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ُُّ اٌظبٌحبد ٚرسُطَّش فً حٍبرٕب طفحبد إٌجبح ٚاٌزٛفٍك  .اٌحّذ لله سة اٌؼبٌٍّٓ، اٌزي ثٕؼّزٗ رز

 

 :أػُشة ػٓ خبٌض اِزٕبًٔ ٌٛاٌذيّ اٌىشٌٍّٓ أِب ثؼذ،

 .، اٌزي وبْ دػّٗ ٚصمزٗ ثً ٔجشاسًب أػبء ًٌ ؽشٌك الجزٙبدلىالذي العزيزأٚلً، 

 .، اٌزً ثحٕبٔٙب ٚسػبٌزٙب اٌلاِزٕبٍ٘خ أسّسذ فً ٔفسً سٚح اٌزفبؤي ٚاٌضجبدلىالذحي الغبليتصبٍٔبً، 

، اٌزٌٓ وبْ حؼٛسُ٘ اٌذائُ ِٚٛاسبرُٙ اٌظبدلخ سوٍضح طٍجخ فً ِسٍشرً اٌؼٍٍّخ، لعبئلخي الكريوتوّب أرمذَّ ثبٌشىش 

 .ٌزحذّيفؼطشٚا سحٍزً ثٛلٛفُٙ ئٌى جبٔجً فً أفشاح إٌجبح ٚأٚلبد ا

، ٌهِ ًِٕ وً اٌزحٍخ ٚاٌزمذٌش، فمذ وٕذِ ًٌ سٕذًا ٚششٌىَخَ أفىبسٍ فً وً ًهــبد ئٌى صٍٍِزً ٚألشة إٌبط اٌى سٚحً،

 .خطٛح، ٚجؼٍذِ أٌبَ اٌذساسخ أجًّ ٚألشة ئٌى اٌمٍت

ة، اٌزٌٓ ، سفمبء اٌذسيوبى، صٌذس، شيوبء وأهبًيإًىر الهذي، أًيضت، ٚل ٌفٛرًٕ أْ أشىش أطذلبئً الأػضاء: 

 .شبسوًٛٔ أفشاح اٌؼًّ ٚأؽؼًّٛٔ ِٓ سٚح الأخٛح دفءَ اٌزوشٌبد اٌجٍٍّخ
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ٌخ ٚئخلاص، ٚٚفشّد ٌٕب ، اٌزً احزؼٕذ ثحضٕب ثؼٕبالبروفيضىرة عزيي حىريتٚخجشارُٙ، ٚثبلأخض ِششفزً اٌفبػٍخ، 

، ػٍى طبقن الإدارة ببلوعهذِٓ رٛجٍٙبرٙب ِب وبْ ٌٗ ثبٌغ الأصش فً ئرّبَ ٘زا اٌؼًّ. وّب أرٛجٗ ثبٌشىش اٌجضًٌ ئٌى 

 .رؼبُٚٔٙ اٌذائُ ٚرٍسٍشُ٘ ٌىً ِب ٌٍضَ لإٔجبص ٘زا اٌّششٚع

 

 .جٍّؼًب ٌّب ٌحت ٌٚشػىئٌى وً ِٓ سبٔذًٔ أٚ شجؼًٕ، ألذَ شىشي اٌؼٍّك، سبئٍخً الله أْ ٌٛفمٕب 
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RESUME 

Ce mémoire étudie la planification autonome de trajectoires pour des flottes de 

drones dans des environnements complexes et dynamiques. Trois algorithmes clés — 

Génétique (GA), Optimisation par Essaim Particulaire (PSO) et A* — ont été implémentés 

et évalués via une simulation sous MATLAB intégrant une interface graphique interactive. 

Les résultats montrent la supériorité d'A* en termes d'efficacité énergétique et d'optimalité 

des trajectoires, tandis que PSO offre un bon équilibre entre robustesse et consommation 

énergétique. L’Algorithme Génétique (GA) affiche quant à lui une flexibilité notable, mais 

au prix d'une efficacité énergétique moindre et d'un temps de calcul plus élevé. Ce travail 

propose des pistes d'amélioration telles que l'intégration d'une replanification dynamique, 

une meilleure communication inter-drones et la réalisation de tests opérationnels en 

environnement réel contrôlé. 

Mots-clés : Planification autonome de trajectoires, Flottes de drones, 

Environnements complexes et dynamiques, Algorithme A*, Optimisation par Essaim 

Particulaire (PSO), Algorithme génétique (GA). 

ABSTRACT 

This thesis investigates autonomous trajectory planning for drone fleets operating in 

complex and dynamic environments. Three key algorithms — Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), and A* — were implemented and evaluated through 

simulations conducted in MATLAB, complemented by an interactive graphical interface. 

The results demonstrate the superiority of the A* algorithm in terms of energy efficiency 

and trajectory optimality. PSO offers a good balance between robustness and energy 

consumption, while GA exhibits notable flexibility but at the expense of reduced energy 

efficiency and higher computational time. This work suggests several avenues for 

improvement, including integrating dynamic replanning, enhancing inter-drone 

communication, and conducting operational testing in controlled real-world environments. 

Keywords : Autonomous trajectory planning, Drone fleets, Complex and dynamic 

environments, A* algorithm, Particle Swarm Optimization (PSO), Genetic Algorithm 

(GA). 

 



 
 

 الولخص

)اٌذسْٚ( اٌزً رؼًّ فً ثٍئبد  رزٕبٚي ٘زٖ الأؽشٚحخ رخطٍؾ اٌّسبساد اٌزارً لأسبؽًٍ اٌطبئشاد اٌّسٍشّح

 ، أِضٍٍخ سشة اٌجسٍّبد(GA) ِؼمذح ٚدٌٕبٍِىٍخ. رُ رٕفٍز ٚرمٍٍُ صلاس خٛاسصٍِبد سئٍسٍخ ً٘: اٌخٛاسصٍِخ اٌجٍٍٕخ

(PSO)ٚخٛاسصٍِخ ، A* ِجِٓ خلاي ػٍٍّبد ِحبوبح أجشٌذ ثبسزخذاَ ثشٔبMATLAB  ِؼضصح ثٛاجٙخ سسٍِٛخ ،

رٛاصًٔب  (PSO) ِٓ حٍش وفبءح اٌطبلخ ِٚضبٌٍخ اٌّسبساد. رمذَ خٛاسصٍِخ *A خٛاسصٍِخرفبػٍٍخ. رظٙش إٌزبئج رفٛق 

ثّشٚٔخ ٍِحٛظخ، ٌٚىٓ ػٍى حسبة أخفبع  (GA) جٍذًا ثٍٓ اٌّزبٔخ ٚاسزٙلان اٌطبلخ، ثٍّٕب رزٍّض اٌخٛاسصٍِخ اٌجٍٍٕخ

ًّ دِج ئػبدح اٌزخطٍؾ اٌذٌٕبٍِىً، اٌطبلخ ٚصٌبدح ٚلذ اٌحسبة. ٌمزشح ٘زا اٌؼًّ ػذح ِجبلد ٌٍزحسٍٓ، رش  وفبءح

 .ٚرؼضٌض الرظبي ثٍٓ اٌطبئشاد اٌّسٍشّح، ٚئجشاء اخزجبساد رشغٍٍٍخ فً ثٍئبد ٚالؼٍخ خبػؼخ ٌٍزحىُ

خٛاسصٍِخ  ،ثٍئبد ِؼمذح ٚدٌٕبٍِىٍخ ،أسبؽًٍ اٌطبئشاد اٌّسٍشّح ،رخطٍؾ اٌّسبساد اٌزارً الوفخبحيت : كلوبثال

A*، ( أِضٍٍخ سشة اٌجسٍّبدPSO)، ( اٌخٛاسصٍِخ اٌجٍٍٕخGA).
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INTRODUCTION GENERALE 

La gestion efficace et sécurisée d’une flotte de drones autonomes dans un 

environnement dynamique représente un enjeu stratégique majeur, notamment dans les 

domaines industriels, urbain et militaire. Avec l’expansion rapide des applications drones 

(livraison autonome, surveillance de zones critiques, missions de sauvetage, etc.), la 

complexité des missions ne cesse de croître, exigeant des solutions robustes, adaptatives et 

optimisées pour garantir à la fois la sécurité et l’efficacité opérationnelle. 

Ce travail de recherche s’intéresse au développement et à l’analyse comparative 

d’une solution automatisée de planification de trajectoires pour des drones évoluant dans 

un espace aérien contraint et dynamique. Il explore spécifiquement trois algorithmes 

majeurs : l’Algorithme Génétique (GA), l’Optimisation par Essaim Particulaire (PSO) et 

l’algorithme A*.  

Dans un contexte où l’utilisation de drones autonomes se généralise dans des 

environnements souvent encombrés (zones urbaines, espaces aériens réglementés) et 

soumis à des contraintes strictes (obstacles dynamiques, autonomie énergétique limitée, 

régulations aériennes), la planification de trajectoires devient un défi crucial. Comment 

concevoir un système capable de générer, en temps raisonnable, des trajectoires sûres, 

optimisées et adaptées à des contextes opérationnels variés ? Quels algorithmes offrent les 

meilleures performances en termes de : Sécurité (évitement d’obstacles 

statiques/dynamiques), efficacité (minimisation du temps de vol et de la consommation 

énergétique), scalabilité (gestion de flottes multi-drones) et respect des contraintes 

réglementaires (règles de circulation aérienne). 

Cette étude vise à répondre à ces questions en évaluant expérimentalement les trois 

algorithmes dans un environnement de simulation réaliste, afin d’identifier leurs forces et 

limites respectives. 

Ce mémoire est organisé en trois chapitres principaux : 

 Le Chapitre 1 présente un état de l’art sur les systèmes de gestion des drones, en 

détaillant l’évolution des drones, leurs classifications, les cadres réglementaires 
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internationaux et nationaux, ainsi que les technologies actuelles utilisées pour la 

gestion et la coordination de flottes de drones autonomes. 

 Le Chapitre 2 expose les fondements théoriques, l’analyse et la conception du 

système de gestion automatisée. Ce chapitre traite des différents algorithmes de 

planification de trajectoires, des critères d’évaluation retenus, de la modélisation de 

l’environnement de simulation, et des contraintes opérationnelles et réglementaires 

à respecter. 

 Le Chapitre 3 constitue la partie expérimentale du mémoire. Il décrit en détail le 

processus d’implémentation et de simulation des algorithmes de planification, 

l’architecture logicielle développée sous MATLAB, la méthodologie adoptée, ainsi 

que l’analyse comparative des résultats obtenus selon différents scénarios simulés. 

Enfin, une conclusion générale synthétise les principaux apports de cette étude, 

souligne les limites du système proposé et propose des perspectives d’amélioration et de 

validation future en environnement réel contrôlé.
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1.1 Introduction 

Ces dernières années, les drones ont pris une place de plus en plus importante dans 

notre quotidien, que ce soit pour la surveillance, la livraison, l’agriculture ou la 

cartographie. Autrefois réservés à un usage militaire, ils sont aujourd’hui devenus des 

outils incontournables dans de nombreux secteurs grâce aux avancées technologiques en 

intelligence artificielle, en robotique et en communication. 

Mais cette évolution rapide s’accompagne de nouveaux défis. Lorsqu’ils volent en groupe, 

notamment dans des zones aériennes contrôlées, il devient crucial d’assurer leur bonne 

coordination, d’éviter les collisions et de garantir la sécurité de leurs trajectoires. 

Ce chapitre a pour but de poser les bases de ce travail en présentant les grands 

principes liés aux drones : ce qu’ils sont, comment ils ont évolué, les différentes catégories 

existantes, les règles qui encadrent leur utilisation, et les technologies actuelles qui 

permettent de les gérer efficacement, en tenant aussi compte de l’impact écologique. Ces 

éléments nous permettront ensuite d’aller plus loin dans l’analyse et la conception d’un 

système automatisé et sécurisé de gestion de flotte. 

1.2  Généralités sur les drones 

1.2.1 Historique des drones 

Les drones ont vu le jour durant la Première Guerre mondiale, avec les premières 

tentatives d’avions sans pilote destinés à des missions militaires, comme cibles volantes ou 

engins destinés au largage d’explosifs. Dans les années 1930 et 1940, leur développement 

s’intensifie : les États-Unis et l’Allemagne conçoivent alors des véhicules radiocommandés 

et des bombes guidées. Cependant, les technologies de guidage restaient limitées et 

sensibles aux interférences. 

Le véritable essor des drones s’est produit à partir de la guerre de Corée et s’est 

accéléré durant la guerre du Viêtnam, où ils ont été utilisés pour la reconnaissance aérienne 

et la collecte d’informations sans exposer de pilotes humains. Les progrès en électronique, 

informatique et télécommunications ont permis d’améliorer leur autonomie et leur 

précision. 

Depuis les années 2000, les drones sont devenus des outils militaires stratégiques, 

notamment pour la surveillance et les frappes ciblées dans la lutte contre le terrorisme. 

Parallèlement, leur usage s’est largement étendu au secteur civil, avec des applications 

dans la cartographie, l’agriculture, la photographie aérienne et la surveillance 

environnementale [01]. 
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1.2.2 Frise chronologique de l'évolution des drones 

Le tableau ci-dessous présente les jalons majeurs de l’évolution des drones, depuis 

leurs premières utilisations militaires rudimentaires jusqu’aux applications avancées 

intégrant l’intelligence artificielle en milieu urbain. Cette frise met en lumière les grandes 

étapes technologiques ayant marqué le développement de ces systèmes aériens sans pilote. 

Tableau 1.1 : Frise chronologique illustrant l’évolution des drones de 1916 à 2024. 

Année Évènement clé Description 

1916 Aéronef sans pilote Sperry Premier drone militaire rudimentaire (WWI) 

1944 V-1 Allemand Première bombe volante autonome 

1973 Drones tactiques israéliens Usage extensif en surveillance militaire 

2000s Usage civil massif Photographie, surveillance, agriculture 

2015+ Intégration IA, SLAM Autonomie, livraison, gestion multi-drone 

2024 Coordination par IA dans les villes Tests à grande échelle (Wing, Zipline, etc.) 

 

1.2.3 Définition d’un drone 

Un drone (ou UAV - Unmanned Aerial Vehicle) est un véhicule sans pilote 

embarqué, contrôlé à distance ou autonome, servant d’outil mobile d’observation, de 

collecte et parfois d’action, dans des contextes civils ou militaires. 

Le terme « drone » vient de l’anglais (faux bourdon), en référence au bourdonnement 

des premiers modèles. 

1.3 Classification des drones 

Les drones, ou systèmes d’aéronefs sans pilote, connaissent une diversité croissante 

en termes de conception, de fonctionnement et d’utilisation. Pour mieux comprendre cette 

variété, il est pertinent de les classer selon plusieurs critères technologiques et fonctionnels. 

La figure ci-dessous présente une classification systématique des drones selon quatre 

grands axes : le mode de pilotage, la configuration, le type de voilure et l’application. 
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Figure 1.1 : Classification des drones. 

 

1.3.1 Classification selon leur mode de pilotage 

1.3.1.1 Drones télépilotés (RPAS) 

Les drones RPAS (Remotely Piloted Aircraft Systems) sont contrôlés à distance en 

temps réel par un pilote humain depuis une station au sol. Le système comprend le drone 

lui-même, une ou plusieurs stations de commande, ainsi que les liaisons de communication 

qui assurent la transmission des données et des instructions de vol. 

