République Algérienne Démocratique et Populaire
Ministere de ’Enseignement Supérieur et de la Recherche Scientifique
Université Blida 1
Institut d’Aéronautique et des Etudes Spatiales
Département Etudes Spatiales

Mémoire de fin d’études présenté en vue de ’obtention du diplome de
MASTER EN AERONAUTIQUE
Option : TELECOMMUNICATIONS SPATIALES

Télédétection satellitaire de la surface terrestre
a l’aide des tmages SAR de Sentinel-1

Proposé et encadré par : Réalisé par :
Dr. AZMEDROUB Boussad M. FERHAT Cherif Ismail
M. KHELFI Yahia Wail

Année 2024/2025







Remerciement

Nous tenons a exprimer notre profonde gratitude a Monsieur Boussad Azmedroub, notre
encadrant, pour sa disponibilité, ses conseils avisés et son accompagnement tout au long de
ce travail. Son encadrement rigoureux et bienveillant a été déterminant pour la réalisation
de ce mémoire.

Nous souhaitons également rendre un hommage sincere a notre ami Zoair Mohammed
Hayder, disparu trop t6t. Son esprit, sa gentillesse et son amour pour le savoir resteront
a jamais gravés dans nos mémoires. Ce travail lui est dédié.

Nous remercions particulierement Monsieur Zoair Tawhid , son peére, pour son soutien
moral et humain dans cette période difficile. Sa dignité et sa force nous ont profondément
touchés.

Nos remerciements s’adressent aussi a I’ensemble des enseignants de I'Institut d’Aéronautique
et des Etudes Spatiales pour la qualité de ’enseignement dispensé durant notre formation,
ainsi qu’aux membres du jury pour avoir accepté d’évaluer notre mémoire avec attention
et bienveillance.

Moi Khelfi Yahia Wail, je souhaite remercier mes chers parents, mes grands-parents, mon
frere et ma sceur, mes amis ainsi que toute ma famille qui m’ont soutenu et encouragé
durant tout mon parcours académique.

Moi FERHAT Cherif Ismail, je voudrais remercier mes chers parents, mes défunts grands-
parents, mon frere bien-aimé ainsi que sa femme qui ont toujours été des piliers pendant
tout mon parcours académique.

Enfin, nous remercions toutes les personnes qui, de pres ou de loin, nous ont soutenues
durant ce parcours.



Résumé

Ce mémoire porte sur 'utilisation des images radar Sentinel-1 pour la détection et 1’ana-
lyse des changements de la couverture terrestre apres des incendies de forét. L’étude a été
appliquée a la wilaya d’El Tarf, en Algérie, une région particulierement exposée aux feux
ces derniéres années. Grace a la technologie du radar a synthese d’ouverture (SAR), nous
avons pu suivre I'évolution du paysage indépendamment des conditions météorologiques.
A Taide du logiciel SNAP et d’outils de classification comme Random Forest, les images
ont été prétraitées, classifiées et comparées entre deux dates pour détecter les zones
touchées. Les résultats obtenus montrent 'efficacité des images SAR pour la surveillance
environnementale post-incendie.

Abstract

This thesis focuses on the use of Sentinel-1 radar images to detect and analyze land
cover changes following forest fires. The study was conducted in the El Tarf province of
Algeria, a region heavily affected by wildfires in recent years. Using Synthetic Aperture
Radar (SAR) technology, we were able to monitor landscape changes regardless of weather
conditions. With SNAP software and classification methods like Random Forest, the radar
images were preprocessed, classified, and compared between two dates to identify affected
areas. The results demonstrate the effectiveness of SAR imagery in post-fire environmental
monitoring.
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Introduction Générale

Dans un contexte mondial ot la surveillance et la gestion durable des ressources naturelles
sont devenues des préoccupations majeures, la télédétection satellitaire s’affirme comme
un outil incontournable pour 'observation de la surface terrestre. Parmi les technologies
les plus performantes, le radar & syntheése d’ouverture (SAR) se distingue par sa capacité a
acquérir des images de haute résolution quelles que soient les conditions météorologiques
ou d’éclairement. La mission Sentinel-1, développée par I’Agence Spatiale Furopéenne
(ESA), met a disposition une grande quantité de données SAR qui ouvrent de nouvelles

perspectives pour la cartographie et la détection des changements environnementaux.

Ce mémoire s’inscrit dans cette dynamique en exploitant les images SAR de Sentinel-1
pour la télédétection et la classification de la couverture terrestre, avec un focus particulier

sur I’évaluation des changements post-incendie dans les zones forestiéres.
Le présent travail est structuré en trois chapitres :

Le premier chapitre introduit les notions fondamentales des images SAR. Il décrit le
principe de fonctionnement du radar a synthese d’ouverture, le satellite Sentinel-1 et ses
caractéristiques techniques, la résolution des images, le traitement du bruit speckle et les

concepts de polarimétrie qui permettent une meilleure interprétation des données radar.

Le deuxiéme chapitre est consacré aux différentes méthodes de classification utilisées pour
I'analyse des images SAR. Il présente a la fois les approches supervisées (comme les SVM,
les réseaux de neurones et les foréts aléatoires) et non supervisées (telles que le K-means

et le Mean Shift), en détaillant leurs principes, leurs avantages et leurs limites.

Le troisieme chapitre expose 'application pratique du traitement et de la classification des
images SAR sur la zone d’étude. Il décrit le site d’étude, le prétraitement des données, le
processus de classification réalisé sur SNAP et Python, et présente les résultats obtenus,

accompagnés d’une analyse des changements détectés suite aux incendies.

A travers cette étude, nous mettons en évidence I'apport des images radar Sentinel-1 et
des techniques de classification pour la surveillance et 1’évaluation des impacts environne-

mentaux, contribuant ainsi a une meilleure gestion des écosystemes forestiers vulnérables.



Chapitre 1

Les Images SAR

1.1 Introduction

Un radar est un dispositif électronique permettant de détecter, localiser et suivre des
objets a distance grace a 1'utilisation d’ondes radio ou de micro-ondes. Le terme radar est
I’abréviation de I'expression anglaise Radio Detection And Ranging, qui signifie en francais
Détection et Télémétrie par ondes radio. Son fonctionnement repose sur ’émission d’un
signal électromagnétique, généralement constitué d’ondes radio ou de micro-ondes, qui se
propage dans I'espace et se réfléchit lorsqu’il rencontre un obstacle. En analysant le temps
écoulé entre 1’émission et la réception du signal réfléchi, le radar est capable de mesurer
la distance de l'objet détecté. Il peut également déterminer sa vitesse, sa direction de
déplacement, et parfois méme sa taille ou sa forme. Grace a leur efficacité et leur précision,
les radars sont utilisés dans de nombreux domaines, notamment la navigation aérienne,
maritime et terrestre, la météorologie, les applications militaires, la surveillance du trafic,

la détection d’obstacles ainsi que I'analyse des zones forestieres. . . etc.

1.2 Radar a synthese d’ouverture

Radar a synthese d’ouverture SAR : Le Radar a synthese d’ouverture appelé en an-
glais Synthetic Aperture Radar est une technologie radar capable de capturer et générer
des images synthétiques de régions peu importe ’heure de la journée ou les conditions
météorologiques de cette derniere. Le radar SAR a connu plusieurs systémes d’acqui-
sition a travers les années que ce soit des systemes aériens (FSAR, AIRSAR) ou des

systémes spatiaux comme ceux des agences publiques telles que 'ESA avec Sentinel-1
et RADARSAT-2 et la NASA avec NISAR. Les premiers systemes d’imagerie radar a
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synthese d’ouverture (SAR) ont vu le jour au début des années 1950, etc les premieres
captures ont été réalisées a la fin de cette période. La figure 1.1 présente la toute premiere
image SAR, produite en 1957 par I’Université du Michigan a I’aide de lampes au mercure.
Ce n’est qu’avec 'apparition du laser et les progres en électronique et en informatique que
la qualité des images s’est significativement améliorée. Depuis le lancement de SEASAR
en 1978, premier radar SAR numérique embarqué sur un satellite, ces technologies ont

apporté une quantité précieuse d’informations pour 1’étude de notre planete.

FIGURE 1.1 — Premiére image SAR acquise en 1957 par l'université du Michigan

Ce systeme fonctionne généralement entre la bande P et la bande Ka et particulierement
dans la bande de fréquence L et la bande de fréquence C comme présenté dans le tableau

ci-dessous.

0.025-0.390 GHz | 133-76.9 cm
0.39-1.55 GHz | 76.9-19.3 cm
1.55-4.20 GHz 19.3-7.1 cm
4.20-5.75 GHz 7.1-5.2 cm
5.75-10.90 GHz 5.2-2.7 cm
Ku 12.0-18.0 GHz 2.7-1.36 cm
Ka 22.0-36.0 GHz | 1.36-0.83 cm

> Q| | |

TABLE 1.1 — Table des bandes de fréquences radar

1.3 Principe de formation des images SAR

L’imagerie SAR (Synthetic Aperture Radar) repose sur I'utilisation d’un radar & antenne
synthétique pour obtenir des données précises sur une zone donnée. Contrairement aux
radars classiques dotés d’une antenne fixe, le SAR utilise une antenne en mouvement par

rapport a la scéne observée, ce qui permet d’améliorer la résolution des images.
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FIGURE 1.2 — Antenne non statique

Le processus de formation d’'une image SAR se déroule en plusieurs étapes :

1. Emission du signal : Le radar SAR envoie des impulsions électromagnétiques (ondes
radio ou micro-ondes) vers la scéne cible. Ces impulsions sont émises de maniére répétée
selon une fréquence de répétition des impulsions (PRF), synchronisée avec la vitesse de
déplacement de I’antenne.

2. Réception du signal réfléchi : L’antenne capte les signaux réfléchis par les objets présents
dans la scene. Ces signaux contiennent des informations sur la distance des objets, 1'in-
tensité (amplitude) et la phase de 1'onde réfléchie.

3. Echantillonnage et enregistrement des données : Les signaux regus sont échantillonnés
et enregistrés a différents instants, formant des échos radar. La fréquence de répétition
des impulsions (PRF) influence la densité d’échantillonnage et la précision des données
collectées.

4. Compression du signal : Pour optimiser le stockage et le traitement des données, les
signaux bruts subissent une compression, généralement basée sur les caractéristiques du
signal radar.

5. Correction des effets atmosphériques et topographiques : Les signaux enregistrés peuvent
étre altérés par des effets atmosphériques (comme I’humidité ou la pression) et des va-
riations topographiques. Des corrections sont appliquées afin d’améliorer la précision de
I'image finale.

6. Traitement de 'antenne synthétique : Le SAR simule une antenne virtuelle plus grande
en combinant les échos captés sur une longue distance. Ce procédé améliore considérablement

la résolution spatiale des images en traitant les données acquises a différents moments.
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7. Traitement et génération de I'image : Les données traitées sont converties en une image
exploitable grace a des algorithmes spécifiques, comme la transformation de Fourier et
des techniques de filtrage.

L’image SAR obtenue offre une haute résolution et permet d’analyser la structure, la topo-
graphie et les caractéristiques des objets présents dans la scene observée. Cette technologie
est largement utilisée dans divers domaines, notamment la cartographie, la surveillance
environnementale, ’observation des ressources naturelles et la gestion des catastrophes

naturelles.

Trajectoire
du satellite

FIGURE 1.3 — Principe d’acquisition d’image radar

1.4 Le satellite SENTINEL-1

I’engin spatial est caractérisé par des capteurs solaires, étoilés, gyro et magnétiques, un
ensemble de quatre roues de réaction dédiées au controle de 'orbite et de I'attitude et
trois tiges de couple en tant qu’actionneurs pour fournir des capacités de braquage sur
chaque axe. Le satellite est équipé de deux ailes de panneaux solaires capables de produire
5900 W (en fin de vie) pour étre stockées dans une batterie modulaire, la capacité de la
batterie est de 324 Ah. Le satellite est basé sur le bus PRIMA (Piattaforma Italiana Multi
Applicativa), qui s’appuie sur l'expérience acquise aupres de RADARSAT-2 et COSMO-

SKYMED, qui utilisent le méme bus. Le bus fournit des connaissances de pointage tres
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précises (mieux-contre 0,04) sur chaque axe, une grande précision d’attitude (environ 0,01
degré sur chaque axe) et une détermination de Iorbite en temps réel, ainsi qu'un systéme

de propulsion dédié pour un controle précis de 'orbite. [4]

C-SAR Anfenna
PDHT Anfenna

S-Bant Ant.

S§-Bant Ant.

Satellite +Y side (anti-5un) Satellite -Y side (Sun side)

FIGURE 1.4 — Vue schématique de l’intensité spatiale Sentinel-1

L’orbite de référence sera maintenue & l'intérieur d’un tube orbital fixe sur la Terre d’un

diametre de 120 m (RMS) pendant Iexploitation normale.

La plate-forme satellite fournit des caractéristiques pour la gestion des systemes de controle
d’attitude et d’orbite, le traitement des données scientifiques avec une capacité de sto-
ckage de 1 410 Gb, la propulsion, la puissance, le controle thermique, I'autonomie des
engins spatiaux et 'identification et la récupération de la détection des défaillances, et la
communication avec le sol via la liaison descendante de données en X et la liaison optique
par PEDRS pour les données utiles a 520 Mbit/s. La masse totale de 'engin spatial au
lancement est d’environ 2 300 kg (dont 130 kg de carburant).

1.4.1 Orbite

Sentinel-1 est sur une orbite proche de la polaire avec un cycle de répétition de 12 jours et
175 orbites par cycle pour un seul satellite. Sentinel-1A et Sentinel-1B partagent le méme
plan orbital avec une différence de phasage orbital de 180 degrés. Avec les deux satellites

en fonctionnement, le cycle de répétition est de six jours.[5]
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FIGURE 1.5 — Constellation de sentinel-1

Voici un tableau qui résume les parametres orbitaux du satellite :

Altitude | Inclinaison | Période | Cycle | Déviation | Heure AN
(km) (°) (min) | (jours) (m) (h)
693 98.18 98,6 12 120 18

TABLE 1.2 — Parameétres orbitauz du satellite

1.5 Résolution

La sortie spatiale compte pour un grand pourcentage avec des systemes d’imagerie ou c’est
la définition qui permet de distinguer les objets rapprochés. Une résolution élevée permet
de distinguer et de commencer a séparer des objets jumeaux dans des cellules séparées
et qu'une faible résolution conduit a la fusion des mémes objets dans la méme cellule.
On refait principalement deux types de résolution : la résolution radiale et la résolution

azimutale qui correspondent a la séparation des objets dans le plan orthogonal a ’axe de

I’antenne.
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1.5.1 Reésolution radiale

La résolution radiale est valable pour la discrimination rejet des objets sur la longueur de
I’axe de 'antenne. La distance radiale au sol R, fonction de ’angle d’incidence 6 et de la

Pour obtenir une résolution

durée des impulsions radar 7 est donnée par : Ry = i
sin

spatiale optimale, on a besoin de systémes radar a vision latérale (SLAR) car le pointeur

nul n’apporte pas de résolution. La fantaisie d’un signal chirp (Compressed High Intensity

Radar Pulse) a le résultat de 'amélioration de la résolution. Ce signal est exprimé par :

c(t) = p(t) cos(wy + 0.5at)t = p(t) cos(wot + 0.5at?) = p(t) cos(27 fot + 0.5at?)  (1.1)

La montée de la résolution est due pour le reste a la compression impulsionnelle, faite par

la corrélation entre le signal émis et le signal recu.

bandwidth (swept frequency) &, half power width =

|
B << Tp
I
|+—
i
i 'I I |

N
AN — e — s

i
duration T, I ”

. recoved chin
L

replica of
transmitted chirp

FIGURE 1.6 — Principe de la compression d’impulsion

1.5.2 Résolution azimutale

La résolution azimutale reflete la capacité a distinguer deux objets situés parallelement
a la trajectoire du radar. Elle correspond approximativement a la moitié de la longueur
réelle de 'antenne, exprimée par la formule suivante : R, = é L’approche la plus simple
pour améliorer cette résolution consiste a accroitre la hauteur de I'antenne. Cependant,
dans la pratique, augmenter la taille de celle-ci s’avere souvent complexe et peu efficace.
C’est dans ce contexte que la technologie SAR (Synthetic Aperture Radar) entre en jeu.

