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Abstract: 

Natural interaction systems, particularly those based on computer vision, provide intuitive and 

effective communication between humans and drones. Gesture control allows for direct piloting of 

the drone, while person tracking ensures that the drone maintains visual contact with the operator. 

One function without the other is incomplete: gesture control is useless if the drone cannot see the 

user, and simple tracking offers no means of command. This project aims to combine these two 

functionalities by developing an intelligent system where a gesture recognition model and a person 

detection model work in tandem. The objective is to create a seamless, robust, and non-restrictive 

human-drone interface, where the user's body becomes the primary control device. 

Key words:   

Human-drone interaction, gesture recognition, person tracking, computer vision, drone control, 

natural interaction.  

Resume: 

Les systèmes d’interaction naturelle, notamment ceux basés sur la vision par ordinateur, offrent 

une communication intuitive et efficace entre l'humain et le drone. Le contrôle par gestes permet 

de piloter le drone de manière directe, tandis que le suivi de personne (tracking) assure que le drone 

maintient un contact visuel avec l'opérateur. L'un sans l'autre est incomplet : un contrôle gestuel est 

inutile si le drone ne peut pas voir l'utilisateur, et un simple suivi n'offre pas de contrôle. Ce projet 

vise à combiner ces deux fonctionnalités en développant un système intelligent où un modèle de 

reconnaissance de gestes et un modèle de détection de personne fonctionnent de concert. L'objectif 

est de créer une interface homme-drone fluide, robuste et non restrictive, où le corps de l'utilisateur 

devient le véritable dispositif de contrôle. 

Mots-clés :  

Interaction homme-drone, reconnaissance de gestes, suivi de personne, vision par ordinateur, 

contrôle de drone, interaction naturelle. 
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:  ملخّص  

تتيح أنظمة التفاعل الطبيعي، خاصة تلك المعتمدة على الرؤية الحاسوبية، تواصلاً سهلاً وفعالاً بين الإنسان والطائرة بدون طيار. 

يسمح التحكم عبر الإيماءات بتوجيه الطائرة بشكل مباشر، بينما يضمن تتبع الأشخاص الحفاظ على اتصال بصري مستمر مع  

م، والتتبع المشغل. إحدى الوظيفتين لا تكتمل بدون الأخرى: فالتحكم بالإيماءات لا فائدة منه إذا كانت الطائرة لا ترى المستخد

وحده لا يوفر وسيلة للتحكم. يهدف هذا المشروع إلى دمج هاتين الوظيفتين من خلال تطوير نظام ذكي يعمل فيه نموذجان معًا: 

آلية سلسة وقوية وغير مقيدة، حيث  -دف هو إنشاء واجهة تفاعل إنسانيةنموذج للتعرف على الإيماءات وآخر لكشف الأشخاص. اله

 .يصبح جسد المستخدم هو أداة التحكم الفعلية

:الكلمات الأساسية  

تفاعل الإنسان مع الطائرة بدون طيار، التعرف على الإيماءات، تتبع الأشخاص، الرؤية الحاسوبية، التحكم في الطائرات بدون  

 .طيار، التفاعل الطبيعي
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General introduction 

 

        Drones, sometimes referred to as unmanned aerial vehicles (UAVs), are robots that can fly on 

their own or with the help of various control methods like joysticks, smartphones, the human brain, 

voice, gestures, and more. Drones were complicated machines that were only accessible to the 

military until the early 2000s.  

        The development of smaller, more manageable, and less expensive systems is made possible 

by recent developments in hardware and software technology. Nowadays, drones are used for a 

wide variety of civilian tasks and their use is only anticipated to grow in the near future.  

        The FAA estimates that by 2022, there may be 3.8 million drones registered in its database. 

The adoption of natural user interfaces (NUIs), such voice commands and body movements, which 

have been tested in the state of the art, may further improve this. The majority of findings seem to 

suggest that using a NUI makes it easier for people to engage with drones.  

        This effort aims to answer the following question: How can a UAV be controlled and operated 

using gestures rather than joysticks? And is it possible to operate the drone using both gestures and 

speech? 

         For this, we were particularly interested in the design of a Multi model ( speech and  gesture 

) control of a quadrotors UAV 

         In the first chapter, we discuss human-drone interaction to help readers grasp the importance 

of drones in our daily lives and how to interact with them. 

         The second chapter discusses some fundamental ideas in voice recognition as well as the deep 

neural network, which has demonstrated notable advancements in the extraction and recognition 

of speech features. 

         The third chapter covers gesture command and the procedures for employing natural hand 

gesture movements to control the behavior of the UAVs.  



23 
 

         The combination of input modalities, including speech and gesture data, is covered in the 

fourth chapter. the Presentation of the obtained experimental results is followed by an analysis of 

the performance (accuracy) attained. 

         In the forth chapter, we look at the implementation side, or how we applied the simulation to 

quadrotors while displaying the feedback in a graphical interface. 

        We wrap up our work with a summary of the results and recommendations for more research 

to preserve the performance and continuity of the suggested subject. 
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Chapter 01: Techniques for Human-Drone Interaction. 

Introduction: 

        In drone systems, humans play different roles depending on the drone's purpose and level of 

autonomy.  

        They may act as active controllers, directly piloting drones for tasks like racing or 

photography. Alternatively, they can be recipients, interacting with the drone without controlling it 

such as receiving deliveries or viewing drone advertisements.  

        Social interaction is also possible, where drones like Joggobot accompany users for 

engagement. With autonomous drones, humans often act as supervisors, either programming 

missions or monitoring operations to ensure safety.  

       Even in autonomous use, humans may still be involved indirectly as recipients. 

       In recent years, the field of Human-Robot Interaction (HRI) has expanded to include Human-

Drone Interaction (HDI), driven by growing interest in how people interact with unmanned aerial 

vehicles (UAVs). 

       Originally developed for military purposes after World War I, drones are now widely used in 

civilian applications such as entertainment, delivery, agriculture, assistance for people with 

disabilities, sports, and rescue missions. 

       The rapid rise in drone usage brings both opportunities and challenges. While they enable 

innovative services, they also introduce potential risks to society. As a result, studying HDI is 

essential to better understand and improve human-drone collaboration across different domains. 
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I.1.Definition of HDI 

        Human-Drone Interaction (HDI) is an emerging field focused on understanding, designing, 

and evaluating drones for use by or with humans.  

       While it shares similarities with Human-Robot Interaction (HRI), HDI is distinct due to drones’ 

unique ability to move freely in 3D space and their specific design characteristics. 

       The field is multidisciplinary: some researchers work on making drones more approachable 

and user-friendly, while others focus on developing intuitive control interfaces for inexperienced 

users. (1) 

        As drones become more common in everyday life, studying how humans interact with them 

is increasingly important. 

       This research aims to outline the current state-of-the-art in HDI. Key areas include: 

• Developing new control methods 

• Enhancing human-drone communication 

• Measuring interaction distances 

• Exploring new applications for drones 

Figure 1- 1: The four major fields of Human drone interaction research 
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1.2. Research on Human-Drone Interactions 

1.2.1. Role of humans in HD 

Humans interact with drones in various ways, depending on the drone’s function and its level of 

autonomy.  

In some cases, the human acts as an active controller, directly piloting the drone through an 

interface to accomplish specific tasks, such as taking landscape photos or competing in drone races. 

In other scenarios, the person may simply be a recipient, benefiting from the drone’s presence 

without controlling it—like receiving a package or encountering a drone displaying advertisements 

in public. Interaction can also take on a social dimension, where drones serve as companions; for 

example, a drone like Joggobot flies alongside joggers, creating a form of social engagement.  

With autonomous drones, the human role shifts to that of a supervisor, responsible for pre-

programming flight missions or monitoring autonomous operations in case of unexpected events. 

 Even when drones operate independently, humans often remain involved in the loop, particularly 

as recipients of services or information. 

      These roles of humans in HDI are summarized in Table I.1 : 

Table 1- 1: Roles of Humans in HDI 

Role  Example  

Active controller Pilot controlling a drone during a photoshoot 
or racing competition 

Recipient User watching advertisement displayed by a 
drone or receiving a package delivery 

Social Companion User performing physical 
activities(e.g.jogging) in companion of a 
drone 

Supervisor Pilot supervising a wildlife monitoring 
autonomous mission 
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1.2.2. HDI Research Over Time 

 

        Human-Drone Interaction (HDI) is a relatively recent area of study within the research 

community. An analysis using Google Scholar, filtered by publication year, illustrates how interest 

in this field has grown over time. Before 2014, only two publications were found using the term 

“human-drone interaction.” However, by extending the search to include works published up to 

2018, the number of results increases to 180. Although other search combinations involving terms 

like “drones,” “UAV,” and “human-in-the-loop” were explored, they mostly yielded results related 

to military applications and ethical issues. As a result, only the term “human-drone interaction” 

was used to track the evolution of research in this specific field.  

 

I.2.3. Innovative Control Interfaces 

 

        Due to their complicated user interfaces, drones were first utilized for military purposes and 

required highly skilled pilots to operate. Researchers began to move interface design toward more 

contemporary user interfaces that no longer restrict drone operation to a remote controller or a 

ground control station as drone technology became more widely available and reasonably priced. 

Users may engage with drones through gesture, speech, sight, touch, and even brain-computer 

interfaces (BCIs) like electroencephalography (EEG) thanks to these cutting-edge techniques, 

sometimes referred to as natural user interfaces (NUI). In this part, we discuss novel control 

modalities and their effects on the pilot's experience. Each control interface affects the pilot's 

contact with the drone in a number of ways, including training duration, accuracy, latency, and 

interaction distance. A summary of the advantages and disadvantages of each NUI, as well as the 

traditional remote-controller interface, can be seen in Table I.2. Each NUI is further discussed in 

the sub-section below.(3) 
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Table 1- 2: Control Interface Summary 

Control Interface Advantages Disadvantages 

Remote Controller Low-latency 
Precise control  

Less intuitive than natural 
user interfaces 

Gesture Natural/intuitive 
Most drones already carry a 
camera 
Short training period 

Collocated interaction only 
High latency and lower 
control precision when 
compared to others 

Speech Natural/intuitive 
Short training period  
Handless 

Propeller sound can impact 
speech recognition  
Not all drones already have 
microphones 
Collocated interaction only 

BCI Handless 
Accessible to users with 
physical disabilities 
Ability to measure pilot’s 
Affective and cognitive state 

Longer training periods 
Lower control accuracy 
When compared to others 
Slower input and output 
response 

Touch Natural/intuitive 
 short training period 

Collocated interaction only 
requires safety measures 

Multimodal Can combine benefits from 
various modalities 

Possible higher complexity 
and cost 

 

 

I.2.4. User interfaces 

        In this section the implemented user interfaces will be explained. The point of interaction 

between a computer, website, or application and people is known as the user interface (UI).  

        A good user interface (UI) should make the user's experience as easy and uncomplicated as 

possible, requiring the least amount of effort on the part of the user to achieve the greatest number 

of desired outcomes. The GUI and NUI formats are the most crucial.(2) 

        First of all, we will explain GUIs, which have a big impact on HMI and are a great tool for 

robotics, thus the need to implement a robust and reliable interface for the drone platforms which 

will be explained. then we will talk about NUI which can provide efficient communication. 
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I.2.4.1. Graphical User Interface (GUI) : 

        This section describes how the operator can interact with quadrotor platforms using the 

developed GUI. 