Ces drones sont conçus pour opérer dans l’espace aérien selon des règles de sécurité 

comparables à celles des aéronefs habités. Ils sont largement utilisés dans des missions de 

surveillance, de cartographie ou d’inspection technique, où une supervision humaine est 

requise [02]. 

La Figure 1.2 ci-dessous illustre un exemple de drone RPAS. 

 

 

Figure 1.2 : Drone RPAS. 
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1.3.1.2 Drones autonomes 

Les drones autonomes sont capables d’exécuter des missions sans intervention 

humaine directe, en s’appuyant sur des technologies avancées telles que l’intelligence 

artificielle, le machine Learning, les systèmes de navigation embarqués et une variété de 

capteurs. 

Leur niveau d’autonomie peut varier : certains modèles nécessitent une supervision 

occasionnelle, tandis que d’autres sont conçus pour effectuer des tâches complexes de 

manière totalement indépendante, notamment dans les domaines de la logistique, de la 

surveillance automatisée ou de la cartographie de terrains difficiles d’accès [03]. 

La Figure 1.3 ci-dessous illustre un exemple représentatif de drone autonome. 

 

 

Figure 1.3 : Drone autonome. 

 

1.3.2 Classification selon leur configuration 

1.3.2.1 Drones hybrides 

Un drone hybride est un UAV qui utilise au moins deux sources d'énergie différentes 

pour alimenter son système de propulsion en vol. Il existe différents types de drones 

hybrides, chacun ayant des configurations et des applications spécifiques [04]. 

La Figure 1.4 ci-dessous illustre un exemple représentatif de drone hybride. 

 

 

Figure 1.4 : Exemples des drones Hybrides. 
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Types de drones hybrides : 

 Drones hybrides air-sol. 

 Drones hybrides électrique-gaz. 

 Drones hybrides VTOL (Vertical Take-Off and Landing) à voilures fixes. 

Deux types de drones hybrides à voilure fixe peuvent être distingués :  

Convertplanes : 

 Tilt-Rotor : Rotors montés sur nacelles inclinables : verticaux au décollage, 

inclinés vers l’avant en vol. 

 Tilt-Wing : L’ensemble de l’aile (avec les rotors) bascule selon la phase de vol. 

 Rotor-Wing : Les rotors s’arrêtent en vol et se transforment en ailes fixes. 

 Dual-System : Rotors fixes pour le vol vertical + moteur dédié au vol horizontal. 

Tail-Sitter : 

 Ducted-Fan UAV : Rotor caréné (souvent coaxial) au centre du fuselage. 

 CSTT (Control Surface Transitioning) : transition assurée par des gouvernes 

aérodynamiques (ailes, dérives, etc.). 

 DTTT (Differential Thrust Transitioning) : Transition grâce à la variation de 

poussée de plusieurs moteurs. 

 Reconfigurable Wings : Ailes qui se déploient ou se rétractent selon la phase de 

vol (petites pour décollage, grandes pour vol horizontal). 

1.3.2.2 Multirotors 

 Un multirotor est un terme général utilisé pour décrire les UAV dotés de plusieurs 

rotors. Ils sont utilisés à des fins similaires aux quadricoptères, mais leurs rotors 

supplémentaires peuvent offrir une stabilité, une capacité de charge utile et une autonomie 

de vol accrues [05]. Les multirotors sont classés comme suit :  

 Quadricoptère 

C’est un drone équipé de quatre rotors, très répandu grâce à sa simplicité, sa bonne 

stabilité et sa facilité de pilotage. Il est utilisé aussi bien pour les loisirs que pour la photo, 

la surveillance ou l’agriculture.  

La Figure 1.5 ci-dessous illustre un exemple représentatif de drone Quadricoptère. 
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Figure 1.5 : Drone Quadricoptère. 

 

 Hexacoptère 

Ce drone à six rotors offre plus de stabilité et peut transporter des charges plus 

lourdes qu’un quadricoptère. Il est souvent utilisé dans des missions professionnelles 

comme la cartographie ou la pulvérisation agricole. 

La Figure 1.6 ci-dessous illustre un exemple représentatif de drone Hexacoptère. 

 

Figure 1.6 : Drone Hexacoptère. 

 

 Octocoptère 

Doté de huit rotors, ce drone est conçu pour porter des charges importantes. Il est 

idéal pour les tournages professionnels, les inspections techniques et les opérations de 

secours, car il est très stable et fiable. 

La Figure 1.7 ci-dessous illustre un exemple représentatif de drone Octocoptère. 

 

 

Figure 1.7 : Drone Octocoptère. 
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1.3.3 Classification selon leur voilure  

Les drones peuvent également être classés selon le type de voilure qu’ils utilisent, ce 

qui conditionne fortement leurs performances aérodynamiques, leur stabilité en vol ainsi 

que leurs cas d’usage [06]. On distingue principalement trois grandes catégories : les 

drones à voilures tournantes, à voilures fixes et à ailes battantes comme illustré dans le 

Tableau 1.2. 

Tableau 1.2 : Classification selon leur voilure. 

Drones à voilures 

tournantes 

Drones à voilures fixes Drones à ailes battantes 

Utilisent des rotors pour 

rester en vol stationnaire, 

offrant une grande stabilité 

idéale pour les missions 

d'inspection, bien qu'ils 

soient moins rapides en 

déplacement horizontal. 

Volent à l’aide d’ailes et 

d’un moteur, offrant 

vitesse, autonomie et faible 

consommation, ce qui les 

rend idéaux pour les 

missions de surveillance sur 

de longues distances. 

Imitent le vol des oiseaux 

ou insectes, offrant une 

grande agilité à basse 

vitesse et une capacité de 

manœuvre idéale dans des 

environnements confinés. 

 

 

Figure 1.8 : Classification des drones selon la voilure. 

 

1.3.4 Classification selon l'application 

Les drones ont de nombreuses utilisations différentes. Bien qu'ils puissent être 

utilisés pour le divertissement, leur nombre d'applications commerciales est en constante 

augmentation. Elles comprennent : 
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 Drones de loisir : Destinés au grand public, ils sont utilisés pour le divertissement, 

la prise de vue amateur ou les courses de drones. 

 Drones professionnels : Employés dans des secteurs variés tels que l'agriculture, la 

construction, la sécurité ou la livraison, ils sont conçus pour des tâches spécifiques 

et souvent équipés de capteurs avancés. 

 Drones militaires : Utilisés pour la reconnaissance, la surveillance, le 

renseignement ou les frappes ciblées, ces drones sont souvent dotés de technologies 

avancées et peuvent être armés. 

1.3.4.1 Exemples Récents d’Utilisation de Drones  

Cette classification trouve un écho direct dans l’actualité récente, à travers plusieurs 

projets et initiatives emblématiques : 

  Santé publique 

En 2023, l’entreprise Zipline a réalisé plus de 500000 livraisons médicales par drone 

au Rwanda et au Ghana. Ces opérations ont permis d’acheminer vaccins, poches de sang et 

traitements urgents vers des zones isolées, améliorant ainsi significativement la couverture 

sanitaire [07]. 

  Agriculture de précision 

En Égypte et au Maroc, des drones sont mobilisés pour la cartographie des sols, la 

détection du stress hydrique et l’optimisation de l’irrigation, dans le cadre de projets menés 

par l’Université Mohammed VI Polytechnique. Ces usages permettent de mieux gérer les 

ressources en eau et d’augmenter les rendements agricoles [08]. 

  Environnement 

En France, l’entreprise Delair utilise des drones pour la surveillance des feux de 

forêt et de la biodiversité. Ces appareils offrent une capacité de détection rapide et une 

visualisation à haute résolution, précieuses pour les services environnementaux et de 

protection civile [09]. 

  Logistique urbaine 

En 2024, Amazon a lancé ses premières livraisons commerciales par drones via le 

programme Prime Air, aux États-Unis et au Royaume-Uni. Cette innovation vise à 

désengorger les réseaux logistiques traditionnels tout en réduisant les délais de livraison 

[10]. 
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1.4 Règlementation et gestion du trafic aérien pour les drones 

1.4.1 Réglementation Internationale 

La réglementation des drones au niveau international repose sur l'action de plusieurs 

organismes majeurs, chacun jouant un rôle spécifique en matière de sécurité aérienne, de 

normalisation technique ou de cadre juridique. Ces régulations sont essentielles pour 

assurer une utilisation sûre, harmonisée et transfrontalière des systèmes de drones, 

notamment dans les domaines civils, commerciaux et institutionnels. 

Le tableau suivant présente une synthèse des principales organisations internationales 

impliquées dans la régulation des drones, ainsi que leurs contributions respectives : 

Tableau 1.3 : Tableau synthétique résumant les actions clés des trois principales 

organisations régulatrices des drones. 
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1.4.2 Réglementation des drones en Algérie 

L’intégration des drones dans l’espace aérien algérien constitue un enjeu 

technologique, économique et sécuritaire majeur. Face à la croissance rapide de 

l’utilisation des systèmes d’aéronefs sans pilote, l’Algérie a mis en place un cadre 

réglementaire spécifique, officialisé par le décret présidentiel n° 21-285 du 13 juillet 

2021 [15]. Ce cadre vise à garantir la sécurité des vols et des personnes, tout en favorisant 

le développement des usages civils, commerciaux et institutionnels des drones. 

1.4.2.1   Cadre juridique national 

Le décret présidentiel n° 21-285 constitue la base de la législation actuelle. Il définit 

les règles relatives à : 

 L’importation et l’acquisition de drones, 

 Leur homologation et enregistrement, 

 Leur utilisation et circulation sur le territoire algérien. 

Ce décret introduit une logique de coordination entre institutions pour encadrer toutes les 

étapes du cycle de vie d’un drone. 

1.4.2.2  Principales autorités concernées 

Plusieurs institutions collaborent dans l’élaboration et l’application de la 

réglementation : 

 Ministère de la Défense National : Supervise la réglementation générale à travers 

un centre national dédié. 

 Centre National des Systèmes d’Aéronefs sans Pilote à Bord : Créé sous l’égide 

du Ministère de la Défense, il est chargé de : 

 Délivrer les autorisations (importation, acquisition, usage), 

 Homologuer les drones et leurs opérateurs, 

 Contrôler et suivre les activités liées aux drones. 

 Ministère des Travaux Publics et des Transports : Intervient sur les questions 

relatives à l’intégration des drones dans la circulation aérienne civile. 

 Agence Nationale de l’Aviation Civile (ANAC) : 

En charge de : 

 La réglementation et supervision du trafic aérien civil, 

 L’élaboration de textes en collaboration avec le Centre National, 

 La délivrance d’autorisations relatives à l’espace aérien. 
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 Établissement National de la Navigation Aérienne (ENNA) : 

 Gère l’espace aérien national, 

 Coordonne les usages civils et militaires, notamment dans les zones à usage 

restreint. 

 Autorité de Régulation de la Poste et des Communications Électroniques 

(ARPCE) : 

 Attribue les bandes de fréquences dédiées aux drones (y compris la 5G), 

 Gère la régulation des interférences radioélectriques avec les communications 

aéronautiques. 

1.4.2.3  Procédures d’autorisation 

Toute acquisition ou utilisation d’un drone en Algérie suit un processus en plusieurs 

étapes : 

 Soumission de la demande au Centre National (Ministère de la Défense), 

 Consultation technique de l’ANAC, de l’ENNA et du Ministère des Transports, 

 Délivrance de l’autorisation par le Centre National, 

 Supervision et contrôle continu assurés par le Centre National, l’ANAC et 

l’ENNA. 

1.4.2.4  Sécurité nationale et drones militaires 

L’usage de drones militaires ou armés est strictement encadré. Ces appareils sont 

soumis à une surveillance renforcée, en particulier dans les zones sensibles ou frontalières. 

À titre d’exemple, un drone de reconnaissance armé a été abattu près de la frontière avec le 

Mali le 1er avril 2025, illustrant la vigilance des autorités dans la sécurisation de l’espace 

aérien [16]. 

1.5 L’espace aérien 

1.5.1 Subdivision de l’espace aérien 

L’espace aérien constitue une ressource stratégique dont la gestion repose sur des 

principes de sécurité, de coordination et de réglementation. Il est généralement divisé en 

différentes catégories en fonction du niveau de contrôle exercé sur les vols qui y circulent. 

Cette subdivision permet d’adapter les règles de navigation aux différents types d’usagers 

(aviation civile, militaire, drones, etc.). 

La Figure 1.9 ci-dessous illustre cette classification générale : 
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Figure 1.9 : Subdivision de l’espace aérien. 

 

1.5.1.1 L’espace aérien contrôlé 

L’espace aérien contrôlé est une zone strictement régulée par les services de la 

navigation aérienne, dans laquelle les aéronefs doivent se conformer à des règles précises 

afin de prévenir tout risque de collision ou d’interférence. Cet espace est placé sous la 

surveillance permanente de l’Air Traffic Control (ATC), qui gère le trafic en temps réel 

et coordonne les mouvements des aéronefs selon des plans de vol validés. 

Selon les classifications de L’OACI et de la FAA, cet espace est subdivisé en 

différentes classes (A à E) en fonction du niveau de contrôle exercé et du type de vol 

autorisé (VFR/IFR). 

La Figure 1.10 ci-dessous illustre schématiquement la structuration typique de l’espace 

aérien contrôlé selon les normes internationales. 

 

Figure 1.10 : L’espace aérien contrôlé. 

 

 CTA (Control Traffic Area) 

Zone de contrôle situé au-dessus d’une limite inférieure spécifiée, sans commencer 

au sol, destiné à organiser le trafic en altitude et la transition entre zones. 

Espace aérien 
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 TMA (Terminal Maneuvering Area) 

Zone de contrôle terminale autour d’un ou plusieurs grands aéroports, protégeant 

les trajectoires de départ et d’arrivée des avions. 

 AWY (AirWaY) 

Routes aériennes équipées d’aides à la navigation, reliant les TMA entre elles, avec 

une largeur standard de 10 NM (5 NM de chaque côté). 

 CTR (Control Zone) 

Zone de contrôle s’étendant du sol jusqu’à une altitude spécifiée, généralement 

autour d’un aérodrome, pour gérer les phases critiques de vol comme le décollage et 

l’atterrissage. 

 UTA (Upper Traffic Area) 

Zone supérieure de contrôle situé à haute altitude, généralement au-dessus du FL245 

jusqu’au FL460, destiné à la gestion du trafic en croisière. 

1.5.1.2 L’espace aérien non contrôlé 

Il comprend principalement les classes F et G, ou les aéronefs ne sont pas obligés de 

recevoir des services de contrôle du trafic aérien, mais ils peuvent les demander si 

nécessaire. Il est limité à l’Information et l’Alerte. 

 

Figure 1.11 : L’espace aérien non contrôlé. 

 

 FIR (Flight Information Region) 

Région d’information de vol délimité au sol jusqu’à une altitude moyenne (ex. 

FL195), où sont fournis les services d’information de vol et d’alerte. 

 UIR (Upper Information Region) 

Région Supérieure d’information de vol englobant plusieurs FIR, situé au-dessus de 

ceux-ci, assurant la continuité des services dans les hautes couches de l’atmosphère. 

1.5.1.3 Les zones à statut particulier 

 Zone Interdite (P : Prohibited Area) : Vol strictement interdit pour protéger des 

sites sensibles. 