Elle permet de générer une ouverture synthétique en combinant les signaux rétrodiffusés
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Flight Direction

Sub-Satellite Track

Orbit Height
~700 km

" Wave Mode

*Interferometric Wide Swath

[6]

FIGURE 1.7 — Modes d’acquisitions d’images SAR

captés tout au long de la trajectoire du radar. Cette méthode simule ainsi une antenne bien
plus grande que celle réellement utilisée. Les images produites par le SAR, tout comme
les autres images numériques, sont constituées de pixels adjacents. La valeur attribuée a
chaque pixel est déterminée par l'intensité du signal radar émis et réfléchi par la surface

observée.

1.6 Bruit de I'image SAR

Lorsque I'onde radar est émise en direction de la cible, celle-ci renvoie non pas une seule
onde mais plusieurs ondes qui interferent au niveau du radar de facon destructive, ces
interférence affaiblies les images produites par le SAR par un bruit appelé speckle.Le
speckle a les caractéristiques d’un bruit multiplicatif .pour bien extraire les informa-
tion thématique et bien exploiter les images il faut réduire ou éliminer ce bruit. D’ou
le développement de nombreuses méthodes de réduction du speckle, parmi ces méthode
le filtrage des images SAR. Un filtre idéal qui éliminerait tous les bruit n’existe pas en

pratique, mais certains s’en rapprochent.

Les trois méthodes de filtrage du speckle sont :

e Méthode multi vues ou multi-looks : Il y a deux techniques pour cette méthode,
la premiere est une technique spectrale qui permet de réduire la variance du spe-
ckle d'un facteur N au détriment de la résolution spatiale de I'image originale. La

deuxiéme technique est une technique spatiale qui consiste a acquérir une image
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pleine résolution SLC et a effectuer une moyenne de N pixels adjacents pour former
une image basse résolution avec atténuation du speckle.

e Méthode Multifréquence, Multi-polarisation : utilise la matrice de covariance et les
statistiques locales pour une zone homogene.

e Méthodes spatiales : Ces méthodes se subdivisent en deux familles, la premiere
comporte les méthodes heuristiques qui permettent de réduire le speckle sans tenir
compte de son caractere multiplicatif et sans connaissance a priori de ses lois de
probabilité. La deuxieme famille comporte les méthodes homomorphiques qui sont

fondées sur le caractere multiplicatif du speckle.

1.7 L’équation Radar

L’équation radar est une formule fondamentale utilisée en télédétection et en radar pour
déterminer la puissance du signal réfléchi par une cible et re¢u par I'antenne du radar.
Elle permet de comprendre comment la puissance du signal radar varie en fonction des

parametres du systeme et de I’environnement.

Voici la forme générale de I'équation radar :

P-Gi-G,.- N0

P, =
(4m)3 - R L

(1.2)

Cette équation est essentielle pour concevoir des systeémes radar efficaces et comprendre
leurs limites opérationnelles, évaluer la détectabilité des cibles, et optimiser les perfor-

mances pour des applications spécifiques (militaires, météorologiques, civiles, etc...).

1.8 La polarimétrie

La polarimétrie est une technique qui exploite les propriétés de polarisation des ondes
électromagnétiques pour améliorer la transmission et la réception des signaux. Elle est
notamment utilisée dans les systémes radar. La polarisation d’une onde décrit 1’orienta-
tion du champ électrique dans 'espace (linéaire, circulaire ou elliptique).

En polarimétrie, on utilise différentes polarisations pour :

- Augmenter la capacité des canaux de communication (multiplexage polarimétrique).

- Réduire les interférences entre plusieurs signaux.

- Améliorer la détection dans les systémes radar (discrimination des cibles).



1.8 La polarimétrie 11

1.8.1 Les ondes électromagnétiques

Les ondes électromagnétiques (OEM) sont des perturbations couplées des champs électrique
(E) et magnétique (B) qui se propagent dans le vide ou dans un milieu matériel sans
nécessiter de support matériel. Elles transportent de I’énergie et de 'information. Les lois
fondamentales de I’électromagnétisme, telles que la propagation des ondes et leur inter-
action avec la matiere, sont décrites par les équations de Maxwell.

Les équations de Maxwell expriment les relations fondamentales suivantes :[1]

VxE= —aaf (1.3)
V x B = ,uoj—i— uoaoaaﬁz (1.4)
V.- E="2 (1.5)
€0
V-B=0 (1.6)

£o : permittivité de vide.

o : perméabilité magnétique dans le vide.

p : densité de charge.

J : densité de charge.

Dans le cas d’absence de charge p = 0 , J = 0 et pour un milieu homogene, on peut
obtenir une seule équation en combinant ces équations qui décrit la propagation du champ

électrique, formulée de la maniere suivante :

102E
cot?

V2E + (1.7)

1.8.2 Les types de polarisation

La polarisation est une propriété de la lumiere. Cette derniere est une onde électromagnétique
se déplacant dans le vide a la vitesse =299 792 458 m/s. Elle est composée d'un champ
électrique (noté généralement E) et d'un champ magnétique (noté B), orthogonaux. A

travers les équations de Maxwell, les champs E et B sont liés : la connaissance de 1'un
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suffit pour connaitre 'autre. Aussi, pour simplifier — et c¢’est aussi la convention choisie
en polarimétrie — on ne raisonne que sur le champ E.

Une onde électromagnétique plane se définit notamment par sa direction de propagation.
Le plan perpendiculaire a la direction de propagation est appelé le plan d’onde. C’est
dans le plan d’onde qu’évolue le champ E (et le champ B, mais nous n’en parlerons plus).
A chaque instant, le champ E a une amplitude et une direction différente dans le plan
d’onde. Dit autrement, si I’onde se propage en direction de I'observateur ce dernier verra
le champ E former différents motifs dans le plan d’onde pendant son évolution temporelle.
C’est cela qui va définir la polarisation de I'onde.

1. Polarisation elliptique : Si le champ E dessine une ellipse dans le plan d’onde, on
parle de polarisation elliptique.

C’est le cas le plus général. On peut alors décomposer le champ électrique selon deux

composantes perpendiculaires :

E, = E o cos(kz — wt) (1.8)
2w

E,=Eycos(kz —wt+ ), ol w=— (1.9)
C

est la pulsation de I'onde électromagnétique.

_27r

k
A

(1.10)

le nombre d’onde et ¢ le déphasage entre les deux composantes.

FIGURE 1.8 — Polarisation élliptique

2. Polarisation circulaire : Si le champ E dessine un cercle dans le plan d’onde, on parle
de polarisation circulaire. Le sens de rotation de E définit une polarisation :

- Droite, si I'onde tourne dans le sens trigonométrique.
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- Gauche, si I'onde tourne dans le sens horaire.
On peut se souvenir du sens de rotation en utilisant ses mains. En pointant son pouce
vers soi, on regarde dans quel sens s’enroulent les autres doigts; en choisissant la main
qui permet de reproduire le sens de rotation de I'onde polarisée (main gauche ou main
droite), on détermine le sens de la polarisation.

On peut alors écrire les composantes du champ électrique comme suit :
E, = Eycos(kz — wt) (1.11)

E, = Eysin(kz — wt) (1.12)

ou Ejy est 'amplitude commune et ¢ = 7.

FIGURE 1.9 — Polarisation circulaire

3. Polarisation linéaire : Si le champ E décrit un segment dans le plan d’onde, on dit
que la polarisation est linéaire. On peut la voir comme une polarisation elliptique pour
laquelle I'un des deux axes de l'ellipse de polarisation serait réduit a un point, comme

montré dans la figure 1.10 Le champ électrique s’écrit alors :

Ey
E, = E,ycos(kz —wt)E, = Eycos(kz —wt) avec E—O = cste et ¢ = 0. (1.13)
90

4. Polarisation aléatoire : Le champ E varie de maniere imprévisible sans direction
privilégiée (lumiere naturelle, sources thermiques ).

On peut combiner les polarisations des ondes transmises et recues en utilisant les pa-

rametres H et V dont l'interrelation est bien définie. C’est pourquoi les systémes qui
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FIGURE 1.10 — Polarisation linéaire

transmettent et recoivent ces deux polarisations linéaires sont couramment utilisés. Avec
ce type de radar, il existe quatre combinaisons de polarisations de transmission-réception :
HH - transmission et réception horizontales

VV - transmission et réception verticales

HV - transmission horizontale et réception verticale, et

VH - transmission verticale et réception horizontale.

Polarisation Description

Polarisation simple - HH ou VV (éventuellement HV ou VH)

Bipolarisation -HH et HV, VV et VH ou HH et VV
Polarisation alternée - HH et HV alternant avec VV et VH
Polarimétrique -HH, VV, HV et VH

TABLE 1.3 — Types de polarisation et leurs descriptions

1.8.3 La matrice de Jones

Le vecteur de Jones est un outil fondamental pour décrire mathématiquement ’état de
polarisation d'une onde électromagnétique compléetement polarisée. Les polarisations ho-
rizontale (H) et verticale (V) en sont les bases utilisées dans l'imagerie SAR.

Pour une onde plane se propageant selon I'axe Z le champ électrique s’écrit :

B0 _ (1Elet
T (Eyof)) i (|Ey|e“¢y“”) .
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Donc, sans la dépendance temporelle, le vecteur de jones s’écrit de la maniére suivante :

E, | B, |e=
J = = , (1.15)
E, |Ey|€l¢y

1.8.4 La matrice de diffusion

La matrice de diffusion ou matrice S appelé aussi matrice de SINCLAIR est un outil
central pour décrire les interactions entre particules. Elle permet de calculer les amplitudes
de transition entre des états asymptotiques (avant et apres une interaction). Lorsque des
ondes électromagnétiques se déplacent et entrent en contact avec un obstacle, elles inter-
agissent avec I'obstacle en question. Au cours de cette rencontre, une partie de 1’énergie
de I'onde peut étre absorbée par 1'objet, tandis que le surplus est renvoyé sous forme
de réflexion ou de diffusion. Ces phénomenes peuvent altérer la polarisation de ’onde
réfléchie comparativement a celle de 'onde incidente. En analysant ces variations, on
peut en déduire certaines caractéristiques de 1’objet touché par le rayonnement. Dans
I'imagerie SAR, on émet deux polarisations H ou V et la réception se fait sur deux ca-
naux Het V.

Polarisation de ’onde émise | Polarisation de ’onde regue | Composante mesurée
H Sun
H
\ Suv
\Y

TABLE 1.4 — Tableau des composantes de polarisation des ondes émises et recues

Sll 512

So1 S22
les coefficients S7; et Sos. représentent la méme polarisation en émission et en réception,

La matrice de diffusion est représentée par S =

] en plus de ses complexes S;;,

tandis que les coefficients Sis et So; représentent une polarisation opposée entre émission

et réception comme présentés dans la matrice ci-dessous :

SHH SHV

Sve  Svv

1.8.5 Le vecteur cible

Le vecteur cible constitue une représentation compacte de l'information polarimétrique

contenue dans la matrice de diffusion S. Sa construction repose sur une projection mathématique
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permettant d’extraire les caractéristiques essentielles de la cible observée.

Principe de construction

Le vecteur cible est obtenu par projection de la matrice S sur une base orthogonale de
matrices 1 appartenant a un groupe spécial unitaire [?, ?]. Cette opération s’exprime

par :
1
k = §Trace(S'¢) = [k‘o, k’l, k’g, k’g]T (]_]_6)

Bases de projection usuelles

Deux bases principales sont couramment utilisées :

a) Base lexicographique (¢;) : Représentation directe des éléments de la matrice

1 o] fo1] Joo] [oo
YL=1%10 ol 2o o 2|1 o o 1 (1.17)

b) Base de Pauli modifiée (¢p) : Représentation physique des mécanismes de dif-

R

10
01

or=va{|

Expressions des vecteurs cibles

Forme générale (bistatique)

Kz, = [Shh Sho Son Suw)” (1.19)
kp = \}ﬁ[shh + Suv Shn = Svw Sho + Son J(Sho — Son)]” (1.20)
Cas monostatique (S, = Syp) :
kr = [Shn V2Shy Sun)” (1.21)
kp = L[Shh + Suu Shh — Suw 29" (1.22)

V2
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Relation entre représentations

Les vecteurs kj, et kp sont reliés par une transformation linéaire :

o
kp=Akp=—10 0 +2|kp (1.23)
V2
1 -1 0

Cette formulation matricielle permet de convertir aisément entre les différentes représentations,

offrant ainsi une grande flexibilité dans le traitement des données polarimétriques.

1.9 Les matrices de cohérence et de covariance

En polarimétrie radar, les matrices de covariance et de cohérence constituent deux représentations
fondamentales d’une cible. Leur intérét réside dans leurs propriétés mathématiques remar-

quables. Ces deux matrices sont complexes, de taille 3 x 3 [7].

1.9.1 Matrice de covariance

La matrice de covariance C est définie a partir du vecteur cible kj, :

(SrnSiny V2(SmSp)  (SwSiy)
C = (krki") = |V2(SwSin)  2(SneSi)  V2(ShuSi,) (1.24)
(SouSin)  V2(SuuShy)  (SuwSiy)

1.9.2 Matrice de cohérence

De fagon équivalente, la matrice de cohérence T peut étre exprimée a partir du vecteur kp :

((Shn + Svo)(Shh + Svw)*) ((Shh + Svw)(Shh = Sww)*)  2(Sky (Shh + Sww))
T = (kpkp ) = | ((Shn — Suw) (San + Su0)®) ((Shn — Suw) (Shn — Swo)*) 205}, (San — Su))

2<S}W<S}Lh + va)*> 2<Shv(5hh - va)*> 4<Shvs;<w>
(1.25)
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1.9.3 La polarimétrie dans Sentinel-1

Sentinel-1 est un systeme de double polarisation SAR préservant en phase. Il peut émettre
un signal en polarisation horizontale (H) ou verticale (V), puis recevoir a la fois dans les
polarisations H et V. Les produits a double polarisation du complexe a simple appa-
rence (SLC) de niveau 1 contiennent des valeurs complexes. En plus de Uintensité de
rétrodiffusion qui peut étre mesurée a partir de chaque polarisation unique, les informa-
tions de phase inter-canaux permettent d’effectuer une analyse améliorée des propriétés

de rétrodiffusion.

FIGURE 1.11 — Image acquise par Copernicus Sentinel-1A le 2017-11-01 avec d’intenseur V'V,
image d’ambiance VH et composite de couleur RGB

1.9.4 le réle de la polarisation dans les forets

Il est essentiel de considérer la polarisation des ondes radar lorsqu’elles interagissent avec
les foréts, car cela détermine la maniere dont le signal interagit avec les troncs et les com-
posantes de la canopée. La Figure 1.12 présente un schéma simplifié montrant comment
les ondes longues et courtes en polarisations horizontale (H) et verticale (V) interagissent

avec les foréts.

HORIZONTAL | C=Crown T=Trunk

\\IERHCAL |
. p Y| BY

[

|
__I_ £

|

Radar | )
|

Scattering M[
Intensity I|

-
—

FIGURE 1.12 — schéma des effets de la polarisations dans les forets

L’aspect le plus important est que la rétrodiffusion en co-polarisation (VV, HH) (c’est-a-

dire avec les mémes composantes d’émission et de réception) est généralement plus forte
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pour les composantes de diffusion de surface, tandis que 1’énergie mesurée en polarisation
croisée (VH ou HV) (c’est-a-dire lorsque I'onde recgue est perpendiculaire a 'onde émise)
est associée a la diffusion volumique. Ainsi, pour les applications liées a la biomasse, au
suivi de la dégradation forestiere et a l'identification des changements entre volumes et

surfaces, les observations en polarisation croisée avec des images SAR sont indispensables.

