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RESUME

Ce mémoire étudie la planification autonome de trajectoires pour des flottes de
drones dans des environnements complexes et dynamiques. Trois algorithmes clés —
Génétique (GA), Optimisation par Essaim Particulaire (PSO) et A* — ont été implémentés
et évalués via une simulation sous MATLAB intégrant une interface graphique interactive.
Les résultats montrent la supériorité d'’A* en termes d'efficacité énergétique et d'optimalité
des trajectoires, tandis que PSO offre un bon équilibre entre robustesse et consommation
énergétique. L’ Algorithme Génétique (GA) affiche quant a lui une flexibilité notable, mais
au prix d'une efficacité énergétique moindre et d'un temps de calcul plus élevé. Ce travail
propose des pistes d'amélioration telles que l'intégration d'une replanification dynamique,
une meilleure communication inter-drones et la réalisation de tests opérationnels en

environnement réel controlé.

Mots-clés : Planification autonome de trajectoires, Flottes de drones,
Environnements complexes et dynamiques, Algorithme A*, Optimisation par Essaim
Particulaire (PSO), Algorithme génétique (GA).

ABSTRACT

This thesis investigates autonomous trajectory planning for drone fleets operating in
complex and dynamic environments. Three key algorithms — Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and A* — were implemented and evaluated through
simulations conducted in MATLAB, complemented by an interactive graphical interface.
The results demonstrate the superiority of the A* algorithm in terms of energy efficiency
and trajectory optimality. PSO offers a good balance between robustness and energy
consumption, while GA exhibits notable flexibility but at the expense of reduced energy
efficiency and higher computational time. This work suggests several avenues for
improvement, including integrating dynamic replanning, enhancing inter-drone

communication, and conducting operational testing in controlled real-world environments.

Keywords : Autonomous trajectory planning, Drone fleets, Complex and dynamic
environments, A* algorithm, Particle Swarm Optimization (PSO), Genetic Algorithm
(GA).
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INTRODUCTION GENERALE

La gestion efficace et sécurisée d’une flotte de drones autonomes dans un
environnement dynamique représente un enjeu stratégique majeur, notamment dans les
domaines industriels, urbain et militaire. Avec I’expansion rapide des applications drones
(livraison autonome, surveillance de zones critiques, missions de sauvetage, etc.), la
complexité des missions ne cesse de croitre, exigeant des solutions robustes, adaptatives et

optimisées pour garantir a la fois la sécurité et I’efficacité opérationnelle.

Ce travail de recherche s’intéresse au développement et a 1’analyse comparative
d’une solution automatisée de planification de trajectoires pour des drones évoluant dans
un espace aérien contraint et dynamique. Il explore spécifiquement trois algorithmes
majeurs : I’Algorithme Génétique (GA), I’Optimisation par Essaim Particulaire (PSO) et
I’algorithme A*.

Dans un contexte ou l’utilisation de drones autonomes se généralise dans des
environnements souvent encombrés (zones urbaines, espaces aériens réglementés) et
soumis a des contraintes strictes (obstacles dynamiques, autonomie énergétique limitée,
régulations aériennes), la planification de trajectoires devient un défi crucial. Comment
concevoir un systeme capable de générer, en temps raisonnable, des trajectoires sdres,
optimisées et adaptées a des contextes opérationnels variés ? Quels algorithmes offrent les
meilleures  performances en termes de : Sécurit¢ (évitement d’obstacles
statiques/dynamiques), efficacité (minimisation du temps de vol et de la consommation
énergétique), scalabilité (gestion de flottes multi-drones) et respect des contraintes

réglementaires (regles de circulation aérienne).

Cette etude vise a répondre a ces questions en évaluant expérimentalement les trois
algorithmes dans un environnement de simulation réaliste, afin d’identifier leurs forces et

limites respectives.

Ce mémoire est organisé en trois chapitres principaux :

e Le Chapitre 1 présente un état de I’art sur les systémes de gestion des drones, en

détaillant 1’évolution des drones, leurs classifications, les cadres réglementaires



internationaux et nationaux, ainsi que les technologies actuelles utilisées pour la
gestion et la coordination de flottes de drones autonomes.

e Le Chapitre 2 expose les fondements théoriques, I’analyse et la conception du
systéme de gestion automatisée. Ce chapitre traite des différents algorithmes de
planification de trajectoires, des critéres d’évaluation retenus, de la modélisation de
I’environnement de simulation, et des contraintes opérationnelles et réglementaires
a respecter.

e Le Chapitre 3 constitue la partie expérimentale du mémoire. Il décrit en détail le
processus d’implémentation et de simulation des algorithmes de planification,
I’architecture logicielle développée sous MATLAB, la méthodologie adoptée, ainsi

que I’analyse comparative des résultats obtenus selon différents scénarios simulés.

Enfin, une conclusion générale synthétise les principaux apports de cette étude,
souligne les limites du systéme proposé et propose des perspectives d’amélioration et de

validation future en environnement réel contrélé.
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CHAPITRE 1 : Etat de I'art sur les systémes de gestion des drones

1.1 Introduction

Ces dernieres années, les drones ont pris une place de plus en plus importante dans
notre quotidien, que ce soit pour la surveillance, la livraison, I’agriculture ou la
cartographie. Autrefois réservés a un usage militaire, ils sont aujourd’hui devenus des
outils incontournables dans de nombreux secteurs grace aux avancées technologiques en
intelligence artificielle, en robotique et en communication.

Mais cette évolution rapide s’accompagne de nouveaux défis. Lorsqu’ils volent en groupe,
notamment dans des zones aériennes contrdlées, il devient crucial d’assurer leur bonne
coordination, d’éviter les collisions et de garantir la sécurité de leurs trajectoires.

Ce chapitre a pour but de poser les bases de ce travail en présentant les grands
principes liés aux drones : ce qu’ils sont, comment ils ont évolué, les différentes catégories
existantes, les regles qui encadrent leur utilisation, et les technologies actuelles qui
permettent de les gérer efficacement, en tenant aussi compte de I’impact écologique. Ces
¢léments nous permettront ensuite d’aller plus loin dans 1’analyse et la conception d’un

systéme automatisé et sécurisé de gestion de flotte.

1.2 Géneralités sur les drones
1.2.1 Historique des drones

Les drones ont vu le jour durant la Premiére Guerre mondiale, avec les premieres
tentatives d’avions sans pilote destinés a des missions militaires, comme cibles volantes ou
engins destineés au largage d’explosifs. Dans les années 1930 et 1940, leur développement
s’intensifie : les Etats-Unis et I’Allemagne congoivent alors des véhicules radiocommandés
et des bombes guidées. Cependant, les technologies de guidage restaient limitées et
sensibles aux interférences.

Le véritable essor des drones s’est produit a partir de la guerre de Corée et s’est
accéléré durant la guerre du Viétnam, ou ils ont été utilisés pour la reconnaissance aérienne
et la collecte d’informations sans exposer de pilotes humains. Les progrés en électronique,
informatique et télécommunications ont permis d’améliorer leur autonomie et leur
précision.

Depuis les années 2000, les drones sont devenus des outils militaires stratégiques,
notamment pour la surveillance et les frappes ciblées dans la lutte contre le terrorisme.
Parallelement, leur usage s’est largement étendu au secteur civil, avec des applications
dans la cartographie, 1’agriculture, la photographie aérienne et la surveillance

environnementale [01].
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1.2.2 Frise chronologique de I'évolution des drones

Le tableau ci-dessous présente les jalons majeurs de 1’évolution des drones, depuis
leurs premicres utilisations militaires rudimentaires jusqu’aux applications avancées
intégrant I’intelligence artificielle en milieu urbain. Cette frise met en lumiere les grandes

étapes technologiques ayant marqué le développement de ces systemes aériens sans pilote.

Tableau 1.1 : Frise chronologique illustrant I’évolution des drones de 1916 a 2024.

Evénement clé
1916  Aéronef sans pilote Sperry ~ Premier drone militaire rudimentaire (WWI)
1944 V-1 Allemand Premiére bombe volante autonome
1973  Drones tactiques israéliens Usage extensif en surveillance militaire
2000s Usage civil massif Photographie, surveillance, agriculture
2015+ Intégration 1A, SLAM Autonomie, livraison, gestion multi-drone

2024  Coordination par 1A dans les villes  Tests a grande échelle (Wing, Zipline, etc.)

1.2.3 Définition d’un drone
Un drone (ou UAV - Unmanned Aerial Vehicle) est un véhicule sans pilote
embarqué, controlé a distance ou autonome, servant d’outil mobile d’observation, de

collecte et parfois d’action, dans des contextes civils ou militaires.

Le terme « drone » vient de 1’anglais (faux bourdon), en référence au bourdonnement

des premiers modeles.

1.3 Classification des drones

Les drones, ou systémes d’aéronefs sans pilote, connaissent une diversité croissante
en termes de conception, de fonctionnement et d’utilisation. Pour mieux comprendre cette
variété, il est pertinent de les classer selon plusieurs criteres technologiques et fonctionnels.
La figure ci-dessous présente une classification systématique des drones selon quatre

grands axes : le mode de pilotage, la configuration, le type de voilure et 1’application.
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Classification des

drones
|
[ | | |
Selon leur mode de Selon leur Selon leur Selon
pilotage configuration voilures I’application
| | Drones | | Drones | | Dronesa | | Dronesde
télépilotés hybrides voilures fixes loisir
| | Drones | | Drones | I\D/cr)ci)lrsjerseg | | Drones
autonomes multirotors tournantes professionnels
| [ Drones a ailes | | Drones
battantes militaires

Figure 1.1 : Classification des drones.

1.3.1 Classification selon leur mode de pilotage
1.3.1.1 Drones télépilotés (RPAS)

Les drones RPAS (Remotely Piloted Aircraft Systems) sont contrdlés a distance en

temps réel par un pilote humain depuis une station au sol. Le systéme comprend le drone
lui-méme, une ou plusieurs stations de commande, ainsi que les liaisons de communication
qui assurent la transmission des données et des instructions de vol.
Ces drones sont congus pour opérer dans 1’espace aérien selon des régles de sécurité
comparables a celles des aéronefs habités. Ils sont largement utilisés dans des missions de
surveillance, de cartographie ou d’inspection technique, ou une supervision humaine est
requise [02].

La Figure 1.2 ci-dessous illustre un exemple de drone RPAS.

Figure 1.2 : Drone RPAS.
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1312 Drones autonomes

Les drones autonomes sont capables d’exécuter des missions sans intervention
humaine directe, en s’appuyant sur des technologies avancées telles que I’intelligence
artificielle, le machine Learning, les systemes de navigation embarqués et une variété de
capteurs.
Leur niveau d’autonomie peut varier : certains modeles nécessitent une supervision
occasionnelle, tandis que d’autres sont congus pour effectuer des taches complexes de
maniére totalement indépendante, notamment dans les domaines de la logistique, de la
surveillance automatisée ou de la cartographie de terrains difficiles d’accés [03].

La Figure 1.3 ci-dessous illustre un exemple représentatif de drone autonome.

Figure 1.3 : Drone autonome.

1.3.2 Classification selon leur configuration
1321 Drones hybrides
Un drone hybride est un UAV qui utilise au moins deux sources d'énergie différentes
pour alimenter son systeme de propulsion en vol. Il existe différents types de drones
hybrides, chacun ayant des configurations et des applications spécifiques [04].

La Figure 1.4 ci-dessous illustre un exemple représentatif de drone hybride.
A &
k " S ‘ 4
(a) (b)
ﬁ ﬁ
(c) (d) (

Figure 1.4 : Exemples des drones Hybrides.

e)
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Types de drones hybrides :
e Drones hybrides air-sol.
e Drones hybrides électrique-gaz.

e Drones hybrides VTOL (Vertical Take-Off and Landing) a voilures fixes.

Deux types de drones hybrides a voilure fixe peuvent étre distingués :
Convertplanes :
e Tilt-Rotor : Rotors montés sur nacelles inclinables : verticaux au décollage,
inclinés vers 1’avant en vol.
e Tilt-Wing : L’ensemble de I’aile (avec les rotors) bascule selon la phase de vol.
e Rotor-Wing : Les rotors s’arrétent en vol et se transforment en ailes fixes.
e Dual-System : Rotors fixes pour le vol vertical + moteur dédié au vol horizontal.
Tail-Sitter :
e Ducted-Fan UAV : Rotor caréné (souvent coaxial) au centre du fuselage.
e CSTT (Control Surface Transitioning) : transition assurée par des gouvernes
aérodynamiques (ailes, dérives, etc.).
e DTTT (Differential Thrust Transitioning) : Transition grace a la variation de
poussee de plusieurs moteurs.
e Reconfigurable Wings : Ailes qui se déploient ou se rétractent selon la phase de
vol (petites pour décollage, grandes pour vol horizontal).
1.3.2.2 Multirotors
Un multirotor est un terme général utilisé pour décrire les UAV dotés de plusieurs
rotors. lls sont utilisés a des fins similaires aux quadricoptéres, mais leurs rotors
supplémentaires peuvent offrir une stabilité, une capacité de charge utile et une autonomie
de vol accrues [05]. Les multirotors sont classés comme suit :
e Quadricoptéere
C’est un drone équipé de quatre rotors, trés répandu grace a sa simplicité, sa bonne
stabilité et sa facilité de pilotage. Il est utilisé aussi bien pour les loisirs que pour la photo,
la surveillance ou I’agriculture.

La Figure 1.5 ci-dessous illustre un exemple représentatif de drone Quadricoptere.
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Figure 1.5 : Drone Quadricoptere.

e Hexacoptére
Ce drone a six rotors offre plus de stabilité et peut transporter des charges plus
lourdes qu’un quadricoptere. Il est souvent utilis¢ dans des missions professionnelles
comme la cartographie ou la pulvérisation agricole.

La Figure 1.6 ci-dessous illustre un exemple représentatif de drone Hexacoptere.

Figure 1.6 : Drone Hexacoptere.

e Octocoptére
Doté de huit rotors, ce drone est congu pour porter des charges importantes. 1l est
idéal pour les tournages professionnels, les inspections techniques et les opérations de
secours, car il est trés stable et fiable.

La Figure 1.7 ci-dessous illustre un exemple représentatif de drone Octocoptere.

Figure 1.7 : Drone Octocoptere.
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1.3.3 Classification selon leur voilure

Les drones peuvent également étre classés selon le type de voilure qu’ils utilisent, ce
qui conditionne fortement leurs performances aérodynamiques, leur stabilité en vol ainsi
que leurs cas d’usage [06]. On distingue principalement trois grandes catégories : les
drones a voilures tournantes, a voilures fixes et a ailes battantes comme illustré dans le
Tableau 1.2.

Tableau 1.2 : Classification selon leur voilure.

Drones a voilures Drones a voilures fixes Drones a ailes battantes
tournantes
Utilisent des rotors pour Volent a I’aide d’ailes et Imitent le vol des oiseaux
rester en vol stationnaire, d’un moteur, offrant ou insectes, offrant une

offrant une grande stabilité  vitesse, autonomie et faible  grande agilité a basse

idéale pour les missions consommation, ce qui les vitesse et une capacité de

d'inspection, bien qu'ils rend idéaux pour les manceuvre idéale dans des
soient moins rapides en missions de surveillance sur environnements confinés.
déplacement horizontal. de longues distances.