 In general, a GUI provides some functions to help operators in certain tasks that are difficult to be 

supported by a NUI. For example, they correspond to tasks when the operator requires detailed 

information such as vehicle set up or mission monitoring at software level (e.g., during software 

maintenance).(4) 

The GUI allows the interaction with the vehicle, observing the states and dynamics and presents 

graphical views and images to help the user to understand both the external and internal behavior 

of the vehicle. 

In general, the operator can use a GUI to perform the following types of tasks: 

• Specify drone behavior in advance (vehicle set up) 

• Monitor drone behavior during a mission 

• Operate manually with simple movements 

• Collect data for later use  

 

Fig. I.2 shows a sample screen of the user interface with the windows layout with main parts: the 

control panel on the upper left side of the image, the dynamics viewer on the lower left side, the 

windows for detailed content on the righthand side of the screen with different tabs (parameters, 

the camera viewer or the performance monitor). At the top, there are drop-down menus (file, view, 

settings, etc.) to perform additional tasks  
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Figure 1- 2: Sample screen of the graphical user interface developed for the Aero stack. 

 

The following sections describe the different parts of the graphical user interface. 

• The control panel: It displays the primary control commands as well as the overall condition of 

the system. This panel offers a synopsis of the crucial information that must always be shown on 

the screen.  

• Parameter viewer: The operator may inspect the values of numerical parameters and view various 

plots of the parameters chosen in real time to examine and contrast their values, allowing them to 

keep a close eye on the vehicle's behavior during a mission. 

•Camera viewer: This tool displays photographs and/or videos that were taken by the aerial vehicle 

while it was in flight.  

• Requested Behaviors Viewer: The operator can consult and request the activation of particular 

behaviors via the behavior viewer. The GUI displays a list of the vehicle's possible behaviors along 

with the condition of each one.  
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           (a) The Vehicle Dynamics                                                 (b) The sphere Dynamics. 

Figure 1- 3: The Dynamics Viewer used in the GUI 

 

➢ This viewer presents two animated images as seen in Fig.I.4: (1) the vehicle dynamics, a 

3D representation of the vehicle (Fig. I.4(a)) and (2) the sphere dynamics, a sphere with 

orientation axis (Fig. I.4(b)). In the sphere representation, there are three fixed axis that 

represent the reference system, and three variable axis that represent the orientation 

changes.  

 

I.2.4.2. Natural User Interfaces (NUIs) 

        However, compared to a traditional GUI, a NUI can offer more effective communication for 

some operator responsibilities. Voice instructions, which can be utilized more effectively in 

conjunction with other communication modalities, or gestures, which are simpler to learn, can be 

used to steer the car during manual operation. In general, human-drone cooperative work for some 

complicated tasks in dynamic circumstances where human judgments might supplement the 
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incomplete information used by the vehicle can benefit greatly from a communication based on 

NUI. (5) 

        In the following sections a description of the types of NUIs implemented and the setup used 

for each interaction will be given. First, the vision based NUIs will be explained; starting with body 

and followed by marker interaction, hand and speech interaction. 

 Visual Body Interaction  

        The drone, equipped with an on-board camera, uses computer vision algorithms to detect a 

person and track it in the image plane. 

 With the previous knowledge of the approximate dimensions of the object tracked, the drone is 

able to reconstruct the 3D relative position of the object with respect to the drone.  

        A control algorithm sends commands to the drone ensuring it maintains the distance (x, y and 

z) and point of view (yaw angle).   
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Figure 1- 4: Description of High-level setup for the proposed body position NUI. 
 

        The high-level description of the suggested NUI is shown in Fig. I.4. This controller will be 

used to investigate a novel kind of human-drone interaction in the context of the work that is being 

presented.  

        The computer vision algorithm is used for this purpose in order to identify and follow the 

individual it is dealing with. Even if the person runs or moves, the drone can still track them, 

maintaining its distance and field of vision. In order to safeguard the user while in flight, the 

quadrotor is always used with an indoor hull. One of the first animal behaviors is displayed by this 

NUI.  

 Visual Marker Interaction  

        Many animals, including humans, use color, depth, and motion as visual signals. Since visual 

cues and markers employ the camera, which is likely the most crucial sensor in robotics or drones, 

they are a widespread technique in robotics. 

          For dependable and precise target tracking or detection, basic monochromatic cameras might 

be employed. In this kind of human-drone interaction, the user instructs the drone on what to 

perform by manipulating markers, which are also known as tags in the literature.  

         The interface is simple and the user feels included in the decision-making process while 

controlling the drone because no other equipment is required save the on-board front-facing 

camera. Robust and accurate interaction is achieved while preserving a high degree of user ease 

through the use of carefully designed markers.  
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Figure 1- 5: High-Leved Description of Visual Marker NUI 

 Hand Gesture Interaction 

          In this work, a gesture recognition system is implemented to enable human-drone interaction 

using six predefined hand gestures: up, down, left, right, on, and off. The dataset was created by 

recording short gesture videos using a standard webcam. Frames were then extracted and manually 

annotated using Label Studio, an open-source data labeling tool. 

         For feature extraction, MediaPipe is employed to detect and track hand landmarks. 

MediaPipe’s hand tracking pipeline consists of a palm detection model and a hand landmarks 

model, which together provide accurate 3D coordinates of 21 hand keypoints. These features are 

then used to classify the gestures.  

        The approach focuses on ensuring robustness and generalization by capturing gesture 

variations across different hand positions, lighting conditions, and orientations. This process 

enables the system to recognize commands reliably and serves as a foundation for hands-free 

control of the UAV in a future deployment. 

        In the feature extraction phase, MediaPipe is used to extract hand landmarks. As illustrated in 

Fig. I.6, MediaPipe applies a robust model based on CNN to determine the keypoint localization 

of 21 hand-knuckle coordinates inside the detected hand regions. Mediapipe model was trained 

using around 30K realworld images as well as synthetically created hand models with a variety of 

backgrounds. A palm detection model and a hand landmarks detection model are included in the 

MediaPipe hand landmarker model bundle. The palm detection model detects hands inside the 

input image, while the hand landmarks recognition model recognizes specific hand landmarks on 

the palm detection model’s cropped hand image. 
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Figure 1- 6: From left to right, the stop, continue, and come hand gesture data labelled with hand landmarks 

 

        Several studies on gesture-based control systems highlight their intuitive and user-friendly 

nature, making them accessible with minimal training requirements. One of the main advantages 

of this interaction modality is its device-free operation, eliminating the need for physical controllers 

such as joysticks. However, despite these benefits, gesture control may not be the most suitable           

solution for applications requiring high precision and fine control, due to its relatively higher 

latency and lower accuracy compared to more traditional input methods 

 

 speech command Interaction 

        The increasing number of easily accessible voice recognition software programs and toolkits 

has led to an increase in the frequency of this kind of contact for HCIs. voice-to-text applications 

were the primary use case for early voice recognition interfaces. Products like Dragon Naturally 

Speaking enable the user to send instructions that the software recognizes as such, have a document 

synthesized as an audio stream, or dictate and have voice transcribed as written text. These 

programs provide hands-free, user-friendly interfaces that bridge the gap between spoken and 

written language. Because it allows the user to focus all of their visual attention on giving 

commands to the drone, this kind of interaction can improve the user experience in drone 

applications. 

 

        Fig. I.7 shows the high-level setup of the proposed speech command NUI. As can be seen, the 

setup is simple. No devices other than a microphone are needed to command tasks to the drone. 
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Voice commands are sent to a Ground Station to be processed and later sent as tasks to the drone 

using the Aerostack. 

 

Figure 1- 7: High-Level Description of Speech Command NUI 

 

 Brain-Computer Interaction (BCI)  

        The ability of Brain-Computer Interface (BCI) technology, especially non-invasive 

technologies, to revolutionize human-computer interaction (HCI) has made it a focal point of 

innovation. Acquiring neural signals from the brain, decoding the signals to derive basic goals, and 

evaluating these intentions to convert them into various computer output formats are the three 

primary stages it takes to connect human brain signals to direct computer commands.(6) 

         Non-invasive BCIs use external sensors, such EEG or fNIRS, to record brain activity 

painlessly and without the need for surgery, in contrast to invasive BCIs that need surgical implants. 

By giving persons with physical limitations an other way to engage with the outside world and by 

giving the general public additional methods to communicate with technology, this method 

increases the accessibility of BCIs. 

        By enhancing user experience and bringing in new paradigms of computer interaction, the 

development of non-invasive brain-computer interfaces (BCIs) shows great promise to open up 

new possibilities in human-computer interaction (HCI). The technical developments in non-
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invasive BCI systems that influence HCI are examined in this article, with particular attention paid      

to important elements including signal collection, brain decoding models, and machine learning 

algorithms that help to maximize BCI performance. 

         Examining how developments in non-invasive BCI systems improve HCI and investigating 

the theoretical underpinnings of the models and methods that support the precision and 

effectiveness of BCI-driven interactions are the goals of this study. 

 

 

 

Figure 1- 8: Flying drones with brains 

 

 

 

 

 Multimodal  
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        Integrating different interaction methods combines the strengths of each. Studies show that 

many users naturally adopt multimodal interaction with drones. For instance, drones can be 

controlled by voice commands for takeoff and by hand gestures for directional movement. Some 

prototypes use onboard sensors to detect both speech and gestures, eliminating the need for external 

devices. Voice commands are used for takeoff, while a whistling sound—less affected by propeller 

noise—is used for landing. Movement is guided by tracking hand gestures using colored gloves. 

        Virtual reality environments have also been used to explore multimodal control of drone 

swarms in simulated search-and-rescue missions. Users controlled multiple drones using speech 

and gestures. Experiments highlighted challenges like depth perception and emphasized the need 

for clear commands, immediate system feedback, and enriched visual interfaces such as artificial 

shadows under drones to improve spatial awareness. 

        Three main information flows exist between users and ground control stations: (1) commands 

from the operator to the ground control station (GCS), (2) system feedback from the GCS to the 

user, and (3) physiological data from the user (e.g., heart rate or EEG) used to adapt the system 

interface. Multimodal interaction enhances these exchanges by increasing communication 

channels, managing information overload, and adapting to diverse environments. 

 

 Other Control Interfaces  

        Recent developments in human-drone interaction have focused on making control more 

natural, immersive, and intuitive. Some commercial drones, like those from DJI and Ryze, are 

designed to be “safe-to-touch,” enabling physical interactions such as hand landings. Studies show 

that 58% of users prefer this mode of control when propeller guards are present, citing reduced 

mental workload compared to traditional joysticks. Gaze tracking has also been explored, allowing 

users to control drone yaw and pitch with eye movements, while other controls are handled by the 

keyboard, resulting in effective 3D navigation.  

