle classe appartient un avion donné, en appliquant
une règle de classification basée sur la position de l’avion par rapport à la frontière définie
par

g(x) =


+1 si f(x) > 0

−1 si f(x) < 0
(2.2)

Dans notre exemple :
Si : f(x) > 0 donc : cette classe correspond ‘a des avions de chasse
Si : f(x) < 0 donc : cette classe correspond ‘a des avions de ligne

Il est possible de tracer plusieurs hyperplans capables de séparer parfaitement les deux
classes. Toutefois, l’objectif du SVM est de déterminer l’hyperplan optimal, c’est-à-dire
celui qui maximise la marge entre les exemples des deux classes. Pour cela, il s’agit de cal-
culer les poids optimaux de l’hyperplan à l’aide de techniques d’optimisation numérique,
telles que la descente de gradient.

Les vecteurs de support jouent un rôle fondamental dans cette démarche. En effet, ce sont
les exemples les plus proches de la frontière de décision, donc les plus difficiles à classer
correctement. Ces points sont souvent situés dans des zones où les classes sont proches,
voire se chevauchent légèrement.
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Figure 2.1 – deux classes linéairement séparables

En se focalisant sur ces vecteurs de support, le SVM cherche à maximiser la marge, c’est-
à-dire à augmenter la distance entre ces points critiques et l’hyperplan. Ce mécanisme
permet d’assurer une meilleure séparation des classes et améliore ainsi la capacité de
généralisation du modèle sur de nouvelles données.

Par ailleurs, l’utilisation des vecteurs de support contribue à rendre l’algorithme plus ef-
ficace, en réduisant le nombre total de points nécessaires pour définir l’hyperplan. Cela se
traduit par des économies de mémoire et un temps de calcul réduit lors de l’application
du modèle à de nouveaux exemples.

Figure 2.2 – Processus de maximisation de la marge
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Une fois l’hyperplan de décision déterminé, il devient possible de classer de nouveaux
exemples en les projetant dans l’espace des attributs. La classification se fait en identi-
fiant de quel côté de l’hyperplan se trouve chaque exemple. Si l’exemple est positionné du
côté correspondant à la classe ≪ avion de chasse ≫, il sera alors classé comme tel. À l’in-
verse, s’il se situe du côté associé aux ≪ avions de ligne ≫, il sera attribué à cette catégorie.

• Deuxième cas : Classes non linéairement séparables
Dans les situations où les données ne peuvent pas être séparées de manière linéaire
dans leur espace d’origine, le SVM non linéaire intervient comme une solution
efficace. Contrairement à la méthode linéaire qui cherche à tracer un hyperplan
droit entre les classes, cette approche repose sur l’utilisation de transformations de
données permettant de projeter les exemples dans un espace de dimension supérieure,
où une séparation linéaire devient possible.

Comme illustré dans la figure 2.3, il est évident qu’aucun hyperplan linéaire ne
permettrait de séparer correctement les deux classes dans l’espace d’origine.

Figure 2.3 – Exemple de deux classes non linéairement séparables.

Le principe fondamental de cette méthode repose sur l’application d’une fonction de
transformation, appelée fonction noyau (kernel). Cette fonction permet de calculer
les produits scalaires dans l’espace transformé sans avoir à effectuer explicitement
la transformation elle-même. Cette technique, connue sous le nom de ≪ trick du
noyau ≫ (kernel trick), permet au SVM d’être entrâıné dans un espace de dimension
plus élevée tout en restant efficace en termes de calcul, sans qu’il soit nécessaire de
connâıtre la transformation exacte appliquée aux données.
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Figure 2.4 – Projection non linéaire des points dans un espace 3D. En bleu, on visualise une
fonction de décision linéaire qui permet de séparer les classes une fois les données projetées dans
un espace de plus grande dimension.

L’intégration de fonctions noyau dans les SVM permet de modéliser des frontières de
décision complexes et non linéaires au sein des données. Parmi les noyaux les plus fréquemment
utilisés, on retrouve le noyau gaussien (aussi appelé RBF – Radial Basis Function),
le noyau polynomial et le noyau sigmöıde. Chaque noyau possède des caractéristiques
propres, et le choix de l’un ou l’autre dépend principalement de la nature des données et
du type de problème de classification à résoudre.
La classification non linéaire avec les SVM reprend les étapes fondamentales de la clas-

Figure 2.5 – La fonction sigmöıde

sification linéaire, mais se distingue par l’emploi d’une fonction noyau spécifique lors de
la définition de l’hyperplan de décision. Le processus habituel inclut la récupération des
données d’entrâınement, la sélection d’un noyau pertinent, l’ajustement des paramètres
du modèle via un algorithme d’optimisation, puis l’évaluation et la prédiction sur de nou-
velles données.
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Figure 2.6 – La fonction de décision non linéaire

• Troiséme cas : classification SVM multi classes
Le SVM peut également être appliqué à des problèmes de classification compor-
tant plusieurs classes. Pour cela, plusieurs stratégies d’extension du SVM linéaire
existent, notamment les approches One-vs-All (OvA) et One-vs-One (OvO).

Dans l’approche One-vs-All, un classifieur SVM est entrâıné pour chaque classe, en
considérant cette dernière comme la classe positive, tandis que toutes les autres sont
regroupées comme classes négatives. Lors de la prédiction, l’échantillon est classé
dans la catégorie correspondant au classifieur ayant fourni la plus haute valeur de
décision.

Figure 2.7 – Méthodes OVA et OVO
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Quant à la méthode One-vs-One, elle consiste à entrâıner un classifieur SVM pour
chaque paire possible de classes. Lors de la classification, chaque classifieur vote
pour une classe, et l’exemple est attribué à la classe ayant obtenu le plus de votes
parmi l’ensemble des comparaisons.

2.2.2 Les réseaux de neurones convolutifs

La classification d’images à l’aide des réseaux de neurones convolutifs (CNN – Convo-
lutional Neural Networks) représente aujourd’hui l’une des approches les plus perfor-
mantes en traitement d’images. Grâce à leur capacité à extraire automatiquement des
caractéristiques visuelles hiérarchiques, les CNN sont particulièrement bien adaptés à
l’analyse d’images complexes, comme celles issues de la télédétection ou des satellites
d’observation de la Terre.

Les couches convolutionnelles permettent d’identifier des motifs tels que les textures, les
contours, ou les formes, qui sont ensuite interprétés par des couches plus profondes pour
effectuer la classification finale. Cette architecture hiérarchique rend les CNN extrêmement
efficaces pour distinguer différentes classes d’objets ou de régions dans une image.

Figure 2.8 – CNN layers

Architecture de réseaux de neurones convolutionnels :

Couches convolutionnelles : La reconnaissance d’objets dans une image consiste à
comparer l’image pixel par pixel afin d’en extraire des caractéristiques visuelles perti-
nentes. Si les réseaux de neurones multicouches (MLP) sont efficaces pour certaines tâches
de traitement d’images, ils deviennent rapidement inadaptés face à des images de grande
taille. Cela s’explique par la croissance exponentielle du nombre de connexions nécessaires
avec l’augmentation de la dimension des images.

Par exemple, une image de taille
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200×200×3 (200 pixels de largeur, 200 pixels de hauteur, et 3 canaux de couleur) impli-
querait 120 000 entrées pour un seul neurone. Multiplier ce chiffre par le nombre total de
neurones entrâıne une charge computationnelle très élevée, difficile à gérer.

Pour pallier ce problème, les réseaux de neurones convolutionnels (CNN) introduisent une
structure plus adaptée : la couche de convolution. Cette dernière permet de reconnâıtre
des motifs ou formes locales sur une image en appliquant des filtres (ou noyaux) de petite
taille, généralement 2×2 ou 3×3 pixels. Concrètement, pour chaque position du filtre sur
la matrice d’entrée, la valeur correspondante dans la matrice de sortie est calculée comme
la somme pondérée des pixels de l’image, chaque pixel étant multiplié par le poids cor-
respondant du filtre. Ce mécanisme réduit fortement le nombre de connexions et permet
d’extraire efficacement des caractéristiques locales, tout en préservant les structures spa-
tiales. Notons que la taille de la matrice de sortie est généralement inférieure à celle de
l’entrée (souvent réduite de deux lignes et deux colonnes lorsque aucun remplissage n’est
appliqué) [9].

Figure 2.9 – Opération d’une convolution sur image de 5 × 5 pixel.

Couches de pooling : Après chaque couche convolutive, une couche de pooling (ou
mise en commun) est souvent appliquée pour réduire la dimension spatiale des données.
Cette opération de sous-échantillonnage permet de :

— Diminuer la complexité computationnelle.
— Contrôler le surapprentissage (overfitting).
— Introduire une invariance translationnelle.

Méthodes de pooling courantes :

Max pooling : Sélectionne la valeur maximale dans chaque fenêtre (ex : fenêtre 2×2).
Avantage : Préserve les features les plus saillantes.

Average pooling : Calcule la moyenne des valeurs. Avantage : Réduit le bruit.

Pooling apprenable : Utilise une combinaison linéaire pondérée des neurones (ex :
learnable pooling).
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Exemple illustratif : La Fig. 3 montre un max pooling avec une fenêtre de taille 2×2
et un stride de 2. Chaque bloc de 4 pixels est remplacé par sa valeur maximale, divisant
ainsi la résolution spatiale par deux [10].

Figure 2.10 – Max pooling

L’entrainement d’un réseau de neurone convolutionnelle :

L’entrâınement d’un réseau de neurones convolutif (CNN) consiste à déterminer et ajuster
de manière empirique la valeur de ses poids. Le principe est le suivant : le CNN traite une
image issue de la base de données d’entrâınement et effectue une prédiction, c’est-à-dire
qu’il indique à quelle classe il pense que cette image appartient.