Voilures Voilures Ailes battantes
fives tournantes (omithoptres)

Figure 1.8 : Classification des drones selon la voilure.

1.3.4 Classification selon I'application
Les drones ont de nombreuses utilisations différentes. Bien qu'ils puissent étre
utilisés pour le divertissement, leur nombre d'applications commerciales est en constante

augmentation. Elles comprennent :
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e Drones de loisir : Destinés au grand public, ils sont utilisés pour le divertissement,
la prise de vue amateur ou les courses de drones.

e Drones professionnels : Employés dans des secteurs variés tels que l'agriculture, la
construction, la sécurité ou la livraison, ils sont congus pour des taches spécifiques
et souvent équipes de capteurs avances.

e Drones militaires : Utilisés pour la reconnaissance, la surveillance, le
renseignement ou les frappes ciblées, ces drones sont souvent dotés de technologies
avanceées et peuvent étre armés.

1341 Exemples Récents d’Utilisation de Drones
Cette classification trouve un eécho direct dans ’actualité récente, a travers plusieurs
projets et initiatives emblématiques :

e Santé publique

En 2023, I’entreprise Zipline a réalisé plus de 500000 livraisons médicales par drone
au Rwanda et au Ghana. Ces opérations ont permis d’acheminer vaccins, poches de sang et
traitements urgents vers des zones isolées, améliorant ainsi significativement la couverture
sanitaire [07].

e Agriculture de précision

En Egypte et au Maroc, des drones sont mobilisés pour la cartographie des sols, la
détection du stress hydrique et I’optimisation de 1’irrigation, dans le cadre de projets menés
par 1’Universit¢ Mohammed VI Polytechnique. Ces usages permettent de mieux gérer les
ressources en eau et d’augmenter les rendements agricoles [08].

e Environnement

En France, ’entreprise Delair utilise des drones pour la surveillance des feux de
forét et de la biodiversité. Ces appareils offrent une capacité de détection rapide et une
visualisation & haute résolution, précieuses pour les services environnementaux et de
protection civile [09].

e Logistique urbaine

En 2024, Amazon a lancé ses premiéres livraisons commerciales par drones via le
programme Prime Air, aux Etats-Unis et au Royaume-Uni. Cette innovation vise a
désengorger les réseaux logistiques traditionnels tout en réduisant les délais de livraison
[10].

10
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1.4 Reéglementation et gestion du trafic aérien pour les drones

1.4.1 Réglementation Internationale

La réglementation des drones au niveau international repose sur I'action de plusieurs

organismes majeurs, chacun jouant un réle spécifique en matiere de sécurité aérienne, de

normalisation technique ou de cadre juridique. Ces régulations sont essentielles pour

assurer une utilisation sdre, harmonisée et transfrontaliere des systémes de drones,

notamment dans les domaines civils, commerciaux et institutionnels.

Le tableau suivant présente une synthése des principales organisations internationales

impliquées dans la régulation des drones, ainsi que leurs contributions respectives :

Tableau 1.3 : Tableau synthétique résumant les actions clés des trois principales

organisations régulatrices des drones.

0ACI

(Organisation de
P Aviation Civile
Internationale)
[131[14]

FAA —FEtats-
Uniz (Federal
Aviation
Administration)
[11][14]

EASA — Europe
(Agence Européenne
de la Sécurité
Aérienne)

11112}

- 2007: Groupe UAS
Study Group

- 2008: Introduction des
EPAS

-2014: Panel RPAS

- 2015: UAS Advisory
Group

- 2016: UAS Toolkit

- Symposiums DRONE
ENABLE

- Enregistrement
cbligateire (=250g)

- Test TRUST pour
pilotes récréatifs

- Bemote ID obligatoire
(2023)

- Bégles strictes de vol
(vue directe, altitude,
zones interdites)

- Sanctions en cas
d'infraction

- Béplements européens
(EU 2019/947 et
2019/945)

- Certification et
Supervision

- Catégorisation :
Ouverte, Specifique,
Certifiée

- U-Space

- Publication Easy
Access Rules (EAR)

- Convention de
Chicago : drones =
zéronefs

- Article 8 -
autorisation
nationale requise

- Harmonization
internationale

- Distinction leisir /
commercial

- Intézration
progressive dans le
NAS (National
Airspace System)

- Bégles
communautaires
pour loisirs

- Certification pour
UsATES COMMETCIAE
- Béglementation
harmonisée dans
I'UE

- Catégorisation par
niveau de risque

- Flexibilité pour
certains aspects
nationaux {3ge,

Zomes, etc.)

- Sécurité et
intégration des drones
danz 1"aviation civile
mondiale

- Développement du
cadre UTM {gestion
trafic bazse altitude)

- Planz mondiaux
GASP (zécurité) et
GANP (navigation)

- Sécurité publique et
tragabilité

- Protection des
personnes et des
infrastructures

- Intégration sécurisée
dans 1'espace aérien

national

- Sécurité et
harmonisation
EUrOpEETNe

- Facilitation des
opérations
transfrontaliéres

- Intégration
progressive des drones
dang 1'espace aérien

11
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1.4.2 Réglementation des drones en Algérie
L’intégration des drones dans I’espace aérien algérien constitue un enjeu
technologique, économique et sécuritaire majeur. Face a la croissance rapide de
I’utilisation des systémes d’aéronefs sans pilote, 1’Algérie a mis en place un cadre
réglementaire spécifique, officialisé par le décret présidentiel n° 21-285 du 13 juillet
2021 [15]. Ce cadre vise a garantir la sécurité des vols et des personnes, tout en favorisant
le développement des usages civils, commerciaux et institutionnels des drones.
1421 Cadre juridique national
Le décret présidentiel n°® 21-285 constitue la base de la législation actuelle. 1l définit
les regles relatives a :
e L’importation et I’acquisition de drones,
e Leur homologation et enregistrement,
e Leur utilisation et circulation sur le territoire algérien.
Ce décret introduit une logique de coordination entre institutions pour encadrer toutes les
¢étapes du cycle de vie d’un drone.
1422 Principales autorités concernées
Plusieurs institutions collaborent dans 1’¢laboration et 1’application de Ia
réglementation :
e Ministere de la Défense National : Supervise la réglementation générale a travers
un centre national déedie.
e Centre National des Systémes d’Aéronefs sans Pilote a Bord : Cré¢ sous 1’égide
du Ministére de la Défense, il est chargé de :
— Délivrer les autorisations (importation, acquisition, usage),
— Homologuer les drones et leurs opérateurs,
— Controler et suivre les activités liées aux drones.
e Ministere des Travaux Publics et des Transports : Intervient sur les questions
relatives a I’intégration des drones dans la circulation aérienne civile.
e Agence Nationale de I’Aviation Civile (ANAC) :
En charge de :
— La réglementation et supervision du trafic aérien civil,
b L’élaboration de textes en collaboration avec le Centre National,

> La délivrance d’autorisations relatives a 1’espace aérien.

12
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e Etablissement National de la Navigation Aérienne (ENNA) :
> Gere I’espace aérien national,
> Coordonne les usages civils et militaires, notamment dans les zones a usage
restreint.
e Autorité de Régulation de la Poste et des Communications Electroniques
(ARPCE) :
b Attribue les bandes de fréquences dédiées aux drones (y compris la 5G),
b Gere la régulation des interférences radioélectriques avec les communications
aéronautiques.
1423 Procédures d’autorisation
Toute acquisition ou utilisation d’un drone en Algérie suit un processus en plusieurs
étapes :
e Soumission de la demande au Centre National (Ministére de la Défense),
e Consultation technique de I’ANAC, de I’ENNA et du Ministére des Transports,
e Délivrance de ’autorisation par le Centre National,
e Supervision et contrdle continu assurés par le Centre National, ’ANAC et
I’ENNA.
1424 Sécurite nationale et drones militaires
L’usage de drones militaires ou armés est strictement encadré. Ces appareils sont
soumis a une surveillance renforcée, en particulier dans les zones sensibles ou frontaliéres.
A titre d’exemple, un drone de reconnaissance armé a été abattu prés de la frontiére avec le
Mali le ler avril 2025, illustrant la vigilance des autorités dans la sécurisation de I’espace
aérien [16].
1.5 L’espace aérien
1.5.1 Subdivision de I’espace aérien
L’espace aérien constitue une ressource stratégique dont la gestion repose sur des
principes de sécurité, de coordination et de réglementation. Il est généralement divisé en
différentes catégories en fonction du niveau de contrdle exercé sur les vols qui y circulent.
Cette subdivision permet d’adapter les régles de navigation aux différents types d’usagers
(aviation civile, militaire, drones, etc.).

La Figure 1.9 ci-dessous illustre cette classification générale :
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Espace aérien

Espace Espace non Zones a statut
controlé controlé particulier

Figure 1.9 : Subdivision de 1’espace aérien.

1511 L’espace aérien controlé

L’espace aérien contrdlé est une zone strictement régulée par les services de la
navigation aérienne, dans laquelle les aeronefs doivent se conformer a des regles précises
afin de prévenir tout risque de collision ou d’interférence. Cet espace est placé sous la
surveillance permanente de 1’Air Traffic Control (ATC), qui gere le trafic en temps réel
et coordonne les mouvements des aéronefs selon des plans de vol validés.

Selon les classifications de L’OACI et de la FAA, cet espace est subdivisé en
différentes classes (A a E) en fonction du niveau de contrble exercé et du type de vol
autorise (VFR/IFR).

La Figure 1.10 ci-dessous illustre schématiquement la structuration typique de I’espace

aérien controlé selon les normes internationales.

Espace aérien

controle
| ]
Zone de contrdle Zone de contréle Zone supérieur de
CTA d’aérodrome CTR controle UTA

Zone de contrble
terminal TMA

Les voies aériennes
AWY

Figure 1.10 : L’espace aérien controlé.

e CTA (Control Traffic Area)
Zone de contrdle situé au-dessus d’une limite inférieure spécifiée, sans commencer

au sol, destiné a organiser le trafic en altitude et la transition entre zones.
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> TMA (Terminal Maneuvering Area)
Zone de controle terminale autour d’un ou plusieurs grands aéroports, protégeant
les trajectoires de départ et d’arrivée des avions.

- AWY (AirWway)
Routes aériennes équipées d’aides a la navigation, reliant les TMA entre elles, avec
une largeur standard de 10 NM (5 NM de chaque coté).

e CTR (Control Zone)

Zone de contrble s’étendant du sol jusqu’a une altitude spécifiée, généralement
autour d’un aérodrome, pour gérer les phases critiques de vol comme le décollage et
’atterrissage.

e UTA (Upper Traffic Area)

Zone supérieure de contrdle situé a haute altitude, généralement au-dessus du FL245

jusqu’au FL460, destiné a la gestion du trafic en croisiére.
1512 L’espace aérien non controlé

Il comprend principalement les classes F et G, ou les aéronefs ne sont pas obliges de

recevoir des services de contrle du trafic aérien, mais ils peuvent les demander si

nécessaire. Il est limité a I’ Information et I’ Alerte.

Espace aérien non contrélé

I
I I
Régions d’information Régions Supérieure
de vol FIR d’information de vol UIR

Figure 1.11 : L’espace aérien non controlé.

¢ FIR (Flight Information Region)
Région d’information de vol délimité au sol jusqu’a une altitude moyenne (ex.
FL195), ou sont fournis les services d’information de vol et d’alerte.
e UIR (Upper Information Region)
Région Supérieure d’information de vol englobant plusieurs FIR, situé au-dessus de
ceux-ci, assurant la continuité des services dans les hautes couches de 1’atmosphére.
1.5.1.3 Les zones a statut particulier
e Zone Interdite (P : Prohibited Area) : Vol strictement interdit pour protéger des
sites sensibles.
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e Zone Réglementée (R : Restricted Area) : Vol soumis a conditions spécifiques,
souvent temporaire.
e Zone Dangereuse (D : Dangerous Area) : Activités potentiellement risquées, vol
déconseillé pendant I’activité.
1.6 Technologies utilisées pour la gestion de flotte de drones

La gestion automatisée d’une flotte de drones repose sur une architecture modulaire,
intégrant plusieurs composants fonctionnels interconnectés. Chaque drone embarque des
capteurs lui permettant de percevoir son environnement. Cette perception alimente les
modules de planification de trajectoire, de communication inter-drones, et de prise de
décision. La commande est ensuite transmise aux actionneurs du drone pour executer la
trajectoire prévue.

La coordination entre drones peut étre assurée de maniére centralisée ou distribuée.
L'intégration de ces modules dans un systeme coherent est essentielle pour garantir la
sécurité, I’efficacité énergétique et la robustesse de la mission collective [17].

La Figure 1.12 illustre cette architecture simplifiée, souvent utilisée dans les systémes

multi-drones intelligents :

Capteurs
embarqués
A4
: Planification n|
Perception de trajectoire » Commande
A
Communication |,
inter-drones
Action du
drone

Figure 1.12 : L’architecture modulaire.

1.7 Revue synthétique d’approches récentes pour la gestion intelligente de flottes de
drones
Au cours des dernieres anneées, la recherche en gestion de flottes de drones a connu
des avancées significatives, s’appuyant sur D’intelligence artificielle, la planification
adaptative et les capteurs embarqués pour renforcer 1’autonomie, la sécurité et 1’efficacité

opérationnelle.
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Zhang et al. (2021) ont introduit une méthode de coordination reposant sur
I’apprentissage par renforcement multi-agent (Multi-Agent Reinforcement Learning). Leur
approche permet aux drones de prendre des décisions localement tout en assurant une
cohérence globale des trajectoires dans des environnements dynamiques et incertains. Ce
cadre distribué¢ favorise 1’adaptabilité en temps réel et réduit la dépendance a une

supervision centralisée.

De leur coté, Wang et al. (2022) ont proposé une stratégie centrée sur I’optimisation
énergétique, en intégrant des trajectoires adaptatives tenant compte de la charge utile et des
conditions environnementales. Leur modéle montre une amélioration notable de
I’autonomie des drones pour des missions de longue durée, en optimisant la consommation

d’énergie tout au long du vol.

Enfin, Li et Sun (2023) ont développé une architecture hybride combinant la
planification de trajectoire par I’algorithme A* avec des techniques d’évitement
dynamique basées sur des capteurs LIDAR. Cette approche vise a sécuriser les vols en
milieux urbains denses, en prenant en compte les obstacles imprévus ainsi que les

fluctuations de la densité du trafic aérien.

Ces travaux illustrent la diversité des approches actuelles et soulignent I’importance
croissante des systemes intelligents et adaptatifs dans la gestion collaborative des drones
[17, 18, 20].

