
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

Institute of Aeronautics and Space Studies – Saad Dahlab University of

Blida 1

Saad Dahleb University

Faculty of Aeronautics

Department of Aeronautical Structures

Graduation Project Thesis

Title:

Predictive Fatigue Analysis Using Synthetic Data and Deep

Learning Models

Student: Loubna Menia

Supervisor: Amale Mahi

Co-Supervisor: Faycal Ykhlef

Academic Year: 2024 – 2025

Contents

Acknowledgment x

1 Introduction 1

1.1 Predictive Maintenance in Aerospace . 1

1.2 Key Concepts of the Study . 2

1.2.1 Fatigue Damage in Metallic Structures 2

1.2.2 Finite Element Analysis (FEA) and COMSOL Multiphysics 2

1.2.3 Synthetic Data Generation Using FrameworkFDPP 2

1.3 Machine Learning Models for RUL Estimation 3

1.4 Purpose of the Introduction . 4

2 Literature Review 5

2.1 Fatigue Damage in Aeronautical Structures 5

2.2 Synthetic Data Generation for Fatigue Prognosis 5

2.2.1 FrameworkFDPP: A Code-Based Synthetic Data Generation Ap-

proach . 6

2.2.2 Machine Learning Models for RUL Estimation 6

2.3 Limitations of Code-Based Synthetic Data 7

2.4 Finite Element Analysis (FEA) for High-Fidelity Data Generation 7

2.5 Proposed Methodology: Integrating FEA and Machine Learning 7

3 Problem Statement and Objectives 9

3.1 Problem Statement . 9

3.2 Research Gap . 10

i

3.3 Research Objectives . 10

3.4 Scope of the Study . 11

4 Methodology 12

4.1 Crack Simulation in COMSOL . 14

4.1.1 Simulation and study assumptions : 15

4.1.2 Model Geometry and Boundary Conditions 15

4.1.3 Simulation Setup and Parameters 16

4.1.4 Parameter Sensitivity Study . 22

4.1.5 Stress and Strain Field Analysis . 22

4.2 Crack Simulation with Synthetic Data . 23

4.2.1 Overview of the Framework . 23

4.2.2 The Paris Law . 23

4.2.3 How the Synthetic Data Is Generated 24

4.2.4 Synthetic Training Set Parameters 24

4.2.5 Cleaning the syntatic data and generate the graphs to compare with

comsol simulation : . 26

4.3 Analysis and Comparison of Synthetic Data 28

4.3.1 Crack Length vs. Cycles . 29

4.3.2 Strain at Gauges vs. Cycles . 29

4.3.3 Conclusion . 29

4.4 Querying Crack Length Using Processed Synthetic Data 30

4.5 Generating the Data sets : . 31

4.5.1 Fracture Mechanics and Crack Modeling 31

4.5.2 Generation Procedure : main.py 33

4.6 Cleaning the Data sets Procedure : . 34

4.6.1 Data Transformation Pipeline . 34

4.6.2 Cleaning and Flattening the Dataset 34

4.6.3 Assumption of Constant Paris’ Law Parameters 36

4.7 Model Development and Training . 37

ii

4.7.1 XGBoost . 37

4.7.2 GRU :Gated Recurrent Units . 39

4.7.3 Transformer . 42

4.8 Evaluation Metrics . 43

4.8.1 Experimental Setup . 44

4.8.2 MAPE Results . 45

4.8.3 MAPE Visualization . 45

4.8.4 Discussion . 46

4.8.5 Conclusion . 46

5 Model Simplification and Practical Deployment 47

5.1 Data Interpolation Strategy for Crack Length Modeling 47

5.2 Model Deployment : . 49

5.2.1 XGBoost Model Architecture for 2 features : 49

5.2.2 MAPE Evaluation of the XGBoost Model for 2 features 50

5.2.3 Graphical User Interface (GUI) Development 51

5.2.4 Example Usage of GUI Interfaces 54

6 Limitations and Future Work 58

6.1 Limitations . 58

6.1.1 Future Work . 59

7 Conclusion 60

.1 Appendix A: Simulations and syntatic data 64

.1.1 Script 1: COMSOL Data Processing (100 Cycles) 64

.1.2 Script 2: COMSOL Data Processing (1000 Cycles) 64

.1.3 Script 3: Synthetic Fatigue Data Generator 64

.1.4 Script 4: Crack Growth via Paris’ Law 64

.1.5 Script 5: Data Utilities . 65

.1.6 Script 6: Training Dataset Cleaning 65

.1.7 Script 7: Data Cleaning Script . 65

iii

.2 Appendix B : Model training and GUI APP 65

.2.1 Script 9: Data augmentation and interpolation 65

.2.2 Script 10: Interface and GUI . 65

.3 Appendix C : Data Sets . 66

iv

List of Figures

4.1 Overall methodological workflow of the project 14

4.2 2D geometry of the cracked plate in COMSOL with probe point locations . 16

4.3 normal strains state for a crack of length 2mm 17

4.4 cyclic load applied . 18

4.8 Strain vs. Cycle Number for 3 Virtual Gauges (100-cycle COMSOL simu-

lation) . 18

4.5 Simulation comparisons across cycles . 19

4.9 Crack Length vs. Cycle Number (100-cycle COMSOL simulation) 19

4.6 CSV file from comsol simulation of 100 cycle 20

4.10 Strain vs. Cycle Number for 3 Virtual Gauges (1000-cycle COMSOL sim-

ulation) . 20

4.7 CSV file from comsol simulation of 1000 cycle 21

4.11 Crack Length vs. Cycle Number (1000-cycle COMSOL simulation) 21

4.12 syntatic data set . 25

4.13 syntatic data set after cleaning . 27

4.14 Strain vs. Cycle Number for 3 Virtual Gauges (syntatic dataset) 28

4.15 Crack Length vs. Cycle Number (syntatic dataset) 28

4.16 python terminal when the number of cycles is mentioned in the dataset . . 30

4.17 python terminal when the number of cycles is not mentioned in the dataset 31

4.18 Comparison between raw and cleaned CSV formats used for model training. 36

4.19 Schema illustrating the data-driven mapping from strain gauge readings

(G1–G3) to crack length. The machine learning model learns this relation-

ship based on training data where C and m are held constant. 37

v

4.20 Schematic of the XGBoost-based regression pipeline for crack length pre-

diction. 38

4.21 GRU-based model architecture for crack length prediction. 40

4.22 Transformer-based model architecture for crack length prediction. 42

4.23 MAPE (%) of XGBoost, GRU, and Transformer across different training

sizes . 45

5.1 Comparison between interpolated and non original data 49

5.2 GUI Version Requiring Cycle and G1 Inputs 53

5.3 GUI Version Requiring Only Cycle Input 54

5.4 Crack Growth Prediction - GUI with Cycle and G1 Input 56

5.5 Crack Growth Prediction - GUI with Cycle Only Input 57

vi

List of Tables

4.1 Description of Parameters in the Synthetic Training Set 26

4.2 Comparison of Raw vs Cleaned Dataset Format 35

4.3 Hyperparameters used in the XGBoost model. 39

4.4 GRU model training configuration. 41

4.5 Transformer model training configuration. 44

4.6 MAPE (%) Comparison Across Models and Training Sizes 45

5.1 MAPE Results for XGBoost Model with Different Training Sizes 50

5.2 MAPE (%) for XGBoost Model Trained with Only Cycle 51

vii

Nomenclature and Symbol

Definitions

Symbol / Code Description

Mechanical / Physical Parameters

u, v Displacement field components in COMSOL (horizontal/vertical)

ϵG1, ϵG2, ϵG3 Strain at gauges G1, G2, G3 (in µε)

∆σ Applied stress range

∆K Stress intensity factor range

E Young’s modulus (material stiffness)

ν Poisson’s ratio (material lateral contraction coefficient)

KIC Fracture toughness (critical stress intensity factor)

σ11, σ22, τ12 Stress tensor components

ϵ11, ϵ22, ϵ33 Strain tensor components

Fracture Mechanics and Crack Growth

a Crack length (mm)

a0 Initial crack length (mm)

acrit Critical crack length (e.g., failure threshold)

C Paris’ law material constant

m Paris’ law exponent

da
dN

Crack growth rate per cycle

Simulation and Sensor Setup

g1, g2, g3 Virtual strain gauges placed near the crack

viii

u-g1 Displacement at gauge 1 location

s-g2 Strain at gauge 2 location

crack tip start Probe point at the beginning of the crack

crack tip end Probe point at the end of the crack

Cycle Number of loading cycles (fatigue life progression)

t∗ Observable lifetime fraction in truncated test sequences

Machine Learning and Evaluation

RUL Remaining Useful Life (cycles before failure)

MAPE Mean Absolute Percentage Error (performance metric)

TCN Temporal Convolutional Network

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

XGBoost Extreme Gradient Boosting (tree-based ML model)

1D-CNN One-Dimensional Convolutional Neural Network

MinMaxScaler Feature normalization method

ix

Acknowledgment

First and foremost, I would like to express my sincere gratitude to Allah, whose guid-

ance and blessings have given me the strength and perseverance to reach this significant

milestone in my academic journey.

I extend my deepest appreciation to my supervisors: M.Amel Mahi , whose insights

and support guided me throughout the development of this graduation project. Your

expertise in the field of fatigue analysis and structural engineering has been invaluable.