Espace aérien non contrôlé 

Régions d’information 
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 Zone Réglementée (R : Restricted Area) : Vol soumis à conditions spécifiques, 

souvent temporaire. 

 Zone Dangereuse (D : Dangerous Area) : Activités potentiellement risquées, vol 

déconseillé pendant l’activité. 

1.6 Technologies utilisées pour la gestion de flotte de drones 

La gestion automatisée d’une flotte de drones repose sur une architecture modulaire, 

intégrant plusieurs composants fonctionnels interconnectés. Chaque drone embarque des 

capteurs lui permettant de percevoir son environnement. Cette perception alimente les 

modules de planification de trajectoire, de communication inter-drones, et de prise de 

décision. La commande est ensuite transmise aux actionneurs du drone pour exécuter la 

trajectoire prévue.  

La coordination entre drones peut être assurée de manière centralisée ou distribuée. 

L'intégration de ces modules dans un système cohérent est essentielle pour garantir la 

sécurité, l’efficacité énergétique et la robustesse de la mission collective [17]. 

La Figure 1.12 illustre cette architecture simplifiée, souvent utilisée dans les systèmes 

multi-drones intelligents : 

 

Figure 1.12 : L’architecture modulaire. 

 

1.7 Revue synthétique d’approches récentes pour la gestion intelligente de flottes de 

drones 

Au cours des dernières années, la recherche en gestion de flottes de drones a connu 

des avancées significatives, s’appuyant sur l’intelligence artificielle, la planification 

adaptative et les capteurs embarqués pour renforcer l’autonomie, la sécurité et l’efficacité 

opérationnelle. 
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Zhang et al. (2021) ont introduit une méthode de coordination reposant sur 

l’apprentissage par renforcement multi-agent (Multi-Agent Reinforcement Learning). Leur 

approche permet aux drones de prendre des décisions localement tout en assurant une 

cohérence globale des trajectoires dans des environnements dynamiques et incertains. Ce 

cadre distribué favorise l’adaptabilité en temps réel et réduit la dépendance à une 

supervision centralisée. 

De leur côté, Wang et al. (2022) ont proposé une stratégie centrée sur l’optimisation 

énergétique, en intégrant des trajectoires adaptatives tenant compte de la charge utile et des 

conditions environnementales. Leur modèle montre une amélioration notable de 

l’autonomie des drones pour des missions de longue durée, en optimisant la consommation 

d’énergie tout au long du vol. 

Enfin, Li et Sun (2023) ont développé une architecture hybride combinant la 

planification de trajectoire par l’algorithme A* avec des techniques d’évitement 

dynamique basées sur des capteurs LIDAR. Cette approche vise à sécuriser les vols en 

milieux urbains denses, en prenant en compte les obstacles imprévus ainsi que les 

fluctuations de la densité du trafic aérien. 

Ces travaux illustrent la diversité des approches actuelles et soulignent l’importance 

croissante des systèmes intelligents et adaptatifs dans la gestion collaborative des drones 

[17, 18, 20]. 

1.7.1 Flotte de drones 

Une flotte de drones (swarm en anglais) désigne un ensemble d’aéronefs autonomes 

ou semi-autonomes opérant de manière coordonnée. Chaque drone est considéré comme un 

agent simple, mais grâce à leurs interactions, ces agents peuvent produire des 

comportements collectifs complexes et adaptatifs [21].  

La coordination au sein d’une flotte peut suivre deux approches principales : 

 Centralisée : un drone leader ou une station de commande au sol prend les 

décisions stratégiques et les transmet aux autres drones, qui exécutent les ordres. 

 Décentralisée (ou Auto-organisée) : chaque drone prend ses décisions localement, 

en fonction des informations échangées avec ses voisins, favorisant la robustesse et 

l’adaptabilité du système. 

Le fonctionnement d’une flotte repose généralement sur un cycle en trois étapes : 

 Perception : chaque drone observe son environnement à l’aide de ses capteurs. 
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 Décision : il évalue la situation ou reçoit des instructions, selon le type de 

coordination. 

 Action : il exécute ses mouvements et partage les résultats avec les autres membres 

du groupe. 

1.7.2 Systèmes de navigation et autonomie 

Les drones modernes embarquent une diversité de technologies leur permettant 

d’évoluer de manière autonome, même dans des environnements complexes, sans 

intervention humaine directe : 

 Radar embarqué : facilite la localisation sans GPS et améliore la navigation dans 

des environnements obscurs ou encombrés. 

 GNSS (GPS, Galileo, GLONASS, etc.) : fournit un positionnement global précis, 

souvent renforcé par des corrections différentielles comme le GDGPS du Jet 

Propulsion Laboratory. 

 SLAM (Simultaneous Localization and Mapping) : permet au drone de se 

localiser et de cartographier son environnement en temps réel à partir de capteurs 

comme le LIDAR ou des caméras. 

 Intelligence Artificielle et Apprentissage Automatique : offrent des capacités 

d’adaptation dynamique, notamment pour l’évitement d’obstacles, l’optimisation 

de trajectoires ou la coordination d’essaims, via des techniques comme le 

reinforcement learning. 

1.7.3 Algorithmes d'optimisation de trajectoire 

Dans le cadre d’une gestion automatisée de drones, la planification de trajectoires 

sûres, efficaces et adaptatives est un enjeu central. Elle doit permettre aux drones 

d’atteindre leur destination tout en évitant les obstacles, en minimisant la consommation 

énergétique, et en respectant les contraintes spatiales, temporelles et de sécurité. 

Parmi les principaux algorithmes utilisés à cette fin, on peut distinguer : 

 Dijkstra et A* : Ces deux algorithmes de recherche de chemin sont largement 

utilisés pour trouver la trajectoire la plus courte entre deux points dans un 

environnement discret. L’algorithme A*, plus performant, utilise une fonction 

heuristique pour guider la recherche, réduisant ainsi le temps de calcul tout en 

conservant une solution optimale [22]. 
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 RRT (Rapidly-exploring Random Tree) : Cet algorithme est particulièrement 

adapté aux environnements à haute dimension et peu structurés. Il explore 

rapidement l’espace en générant un arbre aléatoire. Sa variante améliorée, RRT*, 

garantit la convergence vers une solution optimale, tandis que la version 

Multiplatform Spacetime RRT* prend en compte des contraintes spatio-

temporelles, ce qui est essentiel pour la sécurité dans des environnements 

dynamiques [23]. 

 Apprentissage par renforcement profond (Deep Reinforcement Learning) : 

Cette approche s'appuie sur des réseaux de neurones pour permettre au drone 

d'apprendre à optimiser sa trajectoire en interagissant avec l’environnement. Elle 

est particulièrement efficace dans des situations complexes ou imprévisibles, et 

dans des environnements partagés où les trajectoires doivent s’adapter en temps 

réel aux autres agents (ex. autres drones ou obstacles mobiles) [24]. 

1.7.4 Tableau comparatif des principaux algorithmes de trajectoire 

La planification de trajectoire constitue une composante clé dans les systèmes de 

navigation des drones autonomes. Plusieurs algorithmes ont été développés pour répondre 

aux besoins spécifiques liés à l’environnement de vol, à la complexité du calcul, et au 

niveau d’adaptabilité requis. Le tableau suivant synthétise les caractéristiques de trois 

méthodes représentatives : A*, RRT* et les approches fondées sur le DRL. 

Tableau 1.4 : Comparaison des algorithmes de planification pour drones autonomes. 

Algorithme Environnement Optimalité Temps de 

calcul 

Adaptabilité Type de 

données 

A*[25] Discret Oui Moyen Faible Carte 

connue 

RRT*[26] Continu Oui Élevé Moyen Peu 

structuré 

DRL [27] Dynamique Variable Long à 

entraîner 

Très élevée Données 

simulées 
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1.7.5 Stratégies d'évitement de collision 

L'évitement de collision est crucial pour assurer la sécurité des drones en vol. 

Plusieurs stratégies sont mises en œuvre :  

 Sense & Avoid : Utilisation de capteurs (radar, LIDAR, caméras) pour détecter et 

éviter les obstacles automatiquement, comme avec le système Casia. 

 Ant Colony Optimization (ACO) : Optimisation des trajectoires d'essaims de 

drones en s'inspirant du comportement des fourmis, réduisant le temps de 

formation. 

 Formation Flying Algorithms : Coordination de plusieurs drones via des lois de 

guidage virtuelles pour maintenir une formation stable pendant les missions 

complexes. 

1.8 Enjeux de sécurité dans les systèmes de drones automatises 

Dans le cadre d’un système de gestion automatisée de drones, la sécurité ne se limite 

pas à l’évitement des collisions ou à la fiabilité de la navigation. Elle englobe également la 

protection contre les cyberattaques, la résilience des communications, et la sécurité 

physique et logique du système. 

Les principaux enjeux de sécurité sont : 

 Sécurité des communications inter-drones et sol-drone : les données échangées 

(positions, instructions, alertes) doivent être protégées contre les écoutes, les 

falsifications ou les détournements. L’usage de protocoles chiffrés, 

d’authentification mutuelle et de systèmes de redondance est essentiel [29]. 

 Résilience face aux pannes et aux attaques : un drone ou une station centrale 

compromis ne doit pas mettre en danger toute la flotte. Les architectures 

décentralisées ou tolérantes aux fautes, comme celles employées dans les réseaux 

FANETs (Flying Ad-Hoc Networks), permettent une meilleure continuité de service 

[28]. 

 Détection et réponse aux comportements anormaux : les algorithmes 

d’apprentissage embarqués peuvent intégrer des mécanismes de détection 

d’intrusion, en analysant par exemple les écarts de trajectoire ou les variations 

inhabituelles de signal [29]. 

 Protection réglementaire : les drones évoluant dans un espace aérien contrôlé 

doivent respecter des règles strictes (ex. Remote ID, identification électronique), 

afin d’éviter toute menace pour les aéronefs habités ou les infrastructures au sol. 
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1.9 Aspects écologiques et de durabilité des drones 

L’intégration des drones dans les activités civiles et industrielles soulève des enjeux 

environnementaux majeurs. Si ces appareils représentent une alternative prometteuse aux 

véhicules thermiques dans certaines applications, leur généralisation soulève également des 

défis liés à leur cycle de vie, leur consommation énergétique et leur impact sur les 

écosystèmes [30, 31, 32]. 

Le Tableau 1.5 ci-dessous résume les principaux avantages, défis et solutions durables 

associés à l’usage des drones. 

Tableau 1.5 : Les aspects écologiques et de durabilité des drones. 

Avantages Défis Solutions durables 

- Réduction des émissions : 

Jusqu’à -84 % de CO₂  vs 

véhicules thermiques, idéal 

pour la livraison urbaine. 

- Surveillance 

environnementale : 

Protection des écosystèmes, 

détection de pollution et 

gestion de crises. 

- Énergie propre : 

Motorisation électrique et 

optimisation des trajectoires 

par IA. 

- Batteries polluantes : 

Extraction minière et 

recyclage complexe des 

lithium-ion. 

- Nuisances sonores : Stress 

animalier et 

réglementations strictes en 

zones urbaines. 

- Cycle de vie : Impact des 

infrastructures logistiques 

et matériaux non 

recyclables. 

- Innovations 

technologiques : Batteries 

solaires, bioplastiques et 

algorithmes éco-optimisés. 

- Cadre réglementaire : 

Zones de vol protégées et 

certifications écologiques. 

- Applications vertes : 

Agriculture de précision 

(réduction des pesticides) et 

reforestation assistée. 

 

1.10 Conclusion 

Ce chapitre a permis d'établir les fondements essentiels à la compréhension des 

systèmes de drones. Nous avons retracé leur évolution historique, analysé leurs différentes 

classifications et examiné en détail les cadres réglementaires applicables, avec un accent 

particulier sur le contexte algérien. Par ailleurs, nous avons étudié les principes clés de 

gestion de flotte, incluant les architectures fonctionnelles, les technologies embarquées 

ainsi que les considérations environnementales associées. 



CHAPITRE 1 : État de l'art sur les systèmes de gestion des drones 

22 
 

Ces éléments théoriques et pratiques forment une base solide pour aborder la 

problématique centrale de notre recherche. Dans le chapitre suivant, nous nous appuierons 

sur ces acquis pour explorer les mécanismes algorithmiques avancés permettant d'assurer 

une coordination optimale des drones dans des environnements complexes. 
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2.1 Introduction 

La navigation autonome de flottes de drones s’impose dans des domaines variés 

comme la surveillance, la logistique ou la cartographie. Ces systèmes doivent gérer en 

temps réel les trajectoires de plusieurs drones dans un environnement 3D complexe, tout en 

respectant des contraintes de sécurité, de performance énergétique et de réglementation. 

Ce chapitre présente les fondements théoriques du système proposé. Il détaille les 

algorithmes de planification retenus (GA, PSO, A*), les critères d’évaluation utilisés, ainsi 

que les bases de modélisation de l’environnement, des communications inter-drones et des 

contraintes opérationnelles. Ces éléments préparent la simulation et l’analyse des 

performances du système étudié. 

2.2 Fondements théoriques et état de l'art 

2.2.1 Les Algorithmes d'Optimisation pour la Planification de Trajectoire 

La planification de trajectoire est une tâche centrale dans les systèmes de navigation 

autonome pour drones. Elle consiste à déterminer un chemin optimal entre un point de 

départ et un objectif tout en respectant diverses contraintes : obstacles, consommation 

énergétique, temps, etc. Trois approches sont étudiées dans ce projet : l’Algorithme 

Génétique (GA), l’Optimisation par Essaim Particulaire (PSO) et l’Algorithme A*. 

2.2.1.1 Pourquoi les Métaheuristiques ? 

Contrairement aux méthodes exactes qui deviennent inefficaces en environnement 

dynamique et fortement dimensionné, les métaheuristiques permettent une recherche 

robuste et adaptative. Elles sont capables de gérer des espaces de recherche non convexes, 

bruités ou partiellement connus. Les algorithmes GA et PSO sont parmi les plus utilisés, 

notamment dans les contextes de planification pour systèmes multi-agents. 

2.2.1.2 Algorithme Génétique (GA) 

L’algorithme génétique est une méthode évolutionniste inspirée de la sélection 

naturelle. Chaque solution est représentée comme un individu (vecteur de coordonnées). 

Une population évolue selon : 

 Sélection : les individus les plus adaptés sont conservés. 
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 Croisement : deux parents donnent naissance à de nouveaux individus. 

 Mutation : des variations aléatoires permettent l’exploration. 

La fonction de fitness utilisée dans notre simulation est : 

 ( )   ‖   ‖   ∑     (     (‖    ‖    ))
    
         (2.1) 

Où : 

  ( ) : la fonction de fitness. 

   : position candidate. 

   : position objective. 

    : position du i-ème obstacle. 

    : son rayon. 

    : la distance de sécurité. 

Cette formulation pénalise les chemins proches des obstacles tout en minimisant la 

distance au but [33]. 

2.2.1.3 Optimisation par Essaim Particulaire (PSO) 

L’algorithme PSO (Particle Swarm Optimization) simule un ensemble de particules 

interagissant collectivement pour trouver une solution optimale. 

Chaque particule représente ici une position candidate du drone [34]. À chaque itération, 

les particules mettent à jour leur position et leur vitesse selon  

  (   )     ( )      (  
       )      ( 

       )      (2.2) 

  (   )    ( )    (   )          (2.3) 

Où : 

    : Position de la particule  . 

