RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ de BLIDA 1 Faculté de Technologie Département de Génie des Procédés

En vue de l'obtention du diplôme de

MASTER EN GENIE DES PROCEDES

Spécialité : Génie Chimique

Intitulé du mémoire

ETUDE ELECTROCHIMIQUE D'UN MATERIAU METALLIQUE DANS UN MILIEU AGRESSIF EN PRESENCE DU PEROXYDE D'HYDROGENE

Présenté par : MALKI Abderrahim Encadré par Dr .AMZERT Sid Ahmed Dr. BENMAAMAR Zoubir

Année universitaire 2015/2016

ملخص

الاهمية من هذا العمل هي دراسة السلوك الكهر وكيمياوي للفولاذ الكربوني في وسط مائي مع وجود بير وكسيد الهيدروجين محاكاة الانحلال الإشعاعي للمياه بعد التعرض لمصدر الإشعاع. للقيام بهذا العمل, قمنا بدراسة السلوك الكهربائي للفولاذ الكربوني في وسطموقي "محلول البو راكس" مع وجود بير وكسيد الهيدروجين اين قمنا بتغيير عدة عوامل منها : درجة الحموضة (H= 9.2 , 10.5 و12), تركيز بير وكسيد الهيدروجين (من 0.00125 مولا رية حتى 0.10مولا رية) و درجة حرارة الوسط (25,50 و 80 درجة مئوية). بعد ذلك قمنا بإعادة نفس الخطوات لكن هذه المرة في وجود عامل محفز للتآكل و هو الكلوريد ([-11]= 10.²-00و¹⁻¹0مولا رية). في الاخير قمنا بمقارنة هذه النتائج مع نظير اتها السابقة لهدف رؤية تأثير بير وكسيد الهيدروجين. كلمات دلالية السابقة لهدف رؤية تأثير بير وكسيد الهيدروجين.

RESUME

L'intérêt de ce travail est d'étudier le comportement électrochimique d'un acier au carbone dans un milieu aqueux en présence de H_2O_2 simulé à la radiolyse de l'eau suite à l'exposition à une source d'irradiation.

Afin de réaliser ce travail, nous avons étudié le comportement électrochimique de l'acier dans un milieu tampon, solution de Borax, en présence de H_2O_2 , où nous avons fait varier plusieurs paramètres : le pH : (9.2, 10,5 et 12), la concentration de H_2O_2 (entre 0.00125M et 0.1M) et la température (25,50 et 80°C)du milieu. Par la suite, nous avons repris les mêmes étapes, mais cette fois-ci en présence d'un agent agressif, les chlorures([Cl-] = 10^{-3} , 10^{-2} et 10^{-1} M). Et comparait ces résultats avec la première étude afin de voir l'influence de H_2O_2 .

Mots clés : Acier au carbone, Corrosion, voltamétrie, Borax, agent agressif, H₂O₂, radiolyse de l'eau.

ABSTRACT

The interest of this work is to study the electrochemical behavior of a carbon steel in an aqueous medium in the presence of H_2O_2 simulated with the radiolyse of water following the exposure to a radiation source.

In order to complete this work, we studied the electrochemical behavior of steel in a medium

buffer, solution of Borax, in the presence of H_2O_2 , where we varied several parameters: pH: (9.2, 10,5 and 12), concentration of H_2O_2 (between 0.00125M and 0.1M) and the temperature (25,50 and 80°C) of the medium. Thereafter, we took again the same stages, but this time in the presence of an aggressive agent, the chloride ([Cl⁻] = 10⁻³, 10⁻² and 10⁻¹M). And compared these results with the first part in order to see the influence of H_2O_2 .

Key words: Carbon steel, Corrosion, voltammetry, Borax, aggressive agent, H₂O₂, radiolyse of water.

REMERCIEMENT

Ce travail a été réalisé au sein du Département Chimie des Réacteurs au Centre de Recherche Nucléaire de Birine

En premier lieu, je tiens à remercier **ALLAH**, notre créateur, pour m'avoir donné la force pour accomplir ce modeste travail.

Je tiens avant tout à exprimer ma reconnaissance la plus chaleureuse à mes promoteurs Monsieur AMZERT Sid Ahmed (Chercheur principal; Département Chimie des Réacteurs, CRNB) et Monsieur BENMAAMAR Zoubir (Maitre-assistant à Université de Blida) d'avoir accepté de diriger ce modeste travail, pour leur aide et leurs encouragements durant toute la période de préparation de ce travail et qui m'ont fait l'honneur d'être mes encadreurs.

Je suis très reconnaissant Monsieur **ARBAOUI Fahd (Chercheur Principal ; Chef de Département Chimie des Réacteurs, CRNB)**, qui m'a proposé ce thème et qui a su me soutenir dans les problèmes rencontrés et les difficultés que l'on a trouvé à l'orientation d'un tel travail. Qu'il trouve en ces quelques lignes l'assurance de mon profond respect et de mes sentiments de gratitude.

Je remercie tous les membres de jury de ce mémoire. Je prie de trouver ici l'expression de mes plus sincères remerciements.

Mes remerciement, et ma grande gratitude s'adressent particulièrement a Mr. BOUZIDI Abdelkader, (Chercheur Confirmé, Chef de laboratoire d'Analyse)

J'exprime ma gratitude à tous mes collègues du Département chimie des réacteurs pour leur aide tout au long de ma formation.

TABLE DES MATIERES

RESUME	01
REMERCIEMENTS	02
TABLE DES MATIERES	03
LA LISTE DES ILLUSTRATIONS, GRAPHIQUES	05
INTRODUCTION	07
CHAPITRE 1 : ETUDE BIBLIOGRAPHIQUE	
1.1. Introduction	09
1.2. Concept du stockage géologique pour les déchets radioactifs	09
1.2.1 Le système multi-barrières	10
1.3. Problématique fer métal / argilite dans le stockage Géologique profond	11
1.4. Les mécanismes de corrosion du fer métal en Conditions de stockage géologique	11
1.5. La corrosion du fer métal	11
1.6. Les types de corrosion dans un stockage géologique profond	11
1.6.1. La corrosion gazeuse	12
1.6.2. La corrosion aqueuse	12
1.6.3. La corrosion atmosphérique	13
1.7. Les formes de corrosion dans un stockage géologique profond	15
1.7.1. La corrosion généralisée et uniforme	16
1.7.2. La corrosion localisée par piqûres	16
1.7.3. La corrosion caverneuse (ou par crevasse)	16
1.8. La thermodynamique de corrosion	17
1.9. Les facteurs qui influencent la corrosion dans le milieu géologique profond	18
1.9.1. Influencent de l'oxygène	18
1.9.2. Influence du PH	19
1.9.3. Influence de la salinité	19
1.9.4. Influence de la température	19
1.9.5. Influence du peroxyde d'hydrogène	19
1.9.5.1. Production du peroxyde d'hydrogène par radiolyse de l'eau	20
1.9.5.1.1. L'étape physique	20
1.9.5.1.2. L'étape physico-chimique	20
1.9.5.1.3. L'étape de chimie non homogène	22
1.9.5.1.4. L'étape de chimie homogène	23
1.9.5.2. Décomposition du peroxyde d'hydrogène	26
CHAPITRE 2 : MATERIELS ET PROCEDURES EXPERIMENTALES	
2.1. Introduction	28
2.2. Matériau utilisé	28

2.3. Préparation des échantillons	28
2.3.1. Préparation de l'électrode de travail	28
2.3.2. Préparation de la surface à étudier	29
2.4. Milieux Expérimentales	30
2.5. Préparation des solutions des essais	30
2.5.1. Solution Tampon (Borax)	30
2.5.2. Peroxyde d'Hydrogène:	31
2.5.3. Chlorure de Sodium	31
2.6. Moyens d'étude de la corrosion	32
2.6.1. Méthode Potentiocinétique	32
2.6.1.1. Mesure de potentiel de corrosion (potentiel libre)	32
2.6.1.2. Cinétique de corrosion	32
2.6.2. Spectroscopie d'Impédance Electrochimique (SIE)	33
2.6.2.1. Principe du phénomène	33
2.6.2.2. Relation entre le mécanisme électrochimique et le modèle électrique	34
2.6.2.3. Les avantages et les inconvénients de la SIE	36
2.7. Appareillage et Procédure expérimentale	37
CHAPITRE 3 : RESULTATS ET DISCUSSIONS	
3.1. Introduction	39
3.2. Comportement électrochimique de l'acier au carbone dans une solution tampon	30
(Borax)	59
3.3. Comportement électrochimique de l'acier au carbone dans des solutions	45
chlorurées	ч.)
3.4. Comportement électrochimique de l'acier au carbone dans une solution de Borax	18
en présence de H ₂ O ₂	40
3.5. Comportement électrochimique de l'acier au carbone dans une solution chlorurée	52
en présence de H ₂ O ₂	52
3.6. Les impédances électrochimiques	54
CONCLUSION GENERALE	59

LISTE DES FIGURES ET TABLEAUX

différentes barrières des protections (verre/fer/argile) vis-à-vis de l'environnement	10
Figure 1.2 : Corrosion gazeuse : Schéma d'une réaction entre le métal et l'oxygène	12
Figure 1.3 : Corrosion aqueuse : Schéma d'une réaction entre un métal et l'eau en milieu désaéré [12]	13
Figure 1.4 : Corrosion atmosphérique: Schéma d'une réaction entre un métal et l'atmosphère [12].	14
Figure 1.5 : Corrosion atmosphérique : cycle phase d'humidification/Phase de séchage [13].	15
Figure 1.6 : schéma des processus de corrosion localisée par piqure [14]. Figure1.7 : Mécanisme de la radiolyse de l'eau [26].	16 26 29
Figure 2.1 : Cylindre pleine en acier au carbone	• •
Figure 2.2 : Echantillon en acier au carbone après traitement	29
Figure 2.3 : Représentation de Spectroscopie d'impédance électrochimique	34
réaction avec transfert de charges sans diffusion, b) diagramme d'impédance correspondant.	33
Figure 2.5.: Influence des effets de l'adsorption sur le diagramme d'impédance.	36
Figure 2.6 : Cellule électrochimique a trois électrodes	37
Figure 2.7 : potentiostat de type PARSTAT, Model 2273	37
Figure 3.1 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents pH dans une solution tampon de Borax à 25°C.	40
Figure 3.2 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents température dans une solution tampon de Borax à 9,2.	40
Figure3.3 : Voltamogrammes de l'acier au carbone dans une solution tampon de Borax pour différent pH à 25°C : (a) semi-logarithmique et (b) linéaire.	42
Figure 3.4 : Voltamogrammes de l'acier au carbone dans une solution tampon de Borax pour différente température à pH= 9,2 : (a)linéaire, (b) semi-logarithmique.	44
Figure 3.5 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différentes concentrations des ions chlorures.	45
Figure 3.6 : Voltamogrammes de l'acier au carbone dans différentes concentrations de NaCl : (a) semi-logarithmique (b) linéaire.	46
Figure 3.7 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents concentration de H_2O_2 dans une solution tampon de Borax à 25°C et pH=9 2	48
Figure 3.8: Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents concentration de H_2O_2 dans une solution tampon de Borax à 25°C et différents pH.	49
Figure 3.9 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents concentration de H ₂ O ₂ dans une solution tampon de Borax à pH = 10,50 et	50

différentes température.

Figure 3.10 : Voltamogrammes de l'acier au carbone dans une solution tampon de 51 Borax pour différent concentration de H_2O_2 pour une température de 25°C et pH= 9,2 : (a)linéaire, (b) semi-logarithmique.