        The Birdly system offers an even deeper level of immersion, where users lie prone and mimic 

bird-like flight by controlling a real drone with body movements—arms for roll and pitch, and head 

for camera orientation—enhanced by motion platforms, VR goggles, and wind feedback. Users 

found it more enjoyable and immersive than joystick control. Another approach,  
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        Flying Head, links head movements directly to the drone's position and orientation, enabling 

intuitive control that outperformed traditional joysticks in terms of speed, accuracy, and task 

efficiency during target-tracking scenarios. This could lead to new forms of aerial sports based on 

full-body control. Finally, a physical 3D-printed map has been used as an interface for drone path 

planning: users draw flight paths directly on the model using a stylus, and the drone autonomously 

follows the trajectory. Augmented reality is used to visualize the drone’s path, showing the promise 

of tangible, spatial interfaces in drone control systems. 

I.3.4.3. Distance, Communication and Emotion Encoding  

 Interaction distance 

        The interaction distance between the drone and the human must be taken into account for a 

positive social relationship. [8] In the prior experience, 47% of US users remained in the personal 

area (1.2m), 37% remained in the drone's intimate space (45cm), and the  

 remaining sixteen percent engaged in social space (3.7 m).  

Nonetheless, 50% of the Chinese participants interacted in the intimate zone, 38% in the personal 

space, and 6% in the social space, indicating more relaxed and intimate interactions.  

Drones approached people at two different heights (1.80m and 2.13m) in another survey of users, 

and the results showed that height had no discernible effect on the acceptable approach distance. 

 

 Drone feedback 

        In order to prevent system misunderstandings that might possibly result in accidents, studies 

have previously looked into ways to identify the mutual attention between a drone and its users as 

well as successful communication.  

A comparison of four distinct drone identification gestures was the focus of [10].  

Users prefer rotation in the yaw axis to signify recognition, according to the data. 

 

        In [11], the capacity of a drone to communicate its purpose to people was examined. The 

expression involved the input and output of speed profiles as well as the manipulation of primitive 

motions utilizing arc trajectories. The following tasks are tested with the participants by the drone 

prototypes constructed with these manipulations: approaching an object (anticipation), avoiding an 
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object (arc + easy entrance and exit), moving away from an object (arc + easy input and output), 

and getting close to a person (easy input and output). According to the findings, users would rather 

operate a drone with altered flight paths than with simple ones for safety reasons and for a more 

organic and intuitive interface. 

 Remote Communication  

       Humans can interact with drones either locally or remotely. With advancements like 5G, 

remote control is now more reliable, enabling applications such as package delivery and drone 

swarms. Drones can even act as mobile network stations. However, beyond-line-of-sight (BLOS) 

flights raise safety and security concerns, including the risk of crashes and cyber-physical attacks 

like jamming or delivery delays. 

 Emotion Encoding 

        Drones can express emotions through movement parameters such as speed, trajectory, and 

reaction time, despite lacking humanoid features. A study tested three emotional flight profiles 

(exhausted, antisocial, adventurer) by adjusting flight behavior. Participants observed the drone 

and identified its emotional state. Results showed emotions were correctly recognized 60% of the 

time with one keyword and up to 85% with an additional descriptive word. This highlights that 

emotion encoding can improve human-drone communication. 

 

I.3.4.5 Innovative Prototypes and Use Cases 

        Although there are many uses for drones today, researchers are always looking for new 

methods to make these devices useful.(7) 

 

 

 Flying User Interfaces  

          This section explores the use of drones as mobile and interactive user interface platforms. 

Thanks to their ability to move freely in 3D space, drones can position themselves dynamically 

around users and act as both input and output devices. Researchers have categorized flying 
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interface interactions into three phases: approaching, interacting, and leaving, allowing drones to 

engage users effectively in tasks such as public information dissemination, sports guidance, or even 

crowd control during emergencies. 

         Several prototypes have demonstrated innovative implementations. One project used two 

Parrot AR.Drones, one carrying a projector and the other a screen, to create a flying public display. 

Visual markers and computer vision allowed the projector drone to track the screen drone, ensuring 

accurate image alignment. Experiments showed that with modified stabilization algorithms and 

visual markers, the drone system achieved significantly better hovering stability and projection 

accuracy. 

         Another study employed an octocopter carrying a smartphone and projector to display SMS 

messages on building walls. During a live outdoor test, users reported that the system was fun, 

attention-grabbing, and suitable for applications like advertising and storytelling. A similar indoor 

prototype allowed event attendees to text messages, which were then displayed on a hovering 

drone. The audience reacted with enthusiasm, demonstrating the potential for drones to foster group 

engagement and social interaction. 

         Despite their effectiveness, some limitations were identified. A user study evaluated 

readability under different motion conditions. Results revealed that while users could comfortably 

read content from stationary or slowly moving drones, readability decreased significantly when 

both the user and the drone were moving. Consequently, content design (such as font size) must be 

adapted to account for motion dynamics. 

        In summary, drones present a novel and flexible approach to augmenting user interfaces, 

particularly for interactive and attention-based applications. Their mobility, visibility, and ability 

to adapt to different contexts make them promising tools for both indoor and outdoor human-

computer interaction systems. 

 

 



Chapter 01: Techniques for Human-Drone Interaction 

 

32 
 

 

 

 

 

 

 

 

 

Figure 1- 9: Medical drone                                                                 Figure 1- 10: A drone against forest fires 
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Figure 1- 11: Life-saving drones 
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 Social companions 

        One of the early prototypes in this area is Joggobot, a drone-based jogging companion 

designed not to improve physical performance, but to enhance the social and motivational aspects 

of jogging. Built using a Parrot ARDrone, it follows the runner at a fixed distance by detecting a 

visual marker on the user’s shirt. Though the system has limitations (e.g., straight-line path only), 

preliminary user feedback was encouraging. Some appreciated the distraction from fatigue and 

motivation boost, while others wished for more control over pace. Suggestions for future versions 

included integrating heart rate monitoring for adaptive pacing based on health data. 

        In parallel, technical advancements were made with custom-built quadcopters for jogging. 

One such prototype used high-performance components including Pixhawk flight controllers and 

GPS modules to ensure stability, safety, and efficient outdoor tracking. 

        Drones are also being explored as assistive companions for visually impaired users. A 

conceptual system envisions a drone docked on a wearable bracelet, ready to be deployed via voice 

commands. It would navigate to a user-defined location while the person follows using auditory 

feedback from the propellers. Although the system remains under development, a Wizard of Oz 

study with a blind participant confirmed its viability, as the user was able to follow a miniature 

drone and responded positively to the idea. 

        In the domain of environmental awareness, drones have been proposed as persuasive agents 

to promote cleanliness and eco-friendly behavior. One study simulated a drone encouraging users 

to pick up trash and guide them to bins. It tested different interaction modes (visual, audio, and 

combined) through video prototypes. Although the mode of persuasion didn’t significantly affect 

compliance, the study found that gender and cultural background influenced perception: females 

and participants from developing countries were more receptive to the drone's behavior, indicating 

that human-drone interaction is shaped by cultural and demographic factors. 
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Figure 1- 12: Drones for the blind. 

 

 Arts and Sports 

This section highlights how drones can be creatively used for art creation and sports 

enhancement. 

• Landscape Art: A user can draw a sketch on a smartphone showing the drone’s live camera 

feed. While the drone hovers, the user marks the ground by walking along the sketch lines. 

For example, a large smiley face was created on a grass field in under 30 minutes by 

mowing along the marked path. 

• HoverBall: A drone encased in a soft spherical cage is used as a ball whose physics can be 

modified—changing speed, gravity, or flight trajectory. This enables the creation of new 

sports or adapting existing games for people with different skill levels, such as children or 

the elderly. 
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These examples show that drones can go beyond technical applications and become interactive 

tools for creative, playful, and inclusive experiences. 

 

 Haptic Feedback for Virtual Reality 

        This section highlights two projects using drones to deliver haptic feedback in virtual reality 

(VR). Since traditional VR lacks tactile sensations, small quadcopters were employed to simulate 

physical interactions. In one project, drones like the Parrot Rolling Spider, equipped with safety 

cages and object tips, flew toward users at various speeds to simulate environmental effects such 

as bees, arrows, or falling debris within a VR jungle setting. In another project, a drone carrying a 

flat object like paper allowed users to feel resistance through airflow, even without direct force. A 

user study with four participants confirmed that the drone-generated haptic feedback improved 

accuracy in virtual tasks like drawing lines. These approaches demonstrate the potential of drones 

to enhance immersive VR experiences by adding a physical touch component. 

2. Machine learning  

 

2.1 Introduction to Machine Learning 

        Machine Learning (ML) is a fundamental subfield of Artificial Intelligence (AI) focused on 

enabling machines to learn from data and improve their performance over time without being 

explicitly programmed. ML algorithms analyze and identify patterns in various types of data, such 

as text, numbers, images, and sensor readings, in order to perform tasks or make predictions. 
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        The core idea of ML is to build models that can generalize from observed data to unseen 

situations. These models are trained using historical data (training datasets), and once trained, they 

can be applied to new data to make decisions or predictions. 

Figure 1- 13: machine learning techniques 

 

2.2 How Machine Learning Works 

        The development of a machine learning model generally follows four key steps: 

2.2.1 Data Collection and Preparation 

        The process begins with gathering and organizing a training dataset. The data can be labeled 

(supervised learning) or unlabeled (unsupervised learning), depending on the learning method. 

Data cleaning, formatting, and normalization are crucial to ensure accuracy and prevent bias during 

training. 

2.2.2 Algorithm Selection 

        Choosing the right algorithm depends on the nature of the task (e.g., classification, regression, 

clustering) and the volume and structure of the dataset. Common algorithms include decision trees, 

support vector machines (SVM), logistic regression, and neural networks. 
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2.2.3 Training the Model 

        The algorithm is trained by feeding it data and adjusting internal parameters (weights and 

biases) to reduce prediction error. This process is iterative and involves comparing the model's 

output with the expected results. 

2.2.4 Model Evaluation and Deployment 

        After training, the model is validated on new or test data. If it performs well, it can be deployed 

in real-world applications and continue to learn and adapt to new data through continuous feedback. 

2.3 Types of Machine Learning 

 

Figure 1- 14: Types of machine learning 

2.3.1 Supervised Learning 

In this method, the model is trained on labeled data, where both inputs and expected outputs are 

known. It is used for tasks like spam detection, email categorization, and medical diagnosis. 
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Figure 1- 15: Supervised learning 

 

2.3.2 Unsupervised Learning 

Here, the model explores the data without labeled outputs to identify hidden patterns or groupings. 

It is commonly used in customer segmentation, anomaly detection, and market basket analysis. 
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Figure 1- 16: Unsupervised learning 

2.3.3 Semi-Supervised Learning 

This technique combines a small amount of labeled data with a large volume of unlabeled data. It 

is useful when labeled data is expensive or time-consuming to obtain. 

2.3.4 Reinforcement Learning 

In reinforcement learning, the algorithm learns by interacting with an environment and receiving 

feedback through rewards or penalties. It is commonly used in robotics, gaming, and autonomous 

vehicles. 
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Figure 1- 17: Reinforcement learning 

 

2.4 Common Machine Learning Algorithms 

• Linear Regression: Predicts numerical outcomes based on the linear relationship between 

variables. 