1.7.1 Flotte de drones

Une flotte de drones (swarm en anglais) désigne un ensemble d’aéronefs autonomes
ou semi-autonomes opérant de maniére coordonnée. Chaque drone est considéré comme un
agent simple, mais grace a leurs interactions, ces agents peuvent produire des
comportements collectifs complexes et adaptatifs [21].
La coordination au sein d’une flotte peut suivre deux approches principales :

e Centralisée : un drone leader ou une station de commande au sol prend les
décisions stratégiques et les transmet aux autres drones, qui exécutent les ordres.

e Décentralisée (ou Auto-organisée) : chaque drone prend ses décisions localement,
en fonction des informations échangées avec ses voisins, favorisant la robustesse et
I’adaptabilité du systeme.

Le fonctionnement d’une flotte repose généralement sur un cycle en trois étapes :

e Perception : chaque drone observe son environnement a I’aide de ses capteurs.
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Décision : il évalue la situation ou recoit des instructions, selon le type de
coordination.
Action : il exécute ses mouvements et partage les résultats avec les autres membres

du groupe.

1.7.2 Systémes de navigation et autonomie

Les drones modernes embarquent une diversité de technologies leur permettant

d’évoluer de manic¢re autonome, méme dans des environnements complexes, sans

intervention humaine directe :

Radar embarqué : facilite la localisation sans GPS et améliore la navigation dans
des environnements obscurs ou encombreés.

GNSS (GPS, Galileo, GLONASS, etc.) : fournit un positionnement global précis,
souvent renforcé par des corrections différentielles comme le GDGPS du Jet
Propulsion Laboratory.

SLAM (Simultaneous Localization and Mapping) : permet au drone de se
localiser et de cartographier son environnement en temps réel a partir de capteurs
comme le LIDAR ou des caméras.

Intelligence Artificielle et Apprentissage Automatique : offrent des capacités
d’adaptation dynamique, notamment pour 1’évitement d’obstacles, 1’optimisation
de trajectoires ou la coordination d’essaims, via des techniques comme le

reinforcement learning.

1.7.3 Algorithmes d'optimisation de trajectoire

Dans le cadre d’une gestion automatisée de drones, la planification de trajectoires

sres, efficaces et adaptatives est un enjeu central. Elle doit permettre aux drones

d’atteindre leur destination tout en évitant les obstacles, en minimisant la consommation

énergétique, et en respectant les contraintes spatiales, temporelles et de sécurité.

Parmi les principaux algorithmes utilisés a cette fin, on peut distinguer :

Dijkstra et A* : Ces deux algorithmes de recherche de chemin sont largement
utilisés pour trouver la trajectoire la plus courte entre deux points dans un
environnement discret. L’algorithme A*, plus performant, utilise une fonction
heuristique pour guider la recherche, réduisant ainsi le temps de calcul tout en

conservant une solution optimale [22].
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e RRT (Rapidly-exploring Random Tree) : Cet algorithme est particuliérement
adapté aux environnements a haute dimension et peu structurés. Il explore
rapidement I’espace en générant un arbre aléatoire. Sa variante améliorée, RRT*,
garantit la convergence vers une solution optimale, tandis que la version
Multiplatform Spacetime RRT* prend en compte des contraintes spatio-
temporelles, ce qui est essentiel pour la sécurité dans des environnements
dynamiques [23].

e Apprentissage par renforcement profond (Deep Reinforcement Learning) :
Cette approche s'appuie sur des réseaux de neurones pour permettre au drone
d'apprendre a optimiser sa trajectoire en interagissant avec 1’environnement. Elle
est particulierement efficace dans des situations complexes ou imprévisibles, et
dans des environnements partagés ou les trajectoires doivent s’adapter en temps
réel aux autres agents (ex. autres drones ou obstacles mobiles) [24].

1.7.4 Tableau comparatif des principaux algorithmes de trajectoire

La planification de trajectoire constitue une composante clé dans les systemes de
navigation des drones autonomes. Plusieurs algorithmes ont été développés pour répondre
aux besoins spécifiques liés a ’environnement de vol, a la complexité du calcul, et au
niveau d’adaptabilité requis. Le tableau suivant synthétise les caractéristiques de trois

méthodes représentatives : A*, RRT* et les approches fondées sur le DRL.

Tableau 1.4 : Comparaison des algorithmes de planification pour drones autonomes.

Algorithme  Environnement Optimalité | Temps de Adaptabilité  Type de

calcul données

A*[25] Discret Oui Moyen Faible Carte
connue

RRT*[26] Continu Oui Elevé Moyen Peu
structuré
DRL [27] Dynamique Variable Long a Tres élevée Données
entrainer simulées
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1.7.5 Stratégies d'évitement de collision

L'évitement de collision est crucial pour assurer la sécurité des drones en vol.

Plusieurs stratégies sont mises en ceuvre :

Sense & Avoid : Utilisation de capteurs (radar, LIDAR, caméras) pour détecter et
éviter les obstacles automatiquement, comme avec le systéme Casia.

Ant Colony Optimization (ACO) : Optimisation des trajectoires d'essaims de
drones en s'inspirant du comportement des fourmis, réduisant le temps de
formation.

Formation Flying Algorithms : Coordination de plusieurs drones via des lois de
guidage virtuelles pour maintenir une formation stable pendant les missions

complexes.

1.8 Enjeux de sécurité dans les systéemes de drones automatises

Dans le cadre d’un systéme de gestion automatisée de drones, la sécurité ne se limite

pas a I’évitement des collisions ou a la fiabilit¢ de la navigation. Elle englobe également la

protection contre les cyberattaques, la résilience des communications, et la sécurité

physique et logique du systéme.

Les principaux enjeux de sécurité sont :

Sécurité des communications inter-drones et sol-drone : les données échangeées
(positions, instructions, alertes) doivent étre protégees contre les écoutes, les
falsifications ou les détournements. L’usage de protocoles chiffrés,
d’authentification mutuelle et de systémes de redondance est essentiel [29].
Résilience face aux pannes et aux attaques : un drone ou une station centrale
compromis ne doit pas mettre en danger toute la flotte. Les architectures
décentralisées ou tolérantes aux fautes, comme celles employées dans les réseaux
FANETSs (Flying Ad-Hoc Networks), permettent une meilleure continuité de service
[28].

Détection et réponse aux comportements anormaux : les algorithmes
d’apprentissage embarqués peuvent intégrer des mécanismes de détection
d’intrusion, en analysant par exemple les écarts de trajectoire ou les variations
inhabituelles de signal [29].

Protection réglementaire : les drones évoluant dans un espace aérien controlé
doivent respecter des regles strictes (ex. Remote ID, identification électronique),

afin d’éviter toute menace pour les aéronefs habités ou les infrastructures au sol.
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1.9 Aspects écologiques et de durabilité des drones

L’intégration des drones dans les activités civiles et industrielles souléve des enjeux
environnementaux majeurs. Si ces appareils représentent une alternative prometteuse aux
véhicules thermiques dans certaines applications, leur généralisation souleve également des
défis liés a leur cycle de vie, leur consommation énergétique et leur impact sur les
écosystemes [30, 31, 32].

Le Tableau 1.5 ci-dessous résume les principaux avantages, défis et solutions durables

associés a I’usage des drones.
Tableau 1.5 : Les aspects écologiques et de durabilité des drones.

Avantages Défis Solutions durables

- Batteries polluantes : - Innovations

Jusqu’a -84 % de CO, vs  Extraction miniére et

véhicules thermiques, idéal

technologiques : Batteries

recyclage complexe des solaires, bioplastiques et

pour la livraison urbaine. lithium-ion. algorithmes éco-optimisés.

- Surveillance - Nuisances sonores : Stress - Cadre réglementaire :

environnementale : animalier et Zones de vol protégeées et

Protection des écosystemes,
détection de pollution et
gestion de crises.

- Energie propre :

réglementations strictes en
zones urbaines.
- Cycle de vie : Impact des

infrastructures logistiques

certifications écologiques.
- Applications vertes :
Agriculture de précision

(réduction des pesticides) et

Motorisation électrique et et matériaux non reforestation assistée.

optimisation des trajectoires recyclables.

par 1A,

1.10 Conclusion

Ce chapitre a permis d'établir les fondements essentiels a la compréhension des
systemes de drones. Nous avons retracé leur évolution historique, analysé leurs différentes
classifications et examiné en détail les cadres réglementaires applicables, avec un accent
particulier sur le contexte algérien. Par ailleurs, nous avons étudié les principes clés de
gestion de flotte, incluant les architectures fonctionnelles, les technologies embarquées

ainsi que les considérations environnementales associees.
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Ces éléments théoriques et pratiques forment une base solide pour aborder la
problématique centrale de notre recherche. Dans le chapitre suivant, nous nous appuierons
sur ces acquis pour explorer les mecanismes algorithmiques avancés permettant d'assurer

une coordination optimale des drones dans des environnements complexes.
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CHAPITRE 2 : Fondements théoriques, analyse et conception du systeme de gestion

automatisée de drones

2.1 Introduction

La navigation autonome de flottes de drones s’impose dans des domaines variés
comme la surveillance, la logistique ou la cartographie. Ces systémes doivent gérer en
temps réel les trajectoires de plusieurs drones dans un environnement 3D complexe, tout en

respectant des contraintes de sécurité, de performance énergétique et de réglementation.

Ce chapitre présente les fondements théoriques du systeme proposé. Il détaille les
algorithmes de planification retenus (GA, PSO, A*), les critéres d’évaluation utilisés, ainsi
que les bases de modélisation de 1’environnement, des communications inter-drones et des
contraintes opérationnelles. Ces ¢éléments préparent la simulation et 1’analyse des

performances du systéme étudié.
2.2 Fondements théoriques et état de I'art

2.2.1 Les Algorithmes d'Optimisation pour la Planification de Trajectoire

La planification de trajectoire est une tache centrale dans les systémes de navigation
autonome pour drones. Elle consiste a déterminer un chemin optimal entre un point de
départ et un objectif tout en respectant diverses contraintes : obstacles, consommation
énergétique, temps, etc. Trois approches sont étudiées dans ce projet : 1’Algorithme

Génétique (GA), I’Optimisation par Essaim Particulaire (PSO) et 1’ Algorithme A*.

2.2.1.1 Pourquoi les Métaheuristiques ?

Contrairement aux méthodes exactes qui deviennent inefficaces en environnement
dynamique et fortement dimensionné, les métaheuristiques permettent une recherche
robuste et adaptative. Elles sont capables de gérer des espaces de recherche non convexes,
bruités ou partiellement connus. Les algorithmes GA et PSO sont parmi les plus utilisés,

notamment dans les contextes de planification pour systemes multi-agents.
2.2.1.2 Algorithme Génétique (GA)

L’algorithme génétique est une méthode évolutionniste inspirée de la sélection
naturelle. Chaque solution est représentée comme un individu (vecteur de coordonnées).

Une population évolue selon :

e Sélection : les individus les plus adaptés sont conservés.
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e Croisement : deux parents donnent naissance a de nouveaux individus.

e Mutation : des variations aléatoires permettent 1’exploration.

La fonction de fitness utilisée dans notre simulation est :

f@) = llp - gll + L max(0,Ds — (lp — o;ll — 1)) (2.1)
Ou:

e f(p) : lafonction de fitness.

e p :position candidate.

e g :position objective.

e 0; : position du i-eme obstacle.

e 17 :S0N rayon.

e D, :ladistance de sécurité.
Cette formulation pénalise les chemins proches des obstacles tout en minimisant la
distance au but [33].

2.2.1.3 Optimisation par Essaim Particulaire (PSO)

L’algorithme PSO (Particle Swarm Optimization) simule un ensemble de particules
interagissant collectivement pour trouver une solution optimale.
Chaque particule représente ici une position candidate du drone [34]. A chaque itération,

les particules mettent a jour leur position et leur vitesse selon
v(t + 1) = wvy(t) + c171 (PP — x;) + 15 (gP*t — x;)  (2.2)
xi(t+1) =x;(t) +v;(t+1)-At (2.3)
Ou:

e x; : Position de la particule i.

e v; : Vitesse de la particule i.

e w :facteur d’inertie.

® (4,Cy :les coefficients d’accélération.
e 1,1, € [0,1]:des valeurs aléatoires.

o pPest:lameilleure position trouvée par la particule.
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best - 1a meilleure position globale de 1’essaim.

* g
e Dans la majorité des implémentations et dans la littérature sur le PSO, At est
implicitement considéré égal a 1, car I’algorithme est itératif (une itération = un
pas de temps).
» Fonction de codt (PSO)

Elle prend en compte la distance minimale aux autres drones et la proximité aux

obstacles (via une pénalité accumulée).
Coutpsg = max(0, Dsgcyrits — Amin) + 2imax(0, Dsscyrirs — (X — 04ll — 7)) (2.4)

Oou:

e Dycurite - Distance minimale de sécurité a respecter.

e d,in : Distance minimale entre le drone et d’autres drones.
e x : Position du drone considéré.

e 0; : Position de I’obstacle i.

e 7; : Rayon de ’obstacle i.

e |lx — o;]| : Distance entre le drone et I’obstacle i.

2.2.1.4 Algorithme A*

L’algorithme A* est une méthode de recherche informée classique dans les
graphes, introduite par Hart, Nilsson et Raphael [35]. Il repose sur la fonction

d’évaluation :
fM)=gm) +h(n) (2.9
Ou:
e g(n) : le colt réel depuis le point de départ jusqu’au nceud actuel n.
e h(n) : une estimation heuristique du coflit jusqu’a I’objectif (souvent une distance
Euclidienne).

A* explore les nceuds en priorité selon la fonction d’évaluation, garantissant 1’optimalité si

I’estimation heuristique h(n) est admissible.

2.2.15 Comparaison des Algorithmes

La diversité des algorithmes de planification de trajectoire repose sur des principes

variés, allant de la recherche de chemin déterministe a l’apprentissage adaptatif en
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environnement dynamique. Afin d’évaluer leurs performances respectives dans le cadre

d’une gestion de flotte de drones, une comparaison synthétique s’impose.

Le Tableau 2.1 ci-dessous met en perspective plusieurs critéres d’analyse clés tels que
I’environnement cible, 1’optimalité du résultat, le temps de calcul, I’adaptabilité face aux

perturbations, ainsi que le type de données nécessaires a leur fonctionnement.

Tableau 2.1 : Tableau comparatif des algorithmes.

Critére

GA

PSO

A*

Nature

Principe

Environnement

dynamique

Convergence

Complexité de

calcul

Facilité

d’implémentation

Multi-agents

Energie (résultat

simulation)

Stabilité trajectoire

Métaheuristique

évolutive

Croisement &

mutation

Bonne adaptation

(fitness)

Lente mais stable

Moyenne

Moyenne

Bonne coopération

possible

Moyenne a faible

Moyenne a bonne

Métaheuristique

d’optimisation

Coopération &

inertie

Moyenne (stagnation

possible)

Rapide mais moins

stable

Faible

Simple

Bonne propagation

Variable

Faible (oscillations)

Recherche informée

Heuristique co(t +

estimation

Faible
(replanification

lourde)

Instantanée (locale)

Elevée (3D

dynamique)

Complexe sans grille

Replanification

indépendante

Elevée dans

obstacles

Bonne mais rigide
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2.2.1.6 Méthodes Hybrides de Planification

Les méthodes hybrides de planification combinent plusieurs algorithmes pour
bénéficier de leurs forces respectives. Par exemple, le couplage GA-PSO tire profit a la
fois de la capacité exploratoire de 1’algorithme génétique et de la rapidité de convergence
du PSO. Cela permet de mieux s’adapter a des environnements dynamiques tout en
réduisant le risque de stagnation dans des minima locaux. Une autre approche courante est
A-RRT**, qui utilise A* pour guider l’arbre de recherche RRT* vers les régions
prometteuses de l’espace. Ces solutions hybrides sont particulicrement adaptées aux
environnements partiellement connus, ou la rapidité de calcul et la robustesse sont toutes

deux cruciales [36].