Les différences entre les images en co-polarisation et en polarisation croisée (bandes C et

L) d’une plantation de palmiers & huile sont visibles dans la Figure 1.13.

FIGURE 1.13 — Sentinel-1 C-band imagery (a) Cyv, (b)Cy m, (c)ratio, and(d) RGBcompositeCyy Cy grratio.

On observe clairement, aussi bien en L-HH qu’en C-VV, des ambiguités importantes
dans les niveaux de gris entre les canopées forestieres et les zones non forestieres. En re-
vanche, ces distinctions sont plus nettes et moins ambigués dans les images en polarisation

croisée. [8]
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1.10 La décomposition polarimétrique

La décomposition polarimétrique est une technique essentielle en télédétection radar, per-
mettant d’analyser la diffusion des ondes électromagnétiques par une cible. En exploitant
les informations de polarisation, cette méthode décompose la matrice de diffusion en
¢éléments cohérents ou incohérents, révélant ainsi les propriétés physiques et géométriques
des surfaces observées. Les décompositions courantes, comme celles de Pauli, Krogager ou
Freeman, facilitent I'interprétation des données polarimétriques pour des applications en
agriculture, foresterie ou surveillance environnementale. Cette approche améliore signifi-

cativement la caractérisation des cibles et leur classification.

1.10.1 Décomposition de pauli

Décomposition de Pauli La décomposition de Pauli est une méthode fondamen-
tale en imagerie polarimétrique radar, utilisée pour décomposer la matrice de diffusion
(ou matrice de Mueller) d’une cible en une somme de composantes élémentaires corres-
pondant a des mécanismes de diffusion simples. Elle repose sur les matrices de Pauli,
une base de matrices 2 x 2 utilisées en mécanique quantique et en traitement du signal

radar.

Dans le cas d'une cible décrite par la matrice de diffusion [S], la décomposition de

Pauli 'exprime comme une combinaison linéaire de trois composantes principales :

— Diffusion simple (ou surface) : associée a une réflexion simple (typiquement une
surface plane).
— Diffusion double (ou diédre) : correspondant & une réflexion double (comme un
coin formé par deux surfaces).
— Diffusion volumique (ou helix) : liée a des interactions multiples (végétation,
forét).
Cette décomposition permet une visualisation en fausses couleurs (RGB) ou chaque
mécanisme est représenté par une couleur distincte, facilitant 'interprétation des données
polarimétriques. Elle est particulierement utile pour la classification des sols, la détection
de structures artificielles et 'analyse de la végétation. La base de Pauli en imagerie

radar polarimétrique s’exprime sous la forme :

BP = {SPla SP27 SP37 SP4}
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avec les matrices de base définies par :

{6060

En configuration monostatique, le principe de réciprocité s’applique, conduisant a ’égalité
Suv = Svn.

La décomposition de la matrice de diffusion S dans cette base s’écrit :

S = aSp1 + BSp2 +7Sp3

ou les coefficients complexes sont déterminés par :

o = SHH;SVV

_ S-S
B_ HH2 vV

v = Shv

Cette décomposition admet une double interprétation physique :
— Sp; représente la diffusion par un triedre (mécanisme de simple rebond)
— Spo correspond a un diedre a 0° (mécanisme de double rebond)
— Spz modélise un diedre a 45° (phénomene de dépolarisation)

Les éléments de la base de Pauli permettent ainsi une analyse physique des mécanismes

de diffusion dominants dans une image radar polarimétrique.

1.10.2 Méthodes de Décomposition en Dual-Pol

Plusieurs méthodes existent pour décomposer le signal Dual-Pol et extraire des informa-

tions :

Décomposition de Pauli (adaptée & Dual-Pol)

Permet de séparer les mécanismes de diffusion dominants :

ky = % (Diffusion surfacique)

ko = % (Diffusion diedre)

ks = % (Diffusion volumique)
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(En Dual-Pol, certaines composantes sont absentes, donc on adapte les équations.)

Décomposition en Cohérence (Dual-Pol Entropy/Alpha)

Utilisée pour estimer le degré d’aléatoire de la diffusion :

— Entropie (H) : Mesure le désordre de la diffusion

— Angle Alpha («) : Indique le type de mécanisme dominant (surface, volume,
diedre)

Décomposition de Freeman-Durden (adaptée)

Sépare la diffusion en trois composantes :
— Diffusion de surface (sol lisse, eau)
— Diffusion de volume (forét, végétation dense)
— Diffusion double-reflet (batiments, troncs d’arbres)

(En Dual-Pol, cette décomposition est simplifiée car certaines polarisations manquent.)

Indices Polarimétriques (Dual-Pol)

— Ratio HH/HV : Permet de distinguer les zones urbaines (HH dominant) des foréts
(HV élevé)
— Indice de Différence Normalisé (NDPI) : Utile pour la détection des change-

ments

1.11 Conclusion

Le Chapitre 1 a présenté une analyse approfondie des principes fondamentaux des images
SAR (Synthetic Aperture Radar), en mettant en lumiere leur fonctionnement, leurs ca-

ractéristiques techniques et leurs applications. Les points clés abordés incluent :

— Fonctionnement des SAR :

— Utilisation d’antennes en mouvement pour générer des images haute résolution
— Processus complet : émission d’impulsions, réception des signaux, et traitement

des données

— Satellite Sentinel-1 :
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— Caractéristiques techniques et parametres orbitaux

— Capacités polarimétriques pour 'observation terrestre
— Résolution et bruit :

— Importance de la résolution radiale/azimutale

— Techniques de réduction du bruit de speckle
— Polarimétrie :
— Types de polarisation (HH, VV, HV, VH)
— Matrices de Jones et de diffusion pour I'analyse des cibles
— Applications forestiéres :
— Polarisation croisée (HV/VH) pour I’étude de la biomasse
— Distinction entre diffusion de surface et volumique
— Décomposition polarimétrique :
— Meéthode de Pauli pour séparer les mécanismes de diffusion

— Visualisation en fausses couleurs (RGB)

En résumé, ce chapitre a établi les bases théoriques et techniques de l'imagerie SAR,
essentielles pour des applications en télédétection environnementale. Ces concepts fon-
damentaux préparent le terrain pour les méthodes de classification abordées dans les

chapitres suivants.



Chapitre 2

Méthodes de classification

2.1 introduction

La classification, un des sujets majeurs de ’apprentissage automatique, concerne tout re-
coupage en groupes de choses ou de données conformément a ses attributs. Cette méthode
permet d’expliquer et d’identifier la nature des phénomeénes observés, comme ceux qu’il
est possible d’observer dans un image ou une coupure de données radar. La classification
est a distinguer en deux types de classification : supervisée et non supervisée qui per-
met de traiter des gros lots de données de quatre grosses masses de données et de mieux

comprendre les objets terrestres.
e La classification supervisée :

La classification supervisée est I'une des approches les plus répandues en apprentissage
automatique. Elle repose sur un processus dans lequel un algorithme est entrainé a partir
d’un ensemble de données étiquetées, c’est-a-dire composées d’exemples pour lesquels on

connait déja la classe a laquelle ils appartiennent.

L’objectif principal est de développer un modele capable de prédire la classe correcte de
nouveaux exemples, encore non étiquetés.
Dans ce cadre, chaque exemple d’apprentissage est défini par :

e Un ensemble de caractéristiques (ou attributs)

e Et une étiquette de classe associée.
L’algorithme d’apprentissage va utiliser ces données pour apprendre une fonction de clas-
sification, c’est-a-dire une fonction capable de faire le lien entre les caractéristiques et les

classes. Une fois ce modele entrainé, il peut ensuite étre utilisé pour prédire la classe de

nouvelles données.

24
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e Quelques méthodes de classification supervisée :

— SVM (Support Vector Machine) : cette méthode cherche a trouver la frontiere opti-
male entre les différentes classes. Elle est tres efficace, notamment pour les problémes

de classification binaire.

— Réseaux de neurones (Neural Networks) : ils sont capables de modéliser des relations
complexes entre les données. Lorsqu’ils sont constitués de plusieurs couches (réseaux
profonds), on parle de Deep Learning, particulierement efficace dans le traitement

d’images et la reconnaissance de formes.

— Le MLP (Multi-Layer Perceptron) : est un réseau de neurones artificiels utilisé en
apprentissage supervisé pour la classification et la régression, capable de modéliser

des relations complexes entre les données grace a ses couches cachées.

— Random Forest : ¢’est un ensemble d’arbres de décision utilisés en parallele pour
améliorer la précision du modele. Elle est robuste face au sur-apprentissage et

adaptée aux grandes bases de données.

2.2 Les méthodes de classification supervisées

2.2.1 La méthode de classification SVM (Support Vector Ma-

chine)

Le Support Vector Machine (SVM) est un algorithme d’apprentissage supervisé largement
utilisé pour des taches de classification et de régression. Il s’est imposé comme un outil
performant en apprentissage automatique, notamment grace a sa capacité a gérer des
problemes de classification complexes avec efficacité.

L’objectif du SVM est de maximiser la marge entre les données d’apprentissage les plus
proches de I'hyperplan — appelées vecteurs de support — et I’hyperplan lui-méme. Ces
vecteurs de support jouent un role crucial, car ce sont eux qui définissent précisément la
position de ’hyperplan optimal.

L’un des grands avantages du SVM réside dans sa capacité a généraliser efficacement,
méme a partir d’'un nombre restreint d’exemples d’apprentissage. Cela signifie qu’il peut
classer avec précision de nouvelles données jamais vues auparavant, ce qui en fait un outil
particulierement adapté aux applications a grande échelle.

Le SVM peut traiter aussi bien des données linéairement séparables que non linéairement

séparables :

e Dans le premier cas, un hyperplan linéaire suffit.
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e Dans le second cas, le SVM fait appel a des fonctions noyaux (ou kernels) pour
projeter les données dans un espace de dimension supérieure, ou une séparation
linéaire devient possible.

e Dans le troiséme cas, classification SVM multi classes.

e Premier cas : classes linéairement s séparables
Imaginons un ensemble de données représentant différents types d’avions, caractérisés
par deux attributs principaux : la vitesse maximale et la portée de vol. L’objectif
est de classer ces avions en deux catégories distinctes : < avion de chasse > et

< avion de ligne > .

Pour ce faire, on cherche a construire un hyperplan linéaire de la forme :

fz) =w"(z) +b (2.1)

Cet hyperplan permet de prédire a quelle classe appartient un avion donné, en appliquant
une regle de classification basée sur la position de I’avion par rapport a la frontiere définie

par

o) = +1 S% f(z)>0 (2.2)
-1 si f(z) <0

Dans notre exemple :
Si: f(z) > 0 donc : cette classe correspond ‘a des avions de chasse

Si: f(z) < 0 donc : cette classe correspond ‘a des avions de ligne

Il est possible de tracer plusieurs hyperplans capables de séparer parfaitement les deux
classes. Toutefois, 'objectif du SVM est de déterminer I’hyperplan optimal, c¢’est-a-dire
celui qui maximise la marge entre les exemples des deux classes. Pour cela, il s’agit de cal-
culer les poids optimaux de I’hyperplan a 'aide de techniques d’optimisation numérique,

telles que la descente de gradient.

Les vecteurs de support jouent un réle fondamental dans cette démarche. En effet, ce sont
les exemples les plus proches de la frontiere de décision, donc les plus difficiles a classer
correctement. Ces points sont souvent situés dans des zones ou les classes sont proches,

voire se chevauchent légerement.
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FIGURE 2.1 - deux classes linéairement séparables

En se focalisant sur ces vecteurs de support, le SVM cherche a maximiser la marge, c¢’est-
a-dire a augmenter la distance entre ces points critiques et 'hyperplan. Ce mécanisme
permet d’assurer une meilleure séparation des classes et améliore ainsi la capacité de

généralisation du modele sur de nouvelles données.

Par ailleurs, 'utilisation des vecteurs de support contribue a rendre 1’algorithme plus ef-
ficace, en réduisant le nombre total de points nécessaires pour définir I’hyperplan. Cela se
traduit par des économies de mémoire et un temps de calcul réduit lors de 'application

du modele a de nouveaux exemples.

y=1 y=-1

y=1

margin

FIGURE 2.2 — Processus de mazximisation de la marge
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Une fois 'hyperplan de décision déterminé, il devient possible de classer de nouveaux
exemples en les projetant dans ’espace des attributs. La classification se fait en identi-
fiant de quel coté de 'hyperplan se trouve chaque exemple. Si 'exemple est positionné du
cOté correspondant a la classe < avion de chasse >, il sera alors classé comme tel. A Din-

verse, s'il se situe du coté associé aux < avions de ligne >, il sera attribué a cette catégorie.

e Deuxiéme cas : Classes non linéairement séparables
Dans les situations ou les données ne peuvent pas étre séparées de maniere linéaire
dans leur espace d’origine, le SVM non linéaire intervient comme une solution
efficace. Contrairement a la méthode linéaire qui cherche a tracer un hyperplan
droit entre les classes, cette approche repose sur 'utilisation de transformations de
données permettant de projeter les exemples dans un espace de dimension supérieure,

ol une séparation linéaire devient possible.

Comme illustré dans la figure 2.3, il est évident qu’aucun hyperplan linéaire ne

permettrait de séparer correctement les deux classes dans I'espace d’origine.
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o] p Classe 1
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-4 -2 0 2 4
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FIGURE 2.3 — Exemple de deuz classes non linéairement séparables.

Le principe fondamental de cette méthode repose sur I'application d’une fonction de
transformation, appelée fonction noyau (kernel). Cette fonction permet de calculer
les produits scalaires dans I'espace transformé sans avoir a effectuer explicitement
la transformation elle-méme. Cette technique, connue sous le nom de < trick du
noyau > (kernel trick), permet au SVM d’étre entrainé dans un espace de dimension
plus élevée tout en restant efficace en termes de calcul, sans qu’il soit nécessaire de

connaitre la transformation exacte appliquée aux données.
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FIGURE 2.4 — Projection non linéaire des points dans un espace 3D. En bleu, on visualise une
fonction de décision linéaire qui permet de séparer les classes une fois les données projetées dans
un espace de plus grande dimension.

L’intégration de fonctions noyau dans les SVM permet de modéliser des frontieres de
décision complexes et non linéaires au sein des données. Parmi les noyaux les plus fréquemment
utilisés, on retrouve le noyau gaussien (aussi appelé RBF — Radial Basis Function),

le noyau polynomial et le noyau sigmoide. Chaque noyau possede des caractéristiques
propres, et le choix de I'un ou 'autre dépend principalement de la nature des données et

du type de probleme de classification a résoudre.

La classification non linéaire avec les SVM reprend les étapes fondamentales de la clas-

1.0

‘ sig(t)
Ite—*

| — sis(t) = 7

0.8

0.6

FIGURE 2.5 — La fonction sigmoide

sification linéaire, mais se distingue par ’emploi d’une fonction noyau spécifique lors de
la définition de I'hyperplan de décision. Le processus habituel inclut la récupération des
données d’entrainement, la sélection d'un noyau pertinent, ’ajustement des parametres
du modele via un algorithme d’optimisation, puis I’évaluation et la prédiction sur de nou-

velles données.
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FIGURE 2.6 — La fonction de décision non linéaire

Troiséme cas :

classification SVM multi classes

Le SVM peut également étre appliqué a des problemes de classification compor-

tant plusieurs classes. Pour cela, plusieurs stratégies d’extension du SVM linéaire

existent, notamment les approches One-vs-All (OvA) et One-vs-One (OvO).