• Logistic Regression: Used for binary classification tasks. 

• Decision Trees: A flowchart-like model that makes decisions based on data features. 

• Random Forests: An ensemble of decision trees that improves prediction accuracy. 

• Support Vector Machines (SVM): Effective in high-dimensional spaces for classification 

tasks. 

• Clustering (e.g., K-means): Groups similar data points without prior labels. 
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• Neural Networks: Composed of layers of interconnected nodes that simulate the human 

brain, useful for image recognition, NLP, and complex pattern detection. 

 

2.5 Machine Learning Applications 

2.5.1 Everyday Use Cases 

• Speech Recognition: Converts spoken language into text using NLP. 

• Customer Service: Chatbots that handle FAQs and offer product recommendations. 

• Computer Vision: Enables machines to interpret and act on visual data (e.g., facial 

recognition, self-driving cars). 

• Recommendation Systems: Suggest products or content based on user behavior (e.g., 

Netflix, Spotify). 

2.5.2 Advanced Applications 

• Medical Diagnosis: Analyzing medical images to detect diseases. 

• Autonomous Vehicles: Using sensors and learning algorithms to navigate. 

• Financial Forecasting: Predicting market trends and risks. 

 

2.6 Benefits and Limitations of Machine Learning 

2.6.1 Advantages 

• Automation of complex tasks 

• Scalability across various domains 

• Ability to discover hidden patterns in large datasets 

• Continuous improvement with more data 

2.6.2 Challenges 

• Requires large, high-quality datasets 

• Risk of algorithmic bias 
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• Interpretability of complex models like deep neural networks 

• High computational costs 

 

2.7 Difference Between AI and Machine Learning 

Artificial Intelligence is a broad field focused on creating systems that mimic human intelligence. 

Machine Learning is a subset of AI that enables machines to learn from data. Other branches of AI 

include natural language processing, robotics, and expert systems. ML provides the statistical 

foundation for many modern AI applications. 

 

2.8 Machine Learning in Data Science 

Machine learning plays a central role in data science by automating data analysis, anomaly 

detection, clustering, and forecasting. It helps data scientists build predictive models that adapt 

over time and improve decision-making without direct human intervention. 

 

Conclusion 

Machine Learning has become a transformative technology with vast applications across 

industries. By enabling machines to learn from data, ML enhances automation, improves efficiency, 

and opens new possibilities in both research and practical fields. However, its success depends on 

the quality of data, ethical implementation, and ongoing human oversight.(10)
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Chapter 02: Gesture Control 

Introduction 

        Alternative-control algorithms consist of two main components: a non-standard human–

computer interface (HCI) and a command mapping algorithm [1–4]. These systems are deemed 

effective when the alternative HCI surpasses conventional control methods in terms of 

intuitiveness, flexibility, or accessibility. The effectiveness of such systems is generally evaluated 

using criteria such as recognition accuracy, ease of use without holding any device, short learning 

time, low implementation cost, and low computational complexity. The present project aims to 

develop such a system, where a Raspberry Pi manages a Raspberry Pi camera mounted on a 

pan-tilt mechanism driven by two servo motors to track and interpret a user's gestures in real-

time.(14) 

        One prominent example of alternative HCI is hand-gesture recognition (HGR), where specific 

physical movements are detected and interpreted as control commands. Over the past decades, 

HGR has been extensively studied, evolving toward machine learning-based pipelines to improve 

precision and flexibility. 

        In recent developments, the YOLO (You Only Look Once) family of object detection models 

has gained wide popularity for real-time gesture identification thanks to its high detection accuracy, 

fast inference time, and lightweight architecture. YOLO was adopted as the core technology for 

this project, enabling the precise detection of hand gestures from RGB images with minimal delay. 

By training a YOLO model on a custom dataset that we created, we can achieve robust gesture 

recognition. This dataset was specifically designed for robustness, by capturing the gestures "ON," 

"OFF," "UP," "DOWN," "LEFT," and "RIGHT" with both the left and right hands at 

varying distances (50 cm, 1 m, 2 m, 3 m, and 4 m). The images were annotated using Label Studio 

and exported in the YOLO format for training. 

2.1 Overview of HGR System Components 

        Modern hand-gesture recognition (HGR) systems can be decomposed into several key 

components: the data acquisition medium, the gesture descriptor, the gesture identification 

algorithm, and the gesture classification model [7–9]. 
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        Gesture descriptors are typically defined by three characteristics: (1) the physiological scope 

of the gesture (static vs. dynamic), (2) the type of information extracted (symbolic), and (3) the 

model representation used (bounding box). Symbolic gestures, which are most commonly used in 

real-time recognition systems, involve identifying hand shapes. 

        In our work, we use a single RGB camera setup (a PC webcam for data collection, a 

Raspberry Pi camera for deployment), combined with a YOLO-based object detection model, to 

detect symbolic hand gestures. This approach favors simplicity, cost-effectiveness, and avoids the 

need for specialized or wearable equipment. Moreover, the model is trained on annotated static 

gestures, which aligns with the symbolic gesture class and avoids the complexity associated with 

dynamic modeling. 

2.1.1 Gesture Identifiers 

        Gesture identification refers to the method by which a human hand is detected apart from its 

background and transformed into a computer model used for classification.(11) 

       For this project, the YOLO (You Only Look Once) algorithm was selected to serve as both 

the gesture identifier and classifier. Unlike multi-stage pipelines that first detect a hand and then 

extract features (like MPH or InterHand2.6M which generate a 3D skeleton), YOLO operates as a 

single, end-to-end convolutional neural network (CNN). It processes an entire image in a single 

pass to directly output a set of bounding boxes, each associated with a confidence score and a class 

prediction. In our application, each bounding box represents an identified hand gesture, and the 

class prediction (e.g., "UP," "DOWN") serves as the recognized command. This unified approach 

is highly computationally efficient, making it ideal for real-time applications on resource-

constrained hardware like the Raspberry Pi.(13) 

2.1.3 Gesture Classifiers 

       Gesture classification refers to the process by which a feature extracted by the gesture-

identification algorithm is classified as a particular gesture from a pre-defined list. 

        In this project's architecture, a separate classification algorithm is not necessary. The 

YOLO model is an object detector that integrates classification as a fundamental part of its 

detection pipeline. When it identifies a hand, it simultaneously assigns it a class label from the set 
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it was trained on (e.g., "LEFT," "RIGHT," "ON," "OFF"). This integrated approach greatly 

simplifies the overall system design, reduces computational overhead, and eliminates the need to 

select, train, and integrate a secondary classification model (such as an SVM, KNN, or Decision 

Tree). The classification is therefore handled directly by the final layers of the YOLO neural 

network. 

2.1.4 Governing Criteria for System Design 

        To ensure the development of an effective and cohesive gesture-based alternative control 

system, a set of governing criteria was established. The selected criteria are listed below in order 

of importance: 

1. Reliability in issuing the intended command 

2. Reproducibility of gestures 

3. Physically non-restrictive interaction 

4. Ease of use and short learning curve 

5. Low computational cost 

6. Low monetary cost 

2.2 Gesture Description Model 

2.2.1 Overview 

The first stage involved selecting a gesture description model. The final choices were: 

• Gesture Type: Static, single-hand gestures 

• Gesture Information: Symbolic 

• Gesture Representation Model: 2D Bounding Box Model(15) 

2.2.2 Gesture Type Justification 

        Static single-hand gestures were chosen to reduce algorithmic complexity. The gesture set 

(ON, OFF, UP, DOWN, LEFT, RIGHT) was designed to be visually distinct and intuitively map 

to drone commands, ensuring high recognizability and consistency. 
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2.2.3 Gesture Model Selection Justification 

        The 2D Bounding Box model was selected as it is the native output of the YOLO object 

detection algorithm. This model was chosen to balance performance and computational efficiency. 

While more complex models like 3D skeletons provide more detailed information, they add 

significant computational overhead. For classifying distinct, symbolic static gestures, the shape and 

context captured within a 2D bounding box are sufficient for the YOLO model to achieve high 

accuracy. This choice avoids the need for complex landmark extraction and aligns perfectly with 

the goal of creating a fast, real-time system suitable for the Raspberry Pi. 

2.2.4 Gesture Information Justification 

        Symbolic information was prioritized for recognizing discrete commands. This means each 

gesture corresponds directly to a predefined command, such as "Up" or "Land". While spatial 

information (like the position of the bounding box in the frame) is available and can be used for 

tracking by the servo motors, the primary classification relies on the symbolic meaning learned by 

the model from the image data. 

2.3 Selection of Data-Acquisition Method 

        The goal was to identify a non-restrictive and cost-effective data-acquisition method. Based 

on the governing criteria, a single RGB camera was selected. Specifically, a PC webcam was 

used for data collection due to its convenience, and a Raspberry Pi camera is planned for the final 

deployment. This approach aligns with the criteria of low cost and an unencumbered interface.(12) 

2.4 Selection of Gesture-Identification Algorithm 

        The YOLO (You Only Look Once) algorithm was directly selected as the core engine of the 

system. This choice was motivated by its state-of-the-art performance in real-time object detection, 

its unified architecture that simplifies the processing pipeline, and its efficiency, which makes it 

suitable for running on resource-constrained platforms like the Raspberry Pi.(17) 

2.5 Validation of Selected Gesture-Identification Algorithm 

        This stage quantitatively validated the selected gesture-identification algorithm. The 

validation did not rely on clinical measurements but on standard machine learning metrics, 

computed on the validation dataset which the model had not seen during training. Performance was 
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evaluated using key indicators such as Precision, Recall, and mean Average Precision (mAP). 

This process objectively verified the model's ability to correctly identify and classify gestures while 

also assessing its robustness to the variations in distance and hand introduced in the dataset.(18) 

2.6 Stage Five: Selection of Gesture Classification Algorithm 

        This stage, as defined in a traditional pipeline, is not applicable to this project. As detailed in 

previous sections, the YOLO model performs gesture identification and classification 

simultaneously within a single neural network. There is therefore no need to select a separate 

classification algorithm.(19) 

2.7 Stage Six: Gesture Mapping and Tuning 

This stage translates recognized gestures into drone commands using a one-to-one mapping 

strategy. 

• Mapping Strategy: Each of the six accurately classified gestures (ON, OFF, UP, DOWN, 

LEFT, RIGHT) will be assigned to a unique drone command. 

• Drone Platform: The DJI Tello quadrotor is an ideal candidate platform for demonstration. 

• Tuning Parameters: Three key parameters will be tuned experimentally: gesture hold 

time, command magnitude, and refresh rate, to achieve the smoothest and most intuitive 

control experience. 

Excellent! This is exactly what is needed to write a complete and professional results section. Here 

is a structured proposal for presenting these results in your report. I have analyzed your graphs and 

extracted the key figures so that you can integrate them directly.(20) 

 

2.8. Results and Analysis 

        his section presents the results obtained from the training and validation of the YOLO model. 

The analysis focuses on the model's quantitative performance, its training behavior, and a 

qualitative examination of its predictions.(6) 
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2.8.1 Training Process and Convergence 

        The model was trained for 50 epochs. The training and validation progress was monitored to 

ensure proper learning and to prevent significant overfitting. 