D'autres approches plus récentes, notamment basées sur 1’apprentissage par
renforcement profond (DRL), commencent également a étre explorées dans la planification

multi-drone.

2.2.1.7 Justification du Choix des Algorithmes Utilisés

Le choix des algorithmes A*, GA et PSO repose sur une analyse comparative
rigoureuse, alignée sur les caractéristiques propres a l’environnement simulé et aux

exigences opérationnelles d’un systéme multi-drones.

e L’algorithme A* a été retenu comme référence déterministe pour sa capacité a
générer des trajectoires optimales dans des environnements bien cartographiés et
relativement statiques. Grace a 1’exploration de graphes pondérés a partir d’une
grille d’occupation, il offre une convergence garantie vers la solution optimale, ce
qui en fait un standard dans les systemes robotisés a base heuristique [35].

e L’algorithme GA, quant & lui, se distingue par sa robustesse dans les
environnements complexes et dynamiques. Son aptitude a optimiser plusieurs
objectifs simultanément et a éviter les minima locaux le rend pertinent pour la
navigation 3D distribuée. Son efficacité a été démontrée dans des travaux
fondateurs de Holland [33] et plus récemment par Bouabdallah et al [37].

e L’algorithme PSO a été choisi pour sa capacité de convergence rapide dans des
environnements continus. En favorisant un échange rapide d’informations entre

particules, il se révéle particulierement adapté a des flottes de drones collaborant
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localement. Les recherches de Kennedy et Eberhart [2], ainsi que les validations
expérimentales de Tang et al. [36], confirment son intérét dans des scénarios

hybrides temps réel.

En combinant ces trois approches, I’étude couvre un large spectre de stratégies de
navigation, allant de méthodes informées basées sur des heuristiques (A*) a des approches
évolutionnaires (GA) et collaboratives (PSO). Ce triptyque permet une évaluation
comparative approfondie selon des criteres tels que la distance parcourue, la consommation

énergétique, le taux de collisions évitées et la stabilité globale du systeme [38, 36].

Toutefois, malgré leurs atouts respectifs, ces algorithmes présentent certaines limites
structurelles dans des contextes fortement dynamiques ou a topologie changeante. Ces
aspects feront I’objet d’une analyse critique dans la section suivante, afin de mieux cerner

les perspectives d’optimisation futures.
2.2.1.8 Limites des Approches Classiques de Planification

Malgré leurs performances éprouvées dans de nombreux contextes, les algorithmes de
planification utilisés dans cette étude présentent des limites structurelles qui méritent une
analyse approfondie, en particulier lorsqu’ils sont appliqués a des scénarios réels marqués

par la dynamique, I’incertitude ou la complexité topologique.
a. Limites de I’algorithme A*

L’algorithme A* offre une optimalité remarquable dans des environnements bien

cartographiés, mais il souffre de plusieurs inconvenients majeurs :

e Sensibilité a la résolution de la grille : une discrétisation fine augmente
drastiquement les codts de calcul (mémoire, temps), tandis qu’une grille grossiére
engendre des trajectoires sous-optimales.

e Faible adaptabilité aux environnements continus : dans un espace 3D non
discrétise, A* nécessite des interpolations complexes, ce qui nuit a son efficacité en
temps réel.

e Manque de réactivité : en I’absence de mécanisme de replanification intégré, A*

est peu efficace face aux obstacles dynamiques ou imprévus [35, 39].
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b. Limites de I’algorithme GA
Bien que robuste et flexible, GA présente les limitations suivantes :

e Temps de convergence élevé : il nécessite un grand nombre de générations pour
atteindre une solution satisfaisante, ce qui peut devenir prohibitif sur des systemes
embarqués.

e Dépendance aux parametres : la performance dépend fortement du réglage des
paramétres (taille de population, taux de mutation), souvent ajustés de maniére
empirique. [33, 37]

C. Limites de I’algorithme PSO

L’approche PSO, reconnue pour sa rapidité, montre également des faiblesses

notables :

e Risque de stagnation : I’algorithme peut converger prématurément vers des
solutions locales sous-optimales.

e Manque de diversité : une fois la population cristallisée, 1’exploration devient
limitée, réduisant la capacité a s’adapter a des environnements changeants.[34, 36]

d. Contraintes des méthodes hybrides

Les approches combinées telles que GA-PSO ou A-RRT** visent a tirer profit des

forces respectives des algorithmes. Toutefois :

e Complexité d’intégration : leur implémentation nécessite une synchronisation fine
entre modules hétérogénes.

e Colts computationnels élevés : I’accumulation de calculs issus de chaque
composant peut devenir contraignante pour les applications temps réel [36].

e. Limites des approches par apprentissage profond (DRL)

Les algorithmes fondés sur le Deep Reinforcement Learning (DRL), bien que

prometteurs, posent encore plusieurs défis :

e Besoins en données d’apprentissage massifs : leur efficacité dépend de jeux de

données volumineux et variés.
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e Instabilité et sensibilité : leur comportement peut devenir imprévisible en présence
de bruit, d’attaques ou de situations inédites.

o Difficulté d’interprétation : ces modeles sont souvent considérés comme des
boites noires, ce qui complique leur validation dans des contextes critiques [40].

f. Perspectives et justification du choix

Ces limitations expliquent la démarche comparative adoptée dans cette étude. Plutét
que de privilégier une méthode unique, nous avons cherché a identifier les scénarios
favorables et critiques pour chacun des algorithmes étudiés, en mettant en évidence les

compromis entre optimalité, robustesse, rapidité de convergence et adaptabilité.

Enfin, malgré leurs faiblesses, ces approches restent référentes dans la littérature
scientifique sur la navigation multi-drones [36, 37], Elles représentent un compromis
réaliste entre performance, simplicité¢ d’implémentation et colit computationnel, ce qui les
rend adaptées a une simulation controlée dans une premicre phase d’évaluation. Ces
constats ouvrent la voie, dans les chapitres suivants, a 1’exploration de stratégies hybrides

adaptatives ou d’algorithmes émergents plus résilients.
2.2.2 Modélisation de I'Environnement et des Obstacles

Pour simuler de maniére réaliste la navigation d’une flotte de drones, il est
nécessaire de modéliser un environnement tridimensionnel prenant en compte a la fois les
obstacles statiques et dynamiques. La configuration choisie repose sur un espace 3D borné,

avec une altitude minimale autorisée, une vitesse maximale et une distance de sécurité.
2.2.2.1 Obstacles Statique

Les obstacles statiques sont des entités fixes dans 1’espace qui représentent par
exemple des batiments ou des pylones. Ils sont modélisés par des spheres définies par une

position fixe et un rayon. Lors de la planification, toute position candidate telle que :
lp—oill < ri+Ds  (2.6)
Ou:
e p :position candidate dans I’espace (point a évaluer lors de la planification).
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e 0, : position fixe du centre de I’obstacle statique i (coordonnées de la sphére).
e 1; :rayon de I’obstacle statique i (taille de la sphére).
e D, :distance de sécurit¢ minimale a respecter autour de I’obstacle pour éviter toute

collision potentielle.

Est considérée comme une collision potentielle et pénalisée dans la fonction de colt. Cette
modélisation simplifiée permet un calcul rapide des distances et une intégration directe

dans les algorithmes d’optimisation comme GA, PSO [41].
2.2.2.2 Obstacles Dynamiques

Les obstacles dynamiques simulent des entités mobiles telles que d’autres drones,
des oiseaux ou des objets en mouvement. Chaque obstacle est caractérisé par sa position et

vitesse.
La mise a jour des positions se fait selon :

0;i(t+1) =o0;(t) +v,At (2.7)
Ou:

e 0;(t) : une position a I’instant t.
e v; I Une vitesse constante.

e At :le pas de temps.

Avec gestion des rebonds aux frontieres de 1’espace simulé. Lorsqu’un obstacle
atteint un bord, sa vitesse est inversée dans la dimension concernée. Cette approche permet
de simuler un environnement semi-fermé ou les obstacles se déplacent librement tout en
restant contenus. Cette mod¢lisation s’inspire des méthodes de navigation multi-agent en
temps réel, notamment la méthode des Reciprocal Velocity Obstacles (RVO) proposée par
Van Den Berg, J., Lin, M., et Manocha,D [42].

2.2.2.3 Environnement 3D et Contraintes physiques

Dans le cadre de cette étude, I’environnement de simulation est modélisé comme un

espace tridimensionnel discrétisé, délimité selon les axes X, Y et Z. Ce volume représente
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un espace aérien contrélé dans lequel évolue une flotte de drones autonomes. L’objectif est
d’y simuler un comportement réaliste en intégrant des contraintes physiques essentielles a

la sécurité et a la faisabilité opérationnelle.
a. Contraintes appliquées
Les principales contraintes physiques imposées aux drones sont les suivantes :

e Vitesse maximale : 10 m/s.

e Altitude minimale : 5 m.

e Distance minimale de sécurité entre entités : 15 m.

Ces contraintes sont appliquées a deux niveaux du systeme :

e Dans les algorithmes de planification (GA et PSO) : Elles sont traduites sous
forme de bornes de recherche dans 1’espace de solutions admissibles, empéchant la
géneration de trajectoires non conformes.

e Dans la simulation dynamique : Des fonctions de vérification de collision sont
intégrées pour s’assurer, a chaque étape de mise a jour, que les conditions de
sécurité sont respectées (notamment la distance inter-drones et 1’altitude minimale).

b. Contrdle de I’altitude minimale
L’altitude minimale est systématiquement respectée grace a une fonction de

correction qui verifie la validité de chaque nouvelle position générée. Cette contrainte est

formalisée par 1’équation suivante :
z(t+ 1) = max(z,;,,z(t) + Az) (2.8)

e z(t) : altitude a I’instant t.
e z(t+ 1) : altitude a I’instant suivant (t+1).
® Znin . altitude minimale autorisée par la réglementation ou 1’environnement.

e Az :variation d’altitude (peut €tre positive ou négative selon la commande).

Ainsi, tout dépassement a la baisse de cette altitude est automatiquement corrigé,

garantissant que les drones n’évoluent jamais sous le seuil de sécurité fixé.
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Cette modélisation garantit des trajectoires cohérentes avec les exigences d’un espace
aérien controlé. Cette approche s’inspire des configurations présentées dans Stefansson,

2018 [43] et Elshaar et al., 2024 [44].
2.2.3 Métriques d’Evaluation et Indicateurs de performance

L’¢évaluation des performances d’un systéme de navigation autonome multi-drones
repose sur un ensemble de métriques quantitatives. Ces indicateurs doivent permettre de
juger de I’efficacité, de la sécurité, de la consommation énergétique et de la robustesse du
systéme, en conditions simulées ou réelles. Les métriques utilisées dans cette étude sont
issues a la fois de la littérature scientifique [45, 46], et d’observations empiriques issues de

la simulation développée.
2.2.3.1 Distance totale parcourue

La distance parcourue constitue I’'un des criteres fondamentaux d’évaluation. Elle

refléte la compacité et I’efficacité de la trajectoire générée par un algorithme donné.

Elle est calculée comme la somme des distances euclidiennes entre chaque point successif
D = Y lpia —pill - (29)

Ou:

e P, : Position a I’instant i.
e P;,, :Position a 'instant i + 1.

e D : Distance totale parcourue.

Cette métrique est particulierement utile pour comparer la performance spatiale des
algorithmes de planification : une trajectoire plus courte est généralement préférable, a

condition de respecter les contraintes environnementales.
2.2.3.2 Energie Consommée

L’énergie consommée est une mesure indirecte de [’efficacité énergétique du
systeme de navigation. Elle est liée non seulement a la distance parcourue, mais également

a la vitesse moyenne et a la masse du drone.
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L’énergie est estimée a partir d’un modele simple, inspiré des travaux de

Bouabdallah (2007) [37], selon I’équation suivante :
E=a-D+B-V (210)

Oou:

E :1’énergie consommeée.

D : distance totale parcourue.

V : vitesse moyenne.

a et (8, des coefficients pondérant I’impact de la distance et de la vitesse.

Dans cette étude, conformément aux recommandations de la littérature, les valeurs

suivantes sont utilisées : ¢ = 0,1 et g = 0,05
E=d-0,1+v-0,05 (2.11)

Cette formulation permet de comparer I’'impact énergétique de chaque algorithme et

d’évaluer leur pertinence dans des scénarios ou I’autonomie énergétique est critique.
2.2.3.3 Nombre de Steps (Etapes de Planification)

Le nombre de steps (ou étapes de planification) correspond au nombre total de points
intermédiaires générés dans la trajectoire d’un drone, depuis son point de départ jusqu’a

son objectif. Cette métrique refléte a la fois :

e La granularité de la planification,

e La réactivitt du systtme face aux obstacles ou aux changements de
I’environnement,

e La charge de calcul potentiellement induite lors de simulations ou d’exécutions en

temps réel.

Un nombre élevé de steps peut signaler deux cas distincts :

e Une trajectoire fine et fluide, avec des ajustements progressifs, indiquant un haut

niveau de précision,
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e Ou, au contraire, une série de micro-corrections causées par des obstacles

fréquents ou des recalculs excessifs, pouvant traduire une instabilité algorithmique.
En revanche, un nombre trop faible de steps peut indiquer :

e Une planification trop grossiére,

e Ou une simplification excessive qui ignore les détails de 1’environnement,

augmentant ainsi le risque de collision.

Dans le cadre de cette étude, le nombre de steps est enregistré pour chaque trajectoire afin
de :

e Comparer la densité de planification des algorithmes (A*, GA, PSO),
o Identifier les cas de surajustement ou de sous-réactivite,
e Evaluer ’adéquation entre le niveau de détail de la planification et les contraintes

de ’environnement simulé.

2234 Nombre de Collisions Evitée / Réévaluations

Cette métrique évalue la capacité du systéme a anticiper et a corriger les trajectoires
non slires en présence d’obstacles dynamiques. Chaque fois qu’une position planifiée
devient invalide, une replanification est déclenchée. Le nombre de réévaluations reflete
donc la réactivité du systeme face aux changements et la robustesse des algorithmes

utilisés.

Un nombre éleveé peut traduire une bonne adaptabilité, mais aussi une instabilité du
plan initial ou un environnement trop imprévisible. Cette métrique est essentielle pour
mesurer l'efficacité en contexte multi-drones ou dans des environnements en évolution

constante.
2.2.35 Efficacité Globale (Rapport Distance / Energie)

Cette métrique exprime I’efficacité énergétique d’un algorithme, calculée par le

rapport entre la distance parcourue et 1’énergiec consommeée :
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D

n=< (2.12)

e 7 : efficacité énergétique (sans unite).
e D :distance totale parcourue (en métres, km, etc.).

e E :énergie consommée pour ce déplacement (en joules, Wh, etc.).