Dans I'approche One-vs-All, un classifieur SVM est entrainé pour chaque classe, en

considérant cette
regroupées comm

dans la catégorie

derniére comme la classe positive, tandis que toutes les autres sont
e classes négatives. Lors de la prédiction, ’échantillon est classé

correspondant au classifieur ayant fourni la plus haute valeur de

décision.
o, LG
o \4"‘:’5
/VSQ% 00

(a) 1-vs-1 (b) 1-vs-All

FIGURE 2.7 — Méthodes OVA et OVO
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Quant a la méthode One-vs-One, elle consiste a entrainer un classifieur SVM pour
chaque paire possible de classes. Lors de la classification, chaque classifieur vote
pour une classe, et I'exemple est attribué a la classe ayant obtenu le plus de votes

parmi ’ensemble des comparaisons.

2.2.2 Les réseaux de neurones convolutifs

La classification d’images a l'aide des réseaux de neurones convolutifs (CNN — Convo-
lutional Neural Networks) représente aujourd’hui 'une des approches les plus perfor-
mantes en traitement d’images. Grace a leur capacité a extraire automatiquement des
caractéristiques visuelles hiérarchiques, les CNN sont particulierement bien adaptés a
I’analyse d’images complexes, comme celles issues de la télédétection ou des satellites

d’observation de la Terre.

Les couches convolutionnelles permettent d’identifier des motifs tels que les textures, les
contours, ou les formes, qui sont ensuite interprétés par des couches plus profondes pour
effectuer la classification finale. Cette architecture hiérarchique rend les CNN extrémement

efficaces pour distinguer différentes classes d’objets ou de régions dans une image.

Inpuc layer (51) 4 feature maps
K E‘l (CI}) 4 feature maps (52) & feature maps  (C2) 6 feature maps
s - L "
OQZb o
1 \
l convolution layer | sub-sampling layer | convolution layer I sub-sampling layer | fully connecced MLPl

FIGURE 2.8 — CNN layers

Architecture de réseaux de neurones convolutionnels :

Couches convolutionnelles : La reconnaissance d’objets dans une image consiste a
comparer l'image pixel par pixel afin d’en extraire des caractéristiques visuelles perti-
nentes. Si les réseaux de neurones multicouches (MLP) sont efficaces pour certaines taches
de traitement d’images, ils deviennent rapidement inadaptés face a des images de grande
taille. Cela s’explique par la croissance exponentielle du nombre de connexions nécessaires

avec I'augmentation de la dimension des images.

Par exemple, une image de taille
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200x200x3 (200 pixels de largeur, 200 pixels de hauteur, et 3 canaux de couleur) impli-
querait 120 000 entrées pour un seul neurone. Multiplier ce chiffre par le nombre total de

neurones entraine une charge computationnelle tres élevée, difficile a gérer.

Pour pallier ce probleme, les réseaux de neurones convolutionnels (CNN) introduisent une
structure plus adaptée : la couche de convolution. Cette derniere permet de reconnaitre
des motifs ou formes locales sur une image en appliquant des filtres (ou noyaux) de petite
taille, généralement 2x2 ou 3x3 pixels. Concretement, pour chaque position du filtre sur
la matrice d’entrée, la valeur correspondante dans la matrice de sortie est calculée comme
la somme pondérée des pixels de I'image, chaque pixel étant multiplié par le poids cor-
respondant du filtre. Ce mécanisme réduit fortement le nombre de connexions et permet
d’extraire efficacement des caractéristiques locales, tout en préservant les structures spa-
tiales. Notons que la taille de la matrice de sortie est généralement inférieure a celle de

I'entrée (souvent réduite de deux lignes et deux colonnes lorsque aucun remplissage n’est

appliqué) [9].

b | || Ix1|{1x0|1x1) O | ©
0|1 1 1 0 S N Ox0 [ 1x1 | 1x0] 1 0 4
e 0 [ ] ) I8 B O R Prox1 [0x0f1x1] 1 | 1
0o]0]1 1 0 1 0 1 0|0 1 1 0
0 1 1 010 0 | 1 o || 4
Input Filter | Kernel Input x Filter Feature Map

FIGURE 2.9 — Opération d’une convolution sur image de 5 x 5 pizel.

Couches de pooling : Apres chaque couche convolutive, une couche de pooling (ou
mise en commun) est souvent appliquée pour réduire la dimension spatiale des données.
Cette opération de sous-échantillonnage permet de :

— Diminuer la complexité computationnelle.

— Contrdler le surapprentissage (overfitting).

— Introduire une invariance translationnelle.
Méthodes de pooling courantes :

Max pooling : Sélectionne la valeur maximale dans chaque fenétre (ex : fenétre 2x2).

Avantage : Préserve les features les plus saillantes.
Average pooling : Calcule la moyenne des valeurs. Avantage : Réduit le bruit.

Pooling apprenable : Utilise une combinaison linéaire pondérée des neurones (ex :

learnable pooling).
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Exemple illustratif : La Fig. 3 montre un max pooling avec une fenétre de taille 2x2
et un stride de 2. Chaque bloc de 4 pixels est remplacé par sa valeur maximale, divisant

ainsi la résolution spatiale par deux [10].
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FIGURE 2.10 — Max pooling

L’entrainement d’un réseau de neurone convolutionnelle :

L’entrainement d’un réseau de neurones convolutif (CNN) consiste a déterminer et ajuster
de manieére empirique la valeur de ses poids. Le principe est le suivant : le CNN traite une
image issue de la base de données d’entrainement et effectue une prédiction, c¢’est-a-dire

qu’il indique a quelle classe il pense que cette image appartient.

Puisque la classe correcte de chaque image d’entrainement est connue a l'avance, il est
possible de vérifier si la prédiction est correcte. Selon 'exactitude de la réponse, tous
les poids du réseau sont mis a jour a 'aide d’un algorithme appelé rétropropagation du

gradient de I’erreur.

Ce processus (prédiction, vérification et mise a jour des poids) est répété plusieurs fois sur
I’ensemble des images de la base de données d’entrainement, afin que le modele apprenne

a mieux classer ces données.

Une fois I’entrainement terminé, on évalue les performances du modele en lui présentant
une base de données de validation. Cette base contient des images que le modele n’a jamais
vues auparavant. On mesure alors sa capacité a bien classifier ces images en calculant son

taux de précision, qui correspond a son pourcentage de bonnes classifications.

Analyse des performances du modele apres ’apprentissage :

A la fin du processus d’apprentissage, trois cas de figure peuvent se présenter :
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— Modeéle performant sur les données d’entrainement et de validation :
Le modele a bien appris. Il parvient a reconnaitre correctement aussi bien les images
déja vues que celles qu’il découvre pour la premiere fois.

— Surapprentissage (Overfitting) :
Le modele est trés performant sur les données d’entrainement mais obtient de moins
bons résultats sur les données de validation. Cela indique une mauvaise capacité
de généralisation. Pour y remédier, il est souvent nécessaire d’ajouter davantage
d’images d’entrainement.

— Sous-apprentissage (Underfitting) :
Le modele est peu performant aussi bien sur les données d’entralnement que sur
celles de validation. Cela signifie qu’il n’a pas réussi a apprendre correctement. Dans
ce cas, ajouter plus d’images ne suffit pas; il faut envisager d’utiliser un modele plus

complexe ou mieux adapté au probleme|[11].

Indicateurs de performance d’un classifieur :

Matrice de confusion : Prenons 'exemple d'un classifieur binaire, c’est-a-dire un

modele qui prédit deux classes : classe 0 et classe 1.

Pour évaluer les performances de ce classifieur, on distingue quatre types d’éléments clas-

sifiés :

— Vrai positif (VP) : élément de la classe 1 correctement prédit comme étant de la

classe 1.

— Vrai négatif (VN) : élément de la classe 0 correctement prédit comme étant de la

classe 0.

— Faux positif (FP) : élément de la classe 0 incorrectement prédit comme étant de

la classe 1.

— Faux négatif (FIN) : élément de la classe 1 incorrectement prédit comme étant de

la classe 0.
Ces informations peuvent étre rassemblées et représentées sous la forme d’'une matrice
de confusion.
Dans le cas d'un classifieur binaire, la matrice de confusion est :

En particulier, si la matrice de confusion est diagonale, le classifieur est parfait.
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Classe réelle / Prédite

Classe 0

Classe 1

Classe 0

Vrai Négatif (VN)

Faux Positif (FP)

Classe 1

Faux Négatif (FN)

Vrai Positif (VP)

TABLE 2.1 — Matrice de confusion pour un classifieur binaire

Le graphe de précision : Un autre indicateur essentiel pour évaluer les performances

d’un CNN est le graphe de précision.
Ce graphe représente 1’évolution de la précision du modeéle en fonction du nombre
d’itérations réalisées lors de 'apprentissage et du test.
Il comporte généralement deux courbes :
— une courbe pour les données d’entrainement,
— une courbe pour les données de test.

Si les deux courbes atteignent une précision de 100 %, cela signifie que le classifieur
est parfait, capable de reconnaitre parfaitement aussi bien les données connues que les

nouvelles données.
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FIGURE 2.11 — Le graphe de précision d’un réseau de neurone convolutifs

Le graphe d’erreur : Le graphe d’erreur est une représentation de 1’évolution du

taux d’erreur du modele en fonction du nombre d’itérations réalisées lors de 'ap-

prentissage et du test.

Ce graphe comporte généralement deux courbes :

— une courbe pour les erreurs sur les données d’entrainement,
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— une courbe pour les erreurs sur les données de test.

Lorsque l'erreur diminue sur les deux courbes, cela indique que le modele apprend cor-
rectement. Si les erreurs tendent vers zéro pour les deux ensembles de données, on peut

considérer que le classifieur est parfait.
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FIGURE 2.12 — Le graphe d’erreur d’un réseau de meurone convolutifs

Indicateurs de bas : A partir de la matrice de confusion, plusieurs indicateurs per-
mettent d’évaluer la performance d’un modele de classification. Par exemple, pour évaluer

la qualité de la prédiction sur la classe 1, on définit :

— Précision (Precision) : proportion d’éléments correctement prédits parmi tous

ceux prédits comme appartenant a la classe 1.

La précision est donnée par la formule suivante :

VP
Précision — 9
récision = - T FP (2.3)

— Rappel (Recall) : proportion d’éléments de la classe 1 correctement prédits parmi

tous les éléments réellement de la classe 1.

Le rappel est donné par la formule suivante :

VP

— F-mesure (F1l-score) : mesure de compromis entre la précision et le rappel.
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La F-mesure est exprimée par la formule suivante :

2 X Précision x Rappel

(2.5)

F-mesure =
Précision + Rappel

Ces indicateurs peuvent étre calculés pour chaque classe. La moyenne de ces indicateurs

sur toutes les classes fournit une évaluation globale de la qualité du classifieur.

2.2.3 La méthode de classification MLP (Multi Layer Percep-

tron)

La classification par MLP (Multi-Layer Perceptron) est une méthode d’apprentissage
automatique utilisée pour la classification de données. Le MLP s’inscrit dans le domaine
de I'intelligence artificielle, et plus précisément dans le champ du machine learning, comme

illustré dans la figure 2.8
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FIGURE 2.13 — Relation entre le MLP et le IA

Le MLP (Multi-Layer Perceptron) est un type de réseau de neurones artificiels, également
connu sous le nom de réseau neuronal feedforward (Deep Feedforward Network ou Feed-
forward Neural Network). Il se compose de plusieurs couches de neurones interconnectées,

organisées de maniere séquentielle.

Le MLP fait partie du domaine du machine learning, qui vise a apprendre automatique-
ment a partir de données pour réaliser des prédictions ou des classifications. Il repose sur

des algorithmes d’apprentissage supervisé permettant d’ajuster les poids des connexions
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entre neurones, dans le but d’identifier les modeles et les relations sous-jacentes présentes

dans les données d’entrée.
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FIGURE 2.14 — Diagramme du Perceptron Multi-Couches (MLP) avec quatre couches cachées.

La mise en ceuvre d’un classifieur basé sur un réseau de neurones MLP (Multi-Layer Per-
ceptron) suit plusieurs étapes essentielles, permettant d’assurer un apprentissage efficace
et une bonne capacité de généralisation.

Ces étapes principales sont :

1. Préparation des données :
Avant I'entrainement du modele, les données doivent étre prétraitées. Cela inclut

généralement :

— La séparation en ensembles d’apprentissage et de test.

— La normalisation des caractéristiques.

Et d’autres techniques de traitement préalable adaptées au type de données concerné.
2. Définition de ’architecture du réseau :
L’architecture du réseau MLP est déterminée en spécifiant :

— Le nombre de couches cachées.

— Et le nombre de neurones par couche.
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Chaque couche cachée permet d’extraire des représentations progressives et abs-

traites des données d’entrée.

Voici quelques architectures courantes de MLP :

— MLP a une seule couche cachée : Composé d’une couche d’entrée, d’'une couche
cachée et d'une couche de sortie. C’est I'architecture la plus simple, adaptée aux

taches de classification de base.

— MLP a plusieurs couches cachées : Integre plusieurs couches intermédiaires entre
I’entrée et la sortie. Cela permet d’apprendre des représentations hiérarchiques com-

plexes, bien adaptées aux problémes nécessitant une modélisation plus approfondie.

— MLP avec connexions résiduelles : Ce type d’architecture ajoute des connexions
directes entre certaines couches, permettant a l'information de contourner une ou
plusieurs couches. Cette stratégie facilite 'apprentissage profond et améliore la sta-

bilité du modele.

— MLP avec régularisation : Pour prévenir le surapprentissage (overfitting), diverses
techniques de régularisation peuvent étre employées, telles que : La régularisation
L1 ou L2, le dropout, ou d’autres méthodes visant a limiter la complexité du modele

et améliorer sa capacité de généralisation.

Le choix de I'architecture dépend fortement de la complexité des données, des res-

sources de calcul disponibles, et des performances souhaitées.

3. Initialisation des poids :
Les poids synaptiques reliant les neurones sont initialisés de maniere aléatoire ou sui-
vant une distribution spécifique. Ces poids seront ajustés au cours de 'apprentissage

pour minimiser I’erreur entre les sorties prédictives du réseau et les sorties attendues.

4. Propagation avant (Forward Propagation) :
Lors de cette étape, les données sont propagées a travers le réseau, couche par

couche :

— A chaque neurone, une opération linéaire est effectuée (pondération de l’entrée).
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— Puis, une fonction d’activation est appliquée pour introduire une non-linéarité.

La propagation commence a la couche d’entrée et se poursuit jusqu’a la couche de

sortie, en passant par toutes les couches cachées.

Remarque sur la fonction d’activation :
Elle est essentielle pour permettre au réseau de modéliser des relations non linéaires
entre les entrées et les sorties. Sans elle, le réseau se comporterait comme un simple

modele linéaire, limitant sa capacité a résoudre des problemes complexes.
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FIGURE 2.15 — Forward propagation

Parmi les différentes fonctions d’activation utilisées dans les réseaux de neurones, on peut

citer :

e la fonction sigmoide :Elle est définie par 'expression suivante :

1

=17

Cette fonction produit une sortie comprise entre 0 et 1, ce qui la rend parti-

(2.6)

culierement adaptée aux probléemes de classification binaire ou a la modélisation

de probabilités. Grace a sa forme en ”S”, elle permet de transformer des valeurs
d’entrée continues en probabilités interprétables.

e la fonction tangente hyperbolique (tanh) :elle est définie par la fonction
suivantes : P

f(z) = prp— (2.7)

Cette fonction produit des valeurs de sortie comprises dans l'intervalle (-1,1), ce qui

la rend particulierement utile pour gérer des données contenant a la fois des valeurs
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FIGURE 2.16 — Fonction sigmoide

positives et négatives, tout en maintenant une sortie centrée autour de zéro.
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FIGURE 2.17 — La fonction tanh

e Fonction ReLU (Rectified Linear Unit) : La fonction ReLU est l'une des
fonctions d’activation les plus utilisées dans les réseaux de neurones, en particulier

dans les réseaux profonds (deep learning), elle est definie comme

f(z) = max(0, x) (2.8)

Le choix de la fonction d’activation dépend fortement de la nature du probléme ainsi
que des caractéristiques des données. Chaque fonction d’activation peut influen-
cer différemment le processus d’apprentissage du modele, et certaines sont mieux
adaptées que d’autres a des types spécifiques de taches ou de données.