To my family—especially my parents—thank you for your unconditional love, prayers,

and endless encouragement. Your belief in me has been the foundation of my ambition

and motivation.

A special thanks to my friends and colleagues who stood by me during the challenging

phases of this project, offering help, laughter, and moral support when it was most needed.

I also want to acknowledge the authors and contributors of the FrameworkFDPP re-

search project, which inspired my thesis and gave me the foundation to explore predictive

fatigue analysis. This work has not only shaped my understanding of sequence models

like LSTM and GRU but also motivated me to bridge the gap between academic research

and real-world engineering applications.

To my professors at the university, thank you for your dedication and for sparking my

passion for aeronautics and structural dynamics.

Finally, this work is also dedicated to my future aspirations. Whether in the skies

or on the roads of automotive innovation, I aim to continue pushing boundaries, learning

continuously, and contributing meaningfully—especially with the hope of one day bringing

such advancements home to Algeria.

x

xi

Abstract

This thesis explores a hybrid methodology combining finite element simulation and ma-

chine learning techniques to predict fatigue crack growth in metallic structures. Inspired by

the work presented in *A Framework for Generating Large Data Sets for Fatigue Damage

Prognostic Problems* (FDPP), this research investigates the credibility and effectiveness

of synthetic data by comparing it with results obtained from high-fidelity simulations in

COMSOL Multiphysics. A 2D fatigue crack model was simulated under cyclic loading,

with strain gauges placed in accordance with the FDPP setup. The resulting strain and

displacement data were processed using custom Python scripts to derive meaningful com-

parisons between the synthetic and simulated datasets. The primary contributions include

validating the synthetic dataset’s realism via numerical comparison, and introducing alter-

native machine learning models—such as XGBoost, LightGBM, and Autoencoders—for

Remaining Useful Life (RUL) estimation. The findings demonstrate a promising corre-

lation between real and synthetic data trends, paving the way for more credible fatigue

prognostics using virtual datasets in conjunction with physics-based simulations.

Chapter 1

Introduction

Fatigue damage is a critical phenomenon affecting the safety and longevity of aeronautical

structures. It refers to the progressive and localized structural deterioration that occurs

when a material is subjected to cyclic loading over time [1]. In aircraft, components such

as fuselage skin, riveted joints, and wing spars are highly susceptible to fatigue due to the

repetitive stresses induced during takeoff, cruising, and landing phases.

1.1 Predictive Maintenance in Aerospace

Traditional maintenance strategies in aerospace include preventive and corrective ap-

proaches, both of which often incur significant downtime and cost. Predictive mainte-

nance (PdM), on the other hand, uses data-driven models to forecast failures and plan

interventions before a component fails [2]. This approach enhances operational efficiency,

lowers maintenance costs, and improves flight safety.

A core component of predictive maintenance is the estimation of Remaining Useful

Life (RUL), which refers to the amount of time or cycles a component can continue to

function safely before it needs repair or replacement [3]. However, developing accurate

RUL estimation models is challenging due to the complexity of fatigue behavior and the

scarcity of failure data.

1

1.2 Key Concepts of the Study

This research investigates the integration of finite element simulations and machine learn-

ing techniques to predict fatigue damage in aeronautical structures. Below, we define and

explain the central concepts and tools used in this study.

1.2.1 Fatigue Damage in Metallic Structures

Fatigue damage typically develops in three stages: crack initiation, crack propagation,

and final fracture [4]. Each stage is influenced by factors such as load magnitude, load

frequency, and material properties. Understanding and modeling these stages is crucial

for accurate fatigue prognosis in aerospace engineering.

1.2.2 Finite Element Analysis (FEA) and COMSOLMultiphysics

Finite Element Analysis (FEA) is a powerful computational technique used to simulate

how structures respond to physical effects such as force, heat, and vibration. In this study,

we use COMSOL Multiphysics—an advanced FEA tool—to simulate crack behavior under

tensile and cyclic loading [5]. These simulations help generate reliable synthetic data that

mimics real-world fatigue scenarios.

1.2.3 Synthetic Data Generation Using FrameworkFDPP

Obtaining real fatigue datasets is often expensive and time-consuming. Therefore, syn-

thetic data generated from simulations provides a practical alternative. This study is

based on the FrameworkFDPP approach, which proposes a pipeline for creating large

and diverse datasets for fatigue damage prognosis using virtual sensors and simulated

strain measurements [6]. The synthetic data mimics the signals collected by strain gauges

installed on aircraft structures.

2

1.3 Machine Learning Models for RUL Estimation

The original FrameworkFDPP paper explored several deep learning models for time-series

prediction, including:

• Recurrent Neural Networks (RNN) [7]

• Long Short-Term Memory (LSTM) [8]

• Gated Recurrent Units (GRU) [9]

• 1D Convolutional Neural Networks (1D-CNN) [10]

• Temporal Convolutional Networks (TCN) [11]

In this study, the goal is to **explore alternative machine learning models** for the

same RUL estimation task using the synthetic data generated via FrameworkFDPP. Specif-

ically, we propose and evaluate the following:

• XGBoost (Extreme Gradient Boosting) – a scalable tree boosting system that

has proven effective in many structured data problems [12].

• LightGBM (Light Gradient Boosting Machine) – a gradient boosting frame-

work that uses tree-based learning and is optimized for speed and memory efficiency

[13].

• Autoencoders – neural networks used for unsupervised learning of efficient codings

and anomaly detection in time-series signals [14].

These models are trained and validated using the same dataset as the original models.

Their performance will be compared against the baseline deep learning models presented

in the original paper to evaluate whether simpler or more efficient models can achieve

comparable results in fatigue RUL estimation.

3

1.4 Purpose of the Introduction

This chapter has provided the context and motivation for the research, defined key terms

such as fatigue, RUL, and predictive maintenance, and introduced both the existing and

proposed machine learning models. The next chapter will present a detailed literature

review of similar work in fatigue prognosis and machine learning for structural health

monitoring.

4

Chapter 2

Literature Review

This chapter reviews key literature related to fatigue damage prognosis in aeronautical

structures, focusing on synthetic data generation methods and machine learning models

for Remaining Useful Life (RUL) estimation. It also discusses the FrameworkFDPP paper,

which serves as a foundation for this study, and outlines the distinctions between its

approach and the methodology adopted in this research.

2.1 Fatigue Damage in Aeronautical Structures

Fatigue damage is a critical concern in aerospace engineering, as aircraft components are

subjected to cyclic loading, leading to crack initiation and propagation over time. Under-

standing and predicting fatigue behavior are essential for ensuring structural integrity and

safety. Traditional methods rely on empirical models and extensive testing, which can be

time-consuming and costly.

2.2 Synthetic Data Generation for Fatigue Prognosis

Due to the challenges in obtaining large-scale, high-quality fatigue data from physical

experiments, researchers have explored synthetic data generation methods. These ap-

proaches aim to create realistic datasets that can be used to train and validate prognostic

models.

5

2.2.1 FrameworkFDPP: A Code-Based Synthetic Data Genera-

tion Approach

The FrameworkFDPP (Fatigue Damage Prognostics Problem) [15] presents a methodology

for generating large synthetic datasets for fatigue damage prognosis. The framework

utilizes a code-based approach to simulate strain gauge data, incorporating virtual sensor

placement and crack growth modeling based on Paris’ law. Key features include:

• Virtual Strain Gauges: Simulated placement of strain gauges on a virtual struc-

ture to collect strain data.

• Crack Growth Simulation: Implementation of Paris’ law to model crack propa-

gation over time.

• Data Generation Pipeline: Automated generation of training, validation, and

test datasets for machine learning models.

This approach allows for the creation of extensive datasets without the need for physical

experiments or finite element simulations.

2.2.2 Machine Learning Models for RUL Estimation

The synthetic datasets generated by FrameworkFDPP have been used to train various

deep learning models for RUL estimation, including:

• Recurrent Neural Networks (RNNs): Suitable for sequential data analysis.

• Long Short-Term Memory (LSTM) Networks: Address the vanishing gradient

problem in RNNs.

• Gated Recurrent Units (GRUs): Simplified version of LSTMs with comparable

performance.

• 1D Convolutional Neural Networks (1D-CNNs): Effective for capturing local

patterns in time-series data.

6

• Temporal Convolutional Networks (TCNs): Utilize causal convolutions for

sequence modeling.

These models have demonstrated promising results in predicting the RUL of compo-

nents based on synthetic strain data.

2.3 Limitations of Code-Based Synthetic Data

While the FrameworkFDPP provides a scalable method for data generation, it relies on

simplified assumptions and lacks the detailed physics captured by finite element simula-

tions. The absence of high-fidelity modeling may limit the realism and applicability of the

synthetic data to real-world scenarios.

2.4 Finite Element Analysis (FEA) for High-Fidelity

Data Generation

Finite Element Analysis (FEA) offers a physics-based approach to simulate the structural

behavior of materials under various loading conditions. Tools like COMSOL Multiphysics

enable detailed modeling of crack initiation and propagation, providing more accurate

strain data for prognostic modeling.

2.5 Proposed Methodology: Integrating FEA andMa-

chine Learning

This research aims to enhance the credibility of synthetic data by:

• Conducting FEA Simulations: Using COMSOL Multiphysics to simulate crack

growth and generate strain data.