Puisque la classe correcte de chaque image d’entrâınement est connue à l’avance, il est
possible de vérifier si la prédiction est correcte. Selon l’exactitude de la réponse, tous
les poids du réseau sont mis à jour à l’aide d’un algorithme appelé rétropropagation du
gradient de l’erreur.

Ce processus (prédiction, vérification et mise à jour des poids) est répété plusieurs fois sur
l’ensemble des images de la base de données d’entrâınement, afin que le modèle apprenne
à mieux classer ces données.

Une fois l’entrâınement terminé, on évalue les performances du modèle en lui présentant
une base de données de validation. Cette base contient des images que le modèle n’a jamais
vues auparavant. On mesure alors sa capacité à bien classifier ces images en calculant son
taux de précision, qui correspond à son pourcentage de bonnes classifications.

Analyse des performances du modèle après l’apprentissage :

À la fin du processus d’apprentissage, trois cas de figure peuvent se présenter :
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— Modèle performant sur les données d’entrâınement et de validation :
Le modèle a bien appris. Il parvient à reconnâıtre correctement aussi bien les images
déjà vues que celles qu’il découvre pour la première fois.

— Surapprentissage (Overfitting) :
Le modèle est très performant sur les données d’entrâınement mais obtient de moins
bons résultats sur les données de validation. Cela indique une mauvaise capacité
de généralisation. Pour y remédier, il est souvent nécessaire d’ajouter davantage
d’images d’entrâınement.

— Sous-apprentissage (Underfitting) :
Le modèle est peu performant aussi bien sur les données d’entrâınement que sur
celles de validation. Cela signifie qu’il n’a pas réussi à apprendre correctement. Dans
ce cas, ajouter plus d’images ne suffit pas ; il faut envisager d’utiliser un modèle plus
complexe ou mieux adapté au problème[11].

Indicateurs de performance d’un classifieur :

Matrice de confusion : Prenons l’exemple d’un classifieur binaire, c’est-à-dire un
modèle qui prédit deux classes : classe 0 et classe 1.

Pour évaluer les performances de ce classifieur, on distingue quatre types d’éléments clas-
sifiés :

— Vrai positif (VP) : élément de la classe 1 correctement prédit comme étant de la
classe 1.

— Vrai négatif (VN) : élément de la classe 0 correctement prédit comme étant de la
classe 0.

— Faux positif (FP) : élément de la classe 0 incorrectement prédit comme étant de
la classe 1.

— Faux négatif (FN) : élément de la classe 1 incorrectement prédit comme étant de
la classe 0.

Ces informations peuvent être rassemblées et représentées sous la forme d’une matrice
de confusion.

Dans le cas d’un classifieur binaire, la matrice de confusion est :

En particulier, si la matrice de confusion est diagonale, le classifieur est parfait.
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Classe réelle / Prédite Classe 0 Classe 1
Classe 0 Vrai Négatif (VN) Faux Positif (FP)
Classe 1 Faux Négatif (FN) Vrai Positif (VP)

Table 2.1 – Matrice de confusion pour un classifieur binaire

Le graphe de précision : Un autre indicateur essentiel pour évaluer les performances
d’un CNN est le graphe de précision.

Ce graphe représente l’évolution de la précision du modèle en fonction du nombre
d’itérations réalisées lors de l’apprentissage et du test.

Il comporte généralement deux courbes :

— une courbe pour les données d’entrâınement,
— une courbe pour les données de test.

Si les deux courbes atteignent une précision de 100 %, cela signifie que le classifieur
est parfait, capable de reconnâıtre parfaitement aussi bien les données connues que les
nouvelles données.

Figure 2.11 – Le graphe de précision d’un réseau de neurone convolutifs

Le graphe d’erreur : Le graphe d’erreur est une représentation de l’évolution du
taux d’erreur du modèle en fonction du nombre d’itérations réalisées lors de l’ap-
prentissage et du test.

Ce graphe comporte généralement deux courbes :

— une courbe pour les erreurs sur les données d’entrâınement,
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— une courbe pour les erreurs sur les données de test.

Lorsque l’erreur diminue sur les deux courbes, cela indique que le modèle apprend cor-
rectement. Si les erreurs tendent vers zéro pour les deux ensembles de données, on peut
considérer que le classifieur est parfait.

Figure 2.12 – Le graphe d’erreur d’un réseau de neurone convolutifs

Indicateurs de bas : À partir de la matrice de confusion, plusieurs indicateurs per-
mettent d’évaluer la performance d’un modèle de classification. Par exemple, pour évaluer
la qualité de la prédiction sur la classe 1, on définit :

— Précision (Precision) : proportion d’éléments correctement prédits parmi tous
ceux prédits comme appartenant à la classe 1.

La précision est donnée par la formule suivante :

Précision = V P

V P + FP
(2.3)

— Rappel (Recall) : proportion d’éléments de la classe 1 correctement prédits parmi
tous les éléments réellement de la classe 1.

Le rappel est donné par la formule suivante :

Rappel = V P

V P + FN
(2.4)

— F-mesure (F1-score) : mesure de compromis entre la précision et le rappel.
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La F-mesure est exprimée par la formule suivante :

F-mesure = 2 × Précision × Rappel
Précision + Rappel (2.5)

Ces indicateurs peuvent être calculés pour chaque classe. La moyenne de ces indicateurs
sur toutes les classes fournit une évaluation globale de la qualité du classifieur.

2.2.3 La méthode de classification MLP (Multi Layer Percep-
tron)

La classification par MLP (Multi-Layer Perceptron) est une méthode d’apprentissage
automatique utilisée pour la classification de données. Le MLP s’inscrit dans le domaine
de l’intelligence artificielle, et plus précisément dans le champ du machine learning, comme
illustré dans la figure 2.8

Figure 2.13 – Relation entre le MLP et le IA

Le MLP (Multi-Layer Perceptron) est un type de réseau de neurones artificiels, également
connu sous le nom de réseau neuronal feedforward (Deep Feedforward Network ou Feed-
forward Neural Network). Il se compose de plusieurs couches de neurones interconnectées,
organisées de manière séquentielle.

Le MLP fait partie du domaine du machine learning, qui vise à apprendre automatique-
ment à partir de données pour réaliser des prédictions ou des classifications. Il repose sur
des algorithmes d’apprentissage supervisé permettant d’ajuster les poids des connexions
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entre neurones, dans le but d’identifier les modèles et les relations sous-jacentes présentes
dans les données d’entrée.

Figure 2.14 – Diagramme du Perceptron Multi-Couches (MLP) avec quatre couches cachées.

La mise en œuvre d’un classifieur basé sur un réseau de neurones MLP (Multi-Layer Per-
ceptron) suit plusieurs étapes essentielles, permettant d’assurer un apprentissage efficace
et une bonne capacité de généralisation.
Ces étapes principales sont :

1. Préparation des données :
Avant l’entrâınement du modèle, les données doivent être prétraitées. Cela inclut
généralement :

— La séparation en ensembles d’apprentissage et de test.

— La normalisation des caractéristiques.

Et d’autres techniques de traitement préalable adaptées au type de données concerné.

2. Définition de l’architecture du réseau :
L’architecture du réseau MLP est déterminée en spécifiant :

— Le nombre de couches cachées.

— Et le nombre de neurones par couche.
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Chaque couche cachée permet d’extraire des représentations progressives et abs-
traites des données d’entrée.

Voici quelques architectures courantes de MLP :
— MLP à une seule couche cachée : Composé d’une couche d’entrée, d’une couche

cachée et d’une couche de sortie. C’est l’architecture la plus simple, adaptée aux
tâches de classification de base.

— MLP à plusieurs couches cachées : Intègre plusieurs couches intermédiaires entre
l’entrée et la sortie. Cela permet d’apprendre des représentations hiérarchiques com-
plexes, bien adaptées aux problèmes nécessitant une modélisation plus approfondie.

— MLP avec connexions résiduelles : Ce type d’architecture ajoute des connexions
directes entre certaines couches, permettant à l’information de contourner une ou
plusieurs couches. Cette stratégie facilite l’apprentissage profond et améliore la sta-
bilité du modèle.

— MLP avec régularisation : Pour prévenir le surapprentissage (overfitting), diverses
techniques de régularisation peuvent être employées, telles que : La régularisation
L1 ou L2, le dropout, ou d’autres méthodes visant à limiter la complexité du modèle
et améliorer sa capacité de généralisation.

Le choix de l’architecture dépend fortement de la complexité des données, des res-
sources de calcul disponibles, et des performances souhaitées.

3. Initialisation des poids :
Les poids synaptiques reliant les neurones sont initialisés de manière aléatoire ou sui-
vant une distribution spécifique. Ces poids seront ajustés au cours de l’apprentissage
pour minimiser l’erreur entre les sorties prédictives du réseau et les sorties attendues.

4. Propagation avant (Forward Propagation) :
Lors de cette étape, les données sont propagées à travers le réseau, couche par
couche :

— À chaque neurone, une opération linéaire est effectuée (pondération de l’entrée).
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— Puis, une fonction d’activation est appliquée pour introduire une non-linéarité.

La propagation commence à la couche d’entrée et se poursuit jusqu’à la couche de
sortie, en passant par toutes les couches cachées.

Remarque sur la fonction d’activation :
Elle est essentielle pour permettre au réseau de modéliser des relations non linéaires
entre les entrées et les sorties. Sans elle, le réseau se comporterait comme un simple
modèle linéaire, limitant sa capacité à résoudre des problèmes complexes.