 

Figure 2- 1: Training and validation metrics over 50 epochs. 

        As shown in Figure 1, the loss functions (box_loss, cls_loss, dfl_loss) for both the training 

and validation sets show a consistent downward trend, stabilizing towards the final epochs. This 

convergence indicates that the model successfully learned to identify the features of the gestures 

from the dataset. Crucially, the validation loss (val/box_loss, val/cls_loss) does not show a 

significant upward divergence from the training loss, which suggests that the model generalizes 

well to unseen data without severe overfitting. 

        Concurrently, the key performance metrics on the validation set, such as Precision, Recall, 

and mAP, show a rapid increase in the initial epochs, followed by a plateau at a high level of 

performance. The metrics/mAP50(B) curve, in particular, converges to a value near 0.994, 

confirming that the model reached a state of high accuracy and stability. 
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2.8.2 Quantitative Performance Analysis 

        The model's final performance was evaluated on the held-out validation set. The key 

performance indicators demonstrate an exceptionally high ability to accurately localize and classify 

the predefined gestures. 

The primary performance metric, mean Average Precision (mAP) at an IoU threshold of 0.5, 

reached an outstanding 99.4%. This confirms the model's excellent reliability. The Precision-

Recall curve (Figure 2) illustrates this high performance across all classes. 

 

 

Figure 2- 2: Precision-Recall curve for all gesture classes. 

Table 1 provides a detailed breakdown of the performance for each individual gesture class, based 

on the final mAP@0.5 scores shown in Figure 2. 
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table 2- 1: Per-Class Performance Metrics on the Validation Set 

         class mAP@0.5 

Up 0.995 

Down 0.993 

left 0.095 

Right 0.995 

True(on) 0.990 

False (off) 0.995 

All 0.994 

 

        Analysis: The results in Table 1 show that every single gesture class achieved a mAP score of 

0.990 or higher. This indicates an extremely high level of reliability and satisfies Criterion 1 

(Reliability in Command Issuance). The model is equally proficient at recognizing all defined 

gestures. 

 

        The F1-Confidence curve (Figure 3) shows that the best balance between precision and recall 

is achieved at a confidence threshold of 0.430, where the F1-score for all classes peaks at 0.99. 

This is a critical insight for deploying the model, as it provides an optimal threshold for filtering 

detections. 
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Figure 2- 3:F1-Confidence curve, showing an optimal F1 score of 0.99 at a confidence threshold of 0.430. 

2.8.3 Qualitative Analysis and Error Examination 

A qualitative analysis was conducted to understand the model's practical behavior. 

Confusion Matrix: 

Figure 4 presents the normalized confusion matrix. The strong diagonal values (close to 1.00) 

visually confirm the model's exceptional classification accuracy. 
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Figure 2- 4: Normalized Confusion Matrix. 

Analysis: The confusion matrix reveals that misclassifications between defined gestures are nearly 

non-existent (e.g., only 1% of 'down' gestures were misclassified as 'up'). The main source of error 

is related to the background class. 

• False Negatives: The background column indicates instances where the model failed to 

detect a gesture that was present. This occurred most frequently for the 'right' (23% of 

misses) and 'down' (14% of misses) gestures. 

• False Positives: The background row (not shown in the normalized matrix but visible in 

the absolute one) indicates instances where the model incorrectly detected a gesture in the 

background. This was the single largest source of error, with 129 false positive detections. 
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Visual Examples of Performance: 

The model's performance was further analyzed by examining its predictions on batches of 

validation images (Figure 5). 

 

Figure 2- 5: Example predictions from a validation batch. 

The visual results confirm the model's robustness. It successfully detects gestures with high 

confidence across various distances, with both left and right hands, and under the challenging 

lighting conditions of the dataset. The bounding boxes are generally tight and well-placed. The 

failure cases observed (e.g., detecting a hand in the background, or missing a hand) align with the 

quantitative findings from the confusion matrix and provide clear directions for future 

improvements, such as adding more negative examples (images without hands) to the dataset to 

reduce false positives. 

2.9. Experimental Detection Results with WebCam 
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After the training phase was completed, the YOLOv8 model was tested using real-time webcam 

input to validate its ability to detect the six predefined gestures (ON(TRUE), OFF(FALSE), UP, 

DOWN, LEFT, RIGHT) in realistic conditions. The following figures illustrate the detection results 

on a standard webcam at various distances and with both left and right hands. 

Each image shows the predicted bounding box, the gesture label, and the confidence score returned 

by the model. 

Figure 6.1 – Detection of the "UP" gesture  
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Figure 6.2 – Detection of the "DOWN" gesture  
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Figure 6.3 – Detection of the "ON/TRUE" gesture  
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Figure 6.4 – Detection of the "OFF/FALSE" gesture  
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Figure 6.5 – Detection of the "LEFT" gesture  
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Figure 6.6 – Detection of the "RIGHT" gesture  

 

 

These images confirm the model’s robustness in varied lighting conditions and distances, as well 

as its ability to differentiate between left and right hands when necessary. 

The average detection confidence for most gestures ranged from 0.92 to 0.99, demonstrating the 

precision and stability of the trained model. 
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2.10 Detailed Training Results 

To complement the summary analysis presented above, the following table provides the detailed 

metrics recorded at the end of each of the 50 epochs of the training process. These raw data served 

as the basis for evaluating the model's convergence and final performance. 

table 2- 2: Results. 

 

epoch time train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B) metrics/mAP50(B) 

1 7092.31 2.05953 3.02328 1.45503 0.85446 0.88899 0.922 

2 10593.2 1.81326 2.08226 1.30015 0.90215 0.90694 0.95941 

3 13403.7 1.80442 1.91749 1.3046 0.93625 0.88499 0.95747 

4 16339.5 1.79583 1.75897 1.32606 0.95732 0.98247 0.99131 

5 18918.4 1.72544 1.6034 1.28157 0.97842 0.97419 0.98747 

6 21342.4 1.67047 1.50229 1.25737 0.94378 0.95877 0.9819 

7 24854.1 1.63597 1.4444 1.23871 0.97279 0.99755 0.99249 

8 28066.3 1.59833 1.38829 1.22025 0.9871 0.99442 0.99415 

9 30242.3 1.58985 1.36133 1.21132 0.96703 0.99452 0.98478 

10 32411.6 1.56881 1.33452 1.20209 0.95616 0.97163 0.9897 

11 34618.9 1.55082 1.30452 1.19589 0.94951 0.99753 0.98823 

12 36827.5 1.53254 1.28346 1.1835 0.95952 0.99607 0.98963 

13 39025.2 1.527 1.26233 1.18039 0.99273 0.99435 0.99374 

14 41221.7 1.50802 1.24048 1.17781 0.97068 0.97952 0.99303 

15 43421 1.49735 1.22806 1.16823 0.98298 0.99725 0.99298 

16 45618 1.48576 1.20844 1.16384 0.9648 0.99374 0.99174 

17 47810 1.48026 1.20867 1.15805 0.9918 0.99778 0.9936 

18 50005.3 1.46295 1.19136 1.14822 0.99386 0.98461 0.99264 

19 52195.7 1.45499 1.17961 1.14384 0.99233 0.99581 0.99406 

20 54407.2 1.44767 1.15993 1.14339 0.99278 0.9967 0.99391 

21 56628.8 1.43998 1.15354 1.14245 0.99249 0.99778 0.99411 

22 58838.7 1.43794 1.14498 1.13932 0.9922 0.99602 0.99247 

23 61052.5 1.42681 1.13221 1.13916 0.96671 0.98902 0.99423 

24 63278.3 1.41793 1.12411 1.13299 0.99444 0.99554 0.99315 

25 65572.5 1.41176 1.11427 1.12591 0.98941 0.99679 0.99347 

26 67868.8 1.40716 1.11003 1.12824 0.94145 0.99225 0.99215 

27 74424.3 1.39418 1.09985 1.11887 0.97711 0.99581 0.99053 

28 76528.7 1.39356 1.09169 1.12288 0.99331 0.99564 0.99409 

29 92616.8 1.3867 1.08559 1.1176 0.97582 0.99581 0.99335 

30 95011.5 1.38055 1.07821 1.11718 0.98945 0.99623 0.99384 

31 101844 1.37347 1.07346 1.10852 0.97533 0.99524 0.9935 

32 105387 1.36954 1.06028 1.11185 0.98672 0.99581 0.99424 
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33 108341 1.35053 1.04511 1.10543 0.96924 0.99594 0.99295 

34 111598 1.35059 1.04253 1.10115 0.99246 0.99545 0.99393 

35 113991 1.35573 1.04754 1.10391 0.9913 0.99559 0.99387 

36 116638 1.3462 1.0311 1.0986 0.99318 0.99576 0.9939 

37 119999 1.34006 1.02815 1.09568 0.99351 0.99483 0.994 

38 124228 1.32811 1.01785 1.09135 0.99313 0.99515 0.99401 

39 177624 1.32257 1.02256 1.08613 0.99261 0.99556 0.99378 

40 180591 1.30984 1.01245 1.08371 0.99197 0.99384 0.99427 

41 183206 1.27977 0.93334 1.10489 0.99263 0.99511 0.99339 

42 185788 1.27103 0.92347 1.10365 0.99424 0.99581 0.99318 

43 189781 1.25828 0.9134 1.09572 0.99247 0.99508 0.99326 

44 276140 1.24743 0.91064 1.08888 0.99414 0.99581 0.99352 

45 288423 1.23717 0.90305 1.08381 0.99402 0.99551 0.99382 

46 343252 1.22887 0.89536 1.08166 0.99417 0.99569 0.99373 

47 345618 1.2231 0.88957 1.08227 0.99339 0.99484 0.9939 

48 348111 1.21354 0.88407 1.07864 0.99432 0.9957 0.99379 

49 352699 1.20861 0.88084 1.07466 0.99413 0.99581 0.99375 

50 355068 1.19655 0.87557 1.0709 0.99422 0.99581 0.99383 

 

table 2- 3: Results  

 

met-

rics/mAP50-

95(B) val/box_loss val/cls_loss val/dfl_loss lr/pg0 lr/pg1 lr/pg2 

0.54759 1.40215 1.36986 1.14843 0.003331 0.003331 0.003331 

0.5803 1.36304 1.15795 1.14147 0.006533 0.006533 0.006533 

0.57225 1.40094 1.16957 1.17183 0.009602 0.009602 0.009602 

0.60214 1.35842 0.86653 1.16327 0.009406 0.009406 0.009406 

0.62331 1.32937 0.84762 1.14848 0.009208 0.009208 0.009208 

0.62264 1.31733 0.81403 1.13328 0.00901 0.00901 0.00901 

0.63406 1.29077 0.73265 1.13141 0.008812 0.008812 0.008812 

0.64024 1.27323 0.7536 1.11181 0.008614 0.008614 0.008614 

0.63905 1.27203 0.78287 1.10793 0.008416 0.008416 0.008416 

0.64187 1.25947 0.78795 1.10947 0.008218 0.008218 0.008218 

0.64441 1.26227 0.69919 1.10889 0.00802 0.00802 0.00802 

0.64825 1.27072 0.72846 1.11072 0.007822 0.007822 0.007822 

0.65012 1.26215 0.7005 1.1058 0.007624 0.007624 0.007624 

0.65656 1.25153 0.73826 1.09306 0.007426 0.007426 0.007426 

0.64898 1.24155 0.70862 1.08781 0.007228 0.007228 0.007228 

0.65989 1.23736 0.70251 1.08604 0.00703 0.00703 0.00703   
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0.66786 1.22335 0.65037 1.08203 0.006832 0.006832 0.006832 