• Comparative Analysis: Evaluating the consistency between FEA-generated data

and FrameworkFDPP synthetic data.

7

• Model Training: Employing machine learning models such as XGBoost, Light-

GBM, and Autoencoders to predict RUL based on FEA data.

• Performance Comparison: Assessing the predictive accuracy of new models

against those used in FrameworkFDPP.

By integrating high-fidelity simulations with advanced machine learning techniques,

this study seeks to improve the reliability and applicability of fatigue damage prognostic

models in aerospace engineering.

8

Chapter 3

Problem Statement and Objectives

3.1 Problem Statement

In recent years, the aerospace industry has increasingly emphasized the need for predictive

maintenance strategies to ensure the structural integrity and safety of aircraft components

subjected to cyclic loading. Fatigue-induced cracks are a major contributor to structural

failures, and accurate prediction of the Remaining Useful Life (RUL) of these components

is essential to prevent unexpected breakdowns.

The study by Akrim et al. (2022) introduced the FrameworkFDPP, which provides

a synthetic dataset generation approach based on a virtual model that simulates strain

data using placed virtual gauges and Paris’ Law to model crack propagation. While

this framework is valuable for generating large volumes of training data without physical

testing or finite element simulations, the synthetic data is not physically validated against

high-fidelity structural simulations or real-world experiments [15].

This lack of physical grounding raises questions about the realism and credibility of

the synthetic data when applied to real-world fatigue damage scenarios. Additionally, the

deep learning models used in the original framework—such as RNN, LSTM, GRU, 1D-

CNN, and TCN—were not compared to newer machine learning algorithms that might

offer improved accuracy and interpretability.

9

3.2 Research Gap

The following gaps have been identified from the literature:

• Lack of comparison between synthetic data from FrameworkFDPP and high-fidelity

finite element simulation data.

• No validation of virtual strain data against physically simulated strain results.

• Limited exploration of non-deep learning models such as gradient boosting or unsu-

pervised approaches like Autoencoders in the context of fatigue RUL estimation.

3.3 Research Objectives

This thesis aims to bridge the gap between code-based synthetic data and physics-based

simulation in fatigue damage prognosis. The specific objectives are:

1. Simulate crack propagation using COMSOL Multiphysics: Generate strain

data from a 2D finite element model under fatigue loading to mimic realistic crack

behavior.

2. Compare synthetic vs. simulated strain data: Evaluate the credibility of the

FrameworkFDPP’s virtual strain gauge data by comparing it to data from COMSOL

simulations.

3. Develop and test new models: Implement and train alternative machine learning

models (e.g., XGBoost, LightGBM, Autoencoder) on dataset.

4. Benchmark model performance: Assess and compare the performance of these

models using RUL prediction accuracy metrics such as RMSE, MAE, and R2, and

compare them to results from the original FrameworkFDPP study.

10

3.4 Scope of the Study

This study will focus on metallic aircraft structures subjected to tensile and fatigue loading.

The COMSOL simulations will model crack growth and strain accumulation, while the

data from FrameworkFDPP will be used to train and evaluate predictive models.

11

Chapter 4

Methodology

The methodological workflow shown in Figure 4.1 consists of the following key stages:

• Start: The project begins by defining the objectives—predicting crack growth and

estimating Remaining Useful Life (RUL) using simulated data and machine learning

techniques.

• COMSOL Simulation: A 2D fatigue crack growth model is built in COMSOL

Multiphysics. Strain gauges are positioned around the crack tip, and cyclic loading

is applied to simulate the physical environment.

• Generate Synthetic Data: Inspired by the FDPP framework, synthetic datasets

are generated to mimic strain and displacement responses under fatigue loading.

These datasets help in training models without relying solely on costly physical

experiments.

• Preprocess and Clean Data: The raw simulation outputs are cleaned, structured,

and filtered. This includes removing outliers, handling missing values, and ensuring

consistent formatting of features like strain and crack length.

• Normalize and Scale Features: All features are normalized using MinMax scaling

or similar techniques. This improves the training stability of neural networks and

prevents bias toward larger magnitude features.

12

• Train ML/DLModels: Various machine learning and deep learning models—including

GRU, XGBoost, and Transformers—are trained to predict either crack length or

RUL. Performance is tracked using error metrics like MAPE.

• Evaluate Performance (MAPE): The trained models are evaluated using val-

idation and test sets. Mean Absolute Percentage Error (MAPE) is computed to

compare accuracy across models and training sizes.

• Build User Interface (GUI): A graphical interface is designed (using Tkinter)

to allow maintenance technicians to input current cycle or strain values and receive

predictions on crack length or RUL instantly.

• Integrate Model and GUI: The best-performing trained model is embedded into

the GUI, enabling real-time inference and user interaction.

• Deployment: The integrated solution is prepared for practical use. This may in-

clude packaging, documentation, and testing the system under realistic use scenarios.

13

Start

COMSOL Simulation

Generate Synthetic Data

Preprocess and Clean Data

Normalize and Scale Features

Train ML/DL Models

Evaluate Performance (MAPE)

Build User Interface (GUI)

Integrate Model and GUI

Deployment

Figure 4.1: Overall methodological workflow of the project

4.1 Crack Simulation in COMSOL

In this section, we describe the numerical simulation approach used to replicate crack

propagation behavior in a 2D structural model using COMSOL Multiphysics®. The goal

is to generate strain data that can later be compared to synthetically generated data and

used to train predictive models.

14

4.1.1 Simulation and study assumptions :

• the fuselage panels are representative of short range aircraft such as A320 or B737.

• one cycle is one landing and one take off which takes an average of 1 hour = 3600

second .

4.1.2 Model Geometry and Boundary Conditions

A 2D rectangular plate with dimensions 200 mm (width) × 150 mm (height) was created

in COMSOL. A pre-existing elliptical crack of length 2 mm was introduced at the center

of the geometry to simulate an initial flaw.

The following boundary conditions were applied:

• Left and Right Edges (x = 0 and x = L) These simulate panel being riveted or

attached to structure.

Use: Prescribed Displacement

ux = 0

uy = free (not constrained)

This means it can expand/contract vertically but can’t move left/right.

• A cyclic load in the form of −78.6×106 ·sin
(

2πt
3600

)
was applied on the top and bottom

edges in opposite directions, simulating a realistic alternating fatigue loading over

time.

• 3 probe points that represents the strain gauges (sensors) where : strain gauge 1 (3

, 14) , strain gauge 1 (14 , 14) , strain gauge 1 (25 , 14).

• 2 probe points on the edge and in the tip of the crack .

• Aluminum alloy 7075-T6 is used as material for the geometry .

15

Figure 4.2: 2D geometry of the cracked plate in COMSOL with probe point locations

4.1.3 Simulation Setup and Parameters

The simulation was configured to run for 100 loading cycles, with each cycle lasting 3600

seconds, totaling 360,000 seconds of simulation time. Due to computational limitations and

the high-resolution nature of the FEM analysis, this simulation was very time-consuming.

then we ran another simulation starting from 100 cycles to 1000 cycle and it took around

24h to export the results .

Virtual Strain Gauges and Data Extraction

Virtual strain gauges were placed at specific probe points, as outlined in the FDPP paper

[16], to monitor strain evolution over time. Two additional probes were placed: one at

the start and one at the end of the crack, to track crack length growth.

The output from the COMSOL simulation was exported as a CSV file containing the

strain and displacement values over time at each probe location.

Post-Processing of COMSOL Data

To analyze the results of the COMSOL simulations, the strain evolution data were ex-

tracted and plotted against the number of cycles using Python. Two separate simulations

16

Figure 4.3: normal strains state for a crack of length 2mm

were conducted: one for 100 cycles and another for 1000 cycles, both using identical

boundary conditions and virtual strain gauge configurations.

The Python scripts used for this processing — comsol100.py and comsol1000.py

— are available in the GitHub repository linked in Appendix .1. These scripts were

responsible for:

• Parsing and processing the COMSOL output CSV files (strain and displacement

data).

• Extracting cycle-wise strain readings at all probe points, including those located at

the crack tips and virtual strain gauges.

• Plotting critical graphs such as strain vs. cycle and crack length vs. cycle number.

Results from 100-Cycle Simulation: in The 100-cycle simulation meaning after 100

cycles assuming that each cycle takes 1 hour , theres no significant change in the crack

length also the starin so that’s why there’s a need to lanch another simulation till 1000

cylces .

17

Figure 4.4: cyclic load applied

Figure 4.8: Strain vs. Cycle Number for 3 Virtual Gauges (100-cycle COMSOL simulation)

18

(a) Simulating from cycle 1 to cycle 100 (b) Simulating from cycle 100 to cycle 1000

Figure 4.5: Simulation comparisons across cycles

Figure 4.9: Crack Length vs. Cycle Number (100-cycle COMSOL simulation)

Results from 1000-Cycle Simulation: The 1000-cycle simulation took more time but

still there’s no significant change in the crack length .