Un ratio élevé indique un déplacement optimisé en énergie, ce qui est crucial dans les
missions longues ou a autonomie limitée. Cette mesure permet donc de comparer la

performance des trajectoires générées du point de vue consommation énergétique [46].
2.2.3.6 Discussion sur le Choix des Métriques

Les métriques retenues s’inspirent des standards en robotique mobile et recherche
opérationnelle [45][46]. Elles allient clarté visuelle, pertinence pratique (distance, énergie)

et évaluation de la résilience (replanifications). Toutefois, certaines limites subsistent :

e L’énergie est estimée de manicre simplifiée.
e Le nombre de steps dépend de la fréquence d’échantillonnage choisie.

e Les obstacles dynamiques simulés ne disposent pas de logique prédictive propre.

Ces limites n’altéerent pas leur utilité, mais doivent é&tre prises en compte dans

I’interprétation des résultats.
2.3 Analyse des besoins pour un systeme de gestion automatisée

La mise en ceuvre d’un systeme de gestion automatisée de flotte de drones requiert
une analyse rigoureuse des besoins opérationnels, techniques et réglementaires. Cette
analyse s’appuie sur les standards en robotique autonome, les recommandations en

systemes multi-agents et les contraintes spécifiques au domaine aérien controlé [47, 48].
Deux grandes catégories de besoins se distinguent :
2.3.1 Exigences fonctionnelles

Le systéme doit offrir les fonctionnalités suivantes :
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e Navigation autonome : chaque drone doit planifier et suivre sa trajectoire de
maniere indépendante, tout en respectant les contraintes physiques (vitesse
maximale, altitude minimale) [47].

e KEvitement dynamique d’obstacles : le systéme doit détecter en temps réel les
obstacles statiques et mobiles, et adapter les trajectoires pour garantir l'absence de
collision.

e Replanification adaptative : en cas d’imprévu (panne, interdiction aérienne,
changement d’objectif), une nouvelle trajectoire doit étre générée automatiquement.

e Coordination multi-drones : les drones doivent partager leurs états, positions et
intentions pour assurer une synchronisation efficace et éviter les conflits intra-flotte.

e Supervision centralisée et reporting : une interface maitre (au sol ou embarquée)
doit permettre de surveiller les missions, de transmettre des commandes, ou
d’interrompre les opérations si nécessaire.

2.3.2 Exigences non fonctionnelles

Les propriétés attendues du systeme au-dela de ses fonctions premiéres sont les

suivantes :

o Fiabilité : le systeme doit tolérer les defaillances partielles (drone hors service,
perte de signal) sans compromettre 1’ensemble de la mission.

o Réactivité : les décisions (replanification, ajustement de trajectoire) doivent étre
prises avec une latence minimale, notamment dans des environnements dynamiques.

« Evolutivité : le systtme doit intégrer de nouveaux drones ou modules sans
nécessiter une réarchitecture compléte.

e Optimisation énergétique : la consommation d’énergic doit étre minimisée a
travers une planification efficace, pour maximiser I’autonomie opérationnelle [48].

o Conformité réglementaire : le systeme doit respecter les réglementations locales
et internationales, notamment les normes d’altitude, de zones interdites et de

fréquences radio autorisées.

Les travaux de Yanmaz et al. [47] insistent notamment sur 1’importance des
communications robustes entre agents, tandis que ceux de Zhou et al. [48] montrent que la

coordination distribuée permet une meilleure adaptabilité face aux aléas.
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2.4 Contraintes technigues et reglementaires

Le déploiement d’un systéme de gestion automatisée pour drones en espace aérien
contr6lé ne peut se faire sans prendre en compte un ensemble de contraintes techniques et
réglementaires. Ces contraintes conditionnent la faisabilité, la fiabilité et la lIégalité du
systeme. Elles sont décrites ci-dessous a partir des cadres réglementaires actuels et des

limites inhérentes aux technologies embarquées [49, 50].
2.4.1 Contraintes Techniques

Les contraintes techniques sont liées aux limitations physiques, computationnelles et

communicationnelles des drones :

e Autonomie énergétique limitée : les drones sont fortement contraints par la
capacité de leur batterie, ce qui limite le temps de vol et impose une planification
énergétique optimisée [50].

e Puissance de calcul embarquée : les calculs de trajectoires, de détection
d’obstacles et de replanification doivent étre réalisés en temps réel avec des
ressources limitées (processeur embarqué).

e Limites de communication : les pertes de signal ou interférences peuvent
compromettre la coordination ou le retour d’information, notamment en
environnement urbain dense [49].

e Gestion de Ialtitude et de la vitesse : les systemes doivent controler
rigoureusement ces parametres pour respecter les contraintes de sécurité et de

performance définies.

2.4.2 Contraintes Réglementaires

Les contraintes réglementaires imposent des regles strictes de navigation, de sécurité
et de respect des zones sensibles. Elles varient selon les pays, mais des référentiels

internationaux s’appliquent également.

e Zones d’exclusion : certaines zones (aéroports, sites militaires, zones urbaines

denses) sont interdites ou fortement réglementées.
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e Réglementation en Algérie : L’Algérie réglemente les drones via le décret
présidentiel n°21-285 (2021), impliquant plusieurs autorités : Ministere de la
Défense (Centre National dédié), ANAC, ENNA, Ministéere des Transports et
ARPCE. Le processus inclut demande, consultations techniques, autorisation et
supervision continue.

e Réglementation internationale (OACI, EASA, FAA) : des standards existent a
I’échelle mondiale, notamment en matiére de séparation verticale, de gestion de
trafic UTM, et d’identification a distance [49].

e Protocoles de sécurité aérienne : les drones doivent pouvoir se poser en sécurité
en cas de défaillance (fail-safe), ou poursuivre une mission partielle sans
compromettre I’ensemble du systeme (fail-operational).

2.5 Conception du systéeme de gestion automatisée

Cette section décrit I’architecture fonctionnelle et algorithmique du systeme de
gestion automatisée développé dans ce projet. Elle s’appuie a la fois sur les besoins
identifiés (section 2.3) et les contraintes techniques et réglementaires (section 2.4), en
intégrant les recommandations issues de 1’état de I’art en systémes multi-drones, en

robotique autonome et en planification adaptative [37, 38, 51].
2.5.1 Architecture générale du systéme

L’architecture du systeme est organisée de maniere modulaire, selon une chaine

décisionnelle typique en robotique autonome :
Perception — Planification — Action

e Perception : agrégation des données de capteurs embarqués (GPS, LIDAR,
caméras) et échange d’informations inter-drones.

e Planification : sélection d’une trajectoire optimale via GA, PSO ou A*, en fonction
des contraintes dynamiques.

e Action : exécution de la trajectoire planifiée, avec réajustement si nécessaire.

L’architecture fonctionnelle adoptée dans ce projet repose sur une chaine
décisionnelle typique en robotique autonome. Elle peut étre représentée selon trois

modules principaux, comme illustré dans la figure suivante :
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Figure 2.1 : Architecture distribuée d’un systéme autonome multi-drones intégrant

perception, planification adaptative et exécution dynamique.

Cette représentation schématique illustre la modularité de ’architecture, favorisant
une adaptation dynamique a I’environnement sans dépendance a un nceud central de

contréle.

L’architecture peut étre congue centralisée (unité de contrdle au sol ou drone leader)
ou distribuée (chaque drone est autonome). Une approche distribuée améliore la résilience

et I’évolutivité, comme démontré par Michael et al. [38].

2.5.2 Modélisation des Drones

Les drones sont représentés selon un modele cinématique 3D simplifié. Chaque
drone est défini par :

e Une position,

e Une vitesse maximale,

e Une altitude minimale,

e Un rayon de détection pour la prévention de collisions,
e Un coefficient de consommation énergétique.

2.5.3 Protocoles de Communication Inter-Drones

La coordination repose sur une communication de type FANET (Flying Ad hoc
Network) ou MANET (Mobile Ad hoc Network). Chaque drone diffuse périodiquement :
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e Saposition,
e Sadirection,

e Son état (OK / réévaluation en cours / obstacle détecté).

La synchronisation est locale : chaque drone ajuste sa trajectoire en fonction de ses
voisins proches. Ce schéma de coordination décentralisée permet une tolérance aux pannes

et réduit les besoins en bande passante [38].
2.5.4 Gestion de I’Energie et Optimisation des Trajectoires

Le systéme intégre une estimation énergétique en continu. Chaque trajectoire
candidate est évaluée selon une fonction de colt incluant la distance, la vitesse et la

pénalisation des risques :

—a- : yv o1
C=a-D+p-V+y i, TP (2.13)

Ou:

e ( :fonction de co(t totale (valeur a minimiser pour choisir la meilleure trajectoire).
: coefficient de pondération pour la distance (impact énergétique).
. distance parcourue sur la trajectoire candidate.

: coefficient de pondération pour la vitesse.

a
D
B
e I/ :vitesse moyenne ou instantanée sur la trajectoire.
y : coefficient de pondération pour les risques de collision.
N : nombre d’obstacles a considérer.

p : position courante du drone.

e 0; : position de I’obstacle i.

e 7; :rayon de sécurité autour de 1’obstacle i.

e D, :distance de sécurité minimale a respecter autour des obstacles.

En fin de mission, les drones ajustent leurs priorités (raccourcissement du chemin,
élévation pour économie de batterie) en fonction du niveau d’énergie restant. Des travaux
récents ont montré que la prise en compte énergétique améliore la durabilité opérationnelle
[51].
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La figure suivante illustre I’évolution de la fonction de colt utilisée dans la

planification, tenant compte de la distance, de la vitesse et du risque de collision.
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Figure 2.2 : lllustration de la fonction de co(t intégrée dans la planification, combinant

distance, vitesse et pénalisation liée aux risques de collision.

Cette représentation visuelle permet de mieux comprendre les compromis nécessaires
entre efficacité énergétique et securité. Les zones rouges correspondent aux configurations
fortement pénalisées par la proximité d’obstacles, tandis que les surfaces vertes

correspondent a des trajectoires efficaces et sdres.

Cette visualisation valide 1’approche retenue, en mettant en évidence les zones a éviter

pour optimiser le compromis sécurité/énergie dans les trajectoires calculées.

La robustesse du systeme face aux défaillances et menaces potentielles est une
exigence critique dans le cadre d’une flotte de drones opérant de maniére autonome. Le
systéme intégre plusieurs mécanismes de sécurité et de résilience, articulés autour de trois

axes principaux :

2.5.5 Gestion des pannes (fail-safe et fail-operational)
e Mode fail-safe : en cas de perte de communication ou d’anomalie détectée sur un
capteur critique, le drone exécute un arrét immédiat ou retourne a un point de
sécurité prédéfini.
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e Mode fail-operational : en cas de panne partielle (capteur non critique,
perturbation temporaire), la mission peut se poursuivre de maniere dégradée, en
adaptant les trajectoires ou en réduisant les vitesses.

2.5.6 Sécurisation des communications

e Les echanges entre drones et la station centrale sont protégés par un chiffrement
léger de type AES-128, garantissant la confidentialité des données et empéchant
I’injection de trajectoires malveillantes.

e Des protocoles de redondance assurent une continuité de la liaison méme en cas
de perturbations radio.

2.5.7 Protocole d’urgence en cas de défaillance critique

En cas de panne sévere (perte d’énergie, perte de contrdle), un protocole de
redescente contrélée est déclenché. Celui-ci permet au drone d’atterrir en toute sécurité
dans une zone autorisée ou prédéfinie, minimisant ainsi les risques pour les tiers et les
infrastructures.
Ces mécanismes visent a garantir la fiabilité opérationnelle, la protection des données
sensibles et la sécurité des opérations dans des environnements dynamiques, parfois

hostiles ou partagés avec d'autres usagers de 1’espace aérien.
2.6 Conclusion

Ce chapitre a établi les bases théoriques nécessaires a la conception d’un systeme de
gestion automatisée de drones. Il a permis de comparer plusieurs approches de
planification (GA, PSO, A*) et de justifier leur choix en fonction des contraintes
opérationnelles : adaptabilite, efficacité énergétique et robustesse en environnement

dynamique.

L’analyse des modeles d’environnement, des représentations spatiales (comme les grilles
d’occupation) et des métriques d’évaluation a renforcé la cohérence méthodologique.
L’architecture du systétme a été pensée pour assurer une coordination distribuée, une

communication fiable et une gestion optimisée de 1’énergie.

Ces fondations préparent le chapitre suivant, qui mettra a 1’épreuve ces choix via des

simulations réalistes et une analyse comparative des résultats obtenus.
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CHAPITRE 3 : Implémentation et simulation des algorithmes de planification de

trajectoires

3.1 Introduction

La planification de trajectoires pour drones dans des environnements dynamiques et
encombrés représente un défi complexe, a la croisée de I’intelligence artificielle, de la
robotique et de I’optimisation. Ce chapitre présente 1I’implémentation méthodique et
I’analyse comparative de trois algorithmes clés — GA, PSO et A* — dans le cadre d’une
simulation réaliste de navigation autonome développée sous MATLAB, accompagnée
d’une interface graphique facilitant la visualisation des trajectoires et I’analyse des

résultats.

Alors que les approches classiques se heurtent souvent au compromis entre
optimalité et temps de calcul (LaValle, 2006) [45], nos travaux proposent une approche
hybride combinant des métaheuristiques (pour exploiter efficacement 1’espace continu) et
des méthodes de recherche heuristique (garantissant la convergence vers des trajectoires
viables). Cette complémentarité répond aux exigences critiques de la navigation multi-

drones : sécurité opérationnelle, efficacité énergétique et adaptabilité dynamique.

Aprés avoir presenté le contexte et les objectifs, nous détaillerons dans ce chapitre
I’architecture du systéme de simulation, les critéres d’évaluation retenus, ainsi que les

résultats expérimentaux obtenus a partir de différents scénarios.

3.2 Architecture du systeme

L’architecture du syst¢tme de simulation et de planification de trajectoires est
structurée autour de plusieurs modules interconnectés, comme illustré dans la Figure 3.1.
Cette architecture permet de simuler différents scénarios, d’intégrer des algorithmes de
planification variés, et d’évaluer les performances de la flotte de drones a travers des

métriques précises.
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Scénarios D/E
l v
Algorithmes Simulation Dynamique
v
Planification Analyse des Métriques
GA/PSO A*
Waypoints continus Grille discréte

Figure 3.1 : Architecture fonctionnelle du systeme de simulation et de planification de

trajectoires de drones.