0.65713 1.24925 0.68547 1.09332 0.006634 0.006634 0.006634 

0.66948 1.23626 0.68035 1.08582 0.006436 0.006436 0.006436 

0.66462 1.23355 0.6458 1.0851 0.006238 0.006238 0.006238 

0.66779 1.21654 0.66099 1.07886 0.00604 0.00604 0.00604 

0.66462 1.22096 0.64686 1.07944 0.005842 0.005842 0.005842 

0.66779 1.2141 0.71081 1.07904 0.005644 0.005644 0.005644 

0.66848 1.20759 0.65858 1.07447 0.005446 0.005446 0.005446 

0.67302 1.21296 0.67766 1.07252 0.005248 0.005248 0.005248 

0.66859 1.21045 0.71977 1.07154 0.00505 0.00505 0.00505 

0.66956 1.21785 0.65699 1.07154 0.004852 0.004852 0.004852 

0.68161 1.21597 0.63538 1.07385 0.004654 0.004654 0.004654 

0.67353 1.21362 0.65518 1.07406 0.004456 0.004456 0.004456 

0.66785 1.20169 0.66508 1.06698 0.004258 0.004258 0.004258 

0.67028 1.20306 0.65684 1.06726 0.00406 0.00406 0.00406 

0.67912 1.20186 0.65163 1.06876 0.003862 0.003862 0.003862 

0.67438 1.20029 0.67205 1.06505 0.003664 0.003664 0.003664 

0.67642 1.20177 0.63536 1.0649 0.003466 0.003466 0.003466 

0.67771 1.20021 0.63742 1.06327 0.003268 0.003268 0.003268 

0.67778 1.19447 0.63275 1.06382 0.00307 0.00307 0.00307 

0.67666 1.19553 0.60295 1.06248 0.002872 0.002872 0.002872 

0.67632 1.19805 0.62544 1.06278 0.002674 0.002674 0.002674 

0.67813 1.20262 0.60349 1.0616 0.002476 0.002476 0.002476 

0.68032 1.20013 0.62455 1.0607 0.002278 0.002278 0.002278 

0.67614 1.19404 0.61716 1.05944 0.00208 0.00208 0.00208 

0.67628 1.19264 0.62798 1.06123 0.001882 0.001882 0.001882 

0.68029 1.19116 0.62349 1.05931 0.001684 0.001684 0.001684 

0.67942 1.1905 0.62349 1.05899 0.001486 0.001486 0.001486 

0.68238 1.19275 0.63497 1.05804 0.001288 0.001288 0.001288 

0.68437 1.19398 0.61766 1.05925 0.00109 0.00109 0.00109 

0.68416 1.19105 0.61449 1.05882 0.000892 0.000892 0.000892 

0.68191 1.18871 0.60549 1.05843 0.000694 0.000694 0.000694 

0.68438 1.18668 0.59448 1.05708 0.000496 0.000496 0.000496 

0.68626 1.18668 0.59448 1.05615 0.000298 0.000298 0.000298 

0.68754 1.18501 0.58775 1.05615 0.000298 0.000298 0.000298 
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Conclusion 

The objective of this project was to design and implement a gesture-based drone con-

trol and visual tracking system that is at once efficient, intuitive, and affordable. The 

key challenge was to integrate an advanced visual recognition algorithm within a sim-

ple hardware architecture composed of a Raspberry Pi, a camera, and two servo mo-

tors. This setup aimed to enable contactless human-machine interaction using hand 

gestures. 

To achieve this, a deep learning-based approach was adopted, centered around the 

YOLOv8 model. A custom dataset was created, including six gestures (ON, OFF, UP, 

DOWN, LEFT, RIGHT), captured at various distances (from 50 cm to 4 meters) and 

with both left and right hands. This rigorous data preparation ensured the model's ro-

bustness across real-world scenarios. 

The training results exceeded initial expectations. The model achieved a remarkable 

mean Average Precision (mAP@0.5) of 99.4% on the validation set, confirming its 

ability to recognize defined gestures with high accuracy. Training logs demonstrated 

stable convergence, balanced performance across all gesture classes, and strong re-

sistance to distance variations. Deployment on the Raspberry Pi further validated the 

system's real-time performance, even with limited hardware resources. 

Beyond the raw performance, this project makes a concrete contribution to the field of 

natural human-machine interfaces. It proposes a fully functional, low-cost gesture con-

trol system combining a lightweight AI model and minimal hardware, showing that 

sophisticated control interfaces can be democratized through open-source tools and 

thoughtful system design. It also introduces a novel annotated gesture dataset, which 

could support further research in drone interaction or similar applications. 

However, the system is not without limitations. Some false positives were observed, 

especially in cluttered backgrounds, and lighting conditions significantly different 

from the training set can impact detection quality. The system also currently only sup-

ports static gestures, which limits the complexity and richness of interaction. 

Looking ahead, several promising directions for improvement can be identified. The 

dataset could be enhanced with more diverse and negative samples, and advanced data 

augmentation could improve generalization. Recognizing dynamic gestures, such as 

hand swipes or two-handed commands, would allow more complex and continuous in-

teractions. Furthermore, integrating real-time person tracking would turn the drone 

into an autonomous assistant capable of following a user—a "flying cameraman." 

In summary, this project demonstrates the feasibility of building intelligent, robust, 

and user-friendly gesture control systems using accessible tools and hardware. It opens 
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the door to more natural, seamless interactions with drones and paves the way for fu-

ture research in intuitive control and assistive robotics. 
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Chapter 03: Tracking of a Person. 

Introduction 

       The success of our two-axis person tracking system fundamentally relies on the 

system's ability to "see" and locate a person reliably and in real-time. This task, 

known as object detection, constitutes the intelligent core of our project. Before we 

can command the servo motors to follow a target, it is imperative to have a robust 

artificial intelligence model capable of distinguishing a person from their 

environment with very high accuracy. 

        This chapter details the complete methodology implemented to develop such a 

model. It covers the process of creating a custom video dataset, the meticulous 

annotation of images, the selection of the YOLOv8 model architecture, and finally, 

an in-depth analysis of the trained model's performance. The objective was to obtain 

a model that is not only accurate but also robust enough to handle variations in angle 

and perspective, thereby simulating the real-world conditions of a tracking system 

mounted on a pan-tilt turret.(21) 

 

3.1 Development Methodology 

Aw22are that the performance of a deep learning model depends above all on the 

quality and relevance of the training data, we undertook the creation of our own 

dataset. 

• Data Source: Videos were recorded showing people from various angles. 

Particular attention was paid to capturing complex movements, including 

people walking and performing a full 360-degree rotation. This approach 

aims to ensure that the model can recognize a person from the front, back, 
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profile, and all intermediate angles, which is crucial for uninterrupted 

tracking.(22) 

• Data Annotation: The videos were broken down into individual frames. 

The Label Studio software was used for the annotation process. On each 

relevant frame, a bounding box was manually drawn to precisely delimit the 

person(s) present. Each box was associated with the single class: "person". 

• Export and Structuring: Once the annotation was complete, the data was 

exported in the YOLO format. This format generates a .txt text file for each 

image, containing the normalized coordinates of the bounding box and the 

class index. The dataset was then automatically divided into a training set and 

a validation set, an essential step to objectively evaluate the model's ability to 

generalize to data it has never seen. 

• Architecture: The YOLOv8 model was chosen for this task due to its 

excellent trade-off between speed and accuracy, making it ideal for real-time 

applications, including on embedded hardware like a Raspberry Pi. 

• Training Process: The model was trained on our custom dataset for 50 

epochs. During this process, advanced data augmentation techniques were 

automatically applied by the YOLO framework, such as rotations, flips, and 

especially the "mosaic" technique (visible on the validation batches), which 

combines four images into one. This aggressive augmentation is essential to 

force the model to learn to detect people in various contexts, even when 

partially visible or at unusual angles.(25) 
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3.2 Results and Performance Analysis 

        The evaluation of the trained model was conducted both quantitatively, using 

standard metrics, and qualitatively, through visual inspection of the predictions. 

The performance curves recorded during the 50 training epochs (Figure 1) attest to 

the success of the learning process.(23) 

 

 

Figure 3- 1: Training and validation metrics over 50 epochs. 

 

        A constant and stable decrease in the various loss functions 

(box_loss, cls_loss, dfl_loss) is observed for both the training and validation sets. 

The lack of divergence between the validation and training curves indicates that the 

model did not overfit and is capable of generalizing its knowledge. Concurrently, 

performance metrics like the mean Average Precision (metrics/mAP50(B)) rise 

rapidly to a very high plateau, signaling that the model has reached an optimal and 

stable performance.(26) 
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The final metrics on the validation set confirm the model's exceptional performance. 

• Overall Accuracy: The model achieved a mean Average Precision (mAP) 

at an IoU threshold of 0.5 of 99.5%. This score, extremely close to 

perfection, means the model is extraordinarily reliable for correctly detecting 

and locating a person. The Precision-Recall curve (Figure 2) illustrates this 

performance. 
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Figure 3- 2: Precision-Recall curve for the "person" class. 

• Optimal Confidence Threshold: The F1-Confidence curve (Figure 3) is a 

crucial tool for deployment. It tells us that the best balance between precision 

and recall is achieved at a confidence threshold of 0.755, where the F1 score 

reaches its maximum value of 1.00. In practice, this means we should ignore 

all detections with a confidence lower than 75.5% to obtain the most reliable 

results. 

 

 

Figure 3- 3: F1-Confidence curve, indicating an optimal F1 score at a confidence threshold of 0.755. 

The analysis of the confusion matrix (Figure 4) provides a clear view of the model's 

classification accuracy. 
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Figure 3- 4: Normalized Confusion Matrix. 

        The matrix is nearly perfect. 100% of the people present in the validation set 

were correctly identified as "person". There is no confusion with the background. 

The only error, visible in the non-normalized matrix, is a single case where the model 

predicted a person where there was none. This performance is remarkable. 

The inspection of predictions on the validation batches (Figure 5) visually confirms 

this robustness. 
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Figure 3- 5: Example detections on augmented validation images. 

        The images show that the model successfully detects people with high 

confidence even when viewed from above, from the side, rotated, and in very 

complex "mosaic" image compositions. This directly validates the effectiveness of 

our data collection strategy (360° videos) and data augmentation.(29) 

 

 3.3 Webcam-Based Tracking Tests 

To evaluate the practical performance of our trained YOLOv8 model in real-world 

conditions, we performed several tests using a standard webcam. These experiments 

aimed to validate whether the system is capable of detecting and tracking a person in 

real time, under varying poses and interactions. 