19

Figure 4.6: CSV file from comsol simulation of 100 cycle

Figure 4.10: Strain vs. Cycle Number for 3 Virtual Gauges (1000-cycle COMSOL simu-

lation)

20

Figure 4.7: CSV file from comsol simulation of 1000 cycle

Figure 4.11: Crack Length vs. Cycle Number (1000-cycle COMSOL simulation)

Strain Stabilization Observed in Early Cycles

The strain response obtained from the COMSOL simulation over the first 100 cycles shows

a sharp initial decrease in strain measured at the three strain gauges, followed by a sta-

21

bilization at very small but non-zero values (approximately on the order of 10−10). This

reflects the typical elastic adjustment of the structure under cyclic loading. Initially, the

material experiences transient effects as it accommodates the applied sinusoidal stress.

Once equilibrium is reached, the strain levels settle into a steady-state regime. Since no

damage or crack propagation was allowed in this simulation phase, the strain remains

stable for the rest of the cycles. This result provides a meaningful validation baseline,

indicating that the structure behaves elastically over the early life of loading — contrast-

ing with the synthetic dataset, where strain continues to evolve due to modeled fatigue

progression.

4.1.4 Parameter Sensitivity Study

A sensitivity study was conducted to determine how different simulation settings affect

the accuracy and stability of the results:

• Mesh Refinement: A fine mesh was applied around the crack tip to capture local

stress concentration.

• Time Step: Various cycle step values (1, 10, 50 cycles) were tested to observe their

influence on the results.

• Material Properties: Sensitivity to variations in E and ν was analyzed.

This analysis allowed us to identify the optimal setup to balance simulation accuracy

and computational cost.

4.1.5 Stress and Strain Field Analysis

The simulation results show that the stress field is highly concentrated near the crack

tip, consistent with fracture mechanics theory. After 100 cycles, the crack length remains

mostly static, while at 1,000 cycles, the crack shows noticeable propagation.

The strain field also reflects this behavior with a progressive increase near the crack

tip over time.

22

4.2 Crack Simulation with Synthetic Data

To overcome the computational cost and time constraints of simulating fatigue crack

growth through finite element software such as COMSOL, this project adopts a data-

driven approach to generate large-scale synthetic datasets using the open-source Frame-

workFDPP available on GitHub .1

4.2.1 Overview of the Framework

FrameworkFDPP is a Python-based framework designed to simulate the progression of

fatigue cracks in metallic structures by generating large datasets under varying physical

and structural conditions. It leverages fracture mechanics theory, particularly the Paris

Law, to model crack length evolution over time and across various structural parameters.

4.2.2 The Paris Law

The Paris Law is an empirical relationship used in fracture mechanics to describe the rate

of crack growth per load cycle in materials subjected to cyclic loading. It is mathematically

expressed as:

da

dN
= C · (∆K)m

Where:

• da
dN

is the crack growth rate per cycle.

• ∆K is the stress intensity factor range.

• C and m are material constants (experimentally determined).

This law is embedded in the synthetic data generation process, allowing the simulation

of realistic crack evolution.

23

4.2.3 How the Synthetic Data Is Generated

The main Python script responsible for generating the synthetic dataset is generate dataset.py.

This script performs the following tasks:

1. Defines the geometry of the plate and locations of the strain gauges.

2. Samples key parameters such as initial crack length a0, Paris constants C and m,

and loading conditions.

3. Simulates crack propagation over time using the Paris Law.

4. Computes the strain fields at predefined gauge positions using an analytical approx-

imation (not FEA).

5. Records the crack length, number of cycles, and gauge strains at each time step.

6. Outputs the data in structured CSV files for training, validation, and testing pur-

poses.

4.2.4 Synthetic Training Set Parameters

After generateing the data a csv file is saved that look like this :

24

Figure 4.12: syntatic data set

The synthetic dataset used in this work was generated following the methodology in

[17]. The table below summarizes the key parameters.

25

Parameter Description

C Paris law coefficient (material-dependent constant that

governs the crack growth rate).

m Paris law exponent (determines the sensitivity of crack

growth rate to stress intensity).

a 0 Initial crack length in meters.

x gauges X-positions of the three strain gauges used for measure-

ment.

y gauges Y-positions of the three strain gauges used for measure-

ment.

crack lengths List of crack lengths at each cycle, computed using Paris’

law.

nb cycles Number of loading cycles until the crack reaches critical

size.

Nb measures Number of strain measurements taken per sample.

strains Strain readings at the three gauges for each cycle.

Stored as 2D arrays.

Table 4.1: Description of Parameters in the Synthetic Training Set

4.2.5 Cleaning the syntatic data and generate the graphs to com-

pare with comsol simulation :

To analyze and prepare the synthetic dataset for comparison with COMSOL simulation

results, we used the syntatic study.py script from our GitHub repository .1.

This script processes the raw synthetic training dataset (training set2.csv) gener-

ated using the FrameworkFDPP method [6]. The processing steps include:

• Parsing and cleaning the embedded strain arrays for each of the three gauges.

• Extracting strain evolution across the fatigue cycles for each gauge.

26

• Extracting the corresponding crack length evolution per cycle.

• Calculating and plotting:

– Strain vs. Cycles for each gauge (G1, G2, G3).

– Crack Length vs. Cycles curve.

the new dataset used to generate the new graphs 4.13:

(training set clean ready realcycles.csv) .1

Figure 4.13: syntatic data set after cleaning

27

Figure 4.14: Strain vs. Cycle Number for 3 Virtual Gauges (syntatic dataset)

Figure 4.15: Crack Length vs. Cycle Number (syntatic dataset)

4.3 Analysis and Comparison of Synthetic Data

To assess the reliability of the synthetically generated fatigue data, we compared it against

simulation results obtained using COMSOL Multiphysics. This comparison focused on two

key metrics: crack length evolution and strain response at gauge points over fatigue cycles.

28

4.3.1 Crack Length vs. Cycles

The simulation performed in COMSOL, both for Figures 4.9 and 4.11 showed that the

crack length remained constant during the first 100 and 1000 cycles. This behavior aligns

closely with the synthetic dataset, where the crack length also remains static up to around

10,000 cycles before beginning to increase progressively due to fatigue accumulation like

shown in figure 4.15. This matching pattern confirms that the synthetic dataset captures

realistic initial damage accumulation phases, validating its use for fatigue prognosis beyond

the limits of physical simulation.

4.3.2 Strain at Gauges vs. Cycles

Similarly, in the COMSOL simulation, the strain response measured at the three strain

gauges remains nearly constant across the 100 and 1000 cycle simulations like shown in

figures 4.8 and 4.10. This behavior is also observed in the synthetic dataset for the same

early range (0 to 1000 cycles), where strain values appear nearly static (figure 4.14) .

This consistency suggests that the synthetic strain gauge behavior replicates the early-

cycle mechanical response of the aircraft panel as realistically as COMSOL allows under

practical computational constraints.

4.3.3 Conclusion

The alignment of both crack length stability and strain behavior in the initial loading

cycles between the COMSOL simulations and the synthetic dataset supports the use of the

synthetic data for extended fatigue analysis. These observations confirm that the synthetic

data generation pipeline provides a credible approximation of physical behavior, especially

in the early stages of crack initiation and propagation. Consequently, the synthetic data

is validated for use in model training, especially when long-term fatigue simulation is not

computationally feasible.

29

4.4 Querying Crack Length Using Processed Synthetic

Data

In addition to preprocessing the training dataset, the synthetic study.py script includes

functionality that enables the user to query the estimated crack length at a specific cycle

count. The script processes the training set2.csv file and generates two key graphs:

crack length vs. number of cycles and strain at each gauge vs. number of cycles figure

4.16 (the number 3967 cycles exist in the data set) . Furthermore, it prompts the user to

input a desired cycle number, then returns:

• The estimated crack length at that cycle.

• The number of cycles left until the critical crack length is reached (i.e., failure).

This interaction is helpful for quick inspection and understanding of structural health

based on precomputed data. However, it has a limitation: if the user inputs a cycle

value that is not explicitly listed in the dataset, the program returns an error (“Cycle not

available in the dataset”)as shown in figure 4.17 (the number 60350 cycles doesn’t exist

in the data set) . This is due to the fact that the dataset consists of a finite number of

measured points.

Figure 4.16: python terminal when the number of cycles is mentioned in the dataset

30

Figure 4.17: python terminal when the number of cycles is not mentioned in the dataset

Motivation for Predictive Modeling

This limitation motivates the need for a predictive model. A trained machine learning

model can:

• Generalize to unseen cycle values.

• Predict the crack length and strain for any number of cycles—even beyond the ones

present in the dataset.

• Improve decision-making and maintenance planning in real-time applications.

Hence, the next phase of this work involves developing and training a machine learning

model capable of forecasting the remaining useful life (RUL) and crack length at arbitrary

cycle counts using the synthetic dataset as a foundation.

4.5 Generating the Data sets :

4.5.1 Fracture Mechanics and Crack Modeling

The crack.py script implements analytical solutions from linear elastic fracture mechan-

ics (LEFM) for a finite crack under Mode I (opening mode) loading, based on complex

potentials. The formulations are primarily derived from [18]. The goal is to simulate

stress, strain, and displacement fields around a crack tip, as well as crack growth over

fatigue cycles.

• Stress Functions: The script defines the complex stress function ϕ(z), along with

its first and second derivatives, ϕ′(z) and ϕ′′(z), used to compute stresses and dis-

placements around the crack tip.