5. Calcul de l’erreur :
L’écart entre les prédictions du réseau et les valeurs réelles est évalué a I'aide d'une
fonction de perte, telle que la moyenne des erreurs quadratiques (Mean Squared Er-

ror, MSE). Cette étape permet de mesurer la performance du modele et de guider
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FIGURE 2.18 - La fonction RELU

I'optimisation lors de 'apprentissage.

Note :

La fonction d’erreur (ou loss function) est une expression mathématique qui permet
de mesurer ’écart entre les prédictions du modele et les valeurs réelles issues des
données d’apprentissage. Elle joue un role fondamental dans le processus d’appren-
tissage automatique, en particulier dans la classification a 1’aide des réseaux MLP

(Multi-Layer Perceptron), car elle guide 'optimisation des parametres du modele.

Il existe plusieurs fonctions d’erreur couramment utilisées, chacune étant choisie en
fonction du type de probleme (régression ou classification) et des caractéristiques

des données.

Voici quelques exemples de fonctions d’erreur fréquemment utilisées :

La fonction d’erreur (ou loss function) est une fonction mathématique qui
permet de mesurer I’écart entre les prédictions générées par un modele et les
valeurs réelles issues des données d’apprentissage. Elle joue un role central dans le
processus d’apprentissage automatique, en particulier dans la classification a l'aide
des réseaux de neurones MLP (Multi-Layer Perceptron), puisqu’elle guide

I’ajustement des poids du réseau en minimisant 1’erreur.

Le choix de la fonction d’erreur dépend du type de tache (classification ou
régression) et de la nature des données. Voici quelques fonctions d’erreur

couramment utilisées :
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Nom Formule Utilisation

Erreur quadratique | MSE = 1 5% | (y; — 9;)? Régression

moyenne (MSE)

Erreur absolue moyenne | MAE = 1577 |y, — ;] Régression

(MAE)

Entropie croisée (Cross- | L =—>""; y;log(yi:) Classification binaire ou

Entropy) multi-classes

Hinge Loss L =537 max(0,1 — v;9;) Support Vector Machines
(SVM)

Divergence de Kullback- | Dgr(P || Q) =3 P(z)log 5 Fl(z) Comparaison de distribu-
Leibler (KL) tions (classification)

Q(z)

TABLE 2.2 — Fonctions d’erreur courantes en apprentissage automatique

— 6. Rétropropagation (Backpropagation)

ou :

La rétropropagation est une étape essentielle dans ’apprentissage des réseaux de
neurones. Elle consiste a propager [’erreur en sens inverse, depuis la couche de sortie
jusqu’a la couche d’entrée, dans le but d’ajuster les poids du réseau et d’améliorer

ses performances.

Ce processus repose sur le calcul du gradient de la fonction de perte par rapport aux
poids, en appliquant la régle de la chaine (chain rule). Chaque poids est mis a

jour de maniére a minimiser ’erreur de prédiction.

Etapes de la rétropropagation :

Calcul de l’erreur : On évalue I'écart entre la sortie prédite et la sortie réelle a

I'aide d’une fonction de perte (par exemple MSE ou entropie croisée).

Calcul des gradients : On détermine 'influence de chaque poids sur 'erreur, en

calculant la dérivée partielle de la fonction de perte par rapport aux poids.

Propagation des gradients : Les gradients sont transmis couche par couche
vers 'arriere a ’aide de la régle de dérivation, afin de mettre a jour les couches

précédentes.

Mise a jour des poids : Chaque poids est ajusté selon I'algorithme de descente
de gradient :
(t+1) _  (®) oL (2.9)

wi; = wy — -
Y ow;;

w;; : poids entre le neurone j et 1,
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— 1 : taux d’apprentissage (learning rate),
— L : fonction de perte.
L’objectif de la rétropropagation est de minimiser la fonction de perte en ajustant

les parametres internes du réseau de maniere optimale, améliorant ainsi la capacité de

généralisation du modele.

Backpropagation

FIGURE 2.19 — Rétropropagation (backpropagation)

Note : Plusieurs algorithmes d’optimisation sont utilisés pour ajuster les poids dans les
réseaux de neurones, notamment les MLP (Multi-Layer Perceptrons). Voici quelques-uns

des plus courants :

— Descente de gradient (Gradient Descent) : C’est I'algorithme de base utilisé
dans la rétropropagation. Il consiste a ajuster les poids dans la direction opposée au

gradient de la fonction de perte. Plusieurs variantes en sont issues :

A Cost(a)

Starting point

Target
(Minimum)

FIGURE 2.20 — Descente de gradient

— SGD (Stochastic Gradient Descent) : les poids sont mis & jour apres

chaque exemple.
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— Mini-batch Gradient Descent : les poids sont mis a jour par petits lots
d’exemples, ce qui permet un compromis entre rapidité et stabilité.
— Gradient Descent with Momentum : ajoute une composante d’inertie pour
accélérer 'apprentissage et éviter les oscillations.
— RMSprop (Root Mean Square Propagation) : Cet algorithme ajuste le taux
d’apprentissage de chaque poids en utilisant une moyenne mobile pondérée des carrés

des gradients. Il est particulierement adapté aux problemes non stationnaires.

Convergence Comparison: ADAGRAD vs RMSprop

—®- ADAGRAD (x}

ADAGRAD (y)
—— RMSprop (x)
—&— RMSprop (y)

Parameter Value
o

T T T T T T u
o] 5 10 15 20 25 30
Number of Iterations

FIGURE 2.21 — Root Mean Square Propagation

Chaque méthode présente des avantages et des inconvénients, et le choix de 1’algo-
rithme dépend généralement du probleme a traiter et des performances souhaitées.
— T7.Répétition des étapes 4 a 7 :
Les étapes de propagation avant, calcul de ’erreur, rétropropagation et mise a jour
des poids sont répétées de maniere itérative. Ce cycle d’apprentissage se poursuit soit
pendant un nombre fixe d’itérations (appelées époques), soit jusqu’a l'atteinte
d’'un critere de convergence, lorsque la fonction de perte se stabilise ou que les
performances de validation ne s’améliorent plus.
— 8.Evaluation et prédiction :
Une fois I’entrainement terminé, le réseau MLP peut étre utilisé pour effectuer des
prédictions sur de nouvelles données. Lors de cette étape, seule la propagation

avant est utilisée, sans mise a jour des poids.
L’efficacité du modele est ensuite évaluée a ’aide de plusieurs indicateurs de per-
formance, parmi lesquels :

— la précision (accuracy),

— le rappel (recall),

— la matrice de confusion,
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— la courbe ROC et 'AUC.

Ces mesures permettent d’apprécier la capacité du modele a généraliser sur des

données inconnues.

2.2.4 La méthode de classification random forest

La méthode de propagation Random Forest (ou forét aléatoire) est un algorithme d’ap-
prentissage automatique supervisé, largement utilisé pour des taches de classification et
de régression. Développé par Leo Breiman en 2001, ce modele s’appuie sur le principe
d’ensembling, combinant les prédictions de plusieurs arbres de décision pour améliorer la

précision et réduire le surajustement (overfitting).

Le Random Forest se distingue par sa robustesse et sa capacité a gérer des jeux de données
complexes, bruyants ou avec de nombreuses caractéristiques. Son fonctionnement repose

sur deux mécanismes clés :

e Le bagging : Chaque arbre est entrainé sur un sous-ensemble aléatoire des données

(avec rééchantillonnage, ou bootstrap).

e La sélection aléatoire des caractéristiques : A chaque nceud, seule une partie

des variables est considérée pour la division, favorisant la diversité des arbres.

Grace a cette approche, le Random Forest limite la variance du modele tout en mainte-
nant un biais faible, offrant des performances compétitives méme sans réglage hyperpa-
ramétrique poussé. De plus, il fournit des indicateurs d’importance des variables, facilitant

I'interprétation des résultats.

Dans des domaines comme la bio-informatique, la finance ou la télédétection, cette méthode
est appréciée pour sa fiabilité et sa scalabilité. Son application a des problemes de propa-
gation (par exemple, la prédiction de la diffusion d’une maladie ou d’une information) en
fait un outil polyvalent et puissant [12].

La télédétection consiste a acquérir des informations sur la surface terrestre a l'aide de
capteurs embarqués sur des satellites, drones ou avions. Ces capteurs collectent des images

multispectrales, hyperspectrales ou radar.

Pour interpréter ces images (ex. : cartographier 'occupation du sol, détecter des change-
ments, identifier des cultures), on a besoin d’algorithmes de classification puissants. C’est
la que Random Forest intervient. A cet effet, il est important de d ecrire le processus de

formation d’un arbre de d ecision (decision tree).
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Arbre de décision (decision tree) :

Un arbre de décision est une méthode utilisée pour la classification ou la régression. Il se
présente sous forme d’une structure arborescente dans laquelle chaque noeud représente

une décision a prendre a partir d’un attribut.

L’arbre commence par un nceud racine qui contient I’ensemble des données d’entrainement.
Ce neeud se divise en deux ou plusieurs sous-nceuds a 1’aide d’un processus appelé split-
ting. Si un sous-noeud se divise a nouveau, il devient un nceud de décision. S’il ne se
divise plus, on 'appelle noeud terminal ou feuille. L’ensemble formé par des noeuds de

décision et des noeuds terminaux constitue une branche ou un sous-arbre.

Pour classer un exemple, on le fait passer de la racine jusqu’a une feuille. A chaque étape,
une décision est prise selon la valeur d’un attribut. Chaque nceud représente un test, et

chaque branche correspond a une réponse possible. Le chemin suivi permet d’aboutir a

ROQT Node
Branch/ Sub-Tree
s !

une décision finale.

Splitting Ty

Terminal Node

Note:- A is parent node of B and C.

Terminal Node Terminal Node

Terminal Node

FIGURE 2.22 — Arbre de décision

L’objectif du splitting est de créer des sous-noeuds aussi homogenes que possible, c¢’est-
a-dire contenant des exemples appartenant majoritairement a une seule classe. Cette ho-

mogénéité est mesurée par différents critéres de division, parmi lesquels :

— L’entropie et le gain d’information (utilisés dans 'algorithme ID3),
— Le gain de ratio (utilisé dans l'algorithme C4.5),
— L’indice de Gini (utilisé dans l'algorithme CART),

— L’erreur de classification.

Voici quelques algorithmes populaires utilisés pour construire des arbres de décision :
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— ID3 (Iterative Dichotomiser 3) : utilise le gain d’information pour choisir les

attributs les plus pertinents a chaque division.

— C4.5 : amélioration de ID3, capable de gérer les variables continues et les valeurs

manquantes, utilisant le gain de ratio.

— CART (Classification And Regression Tree) : crée uniquement des arbres

binaires et utilise 'indice de Gini pour mesurer la pureté.

— MARS (Multivariate Adaptive Regression Splines) : adapté aux problémes

de régression multivariée non linéaire[13].

Le choix du nceud racine est tres important. Un mauvais choix peut réduire considérablement
la performance du modele. C’est pourquoi ces algorithmes utilisent des criteres objectifs

pour sélectionner 'attribut de départ :

e L’entropie : L’entropie est un concept fondamental en théorie de 'information, en
statistique et en apprentissage automatique qui permet de quantifier le degré d’incertitude
ou de désordre associé a une information. Initialement introduite par Claude Shannon en
1948 dans le cadre de la théorie de la communication, cette notion s’est révélée essentielle
pour évaluer la quantité d’information contenue dans un message ou dans une distribution

de probabilités. Plus I'entropie est élevée, plus l'incertitude est grande, et inversement|[14].

Prenons I'exemple classique du lancer d’une piece de monnaie. Dans le cas d’une piece
parfaitement équilibrée, ou la probabilité d’obtenir "pile” est égale a celle d’obtenir "face”
(soit 0,5 pour chaque), 'entropie est maximale. Cela signifie que le résultat est totalement
imprévisible, et I'incertitude est a son comble. Mathématiquement, cela se traduit par une
entropie de 1 bit, ce qui correspond a la quantité d’information nécessaire pour encoder

le résultat d’un lancer.

En revanche, si la piéce est truquée et donne toujours "pile” (probabilité de 1 pour "pile”
et 0 pour "face”), l'entropie est nulle. Il n’y a aucune incertitude, car le résultat est
certain. Entre ces deux extrémes, pour des probabilités intermédiaires, ’entropie varie
contintiment, atteignant son maximum a 0,5, comme le montre la courbe bien connue de

I’entropie d’une variable binaire.

Pour une variable aléatoire discrete X pouvant prendre n valeurs distinctes avec des

probabilités py, ps, ..., pn, Uentropie H(X) est définie par :

H(X)=- ipi log, pi (2.10)

i=1
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FIGURE 2.23 — L’entropie

Cette formule, bien que simple, a des implications profondes. Le logarithme en base 2
assure que l’entropie est mesurée en bits, ce qui correspond a l'interprétation en termes
de quantité d’information. Notons que si I'une des probabilités p; est nulle, le terme

correspondant dans la somme est considéré comme nul, car lim,_,oplogp = 0.

L’entropie peut également étre généralisée a des cas multivariés. Par exemple, pour un
ensemble de données partitionné selon un attribut X, on peut définir I’entropie condi-
tionnelle H(7T'|X), qui mesure l'incertitude restante sur 7" apreés avoir observé X. Cette
notion est cruciale dans des algorithmes comme les arbres de décision, ou ’on cherche a

réduire progressivement 1’entropie des sous-ensembles créés.

H(T | X) =Y P(i)- H(i) (2.11)

ieX

e Le gain d’information Le Gain d’'Information (IG) est une mesure clé en appren-
tissage automatique pour évaluer l'efficacité d’un attribut a segmenter un ensemble de
données selon les classes cibles. Il quantifie la réduction d’incertitude (entropie) apportée

par un attribut lors de la construction d’'un arbre de décision.

IG(T, X) = H(T) — H(T | X) (2.12)

Les arbres de décision sont des outils puissants en apprentissage supervisé. Toutefois,
lorsqu’on les utilise sur un jeu de données comportant un grand nombre de colonnes (ou

caractéristiques), ils présentent un risque élevé de surapprentissage (overfitting).

En effet, un arbre de décision non contraint peut apprendre par coeur les données d’en-
tralnement. Il peut aller jusqu’a créer une feuille distincte pour chaque observation, attei-
gnant ainsi une précision de 100 % sur les données d’entrainement. Ce comportement nuit

a sa capacité a généraliser sur de nouvelles données, ce qui entraine une baisse significative
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FIGURE 2.24 — Le gain d’information

de la performance sur I’ensemble de test ou en production.

Pour remédier a ce probleme, on utilise 'algorithme Random Forest, qui repose sur une

approche d’ensemble (ensemble learning) permettant de réduire la variance des modeles

tout en conservant une bonne capacité de prédiction.

Le processus de construction d’'une Random Forest se décompose en plusieurs étapes

clés [15] :

1.

Création d’un ensemble d’arbres de décision indépendants

Random Forest construit un grand nombre d’arbres de décision, chacun étant en-
trainé indépendamment des autres.