Figure 2.15 – Forward propagation

Parmi les différentes fonctions d’activation utilisées dans les réseaux de neurones, on peut
citer :

• la fonction sigmöıde :Elle est définie par l’expression suivante :

f(x) = 1
1 + e−x

(2.6)

Cette fonction produit une sortie comprise entre 0 et 1, ce qui la rend parti-
culièrement adaptée aux problèmes de classification binaire ou à la modélisation
de probabilités. Grâce à sa forme en ”S”, elle permet de transformer des valeurs
d’entrée continues en probabilités interprétables.

• la fonction tangente hyperbolique (tanh) :elle est définie par la fonction
suivantes :

f(x) = ex − e−x

ex + e−x
(2.7)

Cette fonction produit des valeurs de sortie comprises dans l’intervalle (-1,1), ce qui
la rend particulièrement utile pour gérer des données contenant à la fois des valeurs



2.2 Les méthodes de classification supervisées 41

Figure 2.16 – Fonction sigmoide

positives et négatives, tout en maintenant une sortie centrée autour de zéro.

Figure 2.17 – La fonction tanh

• Fonction ReLU (Rectified Linear Unit) : La fonction ReLU est l’une des
fonctions d’activation les plus utilisées dans les réseaux de neurones, en particulier
dans les réseaux profonds (deep learning), elle est definie comme

f(x) = max(0, x) (2.8)

Le choix de la fonction d’activation dépend fortement de la nature du problème ainsi
que des caractéristiques des données. Chaque fonction d’activation peut influen-
cer différemment le processus d’apprentissage du modèle, et certaines sont mieux
adaptées que d’autres à des types spécifiques de tâches ou de données.

5. Calcul de l’erreur :
L’écart entre les prédictions du réseau et les valeurs réelles est évalué à l’aide d’une
fonction de perte, telle que la moyenne des erreurs quadratiques (Mean Squared Er-
ror, MSE). Cette étape permet de mesurer la performance du modèle et de guider
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Figure 2.18 – La fonction RELU

l’optimisation lors de l’apprentissage.

Note :
La fonction d’erreur (ou loss function) est une expression mathématique qui permet
de mesurer l’écart entre les prédictions du modèle et les valeurs réelles issues des
données d’apprentissage. Elle joue un rôle fondamental dans le processus d’appren-
tissage automatique, en particulier dans la classification à l’aide des réseaux MLP
(Multi-Layer Perceptron), car elle guide l’optimisation des paramètres du modèle.

Il existe plusieurs fonctions d’erreur couramment utilisées, chacune étant choisie en
fonction du type de problème (régression ou classification) et des caractéristiques
des données.

Voici quelques exemples de fonctions d’erreur fréquemment utilisées :

La fonction d’erreur (ou loss function) est une fonction mathématique qui
permet de mesurer l’écart entre les prédictions générées par un modèle et les
valeurs réelles issues des données d’apprentissage. Elle joue un rôle central dans le
processus d’apprentissage automatique, en particulier dans la classification à l’aide
des réseaux de neurones MLP (Multi-Layer Perceptron), puisqu’elle guide
l’ajustement des poids du réseau en minimisant l’erreur.

Le choix de la fonction d’erreur dépend du type de tâche (classification ou
régression) et de la nature des données. Voici quelques fonctions d’erreur
couramment utilisées :
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Nom Formule Utilisation

Erreur quadratique
moyenne (MSE)

MSE = 1
n

∑n
i=1(yi − ŷi)2 Régression

Erreur absolue moyenne
(MAE)

MAE = 1
n

∑n
i=1 |yi − ŷi| Régression

Entropie croisée (Cross-
Entropy)

L = −
∑n

i=1 yi log(ŷi) Classification binaire ou
multi-classes

Hinge Loss L =
∑n

i=1 max(0, 1 − yiŷi) Support Vector Machines
(SVM)

Divergence de Kullback-
Leibler (KL)

DKL(P ∥ Q) =
∑

P (x) log P (x)
Q(x) Comparaison de distribu-

tions (classification)

Table 2.2 – Fonctions d’erreur courantes en apprentissage automatique

— 6. Rétropropagation (Backpropagation)

La rétropropagation est une étape essentielle dans l’apprentissage des réseaux de
neurones. Elle consiste à propager l’erreur en sens inverse, depuis la couche de sortie
jusqu’à la couche d’entrée, dans le but d’ajuster les poids du réseau et d’améliorer
ses performances.

Ce processus repose sur le calcul du gradient de la fonction de perte par rapport aux
poids, en appliquant la règle de la châıne (chain rule). Chaque poids est mis à
jour de manière à minimiser l’erreur de prédiction.

— Étapes de la rétropropagation :

— Calcul de l’erreur : On évalue l’écart entre la sortie prédite et la sortie réelle à
l’aide d’une fonction de perte (par exemple MSE ou entropie croisée).

— Calcul des gradients : On détermine l’influence de chaque poids sur l’erreur, en
calculant la dérivée partielle de la fonction de perte par rapport aux poids.

— Propagation des gradients : Les gradients sont transmis couche par couche
vers l’arrière à l’aide de la règle de dérivation, afin de mettre à jour les couches
précédentes.

— Mise à jour des poids : Chaque poids est ajusté selon l’algorithme de descente
de gradient :

w
(t+1)
ij = w

(t)
ij − η · ∂L

∂wij

(2.9)

où :

— wij : poids entre le neurone j et i,
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— η : taux d’apprentissage (learning rate),
— L : fonction de perte.

L’objectif de la rétropropagation est de minimiser la fonction de perte en ajustant
les paramètres internes du réseau de manière optimale, améliorant ainsi la capacité de
généralisation du modèle.

Figure 2.19 – Rétropropagation (backpropagation)

Note : Plusieurs algorithmes d’optimisation sont utilisés pour ajuster les poids dans les
réseaux de neurones, notamment les MLP (Multi-Layer Perceptrons). Voici quelques-uns
des plus courants :

— Descente de gradient (Gradient Descent) : C’est l’algorithme de base utilisé
dans la rétropropagation. Il consiste à ajuster les poids dans la direction opposée au
gradient de la fonction de perte. Plusieurs variantes en sont issues :

Figure 2.20 – Descente de gradient

— SGD (Stochastic Gradient Descent) : les poids sont mis à jour après
chaque exemple.
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— Mini-batch Gradient Descent : les poids sont mis à jour par petits lots
d’exemples, ce qui permet un compromis entre rapidité et stabilité.

— Gradient Descent with Momentum : ajoute une composante d’inertie pour
accélérer l’apprentissage et éviter les oscillations.

— RMSprop (Root Mean Square Propagation) : Cet algorithme ajuste le taux
d’apprentissage de chaque poids en utilisant une moyenne mobile pondérée des carrés
des gradients. Il est particulièrement adapté aux problèmes non stationnaires.

Figure 2.21 – Root Mean Square Propagation

Chaque méthode présente des avantages et des inconvénients, et le choix de l’algo-
rithme dépend généralement du problème à traiter et des performances souhaitées.

— 7.Répétition des étapes 4 à 7 :
Les étapes de propagation avant, calcul de l’erreur, rétropropagation et mise à jour
des poids sont répétées de manière itérative. Ce cycle d’apprentissage se poursuit soit
pendant un nombre fixe d’itérations (appelées époques), soit jusqu’à l’atteinte
d’un critère de convergence, lorsque la fonction de perte se stabilise ou que les
performances de validation ne s’améliorent plus.

— 8.Évaluation et prédiction :
Une fois l’entrâınement terminé, le réseau MLP peut être utilisé pour effectuer des
prédictions sur de nouvelles données. Lors de cette étape, seule la propagation
avant est utilisée, sans mise à jour des poids.

L’efficacité du modèle est ensuite évaluée à l’aide de plusieurs indicateurs de per-
formance, parmi lesquels :

— la précision (accuracy),
— le rappel (recall),
— la matrice de confusion,



2.2 Les méthodes de classification supervisées 46

— la courbe ROC et l’AUC.

Ces mesures permettent d’apprécier la capacité du modèle à généraliser sur des
données inconnues.

2.2.4 La méthode de classification random forest

La méthode de propagation Random Forest (ou forêt aléatoire) est un algorithme d’ap-
prentissage automatique supervisé, largement utilisé pour des tâches de classification et
de régression. Développé par Leo Breiman en 2001, ce modèle s’appuie sur le principe
d’ensembling, combinant les prédictions de plusieurs arbres de décision pour améliorer la
précision et réduire le surajustement (overfitting).

Le Random Forest se distingue par sa robustesse et sa capacité à gérer des jeux de données
complexes, bruyants ou avec de nombreuses caractéristiques. Son fonctionnement repose
sur deux mécanismes clés :

• Le bagging : Chaque arbre est entrâıné sur un sous-ensemble aléatoire des données
(avec rééchantillonnage, ou bootstrap).

• La sélection aléatoire des caractéristiques : À chaque nœud, seule une partie
des variables est considérée pour la division, favorisant la diversité des arbres.

Grâce à cette approche, le Random Forest limite la variance du modèle tout en mainte-
nant un biais faible, offrant des performances compétitives même sans réglage hyperpa-
ramétrique poussé. De plus, il fournit des indicateurs d’importance des variables, facilitant
l’interprétation des résultats.

Dans des domaines comme la bio-informatique, la finance ou la télédétection, cette méthode
est appréciée pour sa fiabilité et sa scalabilité. Son application à des problèmes de propa-
gation (par exemple, la prédiction de la diffusion d’une maladie ou d’une information) en
fait un outil polyvalent et puissant [12].
La télédétection consiste à acquérir des informations sur la surface terrestre à l’aide de
capteurs embarqués sur des satellites, drones ou avions. Ces capteurs collectent des images
multispectrales, hyperspectrales ou radar.