Figure 3.11 : Voltamogrammes de l'acier au carbone dans une solution chlorurée 53 0,01M pour différent concentration de H₂O₂ pour une température de 25°C: (a)linéaire, (b) semi-logarithmique.

Figure 3.12 : évolution du potentiel de corrosion de l'acier au carbone dans une 54 solution chloruré a et oxygéné a différentes concentrations.

Figure 3.13 : Diagramme de Nyquist de l'acier au carbone dans une solution Tampon 55 de Borax à des différentes concentrations de H_2O_2

Figure 3.14 : Diagramme de Nyquist de l'acier au carbone dans une solution chlorurée $([CI^{-}]=10^{-1}M)$ a des différentes concentrations de H_2O_2

LISTE DES FIGURES ET TABLEAUX

Tableau 1.1 : Coefficients de diffusion des espèces intervenant dans la radiolyse de l'eau à température ambiante [24].	22
Tableau.1.2 : Principales réactions utilisées dans la description de la radiolyse de l'eau. [25].	23
Tableau 1.3 : Réactions chimiques se produisant durant l'étape de chimie homogène.[25].	24
Tableau 2.1 : Analyse en pourcentage massique de l'acier en balance avec le fer.Tableau 2.2 : Les différentes concentrations des solutions préparées	28 32

INTRODUCTION GENERALE

La majorité des déchets hautement radioactifs sont produits par les centrales nucléaires de puissance de productions de l'électricité. Ces déchets se caractérisent par une longue durée de vie qui peut atteindre un million d'années. La gestion de ces déchets à long terme nécessite un concept technologique qui parvient à isoler ces substances radioactives de la biosphère. Le concept du stockage de ces déchets dans des couches géologiques profondes est le plus adapté. Le stockage des déchets radioactifs en profondeur repose sur leprincipe de confinement multibarrières afin de limiter la pénétration de l'eau aux déchets et éviter la dispersion des déchets dans les couches géologiques. Au départ les déchets sontmélangés avec une matrice de verre borosilicaté capable de retenir ces déchetsplusieurs centaines de milliers d'années. Ces déchets vitrifiés sont coulés dans des fûts en acier inoxydablequi constituentles colis primaires des déchets. Ces colis primaires sont placés dans des surconteneurs en acier non allié qui retardent l'arrivée de l'eau au conteneur d'acier inoxydable lors de la première phase de stockage caractérisée par un important dégagement de chaleur par les déchets. A leur tour les surconteneurs sont entourés par des argiles gonflantes qui empêchent la diffusion de l'eau et assurent l'adsorption des cations radioactifs en cas de leur fuite de la matrice de verre.

L'intégrité du système déchet/acier/argile/milieu doit être assurée dans le temps. Une gestion convenable d'un tel système doit anticiper sur l'effet de tout facteur exogène, mais doit également intégrer les facteurs endogènes et connaître l'évolution dans le temps, notamment des différentes interfaces de ce système. A ce titre un grand nombre de travaux ont déjà été réalisés. Mais tous ces travaux se fixent des conditions d'études bien spécifiques et n'ont pas la prétention d'être exhaustifs.

L'irradiation émises par les déchets peut entraîner l'oxydation du milieu par radiolyse de l'eau interstitielle et la formation de H₂O₂, d'O₂et de radicaux libres de type e_{aq}^- , H', OH',HO₂⁻ Cette radiolyse peut générer rapidement des conditions très oxydantes [01]; comme observé pour les analogues naturels d'OKLO[02]et CIGAR LAKE.[03].

C'est dans ce contexte que s'inscrit ce projet de mémoire qui a pour but d'étudier le comportement électrochimique d'un acier au carbone en présence du peroxyde d'hydrogène ;ce dernier qui est d'une part, un produit de radiolyse de l'eau, et d'autre part est une source du gaz d'oxygène.

Ce mémoire s'articule autour de trois grands chapitres. Le premier présente une synthèse bibliographique dans le but de décrirele concept du stockage géologique profond des déchets radioactifs, les différents types et formes de corrosion qui peuvent affecter le matériau dans les conditions de ce type de stockage, suivi par une description bien détaillée des différentes facteurs qui influencent la corrosion dans ce milieu tels que la température la salinité, toutes en donnant une intention particulière au phénomène de la radiolyse de l'eau.

Le deuxième chapitre qui est constitué en deux parties ; la première décrit les aciers utilisés, la méthode d'élaboration des échantillons et leurs préparations. La deuxième partie présente les milieux de travail, les équipements utilisés et les procédures expérimentales mises en œuvre dans cette étude.

Dans le dernier chapitre, sont présentés les résultats et les discussions appropriées. Une discussion générale synthétisera toutes les interprétations des résultats obtenus par les méthodes d'investigations utilisées. Une conclusion générale rassemblera les points-clés de ce travail et on proposera quelques perspectives de développement.

CHAPITRE 1 ETUDE BIBLIOGRAPHIQUE

1.1. Introduction

Ce chapitreestconsacré àune synthèsebibliographiquedans le butde représenter le concept du stockage géologique profond des déchets radioactifs, les différentstypes et formes decorrosion qui peuvent affecter le matériaudans les conditions de ce type de stockage, suivi par une description bien détaillée des différents facteurs qui influencent la corrosion dans ce milieu tels que la température la salinité, toutes en donnant une intention particulière au phénomène de la radiolyse de l'eau.

1.2. Concept du stockagegéologique pour lesdéchets radioactifs

Les déchets de haute et moyenne activité et à vie longue ne peuvent pas être entièrement retraités ou recyclés et nécessitent donc un stockage sécurisé et fiable pour des centaines de milliers d'années. La plupart des nations concernées par la production de ce type de déchets envisagent leur confinement en conteneurs résistants à la corrosion puis leur stockage dansdes formations géologiques profondes présentant une grande stabilité tectonique, et susceptibles de constituer une barrière naturelle efficace pour confiner la radioactivité et empêcher le transfert des radionucléides vers la biosphère sur des échelles de temps pouvantatteindre des millions d'années[04, 05].Le milieu argileux, après comparaison avec le granite [06], présente des caractéristiques favorables pour la faisabilité du stockage face aux contraintes imposées. D'aprèsANDRA[07], les conditions de sûreté appliquées au stockage pendant son exploitation seront comparables à celles d'une autre installation nucléaire. Cependant, lors de la fermeture du stockage, des conditions passives devront se mettre en place afin d'assurer les fonctions de sûreté selon les deux points suivants : A) l'isolation des déchets vis-à-vis des phénomènes de surface et anthropiques. B) l'opposition à une circulation de l'eau afin delimiter le relâchement des radionucléides dans l'environnement et ainsi retarder leur migration.

1.2.1 Le système multi-barrières

L'objectif d'un centre de stockage en couche géologique profonde est d'isoler les déchets radioactifs de l'homme et de l'environnement pendant le temps nécessaire à la décroissance de la radioactivité. Après une période de réversibilité d'une centaine d'année, le centre de stockage ne doit nécessiter aucune intervention de l'homme.

Une installation de stockage est constituée d'alvéoles creusées dans la formation géologique hôte. Elles sont revêtues d'un chemisage métallique en acier non allié pour la mise en place et le retrait éventuel des colis de stockage (réversibilité). Le colis de stockage est constitué du colis primaire (matrice de verre contenant les radionucléides et coulée dans un conteneur en acier inoxydable) inséré dans un surconteneur en acier non ou faiblement allié..

Le centre de stockage est constitué de plusieurs deces alvéoles, tunnels horizontaux borgnes.

Chaque alvéole peut comporter 4 à 20 colis selon la puissance thermique. Lors de sa fermeture, l'alvéole est scellée par un bouchon d'argile gonflante [08]. LaFigure 1.1 illustre l'installation de stockage prévue pour les déchets HA-VL.

Figure 1.1 : Infrastructures du stockage mis en place pour les déchets HA-Vl montrant différentes barrières des protections (verre/fer/argile) vis-à-vis de l'environnement [09].

1.3. Problématique fer métal / argilite dansle stockage Géologique profond

Dans ce concept de stockage géologique profond des déchets radioactifs de haute activité, les principaux composants sont métalliques (conteneurs et surconteneurs). Pour ces composants, le principal processus de dégradation est la corrosion. Elle est spécifique à la composition du métal, à ses caractéristiques et à son environnement.

1.4. Les mécanismes de corrosion du fer métal en conditions de stockage géologique

L'utilisation de matériaux métalliques au sein du stockage concerne notamment des composants ayant une fonction mécanique pour les périodes d'exploitation et de réversibilité ou une fonction d'étanchéité post-fermeture. Ces composants peuvent être soumis à des processus de corrosion variables en fonction des conditions transitoires (oxydo-réduction, thermique, chimique hydrique et mécanique) régnant dans le stockage. Ce paragraphe présente les aspectsde la corrosion des matériaux métalliques susceptibles d'être rencontrés en situation de stockage profond, ainsi que les mécanismes réactifs régissant ces phénomènes.

1.5. Définition de la corrosion

D'après la norme internationaleISO 8044 [10] la corrosion est définie comme « l'interaction physico-chimiqueentre un métal et son milieu environnant entraînant des modifications dans les propriétés du métal et pouvant conduire à une dégradation significative de la fonction du métal, du milieu environnant ou du système technique dont ils font partie ». Cette norme définit également les « effets de la corrosion » comme les résultats pouvant être décelés dans le système, et les « dommages de corrosion » comme les dégradations fonctionnelles du système technique dont il faut réduire l'ampleur par une « protection contre la corrosion ».

1.6. Les types de corrosion dans un stockage géologique profond

La corrosion peut se produire sous trois conditions environnementales qui sont présentées cidessous[11].

1.6.1. La corrosion gazeuse

La corrosion gazeuse se produit lorsque« le seul milieu corrosif est un gaz sec, aucune phase liquide n'étant présente à la surface du métal »[10].Cette corrosion de nature électrochimique utilise les produits de corrosion présents à la surface du métal comme électrolyte et conducteur électronique. Ce phénomène est illustré par laFigure 1.2où le métal se corrode à l'interface métal/oxydes et les cations Mⁿ⁺ et les électrons libérés diffusent vers l'extérieur du film. A l'interface air/oxydes, l'oxygène se réduit en anionsO²⁻qui diffusent vers l'intérieur du film. L'interface métal/oxydes peut être considérée comme une anode et l'interface air/oxydes comme une cathode.

Figure 1.2 : Corrosion gazeuse : Schéma d'une réaction entre le métal et l'oxygène [12].

En stockage géologique profond, la corrosion gazeusepeut se produireau cours de la phase d'exploitation dustockage des déchets dans l'alvéole. La température est alors trop élevée pour permettre la condensation d'eau liquide au niveau des surfaces métalliques.

1.6.2. La corrosion aqueuse

La corrosion aqueuse est plus complexe que la corrosion gazeuse. Les produits de corrosion sont susceptibles de se dissoudre dans l'électrolyte aqueux et des dépôts plus ou moins compacts et plus oumoins protecteurs peuvent se former par précipitation à la surface du matériau métallique. Les produits de corrosion peuvent être soit solides sous forme d'oxydes, soit dissous sous forme de cations métalliques.Ce phénomène est illustréen conditions

anoxiquespar laFigure1.3où le métal se corrode à l'interface métal/oxy-hydroxydes et les cations Mⁿ⁺et les électrons libérés diffusent vers l'extérieur du film. A l'interface eau/oxy-hydroxydes, l'eau se réduit sous forme d'anions HO⁻qui diffusent vers l'intérieur du film et de protons H⁺qui se combinent sous forme d'hydrogène gazeux. La formation de la couche d'oxy-hydroxydes est produite par l'association des cations métalliques Mⁿ⁺et des anions HO⁻. En milieuaqueux, les réactions acide-base, dissolution-précipitation et complexation tiennent également un rôle important dans le phénomène de corrosion.