    : Vitesse de la particule  . 

   : facteur d’inertie. 

       : les coefficients d’accélération. 

         [   ] : des valeurs aléatoires. 

   
     : la meilleure position trouvée par la particule. 
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       : la meilleure position globale de l’essaim. 

 Dans la majorité des implémentations et dans la littérature sur le PSO, Δt est 

implicitement considéré égal à 1, car l’algorithme est itératif (une itération = un 

pas de temps). 

 Fonction de coût (PSO) 

Elle prend en compte la distance minimale aux autres drones et la proximité aux 

obstacles (via une pénalité accumulée). 

           (                )  ∑     (             (‖    ‖    ))   (2.4) 

Où : 

           : Distance minimale de sécurité à respecter. 

      : Distance minimale entre le drone et d’autres drones. 

   : Position du drone considéré. 

    : Position de l’obstacle  . 

    : Rayon de l’obstacle  . 

 ‖    ‖ : Distance entre le drone et l’obstacle  . 

2.2.1.4 Algorithme A* 

L’algorithme A* est une méthode de recherche informée classique dans les 

graphes, introduite par Hart, Nilsson et Raphael [35]. Il repose sur la fonction 

d’évaluation : 

 ( )   ( )   ( )      (2.5) 

Où : 

  ( ) : le coût réel depuis le point de départ jusqu’au nœud actuel  . 

  ( )  : une estimation heuristique du coût jusqu’à l’objectif (souvent une distance 

Euclidienne). 

A* explore les nœuds en priorité selon la fonction d’évaluation, garantissant l’optimalité si 

l’estimation heuristique  ( ) est admissible. 

2.2.1.5 Comparaison des Algorithmes 

La diversité des algorithmes de planification de trajectoire repose sur des principes 

variés, allant de la recherche de chemin déterministe à l’apprentissage adaptatif en 
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environnement dynamique. Afin d’évaluer leurs performances respectives dans le cadre 

d’une gestion de flotte de drones, une comparaison synthétique s’impose. 

Le Tableau 2.1 ci-dessous met en perspective plusieurs critères d’analyse clés tels que 

l’environnement cible, l’optimalité du résultat, le temps de calcul, l’adaptabilité face aux 

perturbations, ainsi que le type de données nécessaires à leur fonctionnement. 

Tableau 2.1 : Tableau comparatif des algorithmes. 

Critère GA PSO A* 

Nature Métaheuristique 

évolutive 

Métaheuristique 

d’optimisation 

Recherche informée 

Principe Croisement & 

mutation 

Coopération & 

inertie 

Heuristique coût + 

estimation 

Environnement 

dynamique 

Bonne adaptation 

(fitness) 

Moyenne (stagnation 

possible) 

Faible 

(replanification 

lourde) 

Convergence Lente mais stable Rapide mais moins 

stable 

Instantanée (locale) 

Complexité de 

calcul 

Moyenne Faible Élevée (3D 

dynamique) 

Facilité 

d’implémentation 

Moyenne Simple Complexe sans grille 

Multi-agents Bonne coopération 

possible 

Bonne propagation Replanification 

indépendante 

Énergie (résultat 

simulation) 

Moyenne à faible Variable Élevée dans 

obstacles 

Stabilité trajectoire Moyenne à bonne Faible (oscillations) Bonne mais rigide 
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2.2.1.6 Méthodes Hybrides de Planification 

Les méthodes hybrides de planification combinent plusieurs algorithmes pour 

bénéficier de leurs forces respectives. Par exemple, le couplage GA-PSO tire profit à la 

fois de la capacité exploratoire de l’algorithme génétique et de la rapidité de convergence 

du PSO. Cela permet de mieux s’adapter à des environnements dynamiques tout en 

réduisant le risque de stagnation dans des minima locaux. Une autre approche courante est 

A-RRT**, qui utilise A* pour guider l’arbre de recherche RRT* vers les régions 

prometteuses de l’espace. Ces solutions hybrides sont particulièrement adaptées aux 

environnements partiellement connus, où la rapidité de calcul et la robustesse sont toutes 

deux cruciales [36]. 

D'autres approches plus récentes, notamment basées sur l’apprentissage par 

renforcement profond (DRL), commencent également à être explorées dans la planification 

multi-drone. 

2.2.1.7 Justification du Choix des Algorithmes Utilisés 

Le choix des algorithmes A*, GA et PSO repose sur une analyse comparative 

rigoureuse, alignée sur les caractéristiques propres à l’environnement simulé et aux 

exigences opérationnelles d’un système multi-drones. 

 L’algorithme A* a été retenu comme référence déterministe pour sa capacité à 

générer des trajectoires optimales dans des environnements bien cartographiés et 

relativement statiques. Grâce à l’exploration de graphes pondérés à partir d’une 

grille d’occupation, il offre une convergence garantie vers la solution optimale, ce 

qui en fait un standard dans les systèmes robotisés à base heuristique [35]. 

 L’algorithme GA, quant à lui, se distingue par sa robustesse dans les 

environnements complexes et dynamiques. Son aptitude à optimiser plusieurs 

objectifs simultanément et à éviter les minima locaux le rend pertinent pour la 

navigation 3D distribuée. Son efficacité a été démontrée dans des travaux 

fondateurs de Holland [33] et plus récemment par Bouabdallah et al [37]. 

 L’algorithme PSO a été choisi pour sa capacité de convergence rapide dans des 

environnements continus. En favorisant un échange rapide d’informations entre 

particules, il se révèle particulièrement adapté à des flottes de drones collaborant 
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localement. Les recherches de Kennedy et Eberhart [2], ainsi que les validations 

expérimentales de Tang et al. [36], confirment son intérêt dans des scénarios 

hybrides temps réel. 

En combinant ces trois approches, l’étude couvre un large spectre de stratégies de 

navigation, allant de méthodes informées basées sur des heuristiques (A*) à des approches 

évolutionnaires (GA) et collaboratives (PSO). Ce triptyque permet une évaluation 

comparative approfondie selon des critères tels que la distance parcourue, la consommation 

énergétique, le taux de collisions évitées et la stabilité globale du système [38, 36]. 

Toutefois, malgré leurs atouts respectifs, ces algorithmes présentent certaines limites 

structurelles dans des contextes fortement dynamiques ou à topologie changeante. Ces 

aspects feront l’objet d’une analyse critique dans la section suivante, afin de mieux cerner 

les perspectives d’optimisation futures. 

2.2.1.8 Limites des Approches Classiques de Planification 

Malgré leurs performances éprouvées dans de nombreux contextes, les algorithmes de 

planification utilisés dans cette étude présentent des limites structurelles qui méritent une 

analyse approfondie, en particulier lorsqu’ils sont appliqués à des scénarios réels marqués 

par la dynamique, l’incertitude ou la complexité topologique. 

a. Limites de l’algorithme A* 

L’algorithme A* offre une optimalité remarquable dans des environnements bien 

cartographiés, mais il souffre de plusieurs inconvénients majeurs : 

 Sensibilité à la résolution de la grille : une discrétisation fine augmente 

drastiquement les coûts de calcul (mémoire, temps), tandis qu’une grille grossière 

engendre des trajectoires sous-optimales. 

 Faible adaptabilité aux environnements continus : dans un espace 3D non 

discrétisé, A* nécessite des interpolations complexes, ce qui nuit à son efficacité en 

temps réel. 

 Manque de réactivité : en l’absence de mécanisme de replanification intégré, A* 

est peu efficace face aux obstacles dynamiques ou imprévus [35, 39]. 
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b. Limites de l’algorithme GA 

Bien que robuste et flexible, GA présente les limitations suivantes : 

 Temps de convergence élevé : il nécessite un grand nombre de générations pour 

atteindre une solution satisfaisante, ce qui peut devenir prohibitif sur des systèmes 

embarqués. 

 Dépendance aux paramètres : la performance dépend fortement du réglage des 

paramètres (taille de population, taux de mutation), souvent ajustés de manière 

empirique. [33, 37] 

c. Limites de l’algorithme PSO 

L’approche PSO, reconnue pour sa rapidité, montre également des faiblesses 

notables : 

 Risque de stagnation : l’algorithme peut converger prématurément vers des 

solutions locales sous-optimales. 

 Manque de diversité : une fois la population cristallisée, l’exploration devient 

limitée, réduisant la capacité à s’adapter à des environnements changeants.[34, 36] 

d. Contraintes des méthodes hybrides 

Les approches combinées telles que GA-PSO ou A-RRT** visent à tirer profit des 

forces respectives des algorithmes. Toutefois : 

 Complexité d’intégration : leur implémentation nécessite une synchronisation fine 

entre modules hétérogènes. 

 Coûts computationnels élevés : l’accumulation de calculs issus de chaque 

composant peut devenir contraignante pour les applications temps réel [36]. 

e. Limites des approches par apprentissage profond (DRL) 

Les algorithmes fondés sur le Deep Reinforcement Learning (DRL), bien que 

prometteurs, posent encore plusieurs défis : 

 Besoins en données d’apprentissage massifs : leur efficacité dépend de jeux de 

données volumineux et variés. 
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 Instabilité et sensibilité : leur comportement peut devenir imprévisible en présence 

de bruit, d’attaques ou de situations inédites. 

 Difficulté d’interprétation : ces modèles sont souvent considérés comme des 

boîtes noires, ce qui complique leur validation dans des contextes critiques [40]. 

f. Perspectives et justification du choix 

Ces limitations expliquent la démarche comparative adoptée dans cette étude. Plutôt 

que de privilégier une méthode unique, nous avons cherché à identifier les scénarios 

favorables et critiques pour chacun des algorithmes étudiés, en mettant en évidence les 

compromis entre optimalité, robustesse, rapidité de convergence et adaptabilité. 

Enfin, malgré leurs faiblesses, ces approches restent référentes dans la littérature 

scientifique sur la navigation multi-drones [36, 37], Elles représentent un compromis 

réaliste entre performance, simplicité d’implémentation et coût computationnel, ce qui les 

rend adaptées à une simulation contrôlée dans une première phase d’évaluation. Ces 

constats ouvrent la voie, dans les chapitres suivants, à l’exploration de stratégies hybrides 

adaptatives ou d’algorithmes émergents plus résilients. 

2.2.2 Modélisation de l'Environnement et des Obstacles 

Pour simuler de manière réaliste la navigation d’une flotte de drones, il est 

nécessaire de modéliser un environnement tridimensionnel prenant en compte à la fois les 

obstacles statiques et dynamiques. La configuration choisie repose sur un espace 3D borné, 

avec une altitude minimale autorisée, une vitesse maximale et une distance de sécurité. 

2.2.2.1 Obstacles Statique 

Les obstacles statiques sont des entités fixes dans l’espace qui représentent par 

exemple des bâtiments ou des pylônes. Ils sont modélisés par des sphères définies par une 

position fixe et un rayon. Lors de la planification, toute position candidate telle que : 

‖    ‖              (2.6) 

Où :  

   : position candidate dans l’espace (point à évaluer lors de la planification). 
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    : position fixe du centre de l’obstacle statique i (coordonnées de la sphère). 

    : rayon de l’obstacle statique   (taille de la sphère). 

    : distance de sécurité minimale à respecter autour de l’obstacle pour éviter toute 

collision potentielle. 

Est considérée comme une collision potentielle et pénalisée dans la fonction de coût. Cette 

modélisation simplifiée permet un calcul rapide des distances et une intégration directe 

dans les algorithmes d’optimisation comme GA, PSO [41]. 

2.2.2.2 Obstacles Dynamiques 

Les obstacles dynamiques simulent des entités mobiles telles que d’autres drones, 

des oiseaux ou des objets en mouvement. Chaque obstacle est caractérisé par sa position et 

vitesse. 

La mise à jour des positions se fait selon :  

  (   )    ( )            (2.7) 

Où : 

   ( ) : une position à l’instant t. 

    : une vitesse constante. 

    : le pas de temps. 

Avec gestion des rebonds aux frontières de l’espace simulé. Lorsqu’un obstacle 

atteint un bord, sa vitesse est inversée dans la dimension concernée. Cette approche permet 

de simuler un environnement semi-fermé où les obstacles se déplacent librement tout en 

restant contenus. Cette modélisation s’inspire des méthodes de navigation multi-agent en 

temps réel, notamment la méthode des Reciprocal Velocity Obstacles (RVO) proposée par 

Van Den Berg, J., Lin, M., et Manocha,D [42]. 

2.2.2.3 Environnement 3D et Contraintes physiques 

Dans le cadre de cette étude, l’environnement de simulation est modélisé comme un 

espace tridimensionnel discrétisé, délimité selon les axes X, Y et Z. Ce volume représente 
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un espace aérien contrôlé dans lequel évolue une flotte de drones autonomes. L’objectif est 

d’y simuler un comportement réaliste en intégrant des contraintes physiques essentielles à 

la sécurité et à la faisabilité opérationnelle. 

a. Contraintes appliquées 

Les principales contraintes physiques imposées aux drones sont les suivantes : 

 Vitesse maximale : 10 m/s. 

 Altitude minimale : 5 m. 

 Distance minimale de sécurité entre entités : 15 m. 

Ces contraintes sont appliquées à deux niveaux du système : 

 Dans les algorithmes de planification (GA et PSO) : Elles sont traduites sous 

forme de bornes de recherche dans l’espace de solutions admissibles, empêchant la 

génération de trajectoires non conformes. 

 Dans la simulation dynamique : Des fonctions de vérification de collision sont 

intégrées pour s’assurer, à chaque étape de mise à jour, que les conditions de 

sécurité sont respectées (notamment la distance inter-drones et l’altitude minimale). 

b. Contrôle de l’altitude minimale 

L’altitude minimale est systématiquement respectée grâce à une fonction de 

correction qui vérifie la validité de chaque nouvelle position générée. Cette contrainte est 

formalisée par l’équation suivante : 

 (   )      (       ( )    )      (2.8) 

  ( ) : altitude à l’instant t. 

  (   ) : altitude à l’instant suivant (t+1). 

      : altitude minimale autorisée par la réglementation ou l’environnement. 

    : variation d’altitude (peut être positive ou négative selon la commande). 

Ainsi, tout dépassement à la baisse de cette altitude est automatiquement corrigé, 

garantissant que les drones n’évoluent jamais sous le seuil de sécurité fixé. 
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Cette modélisation garantit des trajectoires cohérentes avec les exigences d’un espace 

aérien contrôlé. Cette approche s’inspire des configurations présentées dans Stefansson, 

2018 [43] et Elshaar et al., 2024 [44]. 

2.2.3 Métriques d’Évaluation et Indicateurs de performance 

L’évaluation des performances d’un système de navigation autonome multi-drones 

repose sur un ensemble de métriques quantitatives. Ces indicateurs doivent permettre de 

juger de l’efficacité, de la sécurité, de la consommation énergétique et de la robustesse du 

système, en conditions simulées ou réelles. Les métriques utilisées dans cette étude sont 

issues à la fois de la littérature scientifique [45, 46], et d’observations empiriques issues de 

la simulation développée. 

2.2.3.1 Distance totale parcourue 

La distance parcourue constitue l’un des critères fondamentaux d’évaluation. Elle 

reflète la compacité et l’efficacité de la trajectoire générée par un algorithme donné. 

Elle est calculée comme la somme des distances euclidiennes entre chaque point successif  

   ∑ ‖       ‖
   
         (2.9) 

Où : 

    : Position à l’instant  . 

      : Position à l’instant    . 