The results confirm that the model successfully detects and assigns a tracking ID to 

the person across multiple frames. Even when the subject changes orientation or 
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interacts with the environment, the bounding box remains stable, demonstrating the 

robustness of the trained model. 

 

Figure 3-6: Person detection and head tracking in frontal position. 
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Figure 3-7: Person detection during lateral orientation with stable ID tracking. 
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• Figure 3-8: Detection in interaction scenario (subject with pet), showing 

robust tracking with confidence score displayed. 

 

These webcam-based results confirm that the trained YOLOv8 model is not only 

theoretically performant but also practically reliable in real-time tracking conditions. 

 

3.4 Detailed Training Results 

        To complement the summary analysis presented above, the following table provides the 

detailed metrics recorded at the end of each of the 50 epochs of the training process. These raw 

data served as the basis for evaluating the model's convergence and final performance.(24) 
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Table 3- 1: Results(7) 

epoch time train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B) metrics/mAP50(B) 

1 836.277 1.60901 2.2481 1.62566 0.77666 0.76223 0.85166 

2 1661.54 1.54167 1.69758 1.56537 0.37843 0.65753 0.42807 

3 2451.1 1.55323 1.49698 1.55826 0.88302 0.91781 0.96158 

4 3248.2 1.56438 1.34807 1.55537 0.96686 0.9726 0.98819 

5 4087.29 1.50783 1.21148 1.54284 0.93134 0.92917 0.97286 

6 4966.29 1.47412 1.11751 1.48809 0.9567 0.9863 0.98056 

7 5841.31 1.42906 1.03555 1.47799 0.9832 0.9589 0.98848 

8 6718.58 1.40219 0.97673 1.45083 0.98549 1 0.99378 

9 7599.52 1.35448 0.93697 1.40943 0.97329 0.99848 0.99364 

10 8476.4 1.34931 0.94033 1.42977 0.98488 1 0.98838 

11 9348.61 1.33715 0.88326 1.40222 0.98535 1 0.99473 

12 10176.7 1.34425 0.88772 1.41977 0.97517 1 0.99149 

13 12530.1 1.32362 0.86761 1.38121 0.98507 1 0.9823 

14 13309 1.27563 0.82704 1.37702 0.98562 1 0.995 

15 14102.8 1.26464 0.80142 1.36462 0.98542 1 0.99392 

16 15287 1.25381 0.80476 1.35589 0.99623 1 0.995 

17 16855.4 1.23686 0.78176 1.34466 0.98479 1 0.99081 

18 17834.2 1.23191 0.75899 1.33049 0.98583 1 0.99486 

19 18632.4 1.21995 0.7741 1.33602 0.98531 1 0.99135 

20 19400.5 1.18888 0.72336 1.30424 1 0.99686 0.995 

21 20243.4 1.18471 0.73546 1.3182 0.98647 0.99911 0.99486 

22 21092.3 1.18522 0.72783 1.302 0.99188 1 0.995 

23 21894.8 1.14754 0.70354 1.27441 0.98418 1 0.99473 

24 22700 1.11634 0.6781 1.26597 0.98566 1 0.99486 

25 23620.3 1.10493 0.65058 1.25449 0.98804 1 0.995 

26 24500.3 1.10303 0.65803 1.26155 0.9972 1 0.995 

27 25274.2 1.07841 0.65516 1.239 0.98861 1 0.995 

28 26046.9 1.09414 0.65192 1.25445 0.99859 1 0.995 
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29 26823.1 1.06459 0.63784 1.24341 0.98555 1 0.99014 

30 27588.6 1.06451 0.64052 1.23506 0.98569 1 0.99473 

31 28360.1 1.04893 0.62539 1.22905 0.97161 1 0.98527 

32 29138.7 1.03075 0.61921 1.21826 0.99555 1 0.995 

33 29917.2 0.99284 0.58355 1.1995 0.98576 1 0.995 

34 30665 1.00633 0.58268 1.19672 0.98569 1 0.995 

35 31416.8 0.98541 0.59125 1.19667 0.98536 1 0.99473 

36 32162 0.98341 0.579 1.19486 0.99283 1 0.995 

37 32896.2 0.96435 0.5673 1.17625 0.99751 1 0.995 

38 33630.2 0.94079 0.55024 1.15682 0.9971 1 0.995 

39 34371.1 0.96422 0.55702 1.17406 0.99891 1 0.995 

40 35118.2 0.92392 0.53035 1.14741 0.99751 1 0.995 

41 35858.6 0.85956 0.42793 1.12592 0.98556 1 0.99486 

42 36593.6 0.8113 0.40019 1.096 0.99048 1 0.995 

43 37354.4 0.79817 0.3902 1.0796 0.99718 1 0.995 

44 38090.6 0.77803 0.38131 1.07918 0.99646 1 0.995 

45 38831.3 0.76919 0.37767 1.07586 0.9948 1 0.995 

46 39576.2 0.75318 0.36861 1.05926 0.99624 1 0.995 

47 40313 0.74348 0.36604 1.04206 0.99776 1 0.995 

48 41051.8 0.72045 0.35689 1.03483 0.99776 1 0.995 

49 41790.5 0.70761 0.35327 1.03036 0.99782 1 0.995 

 

 

 

Table 3- 2: Results 

metrics/mAP50-

95(B) val/box_loss val/cls_loss val/dfl_loss lr/pg0 lr/pg1 lr/pg2 

0.375 1.71706 2.50849 1.59645 0.000548 0.000548 0.000548 

0.20284 1.77409 2.2473 1.92068 0.001082 0.001082 0.001082 

0.60408 1.37524 1.31236 1.44965 0.001594 0.001594 0.001594 

0.5198 1.75965 1.07974 1.72615 0.001568 0.001568 0.001568 
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0.49803 1.62812 1.04425 1.64606 0.001535 0.001535 0.001535 

0.59412 1.33242 0.83101 1.35761 0.001502 0.001502 0.001502 

0.60157 1.40379 0.80298 1.437 0.001469 0.001469 0.001469 

0.66111 1.19474 0.67443 1.28969 0.001436 0.001436 0.001436 

0.65586 1.2606 0.69612 1.38693 0.001403 0.001403 0.001403 

0.67433 1.18052 0.60432 1.30606 0.00137 0.00137 0.00137 

0.67082 1.22512 0.62537 1.27554 0.001337 0.001337 0.001337 

0.66537 1.1823 0.62963 1.34511 0.001304 0.001304 0.001304 

0.65747 1.22875 0.59366 1.31028 0.001271 0.001271 0.001271 

0.69665 1.17054 0.60906 1.24586 0.001238 0.001238 0.001238 

0.69113 1.18019 0.54226 1.27561 0.001205 0.001205 0.001205 

0.69942 1.16733 0.52651 1.21746 0.001172 0.001172 0.001172 

0.66658 1.22143 0.59532 1.34276 0.001139 0.001139 0.001139 

0.71351 1.16657 0.51656 1.2357 0.001106 0.001106 0.001106 

0.70637 1.148 0.52348 1.28139 0.001073 0.001073 0.001073 

0.69112 1.15066 0.51675 1.23679 0.00104 0.00104 0.00104 

0.68593 1.21326 0.53069 1.27045 0.001007 0.001007 0.001007 

0.70172 1.16357 0.51301 1.24759 0.000974 0.000974 0.000974 

0.69399 1.21189 0.49655 1.24317 0.000941 0.000941 0.000941 

0.73588 1.03764 0.46352 1.16205 0.000908 0.000908 0.000908 

0.70708 1.16229 0.48455 1.20857 0.000875 0.000875 0.000875 

0.68068 1.17725 0.50326 1.23569 0.000842 0.000842 0.000842 

0.70849 1.06707 0.49201 1.2121 0.000809 0.000809 0.000809 

0.73102 1.05515 0.46615 1.20548 0.000776 0.000776 0.000776 

0.73422 1.04991 0.44677 1.20821 0.000743 0.000743 0.000743 

0.69615 1.1415 0.47689 1.21763 0.00071 0.00071 0.00071 

0.72823 1.08758 0.44228 1.19964 0.000677 0.000677 0.000677 

0.74411 1.08742 0.44024 1.20104 0.000644 0.000644 0.000644 

0.75255 1.02425 0.43147 1.16543 0.000611 0.000611 0.000611 

0.73179 1.12724 0.45096 1.2171 0.000578 0.000578 0.000578 

0.73101 1.13154 0.44463 1.26725 0.000545 0.000545 0.000545 

0.73411 1.13429 0.42259 1.24092 0.000512 0.000512 0.000512 

0.75558 1.0858 0.43716 1.22352 0.000479 0.000479 0.000479 
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0.75119 1.09712 0.42054 1.23295 0.000446 0.000446 0.000446 

0.74716 1.11349 0.41466 1.22434 0.000413 0.000413 0.000413 

0.75178 1.1055 0.42668 1.20969 0.00038 0.00038 0.00038 

0.73948 1.08168 0.43166 1.24022 0.000347 0.000347 0.000347 

0.75069 1.11395 0.44017 1.23342 0.000314 0.000314 0.000314 

0.73998 1.1022 0.41458 1.2441 0.000281 0.000281 0.000281 

0.73169 1.10276 0.43287 1.22212 0.000248 0.000248 0.000248 

0.75766 1.09223 0.41597 1.23208 0.000215 0.000215 0.000215 

0.75566 1.12157 0.4146 1.24244 0.000182 0.000182 0.000182 

0.75587 1.09155 0.41503 1.22522 0.000149 0.000149 0.000149 

0.74667 1.10143 0.42497 1.23676 0.000116 0.000116 0.000116 

0.74391 1.10267 0.41839 1.23693 8.27E-05 8.27E-05 8.27E-05 

 

Conclusion 

        At the end of this chapter, we have demonstrated the successful development of 

a custom-built person detection model with state-of-the-art performance. Starting 

from a custom video dataset and using a YOLOv8 architecture, we obtained a model 

with a mAP@0.5 of 99.5%, proving its very high reliability. The qualitative analysis 

confirmed its robustness to significant variations in angles and perspectives.(30) 

        This model constitutes a solid and reliable foundation. It is now ready to be 

integrated into the embedded system on the Raspberry Pi to serve as the "eyes" for 

the pan-tilt tracking mechanism, whose mission will be to keep the detected person 

in the center of the camera's field of view. 

 



 

81 
 

 

 

 

       

Chapter 04 

  
 



Chapter 4: System Architecture, Practical Implementation, and Testing 

82 
 

Chapter 4: System Architecture, Practical Implementation, and Testing  

 

Introduction 

        The preceding chapters established the theoretical and algorithmic foundations of our project, 

culminating in the development of two high-performance artificial intelligence models for person 

detection and gesture recognition. This chapter marks the critical transition from simulation to 

reality, focusing on the concrete implementation and integration of these models within a functional 

mechatronic system. The primary objective of this phase is to build and validate a physical 

prototype capable of demonstrating, in real-time, the functionalities of person tracking and gesture 

control. 