Figure 1.3 : Corrosion aqueuse : Schéma d'une réaction entre un métal et l'eau en milieu désaéré [12].

Dans un stockage géologique profond, la corrosion aqueuseen conditions anoxiquesest la forme de corrosion majeure sur l'échelle de temps considérée (plusieurs milliers d'années). Elle se met en place lorsque le milieu environnant est complètement saturé.

1.6.3. La corrosion atmosphérique

La corrosion atmosphérique est définie comme« la corrosion pour laquelle l'atmosphère terrestre à température ambiante est le milieu corrosif » [10].ou de manière plus restrictive comme « une réaction du métal avec l'oxygène de l'air lorsqu'à sa surface l'humidité et les polluants forment un électrolyte » [12]. Ce type de corrosion se situe entre la corrosion gazeuse et la corrosion aqueuse. Il est soumis à une alternance de phases d'oxydation humides et sèches comme l'illustre laFigure1.4 Initialement, tous les éléments nécessairesà la

formation d'hydroxydes et d'oxydes sont présents dans le système. Lors de la phase d'oxydation humide, une couche d'hydroxydes va se former suivant la réaction :

$$M^{n+} + nHO^- \rightarrow MHO_n....(1.01)$$

Les oxydes se forment au cours de la phase d'oxydation sèche suivant la réaction :

$$xM^{n+} + xn_2O^{-2} \rightarrow M_x O_{xn2}.....(1.02)$$

Figure 1.4 : Corrosion atmosphérique: Schéma d'une réaction entre un métal et l'atmosphère [12].

Cette notion de cycle a été expérimentalement vérifiée parSTRATMANN [13], est illustrée par la Figure1.5L'évolution de l'épaisseur de l'électrolyte à la surface métallique permet de définir trois étapes. Les processus de corrosion mis en jeu se basent sur l'évolution de la consommation en fer et en oxygène du système. Au cours de la phase de mouillage, certaines phases du système jouent le rôle d'oxydant et se réduisent alors que le métal s'oxyde. Durant

la phase « humide » l'oxydation du fer reste la réaction anodique et la réduction de l'oxygène dissous dans l'électrolyte correspond à la réaction cathodique. La diffusion de l'oxygène dissous au travers de l'électrolyte représente le facteur limitant de cette étape de corrosion. L'étape de séchage débute par une diminution de l'épaisseur de l'électrolyte entraînant une importante oxydation du fer et une augmentation de la vitesse de corrosion. Lorsque l'électrolyte atteint une épaisseur minimale, la concentration élevée d'espèces dissoutes provoque une précipitation d'hydroxydes ferreux accompagnée de la chute de la vitesse d'oxydation du fer.

Figure 1.5 : Corrosion atmosphérique : cycle phase d'humidification/Phase de séchage [13].

Dans un stockage géologique profond, le passage d'une situation de corrosion gazeuse à une situation de corrosion atmosphérique est observable à une humiditécomprise entre 40 et 70 % et en dessous d'une certaine température. Cette transition se traduit également par une augmentation notable de la vitesse de corrosion.

1.7. Les formes de corrosion dans un stockage géologique profond

Dans l'industrie, les incidents sur les matériaux dus à la corrosion sont classés selon l'aspect du dommage occasionné. D'aprèsANDRA [11], trois formes de corrosion sont susceptibles de se produire dans le cadre d'un stockage géologique.

1.7.1. La corrosion généralisée et uniforme

La corrosion généralisée et uniforme est la forme la plus classique de corrosion qui« progresse sur l'ensemble de la surface du métal exposé au milieu corrosif approximativement à la même vitesse» [10]. Elle se traduit par une perte de masse si les produits de corrosion sont solubles ou par un dépôt uniforme s'ils ne le sont pas.

1.7.2. La corrosion localisée par piqûres

La corrosion localisée qui« se concentre préférentiellement sur des sites discrets de la surface d'un métal exposé à un milieu corrosif » [10], sous forme de piqûres. Ellepeut être particulièrement insidieuse car la surface du métal ne présente que des trous de petits diamètres mais progressant fortement en profondeur.Lorsqu'une piqûre est amorcée, un excès local de charges positives se crée et entraine un mécanisme analogue à celui décrit précédemment pour la corrosion caverneuse (Figure 1.6). L'agitation du milieu aqueux est également un paramètre important : moins le milieu est agité, plus le métal est sensible à la piqûration.

Figure 1.6 : schéma des processus de corrosion localisée par piqure[14].

1.7.3. La corrosion caverneuse (ou par crevasse)

La corrosion caverneuse est une« corrosion localisée associée à la présence d'un interstice étroit ou d'un espace restreint existant entre la surface d'un métal et une autre surface (métallique ou non) » [10]. Elle à tendance à se produire en milieu aqueux aéré par les réactions anode/cathode de corrosion .Le liquide contenu dans la crevasse n'est plus renouvelée et l'oxygène y est épuisé. Une pile d'aération différentielle se crée entre la surface aéréedu métal et l'intérieur désaéréde la crevasse. Les cations métalliques s'hydrolysent et le pH diminuedans l'interstice.

1.8. La thermodynamique de corrosion

La corrosion est une dégradation manifestant d'un retour des métaux à leur état thermodynamiquement stable sous la forme d'oxydes, hydroxydes ou sels. La corrosion ne peut donc se produire que si les produits de corrosion sont thermodynamiquement plus stables que le métal et son milieu environnant.

La corrosion aqueuse met en jeu quatre catégories principales d'espèces chimiques (l'eau, le métal, les produits de corrosion solides et ceux dissous dans laphase liquide) et deux types de réactions chimiques (oxydoréduction qui consiste en un transfert d'électrons et acide-base qui consiste en un transfert de protons). Deux grandeurs caractéristiques régissent le comportement à l'équilibre de ces réactions : le pH pour les réactions acide-base et le Eh (potentiel d'électrode) pour les réactions d'oxydoréduction. Les équilibres de ces quatre catégories d'espèces en fonction de ces deux paramètres sont représentés sur des diagrammes « potentiel-pH », aussi appelés diagrammes de POURBAIX[15].

Les diagrammes de POURBAIX permettent de figurer les différents équilibres chimiques par des segments de droite qui délimitent des domaines. Pour une réaction

La conditiond'équilibre s'écrit

Où E_0 est le potentiel constant calculable à partir des données thermodynamiques relatives aux espèces considérées, R la constante des gaz parfaits, T la température absolue, F (Faraday) la charge électrique d'une mole d'électron, n le nombre d'électronet [X] exprime la concentration de l'espèce dissoute X.

Ce segment de droite est considéré comme la frontière entre le domaine où l'espèce oxydante est plus concentrée (au-dessus) et le domaine où l'espèce réductrice est plus concentrée (au-dessous). Dans un diagramme, le domaine noté X signifie que cette espèce y est la plus concentrée de toutes les espèces dissoutes considérées. Les réactions « purement acide-base » sont représentées par des droites parallèles à l'axe des potentiels et les réactions « purement d'oxydoréduction » par des droites parallèles à l'axe des pH [16]

1.9. Les facteurs qui influencent la corrosion dans le milieu géologique profond

Les facteurs influencent le phénomène de la corrosion aqueuse dans les sites de stockage des déchets radioactifs à long terme dépend de l'évolution de paramètres physico-chimique du site du stockage tels que la température la salinité du milieu, mais elle peut dépondre d'autres paramètres induit par l'irradiation. Dans ce qui suit nous allons détailler ces paramètres toutes en donnant une intention particulière au phénomène de la radiolyse de l'eau.

1.9.1. Influencent de l'oxygène

L'oxygène joue un rôle important dans les mécanismes de corrosion du fer et des alliages de fer en milieu aéré. Dans l'eau de mer aérée, la concentration en oxygène dissous est très variable puisqu'elle dépend des facteurs physiques, chimiques et biologiques suivants:

Échanges à l'interface air/océan, diffusions et mélanges au sein de la masse d'eau, phénomènes de photo-oxydation, réactions d'oxydation chimique, etc.

La dissolution del'oxygène estgouvernéepar des lois physiques et dépend de la pression atmosphérique, de la température et de la salinité de l'eau. La solubilité de l'oxygène décroît lorsque la température et la salinité augmentent, mais elle s'accroît avec la pression.

La solubilité de l'oxygène est de 2,8.10⁻⁴mol/l à 20°C en eau pure alors qu'elle est réduite à 2,3.10⁻⁴mol/l à 20°C pour une salinité de 35 g/l. En général, la concentration en oxygène dissous est comprise entre 0 et 5.10^{-3} mol/l [17].

1.9.2. Influence du PH [18].

Le pHde la solution est un facteur susceptible d'affecter la stabilité du film passif, l'augmentation de l'acidité et donc la quantité de protonsàtendance à déstabiliser le film passif. Un milieu très acide freine la déprotonisation à laquelle la formation dufilm passif conduit et peu même provoquer la dissolution d'un film déjà formé.

1.9.3. Influence de la salinité

Les chlorures sont des ions agressifs, souvent à l'origine de corrosions localisées. Leur présence en solution aqueuse s'accompagne de deux effets complémentaires: d'une part, leur concentration locale induit une acidification du milieu, et, d'autre part,le film passif en surface du métal devient moins efficace car plus instable et donc plus susceptible de se rompre localement. Un autre effet de la salinité sur la corrosion résulte de son influence sur la conductivité du milieu aqueux. La résistivité du milieu corrosif limite la distance sur laquelle le couplage est effectif. Cependant, la forte conductivité des milieux salins tels que l'eau de mer (0,5 M NaCl) implique que la résistivité de l'électrolyte va jouer un rôle mineur dans la cinétique des réactions de corrosion.

1.9.4. Influence de la température

Généralement, l'augmentation de la température accélère les phénomènes de corrosion car elle diminue les domaines de stabilité des métaux et accélère les cinétiques de réactions et de transport. L'importance de soninfluence diffère cependant en fonction du milieu corrosif[19].

1.9.5. Influence du peroxyde d'hydrogène

La source d'irradiation contenant dans les conteneurs de stockage provoque la radiolyse de l'eau environnant ces derniers. Le principal produit de la radiolyse est leperoxyde d'hydrogèneaussiappeléeau oxygénée, est uncomposé chimiquede formule H_2O_2 . C'est un liquide clair incolore possédant de fortes propriétés oxydantes. Son potentiel d'oxydation est de 1,8 V.

1.9.5.1. Production du peroxyde d'hydrogène par radiolyse de l'eau

Le processus général de l'apparition de modifications chimiques lors du passage d'un rayonnement ionisant commence avec le bombardement des molécules d'eau par un rayonnementionisant de haute énergie et prend fin avec le rétablissement de l'équilibre chimique global. Ce processus peut être divisé en 4 grandes étapes temporelles.