31

• Displacement Field: Using Eq. (2.70) from [18], the displacement fields (u, v) are

calculated for either plane stress or plane strain conditions. The complex variable

z = x+ iy is used for evaluating the displacement in the material.

• Stress Components: The stress components σ11, σ22, τ12 are computed from ϕ′(z)

and ϕ′′(z) using Eq. (2.69) of the reference. In the plane strain case, σ33 is also

estimated using the appropriate constitutive relations.

• Strain Components: The corresponding strain components are derived based on

linear elasticity theory. Both plane stress and plane strain assumptions are sup-

ported, and ϵ33 is returned only under the plane stress scenario.

• Crack Growth Law: The function length paris law calculates the crack length

ak after k fatigue cycles using Paris’ Law:

ak =
(
kC

(
1− m

2

)
(∆σ

√
π)m + a

1−m/2
0

) 2
2−m

(4.1)

where C and m are material-specific parameters, ∆σ is the stress range, and a0 is

the initial crack length.

This script forms the theoretical backbone for generating synthetic strain and crack

length data that mimic real-world fatigue crack propagation under repeated loading.

Synthetic Data Utility Functions: utils.py

The utils.py script provides essential tools for generating and processing synthetic crack

growth datasets based on fracture mechanics principles. This utility file includes routines

for simulating sensor readings, sampling material parameters, and formatting the dataset

for machine learning applications.

Key Components:

• build dataset: Converts raw simulation outputs into a structured Pandas DataFrame,

organizing cycle indices, sensor (gauge) readings, and Remaining Useful Life (RUL)

labels. This function also supports optional truncation at a critical crack length

using a t star value.

32

• gen param sample: Randomly samples initial crack length a0, Paris law coefficient

C, and exponentm using truncated and multivariate normal distributions. The sam-

pling ensures realistic crack propagation behavior by enforcing physically meaningful

constraints (e.g., m > 0).

• gen strain value gauge: Computes synthetic strain values at arbitrary gauge lo-

cations and orientations (x, y, θ) using the analytical strain fields from fracture me-

chanics (via crack.strain).

• gen dataset: Generates a collection of synthetic crack sequences. For each sample,

it:

1. Samples a0, C, and m

2. Computes strain evolution using Paris law and fracture equations

3. Records sensor data and crack length at intervals determined by the thinning

parameter

The output is a list of dictionaries, each representing one sequence (used later for

training/testing ML models).

The module relies on the analytical stress and strain functions implemented in crack.py

and uses the JIT compiler from Numba to speed up computationally intensive routines.

4.5.2 Generation Procedure : main.py

The main.py script acts as the central driver for the synthetic dataset generation process

used in crack length and Remaining Useful Life (RUL) prediction tasks. This script

begins by parsing a series of user-defined parameters using the argparse library. These

include material properties such as Young’s modulus (E) and Poisson’s ratio (nu), fracture

parameters like the Paris’ Law constants (C, m) and fracture toughness (K IC), and the

configuration of strain gauges (positions and angles).

Once the parameters are loaded, the script computes the critical crack length (a crit)

based on the given fracture toughness and maximum stress, using linear elastic fracture

33

mechanics principles. It then creates a data directory for storing outputs and saves the

current configuration for reproducibility.

The datasets are generated using the utils.gen dataset function. Three separate

sets are created: training, validation, and test. The test set includes an additional field

t star to represent the fraction of the full lifetime that is observable, mimicking real-world

scenarios where complete crack growth history is not always available. The datasets are

saved in both .pkl and .csv formats.

To structure the raw simulation output into a format suitable for machine learning

workflows, the script uses the utils.build dataset function. This transformation pro-

duces final CSV files that include the cycle number, strain readings from each gauge,

and the corresponding RUL at each cycle. The training and validation datasets con-

tain complete histories, while the test dataset is truncated based on t star. Ultimately,

the main.py script ensures scalable, reproducible generation of synthetic fatigue datasets

suitable for data-driven prognostic modeling.

4.6 Cleaning the Data sets Procedure :

4.6.1 Data Transformation Pipeline

The original datasets generated using the main.py script—namely training set.csv,

validation set.csv, and test set.csv—contained structural information in a nested

format. Specifically, each row in these files represented an entire experiment, with key

fields such as the list of strain readings from multiple gauges (stored as an array in the

strains column) and corresponding crack lengths over cycles (stored in crack lengths).

Although this format is compact, it is not directly suitable for supervised learning models,

which typically require a tabular structure with one measurement per row.

4.6.2 Cleaning and Flattening the Dataset

To restructure these raw datasets into a usable machine learning format, a script named

clean dataset.py was developed (included in Appendix .1). This script flattens the

34

nested data by iterating over each experiment and unrolling the strain and crack length

sequences.

For each experiment:

1. The total number of measurements (Nb measures) is retrieved.

2. The initial cycle index is computed from the total number of cycles using the known

interval (500 cycles between measurements).

3. For each time step, a new row is created containing:

• sample id: an identifier for the original experiment,

• cycle: the specific cycle number at which the measurement was taken,

• G1, G2, G3: strain readings from the three gauges,

• crack length: the corresponding crack length at that cycle.

This transformation was applied to all three original datasets. The resulting cleaned

datasets—training set cleaned.csv, validation set cleaned.csv, and

test set cleaned.csv—are stored in the GitHub repository .1 associated with this

project and were used for all model training and evaluation tasks.

Example of Transformation

Table 4.2 summarizes the difference between the raw and cleaned formats. As shown in

Figure 4.18, the raw CSV contained nested data, which was flattened for machine learning

use.

Table 4.2: Comparison of Raw vs Cleaned Dataset Format

Format Structure Description

Raw (validation set.csv) 1 row per sample Contains lists of strains and crack lengths

Cleaned (validation set cleaned.csv) 1 row per cycle Each row includes G1–G3, cycle, crack length

35

(a) Raw CSV file format: each row contains

nested lists of G1–G3 strain readings and

crack lengths.

(b) Cleaned CSV file format: each row

corresponds to a single cycle with explicit

G1–G3 values and crack length.

Figure 4.18: Comparison between raw and cleaned CSV formats used for model training.

Availability

All original and cleaned datasets, as well as the associated scripts (main.py, utils.py,

crack.py, clean dataset.py), are available in the project’s public GitHub repository .1.

note that the crack length is in mm and the strain of the three gauges (G1 , G2 , G3) is

in microstrain µε.

4.6.3 Assumption of Constant Paris’ Law Parameters

In this study, the Paris’ Law parameters C and m were treated as constants throughout

the data generation and model training process. This assumption is physically justified

by the fact that both parameters are material-dependent and do not vary significantly

under consistent loading and environmental conditions. Since the dataset was synthetically

generated for a single material and under uniform stress range, it is valid to assume fixed

values for C and m as shown in 4.19.

36

The goal of the machine learning models is not to estimate these parameters, but rather

to learn a mapping from local strain measurements (G1, G2, G3) to the corresponding

crack length at each cycle. By keeping C and m constant, the dataset encodes a consistent

crack growth behavior, allowing the models to learn from strain patterns alone. This

simplification reduces unnecessary complexity while still providing a reliable framework

to evaluate the effectiveness of various data-driven approaches to fatigue prognosis.

Strain G1

Strain G2

Strain G3

Machine Learn-

ing Model

(Trained on

synthetic data

with constant C, m)

Predicted

Crack Length

Paris’ Law parameters C and m are kept constant

during both training and prediction

Figure 4.19: Schema illustrating the data-driven mapping from strain gauge readings

(G1–G3) to crack length. The machine learning model learns this relationship based on

training data where C and m are held constant.

4.7 Model Development and Training

In this work, three machine learning models were evaluated for predicting crack length in

aircraft fuselage structures using strain gauge data: XGBoost, GRU, and Transformer.

4.7.1 XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful and efficient gradient boosting al-

gorithm that has demonstrated strong performance on structured tabular data. It was

trained to predict crack length using four features: number of cycles, and strain values from

37

three sensors (G1, G2, G3). The final trained model was saved as xgb crack model.pkl

and integrated into the GUI application.

Input: [Cycle, G1, G2, G3]

MinMax Scaler

XGBoost Regressor100 Trees, Max Depth = 4Learning Rate = 0.1

Inverse Scaler

Output: Crack Length (mm)

Figure 4.20: Schematic of the XGBoost-based regression pipeline for crack length predic-

tion.

Description

The XGBoost model was trained as a regression model to predict crack length based on

the number of cycles and strain values (G1, G2, G3). Input features were normalized using

a MinMax scaler. The model consisted of 100 decision trees, each with a maximum depth

of 4, and used a learning rate of 0.1. Predictions were transformed back to the original

scale using an inverse MinMax scaler.

38

Hyperparameters

Parameter Value

Model Type XGBoost Regressor

Number of Trees 100

Maximum Tree Depth 4

Learning Rate 0.1

Objective Function reg:squarederror

Evaluation Metric MAPE

Feature Scaler MinMaxScaler

Input Features Cycle, G1, G2, G3

Target Variable Crack Length (mm)

Table 4.3: Hyperparameters used in the XGBoost model.

Justification

XGBoost was chosen due to its excellent performance on tabular data and its robustness

to noise. The hyperparameters were selected through experimentation to balance accuracy

and generalization.