Pour interpréter ces images (ex. : cartographier l’occupation du sol, détecter des change-
ments, identifier des cultures), on a besoin d’algorithmes de classification puissants. C’est
là que Random Forest intervient. A cet effet, il est important de d´ecrire le processus de
formation d’un arbre de d´ecision (decision tree).
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Arbre de décision (decision tree) :

Un arbre de décision est une méthode utilisée pour la classification ou la régression. Il se
présente sous forme d’une structure arborescente dans laquelle chaque nœud représente
une décision à prendre à partir d’un attribut.

L’arbre commence par un nœud racine qui contient l’ensemble des données d’entrâınement.
Ce nœud se divise en deux ou plusieurs sous-nœuds à l’aide d’un processus appelé split-
ting. Si un sous-nœud se divise à nouveau, il devient un nœud de décision. S’il ne se
divise plus, on l’appelle nœud terminal ou feuille. L’ensemble formé par des nœuds de
décision et des nœuds terminaux constitue une branche ou un sous-arbre.

Pour classer un exemple, on le fait passer de la racine jusqu’à une feuille. À chaque étape,
une décision est prise selon la valeur d’un attribut. Chaque nœud représente un test, et
chaque branche correspond à une réponse possible. Le chemin suivi permet d’aboutir à
une décision finale.

Figure 2.22 – Arbre de décision

L’objectif du splitting est de créer des sous-nœuds aussi homogènes que possible, c’est-
à-dire contenant des exemples appartenant majoritairement à une seule classe. Cette ho-
mogénéité est mesurée par différents critères de division, parmi lesquels :

— L’entropie et le gain d’information (utilisés dans l’algorithme ID3),
— Le gain de ratio (utilisé dans l’algorithme C4.5),
— L’indice de Gini (utilisé dans l’algorithme CART),
— L’erreur de classification.

Voici quelques algorithmes populaires utilisés pour construire des arbres de décision :
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— ID3 (Iterative Dichotomiser 3) : utilise le gain d’information pour choisir les
attributs les plus pertinents à chaque division.

— C4.5 : amélioration de ID3, capable de gérer les variables continues et les valeurs
manquantes, utilisant le gain de ratio.

— CART (Classification And Regression Tree) : crée uniquement des arbres
binaires et utilise l’indice de Gini pour mesurer la pureté.

— MARS (Multivariate Adaptive Regression Splines) : adapté aux problèmes
de régression multivariée non linéaire[13].

Le choix du nœud racine est très important. Un mauvais choix peut réduire considérablement
la performance du modèle. C’est pourquoi ces algorithmes utilisent des critères objectifs
pour sélectionner l’attribut de départ :

•L’entropie : L’entropie est un concept fondamental en théorie de l’information, en
statistique et en apprentissage automatique qui permet de quantifier le degré d’incertitude
ou de désordre associé à une information. Initialement introduite par Claude Shannon en
1948 dans le cadre de la théorie de la communication, cette notion s’est révélée essentielle
pour évaluer la quantité d’information contenue dans un message ou dans une distribution
de probabilités. Plus l’entropie est élevée, plus l’incertitude est grande, et inversement[14].

Prenons l’exemple classique du lancer d’une pièce de monnaie. Dans le cas d’une pièce
parfaitement équilibrée, où la probabilité d’obtenir ”pile” est égale à celle d’obtenir ”face”
(soit 0,5 pour chaque), l’entropie est maximale. Cela signifie que le résultat est totalement
imprévisible, et l’incertitude est à son comble. Mathématiquement, cela se traduit par une
entropie de 1 bit, ce qui correspond à la quantité d’information nécessaire pour encoder
le résultat d’un lancer.

En revanche, si la pièce est truquée et donne toujours ”pile” (probabilité de 1 pour ”pile”
et 0 pour ”face”), l’entropie est nulle. Il n’y a aucune incertitude, car le résultat est
certain. Entre ces deux extrêmes, pour des probabilités intermédiaires, l’entropie varie
continûment, atteignant son maximum à 0,5, comme le montre la courbe bien connue de
l’entropie d’une variable binaire.

Pour une variable aléatoire discrète X pouvant prendre n valeurs distinctes avec des
probabilités p1, p2, . . . , pn, l’entropie H(X) est définie par :

H(X) = −
n∑

i=1
pi log2 pi (2.10)
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Figure 2.23 – L’entropie

Cette formule, bien que simple, a des implications profondes. Le logarithme en base 2
assure que l’entropie est mesurée en bits, ce qui correspond à l’interprétation en termes
de quantité d’information. Notons que si l’une des probabilités pi est nulle, le terme
correspondant dans la somme est considéré comme nul, car limp→0 p log p = 0.

L’entropie peut également être généralisée à des cas multivariés. Par exemple, pour un
ensemble de données partitionné selon un attribut X, on peut définir l’entropie condi-
tionnelle H(T |X), qui mesure l’incertitude restante sur T après avoir observé X. Cette
notion est cruciale dans des algorithmes comme les arbres de décision, où l’on cherche à
réduire progressivement l’entropie des sous-ensembles créés.

H(T | X) =
∑
i∈X

P (i) · H(i) (2.11)

•Le gain d’information Le Gain d’Information (IG) est une mesure clé en appren-
tissage automatique pour évaluer l’efficacité d’un attribut à segmenter un ensemble de
données selon les classes cibles. Il quantifie la réduction d’incertitude (entropie) apportée
par un attribut lors de la construction d’un arbre de décision.

IG(T, X) = H(T ) − H(T | X) (2.12)

Les arbres de décision sont des outils puissants en apprentissage supervisé. Toutefois,
lorsqu’on les utilise sur un jeu de données comportant un grand nombre de colonnes (ou
caractéristiques), ils présentent un risque élevé de surapprentissage (overfitting).

En effet, un arbre de décision non contraint peut apprendre par cœur les données d’en-
trâınement. Il peut aller jusqu’à créer une feuille distincte pour chaque observation, attei-
gnant ainsi une précision de 100 % sur les données d’entrâınement. Ce comportement nuit
à sa capacité à généraliser sur de nouvelles données, ce qui entrâıne une baisse significative
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Figure 2.24 – Le gain d’information

de la performance sur l’ensemble de test ou en production.

Pour remédier à ce problème, on utilise l’algorithme Random Forest, qui repose sur une
approche d’ensemble (ensemble learning) permettant de réduire la variance des modèles
tout en conservant une bonne capacité de prédiction.

Le processus de construction d’une Random Forest se décompose en plusieurs étapes
clés [15] :

1. Création d’un ensemble d’arbres de décision indépendants
Random Forest construit un grand nombre d’arbres de décision, chacun étant en-
trâıné indépendamment des autres.

2. Échantillonnage aléatoire avec remplacement (méthode bootstrap)
Pour chaque arbre, un échantillon aléatoire des données d’entrâınement est généré
(avec remplacement). Cela signifie que chaque arbre est entrâıné sur un sous-ensemble
différent, ce qui introduit de la diversité entre les arbres.

3. Sélection aléatoire des caractéristiques à chaque division
Lors de la construction de chaque nœud de l’arbre, un sous-ensemble aléatoire de
variables est sélectionné parmi toutes les caractéristiques. Cela réduit la corrélation
entre les arbres et améliore la robustesse du modèle.

4. Construction des arbres de décision
Chaque arbre est ensuite construit en divisant récursivement les sous-ensembles de
données en fonction des variables sélectionnées. Les critères de division peuvent
être :

— l’indice de Gini (mesure d’impureté),
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— ou l’entropie (basée sur la théorie de l’information).

L’objectif est de maximiser la pureté des nœuds à chaque étape.
5. Agrégation des prédictions finales

Une fois tous les arbres construits, les prédictions individuelles sont agrégées :

— Pour un problème de classification : on utilise un vote majoritaire entre les
prédictions des arbres.

— Pour un problème de régression : on calcule la moyenne des prédictions numériques.

Figure 2.25 – (a) une seule arbre de décision (b) 25 arbres de décision (c) 50 arbres de décision

2.2.5 Comparaison entre les méthodes de classifications super-
visées

La performance des méthodes de classification supervisée dépend de plusieurs facteurs cru-
ciaux qui interagissent de manière complexe. Comprendre et mâıtriser ces facteurs permet
d’améliorer la précision des modèles de classification et de garantir leur efficacité dans des
contextes réels. Les principaux éléments qui influencent cette performance sont : la qua-
lité des données, la taille de l’échantillon d’apprentissage, le choix des caractéristiques
pertinentes et les paramètres propres à chaque algorithme.

SVM (Support Vector Machine) :[16]

Bien que les SVM soient efficaces pour la classification, ils présentent plusieurs inconvénients.
Leur complexité algorithmique élevée peut rendre leur entrâınement coûteux, surtout
sur de grands ensembles de données. Ils sont également sensibles au choix des hyperpa-
ramètres, et une mauvaise sélection peut nuire à la performance. De plus, les SVM ne
gèrent pas bien les données déséquilibrées et sont souvent perçus comme des modèles
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”bôıte noire”, rendant leur interprétabilité limitée.

Avantages Inconvénients

+ Excellente performance en haute
dimension (p.ex. text mining)

+ Gère les frontières non-linéaires
via le kernel trick

+ Résistance au sur-apprentissage
(bonne généralisation)

+ Efficace sur petits/moyens jeux
de données

– Complexité algorithmique élevée
(O(n2) à O(n3))

– Sensible au choix des hyperpa-
ramètres (C, γ)

– Interprétabilité limitée (modèle
”bôıte noire”)

– Performances médiocres sur
données déséquilibrées

+ Théorie mathématique solide
(maximisation de la marge)

+ Peu sensible au ”fléau de la di-
mension”

– Nécessite un prétraitement des
données (normalisation)

– Difficile à adapter aux très
grands datasets

Table 2.3 – Avantages et Inconvénients des SVM

Les réseaux de neurones convolutifs (CNN) :[17]

Bien que les réseaux de neurones soient très puissants, ils présentent certains inconvénients.
Ils nécessitent des ressources computationnelles importantes, sont sensibles au surappren-
tissage et à la sélection des hyperparamètres, et manquent souvent d’interprétabilité. Le
tableau suivant résume ces limitations.