1.9.5.1.1. L'étape physique

Cette étape correspond aux phénomènes qui permettent le transfert de l'énergie du faisceau ionisant incident au système chimique. Sa durée est inférieure à 1 femto seconde. A cette échelle de temps, les molécules d'eaun'ont pas le temps de diffuser et seuls les processus électroniques sont possibles. Le résultat de cette absorption d'énergie, le long de la trajectoire du faisceau de particules énergétiques, est laproduction d'un grand nombre de molécules d'eau excitées électroniquement (H₂O^{*}) et ionisées (H₂O⁺). Les réactions précurseur de la radiolyse de l'eau sont: $H_2O \rightarrow H_2O^*$(1.05)

et
$$H_2 0 \to H_2 0^+ + e^-$$
....(1.06)

Certains électrons éjectésau cours de l'ionisation d'une molécule d'eau possède une énergie suffisante afin de conduire à l'ionisation ou l'excitation d'une, voire plusieurs molécules d'eau voisines. Récemment des études théoriques ou des expériences sur des agrégats de molécules d'eau ont montré qu'une molécule d'eau pouvait être ionisée plusieurs fois simultanément par des dépôts d'énergie intenses [20]. Cela a permis d'expliquer la formation d'atome d'oxygène précurseur de l'espèce radicalaire superoxyde HO₂*lorsque l'eau était irradiée avec des ions accélérés très énergétiques comme Ar¹⁸⁺de 3 GeV.

1.9.5.1.2. L'étape physico-chimique

Cette étape englobe tous les processus qui mènent à l'établissement d'un équilibre thermique du système. Cette étape dure environ 1 picoseconde. Lors de celle-ci, l'électron secondaire éjecté de la molécule d'eau ionisée s'éloigne de l'endroit où il a été formé. Il transfère son énergie aux molécules avec lesquelles il entre en collision et atteint éventuellement l'équilibre thermique avec le liquide. A ce stade, il se nomme « électron de subexcitation» et perd le peu

d'énergie qu'il lui reste par l'excitation des modes vibrationnels et rotationnels des molécules d'eau (a). Ce processus est suivi par sa thermalisationlorsqu'il atteint une énergie cinétique de 0,025 eV (b) à 25°C puis par sa solvatation (hydratation) lorsque les molécules d'eau voisines s'orientent autour de lui (c) :

$$e^- \xrightarrow{(a)} e^-_{sub} \xrightarrow{(b)} e^-_{th} \xrightarrow{(c)} e^-_{aq}$$

Cette cascade de changements rapides se produit en quelques picosecondes [21]. Les électrons peuvent avoir parcouru de 8 à 12 nm depuis l'endroit où ils ont été formés[22].

Les électrons en cours de thermalisation peuvent aussi être temporairement capturés par une molécule d'eau pour donner un anion moléculaire transitoire, H_2O .Cette anion, très instable, subit ensuite une dissociation pour donner principalement OH^{*}et un hydrure H⁻. Ce dernier n'est pas stable et réagit avec une molécule d'eau(attachement dissociatif) pour former du dihydrogène moléculaire H₂ainsi qu'un anion hydroxyle HO⁻. Cette dernière voie, importante en phase gazeuse, est considérée comme minoritaire dans l'eau par rapport à la thermalisation de l'électron.

Cette production d'hydrogène moléculaire se fait de manière indépendante à celle obtenue par recombinaison géminée de l'électron hydraté et n'est donc pas contrôlée par la présence éventuelle de capteurs[23]. Les autres produits de l'étape physique, H_2O^+ et H_2O^* vont également subir quelques modifications chimiques. Tout d'abord, les molécules d'eau excitées, H_2O^* , subissent le plus souvent une dissociation pour conduire à la formation de H^{*} et de HO^{*}, mais elles sont également susceptibles de conduire à la formation de dihydrogène moléculaire et d'oxygène singulier O^{*}(1D). Ce dernier réagit ensuite rapidement avec l'eau pour former soitle peroxyde d'hydrogène H_2O_2 , soit deux radicaux HO^{*}. Ces réactions sont résumées ci-dessous : $H_2O^* \to H^* + HO^*$(1.07) ;

$$H_2 0^* \to H_2 + 0^* (1D)$$
....(1.08)

;
$$H_2 O + O^* (1D) \rightarrow H_2 O_2 \dots (1.09)$$

Ou
$$H_20 + 0^*(1D) \to 2H0^*$$
.....(1.10)

Une autre voie possible mais peu observée est la formation d'oxygène à l'état triplet:

 $H_2 O^* \to 2H^* + O^*(3P)$(1.11)

La contribution de l'ensemble de ces réactions dans la formation des radicaux libres primaires issus de la radiolyse de l'eau est minoritaire par rapport à celle des processus d'ionisation. L'ion H₂O⁺n'est pas stable et réagit rapidement avec une molécule d'eau pourdonner le radical HO^{*} et un ion hydronium H₃O⁺ : $H_2O^+ + H_2O \rightarrow H_3O^+ + HO^*$(1.12)

Cette voie apporte la plus grande contribution de radicaux hydroxyles.

A la fin de cette étape physico-chimique, c'est-à-dire 10^{-12} seconde après le passage du rayonnement ionisant, plusieurs espèces radiolytiques sont présentes en solution aqueuse : e_{aq} , HO[•], H₃O⁺, HO⁻et H[•]et H₂.

1.9.5.1.3. L'étape de chimie non homogène

Cette étape, se produisant entre 10⁻¹²-10⁻⁶s, consiste en la diffusion et réactions des espèces radiolytiques dans le but d'un rétablissement de l'équilibre chimique. Les produits de la décomposition de l'eau présents 1 picoseconde après le passage du rayonnement ionisant sont distribués de manière non homogène.L'énergie s'est déposée dans de petits volumesà l'intérieur desquels la concentration en espèces radiolytiques est élevée.

Tableau 1.1: Coefficients de diffusion des espèces intervenant dans la radiolyse de l'eau à température ambiante [24].

Espèces	HO^*	H^*	H_2O_2	H ₂	e¯ _{aq}	$\mathrm{H_{3}O^{+}}$	HO-	O ₂	$\mathrm{HO_2}^*$	O_2^*	$\mathrm{HO_2}^*$
D10 ⁻⁹ m ² s ⁻¹	2,2	7,0	2,3	4,8	4,8	9,3	5,3	2,4	2,3	1,7	1,4

Cette diffusion tend à homogénéiser la distribution des entités issues de la radiolyse de l'eau.Des radicaux présents dans un même petit volume et qui n'ont pas pu s'échapper, vont réagir entre eux pour conduire à la formation de produits moléculaires tels que H_2O_2 et $H_2à$ l'intérieur des grappes.

N° réaction	Réactions	Cste de vitesse(10 ¹⁰ dm ³ . /mol.S)
1	$e_{\bar{a}q} + e_{\bar{a}q} + H_2O_2 \rightarrow H_2 + 2HO^*$	0,55
2	$e_{\bar{a}q} + H^* + H_2 0 \rightarrow H_2 + H0^*$	2,0
3	$H^* + H^* \to H_2$	0,8
4	$e_{aq}^{-} + HO^* \rightarrow HO^-$	3,0
5	$e_{\bar{a}q} + H_3 O \rightarrow H^* + H_2 O$	2,3
6	$H0^* + H0^* \rightarrow H_2O_2$	0,7
7	$HO^* + H^* \to H_2O$	1,0
8	$H_30^+ + H0^* \rightarrow 2H_20$	14,3

Tableau.1.2: Principales réactions utilisées dans la description de la radiolyse de l'eau. [25].

Il est intéressant de constaterqu'une certaine quantité de H_2O_2 et H_2 est déjà formée par recombinaison (réactions N°3 et N°6).

Une microseconde après le passage du rayonnement ionisant, la compétition entre réactions et diffusion libre permet de déterminer les valeurs des rendements primaires des radicaux libres et des produits moléculaires.

1.9.5.1.4. L'étape de chimie homogène

A partir de cette étape, soit entre 10^{-7} et 10^{-6} secondes après le passage du rayonnement ionisant, les produits radicalaires et moléculaires provenant de la radiolyse de l'eau sont répartis de façon homogène au sein du volume de la solution. La décomposition de l'eau conduit à la formation de :

$$H_2O \rightarrow e_{aq}; H^{\bullet}; HO^{\bullet}; H_2; H_2O_2; H_3O^+....(1.13)$$

N° réaction	Réactions	Cste de vitesse (10 ¹⁰ dm ³ . /mol.S)
9	$HO^* + H_2O^* \rightarrow H_2O + O_2$	0,7
10	$H0^* + 0_2^{*-} \to H0^* + 0_2$	1,0
11	$HO^* + H_2O_2 \rightarrow HO_2^* + H_2O$	0,003
12	$HO^* + H_2 \rightarrow H^* + H_2O$	0,005
13	$HO^* + HO^- \rightarrow O^{*-} + H_2O$	1,3
14	$HO^* + HO_2^* \rightarrow HO_2^* + HO^-$	0,75
15	$HO^* + O^{*-} \rightarrow HO_{\overline{2}}$	1,8
16	$e_{\bar{a}q} + 0^{*-} + H_2 0 \rightarrow H 0_2^* + H 0^-$	1,3
17	$e_{\bar{a}q} + HO_2^* \rightarrow HO_2^*$	2,0
18	$e_{aq} + H_2 O_2 \rightarrow HO^* + HO^-$	1,1
19	$e_{\bar{a}q} + O_2 \rightarrow O_2^{*-}$	1,9
20	$e_{\bar{a}q} + H_2 O \rightarrow H^* + HO$ -	$16 \text{ dm}^3 \text{.mol}^{-1} \text{.s}^{-1}$
21	$e_{\bar{a}q} + HO_{\bar{2}} \rightarrow O^{*-} + HO^{*}$	0,35
22	$20_{2}^{*-} + H_{3}0^{+} \to H0_{\overline{2}} + 0_{2} + H_{2}0$	0,18
23	$H^* + O_2^{*-} \to HO_{\overline{2}}$	2,0

Tableau 1.3: Réactions chimiques se produisant durant l'étape de chimie homogène. [25].

24	$H^* + HO_2^* \to H_2O_2$	0,85
25	$H^* + H_2 O_2 \rightarrow H_2 O + H O^*$	0,004
26	$H^* + O_2 \to HO_2^*$	2,1
27	$H^* + HO^- \rightarrow e_{\bar{a}q} + H_2O$	0,002
28	$HO_2^* + HO_2^* \rightarrow H_2O_2 + O_2$	8,4.105 dm ³ .mol ⁻¹ .s ⁻¹
29	$HO_2^* + O_2^* \rightarrow HO_{\bar{2}} + O_2$	0,01
30	$HO_2^* + H_2O \to H_3O^+ + O_2^{*-}$	8,0.105 dm ³ .mol ⁻¹ .s ⁻¹
31	$H_3 O^+ + O_2^{*-} \to H O_2^* + H_2 O$	5,0
32	$H_2 O_2 + H_2 O \to H_3 O^+ + H O_{\bar{2}}$	3,6
33	$H_3 O^+ + HO_{\bar{2}} \to H_2 O_2 + H_2 O_2$	2,0
34	$2H_2 0 \rightarrow H_3 0^+ + H 0^-$	2,6.10-5 dm ³ .mol ⁻¹ .s ⁻¹
35	$0^* + 0^* \rightarrow 0_2$	0,1
36	$0^{*-} + H_2 0 \rightarrow H 0^* + H 0^-$	1,8.106 dm ³ .mol ⁻¹ .s ⁻¹

Ces réactions sont pour la plupart contrôlées par la diffusion car la rencontre de leur réactif générée par la diffusion suffit à les faire réagir. Les constantes de vitesse de ces réactions atteignent souvent 10¹⁰ dm³mol⁻¹s⁻¹. Cela explique la disparition très rapide des radicaux libres dès que l'irradiation est stoppée. A ce stade de chimie homogène, les concentrations des espèces chimiques peuvent être calculéesà l'aide d'un modèle homogène déterministec'est-àdire parla résolution analytique du système d'équations différentielles correspondant au système d'équations chimiques du mécanisme. Le schéma de la Figure 1.7résume l'ensemble du mécanisme réactionnel de la radiolyse de l'eau. A la suite de processus physiques et chimiques successifs, les rayonnements ionisants entraînent donc la formation de produits radicalaires et moléculaires. Leur natureet leur concentration dépendent de paramètres physico-chimiques.