   : Distance totale parcourue. 

Cette métrique est particulièrement utile pour comparer la performance spatiale des 

algorithmes de planification : une trajectoire plus courte est généralement préférable, à 

condition de respecter les contraintes environnementales. 

2.2.3.2 Énergie Consommée 

L’énergie consommée est une mesure indirecte de l’efficacité énergétique du 

système de navigation. Elle est liée non seulement à la distance parcourue, mais également 

à la vitesse moyenne et à la masse du drone. 
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L’énergie est estimée à partir d’un modèle simple, inspiré des travaux de 

Bouabdallah (2007) [37], selon l’équation suivante : 

               (2.10) 

Où: 

   : l’énergie consommée. 

   : distance totale parcourue. 

   : vitesse moyenne. 

   et  , des coefficients pondérant l’impact de la distance et de la vitesse. 

Dans cette étude, conformément aux recommandations de la littérature, les valeurs 

suivantes sont utilisées :       et        

                    (2.11) 

Cette formulation permet de comparer l’impact énergétique de chaque algorithme et 

d’évaluer leur pertinence dans des scénarios où l’autonomie énergétique est critique. 

2.2.3.3 Nombre de Steps (Étapes de Planification) 

Le nombre de steps (ou étapes de planification) correspond au nombre total de points 

intermédiaires générés dans la trajectoire d’un drone, depuis son point de départ jusqu’à 

son objectif. Cette métrique reflète à la fois : 

 La granularité de la planification, 

 La réactivité du système face aux obstacles ou aux changements de 

l’environnement, 

 La charge de calcul potentiellement induite lors de simulations ou d’exécutions en 

temps réel. 

Un nombre élevé de steps peut signaler deux cas distincts : 

 Une trajectoire fine et fluide, avec des ajustements progressifs, indiquant un haut 

niveau de précision, 
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 Ou, au contraire, une série de micro-corrections causées par des obstacles 

fréquents ou des recalculs excessifs, pouvant traduire une instabilité algorithmique. 

En revanche, un nombre trop faible de steps peut indiquer : 

 Une planification trop grossière, 

 Ou une simplification excessive qui ignore les détails de l’environnement, 

augmentant ainsi le risque de collision. 

Dans le cadre de cette étude, le nombre de steps est enregistré pour chaque trajectoire afin 

de : 

 Comparer la densité de planification des algorithmes (A*, GA, PSO), 

 Identifier les cas de surajustement ou de sous-réactivité, 

 Évaluer l’adéquation entre le niveau de détail de la planification et les contraintes 

de l’environnement simulé. 

 

2.2.3.4 Nombre de Collisions Évitée / Réévaluations 

Cette métrique évalue la capacité du système à anticiper et à corriger les trajectoires 

non sûres en présence d’obstacles dynamiques. Chaque fois qu’une position planifiée 

devient invalide, une replanification est déclenchée. Le nombre de réévaluations reflète 

donc la réactivité du système face aux changements et la robustesse des algorithmes 

utilisés. 

Un nombre élevé peut traduire une bonne adaptabilité, mais aussi une instabilité du 

plan initial ou un environnement trop imprévisible. Cette métrique est essentielle pour 

mesurer l'efficacité en contexte multi-drones ou dans des environnements en évolution 

constante. 

2.2.3.5 Efficacité Globale (Rapport Distance / Énergie) 

Cette métrique exprime l’efficacité énergétique d’un algorithme, calculée par le 

rapport entre la distance parcourue et l’énergie consommée : 
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      (2.12) 

   : efficacité énergétique (sans unité). 

   : distance totale parcourue (en mètres, km, etc.). 

   : énergie consommée pour ce déplacement (en joules, Wh, etc.). 

Un ratio élevé indique un déplacement optimisé en énergie, ce qui est crucial dans les 

missions longues ou à autonomie limitée. Cette mesure permet donc de comparer la 

performance des trajectoires générées du point de vue consommation énergétique [46]. 

2.2.3.6 Discussion sur le Choix des Métriques 

Les métriques retenues s’inspirent des standards en robotique mobile et recherche 

opérationnelle [45][46]. Elles allient clarté visuelle, pertinence pratique (distance, énergie) 

et évaluation de la résilience (replanifications). Toutefois, certaines limites subsistent : 

 L’énergie est estimée de manière simplifiée. 

 Le nombre de steps dépend de la fréquence d’échantillonnage choisie. 

 Les obstacles dynamiques simulés ne disposent pas de logique prédictive propre. 

Ces limites n’altèrent pas leur utilité, mais doivent être prises en compte dans 

l’interprétation des résultats. 

2.3 Analyse des besoins pour un système de gestion automatisée 

La mise en œuvre d’un système de gestion automatisée de flotte de drones requiert 

une analyse rigoureuse des besoins opérationnels, techniques et réglementaires. Cette 

analyse s’appuie sur les standards en robotique autonome, les recommandations en 

systèmes multi-agents et les contraintes spécifiques au domaine aérien contrôlé [47, 48]. 

Deux grandes catégories de besoins se distinguent : 

2.3.1 Exigences fonctionnelles 

Le système doit offrir les fonctionnalités suivantes : 
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 Navigation autonome : chaque drone doit planifier et suivre sa trajectoire de 

manière indépendante, tout en respectant les contraintes physiques (vitesse 

maximale, altitude minimale) [47]. 

 Évitement dynamique d’obstacles : le système doit détecter en temps réel les 

obstacles statiques et mobiles, et adapter les trajectoires pour garantir l'absence de 

collision. 

 Replanification adaptative : en cas d’imprévu (panne, interdiction aérienne, 

changement d’objectif), une nouvelle trajectoire doit être générée automatiquement. 

 Coordination multi-drones : les drones doivent partager leurs états, positions et 

intentions pour assurer une synchronisation efficace et éviter les conflits intra-flotte. 

 Supervision centralisée et reporting : une interface maître (au sol ou embarquée) 

doit permettre de surveiller les missions, de transmettre des commandes, ou 

d’interrompre les opérations si nécessaire. 

2.3.2 Exigences non fonctionnelles 

Les propriétés attendues du système au-delà de ses fonctions premières sont les 

suivantes : 

 Fiabilité : le système doit tolérer les défaillances partielles (drone hors service, 

perte de signal) sans compromettre l’ensemble de la mission. 

 Réactivité : les décisions (replanification, ajustement de trajectoire) doivent être 

prises avec une latence minimale, notamment dans des environnements dynamiques. 

 Évolutivité : le système doit intégrer de nouveaux drones ou modules sans 

nécessiter une réarchitecture complète. 

 Optimisation énergétique : la consommation d’énergie doit être minimisée à 

travers une planification efficace, pour maximiser l’autonomie opérationnelle [48]. 

 Conformité réglementaire : le système doit respecter les réglementations locales 

et internationales, notamment les normes d’altitude, de zones interdites et de 

fréquences radio autorisées. 

Les travaux de Yanmaz et al. [47] insistent notamment sur l’importance des 

communications robustes entre agents, tandis que ceux de Zhou et al. [48] montrent que la 

coordination distribuée permet une meilleure adaptabilité face aux aléas. 
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2.4 Contraintes techniques et règlementaires 

Le déploiement d’un système de gestion automatisée pour drones en espace aérien 

contrôlé ne peut se faire sans prendre en compte un ensemble de contraintes techniques et 

réglementaires. Ces contraintes conditionnent la faisabilité, la fiabilité et la légalité du 

système. Elles sont décrites ci-dessous à partir des cadres réglementaires actuels et des 

limites inhérentes aux technologies embarquées [49, 50]. 

2.4.1 Contraintes Techniques 

Les contraintes techniques sont liées aux limitations physiques, computationnelles et 

communicationnelles des drones : 

 Autonomie énergétique limitée : les drones sont fortement contraints par la 

capacité de leur batterie, ce qui limite le temps de vol et impose une planification 

énergétique optimisée [50]. 

 Puissance de calcul embarquée : les calculs de trajectoires, de détection 

d’obstacles et de replanification doivent être réalisés en temps réel avec des 

ressources limitées (processeur embarqué). 

 Limites de communication : les pertes de signal ou interférences peuvent 

compromettre la coordination ou le retour d’information, notamment en 

environnement urbain dense [49]. 

 Gestion de l’altitude et de la vitesse : les systèmes doivent contrôler 

rigoureusement ces paramètres pour respecter les contraintes de sécurité et de 

performance définies.  

 

2.4.2 Contraintes Réglementaires 

Les contraintes réglementaires imposent des règles strictes de navigation, de sécurité 

et de respect des zones sensibles. Elles varient selon les pays, mais des référentiels 

internationaux s’appliquent également. 

 Zones d’exclusion : certaines zones (aéroports, sites militaires, zones urbaines 

denses) sont interdites ou fortement réglementées. 
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 Réglementation en Algérie : L’Algérie réglemente les drones via le décret 

présidentiel n°21-285 (2021), impliquant plusieurs autorités : Ministère de la 

Défense (Centre National dédié), ANAC, ENNA, Ministère des Transports et 

ARPCE. Le processus inclut demande, consultations techniques, autorisation et 

supervision continue. 

 Réglementation internationale (OACI, EASA, FAA) : des standards existent à 

l’échelle mondiale, notamment en matière de séparation verticale, de gestion de 

trafic UTM, et d’identification à distance [49]. 

 Protocoles de sécurité aérienne : les drones doivent pouvoir se poser en sécurité 

en cas de défaillance (fail-safe), ou poursuivre une mission partielle sans 

compromettre l’ensemble du système (fail-operational). 

2.5 Conception du système de gestion automatisée 

Cette section décrit l’architecture fonctionnelle et algorithmique du système de 

gestion automatisée développé dans ce projet. Elle s’appuie à la fois sur les besoins 

identifiés (section 2.3) et les contraintes techniques et réglementaires (section 2.4), en 

intégrant les recommandations issues de l’état de l’art en systèmes multi-drones, en 

robotique autonome et en planification adaptative [37, 38, 51]. 

2.5.1 Architecture générale du système 

L’architecture du système est organisée de manière modulaire, selon une chaîne 

décisionnelle typique en robotique autonome : 

Perception → Planification → Action 

 Perception : agrégation des données de capteurs embarqués (GPS, LIDAR, 

caméras) et échange d’informations inter-drones. 

 Planification : sélection d’une trajectoire optimale via GA, PSO ou A*, en fonction 

des contraintes dynamiques. 

 Action : exécution de la trajectoire planifiée, avec réajustement si nécessaire.  

L’architecture fonctionnelle adoptée dans ce projet repose sur une chaîne 

décisionnelle typique en robotique autonome. Elle peut être représentée selon trois 

modules principaux, comme illustré dans la figure suivante : 
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Figure 2.1 : Architecture distribuée d’un système autonome multi-drones intégrant 

perception, planification adaptative et exécution dynamique. 

Cette représentation schématique illustre la modularité de l’architecture, favorisant 

une adaptation dynamique à l’environnement sans dépendance à un nœud central de 

contrôle. 

L’architecture peut être conçue centralisée (unité de contrôle au sol ou drone leader) 

ou distribuée (chaque drone est autonome). Une approche distribuée améliore la résilience 

et l’évolutivité, comme démontré par Michael et al. [38]. 

2.5.2 Modélisation des Drones 

Les drones sont représentés selon un modèle cinématique 3D simplifié. Chaque 

drone est défini par : 

 Une position, 

 Une vitesse maximale, 

 Une altitude minimale, 

 Un rayon de détection pour la prévention de collisions, 

 Un coefficient de consommation énergétique. 

2.5.3 Protocoles de Communication Inter-Drones 

La coordination repose sur une communication de type FANET (Flying Ad hoc 

Network) ou MANET (Mobile Ad hoc Network). Chaque drone diffuse périodiquement : 
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 Sa position, 

 Sa direction, 

 Son état (OK / réévaluation en cours / obstacle détecté). 

La synchronisation est locale : chaque drone ajuste sa trajectoire en fonction de ses 

voisins proches. Ce schéma de coordination décentralisée permet une tolérance aux pannes 

et réduit les besoins en bande passante [38]. 

2.5.4 Gestion de l’Énergie et Optimisation des Trajectoires 

Le système intègre une estimation énergétique en continu. Chaque trajectoire 

candidate est évaluée selon une fonction de coût incluant la distance, la vitesse et la 

pénalisation des risques : 

            ∑
 

‖    ‖ (     )

 
         (2.13) 

Où :  

   : fonction de coût totale (valeur à minimiser pour choisir la meilleure trajectoire). 

   : coefficient de pondération pour la distance (impact énergétique). 

   : distance parcourue sur la trajectoire candidate. 

   : coefficient de pondération pour la vitesse. 

   : vitesse moyenne ou instantanée sur la trajectoire. 

   : coefficient de pondération pour les risques de collision. 

   : nombre d’obstacles à considérer. 

   : position courante du drone. 

    : position de l’obstacle  . 

    : rayon de sécurité autour de l’obstacle  . 

    : distance de sécurité minimale à respecter autour des obstacles. 

En fin de mission, les drones ajustent leurs priorités (raccourcissement du chemin, 

élévation pour économie de batterie) en fonction du niveau d’énergie restant. Des travaux 

récents ont montré que la prise en compte énergétique améliore la durabilité opérationnelle 

[51]. 
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La figure suivante illustre l’évolution de la fonction de coût utilisée dans la 

planification, tenant compte de la distance, de la vitesse et du risque de collision. 

 

Figure 2.2 : Illustration de la fonction de coût intégrée dans la planification, combinant 

distance, vitesse et pénalisation liée aux risques de collision. 

 

Cette représentation visuelle permet de mieux comprendre les compromis nécessaires 

entre efficacité énergétique et sécurité. Les zones rouges correspondent aux configurations 

fortement pénalisées par la proximité d’obstacles, tandis que les surfaces vertes 

correspondent à des trajectoires efficaces et sûres. 

Cette visualisation valide l’approche retenue, en mettant en évidence les zones à éviter 

pour optimiser le compromis sécurité/énergie dans les trajectoires calculées. 

La robustesse du système face aux défaillances et menaces potentielles est une 

exigence critique dans le cadre d’une flotte de drones opérant de manière autonome. Le 

système intègre plusieurs mécanismes de sécurité et de résilience, articulés autour de trois 

axes principaux : 

2.5.5 Gestion des pannes (fail-safe et fail-operational) 

 Mode fail-safe : en cas de perte de communication ou d’anomalie détectée sur un 

capteur critique, le drone exécute un arrêt immédiat ou retourne à un point de 

sécurité prédéfini. 
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 Mode fail-operational : en cas de panne partielle (capteur non critique, 

perturbation temporaire), la mission peut se poursuivre de manière dégradée, en 

adaptant les trajectoires ou en réduisant les vitesses. 

2.5.6 Sécurisation des communications 

 Les échanges entre drones et la station centrale sont protégés par un chiffrement 

léger de type AES-128, garantissant la confidentialité des données et empêchant 

l’injection de trajectoires malveillantes. 

 Des protocoles de redondance assurent une continuité de la liaison même en cas 

de perturbations radio. 

2.5.7 Protocole d’urgence en cas de défaillance critique 

En cas de panne sévère (perte d’énergie, perte de contrôle), un protocole de 

redescente contrôlée est déclenché. Celui-ci permet au drone d’atterrir en toute sécurité 

dans une zone autorisée ou prédéfinie, minimisant ainsi les risques pour les tiers et les 

infrastructures. 