3.2.1 Description des modules

Le systeme de simulation développé sous MATLAB repose sur une architecture

modulaire, permettant de tester et d’évaluer différents algorithmes de planification pour

drones dans des environnements contraints. Chaque module joue un réle spécifique dans

pipeline de traitement :

a. Scénarios
Ce module initialise chaque mission simulée en définissant :
e Le nombre de drones,
e Leurs positions de départ et d’arrivée,
e La disposition des obstacles dans I’environnement,

e Les contraintes spécifiques : zones interdites, priorités, chemins réserveés, etc.

b. Données d’Environnement (D/E)

Il regroupe les parametres physiques et environnementaux :
e Cartes de vol.
e Profils de vent ou perturbations simulées.

e Limitations dynamiques des drones (vitesse, autonomie, rayon de virage, etc.).

le
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c. Algorithmes de Planification
Ce bloc permet de choisir 1’algorithme a exécuter pour chaque scénario :
e GA / PSO : adaptés a la génération de trajectoires continues en environnement
complexe,

e A* : utilisé pour la recherche de chemins optimaux sur une grille discréte.

d. Planificateur
Module central du systeme, il traite les données issues des scenarios et applique
I’algorithme sélectionné pour générer des plans de vol adaptés, respectant :

e Les contraintes de sécurité (évitement, distance minimale),

e Les objectifs d’optimisation (distance, énergie, temps, collisions...).

e. Simulation dynamique

Ce module simule le comportement réel des drones en suivant les trajectoires
planifiées :

e Integre la dynamique de vol (inertie, limites physiques),

e Gere les interactions multi-drones et les perturbations,

e Détecte les événements critiques (collision potentielle, dérive, replanification).

f. Analyse des Métriques
A I’issue de chaque simulation, les performances sont évaluées selon des indicateurs clés :

e Distance parcourue,

e Temps de mission,

e Nombre de collisions évitées,

e Recalculs de trajectoires,

e (Consommation d’énergie,

e Efficacité globale.

Cette architecture modulaire assure une grande flexibilité dans les expérimentations

et constitue une base solide pour 1’évaluation comparative des algorithmes. La section
suivante décrira le pipeline opérationnel complet, du lancement du scénario a la restitution

des résultats.

3.2.2 Organisation du pipeline

Le processus global (pipeline) global se déroule selon la séquence suivante :

1. Définition des scénarios de mission.
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2. Paramétrage de I’environnement via le bloc D/E.

3. Sélection d’un algorithme de planification.

4. Géneération des trajectoires via le module Planification, soit en waypoints

continus (GA/PSQO), soit sur une grille discrete (A*).
5. Lancement de la simulation dynamique.
6. Analyse des métriques pour évaluer les résultats.
Cette organisation modulaire permet d’évaluer différentes stratégies de planification

et d’observer leur impact sur les performances globales du systeme.
Apres avoir décrit le déroulement global du systéme, nous détaillons maintenant la
méthodologie expérimentale adoptée pour simuler et évaluer les performances des

différents algorithmes.

3.3 Méthodologie de simulation

Cette section détaille la méthodologie de simulation et d’évaluation des algorithmes
GA, PSO et A*. Elle repose sur un environnement de simulation programmé sous
MATLAB, prenant en compte des contraintes realistes (espace 3D, vitesse, altitude
minimale, obstacles, etc.) et exploitant des scénarios variés pour tester la robustesse du

systeme.

3.3.1 Protocole de simulation dynamique et critéres d’évaluation

La simulation est réalisée dans un espace tridimensionnel borné de taille
100x100x50 m, représentant un environnement controlé. Les drones évoluent selon des
scénarios prédefinis regroupés en deux catégories :

e Sans obstacles : 3, 5 et 10 drones en déplacement libre.
e Avec obstacles :

> Obstacles statiques,

> Obstacles dynamiques,

= Obstacles environnementaux.

Pour chaque scénario, le nombre de drones, leurs positions initiales et leurs objectifs
sont généres aléatoirement. La simulation repose sur des pas de temps de 0,5 seconde et
une durée totale de 30 secondes par expérience.

Les algorithmes sont exécutés successivement sur chaque drone, et prennent en compte les
contraintes de sécurité, la vitesse maximale 10 m/s et I’altitude minimale de 5 m. Chaque

simulation produit les métriques suivantes :
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e Temps de calcul.

e Distance parcourue.

e Energie consommée.

e Rapport distance/énergie.

e Taux de réussite (objectif atteint).

e Nombre de collisions.
3.3.2 Justification du choix des parameétres et limites de la simulation
Les paramétres ont été choisis pour refléter un compromis entre réalisme et faisabilité

computationnelle :

e Population (GA) : 20 individus, 50 générations,
e Essaim (PSO) : 20 particules, 50 itérations,

e A* :une résolution de grille de 5 metres.

Le choix d’un espace 100x100x50 m permet de simuler un environnement réaliste de

type zone urbaine ou industrielle.
Les limites de cette simulation incluent :

e Une modélisation simplifiée des obstacles (formes sphériques ou ponctuels),

e L’absence de prise en compte de la dynamique propre des drones (utilisation d’un
modele cinématique statique),

e Une évaluation indépendante des trajectoires des drones, sans coordination active

entre eux.

Cette méthodologie nécessite 1’utilisation de criteres objectifs pour mesurer 1’efficacité des

algorithmes testés, criteres qui seront présentés dans la section suivante.

3.3.3 Métriques d’évaluation

Ce tableau présente 1’ensemble des métriques utilisées pour 1’évaluation des

trajectoires générées par les différents algorithmes lors de la simulation.
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Tableau 3.1 : Métriques d’évaluation des trajectoires.
Formule MATLAB
Energie Energie estimée selon energy = distance * 0.1 + speed * 0.05;
consommée  distance et vitesse
Distance Longueur totale du chemin sum(vecnorm(diff(path),2,2));

parcourue suivi

Temps de Temps nécessaire pour time = toc; (apres tic)
calcul générer une trajectoire
Efficacité Rapport distance / énergie eff = distance / energy;

énergétique
Collisions Nombre de fois ou la distance if pdist(positions) < safety distance —
minimale de sécurité n’est collisions = collisions +1;
pas respectée
Taux de Proportion de drones success = norm(position - goal) <

réussite atteignant leur objectif safety_distance;

Ces différentes métriques s’appuient sur un ensemble d’équations et de fonctions,
que nous détaillons ci-aprés pour clarifier leur mise en ceuvre dans le cadre de la

simulation.

3.3.4 Equations Utilisées

Les équations suivantes représentent les principales fonctions utilisées dans la

simulation pour la planification, I’optimisation et I’évaluation des trajectoires des drones :
1. Fitness (GA)

La fonction d’évaluation (fitness) utilisée pour 1’algorithme génétique afin de
minimiser la distance résiduelle a I’objectif et pénaliser les collisions est la méme que celle
introduite au chapitre 2, équation (2.1).

2. Fonction de codt (PSO)

La fonction de codt du PSO qui prend en compte la distance de sécurité minimale et
la proximité des obstacles a déja été formulée et explicitée dans le chapitre 2, éguation
(2.4).
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3. Distance A* (trajet discrétisé)
Le calcul de la distance parcourue sur la trajectoire discrétisée par 1’algorithme A*
est effectué selon 1’équation (2.9) du chapitre 2.
4. Energie consommée
L’¢évaluation de 1’énergie totale consommeée par chaque drone lors de la simulation
est déterminée conformément a I’équation (2.11) du chapitre 2.
5. Efficacité énergétique
Le rapport efficacité énergétique, mesurant la performance de chaque algorithme,
utilise la méme définition que dans le chapitre 2 (voir équation (2.12)).

6. Taux de réussite

— Natteints
Tsuccés - N (31)
total

Ou:
o Touccos . Taux de réussite.
o Nuieines . NOmbre de drones ayant atteint leur cible (avec erreur < distance de
sécurite).

e N;o:tar - Nombre total de drones ou de tentatives.

Un drone est considéré comme ayant réussi s’il atteint sa cible avec une erreur inférieure a
la distance de sécurité.
7. Collisions
Une collision est comptabilisée dés que deux entités sont a une distance inférieure au
seuil défini.
C = Xij Lx—x||<D (3.2)

sécurité
Ou :

e C :Nombre de collisions détectées.

e x;,x; . Position des entités (drones) i et j.

o  Dgecurite - Seuil de distance de sécurite.

e 1, :Fonction indicatrice (vaut 1 si la condition est vraie, 0 sinon).

8. Temps de calcul
Mesure du temps nécessaire pour générer une trajectoire, drone par drone.
Tcalcul = tfin — Cachut (MATLAB time = tOC;) (33)
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Oou:

o T..icu - Temps de calcul total pour générer la trajectoire.

o tasput - INstant de début de calcul.

* trip - Instant de fin de calcul.
3.3.5 Implémentation des Algorithmes

La simulation met en ceuvre trois algorithmes principaux de planification : GA, PSO,

et algorithme A*. Chacun est implémenté sous forme de fonction distincte avec ses
propres parametres, contraintes, et stratégies de navigation. Les fonctions suivantes
résument 1’architecture logicielle adoptée.

a. Algorithme Génetique (GA)

function path = planifier_trajectoire_ga(start, goal, space_size, obstacles, min_altitude,
N)

% 1. Codage : Chromosome = coordonnées 3D (X, Y, 2)

% 2. Fitness : distance a I’objectif + pénalités d’obstacles

% 3. Operations : sélection, croisement, mutation

% 4. Contrainte : altitude > min_altitude et limites de I’espace

% 5. Sortie : point optimal pour le drone
End

Cette fonction applique un algorithme génétique classique pour optimiser la position
cible d’un drone. Chaque solution candidate est représentée par un chromosome contenant
les coordonnées 3D du waypoint final.

L’algorithme fait évoluer une population d’individus selon :
e Une fonction de fitness pénalisant les trajectoires proches des obstacles,
e Des opérations génétiques (sélection, croisement, mutation),

e Des contraintes d’espace assurant la validité physique de la solution.

L’optimisation est réalisée via Ga() de MATLAB, et le résultat est une position

optimisée vers 1’objectif tout en évitant les zones risquées.
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b. Optimisation par Essaim Particulaire (PSO)

function position = planifier_trajectoire_pso(current_pos, space_size, obstacles,
min_altitude)

% 1. Codage : chaque particule = position 3D potentielle

% 2. Objectif : éviter les autres drones et obstacles

% 3. Fonction de codt : distance de sécurité non respectée + proximité obstacles

% 4. Parametres : SwarmSize, inertie, nombre d’itérations

% 5. Sortie : position optimisée dans 1’espace libre
End

Cette fonction emploie une stratégie PSO pour déplacer un drone vers une zone sdre.

Chaque particule de I’essaim explore une position candidate.

La fonction de colt integre deux pénalités principales :
o La proximité avec les autres drones (calculée par pdist2),
e La présence d’obstacles dans I’environnement.

MATLAB utilise la fonction particleswarm() pour faire évoluer 1’essaim jusqu’a ce
qu’une position minimisant le risque soit trouvée. Ce type d’algorithme est
particulierement adapté aux scénarios dynamiques ou les positions des autres drones
évoluent.

c. Algorithme A*

function path = a_star_algorithm(start, goal, space_size, obstacles)
% 1. Grille 3D : discrétisation de I’espace en cellules (résolution 5 m)
% 2. Codage : chaque cellule = nceud (x, y, z)
% 3. Heuristique : distance euclidienne vers le but
% 4. Obstacles : représentation booléenne (obstacle_grid)
% 5. Sortie : chemin approximatif du départ a I’objectif
End

L’algorithme A* implémenté ici repose sur une représentation discréte de I’espace a
I’aide d’une grille 3D. Chaque cellule est évaluée a I’aide d’une fonction heuristique
estimant la distance au but.

Les obstacles sont traduits sous forme d’une grille logique binaire (obstacle grid)

permettant de bloquer les cellules interdites.
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Le chemin retourné est une suite de points reliant le départ et 1’arrivée, utilisée pour
calculer la distance totale ou simuler le parcours dans I’environnement. Ce type d’approche
garantit un chemin optimal si I’heuristique est admissible, mais reste sensible a la
résolution choisie.

La mise en ceuvre de ces algorithmes permet de générer les résultats expérimentaux

présentés et analysés dans la section suivante.

3.4 Analyse et interprétation des résultats

Cette section presente les résultats obtenus lors de la simulation des six scénarios
définis précédemment, en comparant les performances des algorithmes GA, PSO et A* a
travers différentes métriques : temps de calcul, distance parcourue, énergie consommeée,
efficacité énergétique, taux de réussite, et collisions détectées. Les figures illustrent

1’évolution de ces indicateurs pour chaque drone dans les différents cas de simulation.

3.4.1 Scénarios sans obstacles

e Scénario 1 : 3 drones sans obstacles
Ce scénario vise a évaluer les performances des algorithmes dans un environnement
simple, sans aucune contrainte d’obstacle, avec un nombre réduit de drones pour observer

le comportement de base du systeme.

Scenario 1 : 3 drones sans obstacles - Temps de calcul
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Figure 3.2 : Résultats du scénario 1 : 3 drones sans obstacles.
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Dans ce cas simple, tous les algorithmes affichent un temps de calcul tres faible. A*
est le plus rapide, suivi de PSO, puis GA.

e Les distances parcourues sont similaires pour 1’ensemble des algorithmes, toutefois
A* suit des trajectoires généralement plus directes, tandis que GA a tendance a
explorer davantage 1’espace, ce qui augmente la consommation d’énergie.

e L’efficacité énergétique reste meilleure pour PSO et A*.

e Scénario 2 : 5 drones sans obstacles

Ce scénario augmente la densité de drones sans introduire d’obstacles, afin

d’analyser I’impact du nombre d’agents sur les métriques de performance et la sécurité.

Scenario 2 : 5drones sans obstacles - Temps de calcul
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Figure 3.3 : Résultats du scénario 2 : 5 drones sans obstacles.

L’augmentation du nombre de drones n’impacte pas fortement les temps de calcul.
Cependant, GA commence a montrer une efficacité énergétique plus faible (2,05)
comparée a PSO (9,28) et A* (8,99).

Le taux de réussite diminue a 66,67 %, avec 1 collision détectée, signe que la densité de
drones augmente les risques de proximité.
e Scénario 3 : 10 drones sans obstacles
L’objectif de ce scénario est de tester la robustesse des algorithmes face a une forte

densité de drones, toujours sans obstacle, pour détecter d’éventuelles limites de scalabilité.
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Scenario 3 : 10 drones sans obstacles - Temps de calcul
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Figure 3.4 : Résultats du scénario 3 : 10 drones sans obstacles.

Avec 10 drones, la complexité augmente. A* reste le plus stable en efficacité (9,24),
tandis que PSO maintient une bonne performance (9,20).
GA s’améliore un peu (3,14), mais reste le moins efficient.
Le taux de réussite reste faible (70 %) avec une collision détectée.

Le tableau ci-dessous synthétise les résultats des scénarios sans obstacles pour les
trois algorithmes.

Tableau 3.2 : Résultats des scénarios sans obstacles.

Scénario sans

obstacles
Nombre de drones 3 5 10
GA (Dist./Energie) 2,66 2,05 3,14
PSO 9,26 9,28 9,20
(Dist./Energie)
A* (Dist./Energie) 9,16 8,99 9,24
Taux de réussite 66,67 66,67 70,00
(%)
Collisions 0 1 1
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L’algorithme GA montre une efficacité supérieure en matiére de distance et
d’énergie, indiquant sa pertinence pour les scénarios a faible complexité. Le taux de
réussite modéré (environ 67 %) souligne toutefois la nécessité d'améliorations en gestion
des imprévus. L’occurrence rare mais présente de collisions suggere aussi certaines
limitations dans la capacité de prévision ou d’évitement lors de trajets simples.