Figure 1.7 : Mécanisme de la radiolyse de l'eau[26].

1.9.5.2. Décomposition du peroxyde d'hydrogène

Le peroxyde d'hydrogène se décompose dans une réaction exothermique de dismutationen eau et dioxygènedans des proportions dépendantes de la température et de la concentration de la présence d'impuretés.

L'utilisation d'uncatalyseur(commele dioxyde de manganèse, lepermanganate de potassium, l'argent, ou uneenzymetelle que lacatalase)augmente considérablement le taux de décomposition du peroxyde d'hydrogène. Ce phénomène produit un dégagement d'oxygèneintense ainsi qu'une forte chaleur. Les récipients de stockage doivent être constitués d'une matière compatible comme lepolyéthylèneou l'aluminium et nettoyés de toute impureté (un procédé appelé passivation). La réaction dedismutationest lente et les solutions aqueuses de peroxyde d'hydrogène peuvent être conservées longtemps sous certaines conditions. L'eau oxygénée commerciale dite "stabilisée" contient des agents permettant de complexer ou d'adsorber les impuretés en solution. Celles-ci catalysent la dismutation et accélèrent la décomposition de la solution, parfois violente. Pour empêcher ceci, des agents stabilisants variés peuvent être utilisés, tels des phosphates,stanatesou silicates de sodium, del'acide phosphoriqueou bien encore de l'acétanalide.

La dismutation met en évidence les propriétés oxydantes et réductrices du peroxyde d'hydrogène. La dismutation peut être décrite comme une réaction entre H_2O_2 oxydant et H_2O_2 réducteur.

La réaction de dismutation

 $2H_2O_2 \rightarrow 2H_2O + O_2$; $\Delta H = -196,4 \text{ kJ. mol}^{-1}....(1.14)$

Elle est composée des deux demi-équations d'oxydoréduction suivantes :

CHAPITRE 2 MATERIELSET PROCEDURES EXPERIMENTALES

2.1. Introduction

L'organisation de ce chapitre comprend la descriptiondel'acier utilisé, la méthode d'élaboration des échantillons, ainsi la définition du milieu de travail, les équipements utiliséset les procédures expérimentales.

2.2. Matériau utilisé

L'acier étudié est un acier au carbone. Son analyse chimique a été réalisée par la fluorescence X [27]

La composition de notre acier est rapportée dans le Tableau2.1. Ces résultats permettent de classer l'acier selon la norme française NF A 35-551, comme étant un acier ordinaire %C =0.18%.

Tableau2.1 : Analyse en pourcentage massique de l'acier en balance avec le fer.[27]

Elément	С	Mn	Si	Р	S	Al	Ti	Ni	Sn	Мо	Cu
%	0,18	0,52	0,22	0,009	0,008	0,007	0,003	0,039	0,006	0,015	0,063

2.3. Préparation des échantillons

2.3.1. Préparation de l'électrode de travail

L'électrode de travail esten acier au carbone, de%C=0.18%. Elle est élaborées elon le protocole ci-dessous:

- On coupe le tube en acier pour obtenir des plaquettes rectangulaires de (2cm x 4 cm) de surface et de 1 cm d'épaisseur.
- A la raison du manque des moyens, nous avons sollicités une entreprise nationale spécialisée dans les travaux sur les matériaux afin de mettre notre acier à une forme cylindrique pleine d'un diamètre moins de 5 mm

• Des échantillons de 2cm de longueur sont découpés à froid à l'aide d'une scie mécanique sous lubrifiant, comme il est montré par laFigure 2.1

Figure 2.1 : Cylindre pleine en acier au carbone

• Ensuite les échantillons sont reliés à un fil en cuivre enrobés à froid dans une résine inerte chimiquement qui permet de délimiter lasection entourée de l'échantillon et qui évite toute infiltration d'électrolyte, comme il est montré par laFigure 2.2

Figure 2.2 : Echantillon en acier au carbone après traitement

2.3.2.Préparation de la surface à étudier

Afin d'obtenir des résultats reproductible, l'électrode de travail subit, avant chaque essai, un prétraitement, qui consiste à :

- Un polissage de la surface de l'électrodeau papier abrasif de granulométrie de800 Meshpour rendre la surface plane, lisse, brillante et supprimer les fissures et les aspérités;
- Un rinçage à l'eau désionisée, puis un dégraissage à l'acétone et un rinçage à l'eau désionisée;

Un séchage sous un flux d'air pour éviter toute sortede réaction entrel'eau désionisée et la surface de l'échantillon avant les mesures.

2.4. MilieuxExpérimentales

Afin d'évaluer le comportement électrochimique de cematériau, plusieurs milieux ont été choisis, à savoir :

Milieu A

(Solution Tampon, H_2O_2): En premier temps, nous avons étudié le comportement électrochimique de l'acier dans un milieu tampon, solution de Borax, sans et en présence de H_2O_2 , où nous avons fait varier plusieurs paramètres : le pH, la température du milieu et la concentration de H_2O_2 .

➢ <u>Milieu B</u>

(Chloruré, H_2O_2) : Nous avons étudié le comportement électrochimique de l'acier dans un milieu agressif qui contient des chlorures, sans et en présence de H_2O_2 , où nous avons fait varier plusieurs paramètres : le pH, la concentration de H_2O_2 , et la température du milieu.

2.5. Préparation des solutions des essais

2.5.1. Solution Tampon (Borax)

Leboraxest une espèce minérale deboratedesodiumhydraté, de formule brute $Na_2B_4O_7 \cdot 10H_2O$. Il Ce composé chimiquebasiqueest souvent décrit par lesminéralogistescomme un composé soroborate comportant théoriquement des ionshydroxyle, soit $Na_2B_4O_5(OH)_4 \cdot 8H_2O$ ou mieux en tenant compte de deux degrés de valence du bore, tri- et tétravalent, soit $Na_2B^{IV}_2B^{III}_2O_5(OH)_4 \cdot 8H_2O$.

Pour la préparation de la solution tampon de Borax, nous avons suivi le protocole suivant :

 Peser 3.841 gde Tétraborate de Sodium Na₂B₄O₇.10H₂O de masse Molaire de 381.4 g/mol ; et dissoudre dans 200 ml de l'eau désionisée ;

- Peser 1.24 g d'Acide Borique de masse Molaire de 61.83 g/mol ; et dissoudre dans 800 ml de l'eau désionisée ;
- Ensuite combiner les deux, pour obtenir une solution Tampon de pH au voisinage de 9.2 a la température ambiante.

<u>Remarque</u> : Apres la réalisation de ce mode opératoire, nous avons obtenir une solution de pH au voisinage de 9.2, à une température de 18.7 °C.

2.5.2. Peroxyde d'Hydrogène:

A partir d'une solution de 10% pour fabriquez une solution de 200 ml à 1% m' = (10) 50% ; d = 1,2 ; M = 34,1 g/mol

 $\rho = m/v \rightarrow m = \rho v$

 $1,1 * 1000 = 1100 \text{ g} \rightarrow \text{masse de H}_2\text{O}_2 = 110 \text{ g}$

$$\eta = 110/34, 1 = 3.22 \text{ mol}$$

$$C_1 * V_1 = C_2 * V_2$$

V = 20,03 ml de H₂O₂à 10% à prélever et à compléter dans une fiole pour toper à 200ml de solution à 1% H₂O₂.

2.5.3. Chlorure de Sodium

Pour la préparation d'une solution de Chlorure de sodium d'une concentration connue, (par exemple : pour $[Cl^-] = 10^{-1}$ M), nous avons pesé 5.844 gde Chlorure Sodium NaCl de masse Molaire de 58.4 g/mol ; et dissoudre dans 1000 ml de l'eau désionisée.

Le tableau suivant englobe les différentes concentrations des solutions préparées.

Solution	Concentrati	on mole/l
Peroxyde d'HydrogèneH ₂ O ₂	C1	10 ⁻¹
	C2	5.10 ⁻²
	C3	10 ⁻³
Chlorure de SodiumNaCl	C1	10 ⁻¹
	C2	10 ⁻²
	C3	10-3

Tableau 2.2 : Les différentes concentrations des solutions préparées

2.6. Moyens d'étude de la corrosion

Les techniques d'étude de la corrosion sont nombreuses et sont généralement couplées à des techniques d'analyse de surface. Cependant,une mise en garde s'impose car ces méthodes s'investigation ne doivent pas faire perdre de vue quels résultats d'essais de laboratoire ne peuvent pas toujours être transposés sans réserve dans la pratique et des prévisions hâtivespeuvent conduire à de grandes déceptions.

2.6.1. Méthode Potentiocinétique

La méthode potentiocinétique consiste à appliquer un potentiel variable à l'électrode de travailpar rapport à l'électrode de référence et à mesurer l'intensité de courant qui circule entre l'électrode de travail et l'électrode auxiliaire.

Ainsi, chacune des réactions anodique et cathodique est représentée parunecourbede polarisation E=f(logi). Ces courbes traduisent les mécanismes de polarisation qui gouvernent ces réactions [28]. Parmi les méthodes potentiocinétiques, on cite:

2.6.1.1.Mesure de potentiel de corrosion (potentiel libre)

Cette technique consiste à mesurer le potentiel de l'électrode de travail en fonction du temps par rapport à une électrode de référence dans un électrolyte choisi [29].

2.6.1.2.Cinétique de corrosion

La cinétique des réactions de corrosion fournie des informations sur la vitesse à laquelle les réactions de corrosion peuvent se produire ainsi que les taux des réactions.

Prenons les réactions suivantes :

- Anodique: $M \rightarrow M^{n+} + ne$ -....(2.01)
- Cathodique: $M^{n+} + ne^- \rightarrow M$(2.02)

En équilibre :

$$I_a + I_c = 0$$
 or $|I_a| = |I_c|$(2.03)

En déséquilibre :

- Pour $|I_a| > |I_c|$ il se produit une corrosion du métal.
- Pour $|I_a| < |I_c|$ des ions métalliques de la solution vont se déposer sur le métal.

La surtension. Correspond à l'écartentre le potentiel d'électrode et le potentiel réversible d'une réaction d'électrode [30]:

$$\eta = E - E^{0} \dots (2.04)$$

$$E = E^{\circ} + 2.3 RT / \eta F \log (a_{Ox} / a_{Red}) \dots (2.05)$$

2.6.2. Spectroscopie d'Impédance Electrochimique (SIE)

La Spectroscopie d'impédance électrochimiqueestbaséesur la mesure d'une fonction de transfert suite à la perturbation volontaire du système électrochimique étudie. Ce systèmepeut êtreconsidérécommeétant uneboite noirequi réagiten envoyant un signal quand il est soumis à une perturbation [31].