Avantages Inconvénients

Très performants pour l’analyse d’images,
vidéos et données spatiales

Requiert une grande puissance de calcul
(GPU recommandé)

Réduction du besoin de prétraitement
grâce à l’extraction automatique de ca-
ractéristiques

Difficiles à interpréter (modèle ”bôıte
noire”)

Réduction du nombre de paramètres grâce
aux filtres partagés

Nécessitent beaucoup de données pour un
bon entrâınement

Capables de détecter des motifs locaux
(textures, bords, formes)

Sensibles aux changements de position,
d’échelle ou de rotation sans ajustement

Efficaces dans les architectures modernes
de deep learning

Temps d’entrâınement long

Table 2.4 – Avantages et Inconvénients des réseaux de neurones convolutifs (CNN)
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MLP (Multi Layer Perceptron)

Les MLP (Multi-Layer Perceptron) sont largement utilisés pour résoudre des problèmes de
classification et de régression. Cependant, comme toute méthode, ils présentent certains
avantages et inconvénients. Le tableau ci-dessous résume les principaux points à considérer
lorsqu’on utilise cette méthode.

Avantages Inconvénients

+ Capacité à modéliser des re-
lations complexes entre les
données

+ Utilisé pour des problèmes de
classification et régression

+ Adapté à une grande variété de
données (images, textes, etc.)

+ Bonnes performances pour des
problèmes non linéaires

– Nécessite un grand nombre de
données d’entrâınement pour de
bonnes performances

– Entrâınement long et coûteux en
ressources computationnelles

– Sensible au surapprentissage
(overfitting) sans régularisation
appropriée

– Manque d’interprétabilité,
modèle ”bôıte noire”

Table 2.5 – Avantages et Inconvénients des MLP (Multi-Layer Perceptron)

Random forest :

La méthode Random Forest est une technique d’apprentissage supervisé fondée sur un
ensemble d’arbres de décision. Elle est largement utilisée en raison de sa robustesse, de sa
capacité à traiter des données complexes et de ses bonnes performances en classification
comme en régression. Toutefois, comme tout algorithme, elle présente des points forts
ainsi que certaines limitations. Le tableau suivant résume les principaux avantages et
inconvénients associés à cette méthode.

• La classification non-supervisée : La classification non supervisée, aussi ap-
pelée clustering, est une technique d’apprentissage automatique où l’on cherche à
regrouper des données similaires sans utiliser de labels prédéfinis. Contrairement
à la classification supervisée, où chaque exemple d’entrâınement est associé à une
étiquette de classe connue, dans la classification non supervisée, l’algorithme doit
découvrir lui-même la structure ou les motifs dans les données.
L’objectif principal de la classification non supervisée est d’identifier des groupes
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Avantages Inconvénients

Peut traiter efficacement des jeux de
données contenant de nombreuses ca-
ractéristiques.

Moins facile à interpréter que des
modèles simples comme les arbres de
décision.

Réduit le risque de surapprentissage
grâce à la combinaison des prédictions
de plusieurs arbres.

Sensible aux données bruitées qui
peuvent affecter la précision.

Convient aussi bien aux tâches de clas-
sification qu’à la régression.

Nécessite des ressources de calcul et
mémoire importantes pour de grands
ensembles d’arbres.

Permet d’estimer l’importance des ca-
ractéristiques dans le modèle.

—

Peut gérer des valeurs manquantes sans
prétraitement complexe.

—

Table 2.6 – Avantages et Inconvénients de la méthode Random Forest

naturels ou des structures cachées dans un jeu de données. Cette approche peut être
utilisée dans plusieurs domaines, notamment :

— Segmentation de clients en marketing pour cibler des groupes ayant des
comportements similaires ;

— Regroupement d’images similaires dans des bases de données d’images ou
des systèmes de reconnaissance ;

— Détection d’anomalies, comme la fraude ou les comportements inhabituels
dans les données ;

— Réduction de la dimensionnalité pour simplifier l’analyse ou la visualisa-
tion des données.

• Quelques méthodes de classification non-supervisée :

— Mean Shift :Se base sur les pics de densité dans l’espace des caractéristiques.
— K-Means : Regroupe les points en k clusters selon leur distance au centre de

cluster.

2.3 Les méthodes de classification non-supervisées

2.3.1 La méthode de Mean Shift

L’algorithme Mean Shift est une méthode non paramétrique de regroupement de données
(clustering) qui identifie les zones de forte densité dans un espace de caractéristiques
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sans nécessiter de spécifier le nombre de clusters à l’avance. Il fonctionne en déplaçant
itérativement une fenêtre vers la moyenne des points de données dans son voisinage,
convergeant ainsi vers les modes (maximums locaux) de la distribution de densité. Cette
approche est particulièrement utile pour détecter des structures complexes dans les données
et est largement utilisée en traitement d’image et en vision par ordinateur[18].

Le principe de fonctionnement :

L’algorithme Mean Shift est une méthode de classification non supervisée basée sur l’ana-
lyse de la densité des données. Contrairement à des techniques comme K-Means, il ne
nécessite pas de spécifier le nombre de clusters à l’avance. Il fonctionne en déplaçant pro-
gressivement une fenêtre de recherche vers les zones de plus forte densité de points dans
l’espace des données, ce qui permet d’identifier automatiquement les centres de clusters.
Cette approche est particulièrement utile pour détecter des structures complexes dans des
jeux de données non étiquetés.

1. Principe de Base de Mean Shift
L’objectif de l’algorithme Mean Shift est de localiser les modes (maxima locaux) d’une
fonction de densité de probabilité estimée à partir des données.

On utilise un noyau (par exemple, gaussien ou uniforme) pour estimer la densité autour
de chaque point.

Chaque point est déplacé itérativement vers une région de plus haute densité selon la
formule de Mean Shift.

2. Initialisation de Mean Shift
L’initialisation consiste à choisir les points de départ pour l’algorithme. Plusieurs ap-
proches existent :

(a) Initialisation par les Points de Données
Chaque point du dataset est utilisé comme centröıde initial. L’algorithme applique ensuite
la procédure Mean Shift pour déplacer chaque point vers un mode.

Problème : Calculiquement coûteux si le dataset est grand.

(b) Initialisation par un Sous-Échantillonnage
Pour réduire la complexité, on peut initialiser Mean Shift sur un sous-ensemble des
données (par exemple, via un échantillonnage aléatoire).
Moins précis, mais plus rapide.
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(c) Initialisation sur une Grille (pour la Segmentation d’Image)
Dans le cas d’une image, on peut initialiser Mean Shift sur une grille régulière (pixels
espacés) plutôt que sur tous les pixels.
Cela accélère le traitement tout en conservant une bonne approximation des régions ho-
mogènes.

(d) Initialisation via un Pré-Clustering (K-Means, etc.)
Une méthode hybride consiste à d’abord appliquer un algorithme rapide comme K-Means
pour obtenir des centröıdes initiaux, puis à affiner avec Mean Shift.

3. Formule de Mean Shift
Pour chaque point initial x, le déplacement se calcule comme dans la formule 2.13 :

m(x) =
∑n

i=1 K(x − xi)xi∑n
i=1 K(x − xi)

− x (2.13)

où K est le noyau (ex. : noyau gaussien), et xi les points du dataset.

4. Critères d’Arrêt
L’algorithme s’arrête selon deux conditions :

— Le déplacement devient inférieur à un seuil de tolérance ε.
— Un nombre maximal d’itérations est atteint.

Example :

L’image ci-dessous illustre l’application de l’algorithme Mean Shift sur un ensemble de
données synthétiques en deux dimensions. Cet algorithme de clustering non supervisé
permet d’identifier automatiquement le nombre de groupes (ou clusters) présents dans les
données, sans avoir à spécifier ce nombre à l’avance [19].

Nombre de clusters détectés : Le titre de la figure affiche Estimated number of clus-
ters : 3, ce qui signifie que l’algorithme a trouvé trois regroupements distincts dans les
données.

Couleurs et formes : Chaque point du nuage appartient à un cluster identifié par une
couleur et un symbole particulier :

— Points bleus (ronds) pour le premier cluster.
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Figure 2.26 – Résultat du clustering avec Mean Shift. Trois clusters sont détectés automati-
quement.

— Points roses (triangles) pour le second cluster.
— Points jaunes (croix) pour le troisième cluster.

Centröıdes détectés : Les grands symboles noirs au centre de chaque région représentent
les modes de densité détectés par l’algorithme. Ils sont obtenus par déplacement itératif
de chaque point vers la zone la plus dense selon la formule :

m(x) =
∑n

i=1 K(x − xi)xi∑n
i=1 K(x − xi)

− x (2.14)

où K est un noyau (généralement gaussien) qui pondère la contribution des points voisins,
et xi sont les points du jeu de données.

Méthode : L’algorithme déplace progressivement chaque point vers un maximum local
de densité. Une fois que les déplacements deviennent négligeables (selon un critère de
convergence), le point est considéré comme fixé. Tous les points ayant convergé vers le
même mode forment un même cluster.