3.4.2 Scénarios avec obstacles
e Scénario 4 : 3 drones avec obstacles statiques
Ce scénario introduit des obstacles fixes dans I’environnement afin d’évaluer la capacité

des algorithmes a planifier des trajectoires sires en présence de contraintes spatiales.

Scenario 4 : 3 drones avec obstacles statiques - Temps de calcul
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Figure 3.5 : Résultats du scénario 4 : 3 drones avec obstacles statiques.

L’impact des obstacles statiques est modéré. Tous les algorithmes respectent bien les
contraintes, avec 0 collision.
Les efficacités énergétiques restent comparables a la version sans obstacles :
e« GA:5,70.
e PSO :9,43.
o A*:9,26.

Le taux de réussite reste a 66,67 %.
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e Scénario 5 : 5 drones avec obstacles dynamiques
Dans ce scénario, des obstacles mobiles sont ajoutés pour simuler un environnement

dynamique, mettant a 1’épreuve 1’adaptabilité des algorithmes de planification.
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Figure 3.6 : Résultats du scénario 5 : 5 drones avec obstacles dynamiques.

L’introduction d’obstacles mobiles perturbe les algorithmes, notamment GA, qui
descend a 4,06.
Une collision est détectée et le taux de réussite reste a 66,67 %.
PSO et A* conservent une efficacité énergétique autour de 9.
e Scénario 6 : 10 drones avec obstacles environnementaux
Ce scénario, le plus complexe, combine une forte densité de drones et des obstacles
environnementaux pour analyser les limites et la robustesse du systeme dans des conditions

extrémes.
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Scenario 6 : 10 drones avec obstacles environnementaux - Temps de calcul
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Figure 3.7 : Résultats du scénario 6 : 10 drones avec obstacles environnementaux.

Ce scénario est le plus complexe. GA chute a 2,57 d’efficacité énergétique, ce qui

confirme sa sensibilité a la densité et aux obstacles.
PSO et A* restent robustes (9,04 et 9,18 respectivement), malgré la difficulté du scénario.

Le taux de réussite stagne a 66,67 %.
Le tableau ci-dessous synthétise les résultats des scénarios avec obstacles pour les

trois algorithmes.

Tableau 3.3 : Résultats des scénarios avec obstacles.

Scénario avec
obstacles
Nombre de drones

Type d'obstacle

GA (Dist./Energie)
PSO
(Dist./Energie)
A* (Dist./Energie)
Taux de réussite
(%)

Collisions

4 5
3 5
Obstacles statiques Obstacles
dynamiques
5,70 4,06
9,43 9,15
9,26 9,14
66,67 66,67
0 1

10
Obstacles
environnementaux
2,57
9,04

9,18
66,67
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Dans ce tableau, l'inclusion d'obstacles (statiques, dynamiques et environnementaux)
augmente nettement les exigences pour tous les algorithmes. GA conserve sa relative
supériorité en gestion énergeétique, tandis que PSO et A* affichent des performances stables
mais sous-optimales. Le taux de réussite inchangé autour de 67 % montre que 1’inclusion
d’obstacles nécessite de meilleures stratégies adaptatives pour sécuriser et optimiser
davantage les trajets.

e Tableau comparatif global

Pour une vue d'ensemble synthétique et comparative des algorithmes a travers tous

les scénarios réalisés, le tableau suivant est proposé :

Tableau 3.4 : Tableau comparatif global des résultats.

Conditions GA PSO A* Moyenne taux Collisions
Moyenne  Moyenne  Moyenne réussite (%) totales

‘Sans 262 925 913  67.78% 2
obstacles

Avec 4.11 9.21 9.19 66.67 % 2
obstacles

Moyenne 3.37 9.23 9.16 67.22 4
globale

3.4.3 Présentation des Trajectoires 3D des Scénarios

Les trajectoires obtenues lors des simulations ont été visualisées en trois dimensions,
facilitant ainsi une analyse claire des comportements des drones sous les différentes

conditions de simulation. Voici une représentation graphique des scénarios clés :
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Trajectoires 3D - Scenario 1: 3 drones sans obstacles
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Figure 3.8 : Trajectoires 3D - Scenario 1 : 3 drones sans obstacles.

Dans ce scénario de base, les trajectoires générées par les trois algorithmes (GA,
PSO, A*) montrent que, sans obstacles, la planification est principalement influencée par
I'efficacité de chaque algorithme a minimiser la distance parcourue et 1’énergie dépensée.
L'Algorithme Génétique (GA) propose géneralement des trajets plus optimisés, tandis que
PSO et A* tendent a générer des trajectoires légérement plus longues ou énergivores,

reflétant leur méthode d’optimisation globale ou heuristique.

Trajectoires 3D - Scenario 2: 5 drones sans obstacles
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GA Drone 3
GA Drone 4
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= = P30 Drone 1
= = PSODrone 2
PSO Drone 3
= = PSO Drone 4
= = PSO Drone 5
""""" A* Drone 1
++sxsees A* Drone 2
A* Drone 3
-------- A* Drone 4
“** A" Drone 5
Départ
®  Arrivée
datat

40 ..

30 .

20 .

Altitude (m)

10

Figure 3.9 : Trajectoires 3D - Scenario 2 : 5 drones sans obstacles.
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Avec 1’augmentation du nombre de drones, 1’influence des algorithmes devient plus
apparente. GA conserve de bonnes performances en maintenant des trajectoires groupées et
efficaces. PSO et A* montrent une légére dégradation, avec des risques accrus de proximité
et d’interférences entre drones. Ceci indique que la gestion du multi-agent par GA est plus

robuste a I’augmentation de la complexité du scénario.

Trajectoires 3D - Scenario 3: 3 drones avec obstacles dynamiques
datat
data2
data3
GA Drone 1
GA Drone 2
GA Drone 3
= = PSO Drone 1
|= = PSO Drone 2
PSO Drone 3
........ A* Drone 1
[oensonee A’ Drone 2
o A* Drone 3
Départ
®  Amivée
datad

Altitude (m)
- n w s
o o (=] o

o

100

0
80 100
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20 =2
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Figure 3.10 : Trajectoires 3D - Scenario 3 : 3 drones avec obstacles dynamiques.

L’introduction d’obstacles dynamiques complexifie la planification. GA parvient a
adapter les trajectoires pour éviter les obstacles tout en optimisant la distance, alors que
PSO et A* sont plus sensibles aux variations de 1’environnement. PSO peut parfois générer
des trajectoires moins efficaces en présence de changements rapides, et A* peut présenter

des solutions moins optimales sous contrainte dynamique.
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Trajectoires 3D - 5 rio4: 5d avec obstacles dy
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Figure 3.11 : Trajectoires 3D - Scenario 4 : 5 drones avec obstacles dynamiques.

Dans ce scénario, la coordination entre les drones et 1’évitement dynamique sont
cruciaux. GA montre une meilleure capacité d’adaptation, limitant les collisions et
optimisant 1’énergie. PSO et A* rencontrent plus de difficultés a ajuster rapidement les
trajectoires face a des obstacles en mouvement, ce qui peut se traduire par des parcours

moins efficients ou un taux de collisions accru.

Un exemple représentatif est présenté dans le Tableau 3.5, qui détaille le scénario 4 :
5 drones évoluant dans un environnement avec obstacles dynamiques. Ce tableau regroupe
les valeurs de I’énergie moyenne consommée, de la distance moyenne parcourue, du
nombre de collisions ainsi que du nombre de pas nécessaires pour chaque algorithme testé
(GA, PSO et A*).

Tableau 3.5 : Détail du scénario 4 : 5 drones avec obstacles dynamiques.

Algorithme Energie Moy. (J) +std Distance Moy. (m) = std Collisions Steps

GA 29.91 + 36.57 46.95 + 32.92 44.0 12.6
PSO 268.38 £ 349.11 84.10 + 28.82 36.8 20.0
A* 23.66 + 30.36 45.40 + 34.54 44.8 12.2

Ce tableau detaille expose clairement les performances spécifiques des algorithmes

dans un contexte complexe : 5 drones avec obstacles dynamiques. GA et A* présentent des
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résultats similaires en matiére de distance et d’énergie, confirmant leur efficacité
adaptative. PSO, en revanche, subit une forte augmentation de consommation énergétique
et distance moyenne, révélant une faiblesse en termes d'efficacité eénergétique dans un
environnement trés dynamique. Le nombre élevé de collisions pour tous les algorithmes
suggere qu’une révision approfondie des stratégies d'évitement est nécessaire pour assurer
la sécurité optimale dans ce contexte complexe.
3.4.4 Comparaison globale des algorithmes

Le Tableau 3.6 présente une synthese comparative des trois algorithmes principaux
— GA, PSO et A* — en fonction des criteres de performance observés lors des différentes
simulations. Ces critéres incluent le temps de calcul, la distance parcourue, la
consommation énergétique, I’efficacité énergétique, le taux de réussite et la gestion des
collisions.

Tableau 3.6 : Comparaison globale des algorithmes (GA, PSO, A%*).

Critere GA PSO A*

Temps de calcul Le plus lent Moyen Le plus rapide
Distance parcourue  Pluslongue Moyenne Optimale (plus courte)
Consommation énergie Elevée Moyenne Moyenne

Efficacité énergétique  Faible (2-5) Tres bonne (~9) Tres bonne (~9)
Collisions Présentes Rare Rare
Taux de réussite (%) 66-70 % 66-70 % 66-70 %

e GA montre une bonne flexibilité et capacité¢ d’exploration, mais reste pénalisé par un
temps de calcul élevé, une efficacité énergétique faible, et une tendance a générer
des trajectoires plus longues.

e PSO propose un compromis intéressant, combinant une efficacité énergétique élevée,
un temps de calcul raisonnable et une bonne stabilité, bien que parfois sujet a la
stagnation si I’essaim est mal initialisé.

e A* se distingue par la génération systématique de trajectoires optimales (courtes), un
temps de calcul minimal, et une efficacité énergétique élevée. Cependant, il reste

moins réactif en cas d’obstacles dynamiques ou non prévus.
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3.4.5 Observations, analyses complémentaires et limites

Le Tableau 3.7 regroupe les principales observations tirées des résultats de

simulation, ainsi que les limites identifiées dans le cadre de ce travail.

Tableau 3.7 : Observations, analyses complémentaires et limites.

Point analysé

Explication liée a la simulation et aux résultats

GA et densité

élevée

PSO - stabilité
énergétique
A* — optimalité et

limites*

Collisions
résiduelles
Modélisation

simplifiée

Absence de

dynamique reelle

Les performances de GA baissent & forte densité ou sous contraintes,

car la pénalisation des collisions ralentit la convergence et dégrade
I’efficacité énergétique.

Le PSO garde une bonne efficacité, sauf si I’essaim est mal réparti,
ce qui peut entrainer une stagnation dans des zones sous-optimales.
Les trajectoires sont courtes mais peu réactives : sans replanification
dynamique, A* ne gere pas bien les obstacles mobiles ou les
changements rapides de I’environnement.

Le taux de réussite plafonne, notamment a cause de 1’absence de
coordination active entre drones, méme sans obstacles complexes.
Les obstacles sphériques/ponctuels et I’espace 3D idéalisé simplifient
la réalité : la difficulté réelle en environnement urbain est
probablement sous-estimée.

Les drones suivent un modéle cinématique statique, sans accélération
ni gestion réelle de I’énergie : cela limite la portée des résultats pour

des applications réelles.

3.4.6 Analyse approfondie des performances différenciées des algorithmes

Le Tableau 3.8 résume les points forts, les faiblesses et le comportement typique de

chaque algorithme, tels qu’observés a travers les différents scénarios testés.
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Tableau 3.8 : Analyse des performances différenciées des algorithmes.

Forces

Algorithme

constatées

Faiblesses relevées

Comportement typique en

simulation

GA
d’exploration

des solutions.

PSO Bonne stabilité
énergétique,
efficacité
robuste.

A* Optimalité en
distance, rapidité
de calcul.

Grande capacité

Temps de calcul élevé et

efficacite énergétique
faible lorsque la densité
ou les contraintes
augmentent.

Risque de stagnation en
optimum local si
I’essaim manque de

diversité.

Manque de réactivité
sans replanification,
sensible a la résolution

de la grille.

Geéneére des trajectoires
variées, parfois longues et
colteuses en énergie ; sensible

aux pénalités de collision.

Génere généralement de
bonnes trajectoires, réagit
mieux en dynamique que GA,
dépend de la répartition
initiale de 1’essaim.

Produit les trajets les plus
courts, mais sans adaptation
en temps réel : bonne
efficacité, mais collisions
possibles si I’environnement

évolue vite.

3.4.7 Justification de la variabilité limitée du taux de succes

Malgré I’augmentation de la complexité (densité de drones, présence d’obstacles), le

taux de réussite des algorithmes reste globalement constant, autour de 66—70 %.

Cette variabilité limitée s’explique par :

e Absence de coordination explicite: chaque drone planifie sa trajectoire

indépendamment, ce qui maintient un risque de collision méme en environnement

simple.

e Résolution limitée de la grille (A*) : une discrétisation insuffisante peut induire

des trajectoires trop grossieres pour éviter efficacement les collisions.

e Pénalités fortes (GA, PSO): sous forte contrainte, les fonctions de pénalisation

protégent contre 1’augmentation des échecs, mais freinent aussi 1’optimisation

globale.
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Ce résultat montre qu’il devient nécessaire d’intégrer des stratégies de collaboration ou de

replanification dynamique pour franchir ce plafond de performance.
3.5 Interface graphique Matlab

3.5.1 Objectifs de ’interface

L’interface graphique MATLAB a ¢été développée dans le but de fournir un
environnement interactif pour la visualisation et I’analyse des résultats issus des
algorithmes de planification de trajectoire, notamment A*, PSO et GA. Les objectifs
principaux de cette interface sont :

e Visualiser en temps réel les trajectoires générées par chaque algorithme ainsi que
les obstacles présents dans 1’environnement simulé.

e Comparer visuellement les résultats des trois algorithmes en superposant leurs
trajectoires respectives.

o Afficher des indicateurs de performance essentiels tels que :
b [’énergie cumulée consommée par chaque drone
> Le nombre de collisions évitées durant le vol
— La distance parcourue par rapport a la distance optimale

e Faciliter ’analyse post-simulation a 1’aide d’outils interactifs permettant 1’export

des résultats (graphiques et données) pour une étude plus approfondie.

3.5.2 Architecture de ’interface

L’architecture fonctionnelle de 1’interface MATLAB repose sur une logique
modulaire permettant une gestion claire des flux de données entre les résultats de

simulation et les différents outils de visualisation et d’analyse. Le schéma suivant illustre

/ Affichage 3D

Données de simulation — Interface MATLAB — Graphes métriques

\» Export CSV/PNG

Figure 3.12 : L’architecture fonctionnelle de I’interface MATLAB.

cette architecture :
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Description du schéma :

3.5.3

objet.