2.6.2.1.Principe de la technique

La Spectroscopie d'impédance électrochimique consiste à mesurer la réponse de l'électrode face à une modulation sinusoïdale de faible amplitudedu potentiel en fonction de lafréquence.Lesdiagrammes de Nyquist et de Bodesont le résultat de la méthode de la spectroscopie d'impédance électrochimique [32].

Figure 2.3: Représentation de Spectroscopie d'impédance électrochimique

2.6.2.2.Relation entre le mécanisme électrochimique et le modèle électrique

Les circuits électriques équivalents décrient ici sont basés sur les réactions à l'électrode les plus simples. Beaucoup d'autres ont été proposés pour rendreencompte de situations plus complexes, comprenant par exemple l'adsorption d'espèces électro-actives, le transfert de charge en plusieurs étapes et/ ou des réactions couplées [33].

a.Réaction faradique (transfert de charge pur) : Laforcede la double couche C_{dc} , et la résistance de transfert de charge R_{tc} sont introduites en parallèle pour rendreen compte du fait que le courant total traversant l'interface est la somme des contributions distinctes du processus faradique et de la charge de la double couche. Comme le courant global traverse aussi la résistance non compensée de la solution électrolytique, le terme R_s est introduit en série dans le circuit figure (a).

En pratique, les valeurs numériques de C_{dc} et R_{tc} ontrelation du potentiel appliqué à l'interface, d'où la nécessité de l'utilisation d'une perturbation sinusoïdale debasse amplitude pour déterminer dans le plan complexe les variations de l'impédance avec la fréquence. Le comportement du circuit équivalent, pour une réaction contrôlée par un processus d'activation, est représenté dans leplan complexe par un demi-cercle figure (b).

La résistance de transfert de charge R_{tc} est définie comme l'intersection de la boucle avec l'axe réel à basse fréquence. D'après la relation suivante onpeutobtenir la capacité de la double couche C_{dc}

$$C_{dc} = \frac{1}{Rt2\pi fc}....(2.06)$$

 f_c : La fréquence correspondant au sommet du demi-cercle.

En pratique, la boucle capacitive figure (b) n'est pas centrée sur l'axe des réels à cause de la dispersion en fréquence qui peut être reliée à une hétérogénéité de surface qui rendre une distribution de la vitesse de la réaction [33].

Figure 2.4.:a) Représentation simplifiée d'une interface électrochimique pour une réaction avec transfert de charges sans diffusion, b) diagramme d'impédance correspondant.

b.Diffusion : ladispersiondes espèces dans une solution d'électrolyte est un phénomène lent, donc mesurable à basse fréquence. Pour une perturbation sinusoïdale de potentiel, le phénomène de diffusion se traduit par l'intervention d'une impédance complexe Z_w , dite impédance de Warburg, qui représente en quelque sorte une résistance au transfert de masse et dont l'expression en fonction de la fréquence angulaire est [34]:

c.Adsorption à l'électrode : les réactifs, les produits de la réaction et les inhibiteurs de corrosion peuvent être attirés sur l'électrode ou obtenir des complexes chimiques sur celle-ci. D'un point de vue électrique, les possibilités de recouvrementsontdécrites par des capacités.L'existence d'un deuxième demi-cercle aux basses fréquencesest d'eau phénomène d'adsorption. La résistance de transfert de charge estfourniepar le diamètre du demi-cercleobservé aux hautes fréquences [34].

Figure 2.5.: Influence des effets de l'adsorption sur le diagramme d'impédance.

2.6.2.3.Les avantages et les inconvénients de la SIE

La technique de polarisation linéaire estvalidepour les métaux nus dansplusieurs de situations, elles demeurent défectueuses pour l'évaluation des revêtements organiques déposés sur des métaux. La SIE résout ces problèmes.

La technique d'impédance électrochimique apporte une analyseminutieuseau pouvoir protecteur des revêtements, comparativementaux méthodesstationnaires, puisqu'elle permet de séparer les mécanismes de cinétiques différentes.

Les caractéristiques physiques du filmprotecteur peuvent, enparticulier, être différencierdu mécanisme de transfert de chargeintervenant à l'interface substrat/électrolyte et quantifiées en fonction des différentsparamètres imposés au système. Dans les études sur les inhibiteurs de corrosion, la spectroscopie d'impédance permet de déterminer le mode d'action du produit inhibiteur.

L'inconvénientprincipalde l'impédance électrochimique réside dansl'interprétation des résultats car il est parfois difficile de trouver lecircuit électrique équivalent correspondant le mieux à l'interface électrode/solution. Un circuit idéal n'est pas toujours adéquat pour décrire laréponse électrique du système [34].

2.7. Appareillage et Procédure expérimentale

Les mesures de polarisation et d'impédance ont été effectuées dans une cellule en verre, à trois électrodes : une électrode de travail, une contre électrode en platine et une électrode de référence au calomel saturée (ECS). Cette cellule, présentée dans la Figure 2.6, est conçue de façon à maintenir une distance fixe entre les trois électrodes. Le passage du courant dans la cellule est réalisé à travers la contre électrode.

Figure 2.6 : Cellule électrochimique a trois électrodes

Les mesures électrochimiques ont été conduites en utilisant un potentiostat de type PARSTAT, Model 2273, piloté par ordinateur (Figure 2.7). Les courbes de polarisation et diagrammes d'impédance ont été réalisées à l'aide du PowerSuite, sur un large domaine de potentiels [-1000 mV, +1000 mV]. La gamme de fréquences est comprise entre 100 kHz et 10mHz.

Figure 2.7 : potentiostat de type PARSTAT, Model 2273

Pour maintenir la température a une valeur bien déterminée, le ptentiostat est combiné à un thermostat de marque LAUDA master.

Pour tous lestests, une solution de200 ml d'électrolyteestutilisée, dans les cellules électrochimiques, ce qui assure le recouvrement de l'échantillon d'au moins 15 mm.

En premier temps, l'électrolyte est composé d'une solution Tampon de Borax dans laquelleest ajoutéedifférentes concentrations de peroxyde d'hydrogène, où nous avons fait varier plusieurs paramètres : le pH, la concentration de H₂O₂, et la température du milieu.

Ensuite, nous avons repris les mêmes étapes, mais cette fois-ci en présence des Chlorures, selon le choix du milieu, comme il est expliqué au début du ce chapitre (voir : 2.4. Milieux Expérimentales).

CHAPITRE 3 RESULTATS ET DISCUSSIONS

3.1. Introduction

Dans ce qui suit nous présentons l'essentiel de nos résultats expérimentaux du comportement de l'acier au carbone dans un milieu oxygéné. Lors de cette étude électrochimique nous avons fait variée plusieurs paramètres du milieu aqueux en contact avec l'acier tels que : la température, le pH, la salinité de la solution ainsi que la concentration de l'eau oxygéné.

3.2. Comportement électrochimique de l'acier au carbone dans une solution tampon (Borax)

Le contact entre un acier et une solution aqueuse déclenche un ensemble de réactions d'oxydoréductions sur la surface de l'acier. Ces réactions électrochimiques engendrent des courants anodiques et cathodiques. Au cours du temps, un équilibre s'établit entre ces réactions conduisant à une annulation du courant global. Cette situation a lieu à un potentiel bien spécifique appelé potentiel en circuit ouvert E_{CO} , qui dépend à la fois de la nature de l'acier et de la population chimique de la solution. Toutes les réactions électrochimiques susceptibles d'avoir lieu au niveau de l'interface acier/solution vont s'établir relativement au potentiel en circuit ouvert E_{CO} .

Figure 3.1 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents pH dans une solution tampon de Borax à 25°C.

Figure 3.2 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents température dans une solution tampon de Borax à 9,2.

Sur les figures 3.1 et 3.2, nous avons présenté l'évolution du potentiel en circuit ouvert de l'acier au carbone dans une solution de borax en variant le pH et la température respectivement. Nous pouvons remarquer sur la figure 3.1 que l'augmentation de l'alcalinité de la solution déplace cathodiquement le potentiel E_{co} . Ce comportement est tout à fait prévisible dans la mesure où l'augmentation de l'alcalinité rend le matériau plus vulnérable, ce qui ramène le potentiel d'oxydation du fer à se déplacer à des valeurs plus cathodique. Ce même constat a été observé lors de l'augmentation de la température figure 3.2, les espèces chimique qui se trouvent en solution sont plus mobile sous l'effet d'une augmentation de la températures élevées.

Afin de visualiser de près le comportement électrochimique de l'acier au carbone dans un milieu tampon sous l'effet de la variation du pH et de la température, nous avons recouru aux méthodes de voltamétrie qui consistent à suivre la variation du potentiel en fonction de la densité du courant généré par les réactions électrochimiques à l'interface acier/solution.

Sur la figure 3.3, nous avons rassemblé des voltamogrammes correspondant à l'acier au carbone en contact avec une solution de Borax à différent pH. Les voltamogrammes obtenus sont présentés sous la forme linéaire (A) et la forme semi-logarithmique (B). Chaque courbe voltamétrique a été obtenue en faisant varier le potentiel de -1000 mV/ECS à +1000 mV/ECS, avec une faible vitesse de balayage en potentiel : 1 mV/s. Le courant mesuré est divisé par la surface de l'électrode ce qui permet de l'exprimer en terme de densité de courant (A/cm²).

Figure3.3 : Voltamogrammes de l'acier au carbone dans une solution tampon de Borax pour différent pH à 25°C : (A) semi-logarithmique et (B)linéaire.

Sur la figure 3.3 (A), on remarque que l'augmentation de l'alcalinité de la solution, déplace anodiquement le potentiel de corrosion E_{cor} . En effet, ce déplacement est dû à une

augmentation de la densité de courant des réactions cathodiques. Sur la figure 3.3(B) nous pouvons constater le déplacement cathodique du potentiel de piqûration quand l'alcalinité de la solution devient plus importante. Le film passive formé sur la surface de l'acier au carbone en contact avec une solution Borax à un potentiel de +0,4 Vest constitué principalement de Fe₃O₄, à un potentiel de +0,8V la Fe₃O₄ se transforme en γ -Fe₂O₃. L'excès des ions hydroxydes en solution à des pH élevées parvient à dissoudre partiellement au généralement le film de γ -Fe₂O₃ ce qui favorisel'initiation des piqûres sur la surface de l'acier au carbone.

Sur la figure 3.4, nous avons rassemblé des voltamogrammes correspondant à l'acier au carbone en contact avec une solution de Borax à pH = 9,2 et différente température (25,50 et 80° C).

A partir de la représentation linéaire figure 3.4.A on remarque que les potentiels de piqûration se déplacent vers les zones anodiques, même on peut dire une immunité presque totale sauf pour le cas de T=80°C où l'évolution de la densité du courant aux alentours de 0,7V/ECS semble être accentué. Par ailleurs, sur la présentation semi-logarithmique on peut constater que la variation du potentiel de corrosion n'est pas significative, et le palier de la densité du courant est décalé aux alentours de 7,0x10⁻⁴ A/cm² dans le cas de T=50 et 80°C, ce décalage est dû à l'effet de la température sur l'énergie d'activation sur les réactions à l'interface de l'électrode.

Figure 3.4 : Voltamogrammes de l'acier au carbone dans une solution tampon de Borax pour différentetempérature à pH= 9,2 : (A)linéaire, (B) semi-logarithmique.

3.3. Comportement électrochimique de l'acier au carbone dans des solutions chlorurées

La figure 3. 5, illustre l'évolution du potentiel en circuit ouvert de l'acier au carbone au cours du temps. Les quatre courbes ont été obtenues pour différentes concentrations des ions chlorures. Sur cette figure, on remarque que l'augmentation de la concentration des ions chlorures dans la solution déplace cathodiquement le potentiel E_{CO} .