Conclusion : Cet exemple montre la capacité de l’algorithme Mean Shift à détecter des
regroupements naturels dans des données sans avoir à définir leur nombre au préalable.
Contrairement à d’autres méthodes comme K-Means, il s’adapte à la forme et à la densité
des clusters.
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Les avantages et les inconvénients de Mean Shift :

Avantages de Mean Shift Inconvénients de Mean Shift
Ne nécessite pas de spécifier le
nombre de clusters à l’avance.

Coût computationnel élevé, sur-
tout pour les grands ensembles de
données.

Capable de détecter des clusters de
formes arbitraires.

Sensible au choix de la largeur de
bande (bandwidth).

Robuste aux valeurs aberrantes
grâce au noyau.

Moins efficace pour les jeux de
données très volumineux.

Approche non paramétrique basée
sur la densité.

Performance réduite dans les es-
paces de grande dimension.

Peut localiser les modes de la den-
sité (pas seulement du clustering).

Résultat parfois non déterministe
selon l’implémentation.

Table 2.7 – Avantages et inconvénients de l’algorithme Mean Shift

2.3.2 La méthode K-means

Cet algorithme a été largement utilisé pour traiter de grands jeux de données en raison
de sa rapidité. Nous étudions d’abord son fonctionnement, puis ses propriétés.

Principe

Supposons qu’il existe K classes distinctes. L’algorithme commence par sélectionner K

centres de classes, notés µ1, . . . , µK , parmi les individus. Ces centres peuvent être choisis
soit par l’utilisateur pour leur représentativité, soit de manière aléatoire. Ensuite, les deux
étapes suivantes sont répétées de manière itérative :

— Pour chaque individu qui n’est pas un centre de classe, on détermine le centre de
classe le plus proche. Cela permet de définir K classes C1, . . . , CK , où :

Ci = {ensemble des points les plus proches du centre µi}.

— Dans chaque nouvelle classe Ci, le centre de classe µi est recalculé comme le bary-
centre des points appartenant à Ci.

L’algorithme s’arrête selon un critère défini par l’utilisateur, qui peut être l’un des sui-
vants :

— Le nombre maximal d’itérations est atteint.
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— L’algorithme a convergé, c’est-à-dire que les classes ne changent plus entre deux
itérations.

— L’algorithme a ”presque” convergé, c’est-à-dire que l’inertie intra-classe ne s’améliore
plus de manière significative.

Example

La figure 2.26 illustre le déroulement de l’algorithme sur un exemple avec quatre points :
a (−1, 1), b (0, 1), c (3, 0) et d (3, −1), à classer en 2 groupes. On observe que, même si
les centres de classes sont mal initialisés, l’algorithme converge en identifiant les “vraies”
classes.

Figure 2.27 – Example de classification K-means avec quatre points

Propriétés de l’algorithme

Figure 2.27 Une illustration de l’algorithme K-means. (1) On dispose de 4 points à classer
en deux classes. (2) À l’initialisation, deux de ces points sont choisis comme centres de
classe. (3) Deux classes sont créées en regroupant les autres points en fonction du centre
de classe le plus proche. (4) On définit les nouveaux centres de classe comme étant le
barycentre des classes nouvellement créées. (5) On regroupe à nouveau les points. (6) On
définit les nouveaux centres de classes. À l’étape suivante, rien ne change, l’algorithme a
convergé.
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Comment justifier l’algorithme des K-means dans le cadre de notre objectif de minimi-
sation de l’inertie intra-classe IW ? On peut démontrer (voir Annexes) que chacune des
deux étapes de l’algorithme réduit IW (ce qui est également observable visuellement dans
l’exemple précédent). Ainsi, à chaque itération, la classification s’améliore au regard du
critère IW . Comme la marge d’amélioration est finie (l’inertie intra-classe ne pouvant pas
être inférieure à celle de la partition optimale), l’algorithme est assuré de converger. En
pratique, on remarque que très peu d’itérations suffisent dans la plupart des cas.

Cependant, il est essentiel de noter que le résultat final dépend fortement de l’initialisation
de l’algorithme : selon les points choisis comme centres initiaux, les partitions obtenues
peuvent varier significativement. Cette sensibilité à l’initialisation constitue le principal
inconvénient de la méthode.

L’algorithme ne garantit pas la partition optimale globale, mais converge vers un mini-
mum local de IW . Pour atténuer ce problème, une solution consiste à exécuter l’algorithme
plusieurs fois avec des initialisations différentes, puis à retenir la partition offrant la plus
faible inertie intra-classe.[20]

2.4 Conclusion

Le Chapitre 2 a présenté une analyse approfondie des méthodes de classification super-
visées et non supervisées, mettant en lumière leurs principes, leurs applications et leurs
performances respectives. Les méthodes supervisées, telles que les SVM, les réseaux de
neurones convolutifs (CNN), les MLP et les Random Forests, offrent des solutions ro-
bustes pour la classification des images SAR en s’appuyant sur des données étiquetées.
Chacune de ces méthodes présente des avantages spécifiques, comme la capacité des SVM
à gérer des frontières complexes grâce aux fonctions noyau, ou la puissance des CNN
pour extraire automatiquement des caractéristiques hiérarchiques des images. Les Ran-
dom Forests, quant à elles, se distinguent par leur robustesse et leur capacité à éviter le
surapprentissage.

Les méthodes non supervisées, comme Mean Shift et K-means, permettent de regrouper
des données sans étiquettes préalables, ce qui est particulièrement utile pour explorer des
structures cachées dans les images SAR. Ces méthodes sont adaptées aux scénarios où les
données étiquetées sont rares ou difficiles à obtenir.
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En résumé, ce chapitre a souligné l’importance de choisir la méthode de classification
adaptée en fonction des caractéristiques des données et des objectifs de l’étude. Les ap-
proches supervisées sont idéales pour des tâches précises nécessitant une haute perfor-
mance, tandis que les méthodes non supervisées offrent une flexibilité précieuse pour
l’exploration et l’analyse préliminaire des données. Ces concepts et outils ouvrent la voie
à des applications avancées en télédétection, notamment pour la surveillance environne-
mentale, la gestion des ressources naturelles et la cartographie des surfaces terrestres.



Chapitre 3

Résultats et analyses

3.1 Introduction

Dans notre projet, on cherche à détecter les zones forestières et à comparer ces zones
après les feux de forêts en utilisant la méthode de classification supervisée RANDOM
FOREST (RF) et aussi par les méthodes de classification non supervisée. On va utiliser
des images de la wilaya de Tarf. Les images sont des images acquises à travers le site de
l’agence spatiale européenne (Copernicus Browser) ; ce sont des images bi-polarimétriques
(dual-pol) capturées par le satellite Sentinel-1 dont on a parlé dans le premier chapitre.

3.2 Site d’étude

Située à l’extrême nord-est de l’Algérie, la wilaya d’El Tarf est comprise entre les parallèles
36°23’25” et 36°57’7” de latitude Nord et 7°39’49” et 8°40’52” de longitude Est. Issue du
découpage administratif de 1984, elle s’étend sur une superficie de 2 882 km2 et comprend
24 communes. Elle est délimitée au nord par la mer Méditerranée, à l’est par la frontière
algéro-tunisienne, à l’ouest par la wilaya d’Annaba, au sud-ouest par la wilaya de Guelma
et au sud par la wilaya de Souk Ahras.

Le territoire de la wilaya d’El Tarf regroupe 5 classes d’occupation du sol figure 3.1 :
végétation, agriculture, sable, plans d’eau et espace bâti. La végétation, composée essen-
tiellement de forêts et de maquis, occupe une surface de 161 464 ha, soit 56,03 pour cent
de la surface totale. L’agriculture avec 36,47 pour cent vient en seconde position compta-
bilisant une surface de 105 118 ha, elle comprend les terres de cultures, l’arboriculture et

62
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les pâturages. Les zones de sable correspondent au cordon dunaire littoral localisé dans
la partie nord de la wilaya avec une surface de 427 ha, soit 0,15 pour cent. La wilaya est
aussi caractérisée par une importante zone humide, notamment au sein du parc national
d’El Kala. Ces plans d’eau, qui englobent les lacs, les marais et les barrages, occupent
une surface totale de 13 556 ha, soit 4,70 pour cent. Enfin, l’espace bâti correspond à 2,65
pour cent de la surface de la wilaya, soit 7 638 ha, dominé par l’habitat rural. En plus de
2 villes (El Kala et El Tarf) et 113 villages, on compte plus de 5 539 maisons rurales et 7
780 fermes éparses (figure3.1)[20].

[20]

Figure 3.1 – Localisation et classes d’occupation du sol de la wilaya d’El Tarf
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3.3 Présentation des données

3.3.1 Présentation des images SLC

— La première image Sentinel-1 SLC utilisée dans cette étude a été acquise le 03
septembre 2021, soit avant l’événement incendiaire. Elle correspond à une scène
capturée par le satellite Sentinel-1A, en mode Interferometric Wide Swath (IW),
dans le cadre du programme Copernicus. Cette image est fournie au niveau 1 sous
forme de produit SLC (Single Look Complex), dans un format SAFE contenant
les bandes radar en coordonnées slant range, les métadonnées, et les fichiers d’an-
notation. Chaque pixel de l’image contient une valeur complexe (composantes I et
Q), permettant d’analyser à la fois l’amplitude et la phase du signal radar. L’image
présente une résolution spatiale d’environ 3,6 mètres en portée (slant range) et 22,5
mètres en azimut, avec une largeur de fauchée d’environ 250 km. La polarisation
utilisée est VV, ou VV/VH si le produit est en double polarisation. Cette image
représente la forêt en état non brûlé et constitue la scène de référence pour l’analyse
temporelle du changement (figure3.2).