Ces mécanismes visent à garantir la fiabilité opérationnelle, la protection des données 

sensibles et la sécurité des opérations dans des environnements dynamiques, parfois 

hostiles ou partagés avec d'autres usagers de l’espace aérien. 

2.6 Conclusion 

Ce chapitre a établi les bases théoriques nécessaires à la conception d’un système de 

gestion automatisée de drones. Il a permis de comparer plusieurs approches de 

planification (GA, PSO, A*) et de justifier leur choix en fonction des contraintes 

opérationnelles : adaptabilité, efficacité énergétique et robustesse en environnement 

dynamique. 

L’analyse des modèles d’environnement, des représentations spatiales (comme les grilles 

d’occupation) et des métriques d’évaluation a renforcé la cohérence méthodologique. 

L’architecture du système a été pensée pour assurer une coordination distribuée, une 

communication fiable et une gestion optimisée de l’énergie. 

Ces fondations préparent le chapitre suivant, qui mettra à l’épreuve ces choix via des 

simulations réalistes et une analyse comparative des résultats obtenus.
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3.1 Introduction 

La planification de trajectoires pour drones dans des environnements dynamiques et 

encombrés représente un défi complexe, à la croisée de l’intelligence artificielle, de la 

robotique et de l’optimisation. Ce chapitre présente l’implémentation méthodique et 

l’analyse comparative de trois algorithmes clés — GA, PSO et A* — dans le cadre d’une 

simulation réaliste de navigation autonome développée sous MATLAB, accompagnée 

d’une interface graphique facilitant la visualisation des trajectoires et l’analyse des 

résultats. 

Alors que les approches classiques se heurtent souvent au compromis entre 

optimalité et temps de calcul (LaValle, 2006) [45], nos travaux proposent une approche 

hybride combinant des métaheuristiques (pour exploiter efficacement l’espace continu) et 

des méthodes de recherche heuristique (garantissant la convergence vers des trajectoires 

viables). Cette complémentarité répond aux exigences critiques de la navigation multi-

drones : sécurité opérationnelle, efficacité énergétique et adaptabilité dynamique. 

Après avoir présenté le contexte et les objectifs, nous détaillerons dans ce chapitre 

l’architecture du système de simulation, les critères d’évaluation retenus, ainsi que les 

résultats expérimentaux obtenus à partir de différents scénarios. 

3.2 Architecture du système 

L’architecture du système de simulation et de planification de trajectoires est 

structurée autour de plusieurs modules interconnectés, comme illustré dans la Figure 3.1. 

Cette architecture permet de simuler différents scénarios, d’intégrer des algorithmes de 

planification variés, et d’évaluer les performances de la flotte de drones à travers des 

métriques précises. 



CHAPITRE 3 : Implémentation et simulation des algorithmes de planification de 

trajectoires 

45 
 

 

Figure 3.1 : Architecture fonctionnelle du système de simulation et de planification de 

trajectoires de drones. 

 

3.2.1 Description des modules 

Le système de simulation développé sous MATLAB repose sur une architecture 

modulaire, permettant de tester et d’évaluer différents algorithmes de planification pour 

drones dans des environnements contraints. Chaque module joue un rôle spécifique dans le 

pipeline de traitement : 

a.  Scénarios 

Ce module initialise chaque mission simulée en définissant : 

 Le nombre de drones, 

 Leurs positions de départ et d’arrivée, 

 La disposition des obstacles dans l’environnement, 

 Les contraintes spécifiques : zones interdites, priorités, chemins réservés, etc. 

b.  Données d’Environnement (D/E) 

Il regroupe les paramètres physiques et environnementaux : 

 Cartes de vol. 

 Profils de vent ou perturbations simulées. 

 Limitations dynamiques des drones (vitesse, autonomie, rayon de virage, etc.). 
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c.  Algorithmes de Planification 

Ce bloc permet de choisir l’algorithme à exécuter pour chaque scénario : 

 GA / PSO : adaptés à la génération de trajectoires continues en environnement 

complexe, 

 A* : utilisé pour la recherche de chemins optimaux sur une grille discrète. 

d. Planificateur 

Module central du système, il traite les données issues des scénarios et applique 

l’algorithme sélectionné pour générer des plans de vol adaptés, respectant : 

 Les contraintes de sécurité (évitement, distance minimale), 

 Les objectifs d’optimisation (distance, énergie, temps, collisions…). 

e.  Simulation dynamique 

Ce module simule le comportement réel des drones en suivant les trajectoires 

planifiées : 

 Intègre la dynamique de vol (inertie, limites physiques), 

 Gère les interactions multi-drones et les perturbations, 

 Détecte les événements critiques (collision potentielle, dérive, replanification). 

f.  Analyse des Métriques 

À l’issue de chaque simulation, les performances sont évaluées selon des indicateurs clés : 

 Distance parcourue, 

 Temps de mission, 

 Nombre de collisions évitées, 

 Recalculs de trajectoires, 

 Consommation d’énergie, 

 Efficacité globale. 

Cette architecture modulaire assure une grande flexibilité dans les expérimentations 

et constitue une base solide pour l’évaluation comparative des algorithmes. La section 

suivante décrira le pipeline opérationnel complet, du lancement du scénario à la restitution 

des résultats. 

3.2.2 Organisation du pipeline 

Le processus global (pipeline) global se déroule selon la séquence suivante : 

1. Définition des scénarios de mission. 
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2. Paramétrage de l’environnement via le bloc D/E. 

3. Sélection d’un algorithme de planification. 

4. Génération des trajectoires via le module Planification, soit en waypoints 

continus (GA/PSO), soit sur une grille discrète (A*). 

5. Lancement de la simulation dynamique. 

6. Analyse des métriques pour évaluer les résultats. 

Cette organisation modulaire permet d’évaluer différentes stratégies de planification 

et d’observer leur impact sur les performances globales du système. 

Après avoir décrit le déroulement global du système, nous détaillons maintenant la 

méthodologie expérimentale adoptée pour simuler et évaluer les performances des 

différents algorithmes. 

3.3 Méthodologie de simulation 

Cette section détaille la méthodologie de simulation et d’évaluation des algorithmes 

GA, PSO et A*. Elle repose sur un environnement de simulation programmé sous 

MATLAB, prenant en compte des contraintes réalistes (espace 3D, vitesse, altitude 

minimale, obstacles, etc.) et exploitant des scénarios variés pour tester la robustesse du 

système. 

3.3.1 Protocole de simulation dynamique et critères d’évaluation 

La simulation est réalisée dans un espace tridimensionnel borné de taille 

100×100×50 m, représentant un environnement contrôlé. Les drones évoluent selon des 

scénarios prédéfinis regroupés en deux catégories : 

 Sans obstacles : 3, 5 et 10 drones en déplacement libre. 

 Avec obstacles : 

 Obstacles statiques, 

 Obstacles dynamiques, 

 Obstacles environnementaux. 

Pour chaque scénario, le nombre de drones, leurs positions initiales et leurs objectifs 

sont générés aléatoirement. La simulation repose sur des pas de temps de 0,5 seconde et 

une durée totale de 30 secondes par expérience. 

Les algorithmes sont exécutés successivement sur chaque drone, et prennent en compte les 

contraintes de sécurité, la vitesse maximale 10 m/s et l’altitude minimale de 5 m. Chaque 

simulation produit les métriques suivantes : 
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 Temps de calcul. 

 Distance parcourue. 

 Énergie consommée. 

 Rapport distance/énergie. 

 Taux de réussite (objectif atteint). 

 Nombre de collisions. 

3.3.2 Justification du choix des paramètres et limites de la simulation 

Les paramètres ont été choisis pour refléter un compromis entre réalisme et faisabilité 

computationnelle : 

 Population (GA) : 20 individus, 50 générations, 

 Essaim (PSO) : 20 particules, 50 itérations, 

 A* : une résolution de grille de 5 mètres. 

Le choix d’un espace 100×100×50 m permet de simuler un environnement réaliste de 

type zone urbaine ou industrielle. 

Les limites de cette simulation incluent : 

 Une modélisation simplifiée des obstacles (formes sphériques ou ponctuels), 

 L’absence de prise en compte de la dynamique propre des drones (utilisation d’un 

modèle cinématique statique), 

 Une évaluation indépendante des trajectoires des drones, sans coordination active 

entre eux. 

Cette méthodologie nécessite l’utilisation de critères objectifs pour mesurer l’efficacité des 

algorithmes testés, critères qui seront présentés dans la section suivante. 

3.3.3 Métriques d’évaluation 

Ce tableau présente l’ensemble des métriques utilisées pour l’évaluation des 

trajectoires générées par les différents algorithmes lors de la simulation. 
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Tableau 3.1 : Métriques d’évaluation des trajectoires. 

Métrique Description Formule MATLAB 

Énergie 

consommée 

Énergie estimée selon 

distance et vitesse 

energy = distance * 0.1 + speed * 0.05; 

Distance 

parcourue 

Longueur totale du chemin 

suivi 

sum(vecnorm(diff(path),2,2)); 

Temps de 

calcul 

Temps nécessaire pour 

générer une trajectoire 

time = toc; (après tic) 

Efficacité 

énergétique 

Rapport distance / énergie eff = distance / energy; 

Collisions Nombre de fois où la distance 

minimale de sécurité n’est 

pas respectée 

if pdist(positions) < safety_distance → 

collisions = collisions +1; 

Taux de 

réussite 

Proportion de drones 

atteignant leur objectif 

success = norm(position - goal) < 

safety_distance; 

 

Ces différentes métriques s’appuient sur un ensemble d’équations et de fonctions, 

que nous détaillons ci-après pour clarifier leur mise en œuvre dans le cadre de la 

simulation. 

3.3.4 Équations Utilisées 

Les équations suivantes représentent les principales fonctions utilisées dans la 

simulation pour la planification, l’optimisation et l’évaluation des trajectoires des drones : 

1. Fitness (GA) 

La fonction d’évaluation (fitness) utilisée pour l’algorithme génétique afin de 

minimiser la distance résiduelle à l’objectif et pénaliser les collisions est la même que celle 

introduite au chapitre 2, équation (2.1). 

2. Fonction de coût (PSO) 

La fonction de coût du PSO qui prend en compte la distance de sécurité minimale et 

la proximité des obstacles a déjà été formulée et explicitée dans le chapitre 2, équation 

(2.4). 
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3. Distance A* (trajet discrétisé) 

Le calcul de la distance parcourue sur la trajectoire discrétisée par l’algorithme A* 

est effectué selon l’équation (2.9) du chapitre 2. 

4. Énergie consommée 

L’évaluation de l’énergie totale consommée par chaque drone lors de la simulation 

est déterminée conformément à l’équation (2.11) du chapitre 2. 

5. Efficacité énergétique 

Le rapport efficacité énergétique, mesurant la performance de chaque algorithme, 

utilise la même définition que dans le chapitre 2 (voir équation (2.12)). 

6. Taux de réussite 

𝑻    è  
         

     𝒍
      (3.1) 

Où : 

      è  : Taux de réussite. 

           : Nombre de drones ayant atteint leur cible (avec erreur < distance de 

sécurité). 

        : Nombre total de drones ou de tentatives. 

Un drone est considéré comme ayant réussi s’il atteint sa cible avec une erreur inférieure à 

la distance de sécurité. 

7. Collisions 

Une collision est comptabilisée dès que deux entités sont à une distance inférieure au 

seuil défini. 

  ∑  ‖    𝒋‖<           𝒋       (3.2) 

Où : 

   : Nombre de collisions détectées. 

       : Position des entités (drones)   et  . 

           : Seuil de distance de sécurité. 

  ( ) : Fonction indicatrice (vaut 1 si la condition est vraie, 0 sinon). 

8. Temps de calcul 

Mesure du temps nécessaire pour générer une trajectoire, drone par drone. 

𝑻  𝒍  𝒍              (MATLAB: time = toc;)      (3.3) 
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Où : 

         : Temps de calcul total pour générer la trajectoire. 

  𝑑     : Instant de début de calcul. 

  𝑓   : Instant de fin de calcul. 

3.3.5 Implémentation des Algorithmes 

La simulation met en œuvre trois algorithmes principaux de planification : GA, PSO, 

et l’algorithme A*. Chacun est implémenté sous forme de fonction distincte avec ses 

propres paramètres, contraintes, et stratégies de navigation. Les fonctions suivantes 

résument l’architecture logicielle adoptée. 

a. Algorithme Génétique (GA) 

function path = planifier_trajectoire_ga(start, goal, space_size, obstacles, min_altitude, 

N) 

      % 1. Codage : Chromosome = coordonnées 3D (x, y, z) 

      % 2. Fitness : distance à l’objectif + pénalités d’obstacles 

      % 3. Opérations : sélection, croisement, mutation 

      % 4. Contrainte : altitude ≥ min_altitude et limites de l’espace 

      % 5. Sortie : point optimal pour le drone 

End 

 

Cette fonction applique un algorithme génétique classique pour optimiser la position 

cible d’un drone. Chaque solution candidate est représentée par un chromosome contenant 

les coordonnées 3D du waypoint final. 

L’algorithme fait évoluer une population d’individus selon : 

 Une fonction de fitness pénalisant les trajectoires proches des obstacles, 

 Des opérations génétiques (sélection, croisement, mutation), 

 Des contraintes d’espace assurant la validité physique de la solution. 

L’optimisation est réalisée via Ga() de MATLAB, et le résultat est une position 

optimisée vers l’objectif tout en évitant les zones risquées. 
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b. Optimisation par Essaim Particulaire (PSO) 

function position = planifier_trajectoire_pso(current_pos, space_size, obstacles, 

min_altitude) 

      % 1. Codage : chaque particule = position 3D potentielle 

      % 2. Objectif : éviter les autres drones et obstacles 

      % 3. Fonction de coût : distance de sécurité non respectée + proximité obstacles 

       % 4. Paramètres : SwarmSize, inertie, nombre d’itérations 

      % 5. Sortie : position optimisée dans l’espace libre 

End 

 

Cette fonction emploie une stratégie PSO pour déplacer un drone vers une zone sûre. 

Chaque particule de l’essaim explore une position candidate. 

La fonction de coût intègre deux pénalités principales : 

 La proximité avec les autres drones (calculée par pdist2), 

 La présence d’obstacles dans l’environnement. 

MATLAB utilise la fonction particleswarm() pour faire évoluer l’essaim jusqu’à ce 

qu’une position minimisant le risque soit trouvée. Ce type d’algorithme est 

particulièrement adapté aux scénarios dynamiques où les positions des autres drones 

évoluent. 

c. Algorithme A* 

function path = a_star_algorithm(start, goal, space_size, obstacles) 

      % 1. Grille 3D : discrétisation de l’espace en cellules (résolution 5 m) 

      % 2. Codage : chaque cellule = nœud (x, y, z) 

      % 3. Heuristique : distance euclidienne vers le but 

      % 4. Obstacles : représentation booléenne (obstacle_grid) 

      % 5. Sortie : chemin approximatif du départ à l’objectif 

End 

 

L’algorithme A* implémenté ici repose sur une représentation discrète de l’espace à 

l’aide d’une grille 3D. Chaque cellule est évaluée à l’aide d’une fonction heuristique 

estimant la distance au but. 