Figure3.5 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différentes concentrations des ions chlorures.

Ce comportement est tout à fait prévisible dans la mesure où l'augmentation de la concentration des ions chlorures rend le matériau plus vulnérable, ce qui ramène le potentiel d'oxydation du fer à se déplacer à des valeurs plus cathodiques.

Surla figure 3. 6, nous avons rassemblé des voltamogrammes correspondant à l'acier au carbone en contact avec des solutions à différentes concentrations NaCl.

Figure 3.6: Voltamogrammes de l'acier au carbone dans différentes concentrations de NaCl : (A) semi-logarithmique (B) linéaire.

Sur la figure 3. 6. A, on remarque que l'augmentation de la concentration des ions chlorures déplace cathodiquement le potentiel de corrosion E_{corr} de -400 mV/ECS a -670 mV/ECS. En effet, ce déplacement du potentiel est dû à une diminution de la densité de courant des branches cathodiques qui sont reliées à la réaction de réduction de l'oxygène. Cette diminution

de la densité de courant cathodique pourrait être attribuée à la réduction de la concentration de l'oxygène en solution en raison de l'accroissement de la conductivité ionique de la solution [35].

Pour des potentiels anodiques, supérieurs au potentiel de corrosion, on remarque l'augmentation de la densité de courant des branches anodiques au fur et à mesure que la concentration des ions chlorures augmente. Cette augmentation de la densité de courant serait due à la multiplication des piqûres ou bien à l'évolution en profondeur des piqûres. La présence des ions chlorures et les protons d'hydrogène, acidifies localement la solution ce qui déclenche la piqûration [36].

Sur la figure 3. 6. B, nous avons présenté la forme linéaire des courbes voltamétriques avec un zoom sur la partie de 0 à - 650 mV/ECS. On remarque que, le potentiel de piqûration E_{pit}, qui correspond à une augmentation brusque et irréversible du courant anodique se situe aux environs de - 350mV/ECS quel que soit la concentration des ions chlorures. Ceci témoigne de la nature irréversible des piqûres formées. En effet même en faible concentration, les ions chlorures constituent un sérieux risque de piqûration. A pH faible ou en milieu neutre, l'absence d'un film passif ne favorise pas la repassivation des piqûres métastables. Dans ces conditions, le potentiel d'évolution irréversible des piqûres devient très proche de celui de l'initiation des piqûres. Alors que la valeur de ce dernier est dictée exclusivement par des considérations thermodynamiques et non par la concentration des chlorures.

3.4. Comportement électrochimique de l'acier au carbone dans une solution de Borax en présence de H_2O_2

La figure 3.7 représente l'évolution du potentiel du circuit ouvert de l'acier au carbone dans des solutions de Borax à différentes concentrations de H_2O_2 de 0 à 0,1 M à une température constante de 25°C et un pH de 9.2.

Figure3.7 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents concentration de H₂O₂ dans une solution tampon de Borax à 25°C et pH=9,2.

Le potentiel d'équilibre de l'acier dans la solution de Borax après une durée d'immersion sans peroxyde d'hydrogène augmente progressivement puis se stabilise à une valeur négative au environ de -0,3V/ECS.

Par contre, les différentes courbesoù le peroxyde d'hydrogène est présent montrent que le potentiel libre augmente significativement à des potentiels assez élevés avec l'augmentation de la concentration du peroxyde d'hydrogène aux alentours de 0,05V/ECS. Pour les grandes concentrations de H_2O_2 que nous avons utilisé, nous avons constaté des allures cycliques reproductibles.

Ces allures cycliques sont probablement dues à la dissolution (dismutation) de H_2O_2 (voir Chapitre I).

Sur la figure 3.8, nous avons résumé l'évolution du potentiel d'équilibre de l'acier pour différents pH dans une solution de Borax à différentes concentration de H_2O_2 . Nous remarquons que l'évolution du potentiel suit une allure linéaire à une pente négative est inversement proportionnelà l'augmentation du pH en présence au en absence de l'eau oxygénée. L'écart du potentiel semble moins important pour les pH de 9,2 et 10,5, mais pour un pH plus élevé l'écart semble plus considérable sous l'effet des ions hydroxyde.

Figure 3.8: Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents concentration de H₂O₂ dans une solution tampon de Borax à 25°C et différents pH.

Sur la figure 3.9, nous avons présenté la variation du potentiel en circuit ouvert en fonction de la variation de la concentration de l'eau oxygénée et en fonction de la température entre 25 et 80 °C à un pH de 10,50. Nous pouvons constater que pour une même concentration de l'eau oxygénée l'augmentation de la température déplace cathodiquement le potentiel en circuit ouvert. En parallèle nous pouvons remarquer que l'augmentation de la température n'affecte

pas l'écart du potentiel en circuit ouvert que nous avons constaté pour différents concentration de l'eau oxygénée.

Figure 3.9 : Evolution du potentiel en circuit ouvert de l'acier au carbone pour différents concentration de H_2O_2 dans une solution tampon de Borax à pH = 10,50 et différentes température.

A travers les courbes potentiodynamiques rassemblées sur la figure 3.10.A, nous pouvons remarquer l'effet de la présence du peroxyde d'hydrogène, où il est clairement remarquable que l'augmentation de H_2O_2 fait croitre la densité du courant cathodique, cela est dû éventuellement au nombre de réaction de réduction d'oxygène important en fonction de la concentration de H_2O_2 . Sur la zone anodique, nous pouvons constater un déplacement cathodique du potentiel de piqûration en fonction de la concentration de H_2O_2 au environ de 0,4 V/ECS. Ce déplacement est dû probablement au fort caractère oxydant du H_2O_2 qui oxyde le fer ferreux au fer ferrique après le potentiel de corrosion.

Figure 3.10 : Voltamogrammes de l'acier au carbone dans une solution tampon de Borax pour différent concentration de H₂O₂ pour une température de 25°C et pH= 9,2 : (A)linéaire, (B) semi-logarithmique.

Sur la figure 3.10.B nous avons présenté la forme semi-logarithmique des courbes Intensitépotentiel, de cette figure, on remarque un déplacement anodique important du potentiel de corrosion suite à l'ajout de H_2O_2 , écart entre le potentiel de corrosion pour les deux concentrations de l'eau oxygénée reste faible. Ce déplacement important est dû à l'importante densité du courant générée par l'ensemble des réactions de réduction de l'oxygène issu par la réaction de dismutation de H_2O_2 , comme il a été expliqué dans le paragraphe précédent.

3.5. Comportement électrochimique de l'acier au carbone dans une solution chlorurée en présence de H₂O₂

La présence des ions chlorures en solution rend l'acier plus vulnérable. Ces ions initient le déclanchement des piqûres sur la surface du matériau. Afin d'examiner l'effet de ces ions en présence de l'eau oxygénée sur les réactions électrochimiques nous avons rassemblé sur la figure 3.11 les résultats de cette investigation.

Sur cette figure3.11 nous avons présenté la forme linéaire et semi logarithmique des courbes voltamétriques. Sur les courbes linéaires, nous remarquons que l'augmentation de la concentration de l'eau oxygénée pour faible concentration des ions chloruresdéplace anodiquement le potentiel de piqûration.Contrairementà que ce que nous avons remarqué en absence des ions chlorures. A l'exception pour une faible concentration de l'eau oxygénée de 10^{-3} M.

Pour la forme semi logarithmique nous observons un déplacement anodique du potentiel de corrosion en fonction de l'augmentation de la concentration de l'eau oxygénée.Ce déplacement provient de la densité de courant généré par les réactions de réduction.

En effet, le déplacement anodique du potentiel de piqûration pour une même concentration des ions chlorures est dû au pouvoir oxydant de l'eau oxygénée qui parvient à oxyder les ions ferreux en ions ferriques. Les ions ferriques vont se déposer sur la surface du matériau minimisant les attaques des ions chlorures.

Figure 3.11 : Voltamogrammes de l'acier au carbone dans une solution chlorurée 0,01M pour différent concentration de H₂O₂ pour une température de 25°C: (A)linéaire, (B) semi-logarithmique.

Sur la figure 3.12 nous avons rapporté les potentiel de corrosion de l'acier en fonction des concentration de l'eau oxygénée en faisant varier la concentration des ions chlorures. Nous remarquons en premier temps le déplacement cathodique du potentiel de corrosion de l'acier en faisant augmenter la concentration des ions chlorures.

Figure 3.12 : Evolution du potentiel de corrosion de l'acier au carbone dans une solution chloruré a et oxygéné a différentes concentrations.

De plus, l'écart entre les point de même concentration en présence et en absence de l'eau oxygéné est presque le même. Pour une même concentration des ions chlorures en variant la concentration de l'eau oxygénée, on remarque que le potentiel de corrosion de l'acier suit une courbe de tendance logarithmique.

3.6. Les impédances électrochimiques

Les analyses par impédances électrochimiques ont été menées au potentiel libre, OCP. L'électrode de travail est en premier lieu plongée dans une solution durant 05 heures, le temps alloué pour déduire le potentiel de circuit ouvert. Nous avons étudié deux milieux différents en présence de l'eau oxygénée dans la solution tampon le Borax, en absence et présence des ions chlorures.

Après 05 heures, nous prélevons la valeur du potentiel libre et nous engageons les mesures d'impédances. La gamme de fréquence appliquée s'étend de 10 mHz à 100 KHz. Nous avons limité l'amplitude du signal sinusoïdal à 10 mV car des amplitudes plus importantes autour du potentiel de corrosion risquent de déstabiliser le système.

Figure 3.13 : Diagramme de Nyquist de l'acier au carbone dans une solution Tampon de Borax à des différentes concentrations de H₂O₂

Le diagramme de Nyquist obtenu avec des solutions de Borax fait apparaître une boucle suivi par un Warburg dans le cas d'une solution Borax seul, et la présence d'un CPE en présence de l'eau oxygénée. Au potentiel de corrosion, et dans ces solutions aérées, moyennement conductrices et à pH légèrement alcalin, il se produit essentiellement deux types de réactions : la réaction de réduction de l'oxygène dissout et la réaction d'oxydation du fer. Ces deux réactions ont lieu au niveau de l'interface de l'acier avec la solution.

La réduction de l'oxygène dissout nécessite le transport des molécules O_2 à travers la solution jusqu'à la surface pour que la réaction puisse avoir lieu. Pour cette raison sur le premier

schéma électrique équivalent nous avons placé une branche contenant une résistante R_t (cat.) en série avec un composant W. R_t (cat) représente la résistance de transfert de l'électron pour la réaction de réduction de l'oxygène dissout. Il s'agit tout simplement de la réaction (I. 16) du chapitre I. Le composant W tient compte des problèmes de diffusion qui retardent la réaction de réduction.

Pour les réactions anodiques, nous avons également ajouté une branche contenant une résistance $R_t(ano.)$ qui correspond à la réaction d'oxydation du fer issu de la matrice en Fe^{2+} . Nous ne jugeons pas nécessaire de rajouter un composant diffusionnelW, car les ions ferreux sont particulièrement instables en solution aérée. Ils s'hydroxydent ou s'oxydent en Fe^{3+} assez rapidement et ne freinent donc pas le processus d'oxydation.

Le schéma électrique de figure 3.14, ce schéma contient également une branche avec une capacité C_{dl} : c'est la capacité de la double couche de Helmholtz. Ce composant regroupe en lui l'ensemble des réactions non faradaïques ayant lieu près de l'interface.