4.7.2 GRU :Gated Recurrent Units

Gated Recurrent Units (GRUs) are a type of recurrent neural network designed to effi-

ciently learn dependencies in sequential data using update and reset gates. In this study,

GRUs were used to model the relationship between applied cycles, strain readings, and

the resulting crack length.

39

Input: [Cycle, G1, G2, G3]

MinMax Scaler

GRU ModelInput Size = 4Hidden Size = 321 GRU Layer + FC Output

Inverse Scaler

Output: Crack Length (mm)

Figure 4.21: GRU-based model architecture for crack length prediction.

Architecture

Description

The GRU model receives a vector of four features—Cycle, G1, G2, and G3—as input.

These features are first scaled using a MinMax scaler. The sequence is then passed through

a single-layer GRU network with a hidden dimension of 32. The output of the GRU is

processed through a fully connected (FC) layer to produce the predicted (normalized)

crack length, which is then inverse-scaled to obtain the crack length in millimeters.

40

Training Procedure

The model is trained using the Adam optimizer and Mean Squared Error (MSE) loss

function. Training is conducted over 20 epochs with a batch size of 32. The training

dataset is scaled prior to input, and predictions are inverse-scaled post-model to obtain

results in the physical domain. A new model is trained from scratch for each specified

training size to ensure fairness and consistency in model comparisons.

Hyperparameters

Parameter Value

Model Type GRU

Input Size 4

Hidden Size 32

GRU Layers 1

Output Layer Fully Connected

Loss Function Mean Squared Error (MSE)

Optimizer Adam

Learning Rate 0.001

Epochs 20

Batch Size 32

Feature Scaler MinMaxScaler

Input Features Cycle, G1, G2, G3

Target Variable Crack Length (mm)

Table 4.4: GRU model training configuration.

Justification

GRUs are well-suited for sequential regression tasks due to their ability to learn long-

and short-term dependencies without incurring the full computational cost of LSTMs.

41

Their relative simplicity and efficiency make them a strong baseline for modeling temporal

patterns in strain-based crack growth behavior.

4.7.3 Transformer

Transformers are attention-based deep learning models that have shown state-of-the-art

performance in many sequential data tasks. Unlike recurrent models, Transformers process

entire input sequences in parallel using self-attention mechanisms, making them highly

effective for learning temporal dependencies.

Input Sequence: 10 × [Cycle, G1, G2, G3]

MinMax Scaler

Transformer Model
Input Projection →

2 Transformer Encoder Layers
4 Attention Heads, dmodel = 64
Output: Last Token → FC

Inverse Scaler

Output: Crack Length (mm)

Figure 4.22: Transformer-based model architecture for crack length prediction.

Architecture

42

Description

The Transformer model is designed to operate on sequences of strain data and associated

cycle numbers. Each input sequence contains 10 time steps, where each step includes the

features Cycle, G1, G2, and G3. After feature scaling, the input is projected to a higher

dimensional space (dmodel = 64) using a linear layer. This is followed by two stacked

Transformer encoder layers with four attention heads each. The final prediction is based

on the output corresponding to the last time step, passed through a fully connected layer.

The output is then inverse-scaled to recover the predicted crack length in millimeters.

Training Procedure

For each training size, the input sequences and targets are generated using a sliding window

of size 10. The model is trained using the Adam optimizer and Mean Squared Error (MSE)

loss over 50 epochs with a batch size of 32. A new model is trained from scratch for each

training size (100, 500, 1000) to ensure consistent and fair evaluation. Validation and test

predictions are made using the same sequence-based windowing approach.

Hyperparameters

Justification

Transformers provide a powerful modeling approach for time series data due to their

ability to capture long-range dependencies and parallelize computation. By leveraging

attention mechanisms, the model can weigh the relative importance of each time step

in a sequence, which is particularly advantageous in capturing subtle patterns in crack

propagation dynamics.

4.8 Evaluation Metrics

To evaluate the performance of the models used for crack length prediction, the Mean

Absolute Percentage Error (MAPE) is employed. MAPE is a common metric for regression

43

Parameter Value

Model Type Transformer

Sequence Length 10

Input Size 4

Embedding Dimension (dmodel) 64

Number of Layers 2

Number of Attention Heads 4

Dropout 0.1

Loss Function Mean Squared Error (MSE)

Optimizer Adam

Learning Rate 0.001

Epochs 50

Batch Size 32

Feature Scaler MinMaxScaler

Input Features Cycle, G1, G2, G3

Target Variable Crack Length (mm)

Table 4.5: Transformer model training configuration.

tasks that expresses the average prediction error as a percentage of the true values:

MAPE =
100%

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣
where At is the actual value and Ft is the predicted value. A lower MAPE indicates

higher prediction accuracy.

4.8.1 Experimental Setup

Three models were evaluated: XGBoost, GRU, and Transformer. Each was trained

using synthetic datasets of increasing size: 100, 500, and 1000 samples. Validation and

test performance were recorded separately. All models take strain gauge measurements

44

(G1, G2, G3) as inputs and output predicted crack length.

4.8.2 MAPE Results

Table 4.6 presents the MAPE (%) on validation and test sets for all models and training

sizes. The best values in each column are highlighted in bold.

Table 4.6: MAPE (%) Comparison Across Models and Training Sizes

Train Size XGBoost GRU Transformer

Val MAPE Test MAPE Val MAPE Test MAPE Val MAPE Test MAPE

100 0.20 0.28 3.37 3.80 5.15 5.42

500 0.05 0.09 0.68 0.57 4.76 5.40

1000 0.04 0.04 0.66 0.57 4.90 5.36

4.8.3 MAPE Visualization

Figure 4.23: MAPE (%) of XGBoost, GRU, and Transformer across different training sizes

45

Figure 4.23 illustrates the performance trends for each model. XGBoost shows rapid

improvement and maintains top performance, while GRU improves steadily with more

data. Transformer performance remains relatively poor regardless of dataset size.

4.8.4 Discussion

From Table 4.6 and Figure 4.23, we observe:

• XGBoost consistently achieved the lowest MAPE scores across all training sizes.

As a gradient boosting tree model, it is robust with small datasets and captures

nonlinear interactions efficiently.

• GRU, a sequential deep learning model, performed reasonably well with medium

and large datasets. It captures temporal dependencies but requires more data and

training time to generalize well.

• Transformer underperformed relative to the other models. This is attributed to

its complexity and the need for large-scale data to effectively learn self-attention

patterns, which this application lacks.

4.8.5 Conclusion

Based on the MAPE values:

• The best model is XGBoost, due to its superior performance across all dataset

sizes and its ability to generalize well with minimal data.

• The worst model is the Transformer, whose complexity is not justified by its

performance in this regression task with relatively small datasets.

46

Chapter 5

Model Simplification and Practical

Deployment

5.1 Data Interpolation Strategy for Crack Length Mod-

eling

In the initial phase of the project, our raw experimental datasets posed a critical modeling

challenge: the crack length remained nearly constant across a large number of initial

cycles. Specifically, the raw training data began around cycle 44000, where changes in

crack length were minimal and difficult to learn from. When attempting to use these early

sections of the dataset, machine learning models such as XGBoost, GRU, or Transformer

were unable to capture meaningful patterns due to the lack of variation. As a result,

prediction behavior was inaccurate or unresponsive when users entered input values like

cycle 1000 or 1100 into the deployed GUI model.

To resolve this, we implemented a data restructuring approach using linear interpola-

tion. The goal was to simulate a progressive and realistic increase in crack length while

preserving the original end cycle and final crack growth trends observed in the raw data.

For each dataset—training, validation, and testing—we applied interpolation that adhered

to the following principles:

• Fixed sample size: Each set retained its original number of elements (e.g., 1000

47

samples for training, 100 for validation and test).

• Fixed cycle range endpoints: All interpolated datasets ended at the same max-

imum cycle count (e.g., 72,000), consistent with the original measurements.

• Staggered starting points: The training set was interpolated from cycle 1000 to

72,000, validation from 1200 to 72,000, and test from 1300 to 72,000. This ensured

that the model did not overfit to the same pattern and had a staggered learning

context.

• Interpolated crack growth: The crack length was linearly interpolated between

the starting and ending cycle points, based on the known minimum and maximum

crack values. This created a smooth and realistic growth pattern, allowing the model

to learn continuous degradation behavior.

This interpolation method is justified for the following reasons:

1. Preserving physical behavior: The interpolated crack length values respect the

monotonicity of real fatigue crack growth, which typically increases gradually before

accelerating.

2. Model responsiveness: It enabled the model to generate realistic crack length

predictions across a wider range of inputs, especially in the early-cycle domain where

the raw data was flat.

3. Consistent evaluation: By maintaining the same sample count, comparisons of

different training sizes (100, 500, 1000) on validation and test sets remained consis-

tent and statistically meaningful.

This data augmentation technique significantly improved model generalization and

was crucial in the successful deployment of the final GUI-based crack length and RUL

prediction application.

48

(a) cleaned syntatic data before interpola-

tion

(b) cleaned syntatic data after interpolation

Figure 5.1: Comparison between interpolated and non original data

5.2 Model Deployment :

After developing several models for crack length prediction using features such as cycle

count and strain gauge readings (G1, G2, G3), we integrated our work into a user-friendly

GUI intended for maintenance technicians. However, during practical testing, we iden-

tified usability issues in the interface. Specifically, technicians were required to input

multiple parameters (G1, G2, G3), which was not only cumbersome but also error-prone.