Les obstacles sont traduits sous forme d’une grille logique binaire (obstacle_grid) 

permettant de bloquer les cellules interdites. 
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Le chemin retourné est une suite de points reliant le départ et l’arrivée, utilisée pour 

calculer la distance totale ou simuler le parcours dans l’environnement. Ce type d’approche 

garantit un chemin optimal si l’heuristique est admissible, mais reste sensible à la 

résolution choisie. 

La mise en œuvre de ces algorithmes permet de générer les résultats expérimentaux 

présentés et analysés dans la section suivante. 

3.4 Analyse et interprétation des résultats 

Cette section présente les résultats obtenus lors de la simulation des six scénarios 

définis précédemment, en comparant les performances des algorithmes GA, PSO et A* à 

travers différentes métriques : temps de calcul, distance parcourue, énergie consommée, 

efficacité énergétique, taux de réussite, et collisions détectées. Les figures illustrent 

l’évolution de ces indicateurs pour chaque drone dans les différents cas de simulation. 

3.4.1 Scénarios sans obstacles 

 Scénario 1 : 3 drones sans obstacles 

Ce scénario vise à évaluer les performances des algorithmes dans un environnement 

simple, sans aucune contrainte d’obstacle, avec un nombre réduit de drones pour observer 

le comportement de base du système. 

 

Figure 3.2 : Résultats du scénario 1 : 3 drones sans obstacles. 
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Dans ce cas simple, tous les algorithmes affichent un temps de calcul très faible. A* 

est le plus rapide, suivi de PSO, puis GA. 

 Les distances parcourues sont similaires pour l’ensemble des algorithmes, toutefois 

A* suit des trajectoires généralement plus directes, tandis que GA a tendance à 

explorer davantage l’espace, ce qui augmente la consommation d’énergie. 

 L’efficacité énergétique reste meilleure pour PSO et A*. 

 Scénario 2 : 5 drones sans obstacles 

Ce scénario augmente la densité de drones sans introduire d’obstacles, afin 

d’analyser l’impact du nombre d’agents sur les métriques de performance et la sécurité. 

 

Figure 3.3 : Résultats du scénario 2 : 5 drones sans obstacles. 

 

L’augmentation du nombre de drones n’impacte pas fortement les temps de calcul. 

Cependant, GA commence à montrer une efficacité énergétique plus faible (2,05) 

comparée à PSO (9,28) et A* (8,99). 

Le taux de réussite diminue à 66,67 %, avec 1 collision détectée, signe que la densité de 

drones augmente les risques de proximité. 

 Scénario 3 : 10 drones sans obstacles 

L’objectif de ce scénario est de tester la robustesse des algorithmes face à une forte 

densité de drones, toujours sans obstacle, pour détecter d’éventuelles limites de scalabilité. 
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Figure 3.4 : Résultats du scénario 3 : 10 drones sans obstacles. 

 

Avec 10 drones, la complexité augmente. A* reste le plus stable en efficacité (9,24), 

tandis que PSO maintient une bonne performance (9,20). 

GA s’améliore un peu (3,14), mais reste le moins efficient. 

Le taux de réussite reste faible (70 %) avec une collision détectée. 

Le tableau ci-dessous synthétise les résultats des scénarios sans obstacles pour les 

trois algorithmes. 

Tableau 3.2 : Résultats des scénarios sans obstacles. 

Scénario sans 

obstacles 

1 2 3 

Nombre de drones 3 5 10 

GA (Dist./Énergie) 2,66 2,05 3,14 

PSO 

(Dist./Énergie) 

9,26 9,28 9,20 

A* (Dist./Énergie) 9,16 8,99 9,24 

Taux de réussite 

(%) 

66,67 66,67 70,00 

Collisions 0 1 1 
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L’algorithme GA montre une efficacité supérieure en matière de distance et 

d’énergie, indiquant sa pertinence pour les scénarios à faible complexité. Le taux de 

réussite modéré (environ 67 %) souligne toutefois la nécessité d'améliorations en gestion 

des imprévus. L’occurrence rare mais présente de collisions suggère aussi certaines 

limitations dans la capacité de prévision ou d’évitement lors de trajets simples. 

3.4.2 Scénarios avec obstacles 

 Scénario 4 : 3 drones avec obstacles statiques 

Ce scénario introduit des obstacles fixes dans l’environnement afin d’évaluer la capacité 

des algorithmes à planifier des trajectoires sûres en présence de contraintes spatiales. 

 

Figure 3.5 : Résultats du scénario 4 : 3 drones avec obstacles statiques. 

 

L’impact des obstacles statiques est modéré. Tous les algorithmes respectent bien les 

contraintes, avec 0 collision. 

Les efficacités énergétiques restent comparables à la version sans obstacles : 

 GA : 5,70. 

 PSO : 9,43. 

 A* : 9,26. 

Le taux de réussite reste à 66,67 %. 
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 Scénario 5 : 5 drones avec obstacles dynamiques 

Dans ce scénario, des obstacles mobiles sont ajoutés pour simuler un environnement 

dynamique, mettant à l’épreuve l’adaptabilité des algorithmes de planification. 

 

Figure 3.6 : Résultats du scénario 5 : 5 drones avec obstacles dynamiques. 

 

L’introduction d’obstacles mobiles perturbe les algorithmes, notamment GA, qui 

descend à 4,06. 

Une collision est détectée et le taux de réussite reste à 66,67 %. 

PSO et A* conservent une efficacité énergétique autour de 9. 

 Scénario 6 : 10 drones avec obstacles environnementaux 

Ce scénario, le plus complexe, combine une forte densité de drones et des obstacles 

environnementaux pour analyser les limites et la robustesse du système dans des conditions 

extrêmes. 
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Figure 3.7 : Résultats du scénario 6 : 10 drones avec obstacles environnementaux. 

 

Ce scénario est le plus complexe. GA chute à 2,57 d’efficacité énergétique, ce qui 

confirme sa sensibilité à la densité et aux obstacles. 

PSO et A* restent robustes (9,04 et 9,18 respectivement), malgré la difficulté du scénario. 

Le taux de réussite stagne à 66,67 %. 

Le tableau ci-dessous synthétise les résultats des scénarios avec obstacles pour les 

trois algorithmes. 

Tableau 3.3 : Résultats des scénarios avec obstacles. 
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Dans ce tableau, l'inclusion d'obstacles (statiques, dynamiques et environnementaux) 

augmente nettement les exigences pour tous les algorithmes. GA conserve sa relative 

supériorité en gestion énergétique, tandis que PSO et A* affichent des performances stables 

mais sous-optimales. Le taux de réussite inchangé autour de 67 % montre que l’inclusion 

d’obstacles nécessite de meilleures stratégies adaptatives pour sécuriser et optimiser 

davantage les trajets. 

 Tableau comparatif global 

Pour une vue d'ensemble synthétique et comparative des algorithmes à travers tous 

les scénarios réalisés, le tableau suivant est proposé : 

Tableau 3.4 : Tableau comparatif global des résultats. 

Conditions GA 

Moyenne 

PSO 

Moyenne 

A* 

Moyenne 

Moyenne taux 

réussite (%) 

Collisions 

totales 

Sans 

obstacles 

2.62 9.25 9.13 67.78 % 2 

Avec 

obstacles 

4.11 9.21 9.19 66.67 % 2 

Moyenne 

globale 

3.37 9.23 9.16 67.22 4 

 

3.4.3 Présentation des Trajectoires 3D des Scénarios 

Les trajectoires obtenues lors des simulations ont été visualisées en trois dimensions, 

facilitant ainsi une analyse claire des comportements des drones sous les différentes 

conditions de simulation. Voici une représentation graphique des scénarios clés : 



CHAPITRE 3 : Implémentation et simulation des algorithmes de planification de 

trajectoires 

60 
 

 

Figure 3.8 : Trajectoires 3D - Scenario 1 : 3 drones sans obstacles. 

 

Dans ce scénario de base, les trajectoires générées par les trois algorithmes (GA, 

PSO, A*) montrent que, sans obstacles, la planification est principalement influencée par 

l'efficacité de chaque algorithme à minimiser la distance parcourue et l’énergie dépensée. 

L'Algorithme Génétique (GA) propose généralement des trajets plus optimisés, tandis que 

PSO et A* tendent à générer des trajectoires légèrement plus longues ou énergivores, 

reflétant leur méthode d’optimisation globale ou heuristique. 

 

Figure 3.9 : Trajectoires 3D - Scenario 2 : 5 drones sans obstacles. 
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Avec l’augmentation du nombre de drones, l’influence des algorithmes devient plus 

apparente. GA conserve de bonnes performances en maintenant des trajectoires groupées et 

efficaces. PSO et A* montrent une légère dégradation, avec des risques accrus de proximité 

et d’interférences entre drones. Ceci indique que la gestion du multi-agent par GA est plus 

robuste à l’augmentation de la complexité du scénario. 

 

Figure 3.10 : Trajectoires 3D - Scenario 3 : 3 drones avec obstacles dynamiques. 

 

L’introduction d’obstacles dynamiques complexifie la planification. GA parvient à 

adapter les trajectoires pour éviter les obstacles tout en optimisant la distance, alors que 

PSO et A* sont plus sensibles aux variations de l’environnement. PSO peut parfois générer 

des trajectoires moins efficaces en présence de changements rapides, et A* peut présenter 

des solutions moins optimales sous contrainte dynamique. 
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Figure 3.11 : Trajectoires 3D - Scenario 4 : 5 drones avec obstacles dynamiques. 

 

Dans ce scénario, la coordination entre les drones et l’évitement dynamique sont 

cruciaux. GA montre une meilleure capacité d’adaptation, limitant les collisions et 

optimisant l’énergie. PSO et A* rencontrent plus de difficultés à ajuster rapidement les 

trajectoires face à des obstacles en mouvement, ce qui peut se traduire par des parcours 

moins efficients ou un taux de collisions accru. 

 

Un exemple représentatif est présenté dans le Tableau 3.5, qui détaille le scénario 4 : 

5 drones évoluant dans un environnement avec obstacles dynamiques. Ce tableau regroupe 

les valeurs de l’énergie moyenne consommée, de la distance moyenne parcourue, du 

nombre de collisions ainsi que du nombre de pas nécessaires pour chaque algorithme testé 

(GA, PSO et A*). 

Tableau 3.5 : Détail du scénario 4 : 5 drones avec obstacles dynamiques. 

Algorithme Énergie Moy. (J) ± std Distance Moy. (m) ± std Collisions Steps 

GA 29.91 ± 36.57 46.95 ± 32.92 44.0 12.6 

PSO 268.38 ± 349.11 84.10 ± 28.82 36.8 20.0 

A* 23.66 ± 30.36 45.40 ± 34.54 44.8 12.2 

 

Ce tableau détaillé expose clairement les performances spécifiques des algorithmes 

dans un contexte complexe : 5 drones avec obstacles dynamiques. GA et A* présentent des 
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résultats similaires en matière de distance et d’énergie, confirmant leur efficacité 

adaptative. PSO, en revanche, subit une forte augmentation de consommation énergétique 

et distance moyenne, révélant une faiblesse en termes d'efficacité énergétique dans un 

environnement très dynamique. Le nombre élevé de collisions pour tous les algorithmes 

suggère qu’une révision approfondie des stratégies d'évitement est nécessaire pour assurer 

la sécurité optimale dans ce contexte complexe. 

3.4.4 Comparaison globale des algorithmes 

Le Tableau 3.6 présente une synthèse comparative des trois algorithmes principaux 

— GA, PSO et A* — en fonction des critères de performance observés lors des différentes 

simulations. Ces critères incluent le temps de calcul, la distance parcourue, la 

consommation énergétique, l’efficacité énergétique, le taux de réussite et la gestion des 

collisions. 

Tableau 3.6 : Comparaison globale des algorithmes (GA, PSO, A*). 

Critère GA PSO A* 

Temps de calcul Le plus lent Moyen Le plus rapide 

Distance parcourue Plus longue Moyenne Optimale (plus courte) 

Consommation énergie Élevée Moyenne Moyenne 

Efficacité énergétique Faible (2–5) Très bonne (~9) Très bonne (~9) 

Collisions Présentes Rare Rare 

Taux de réussite (%) 66–70 % 66–70 % 66–70 % 

 

 GA montre une bonne flexibilité et capacité d’exploration, mais reste pénalisé par un 

temps de calcul élevé, une efficacité énergétique faible, et une tendance à générer 

des trajectoires plus longues. 

 PSO propose un compromis intéressant, combinant une efficacité énergétique élevée, 

un temps de calcul raisonnable et une bonne stabilité, bien que parfois sujet à la 

stagnation si l’essaim est mal initialisé. 

 A* se distingue par la génération systématique de trajectoires optimales (courtes), un 

temps de calcul minimal, et une efficacité énergétique élevée. Cependant, il reste 

moins réactif en cas d’obstacles dynamiques ou non prévus. 
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3.4.5 Observations, analyses complémentaires et limites 

Le Tableau 3.7 regroupe les principales observations tirées des résultats de 

simulation, ainsi que les limites identifiées dans le cadre de ce travail. 

Tableau 3.7 : Observations, analyses complémentaires et limites. 

Point analysé Explication liée à la simulation et aux résultats 

GA et densité 

élevée 

Les performances de GA baissent à forte densité ou sous contraintes, 

car la pénalisation des collisions ralentit la convergence et dégrade 

l’efficacité énergétique. 

PSO – stabilité 

énergétique 

Le PSO garde une bonne efficacité, sauf si l’essaim est mal réparti, 

ce qui peut entraîner une stagnation dans des zones sous-optimales. 

A* – optimalité et 

limites* 

Les trajectoires sont courtes mais peu réactives : sans replanification 

dynamique, A* ne gère pas bien les obstacles mobiles ou les 

changements rapides de l’environnement. 

Collisions 

résiduelles 

Le taux de réussite plafonne, notamment à cause de l’absence de 

coordination active entre drones, même sans obstacles complexes. 

Modélisation 

simplifiée 

Les obstacles sphériques/ponctuels et l’espace 3D idéalisé simplifient 

la réalité : la difficulté réelle en environnement urbain est 

probablement sous-estimée. 

Absence de 

dynamique réelle 

Les drones suivent un modèle cinématique statique, sans accélération 

ni gestion réelle de l’énergie : cela limite la portée des résultats pour 

des applications réelles. 

 

3.4.6 Analyse approfondie des performances différenciées des algorithmes 

Le Tableau 3.8 résume les points forts, les faiblesses et le comportement typique de 

chaque algorithme, tels qu’observés à travers les différents scénarios testés. 
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Tableau 3.8 : Analyse des performances différenciées des algorithmes. 

Algorithme Forces 

constatées 

Faiblesses relevées Comportement typique en 

simulation 

GA Grande capacité 

d’exploration 

des solutions. 

Temps de calcul élevé et 

efficacité énergétique 

faible lorsque la densité 

ou les contraintes 

augmentent. 

Génère des trajectoires 

variées, parfois longues et 

coûteuses en énergie ; sensible 

aux pénalités de collision. 

PSO Bonne stabilité 

énergétique, 

efficacité 

robuste. 

Risque de stagnation en 

optimum local si 

l’essaim manque de 

diversité. 

Génère généralement de 

bonnes trajectoires, réagit 

mieux en dynamique que GA, 

dépend de la répartition 

initiale de l’essaim. 

A* Optimalité en 

distance, rapidité 

de calcul. 

Manque de réactivité 

sans replanification, 

sensible à la résolution 

de la grille. 

Produit les trajets les plus 

courts, mais sans adaptation 

en temps réel : bonne 

efficacité, mais collisions 

possibles si l’environnement 

évolue vite. 