Echantillonnage aléatoire avec remplacement (méthode bootstrap)

Pour chaque arbre, un échantillon aléatoire des données d’entrainement est généré
(avec remplacement). Cela signifie que chaque arbre est entrainé sur un sous-ensemble
différent, ce qui introduit de la diversité entre les arbres.

Sélection aléatoire des caractéristiques a chaque division

Lors de la construction de chaque noeud de 'arbre, un sous-ensemble aléatoire de
variables est sélectionné parmi toutes les caractéristiques. Cela réduit la corrélation
entre les arbres et améliore la robustesse du modele.

Construction des arbres de décision

Chaque arbre est ensuite construit en divisant récursivement les sous-ensembles de
données en fonction des variables sélectionnées. Les criteres de division peuvent

étre :

— l'indice de Gini (mesure d’impureté),
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— ou l'entropie (basée sur la théorie de l'information).

L’objectif est de maximiser la pureté des nceuds a chaque étape.
5. Agrégation des prédictions finales

Une fois tous les arbres construits, les prédictions individuelles sont agrégées :

— Pour un probleme de classification : on utilise un vote majoritaire entre les

prédictions des arbres.

— Pour un probleme de régression : on calcule la moyenne des prédictions numériques.

#Trees:1

#Trees:25

#Trees:50

o ot

ale
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%
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FIGURE 2.25 — (a) une seule arbre de décision (b) 25 arbres de décision (c) 50 arbres de décision

2.2.5 Comparaison entre les méthodes de classifications super-
visées

La performance des méthodes de classification supervisée dépend de plusieurs facteurs cru-
ciaux qui interagissent de maniere complexe. Comprendre et maitriser ces facteurs permet
d’améliorer la précision des modeles de classification et de garantir leur efficacité dans des
contextes réels. Les principaux éléments qui influencent cette performance sont : la qua-
lité des données, la taille de 1’échantillon d’apprentissage, le choix des caractéristiques

pertinentes et les parametres propres a chaque algorithme.

SVM (Support Vector Machine) :[16]

Bien que les SVM soient efficaces pour la classification, ils présentent plusieurs inconvénients.
Leur complexité algorithmique élevée peut rendre leur entrainement cotliteux, surtout
sur de grands ensembles de données. Ils sont également sensibles au choix des hyperpa-
rametres, et une mauvaise sélection peut nuire a la performance. De plus, les SVM ne

gerent pas bien les données déséquilibrées et sont souvent percus comme des modeles
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"boite noire”, rendant leur interprétabilité limitée.

Avantages

Inconvénients

+ Excellente performance en haute
dimension (p.ex. text mining)

+ Geére les frontiéres non-linéaires
via le kernel trick

+ Résistance au sur-apprentissage
(bonne généralisation)

+ Efficace sur petits/moyens jeux
de données

+

Théorie mathématique solide
(maximisation de la marge)

+ Peu sensible au "fléau de la di-
mension”

— Complexité algorithmique élevée
(O(n?) & O(n?))

— Sensible au choix des hyperpa-
rametres (C, 7)

— Interprétabilité limitée (modele
"boite noire”)

— Performances médiocres
données déséquilibrées

sur

— Nécessite un prétraitement des
données (normalisation)

— Difficile a adapter aux tres
grands datasets

TABLE 2.3 — Avantages et Inconvénients des SVM

Les réseaux de neurones convolutifs (CNN) :[17]

Bien que les réseaux de neurones soient tres puissants, ils présentent certains inconvénients.
Ils nécessitent des ressources computationnelles importantes, sont sensibles au surappren-
tissage et a la sélection des hyperparametres, et manquent souvent d’interprétabilité. Le

tableau suivant résume ces limitations.

Avantages

Inconvénients

Tres performants pour ’analyse d’images,
vidéos et données spatiales

Réduction du besoin de prétraitement
grace a l'extraction automatique de ca-
ractéristiques

Réduction du nombre de parametres gréace
aux filtres partagés

Capables de détecter des motifs locaux
(textures, bords, formes)

Efficaces dans les architectures modernes
de deep learning

Requiert une grande puissance de calcul
(GPU recommandé)

Difficiles & interpréter (modele “boite
noire”)

Nécessitent beaucoup de données pour un
bon entrainement

Sensibles aux changements de position,
d’échelle ou de rotation sans ajustement

Temps d’entrainement long

TABLE 2.4 — Avantages et Inconvénients des réseauz de neurones convolutifs (CNN)
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MLP (Multi Layer Perceptron)

Les MLP (Multi-Layer Perceptron) sont largement utilisés pour résoudre des problemes de
classification et de régression. Cependant, comme toute méthode, ils présentent certains
avantages et inconvénients. Le tableau ci-dessous résume les principaux points a considérer

lorsqu’on utilise cette méthode.

Avantages Inconvénients

+ Capacité a modéliser des re- — Nécessite un grand nombre de
lations complexes entre les données d’entralnement pour de
données bonnes performances

+ Utilisé pour des problemes de — Entrainement long et coliteux en
classification et régression ressources computationnelles

+ Adapté a une grande variété de — Sensible au surapprentissage
données (images, textes, etc.) (overfitting) sans régularisation

+ Bonnes performances pour des appropriée
probléemes non linéaires — Manque d’interprétabilité,

modele "boite noire”

TABLE 2.5 — Avantages et Inconvénients des MLP (Multi-Layer Perceptron)

Random forest :

La méthode Random Forest est une technique d’apprentissage supervisé fondée sur un
ensemble d’arbres de décision. Elle est largement utilisée en raison de sa robustesse, de sa
capacité a traiter des données complexes et de ses bonnes performances en classification
comme en régression. Toutefois, comme tout algorithme, elle présente des points forts
ainsi que certaines limitations. Le tableau suivant résume les principaux avantages et

inconvénients associés a cette méthode.

e La classification non-supervisée : La classification non supervisée, aussi ap-
pelée clustering, est une technique d’apprentissage automatique ou l'on cherche a
regrouper des données similaires sans utiliser de labels prédéfinis. Contrairement
a la classification supervisée, ou chaque exemple d’entrainement est associé a une
étiquette de classe connue, dans la classification non supervisée, ’algorithme doit
découvrir lui-méme la structure ou les motifs dans les données.

L’objectif principal de la classification non supervisée est d’identifier des groupes
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Avantages

Inconvénients

Peut traiter efficacement des jeux de
données contenant de nombreuses ca-
ractéristiques.

Réduit le risque de surapprentissage
grace a la combinaison des prédictions
de plusieurs arbres.

Convient aussi bien aux taches de clas-
sification qu’a la régression.

Permet d’estimer "importance des ca-
ractéristiques dans le modele.

Peut gérer des valeurs manquantes sans
prétraitement complexe.

Moins facile & interpréter que des
modeles simples comme les arbres de
décision.

Sensible aux données bruitées qui
peuvent affecter la précision.

Nécessite des ressources de calcul et
mémoire importantes pour de grands
ensembles d’arbres.

TABLE 2.6 — Avantages et Inconvénients de la méthode Random Forest

naturels ou des structures cachées dans un jeu de données. Cette approche peut étre

utilisée dans plusieurs domaines, notamment :

— Segmentation de clients en marketing pour cibler des groupes ayant des

comportements similaires ;

— Regroupement d’images similaires dans des bases de données d’images ou

des systémes de reconnaissance ;

— Détection d’anomalies, comme la fraude ou les comportements inhabituels

dans les données ;

— Réduction de la dimensionnalité pour simplifier I’analyse ou la visualisa-

tion des données.

e Quelques méthodes de classification non-supervisée :

— Mean Shift :Se base sur les pics de densité dans l'espace des caractéristiques.

— K-Means :

cluster.

Regroupe les points en k clusters selon leur distance au centre de

2.3 Les méthodes de classification non-supervisées

2.3.1 La méthode de Mean Shift

L’algorithme Mean Shift est une méthode non paramétrique de regroupement de données

(clustering) qui identifie les zones de forte densité dans un espace de caractéristiques
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sans nécessiter de spécifier le nombre de clusters a l'avance. Il fonctionne en déplacant
itérativement une fenétre vers la moyenne des points de données dans son voisinage,
convergeant ainsi vers les modes (maximums locaux) de la distribution de densité. Cette
approche est particulierement utile pour détecter des structures complexes dans les données

et est largement utilisée en traitement d’image et en vision par ordinateur|[18].

Le principe de fonctionnement :

L’algorithme Mean Shift est une méthode de classification non supervisée basée sur I’ana-
lyse de la densité des données. Contrairement a des techniques comme K-Means, il ne
nécessite pas de spécifier le nombre de clusters a I'avance. Il fonctionne en déplagant pro-
gressivement une fenétre de recherche vers les zones de plus forte densité de points dans
I’espace des données, ce qui permet d’identifier automatiquement les centres de clusters.
Cette approche est particulierement utile pour détecter des structures complexes dans des

jeux de données non étiquetés.

1. Principe de Base de Mean Shift

L’objectif de l'algorithme Mean Shift est de localiser les modes (maxima locaux) d'une

fonction de densité de probabilité estimée a partir des données.

On utilise un noyau (par exemple, gaussien ou uniforme) pour estimer la densité autour

de chaque point.

Chaque point est déplacé itérativement vers une région de plus haute densité selon la
formule de Mean Shift.

2. Initialisation de Mean Shift

L’initialisation consiste a choisir les points de départ pour l'algorithme. Plusieurs ap-

proches existent :

(a) Initialisation par les Points de Données
Chaque point du dataset est utilisé comme centroide initial. L’algorithme applique ensuite

la procédure Mean Shift pour déplacer chaque point vers un mode.

Probléme : Calculiquement cofiteux si le dataset est grand.

(b) Initialisation par un Sous-Echantillonnage
Pour réduire la complexité, on peut initialiser Mean Shift sur un sous-ensemble des
données (par exemple, via un échantillonnage aléatoire).

Moins précis, mais plus rapide.
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(c) Initialisation sur une Grille (pour la Segmentation d’Image)

Dans le cas d'une image, on peut initialiser Mean Shift sur une grille réguliere (pixels
espacés) plutot que sur tous les pixels.

Cela accélere le traitement tout en conservant une bonne approximation des régions ho-

mogenes.

(d) Initialisation via un Pré-Clustering (K-Means, etc.)
Une méthode hybride consiste a d’abord appliquer un algorithme rapide comme K-Means

pour obtenir des centroides initiaux, puis a affiner avec Mean Shift.

3. Formule de Mean Shift

Pour chaque point initial x, le déplacement se calcule comme dans la formule 2.13 :

m(zx) = ??lﬁéfx__x;)j)vz —x (2.13)

ou K est le noyau (ex. : noyau gaussien), et z; les points du dataset.

4. Criteres d’Arrét

L’algorithme s’arréte selon deux conditions :

— Le déplacement devient inférieur a un seuil de tolérance ¢.

— Un nombre maximal d’itérations est atteint.

Example :

L’image ci-dessous illustre I'application de ’algorithme Mean Shift sur un ensemble de
données synthétiques en deux dimensions. Cet algorithme de clustering non supervisé
permet d’identifier automatiquement le nombre de groupes (ou clusters) présents dans les

données, sans avoir a spécifier ce nombre a I’avance [19].

Nombre de clusters détectés : Le titre de la figure affiche Estimated number of clus-
ters : 3, ce qui signifie que 'algorithme a trouvé trois regroupements distincts dans les

données.

Couleurs et formes : Chaque point du nuage appartient a un cluster identifié par une

couleur et un symbole particulier :

— Points bleus (ronds) pour le premier cluster.
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Estimated number of clusters: 3

.|
H A

o

] X

=

.

B

FIGURE 2.26 — Résultat du clustering avec Mean Shift. Trois clusters sont détectés automati-
quement.

— Points roses (triangles) pour le second cluster.

— Points jaunes (croix) pour le troisiéme cluster.

Centroides détectés : Les grands symboles noirs au centre de chaque région représentent
les modes de densité détectés par l'algorithme. Ils sont obtenus par déplacement itératif

de chaque point vers la zone la plus dense selon la formule :
?:1 K(.T — xz):cl

m(z) = " K@ —u) x (2.14)

ou K est un noyau (généralement gaussien) qui pondere la contribution des points voisins,

et x; sont les points du jeu de données.

Méthode : L’algorithme déplace progressivement chaque point vers un maximum local
de densité. Une fois que les déplacements deviennent négligeables (selon un critere de
convergence), le point est considéré comme fixé. Tous les points ayant convergé vers le

méme mode forment un méme cluster.

Conclusion : Cet exemple montre la capacité de I’algorithme Mean Shift a détecter des
regroupements naturels dans des données sans avoir a définir leur nombre au préalable.
Contrairement a d’autres méthodes comme K-Means, il s’adapte a la forme et a la densité

des clusters.
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Les avantages et les inconvénients de Mean Shift :

Avantages de Mean Shift

Inconvénients de Mean Shift

Ne nécessite pas de spécifier le
nombre de clusters a ’avance.

Colit computationnel élevé, sur-
tout pour les grands ensembles de
données.

Capable de détecter des clusters de
formes arbitraires.

Sensible au choix de la largeur de
bande (bandwidth).

Robuste aux valeurs aberrantes
grace au noyau.

Moins efficace pour les jeux de
données trés volumineux.

Approche non paramétrique basée
sur la densité.

Performance réduite dans les es-
paces de grande dimension.

Peut localiser les modes de la den-
sité (pas seulement du clustering).

Résultat parfois non déterministe
selon l'implémentation.

TABLE 2.7 — Avantages et inconvénients de [’algorithme Mean Shift

2.3.2 La méthode K-means

Cet algorithme a été largement utilisé pour traiter de grands jeux de données en raison

de sa rapidité. Nous étudions d’abord son fonctionnement, puis ses propriétés.

Principe

Supposons qu’il existe K classes distinctes. L’algorithme commence par sélectionner K
centres de classes, notés pq, ..., g, parmi les individus. Ces centres peuvent étre choisis
soit par 'utilisateur pour leur représentativité, soit de maniere aléatoire. Ensuite, les deux

étapes suivantes sont répétées de maniere itérative :

— Pour chaque individu qui n’est pas un centre de classe, on détermine le centre de

classe le plus proche. Cela permet de définir K classes C,...,Ck, ou :

C; = {ensemble des points les plus proches du centre y;}.

— Dans chaque nouvelle classe Cj, le centre de classe p; est recalculé comme le bary-

centre des points appartenant a Cj.

L’algorithme s’arréte selon un critére défini par I'utilisateur, qui peut étre I'un des sui-

vants :

— Le nombre maximal d’itérations est atteint.
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— L’algorithme a convergé, c’est-a-dire que les classes ne changent plus entre deux
itérations.
— L’algorithme a "presque” convergé, c¢’est-a-dire que 'inertie intra-classe ne s’améliore

plus de maniere significative.

Example

La figure 2.26 illustre le déroulement de ’algorithme sur un exemple avec quatre points :
a(—=1,1), 6(0,1), ¢(3,0) et d(3,—1), a classer en 2 groupes. On observe que, méme si
les centres de classes sont mal initialisés, ’algorithme converge en identifiant les “vraies”

classes.

FIGURE 2.27 — Example de classification K-means avec quatre points

Propriétés de ’algorithme

Figure 2.27 Une illustration de l'algorithme K-means. (1) On dispose de 4 points a classer
en deux classes. (2) A Tinitialisation, deux de ces points sont choisis comme centres de
classe. (3) Deux classes sont créées en regroupant les autres points en fonction du centre
de classe le plus proche. (4) On définit les nouveaux centres de classe comme étant le
barycentre des classes nouvellement créées. (5) On regroupe a nouveau les points. (6) On
définit les nouveaux centres de classes. A I’étape suivante, rien ne change, 'algorithme a

converge.