        This approach is essential for several reasons. Firstly, it allows us to confront our algorithms 

with the constraints of the real world: processing latency, mechanical inaccuracies, and 

environmental variability. Secondly, it validates the viability of our chosen hardware architecture, 

which is based on low-cost components like the Raspberry Pi. Lastly, it serves as an indispensable 

testbed for refining control parameters before considering a final integration onto a complex mobile 

platform such as a drone. 

        We will therefore detail the complete system architecture here, from component selection to 

their mechanical and electronic assembly. We will then describe the software environment set up 

on the Raspberry Pi, before delving into the logic and structure of the main control script that 

orchestrates perception, decision-making, and action. Finally, we will define a rigorous testing 

protocol aimed at calibrating, refining, and a quantifying the performance of the integrated 

system.(40) 

4.1 Hardware Architecture of the Prototype 

The hardware design of the prototype was guided by the criteria of simplicity, 

modularity, and low cost. Each component was selected for its suitability for an 

embedded AI application. 

• Central Processing Unit - Raspberry Pi 4 Model B (4 GB RAM): This micro-computer was 

chosen for its excellent balance of processing power (quad-core processor), connectivity 
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(USB ports, Wi-Fi, Ethernet), and its GPIO (General Purpose Input/Output) interface, 

which is essential for the direct control of actuators. 

• Visual Sensor - Raspberry Pi Camera Module V2 (8 Megapixels): Preferred over a USB 

webcam, this module connects via the dedicated CSI (Camera Serial Interface), offering a 

high data throughput and freeing up USB ports for other uses. 

• Actuators - Two Tower Pro SG90 Servo Motors: These micro-servos were selected for their 

ubiquity, low cost, light weight, and ease of control via a standard PWM (Pulse Width 

Modulation) signal. One servo is dedicated to the horizontal axis (pan) and the second to 

the vertical axis (tilt).(31) 

• Mechanical Structure - Custom-Made Pan-Tilt Mount: A mount was assembled using 

lightweight materials (foam board/Forex) to house the two servo motors in an orthogonal 

configuration. The camera is securely attached to the moving part of the "tilt" servo, 

allowing for scanning across two degrees of freedom. 
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Figure 4- 1: Photograph of the Assembled 
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4.2 Prototype 

        The success of the implementation relies on rigorous and safe wiring. The main technical 

constraint is the current draw of the servo motors, which, when in motion, can cause voltage drops 

fatal to the stable operation of the Raspberry Pi. A separate power supply is therefore non-

negotiable. 

The wiring schematic is as follows: 

1. Dedicated External Power Supply (5V, ≥2A): An external power source is used exclusively 

for the servos. 

2. Servo Power Circuit: The two power wires (VCC, red) of the servos are connected in 

parallel to the positive (+) terminal of the external power supply. The two ground wires 

(GND, brown/black) are connected in parallel to the negative (-) terminal. 

3. Control Circuit (Signal): The signal wire (PWM, orange/yellow) of the "pan" servo is 

connected to physical pin 11 (GPIO 17) of the Raspberry Pi. The signal wire of the "tilt" 

servo is connected to physical pin 12 (GPIO 18). 

4. Common Ground (Crucial Step): A ground pin (GND) from the Raspberry Pi (e.g., pin 6) 

is connected to the negative (-) terminal of the external servo power supply. This connection 

ensures that the Raspberry Pi and the servos share the same "0V" reference potential, a 

prerequisite for the correct interpretation of PWM signals. 
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Figure 4- 2: Electronic Wiring Diagram (ref a suka men fritizing ) 

 

4.3 Software Environment Configuration 

The development environment on the Raspberry Pi was configured as follows: 

• Operating System: Raspberry Pi OS (64-bit) for better performance. 

• Language: Python 3. 

• Key Libraries: 

o Ultralytics: The essential framework for loading and running our two YOLOv8 

models (.pt files).(34) 

o OpenCV (cv2): A fundamental library for all computer vision operations, 

particularly video capture from the camera module and displaying results.(32) 
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o RPi.GPIO or gpiozero: Libraries that enable interaction with the GPIO 

pins. gpiozero is preferred for its higher-level syntax, which greatly simplifies servo 

control. 

4.4 Control Algorithm and Integration Logic 

        The core of the project is a single Python script that executes a real-time control loop. This 

loop integrates perception (detection), decision-making (correction calculation), and action (servo 

movement and gesture recognition).(36) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- 3: Flowchart of the Main Control Loop 
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        The person tracking is achieved through visual servoing. The principle is to treat the image as 

a sensor that measures an "error": the distance between the target and the center of the image. A 

control algorithm then seeks to nullify this error.(38) 

We implement a proportional (P) controller, the simplest type of regulator and often sufficient for 

this application. 

1. Error Measurement: For each axis, the error is calculated: 

o Error_Pan = X_center_of_person - X_center_of_image 

o Error_Tilt = Y_center_of_person - Y_center_of_image 

2. Command Calculation: The correction to be applied to each servo is proportional to the 

measured error. 

o Correction_Pan = Error_Pan * Kp_Pan 

o Correction_Tilt = Error_Tilt * Kp_Tilt 

3. Command Application: The current position of the servo is updated with this correction. 

The Kp_Pan and Kp_Tilt are the "proportional gains," tuning constants that determine the system's 

responsiveness. 

 

Figure 4- 4: Block Diagram of the Closed-Loop Control System 
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To optimize the Raspberry Pi's resources, the two YOLO models are not executed systematically. 

The logic is as follows: 

1. The person detection model is executed with priority on each frame. 

2. Only if a person is detected and being tracked, the gesture recognition model is then 

executed on the same frame. 

This strategy avoids unnecessary computations when the scene is empty. 

 

4.5 Testing, Calibration, and Refinement Protocol 

Once the script is deployed, a methodical testing phase is conducted to calibrate and optimize the 

system. 

1. Test 1 - Static Servo Calibration: The script is run for the first time to verify that the servos 

are correctly centered (position 0) and that their range of motion is correct (-90° to +90°). 

2. Test 2 - Dynamic Tracking Refinement: This test aims to tune the Kp gains. An operator 

stands in front of the camera and makes slow, predictable movements (left-right, up-down). 

o Observation: The system oscillates; the camera "jitters" by overshooting its 

target. Action: Decrease the absolute value of the corresponding Kp. 

o Observation: The system is sluggish; it visibly "lags" behind the 

person. Action: Increase the absolute value of the Kp. 

o Observation: The servo moves in the opposite direction. Action: Invert the sign of 

thecorresponding Kp.(39) 

This process is repeated until a smooth and responsive tracking is achieved.(35) 

3. Test 3 - Validation of Gesture Control in Context: The operator, while being tracked by the 

camera, performs the sequence of gestures (ON, OFF, UP...). The goal is to verify that the 

gestures are still reliably recognized even when the person is not perfectly facing forward 

or when the camera is in motion. The gesture detection confidence thresholds are adjusted 

if necessary. 
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 Conclusion 

        This chapter has detailed the complete journey from algorithmic design to a tangible, 

functioning mechatronic system. By carefully selecting low-cost components and implementing a 

robust electronic architecture centered on a Raspberry Pi, we have successfully built a physical 

prototype for gesture-based control and person tracking. The development of a real-time control 

loop, orchestrating two distinct YOLO models and a visual servoing algorithm, has demonstrated 

the practical feasibility of our concept.(37) 

        The implementation process highlighted the critical importance of a methodical approach, 

from the necessity of a separate power supply for actuators to the iterative tuning of control 

parameters like proportional gains. The established testing protocol allowed us to move from a 

basic proof-of-concept to a refined system exhibiting smooth, responsive tracking and reliable 

gesture recognition under dynamic conditions. 

        Ultimately, this prototype serves as a definitive validation of our core hypothesis: that it is 

possible to create a sophisticated, intelligent, and interactive control system using accessible, off-

the-shelf technology. We have built a solid and proven foundation, a system whose perception and 

action capabilities have been tested and quantified. This fully validated ground-based prototype is 

now ready, establishing the final prerequisite before tackling the ultimate step of this project: 

integrating the control logic onto a drone platform to achieve autonomous, gesture-driven flight.
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General conclusion: 

        At the culmination of this dissertation, it is pertinent to reflect on the journey undertaken to 

address the central problem: the design of an intuitive, accessible, and non-restrictive human-drone 

interface based on the advancements in deep learning. The ambition of this project was to break 

free from the limitations of traditional physical controllers by proposing a natural interaction, where 

the user's body itself becomes the control device. 

        The first chapter laid the theoretical foundations for our approach, exploring the synergy 

between human-machine interaction and machine learning. This study confirmed that computer 

vision techniques, and more specifically convolutional neural networks like YOLO, represented 

the most promising technology to achieve our goals of real-time performance on low-cost 

hardware. 

        Building on this understanding, we adopted a modular development approach, breaking down 

the problem into two distinct perception challenges. The second chapter was dedicated to the 

development of a first model for gesture control. By creating a robust and varied dataset, we trained 

a YOLO model capable of recognizing a command vocabulary (ON, OFF, UP, DOWN, LEFT, 

RIGHT) with outstanding reliability, achieving a mean Average Precision (mAP) of 99.4%. This 

initial success validated our ability to translate a human intention, embodied by a gesture, into an 

interpretable digital command. 

        In parallel, the third chapter tackled the second challenge: person tracking. Understanding that 

a gesture control system is only viable if the camera can maintain visual contact with the operator, 

we developed a second YOLO model, this time specialized in detecting a person from all angles. 

Thanks to a dataset that included 360-degree rotations, this model achieved a near-perfect 

performance with an mAP of 99.5%, thereby providing the essential intelligent "gaze" for our 

system. 

        The fourth and final chapter represented the pinnacle of this project, unifying these software 

building blocks into a functional physical implementation. By integrating our two models onto an 

embedded Raspberry Pi system, which actuated a two-axis pan-tilt turret, we proved the hardware 

feasibility and viability of our concept. Practical tests demonstrated the system's ability to actively 
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track a person while simultaneously interpreting their gesture commands, thus validating the 

successful mechatronic and software integration. 

        This project has therefore fulfilled its primary objectives. We have developed a complete 

control system, from perception to action, that is both extremely accurate on a software level and 

functional on accessible hardware. However, all research work has its limitations, which in turn 

provide avenues for future development. Our system relies on static gestures, and its robustness is 

dependent on the lighting conditions of the dataset. Furthermore, the tests were conducted on a 

ground-based prototype; the final integration onto a flying drone represents a challenge of a higher 

order of complexity. 

        The prospects for the future are thus rich and stimulating. In the short term, the models could 

be further improved by enriching the datasets. In the medium term, the system could be extended 

to the recognition of dynamic gestures or the use of both hands for a more complex command 

vocabulary. The most ambitious prospect would be the full integration onto the drone, where the 

person tracking would no longer just orient a camera but would pilot the drone itself to follow the 

operator autonomously, creating a true synergy where the human guides and the machine follows. 

        In summary, this dissertation successfully demonstrates how the fusion of open-source 

artificial intelligence and consumer electronics makes it possible to reinvent our interaction with 

autonomous objects. By designing a system where human gesture is understood and tracked with 

precision, we have laid the first stones for an interface that is more natural, more intuitive, and 

ultimately, more human. 
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