Figure 3.2 – Images SLC Taref 03/09/2021

— La seconde image Sentinel-1 SLC a été acquise le 5 septembre 2022, soit après la
période des incendies ayant affecté la région d’étude située dans la wilaya d’El Tarf,
à l’extrême nord-est de l’Algérie. Elle provient également du satellite Sentinel-1A,
dans les mêmes conditions d’acquisition que la précédente (mode IW, polarisation
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VV ou VV/VH). Il s’agit d’un produit SLC niveau 1, délivré au format SAFE, conte-
nant des données radar complexes. Cette image conserve les mêmes caractéristiques
techniques que la première, notamment en termes de résolution spatiale et de cou-
verture. Elle représente une scène post-incendie et est exploitée afin de détecter les
changements dans la diffusion du signal radar qui peuvent être liés à la perte de
couverture végétale, à la modification de la rugosité de surface, ou à la présence de
cendres et de sols nus (figure3.3).

Figure 3.3 – Images SLC Taref 05/09/2022

3.3.2 Présentation des images GRD

— L’image présentée dans la figure 3.4 est une image SAR capturée le 29/08/2021 par
le satellite Sentinel-1 en polarisation VH et VV couvrant intégralement la wilaya
d’El Taref. Dans SNAP, la bande Amplitude VH affiche un raster de 26,35 × 16,66
pixels. Comme il s’agit d’un produit IW-GRD, le pas de pixel natif est d’environ 10
m × 10 m, ce qui se traduit par une emprise au sol voisine de 263 km (est-ouest) ×
167 km (nord-sud). Cette résolution permet de distinguer les principaux éléments
hydrographiques, les zones urbaines et les formations forestières caractéristiques de
la région d’El Taref, tout en conservant le niveau de détail requis pour l’analyse
régionale.



3.3 Présentation des données 66

Figure 3.4 – Image GRD du 29 aout 2021

— L’image présentée dans la figure 3.5 est une image radar (SAR) acquise le 5 sep-
tembre 2022 par le satellite Sentinel-1, en double polarisation VH et VV. Elle couvre
l’ensemble de la wilaya d’El Taref. Dans SNAP, la bande ”Amplitude VH” est af-
fichée sous forme d’un raster de 26,35 × 16,66 pixels. Étant un produit de type IW-
GRD, cette image possède un pas de pixel natif d’environ 10 mètres par 10 mètres,
ce qui correspond à une emprise au sol d’environ 263 km dans le sens est-ouest et 167
km dans le sens nord-sud. Cette résolution spatiale permet de distinguer clairement
les principaux éléments du paysage régional, tels que le réseau hydrographique, les
zones urbaines, ainsi que les formations forestières typiques de la région d’El Taref.
Elle offre ainsi un niveau de détail adapté à une analyse à l’échelle régionale.

Figure 3.5 – Image GRD du 05 septembre 2022
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3.3.3 Le prétraitment des données

1. accédez au site copernicus browser et ouvrir un compte sur le site pour pouvoir
rechercher et télécharger les images concèrnés dans notre mémoire.

2. on zoom sur la région qu’on veut étudier et choisir la zone souhaité à l’aide su
curseur .

3. on sélectionne sur le volet SEARCH le satellite sentinel-1 et on sélectionne le type
d’image (SLC ou GRD).

4. on clique sur TIME RANGE et on choisis les dates concernés.
5. on clique sur le bouton search et on apperçoit plusieurs images selon la date et la

zone.
6. dernièrement on télécharge l’image qui couvre notre site d’étude.

3.4 Traitement des images SLC

Les images sous forme SLC obtenues par Copernicus Browser de Sentinel 1 sont sous
format brut. Afin de les exploiter, on suit les traitements présentés dans la figure 3.6
ci-dessous :

Figure 3.6 – Le traitement des données SAR des images SLC [1]



3.4 Traitement des images SLC 68

3.4.1 Ouverture de l’image SAR dans SNAP

L’ouverture de l’image SAR constitue la première étape du processus de traitement.Ces
images généralement fournies par Sentinel-1 sont au format Zip .
On lance logiciel SNAP et puis en charge les deux images avec deux dates différents l’une
a été acquise le 03 septembre 2021 et l’autre 05 septembre 2022.

Figure 3.7 – Ouverture des images SLC dur SNAP

3.4.2 Split

Cette étape permet de sélectionner une sous-bande de l’image SAR.Le produit Sentinel-
1 SLC contient généralement trois sous-bandules (IW1, IW2, IW3) correspondant aux
différentes lignes de vol. Le Split permet d’extraire un seul IW (souvent IW2, qui couvre
le centre de l’image) et la polarisation désirée (VV, VH, etc.).
Pour accéder à l’outil Split, on doit cliquer sur la barre de menu : Radar → Sentinel-1
TOPS → S-1 TOPS Split comme indiqué dans la figure3.8.

Figure 3.8 – split
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3.4.3 Split Orbit

L’étape ”Apply Orbit File” (souvent appelée Split Orbit de manière informelle) permet de
corriger les erreurs de positionnement de l’orbite du satellite en utilisant des données d’or-
bite précises fournies après l’acquisition. Cela améliore significativement la géolocalisation
des images SAR.
les procédures dans SNAP commencent par sélectionner le produit après Split et lancer
l’outil ”Apply Orbit File” par la barre de menu : Radar → Apply Orbit File comme
indiqué dans la figure3.9.

Figure 3.9 – Apply orbit file

3.4.4 Calibration

L’étape de calibration permet de convertir les données SAR brutes (valeurs numériques
arbitraires) en mesures physiques significatives, telles que le σ0 (sigma-nought), β0 (beta-
nought) ou γ0 (gamma-nought). Cela rend les images comparables dans le temps et l’es-
pace, en éliminant les effets instrumentaux et en assurant la cohérence radiométrique des
produits. Ces coefficients représentent respectivement la rétrodiffusion normalisée selon
différentes géométries d’acquisition, utiles pour les analyses quantitatives.Pour lancer l’ou-
til de calibration en suit le menu suivant : Radar → Radiometric → Calibration comme
indiqué dans la figure3.10.
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Figure 3.10 – Calibration

3.4.5 Deburst

L’imagerie Sentinel-1 SLC en mode TOPS est acquise par sous-blocs appelés ”bursts” dans
chaque sous-swath (IW1, IW2, IW3). Ces bursts sont discontinus et juxtaposés avec des
recouvrements. L’étape de Deburst permet de fusionner ces bursts en une image continue,
indispensable pour les traitements comme la mosäıque, la classification ou la géocodage.
pour faire le Deburst en sélectionnant le produit calibré puis en ouvrant l’outil Deburst
dans le menu : Radar → Sentinel-1 TOPS → S-1 TOPS Deburst comme indiqué dans la
figure3.11.

Figure 3.11 – Deburst
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3.4.6 Multi-looking

L’étape de Multilooking permet de réduire le bruit inhérent aux images radar, connu
sous le nom de speckle, en moyennant plusieurs pixels dans les directions azimutale et de
portée. Cette opération améliore la qualité visuelle de l’image au détriment d’une légère
perte de résolution spatiale, rendant l’image plus adaptée aux traitements visuels et car-
tographiques.pour lancer l’outil Multilook en suivant les étapes suivantes comme indiqué
dans la figure 3.12 : Radar → SAR Utilities → Multilook.

Figure 3.12 – Multi-looking

3.4.7 Terrain correction

La correction terrain permet de corriger les effets géométriques liés à la topographie et à
la géométrie d’acquisition radar. Grâce à l’utilisation d’un MNT (Modèle Numérique de
Terrain), cette étape projette les pixels de l’image SAR dans un référentiel géographique
réel. Le résultat est une image géoréférencée et orthorectifiée, directement exploitable
dans un SIG.et pour lancer l’outil de correction terrain on clique sur : Radar → Geome-
tric → Terrain Correction → Range-Doppler Terrain Correction comme indiqué dans la
figure3.13.

Nous allons donc répéter toutes ces étapes de prétraitement pour la deuxième image.
L’ensemble des étapes de prétraitement appliquées aux images Sentinel-1 SLC dans SNAP
a permis de produire une série d’images intermédiaires reflétant l’évolution des données
brutes vers une image radar géoréférencée et analysable. Le résultat obtenu à chaque étape
est indiqué dans la figure 3.14.
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Figure 3.13 – Terrain Correction

(a) Split (b) Orbit (c) Calibration

(d) Deburst (e) Multi-looking (f) Terrain correction

Figure 3.14 – Étapes de traitement SAR dans SNAP
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3.5 Traitement des images GRD

On ouvre les deux images GRD de la même manière que les deux images SLC la figure
ci-dessous montre la région sur laquelle on veut faire notre étude : Pour traiter les images

Figure 3.15 – image GRD montrant notre site détude par le réctangle orange

GRD on suit les étapes indiquées dans la figure 3.16 :

Figure 3.16 – Étapes de traitement des images GRD
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3.5.1 Subset

la fonction subset est utilisée pour créer un sous-ensemble de l’image qu’on a téléchargée.
on met les mêmes geo coordinates pour avoir le même subset :

Figure 3.17 – accéder à subset sur SNAP 11

Figure 3.18 – geo coordinates de notre subset

dès qu’on appuie sur OK dans notre bôıte de dialogue, notre subset sera créé

finalement notre subset a été créé comme présenté dans la figure 3.19 :
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Figure 3.19 – l’image GRD après subset

3.5.2 Terrain correction

Le terrain correction est un processus qui corrige les distorsions géométriques des images
satellitaires causées par le relief. Sur snap 11 on effectue la fonction terrain correction
comme montré dans la figure 3.20 :