2.4 Conclusion 60

Comment justifier 'algorithme des K-means dans le cadre de notre objectif de minimi-
sation de 'inertie intra-classe Iy 7 On peut démontrer (voir Annexes) que chacune des
deux étapes de 'algorithme réduit Iy (ce qui est également observable visuellement dans
I'exemple précédent). Ainsi, a chaque itération, la classification s’améliore au regard du
critere Iyy. Comme la marge d’amélioration est finie (I'inertie intra-classe ne pouvant pas
étre inférieure & celle de la partition optimale), 'algorithme est assuré de converger. En

pratique, on remarque que tres peu d’itérations suffisent dans la plupart des cas.

Cependant, il est essentiel de noter que le résultat final dépend fortement de I'initialisation
de 'algorithme : selon les points choisis comme centres initiaux, les partitions obtenues
peuvent varier significativement. Cette sensibilité a l'initialisation constitue le principal

inconvénient de la méthode.

L’algorithme ne garantit pas la partition optimale globale, mais converge vers un mini-
mum local de Iy,. Pour atténuer ce probleme, une solution consiste a exécuter I’algorithme
plusieurs fois avec des initialisations différentes, puis a retenir la partition offrant la plus

faible inertie intra-classe.|[20]

2.4 Conclusion

Le Chapitre 2 a présenté une analyse approfondie des méthodes de classification super-
visées et non supervisées, mettant en lumiere leurs principes, leurs applications et leurs
performances respectives. Les méthodes supervisées, telles que les SVM, les réseaux de
neurones convolutifs (CNN), les MLP et les Random Forests, offrent des solutions ro-
bustes pour la classification des images SAR en s’appuyant sur des données étiquetées.
Chacune de ces méthodes présente des avantages spécifiques, comme la capacité des SVM
a gérer des frontieres complexes grace aux fonctions noyau, ou la puissance des CNN
pour extraire automatiquement des caractéristiques hiérarchiques des images. Les Ran-
dom Forests, quant a elles, se distinguent par leur robustesse et leur capacité a éviter le

surapprentissage.

Les méthodes non supervisées, comme Mean Shift et K-means, permettent de regrouper
des données sans étiquettes préalables, ce qui est particulierement utile pour explorer des
structures cachées dans les images SAR. Ces méthodes sont adaptées aux scénarios ou les

données étiquetées sont rares ou difficiles a obtenir.
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En résumé, ce chapitre a souligné I'importance de choisir la méthode de classification
adaptée en fonction des caractéristiques des données et des objectifs de ’étude. Les ap-
proches supervisées sont idéales pour des taches précises nécessitant une haute perfor-
mance, tandis que les méthodes non supervisées offrent une flexibilité précieuse pour
I’exploration et I'analyse préliminaire des données. Ces concepts et outils ouvrent la voie
a des applications avancées en télédétection, notamment pour la surveillance environne-

mentale, la gestion des ressources naturelles et la cartographie des surfaces terrestres.



Chapitre 3

Résultats et analyses

3.1 Introduction

Dans notre projet, on cherche a détecter les zones forestiéres et a comparer ces zones
apres les feux de foréts en utilisant la méthode de classification supervisée RANDOM
FOREST (RF) et aussi par les méthodes de classification non supervisée. On va utiliser
des images de la wilaya de Tarf. Les images sont des images acquises a travers le site de
'agence spatiale européenne (Copernicus Browser) ; ce sont des images bi-polarimétriques

(dual-pol) capturées par le satellite Sentinel-1 dont on a parlé dans le premier chapitre.

3.2 Site d’étude

Située a I'extréme nord-est de 1’Algérie, la wilaya d’El Tarf est comprise entre les paralleles
36°23'25” et 36°57'7” de latitude Nord et 7°39'49” et 8°40°52” de longitude Est. Issue du
découpage administratif de 1984, elle s’étend sur une superficie de 2 882 km? et comprend
24 communes. Elle est délimitée au nord par la mer Méditerranée, a 1’est par la frontiere
algéro-tunisienne, a ’ouest par la wilaya d’Annaba, au sud-ouest par la wilaya de Guelma

et au sud par la wilaya de Souk Ahras.

Le territoire de la wilaya d’El Tarf regroupe 5 classes d’occupation du sol figure 3.1 :
végétation, agriculture, sable, plans d’eau et espace bati. La végétation, composée essen-
tiellement de foréts et de maquis, occupe une surface de 161 464 ha, soit 56,03 pour cent
de la surface totale. L’agriculture avec 36,47 pour cent vient en seconde position compta-

bilisant une surface de 105 118 ha, elle comprend les terres de cultures, I’arboriculture et

62
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les paturages. Les zones de sable correspondent au cordon dunaire littoral localisé dans
la partie nord de la wilaya avec une surface de 427 ha, soit 0,15 pour cent. La wilaya est
aussi caractérisée par une importante zone humide, notamment au sein du parc national
d’El Kala. Ces plans d’eau, qui englobent les lacs, les marais et les barrages, occupent
une surface totale de 13 556 ha, soit 4,70 pour cent. Enfin, I’espace bati correspond a 2,65
pour cent de la surface de la wilaya, soit 7 638 ha, dominé par ’habitat rural. En plus de
2 villes (El Kala et El Tarf) et 113 villages, on compte plus de 5 539 maisons rurales et 7
780 fermes éparses (figure3.1)[20].

Wilaya
d’Annaba

Classes
d'occupation du sol

- Végétation

Agriculture

- Plan d'eau

Sable

Wilaya de Guelma

Wilaya de Souk-Ahras

Source des données : ARFA AM.T. 2018

[20]

FIGURE 3.1 — Localisation et classes d’occupation du sol de la wilaya d’El Tarf
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3.3 Présentation des données

3.3.1 Présentation des images SLC

— La premiere image Sentinel-1 SLC utilisée dans cette étude a été acquise le 03
septembre 2021, soit avant l’événement incendiaire. Elle correspond a une scéne
capturée par le satellite Sentinel-1A, en mode Interferometric Wide Swath (IW),
dans le cadre du programme Copernicus. Cette image est fournie au niveau 1 sous
forme de produit SLC (Single Look Complex), dans un format SAFE contenant
les bandes radar en coordonnées slant range, les métadonnées, et les fichiers d’an-
notation. Chaque pixel de I'image contient une valeur complexe (composantes I et
Q), permettant d’analyser a la fois 'amplitude et la phase du signal radar. L’image
présente une résolution spatiale d’environ 3,6 metres en portée (slant range) et 22,5
metres en azimut, avec une largeur de fauchée d’environ 250 km. La polarisation
utilisée est VV, ou VV/VH si le produit est en double polarisation. Cette image
représente la forét en état non briilé et constitue la scéne de référence pour ’analyse

temporelle du changement (figure3.2).

FIGURE 3.2 — Images SLC Taref 03/09/2021

— La seconde image Sentinel-1 SLC a été acquise le 5 septembre 2022, soit apres la
période des incendies ayant affecté la région d’étude située dans la wilaya d’El Tarf,
a l'extréme nord-est de 1’Algérie. Elle provient également du satellite Sentinel-1A,

dans les mémes conditions d’acquisition que la précédente (mode IW, polarisation
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VVou VV/VH). Il s’agit d'un produit SLC niveau 1, délivré au format SAFE, conte-
nant des données radar complexes. Cette image conserve les mémes caractéristiques
techniques que la premiere, notamment en termes de résolution spatiale et de cou-
verture. Elle représente une scéne post-incendie et est exploitée afin de détecter les
changements dans la diffusion du signal radar qui peuvent étre liés a la perte de
couverture végétale, a la modification de la rugosité de surface, ou a la présence de

cendres et de sols nus (figure3.3).

FIGURE 3.3 — Images SLC Taref 05/09/2022

3.3.2 Présentation des images GRD

— L’image présentée dans la figure 3.4 est une image SAR capturée le 29/08/2021 par
le satellite Sentinel-1 en polarisation VH et VV couvrant intégralement la wilaya
d’El Taref. Dans SNAP, la bande Amplitude VH affiche un raster de 26,35 x 16,66
pixels. Comme il s’agit d'un produit IW-GRD, le pas de pixel natif est d’environ 10
m X 10 m, ce qui se traduit par une emprise au sol voisine de 263 km (est-ouest) x
167 km (nord-sud). Cette résolution permet de distinguer les principaux éléments
hydrographiques, les zones urbaines et les formations forestieres caractéristiques de
la région d’El Taref, tout en conservant le niveau de détail requis pour l’analyse

régionale.
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FIGURE 3.4 — Image GRD du 29 aout 2021

— L’image présentée dans la figure 3.5 est une image radar (SAR) acquise le 5 sep-
tembre 2022 par le satellite Sentinel-1, en double polarisation VH et VV. Elle couvre
I’ensemble de la wilaya d’El Taref. Dans SNAP, la bande ”Amplitude VH” est af-
fichée sous forme d’un raster de 26,35 x 16,66 pixels. Etant un produit de type IW-
GRD, cette image possede un pas de pixel natif d’environ 10 metres par 10 metres,
ce qui correspond a une emprise au sol d’environ 263 km dans le sens est-ouest et 167
km dans le sens nord-sud. Cette résolution spatiale permet de distinguer clairement
les principaux éléments du paysage régional, tels que le réseau hydrographique, les
zones urbaines, ainsi que les formations forestiéres typiques de la région d’El Taref.

Elle offre ainsi un niveau de détail adapté a une analyse a 1’échelle régionale.

FIGURE 3.5 — Image GRD du 05 septembre 2022
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3.3.3 Le prétraitment des données

1. accédez au site copernicus browser et ouvrir un compte sur le site pour pouvoir
rechercher et télécharger les images concernés dans notre mémoire.

2. on zoom sur la région qu’on veut étudier et choisir la zone souhaité a 1’aide su
curseur .

3. on sélectionne sur le volet SEARCH le satellite sentinel-1 et on sélectionne le type
d’image (SLC ou GRD).

4. on clique sur TIME RANGE et on choisis les dates concernés.

5. on clique sur le bouton search et on appercoit plusieurs images selon la date et la
zone.

6. dernierement on télécharge 'image qui couvre notre site d’étude.

3.4 Traitement des images SLC

Les images sous forme SLC obtenues par Copernicus Browser de Sentinel 1 sont sous
format brut. Afin de les exploiter, on suit les traitements présentés dans la figure 3.6

ci-dessous :

sar image

split

split orbit

calibration

deburst

multilooking

terrain correction

FIGURE 3.6 — Le traitement des données SAR des images SLC [1]
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3.4.1 Ouverture de I’image SAR dans SNAP

L’ouverture de I'image SAR constitue la premiere étape du processus de traitement.Ces
images généralement fournies par Sentinel-1 sont au format Zip .
On lance logiciel SNAP et puis en charge les deux images avec deux dates différents 'une

a été acquise le 03 septembre 2021 et I'autre 05 septembre 2022.

Product Explorer < Pixel Info —

& [1]S1B_IW_SLC_ TAREF_1SDV_20210903T172822_20210903T172852_028537_0367
S [2] S1A_IW_SLC_taref_1SDV_20220905T172923_20220905T172950_044858_055B8[

FIGURE 3.7 — Quverture des images SLC dur SNAP

3.4.2 Split

Cette étape permet de sélectionner une sous-bande de I'image SAR.Le produit Sentinel-
1 SLC contient généralement trois sous-bandules (IW1, IW2 TW3) correspondant aux
différentes lignes de vol. Le Split permet d’extraire un seul IW (souvent IW2, qui couvre
le centre de I'image) et la polarisation désirée (VV, VH, etc.).

Pour accéder a 'outil Split, on doit cliquer sur la barre de menu : Radar — Sentinel-1
TOPS — S-1 TOPS Split comme indiqué dans la figure3.S8.

B8 s tops spiit X

File Help

1/0 Parameters Processing Parameters

Source Product

[1151B_IW_SLC_ TAREF_1SDV_20210903T172822_20210903T172852 028537 0367CA F13D
Writing Target Product X

Target Product
Name:
S1B_IW_SLC_TAREF_1 3D_split
ncel

Writing...

/| Save as: BEAM-DII
Directory:

C:\Users\home

/| Openin SNAP 11

FIGURE 3.8 — split
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3.4.3 Split Orbit

L’étape "Apply Orbit File” (souvent appelée Split Orbit de maniere informelle) permet de
corriger les erreurs de positionnement de l'orbite du satellite en utilisant des données d’or-
bite précises fournies apres 'acquisition. Cela améliore significativement la géolocalisation
des images SAR.

les procédures dans SNAP commencent par sélectionner le produit apres Split et lancer
I'outil "Apply Orbit File” par la barre de menu : Radar — Apply Orbit File comme
indiqué dans la figure3.9.

L&

File Help

I/0 Parameters Processing Parameters

Source Product

sssssss

Target Product
Name:
_15DV_20210903T172822_20210903T172852_028537_0367CA_F13D_split_Orb
V| Save as: BEAM-DIMAP

Directory:

C:\Users\home

Open in SNAP 11

| Run Close

FIGURE 3.9 — Apply orbit file

3.4.4 Calibration

L’étape de calibration permet de convertir les données SAR brutes (valeurs numériques
arbitraires) en mesures physiques significatives, telles que le 0¥ (sigma-nought), 3° (beta-
nought) ou 7° (gamma-nought). Cela rend les images comparables dans le temps et 1’es-
pace, en éliminant les effets instrumentaux et en assurant la cohérence radiométrique des
produits. Ces coefficients représentent respectivement la rétrodiffusion normalisée selon
différentes géométries d’acquisition, utiles pour les analyses quantitatives.Pour lancer I'ou-
til de calibration en suit le menu suivant : Radar — Radiometric — Calibration comme

indiqué dans la figure3.10.



3.4 Traitement des images SLC 70

€ Calibration X
File Help

1/O Parameters Processing Parameters
Source Product
source:
[1]S1B_IW_SLC_ TAREF_15SDV_20210903T172822 20210903T172...
E Writing Target Product X

Target P
Name:

AREF_1 3D_Cal
Cancel

Writing...

| Savi

Directory:

C:\Users\home

| Open in SNAP 11

Run Close

FIGURE 3.10 — Calibration

3.4.5 Deburst

L’imagerie Sentinel-1 SLC en mode TOPS est acquise par sous-blocs appelés "bursts” dans
chaque sous-swath (IW1, IW2, IW3). Ces bursts sont discontinus et juxtaposés avec des
recouvrements. L’étape de Deburst permet de fusionner ces bursts en une image continue,
indispensable pour les traitements comme la mosaique, la classification ou la géocodage.
pour faire le Deburst en sélectionnant le produit calibré puis en ouvrant ’outil Deburst
dans le menu : Radar — Sentinel-1 TOPS — S-1 TOPS Deburst comme indiqué dans la
figure3.11.

File Help

1/O Parameters Processing Parameters
Source Preduct
source:

(4] S1B_IW_SLC_ TAREF_1SDV_20210903T172822 20210903T172... ™
Writing Target Product X

Target P
Name:
10903T]| al_deb

Cancel

Writing...

| Savi

Directory:

C:\Users\home

| Open in SNAP 11

Run Close

FIGURE 3.11 — Deburst
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3.4.6 Multi-looking

L’étape de Multilooking permet de réduire le bruit inhérent aux images radar, connu
sous le nom de speckle, en moyennant plusieurs pixels dans les directions azimutale et de
portée. Cette opération améliore la qualité visuelle de I'image au détriment d’une légere
perte de résolution spatiale, rendant 'image plus adaptée aux traitements visuels et car-
tographiques.pour lancer I'outil Multilook en suivant les étapes suivantes comme indiqué
dans la figure 3.12 : Radar — SAR Utilities — Multilook.

¢

File Help

I/O Parameters Processing Parameters

Source Product
source:

[5] S1B_IW_SLC__TAREF_1SDV_20210903T172822_20210903T172... | ..

E Writing Target Product X
Target P

Name:
—

)3T1728 eb_ML

Cancel

Writing...