Données de simulation : Ce bloc représente les résultats bruts produits par les
algorithmes de planification (positions, vitesses, temps, énergie, etc.).

Interface MATLAB : cceur du systéme, elle centralise les données et les redirige
vers les modules d’analyse.

Affichage 3D : Permet la visualisation en trois dimensions des trajectoires, de
I’environnement, et des obstacles.

Graphes métriques : Génere des courbes et diagrammes illustrant les
performances des algorithmes (énergie, distance, temps, collisions...).

Export CSV/PNG : Fonctionnalité d’export des résultats sous formats standard
(CSV pour les données numériques, PNG pour les graphes et vues 3D) facilitant la

documentation et la communication des résultats.

Implémentation de ’interface graphique MATLAB

Linterface a été congue avec MATLAB App Designer, selon une approche orientée

Une classe principale gere 1’ensemble des composants et centralise les interactions

utilisateur.

Chaque action de I’utilisateur (choix d’un algorithme, lancement de simulation,

modification de scénario...) est traitée par des méthodes dédiées, assurant :

Le paramétrage dynamique des simulations.
L’appel aux fonctions de calcul.

La mise a jour en temps réel des graphiques et visualisations.

Cette séparation entre interface et moteur de simulation garantit :

354

Une meilleure lisibilité du code.

Une évolutivité facilitée (ajout de nouveaux algorithmes, scénarios...).
Une robustesse générale du systeme.

Fonctionnalités principales

La figure ci-dessous illustre les différentes zones fonctionnelles de I’interface

MATLAB développée dans le cadre de ce projet
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Figure 3.13 : Interface graphique MATLAB de la simulation multi-drones.

Cette interface regroupe notamment :

e Un bouton « Simuler » pour lancer I’exécution de 1’algorithme sélectionné.
Choix de I’algorithme de planification (A*, PSO, GA) via un menu déroulant

e Sélection du nombre de drones a simuler (parameétre modifiable).

e Activation/désactivation de la présence d’obstacles.

e Un axe de visualisation 3D pour afficher les trajectoires des drones ainsi que les
obstacles, s’ils sont activés.

e Génération automatique de graphiques 2D (énergie cumulée)

e Résume des résultats affiché sur un panneau latéral (algorithme utilisé, nombre de

drones, type d’environnement...).

3.5.5 Exemple d’utilisation de I’interface MATLAB

Cette section illustre un exemple concret d’utilisation de D’interface graphique
MATLAB développée dans le cadre de ce travail.
L’ objectif est de démontrer la capacité de I’interface a :
e Générer les trajectoires a 1’aide de 1’algorithme sélectionné (A*, PSO ou GA) ;

e Visualiser les déplacements des drones en 3D ;
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e Suivre I’évolution de I’énergie consommée par chaque drone via un graphique
dédié ;
e Afficher automatiquement les informations clés liées a la simulation (type
d’algorithme, nombre de drones, présence ou non d’obstacles, etc.).
a. Simulation de 3 Drones sans Obstacles
Les trois figures présentent 1’interface MATLAB utilisée pour simuler la trajectoire
de trois drones sans obstacles dans un environnement 3D, ainsi que 1’énergie cumulée dans

un graphique 2D, en utilisant trois algorithmes différents : PSO, GA et A*.

4. Drone Simulation Interface

Simulation GA - 3 drones

= Drone 1

Simuler Résumé
Drone 2 - ]
T Drone 3 Algorithme © GA
o . Peparl Drones * 3
Amivee GA v Obstacles : Sans obstacles
2 ‘-t—"'—-—-.______________
20 3
10
0 . Obstacles
100 — AYTL UUSELITs
100
50 = 80 ®) Sans obstacles
o0 40
0 o

Energie cumulée

Energle (J)

0 & 4 6 2 10 12 14 16 18 20
Step

Figure 3.14 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones sans

obstacles — Algorithme GA.
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4| Drone Simulation Interface - O
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20

Figure 3.15 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones sans
obstacles — Algorithme PSO.

4. Drone Simulation Interface

200

150 |-

Energie (J)

50

0

100

0

Simulation A* - 3 drones

Drone 1

Energie cumulée
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& Simuler
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-

3=

Obstacles

nvcu vusiaues

@) Sans obstacles

Résumeé

| Algorithme - A
Drones : 3
Obstacles : Sans obstacles

Figure 3.16 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones sans

obstacles — Algorithme A*.

70



CHAPITRE 3 : Implémentation et simulation des algorithmes de planification de

trajectoires

> Interprétation des résultats

e Algorithme PSO

Les trajectoires des drones sont relativement directes entre les points de départ (vert)
et d’arrivée (rouge), mais on observe des variations dans la longueur des trajets selon les
drones.

L’énergie cumulée consommeée par les drones augmente de fagon linéaire, mais les
valeurs sont plus élevées pour certains drones, indiquant une optimisation inégale de la
consommation d’énergie.

e Algorithme GA

Les trajectoires générées par 1’algorithme génétique semblent plus courtes et plus
directes pour deux drones, tandis que le troisiéme suit un trajet plus long.

L’¢énergie cumulée est nettement plus faible pour deux drones, ce qui montre une
meilleure optimisation énergétique pour ces cas. Toutefois, un drone consomme beaucoup
plus d’énergie, ce qui traduit une disparité dans la répartition des efforts entre les drones.

e Algorithme A*

Les trajectoires sont tres directes et optimisées pour les trois drones, avec peu de
variations.

L’énergie cumulée est quasiment identique pour tous les drones et reste la plus faible
parmi les trois algorithmes, ce qui montre une excellente efficacité énergétique et une
répartition équilibrée de la charge.

» Analyse comparative

Le tableau ci-dessous compare les performances des trois algorithmes selon plusieurs

critéres observés dans cet environnement sans obstacles :

Tableau 3.9 : Comparaison des performances sans obstacles.

Critére P50 GA A*
Qualité de Moins optimisee, Bonne, relativement  Trés optimisée,
trajectoire sinueuse directe linéaire

Coordination des  Moyenne Bonne Trés bonne
drones

Energie Elevée Faible Moyenne et
consommeée homogéne

Stabilité Inégale selon les Trés inégale Trés Homogeéne
énergétique drones
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Dans le cas de trois drones sans obstacles, 1’algorithme A* offre les meilleurs
résultats en termes de trajectoires optimisées et de consommation énergétique équilibrée.
Le PSO et surtout le GA présentent des disparités dans la gestion de 1’énergie, soulignant
I’importance du choix d’algorithme en fonction des objectifs.

b. Simulation de 3 Drones avec Obstacles

Les trois figures présentent I’interface MATLAB utilisée pour simuler la trajectoire
de trois drones avec obstacles dans un environnement 3D, ainsi que 1’énergie cumulée dans
un graphique 2D, en utilisant trois algorithmes différents : PSO, GA et A*. Les obstacles

sont représentés par des spheres rouges que les drones doivent éviter.

4| Drone Simulation Interface

Simulation GA - 3 drones

Obstacle 1
Obstacle 2
Obstacle 3
Drone 1
Drone 2 GA A4
Drone 3
Départ
& Amvée

Simuler Résumé

Algorithme : GA
Drones : 3
Obstacles : Avec obstacles

Obstacles

=/ AWEL UUSELTIes

Sans obstacles

Energie cumulée

Energle (J

0 2 4 ] 8 10 12 14 16 12 20
Step

Figure 3.17 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones avec

obstacles — Algorithme GA.
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Figure 3.18 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones avec
obstacles — Algorithme PSO.
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Figure 3.19 : Interface MATLAB : trajectoire 3D et énergie cumulée pour 3 drones avec

obstacles — Algorithme A*
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CHAPITRE 3 : Implémentation et simulation des algorithmes de planification de

trajectoires

> Interprétation des résultats

e Algorithme GA

Les trajectoires générées par I’algorithme génétique sont généralement courtes pour
deux drones, tandis que le troisieme réalise un parcours plus long pour éviter les obstacles.

L’¢énergie cumulée reste faible pour deux drones, montrant une bonne optimisation
pour eux, mais un drone consomme nettement plus d’énergie, ce qui traduit une disparité
persistante dans la répartition des efforts lorsque des obstacles sont présents.

e Algorithme PSO

Les trajectoires des drones contournent les obstacles, ce qui complexifie leur chemin.
On observe des variations importantes dans la longueur des trajets selon les drones, en
particulier pour certains drones qui doivent effectuer des détours marques.

L’¢énergie cumulée consommée par les drones augmente de facon linéaire, mais
certains drones affichent des consommations bien plus élevées que d’autres, indiquant une
optimisation inégale face aux contraintes imposées par les obstacles.

e Algorithme A*

Les trajectoires sont directes et bien optimisées pour chaque drone, qui parviennent a
éviter les obstacles de facon efficace et a atteindre leur destination avec des chemins
relativement courts.

L’énergie cumulée est assez homogeéne entre les drones, et reste plus faible ou comparable
a celle des autres algorithmes, montrant une bonne efficacité énergétique et une répartition
équilibrée malgré la présence d’obstacles.

» Analyse comparative

Le tableau suivant présente une synthése des performances des trois algorithmes en
présence d’obstacles :

Tableau 3.10 : Comparaison des performances avec obstacles.

Critére PSO GA A*
Qualiteé de Moins optimisee, Bonne, relativement  Treés optimisee,
trajectoire sinueuse directe linéaire

Coordination des  Moyenne Bonne Trés bonne
drones

Energie Elevée pour certains  Faible pour deux, Moyenne et
consommeée drones ¢levee pour un homogene

Stabilité Inégale selon les Trés inégale Trés Homogéne
énergétique drones
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CHAPITRE 3 : Implémentation et simulation des algorithmes de planification de

trajectoires

On constate que, dans un environnement contenant des obstacles, I’algorithme A*
reste le plus efficace pour produire des trajectoires courtes et assurer une consommation
d’énergie équilibrée. Les performances du PSO et du GA se dégradent, notamment en
matiere de répartition de I’énergie. Cela montre que, dans un espace aérien contraint, A*

constitue la solution la plus robuste et homogene.

3.6 Conclusion

Ce chapitre a présenté de facon détaillée le processus d’implémentation et de
simulation d’un systéme de gestion automatisée de flotte de drones dans un environnement

3D controlé.

A travers une architecture logicielle modulaire sous MATLAB, trois algorithmes
majeurs (GA, PSO, A*) ont été évalués dans des scénarios de complexité croissante, en

présence ou non d’obstacles.

La méthodologie employée a permis de comparer ces approches selon des critéres
précis : efficacité énergétique, distance parcourue, temps de calcul, taux de réussite, et

gestion des collisions.

Les résultats montrent :

e La supériorité d’A* pour la génération de trajectoires courtes et équilibrées,
e |le compromis intéressant offert par PSO, combinant robustesse et efficacité
énergétique,

o laflexibilité de GA mais a un co(t énergétique et computationnel plus élevé.

Une interface graphique dynamique a également été développée afin de visualiser en
temps réel le comportement des drones dans I’environnement 3D simulé. Cette interface a
permis d’observer visuellement les trajectoires générées, les collisions éventuelles, les
obstacles rencontrés, ainsi que la progression du systeme de navigation dans différents
scénarios. Elle constitue un outil interactif essentiel pour analyser qualitativement les

performances du systéme et faciliter I’ interprétation des résultats.

Les analyses révelent également les limites du systeme : simplification des modeles
physiques, absence de communication inter-drones, et absence de replanification

dynamique.
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Conclusion générale et perspectives

Ce mémoire nous a permis d’explorer en profondeur un sujet passionnant et
d’actualité : la planification autonome des trajectoires pour des flottes de drones évoluant

dans des environnements complexes et en perpétuel changement.

A travers I’implémentation et la comparaison de trois algorithmes majeurs —
I’ Algorithme Génétique, I’Optimisation par Essaim Particulaire et I’algorithme A* — nous

avons pu mieux comprendre leurs spécificités, leurs points forts ainsi que leurs limites.

Les résultats obtenus montrent clairement que 1’algorithme A* se distingue par son
efficacité énergétique et la qualité optimale des trajectoires qu’il génére. Le PSO, quant a
lui, offre un bon équilibre entre robustesse et consommation énergétique, tandis que le GA,
bien que plus gourmand en ressources, apporte une grande flexibilité, particulierement

utile dans des scénarios complexes et changeants.

Bien que les résultats obtenus montrent I'efficacité et la pertinence de la solution
développée, certaines limitations ont ete identifiees :

e Simplification de I’environnement : L’espace aérien simulé est représenté par un
volume tridimensionnel fixe, sans prise en compte des conditions
environnementales réelles (vents, turbulences, zones interdites).

e Modeéle de drone idéal : Le comportement des drones n’intégre pas de dynamique
physique réelle (inertie, consommation liée a la masse, contraintes mécaniques).

e Trajectoire unique par algorithme : L’exécution d’un algorithme ne prévoit pas
de replanification en cours de vol, ni de collaboration adaptative entre les drones.

e Evitement d'obstacles limité : Bien que les obstacles soient modélisés, leur nature
reste simple (sphérique et statique/dynamique ponctuel), et aucun capteur simulé
n’est utilisé pour la détection active.

e Absence de communication inter-drones : Chaque drone planifie sa trajectoire de
maniere indépendante, ce qui peut limiter la coordination dans des missions
collaboratives ou complexes.

e Absence d’apprentissage adaptatif : Les algorithmes utilisés sont déterministes
ou populationnels, mais ils ne s’adaptent pas a 1’environnement au fil du temps.

Aucun mécanisme d’apprentissage automatique n’est intégré pour améliorer la
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prise de décision dans des contextes inconnus ou dynamiques.

Pour rendre le systeme plus robuste et adapté a des contextes réels, plusieurs axes

d’évolution sont envisageables :

Replanification dynamique : Intégration d’un module de recalcul de trajectoire en
temps réel, en cas de changement soudain de I’environnement (obstacle imprévu,
panne, modification de mission).

Modele de drone réaliste : Ajout de paramétres physiques (batterie, masse,
portance) et contraintes aérodynamiques pour simuler un comportement plus
proche de la réalité.

Algorithmes hybrides : Combinaison des forces des trois algorithmes explorés
(par exemple, A* pour 1’exploration globale, PSO pour 1’ajustement fin local) afin
de tirer parti de leurs complémentarités.

Communication inter-drones : Développement d’une stratégie collaborative
permettant le partage d’informations (position, état, alertes, trajectoires) entre les
drones pour une meilleure coordination.

Apprentissage par renforcement (Q-Learning) : Intégration du Q-Learning
comme approche d’apprentissage automatique permettant aux drones d’apprendre
de leurs expériences passees. Cette méthode pourrait offrir une planification
adaptative dans des environnements complexes et dynamiques, ou les régles ne sont
pas entiérement connues a I’avance.

Simulation sur maquette réelle : Passage de la simulation numérique a des tests
réels avec des drones physiques dans un espace délimité, afin de valider

expérimentalement la faisabilité et la robustesse du systeme.
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