Figure 3.20 – terrain correction 29/08/2021

3.5.3 Calibrate

La fonction calibrate transforme les pixels d’une image Sentinel-1 en valeurs de sigma0.
Sur SNAP 11, on accède à la fonction subset comme on a montré dans la figure 3.19 :

notre image sar est donc montrée dans la figure 3.22

3.5.4 Speckle filtering

Le filtrage du speckle dans les images SAR vise à réduire le bruit granulaire tout en
préservant les détails. On utilise souvent des filtres statistiques (comme Lee, Frost ou
Kuan) notre image SAR après speckle filtering est montrée dans la figure 3.23
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Figure 3.21 – accéder à calibrate sur SNAP 11

Figure 3.22 – l’image du 29/08/2021 après calibration

Figure 3.23 – l’image du 29/08/2021 après speckle filtering
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3.6 Classification avec Random Forest

Après avoir traité l’image GRD sur SNAP 11 suivant les étapes précédentes, on commence
notre classification en suivant le diagramme montré dans la figure 3.24

Figure 3.24 – Organigramme de détection des zones brûlées par Random Forest

3.6.1 Classifiacation avant le feu

Dans cette classification, on choisit 4 classes :1- forest (en vert), 2- urban(en rouge),
3- vegation(en jaune), 4- water ou surfacique (en bleu) comme représenté dans la
figure 3.25 :
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Figure 3.25 – les échantillons de classfication sur l’image du 29/08/2021

après cette étape, on commence notre classification random forest sur snap. Une image
de notre classification a été générée par SNAP comme montré dans la figure 3.26 :

Figure 3.26 – classification random forest du 29/08/2021
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Remarque :

On remarque que la classe forest est la classe la plus présente sur cette image. et on
retrouve plusieurs zones de végétation et une minorité des zones urbaines comme dans la
figure 3.1.

3.6.2 Classification après le feu

On refait la même classification mais cette fois sur l’image du 05/09/2022 (après le feu).
et on remarque les zone ayant subis des différences le résultat est montré dans la figure
3.27.

Figure 3.27 – classification random forest du 05/09/2022

Remarque :

On remarque dans cette image qu’une grande partie a changé de couleur du vert vers le
jaune, donc de la classe forêt à la classe végétation, et ça, c’est dû aux feux de forêts.
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3.7 Affichage des résultats sur Python

Après traitement et classification sur SNAP, on ouvre notre image sur Python.

— On commence par ouvrir l’image du 29/08/2021 (l’image classifiée avant le feu) 3.28.

— Ensuite on ouvre notre image du 05/09/2022 (l’image classifiée pendant le feu) fi-
gure 3.29.

— Pour comparer deux images GRD classifiées en Python, on commence par ouvrir les
deux fichiers raster et lire leurs données sous forme de tableaux numériques grâce à
la bibliothèque rasterio. On vérifie que les deux rasters ont exactement les mêmes
dimensions pour garantir que chaque pixel correspond bien à la même position spa-
tiale. Ensuite, on calcule la différence pixel par pixel en soustrayant la classe du
second raster à celle du premier : cela génère une nouvelle matrice où chaque valeur
indique s’il y a eu un changement de classe (valeur non nulle) ou non (zéro). On en-
registre ensuite cette image de différence sous forme d’un nouveau fichier GeoTIFF
en réutilisant les métadonnées du premier fichier pour conserver le même format
et la même géoréférence. Enfin, on visualise le résultat sous forme d’image colorée
pour localiser facilement les zones où des changements se sont produits entre les
deux dates

— Après avoir calculé la différence entre deux images classifiées, il est souvent utile de
repérer directement les pixels qui ont changé de classe. Pour cela, on crée un masque
binaire de changement en comparant les deux images : l’instruction labels1 != labels2
renvoie un tableau de valeurs True pour les pixels où les classes sont différentes,
et False sinon. C’est un masque logique qui permet d’isoler uniquement les zones
modifiées. Ensuite, pour savoir de quelle classe à quelle classe chaque pixel a changé,
on peut calculer : changemap = labels2 − labels1

— On affiche visuellement les zones qui ont changé entre les deux images. Le masque
binaire (change mask) est représenté en niveaux de gris, où les pixels en blanc
correspondent aux endroits modifiés, et ceux en noir aux zones restées identiques.
Cela permet de voir rapidement sur une image où les changements de classe ont eu
lieu.comme illustré la figure 3.30

— On récupère toutes les paires de classes correspondant aux pixels qui ont changé
(classe initiale et classe finale), puis on extrait les combinaisons uniques de ces
changements. Cela permet de connâıtre toutes les transitions possibles entre classes
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qui ont eu lieu, sans doublons. Ensuite, on affiche ces changements uniques pour
voir rapidement quelles transformations ont été observées.

— On compte le nombre de pixels pour chaque type de changement entre classes, en
regroupant toutes les paires ≪ classe d’origine → classe finale ≫. Cela permet de
savoir précisément combien de pixels sont passés d’une classe à une autre, ce qui
aide à mesurer l’importance de chaque transformation.

— On crée un masque binaire qui marque par True les pixels ayant changé spécifiquement
de la classe 3 (forêt) à la classe 1 (agriculture). Cela permet d’isoler et d’étudier
uniquement cette transformation précise parmi toutes les modifications détectées.

— On affiche l’image3.31 du masque binaire correspondant à la transformation spécifique
de forêt (3) vers agriculture (1). Les pixels en blanc indiquent où ce changement a eu
lieu, ce qui permet de visualiser clairement la répartition spatiale de cette transition.

— On nettoie le masque des changements spécifiques en supprimant les petites régions
isolées (moins de 50 pixels), qui peuvent être du bruit ou des erreurs. Cela permet
de mieux se concentrer sur les zones significatives où la transformation a réellement
eu lieu. Ensuite, on affiche le masque filtré pour visualiser les changements plus nets
et mieux définis comme illustré dans la figure3.32.

Remarque

On remarque que l’empreinte observée dans la figure 3.32 correspond fortement à celle de
l’image optique de la figure 3.33, notamment en ce qui concerne les zones touchées par les
feux de forêt qui sont affichées en blanc dans la figure 3.32, qui apparaissent similaires à
celles de de l’image optique (figure 3.33).
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Figure 3.28 – l’image classifiée du 29/08/2021 sur PYTHON

Figure 3.29 – l’image classifiée du 05/09/2022 sur PYTHON
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Figure 3.30 – les zones ayant subis des changements affichés sur Python

Figure 3.31 – Carte de détection des changements post-incendie (forêt → végétation)
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Figure 3.32 – Carte de détection des changements filtré post-incendie (forêt → végétation)

Figure 3.33 – image optique prise par sentinel-2
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3.8 Conclusion

Dans ce chapitre, nous avons appliqué l’ensemble des méthodes de traitement et de clas-
sification aux images SAR de Sentinel-1 afin d’analyser les changements survenus dans la
wilaya d’El Tarf après un incendie de forêt.

Les prétraitements effectués sur les images SLC et GRD (calibration, correction topogra-
phique, filtrage du speckle) ont permis d’obtenir des données de qualité, exploitables pour
la classification. Grâce à l’algorithme Random Forest, nous avons pu générer des cartes
de classification pour deux dates : avant l’incendie (29 août 2021) et après l’incendie (5
septembre 2022).

Les résultats montrent clairement une réduction significative de la surface forestière, rem-
placée par des zones de végétation plus clairsemée ou du sol nu. L’affichage des change-
ments sur Python a permis de visualiser précisément les zones touchées et de quantifier
l’étendue des dégâts. La carte de détection des changements met en évidence la conversion
de classes ≪ forêt ≫ vers ≪ végétation ≫ ou ≪ sol découvert ≫, ce qui valide l’efficacité de
notre approche pour une surveillance rapide et précise des impacts environnementaux.

Ces résultats confirment que l’utilisation combinée des images Sentinel-1 et des méthodes
de classification avancées constitue une solution fiable pour le suivi post-incendie, offrant
ainsi une base précieuse pour la gestion durable des ressources forestières et la planification
des actions de restauration.



Conclusion Générale

Ce mémoire a mis en évidence l’efficacité de l’imagerie radar Sentinel-1 pour la télédétection
et l’analyse de l’évolution de la couverture terrestre, en particulier pour la surveillance
des zones forestières après un incendie.

Dans un premier temps, nous avons rappelé les concepts théoriques relatifs aux images
SAR et présenté les spécificités techniques du satellite Sentinel-1 qui permettent une ac-
quisition continue des données, indépendamment des conditions météorologiques. Nous
avons ensuite comparé plusieurs méthodes de classification adaptées aux images radar, en
soulignant l’intérêt des approches supervisées comme Random Forest pour une classifica-
tion précise et fiable.

L’application pratique réalisée sur la wilaya d’El Tarf a permis de démontrer concrètement
l’apport de ces outils. Grâce à la méthode Random Forest, nous avons pu générer des
cartes de classification détaillées pour deux dates clés, avant et après l’incendie. L’analyse
des résultats a révélé une perte significative de la surface forestière, ainsi qu’un retrait
de la végétation dense remplacée par des zones de végétation clairsemée et de sol nu.
Ces changements ont été cartographiés et quantifiés avec une grande précision grâce au
traitement et à l’affichage des données sous Python.

Les résultats obtenus illustrent parfaitement la capacité des images SAR à détecter et
suivre les modifications de l’environnement dans des régions vulnérables aux incendies.
Ils confirment aussi la robustesse de la châıne de traitement mise en place, qui pourrait
être utilisée pour un suivi régulier et automatisé des forêts, facilitant ainsi la planification
des actions de restauration et la gestion durable des ressources naturelles.

En conclusion, les résultats atteints prouvent que la télédétection radar, associée à des
méthodes de classification avancées, représente une solution efficace pour la surveillance
environnementale post-incendie, apportant une contribution précieuse à la préservation
et à la gestion raisonnée des écosystèmes forestiers.
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