Save

Directory:
C\Users\home

Open in SNAP 11

‘ Run Close

FIGURE 3.12 — Multi-looking

3.4.7 Terrain correction

La correction terrain permet de corriger les effets géométriques liés a la topographie et a
la géométrie d’acquisition radar. Grace a 'utilisation d'un MNT (Modele Numérique de
Terrain), cette étape projette les pixels de I'image SAR dans un référentiel géographique
réel. Le résultat est une image géoréférencée et orthorectifiée, directement exploitable
dans un SIG.et pour lancer 'outil de correction terrain on clique sur : Radar — Geome-
tric — Terrain Correction — Range-Doppler Terrain Correction comme indiqué dans la
figure3.13.

Nous allons donc répéter toutes ces étapes de prétraitement pour la deuxieme image.
L’ensemble des étapes de prétraitement appliquées aux images Sentinel-1 SLC dans SNAP
a permis de produire une série d’images intermédiaires reflétant 1’évolution des données
brutes vers une image radar géoréférencée et analysable. Le résultat obtenu a chaque étape

est indiqué dans la figure 3.14.
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¢

File Help

1/O Parameters Processing Parameters

Source Product

source:

[6] S1B_IW_SLC__TAREF_1SDV_20210903T172822_20210903T172852_028537 0367CA _...

Target Product
Name:
REF_1SDV_20210903T172822_20210903T172852_028537_0367CA_F13D_split_Orb_Cal_deb_ML_TC
v Save as: BEAM-DIMAP
Directory:

C\Usersshor] B8 Writing Target Product x

Open in SNAP RS

Cancel

Run Close

FIGURE 3.13 — Terrain Correction

(a) Split (b) Orbit (c) Calibration

(d) Deburst (e) Multi-looking (f) Terrain correction

FIGURE 3.14 - Etapes de traitement SAR dans SNAP
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3.5 Traitement des images GRD

On ouvre les deux images GRD de la méme maniere que les deux images SLC la figure

ci-dessous montre la région sur laquelle on veut faire notre étude : Pour traiter les images

FIGURE 3.15 — image GRD montrant notre site détude par le réctangle orange

GRD on suit les étapes indiquées dans la figure 3.16 :

Image GRD

Terrain correction

Calibration

Speckle filtering

FIGURE 3.16 - E’tapes de traitement des images GRD
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3.5.1 Subset

la fonction subset est utilisée pour créer un sous-ensemble de I'image qu’on a téléchargée.

on met les mémes geo coordinates pour avoir le méme subset :

SDV_20210829T052954_20210829T053019_039440_04A8CE
Vector BhEEIE® Optical Radar Tools Window He

g % Band Maths... C:_ \_|_

Filtered Band...
Convert Band
B29T052 Ppropagate Uncertainty..

Geo-Coding Displacement Bands...

DEM Tools >

Geometric >

FIGURE 3.17 — accéder a subset sur SNAP 11

B Specify Product Subset

Spatial Subset Band Subset Tie-Point Grid Subset Metadata Subset

Pixel Coordinates Geo Coordinates

North latitude bound:
West longitude bound:

South latitude bound:

East longitude bound:

Scene step X:
Scene step Y:

Subset scene width:

Subset scene height:

Source scene width:

Source scene height:
Fix full width
Fix full height

Use Preview

Estimated, raw storage size: 15.0M

Cancel

8 11 Am

36917
8.503
36812
8.198

1€ <>

Help

FIGURE 3.18 — geo coordinates de notre subset

deés qu’on appuie sur OK dans notre boite de dialogue, notre subset sera créé

m Intensity_WVV

= [2] subset_0_of_S1A_IW_GRDH_1SDV_20210829T052954_20210

2 Metadata
@ Vector Data

L T -

finalement notre subset a été créé comme présenté dans la figure 3.19 :



3.5 Traitement des images GRD 75

B R

FIGURE 3.19 - l’image GRD aprés subset

3.5.2 Terrain correction

Le terrain correction est un processus qui corrige les distorsions géométriques des images
satellitaires causées par le relief. Sur snap 11 on effectue la fonction terrain correction

comme montré dans la figure 3.20 :

0210829T052954_20210829T053019_039440_04A8CE_71F5_TC] - [C\Users\cherif\subset_0_of STA_IW_GRDH_1S
iptical JGEEETM Tools Window Help

§ | Apply Orbit File ;\+VE?Q %g  ME@ED:@ o

Radiometiic >
* @ specueFiltering > B 131Sigma0_vH x [l [4] Amplitude_VH X

Coregistration >

Interferometric >
Polarimetric >
s
Sentinel-1 TOPS > | Ellipsoid Correction > | SARSimulation
ENVISATASAR > | SAR-Mosaic SAR-Simulation Terrain Correction
SAR Applications > | SAR Mosaic Wizard i R
SAR Utiliti > | ALOS Deskewing
ey Slant Range to Ground Range
Update Geo

FIGURE 3.20 - terrain correction 29/08/2021

3.5.3 Calibrate

La fonction calibrate transforme les pixels d'une image Sentinel-1 en valeurs de sigma.

Sur SNAP 11, on accede a la fonction subset comme on a montré dans la figure 3.19 :

notre image sar est donc montrée dans la figure 3.22

3.5.4 Speckle filtering

Le filtrage du speckle dans les images SAR vise a réduire le bruit granulaire tout en
préservant les détails. On utilise souvent des filtres statistiques (comme Lee, Frost ou

Kuan) notre image SAR apres speckle filtering est montrée dans la figure 3.23
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Tools Window Help
| Applyoroitfile 2N\, 77 [ <N @ s

Radiometric > Calibrate

e N L

itu

i Speckle Filtering > | Radiometric Terrain Flattening
Coregistration > Multitemporal Compositing
Interferometric > | Remove Antenna Pattern
Polarimetric > | 5-1 Thermal Noise Remaoval
Geometric > Convert Sigmal to BetaQ
Sentinel-1 TOPS > | Convert Sigma0 to Gammal
ENVISAT ASAR > Create Calibration LUT TPG
SAR Applications »

SAR Utilities >

FIGURE 3.21 — accéder a calibrate sur SNAP 11

FIGURE 3.22 - l"image du 29/08/2021 aprés calibration

FIGURE 3.23 - l'image du 29/08/2021 aprés speckle filtering
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3.6 Classification avec Random Forest

Apres avoir traité I'image GRD sur SNAP 11 suivant les étapes précédentes, on commence

notre classification en suivant le diagramme montré dans la figure 3.24

Image GRD aprés
traitement

Choisir les échantillons des
4 classes (Foret, végétation,

urbain, surface d'eau)

La classification Random
Forest

La classification avant La classification aprés
le feu le feu
Affichage du résultat Affichage du résultat
sur Python sur Python
La différence entre les
deux images <

classifices

Affichage de toutes les
»|  zones ayant subis un
changement de classe

Affichage des zones
qui ont change de la
classe faret a la classe

végétation

FIGURE 3.24 — Organigramme de détection des zones brilées par Random Forest

3.6.1 Classifiacation avant le feu

Dans cette classification, on choisit 4 classes :1- forest (en vert), 2- urban(en rouge),

3- vegation(en jaune), 4- water ou surfacique (en bleu) comme représenté dans la

figure 3.25 :
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FIGURE 3.25 — les échantillons de classfication sur l"image du 29/08/2021

apres cette étape, on commence notre classification random forest sur snap. Une image

de notre classification a été générée par SNAP comme montré dans la figure 3.26 :

T
[ vegeaon | 1
[surice tons |
I ;

FIGURE 3.26 — classification random forest du 29/08/2021
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Remarque :

On remarque que la classe forest est la classe la plus présente sur cette image. et on
retrouve plusieurs zones de végétation et une minorité des zones urbaines comme dans la

figure 3.1.

3.6.2 Classification apres le feu

On refait la méme classification mais cette fois sur I'image du 05/09/2022 (apres le feu).

et on remarque les zone ayant subis des différences le résultat est montré dans la figure
3.27.

I o
[ vegetoion | 1
s deas [
I

FIGURE 3.27 — classification random forest du 05/09/2022

Remarque :

On remarque dans cette image qu'une grande partie a changé de couleur du vert vers le

jaune, donc de la classe forét a la classe végétation, et ca, c’est dii aux feux de foréts.
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3.7 Affichage des résultats sur Python

Apres traitement et classification sur SNAP, on ouvre notre image sur Python.

— On commence par ouvrir 'image du 29/08/2021 (I'image classifiée avant le feu) 3.28.

— Ensuite on ouvre notre image du 05/09/2022 (I'image classifiée pendant le feu) fi-

gure 3.29.

— Pour comparer deux images GRD classifiées en Python, on commence par ouvrir les
deux fichiers raster et lire leurs données sous forme de tableaux numériques grace a
la bibliotheque rasterio. On vérifie que les deux rasters ont exactement les mémes
dimensions pour garantir que chaque pixel correspond bien a la méme position spa-
tiale. Ensuite, on calcule la différence pixel par pixel en soustrayant la classe du
second raster a celle du premier : cela génere une nouvelle matrice ou chaque valeur
indique s’il y a eu un changement de classe (valeur non nulle) ou non (zéro). On en-
registre ensuite cette image de différence sous forme d’un nouveau fichier GeoTTFF
en réutilisant les métadonnées du premier fichier pour conserver le méme format
et la méme géoréférence. Enfin, on visualise le résultat sous forme d’image colorée
pour localiser facilement les zones ou des changements se sont produits entre les

deux dates

— Apres avoir calculé la différence entre deux images classifiées, il est souvent utile de
repérer directement les pixels qui ont changé de classe. Pour cela, on crée un masque
binaire de changement en comparant les deux images : I'instruction labels1 != labels2
renvoie un tableau de valeurs True pour les pixels ou les classes sont différentes,
et False sinon. C’est un masque logique qui permet d’isoler uniquement les zones
modifiées. Ensuite, pour savoir de quelle classe a quelle classe chaque pixel a changé,

on peut calculer : changemap = labels2 — labels1

— On affiche visuellement les zones qui ont changé entre les deux images. Le masque
binaire (change mask) est représenté en niveaux de gris, ou les pixels en blanc
correspondent aux endroits modifiés, et ceux en noir aux zones restées identiques.
Cela permet de voir rapidement sur une image ou les changements de classe ont eu
lieu.comme illustré la figure 3.30

— On récupere toutes les paires de classes correspondant aux pixels qui ont changé
(classe initiale et classe finale), puis on extrait les combinaisons uniques de ces

changements. Cela permet de connaitre toutes les transitions possibles entre classes
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qui ont eu lieu, sans doublons. Ensuite, on affiche ces changements uniques pour

voir rapidement quelles transformations ont été observées.

— On compte le nombre de pixels pour chaque type de changement entre classes, en
regroupant toutes les paires < classe d’origine — classe finale ». Cela permet de
savoir précisément combien de pixels sont passés d’une classe a une autre, ce qui

aide a mesurer I'importance de chaque transformation.

— On crée un masque binaire qui marque par True les pixels ayant changé spécifiquement
de la classe 3 (forét) a la classe 1 (agriculture). Cela permet d’isoler et d’étudier

uniquement cette transformation précise parmi toutes les modifications détectées.

— On affiche 'image3.31 du masque binaire correspondant a la transformation spécifique
de forét (3) vers agriculture (1). Les pixels en blanc indiquent ou ce changement a eu

lieu, ce qui permet de visualiser clairement la répartition spatiale de cette transition.

— On nettoie le masque des changements spécifiques en supprimant les petites régions
isolées (moins de 50 pixels), qui peuvent étre du bruit ou des erreurs. Cela permet
de mieux se concentrer sur les zones significatives ou la transformation a réellement
eu lieu. Ensuite, on affiche le masque filtré pour visualiser les changements plus nets

et mieux définis comme illustré dans la figure3.32.

Remarque

On remarque que 'empreinte observée dans la figure 3.32 correspond fortement a celle de
I'image optique de la figure 3.33, notamment en ce qui concerne les zones touchées par les
feux de forét qui sont affichées en blanc dans la figure 3.32, qui apparaissent similaires a

celles de de I'image optique (figure 3.33).
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classification random forest du 29/08/2021
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FIGURE 3.28 — l’image classifiée du 29/08/2021 sur PYTHON

classification random forest du 05/09/2022
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FIGURE 3.29 — l'image classifiée du 05/09/2022 sur PYTHON
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FIGURE 3.30 — les zones ayant subis des changements affichés sur Python

FIGURE 3.31 — Carte de détection des changements post-incendie (forét — végétation)
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FIGURE 3.32 — Carte de détection des changements filtré post-incendie (forét — végétation)

FIGURE 3.33 — image optique prise par sentinel-2
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3.8 Conclusion

Dans ce chapitre, nous avons appliqué I’ensemble des méthodes de traitement et de clas-
sification aux images SAR de Sentinel-1 afin d’analyser les changements survenus dans la

wilaya d’El Tarf apres un incendie de forét.

Les prétraitements effectués sur les images SLC et GRD (calibration, correction topogra-
phique, filtrage du speckle) ont permis d’obtenir des données de qualité, exploitables pour
la classification. Gréace a l'algorithme Random Forest, nous avons pu générer des cartes
de classification pour deux dates : avant I'incendie (29 aofit 2021) et apres l'incendie (5

septembre 2022).

Les résultats montrent clairement une réduction significative de la surface forestiere, rem-
placée par des zones de végétation plus clairsemée ou du sol nu. L’affichage des change-
ments sur Python a permis de visualiser précisément les zones touchées et de quantifier
I’étendue des dégats. La carte de détection des changements met en évidence la conversion
de classes < forét » vers < végétation » ou < sol découvert >, ce qui valide 'efficacité de

notre approche pour une surveillance rapide et précise des impacts environnementaux.

Ces résultats confirment que 1'utilisation combinée des images Sentinel-1 et des méthodes
de classification avancées constitue une solution fiable pour le suivi post-incendie, offrant
ainsi une base précieuse pour la gestion durable des ressources forestieres et la planification

des actions de restauration.



Conclusion Générale

Ce mémoire a mis en évidence l'efficacité de 'imagerie radar Sentinel-1 pour la télédétection
et 'analyse de 1’évolution de la couverture terrestre, en particulier pour la surveillance

des zones forestieres apres un incendie.

Dans un premier temps, nous avons rappelé les concepts théoriques relatifs aux images
SAR et présenté les spécificités techniques du satellite Sentinel-1 qui permettent une ac-
quisition continue des données, indépendamment des conditions météorologiques. Nous
avons ensuite comparé plusieurs méthodes de classification adaptées aux images radar, en
soulignant l'intérét des approches supervisées comme Random Forest pour une classifica-

tion précise et fiable.

L’application pratique réalisée sur la wilaya d’El Tarf a permis de démontrer concretement
I’apport de ces outils. Grace a la méthode Random Forest, nous avons pu générer des
cartes de classification détaillées pour deux dates clés, avant et apres I'incendie. I’analyse
des résultats a révélé une perte significative de la surface forestiére, ainsi qu’'un retrait
de la végétation dense remplacée par des zones de végétation clairsemée et de sol nu.
Ces changements ont été cartographiés et quantifiés avec une grande précision grace au

traitement et a l’affichage des données sous Python.

Les résultats obtenus illustrent parfaitement la capacité des images SAR a détecter et
suivre les modifications de I’environnement dans des régions vulnérables aux incendies.
Ils confirment aussi la robustesse de la chaine de traitement mise en place, qui pourrait
étre utilisée pour un suivi régulier et automatisé des foréts, facilitant ainsi la planification

des actions de restauration et la gestion durable des ressources naturelles.

En conclusion, les résultats atteints prouvent que la télédétection radar, associée a des
méthodes de classification avancées, représente une solution efficace pour la surveillance
environnementale post-incendie, apportant une contribution précieuse a la préservation

et a la gestion raisonnée des écosystemes forestiers.
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