Notably, G2 and G3 strain gauges exhibited minimal variation across samples and did not

significantly impact prediction accuracy. Consequently, we removed them and focused on

Cycle and G1 as inputs.

5.2.1 XGBoost Model Architecture for 2 features :

The final model chosen for deployment was an XGBoost regressor. The XGBoost archi-

tecture is an ensemble of decision trees trained sequentially, where each new tree attempts

to correct the residual errors of the previous trees.

49

The general schema of the XGBoost pipeline is illustrated below:

Input Features

(Cycle, G1)

MinMax Scaling

XGBoost Regressor

(300 estimators, depth=5)

Scaled Prediction

Inverse Scaling

(Predicted Crack Length)

5.2.2 MAPE Evaluation of the XGBoost Model for 2 features

The XGBoost model was trained using different subsets of the training data to evaluate its

performance. The table below summarizes the Mean Absolute Percentage Error (MAPE)

on both the validation and test sets:

Table 5.1: MAPE Results for XGBoost Model with Different Training Sizes

Training Size Validation MAPE (%) Test MAPE (%)

100 4.07 3.07

500 3.52 1.7

1000 0.05 0.17

in the table the MAPE table shows good values at 1000 samples with using two features

G1 and number of cyles now we move to trying the trainig of the model with one feature

which is number of cycles .

XGBoost with Only Cycle

To further reduce user input requirements and simplify the GUI, a second version of the

model was trained using only the Cycle feature. The motivation was to see if reliable pre-

50

dictions could still be achieved from time alone, removing the need for strain measurements

entirely.

Despite this reduction in input information, the model still demonstrated acceptable

accuracy for deployment, especially when high interpretability and ease-of-use were prior-

itized.

• This version was particularly suited for systems where strain sensor data (G1) is

unavailable or difficult to obtain.

• It enabled a fully automatic prediction based only on the number of cycles, simpli-

fying deployment.

Table 5.2: MAPE (%) for XGBoost Model Trained with Only Cycle

Training Size Validation MAPE (%) Test MAPE (%)

100 4.07 3.7

500 1.71 0.21

1000 0.09 0.04

As shown, the accuracy remained high, especially with larger training sizes. This allowed

the deployment of a user-friendly interface with minimal input fields while maintaining

predictive performance.

5.2.3 Graphical User Interface (GUI) Development

After training the XGBoost models, two graphical user interfaces were developed to make

crack length prediction accessible for technicians in the field. These tools allow the user

to input relevant information and receive an instant crack length prediction along with a

remaining useful life (RUL) estimate and a visual crack growth graph.

Motivation for Two GUI Versions

The initial version of the GUI required input of both the G1 strain gauge value and the

number of cycles. However, in real-world aircraft maintenance environments, it was found

51

to be impractical for technicians to measure and input strain gauge values consistently.

Moreover, features G2 and G3 were removed during preprocessing due to minimal variance

and negligible impact on prediction performance.

This led to two stages of simplification:

1. First, the model was trained using only Cycle and G1 as input features.

2. Then, a minimal version of the GUI was created using only Cycle, requiring no

sensor data at all.

Full Input GUI (Cycle + G1)

The first interface includes two input fields:

• Cycle (number of loading cycles)

• G1 (strain value from sensor 1)

The GUI predicts:

• Current crack length (in mm)

• Remaining crack growth before reaching critical length

• Estimated RUL in cycles

It also provides a graph showing projected crack growth until failure (when the crack

reaches the critical length threshold for this case we chose crack length to be 10mm which

is 1cm this can be modified).

52

Figure 5.2: GUI Version Requiring Cycle and G1 Inputs

Minimal Input GUI (Cycle Only)

In the simplified version, only the number of cycles is required as input. This GUI

version is suitable for environments where sensors like G1 are unavailable or impractical

to measure. Despite using only one input feature, the model achieved strong predictive

performance as shown in the earlier MAPE tables.

The layout retains:

• Crack length prediction

• RUL estimate

• Crack growth visualization

53

Figure 5.3: GUI Version Requiring Only Cycle Input

Deployment Notes

Both GUIs were implemented in Python using the Tkinter library. The plotting feature

was enabled via Matplotlib, and the models were loaded using Joblib.

Scripts for both versions are available in Appendix .1, along with screenshots of the

interfaces and generated prediction plots.

5.2.4 Example Usage of GUI Interfaces

To illustrate the behavior and usability of the developed interfaces, we present one example

for each GUI version.

Example 1: GUI with Cycle and G1 Input

we set the critical length to 10mm and this can be changed . note that the crack length

is in mm and the strain of the gauge (G1) is in microstrain µε. In this example, the user

54

provides:

• Cycle = 7140

• G1 = 630 µε.

The model predicts:

• Predicted Crack Length: 7.1794 mm

• Remaining to Critical Length (10 mm): 2.8206 mm

• Estimated Remaining Useful Life: 4200 cycles

A plot of the projected crack growth is automatically generated:

55

Figure 5.4: Crack Growth Prediction - GUI with Cycle and G1 Input

Example 2: GUI with Cycle Only Input

In the simplified version, the user provides only:

• Cycle = 1520

The output is:

56

• Predicted Crack Length: 3.2783 mm

• Remaining to Critical Length (10 mm): 6.7217 mm

• Estimated Remaining Useful Life: 9900 cycles

The following graph shows the predicted crack propagation up to failure:

Figure 5.5: Crack Growth Prediction - GUI with Cycle Only Input

57

Chapter 6

Limitations and Future Work

6.1 Limitations

This project relied entirely on synthetic data to simulate crack propagation as a function

of cycle count and strain gauge readings (G1, G2, G3). While synthetic data allows

flexibility and controlled modeling conditions, it does not fully replicate the complexities

and noise of real-world sensor data. As such, the results, including the model accuracy and

GUI predictions, should be interpreted as a proof of concept rather than a field-validated

solution.

Additionally, the G2 and G3 features, although initially included, showed minimal

variation across the dataset and had little effect on model performance. Consequently,

they were removed to simplify the model and the GUI interface. This design decision,

while pragmatic, may overlook subtler mechanical behaviors that would appear in real-life

measurements.

Another limitation is the lack of external validation or cross-hardware testing. The

models have only been tested on datasets that were synthetically generated and cleaned.

Therefore, their robustness under variable conditions, sensor noise, and irregular sampling

intervals remains unverified.

58

6.1.1 Future Work

The most immediate improvement to this work would involve acquiring and integrating

real-world data collected from physical strain gauge sensors (G1, G2, G3) mounted on

aircraft components. Conducting a controlled laboratory experiment to track crack growth

over time would provide a valuable benchmark for validating the model’s predictions and

assessing generalization capabilities.

With real sensor data:

• The preprocessing pipeline can be re-used with minimal adaptation.

• The trained models (GRU, Transformer, XGBoost, etc.) can be retrained using the

same framework.

• The GUI application is already developed and ready to accept live or recorded inputs

from technicians.

In addition, future work may explore:

• Incorporating more diverse sensor data (e.g., acoustic emission, vibration, or ultra-

sonic).

• Applying real-time streaming data with continual model updates.

• Enhancing the GUI to interface directly with embedded sensor systems for on-site

deployment.

• Using physics-informed machine learning to better constrain predictions based on

fracture mechanics principles.

In conclusion, this project serves as a foundational framework for crack length predic-

tion in aircraft components. Once real experimental data becomes available, the system

can be transitioned from a hypothetical prototype to a fully deployable diagnostic tool.

59

Chapter 7

Conclusion

In this project, we explored the development of a machine learning-based framework for

predicting crack length growth in aircraft components, using strain data collected from

simulated sensors. The central objective was to support maintenance decision-making

by providing an intelligent system capable of estimating the current crack length and

predicting the remaining useful life (RUL) of a structure before reaching a critical failure

point.

We began by generating synthetic data, simulating strain gauge measurements (G1,

G2, G3) and corresponding crack lengths over thousands of cycles. This allowed for exper-

imentation in the absence of real sensor data. The data was interpolated, normalized, and

split into training, validation, and test sets. A variety of machine learning and deep learn-

ing models were evaluated, including GRU, LSTM, Transformer, Temporal Convolutional

Networks (TCN), and XGBoost. Among these, XGBoost was selected for deployment due

to its balance between performance, interpretability, and speed.

After extensive experimentation, we discovered that some features, such as G2 and G3,

did not significantly contribute to predictive accuracy. To simplify the system and improve

usability, we progressively reduced the feature space from four features (Cycle, G1, G2,

G3) to two (Cycle and G1), and finally to a single feature (Cycle). This simplification

had minimal impact on accuracy, with the XGBoost model still achieving extremely low

Mean Absolute Percentage Error (MAPE) values on both validation and test datasets.

To complete the pipeline, we developed two Graphical User Interface (GUI) applica-

60

tions: one that accepts both Cycle and G1 as input, and another that only requires Cycle.

These interfaces display the predicted crack length, the remaining distance to the critical

threshold, and an estimated RUL. They also feature graphical plots of predicted crack

growth over time, making them intuitive and accessible for use by technicians.