 

3.4.7 Justification de la variabilité limitée du taux de succès 

Malgré l’augmentation de la complexité (densité de drones, présence d’obstacles), le 

taux de réussite des algorithmes reste globalement constant, autour de 66–70 %. 

Cette variabilité limitée s’explique par : 

 Absence de coordination explicite : chaque drone planifie sa trajectoire 

indépendamment, ce qui maintient un risque de collision même en environnement 

simple. 

 Résolution limitée de la grille (A*) : une discrétisation insuffisante peut induire 

des trajectoires trop grossières pour éviter efficacement les collisions. 

 Pénalités fortes (GA, PSO) : sous forte contrainte, les fonctions de pénalisation 

protègent contre l’augmentation des échecs, mais freinent aussi l’optimisation 

globale. 
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Ce résultat montre qu’il devient nécessaire d’intégrer des stratégies de collaboration ou de 

replanification dynamique pour franchir ce plafond de performance. 

3.5 Interface graphique Matlab 

3.5.1 Objectifs de l’interface 

L’interface graphique MATLAB a été développée dans le but de fournir un 

environnement interactif pour la visualisation et l’analyse des résultats issus des 

algorithmes de planification de trajectoire, notamment A*, PSO et GA. Les objectifs 

principaux de cette interface sont : 

 Visualiser en temps réel les trajectoires générées par chaque algorithme ainsi que 

les obstacles présents dans l’environnement simulé. 

 Comparer visuellement les résultats des trois algorithmes en superposant leurs 

trajectoires respectives. 

 Afficher des indicateurs de performance essentiels tels que : 

 L’énergie cumulée consommée par chaque drone 

 Le nombre de collisions évitées durant le vol 

 La distance parcourue par rapport à la distance optimale 

 Faciliter l’analyse post-simulation à l’aide d’outils interactifs permettant l’export 

des résultats (graphiques et données) pour une étude plus approfondie. 

3.5.2 Architecture de l’interface 

L’architecture fonctionnelle de l’interface MATLAB repose sur une logique 

modulaire permettant une gestion claire des flux de données entre les résultats de 

simulation et les différents outils de visualisation et d’analyse. Le schéma suivant illustre 

cette architecture : 

 

Figure 3.12 : L’architecture fonctionnelle de l’interface MATLAB. 
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Description du schéma : 

 Données de simulation : Ce bloc représente les résultats bruts produits par les 

algorithmes de planification (positions, vitesses, temps, énergie, etc.). 

 Interface MATLAB : cœur du système, elle centralise les données et les redirige 

vers les modules d’analyse.  

 Affichage 3D : Permet la visualisation en trois dimensions des trajectoires, de 

l’environnement, et des obstacles. 

 Graphes métriques : Génère des courbes et diagrammes illustrant les 

performances des algorithmes (énergie, distance, temps, collisions…). 

 Export CSV/PNG : Fonctionnalité d’export des résultats sous formats standard 

(CSV pour les données numériques, PNG pour les graphes et vues 3D) facilitant la 

documentation et la communication des résultats.  

3.5.3 Implémentation de l’interface graphique MATLAB 

L’interface a été conçue avec MATLAB App Designer, selon une approche orientée 

objet. Une classe principale gère l’ensemble des composants et centralise les interactions 

utilisateur. 

Chaque action de l’utilisateur (choix d’un algorithme, lancement de simulation, 

modification de scénario...) est traitée par des méthodes dédiées, assurant : 

 Le paramétrage dynamique des simulations. 

 L’appel aux fonctions de calcul. 

 La mise à jour en temps réel des graphiques et visualisations. 

Cette séparation entre interface et moteur de simulation garantit : 

 Une meilleure lisibilité du code. 

 Une évolutivité facilitée (ajout de nouveaux algorithmes, scénarios…). 

 Une robustesse générale du système. 

3.5.4 Fonctionnalités principales 

La figure ci-dessous illustre les différentes zones fonctionnelles de l’interface 

MATLAB développée dans le cadre de ce projet  
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Figure 3.13 : Interface graphique MATLAB de la simulation multi-drones. 

 

Cette interface regroupe notamment : 

 Un bouton « Simuler » pour lancer l’exécution de l’algorithme sélectionné. 

Choix de l’algorithme de planification (A*, PSO, GA) via un menu déroulant   

 Sélection du nombre de drones à simuler (paramètre modifiable). 

 Activation/désactivation de la présence d’obstacles. 

 Un axe de visualisation 3D pour afficher les trajectoires des drones ainsi que les 

obstacles, s’ils sont activés. 

 Génération automatique de graphiques 2D (énergie cumulée) 

 Résumé des résultats affiché sur un panneau latéral (algorithme utilisé, nombre de 

drones, type d’environnement…). 

3.5.5 Exemple d’utilisation de l’interface MATLAB 

Cette section illustre un exemple concret d’utilisation de l’interface graphique 

MATLAB développée dans le cadre de ce travail.  

L’objectif est de démontrer la capacité de l’interface à : 

 Générer les trajectoires à l’aide de l’algorithme sélectionné (A*, PSO ou GA) ; 

 Visualiser les déplacements des drones en 3D ; 
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 Suivre l’évolution de l’énergie consommée par chaque drone via un graphique 

dédié ; 

 Afficher automatiquement les informations clés liées à la simulation (type 

d’algorithme, nombre de drones, présence ou non d’obstacles, etc.). 

a. Simulation de 3 Drones sans Obstacles 

Les trois figures présentent l’interface MATLAB utilisée pour simuler la trajectoire 

de trois drones sans obstacles dans un environnement 3D, ainsi que l’énergie cumulée dans 

un graphique 2D, en utilisant trois algorithmes différents : PSO, GA et A*.  

 

 

Figure 3.14 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones sans 

obstacles – Algorithme GA. 
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Figure 3.15 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones sans 

obstacles – Algorithme PSO. 

 

 

Figure 3.16 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones sans 

obstacles – Algorithme A*. 
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 Interprétation des résultats 

 Algorithme PSO 

Les trajectoires des drones sont relativement directes entre les points de départ (vert) 

et d’arrivée (rouge), mais on observe des variations dans la longueur des trajets selon les 

drones.  

L’énergie cumulée consommée par les drones augmente de façon linéaire, mais les 

valeurs sont plus élevées pour certains drones, indiquant une optimisation inégale de la 

consommation d’énergie.  

 Algorithme GA 

Les trajectoires générées par l’algorithme génétique semblent plus courtes et plus 

directes pour deux drones, tandis que le troisième suit un trajet plus long.  

L’énergie cumulée est nettement plus faible pour deux drones, ce qui montre une 

meilleure optimisation énergétique pour ces cas. Toutefois, un drone consomme beaucoup 

plus d’énergie, ce qui traduit une disparité dans la répartition des efforts entre les drones.  

 Algorithme A* 

Les trajectoires sont très directes et optimisées pour les trois drones, avec peu de 

variations. 

L’énergie cumulée est quasiment identique pour tous les drones et reste la plus faible 

parmi les trois algorithmes, ce qui montre une excellente efficacité énergétique et une 

répartition équilibrée de la charge.  

 Analyse comparative 

Le tableau ci-dessous compare les performances des trois algorithmes selon plusieurs 

critères observés dans cet environnement sans obstacles :  

Tableau 3.9 : Comparaison des performances sans obstacles. 

 



CHAPITRE 3 : Implémentation et simulation des algorithmes de planification de 

trajectoires 

72 
 

Dans le cas de trois drones sans obstacles, l’algorithme A* offre les meilleurs 

résultats en termes de trajectoires optimisées et de consommation énergétique équilibrée. 

Le PSO et surtout le GA présentent des disparités dans la gestion de l’énergie, soulignant 

l’importance du choix d’algorithme en fonction des objectifs. 

b. Simulation de 3 Drones avec Obstacles 

Les trois figures présentent l’interface MATLAB utilisée pour simuler la trajectoire 

de trois drones avec obstacles dans un environnement 3D, ainsi que l’énergie cumulée dans 

un graphique 2D, en utilisant trois algorithmes différents : PSO, GA et A*. Les obstacles 

sont représentés par des sphères rouges que les drones doivent éviter.  

 

 

Figure 3.17 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones avec 

obstacles – Algorithme GA. 
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Figure 3.18 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones avec 

obstacles – Algorithme PSO. 

 

 

Figure 3.19 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones avec 

obstacles – Algorithme A* 
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 Interprétation des résultats 

 Algorithme GA  

Les trajectoires générées par l’algorithme génétique sont généralement courtes pour 

deux drones, tandis que le troisième réalise un parcours plus long pour éviter les obstacles.  

L’énergie cumulée reste faible pour deux drones, montrant une bonne optimisation 

pour eux, mais un drone consomme nettement plus d’énergie, ce qui traduit une disparité 

persistante dans la répartition des efforts lorsque des obstacles sont présents.  

 Algorithme PSO  

Les trajectoires des drones contournent les obstacles, ce qui complexifie leur chemin. 

On observe des variations importantes dans la longueur des trajets selon les drones, en 

particulier pour certains drones qui doivent effectuer des détours marqués.  

L’énergie cumulée consommée par les drones augmente de façon linéaire, mais 

certains drones affichent des consommations bien plus élevées que d’autres, indiquant une 

optimisation inégale face aux contraintes imposées par les obstacles.  

 Algorithme A*  

Les trajectoires sont directes et bien optimisées pour chaque drone, qui parviennent à 

éviter les obstacles de façon efficace et à atteindre leur destination avec des chemins 

relativement courts.  

L’énergie cumulée est assez homogène entre les drones, et reste plus faible ou comparable 

à celle des autres algorithmes, montrant une bonne efficacité énergétique et une répartition 

équilibrée malgré la présence d’obstacles.  

 Analyse comparative 

Le tableau suivant présente une synthèse des performances des trois algorithmes en 

présence d’obstacles :  

Tableau 3.10 : Comparaison des performances avec obstacles. 
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On constate que, dans un environnement contenant des obstacles, l’algorithme A* 

reste le plus efficace pour produire des trajectoires courtes et assurer une consommation 

d’énergie équilibrée. Les performances du PSO et du GA se dégradent, notamment en 

matière de répartition de l’énergie. Cela montre que, dans un espace aérien contraint, A* 

constitue la solution la plus robuste et homogène. 

3.6 Conclusion 

Ce chapitre a présenté de façon détaillée le processus d’implémentation et de 

simulation d’un système de gestion automatisée de flotte de drones dans un environnement 

3D contrôlé. 

À travers une architecture logicielle modulaire sous MATLAB, trois algorithmes 

majeurs (GA, PSO, A*) ont été évalués dans des scénarios de complexité croissante, en 

présence ou non d’obstacles. 

La méthodologie employée a permis de comparer ces approches selon des critères 

précis : efficacité énergétique, distance parcourue, temps de calcul, taux de réussite, et 

gestion des collisions. 

Les résultats montrent : 

 La supériorité d’A* pour la génération de trajectoires courtes et équilibrées, 

 le compromis intéressant offert par PSO, combinant robustesse et efficacité 

énergétique, 

 la flexibilité de GA mais à un coût énergétique et computationnel plus élevé. 

Une interface graphique dynamique a également été développée afin de visualiser en 

temps réel le comportement des drones dans l’environnement 3D simulé. Cette interface a 

permis d’observer visuellement les trajectoires générées, les collisions éventuelles, les 

obstacles rencontrés, ainsi que la progression du système de navigation dans différents 

scénarios. Elle constitue un outil interactif essentiel pour analyser qualitativement les 

performances du système et faciliter l’interprétation des résultats. 

Les analyses révèlent également les limites du système : simplification des modèles 

physiques, absence de communication inter-drones, et absence de replanification 

dynamique.
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Conclusion générale et perspectives 

Ce mémoire nous a permis d’explorer en profondeur un sujet passionnant et 

d’actualité : la planification autonome des trajectoires pour des flottes de drones évoluant 

dans des environnements complexes et en perpétuel changement. 

À travers l’implémentation et la comparaison de trois algorithmes majeurs — 

l’Algorithme Génétique, l’Optimisation par Essaim Particulaire et l’algorithme A* — nous 

avons pu mieux comprendre leurs spécificités, leurs points forts ainsi que leurs limites. 

Les résultats obtenus montrent clairement que l’algorithme A* se distingue par son 

efficacité énergétique et la qualité optimale des trajectoires qu’il génère. Le PSO, quant à 

lui, offre un bon équilibre entre robustesse et consommation énergétique, tandis que le GA, 

bien que plus gourmand en ressources, apporte une grande flexibilité, particulièrement 

utile dans des scénarios complexes et changeants. 

 

Bien que les résultats obtenus montrent l'efficacité et la pertinence de la solution 

développée, certaines limitations ont été identifiées : 

 Simplification de l’environnement : L’espace aérien simulé est représenté par un 

volume tridimensionnel fixe, sans prise en compte des conditions 

environnementales réelles (vents, turbulences, zones interdites). 

 Modèle de drone idéal : Le comportement des drones n’intègre pas de dynamique 

physique réelle (inertie, consommation liée à la masse, contraintes mécaniques). 

 Trajectoire unique par algorithme : L’exécution d’un algorithme ne prévoit pas 

de replanification en cours de vol, ni de collaboration adaptative entre les drones. 

 Évitement d'obstacles limité : Bien que les obstacles soient modélisés, leur nature 

reste simple (sphérique et statique/dynamique ponctuel), et aucun capteur simulé 

n’est utilisé pour la détection active. 

 Absence de communication inter-drones : Chaque drone planifie sa trajectoire de 

manière indépendante, ce qui peut limiter la coordination dans des missions 

collaboratives ou complexes. 

 Absence d’apprentissage adaptatif : Les algorithmes utilisés sont déterministes 

ou populationnels, mais ils ne s’adaptent pas à l’environnement au fil du temps. 

Aucun mécanisme d’apprentissage automatique n’est intégré pour améliorer la 
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prise de décision dans des contextes inconnus ou dynamiques. 

 

Pour rendre le système plus robuste et adapté à des contextes réels, plusieurs axes 

d’évolution sont envisageables : 

 Replanification dynamique : Intégration d’un module de recalcul de trajectoire en 

temps réel, en cas de changement soudain de l’environnement (obstacle imprévu, 

panne, modification de mission). 

 Modèle de drone réaliste : Ajout de paramètres physiques (batterie, masse, 

portance) et contraintes aérodynamiques pour simuler un comportement plus 

proche de la réalité. 

 Algorithmes hybrides : Combinaison des forces des trois algorithmes explorés 

(par exemple, A* pour l’exploration globale, PSO pour l’ajustement fin local) afin 

de tirer parti de leurs complémentarités. 

 Communication inter-drones : Développement d’une stratégie collaborative 

permettant le partage d’informations (position, état, alertes, trajectoires) entre les 

drones pour une meilleure coordination. 

 Apprentissage par renforcement (Q-Learning) : Intégration du Q-Learning 

comme approche d’apprentissage automatique permettant aux drones d’apprendre 

de leurs expériences passées. Cette méthode pourrait offrir une planification 

adaptative dans des environnements complexes et dynamiques, où les règles ne sont 

pas entièrement connues à l’avance. 

 Simulation sur maquette réelle : Passage de la simulation numérique à des tests 

réels avec des drones physiques dans un espace délimité, afin de valider 

expérimentalement la faisabilité et la robustesse du système. 
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