While the models demonstrated high accuracy, it is important to note that the results

are based entirely on synthetic data. Therefore, the findings should be interpreted as

a theoretical proof-of-concept. With real-world strain gauge data, the models can be re-

trained and validated to ensure robust performance in practical applications. Nonetheless,

the core architecture, model evaluation framework, and deployment-ready GUI have all

been successfully implemented and validated.

In conclusion, this project offers a complete end-to-end solution for fatigue crack pre-

diction in aircraft structures. From synthetic data generation and preprocessing, to model

training, evaluation, and deployment, the system is designed to be both practical and ex-

tensible. With access to real experimental data, the groundwork laid in this thesis can be

transformed into a powerful diagnostic tool to enhance safety and efficiency in aerospace

maintenance operations.

61

Bibliography

[1] J. Schijve, Fatigue of Structures and Materials. Dordrecht: Springer, 2009.

[2] R. K. Mobley, An Introduction to Predictive Maintenance. Butterworth-Heinemann,

2nd ed., 2002.

[3] J. Z. Sikorska, M. Hodkiewicz, and L. Ma, “Prognostic modelling options for remain-

ing useful life estimation by industry,” Mechanical Systems and Signal Processing,

vol. 25, no. 5, pp. 1803–1836, 2011.

[4] Y.-L. Lee, J. Pan, R. B. Hathaway, and M. E. Barkey, Metal Fatigue Analysis Hand-

book: Practical Problem-solving Techniques for Computer-aided Engineering. Elsevier,

2005.

[5] COMSOL Inc., COMSOL Multiphysics User’s Guide, 2024.

https://www.comsol.com.

[6] R. Liu, X. Liang, X. Yu, and S. Ghosh, “A framework for generating large data

sets for fatigue damage prognostic problems,” Structural Health Monitoring, 2023.

https://github.com/FDPP/FrameworkFDPP.

[7] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–

211, 1990.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[9] K. Cho and et al., “Learning phrase representations using rnn encoder-decoder for

statistical machine translation,” in Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP), 2014.

[10] S. Kiranyaz, T. Ince, and M. Gabbouj, “1d convolutional neural networks and appli-

cations: A survey,” Mechanical Systems and Signal Processing, vol. 151, p. 107398,

2021.

[11] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271,

2018.

[12] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” pp. 785–794,

2016.

[13] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,

“Lightgbm: A highly efficient gradient boosting decision tree,” in Advances in Neural

Information Processing Systems, vol. 30, 2017.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[15] A. Akrim, C. Gogu, T. Guillebot de Nerville, P. Strähle, B. Waffa Pagou, M. Salaün,

and R. Vingerhoeds, “A framework for generating large data sets for fatigue damage

prognostic problems,” in 2022 IEEE International Conference on Prognostics and

Health Management (ICPHM), pp. 25–33, IEEE, 2022.

[16] C. Farhat et al., “A framework for generating large data sets for fatigue damage

prognostic problems,” HAL preprint, 2023.

[17] S. Kim and B. D. Youn, “A framework for generating large data sets for fatigue

damage prognostic problems,” Mechanical Systems and Signal Processing, vol. 165,

p. 108383, 2022.

[18] A. T. Zehnder, Fracture Mechanics. Springer New York, Springer, 2012.

Appendix

.1 Appendix A: Simulations and syntatic data

The Python scripts and datasets developed for this thesis are available on GitHub:

https://github.com/menialoubna/fatigue-prognostics-thesis

and the GitHub Repository for the framework :

https://github.com/ansak95/FrameworkFDPP

.1.1 Script 1: COMSOL Data Processing (100 Cycles)

comsol100.py Processes strain gauge data from the 100-cycle COMSOL simulation. It

extracts strain, estimates crack growth, and visualizes results.

.1.2 Script 2: COMSOL Data Processing (1000 Cycles)

comsol1000.py Handles extended simulation data over 1000 cycles. Used to compare

simulation results with synthetic data.

.1.3 Script 3: Synthetic Fatigue Data Generator

main.py Runs the fatigue data generation pipeline using the FrameworkFDPP approach.

.1.4 Script 4: Crack Growth via Paris’ Law

crack.py Contains Paris’ Law implementation for synthetic crack growth modeling.

https://github.com/menialoubna/fatigue-prognostics-thesis
https://github.com/ansak95/FrameworkFDPP

.1.5 Script 5: Data Utilities

utils.py Provides helper functions for data reshaping, cleaning, and exporting.

.1.6 Script 6: Training Dataset Cleaning

syntatic study.py

Cleans and reshapes the training dataset to include columns: cycles, strains (G1–G3),

crack length, and cycles left.

.1.7 Script 7: Data Cleaning Script

clean data.py

Located in the GitHub repository. This script transforms the nested format in training set.csv,

validation set.csv, and test set.csv into flat, row-based formats suitable for machine

learning. The cleaned outputs include:

training set cleaned.csv, validation set cleaned.csv, and test set cleaned.csv.

.2 Appendix B : Model training and GUI APP

• Thexgboostmodel.py – training the data with XGboost.

• GRU-Model.py – training the data with GRU.

• Transformers-model.py – training the data with transformers .

.2.1 Script 9: Data augmentation and interpolation

• data-augment.py

• data-intterpo.py

.2.2 Script 10: Interface and GUI

• mini-app-G1-cycle.py : interface where there’s two inputs G1 and Cycle

• mini-app-cycle.py : interface where there’s one input Cycle

.3 Appendix C : Data Sets

• validation set.csv, test set.csv, training set.csv: Original nested synthetic

datasets.

• validation set cleaned.csv, test set cleaned.csv, training set cleaned.csv:

Flattened datasets generated by the clean data.py script for model training.

• strain comsol100.csv: COMSOL 100-cycle output

• strain comsol 1000.csv: COMSOL 1000-cycle output

• training set2.csv: Raw synthetic training set from FDPP

• training set clean ready realcycles.csv: Processed training data with strain

and crack length

• train3.xlsx : used in augmentation

• test3.xlsx : used in augmentation

• val3.xlsx: used in augmentation

• aug-train3.xlsx : used in data interpolation

• aug-test3.xlsx : used in data interpolation

• aug-val3.xlsx : used in data interpolation

• train3-adjusted-final.xlsx : data after interpolation

• test3-adjusted-final.xlsx : data after interpolation

• val3-adjusted-final.xlsx : data after interpolation

	Acknowledgment
	Introduction
	Predictive Maintenance in Aerospace
	Key Concepts of the Study
	Fatigue Damage in Metallic Structures
	Finite Element Analysis (FEA) and COMSOL Multiphysics
	Synthetic Data Generation Using FrameworkFDPP

	Machine Learning Models for RUL Estimation
	Purpose of the Introduction

	Literature Review
	Fatigue Damage in Aeronautical Structures
	Synthetic Data Generation for Fatigue Prognosis
	FrameworkFDPP: A Code-Based Synthetic Data Generation Approach
	Machine Learning Models for RUL Estimation

	Limitations of Code-Based Synthetic Data
	Finite Element Analysis (FEA) for High-Fidelity Data Generation
	Proposed Methodology: Integrating FEA and Machine Learning

	Problem Statement and Objectives
	Problem Statement
	Research Gap
	Research Objectives
	Scope of the Study

	Methodology
	Crack Simulation in COMSOL
	Simulation and study assumptions :
	Model Geometry and Boundary Conditions
	Simulation Setup and Parameters
	Parameter Sensitivity Study
	Stress and Strain Field Analysis

	Crack Simulation with Synthetic Data
	Overview of the Framework
	The Paris Law
	How the Synthetic Data Is Generated
	Synthetic Training Set Parameters
	Cleaning the syntatic data and generate the graphs to compare with comsol simulation :

	Analysis and Comparison of Synthetic Data
	Crack Length vs. Cycles
	Strain at Gauges vs. Cycles
	Conclusion

	Querying Crack Length Using Processed Synthetic Data
	Generating the Data sets :
	Fracture Mechanics and Crack Modeling
	Generation Procedure : main.py

	Cleaning the Data sets Procedure :
	Data Transformation Pipeline
	Cleaning and Flattening the Dataset
	Assumption of Constant Paris' Law Parameters

	Model Development and Training
	XGBoost
	GRU :Gated Recurrent Units
	Transformer

	Evaluation Metrics
	Experimental Setup
	MAPE Results
	MAPE Visualization
	Discussion
	Conclusion

	Model Simplification and Practical Deployment
	Data Interpolation Strategy for Crack Length Modeling
	Model Deployment :
	XGBoost Model Architecture for 2 features :
	MAPE Evaluation of the XGBoost Model for 2 features
	Graphical User Interface (GUI) Development
	Example Usage of GUI Interfaces

	Limitations and Future Work
	Limitations
	Future Work

	Conclusion
	Appendix A: Simulations and syntatic data
	Script 1: COMSOL Data Processing (100 Cycles)
	Script 2: COMSOL Data Processing (1000 Cycles)
	Script 3: Synthetic Fatigue Data Generator
	Script 4: Crack Growth via Paris’ Law
	Script 5: Data Utilities
	Script 6: Training Dataset Cleaning
	Script 7: Data Cleaning Script

	Appendix B : Model training and GUI APP
	Script 9: Data augmentation and interpolation
	Script 10: Interface and GUI

	Appendix C : Data Sets