L'une des difficultés à laquelle nous avons toujours été confrontés pour proposer un schéma électrique équivalent est la mauvaise reproductibilité des points expérimentaux situés aux fréquences basses. Sur nos diagrammes cela correspond aux points situés à droite des courbes. Pour les basses fréquences la durée d'acquisition est élevée. Au cours de cette acquisition le système peut évoluer même si l'électrode a été introduite dans la solution une journée avant. La dispersion des points à basse fréquence peut en effet suggérer une évolution linéaire imposée par le paramètre W ou bien une très large boucle (RC) qui serait due plutôt au film passif.

De ces analyses, nous retiendrons que :

- La capacité de la double couche est assez stable et se situe toujours aux alentours du μF.
- La résistance de la solution est stable au environ de 4 Ohms,
- Toutes les réactions mises en jeu sont limitées par le transport, car le transfert de charges est assuré par la solution qui est assez conductrice.

D'après la figure 3.13, on peut remarquer que les diagrammes de Nyquist ont la même allure dans les deux cas. Dans le cas de la solution borax seul la résistance de transfert au environ de

15 KOhms/cm² ; et dans le cas où l'eau oxygénée est présent, la résistance de transfert est de 45 KOhms/cm².

En présence des chlorures l'allure reste la même pour les concentrations petites de H_2O_2 , par contre pour une forte concentration de H_2O_2 le diagramme de Nyquist est représenté par un demi-cercle un peu décalé ce qui est illustré dans la figure 3.14. Cette différence est probablement est due à la forte conductivité électrique où on voit que la partie réelle c.à.d. effet de résistance domine que celle imaginaire qui représente l'effet capacitif. Est cela est dû à formation du film passif qui a été confirmé dans la partie précédente.

Figure 3.14 : Diagramme de Nyquist de l'acier au carbone dans une solutionchlorurée ([Cl⁻]= 10^{-1} M) a des différentes concentrations de H₂O₂

CONCLUSION GENERALE

L'isolation des déchets radioactifs par enfouissement en profondeur durant une durée assez longue qui peut dépasser un million d'année nécessite une très bonne résistance à la détérioration des matériaux de chaque barrière de confinement.

Le présent travail vise à étudier le comportement électrochimique d'un acier au carbone dans un milieu aqueux soumis à une source d'irradiation. Dans notre travail, nous avons simulé les espèces chimiques produites par la radiolyse de l'eau principalement l'eau oxygénée.

Lors de la première partie de ce travail nous avons étudié le comportement électrochimique de l'acier au carbone dans un milieu tampon, solution de Borax, tout en variant la température et le pH de la solution électrolytique. Par la suite nous avons comparé ces résultats avec les résultats obtenus en présence d'agent piqûrant : les chlorures. A l'issue de la comparaison nous avons remarqué qu'en absence d'agent piqûrant l'augmentation du pH ou la température rend la surface du matériau vulnérable. A travers les courbes voltamétriques de l'acier dans un milieu chloruré, nous avons constaté qu'une de très faible quantité d'ions chlorures peut déclencher le phénomène de piqûration.

L'addition de l'eau oxygénée à la solution tampon en contact avec l'acier au carbone a influencé d'une façon remarquable sur la densité de courant produite par l'ensemble des réactions cathodiques et anodiques. La dissolution de l'eau oxygénée en solution ou appelé dismutation produit une quantité supplémentaire en oxygène, lors du balayage potentiodynamique on constate un courant cathodique plus important déplaçant anodiquement le potentiel de corrosion. Le courant anodique important remarqué dans le cas d'une présence de l'eau oxygénée provient de l'effet oxydant fort de ce dernier. Les résultats de l'investigation de la variation de la température et le pH du milieu oxygénée ont montré que l'augmentation de ces deux paramètres rend la surface du matériau plus vulnérable.

Les expériences d'impédances électrochimiques nous ont permis de proposer un schéma électrique équivalent ainsi de confirmer certain explication que nous avons proposée lors des expériences de votamétrie.

Ce travail laisse entrevoir des perspectives d'études complémentaires. Il serait particulièrement utile à l'avenir d'envisager :

- De comparer nos résultats électrochimiques avec celles qui peuvent être obtenus en utilisant une source d'irradiation,
- D'introduire d'autres paramètres propres aux conditions de stockage des déchets radioactifs : présence d'argile, pression, condition anoxique ...etc,
- D'envisager d'étudié d'autre matériaux.

LISTE DES SYMBOLESET ABREVIATIONS

HA-VL	Haute Activité- Vie Longue	
[X]	Concentration de l'espèce dissoute	mol.L ⁻¹
ΔH	Chaleur d'adsorption	kJ·mol⁻¹
Borax	Tétraborate de sodium	$Na_2B_4O_5(OH)_4 \cdot 8H_2O$
С	Concentration	mol.L ⁻¹
C _{dc}	Capacité de la double couche	μ .F.cm ⁻²
CPE	Composant Phase Element	$\Omega.cm^{-2}$
D	Coefficients de diffusion	$m^2.s^{-1}$
d	Densité	
Е	Potentiel électrode/solution	V
E _A	Electrode auxiliaire	
E _{CO}	potentiel en circuit ouvert	V
E _{corr}	potentiel de corrosion	V
E _{eq} .	Potentiel libre de la réaction	V
Eh	Potentiel d'électrode	V/ECS
Epit	potentiel de piquration	V
Ē	Electrode de référence	
ET	Electrode de travail	
F	Faraday, la charge électrique d'une mole d'électron	Faraday
f_c	Fréquence correspondant au sommet du demi-cercle	kHz
i _o	Densité de courant	A.cm ⁻²
Ň	Constantes de vitesse	$m^{3}.mol^{-1}.s^{-1}$
m	Masse	g
М	Masse molaire	g.mol ⁻¹
η	Surtension appliquée	Ŭ V
ŃF	Norme française	
pН	Potentiel d'hydrogène	
R	Constante des gaz parfaits	J.mol ⁻¹ .K ⁻¹
R _{tt} (ano.)	Résistance de transfert de charge anodique	$\Omega.cm^2$
R _t (cat.)	Résistance de transfert de charge cathodique	$\Omega.cm^2$
R _{tc}	Résistance de transfert de charge	$\Omega.cm^2$
SCE	Electrode de référence au calomel saturée	
Т	Température	°C
V	Volume	m ³
Z _w ,	Impédance de Warburg	$\Omega.cm^{-2}$
η	Nombre de mole	mol
ρ	Masse volumique	kg.cm ⁻³
Ia	Intenesité de courant anodique	А
Ic	Intenesité de courant cathodique	А

REFFERENCES BIBLIOGRAPHIQUES

[01] Habert, B.," Réactivité du fer dans les gels et les smectites". Doctorat des Sciences des matériaux, Université Paris 6, Paris, (2001) 227 pages.

[02] Savary, V. et Pagel, M., "The effects of water radiolysis on local redox conditions in the Oklo, Gabon", natural fission reactors 10 and 16. Geochimica et CosmochimicaActa, 61, (1997) 4479-4494.

[03] Christensen, H, "Oxidation by water radiolysis products",(1994) SKB, SKB n° 94-04, 292-308.

[04]ANDRA., "Architecture et gestion du stockage géologique". Dossier argile, (2005).

[05] Thury, T., and Bossart, P., "The Mont Terri rocklaboratory, a new international research project in a mezozoic shale formation in Switzerland,"Engineeringgeology, (1999). 52, 347-359.

[06]ANDRA., "Intérêt des formations granitiques pour le stockage géologique", Dossier Granite. Synthèse., (2005) 160 pages.

[07] ANDRA., "Options de réversibilité du stockage en formation géologique profonde", Rapport Andra C.NT.AHVL.09.0005/B., (2009) 101 pages

[08] ANDRA., "Évaluation de la faisabilité du stockage géologique en formation argileuse", Dossier Argile, (2005).

[09] ANDRA., "les recherches de l'ANDRA sur le stockage géologique des déchets radioactifs à haute activité et à vie longue, résultats et perspectives", .ed. C.l. Rapports 265, (2005).

[10] ISO 8044. "Corrosion des métaux et alliages, termes principaux et définitions. Norme internationale, ". (E/F/R), Genève, Suisse., (1999).

[11]ANDRA., "Evaluation de la faisabilité du stockage géologique en formation argileuse".Dossier Argiles. Synthèse., (2005)., 239 pages

[12]LANDOLT D., "Traité des matériaux. Corrosion et chimie de surface des métaux. Presses polytechniques et universitaires romandes", Lausanne, Suisse., (2003)., 552 pages.

[13] Stratmann M., "The atmospheric corrosion of iron and steel". Vol. 16(1), (1990). P 4652.

[14] Beranger G. et Mazille, H. "Corrosion des métaux et alliages : mécanismes et phénomènes". Editions Hermes., (2002)., (ISBN 2-7462-0466-5).

[15] Pourbaix M., "Applications of electrochemistry in corrosion science and in practice". Corrosion Science. (1974). Vol. 14, p. 25-82.

[16] Chivot J., "Thermodynamique des produits de corrosion. Collections Sciences et Techniques".Publications ANDRA. (2004).141 pages.

[17]Nathalie LE BOZEC., "Réaction de réduction de l'oxygène sur les aciers inoxydables en eau de mer naturelle. Influence du biofilm sur les processus de corrosion"; Université de Bretagne Occidentale., (janvier 2000).

[18] Natasa K, Boris P, Vid S ,Ingrid M., "The Effect of pH Value of a Simulated Physiological Solution on the Corrosion Resistance of Orthopaedic Alloys Acta Chim. Slov". (2012), 59, 144–155.

[19] Cardoso M.V., Amarals.T. Martini E.M.A., "Temperature effect in the corrosion resistance of Ni-Fe-Cr alloy in chloride medium.Corros", (2008).

[20] Gervais, B., et al., "The $H_2O_2^+$ potential energy surfaces dissociating into H^+/OH^+ : Theoretical analysis of the isotopic effect",(2009).

[21] Mozumder, A., "Fundamentals of Radiation Chemistry". San Diego, USA, (1999).

[22] Meesungnoen, J., et al, "Low-energy electron penetration range in liquid water. Radiat ", (2002), 158 (5), 657-660.

[23] Pastina, B., LaVerne, J. A., Pimblott, S. M., "Dependence of Molecular Hydrogen Formationin Water on Scavengers of the Precursor to the Hydrated Electron. J. Phys. Chem".(1999), 103, 5841-5846

[24] Frongillo, Y., et al., "Simulation of fast electron and proton tracks in liquid water II. No homogeneous chemistry. Radiat. Phys. Chem", Monte Carlo, (1998), 51 (3), 245-254.

[25] Buxton, G. V., et al., "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-).J. Phys. Chem". (1988), 17, 513-886.

[25] Buxton, G. V., et al., "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-). J. Phys. Chem",.(1988), 17, 513-886.

[26] Buxton, G. V., "The radiation chemistry of liquid water: Principles and applications, in Charged particle and photon interactions - Chemical, Physicochemical, and Biological Consequences with Applications", .New York, (2004).

[27] AMZERT, S. A., " Etude de la corrosion localisé d'un circuit de refroidissement semi ouvert", Mémoire de Magister, Université de Médéa, (2007).

[28]Jacques, L., "Protection contre la corrosion", Techniques de l'Ingénieur, traité Génie mécanique, A 830.

[29]Sandrine, P, "Comportement à la corrosion galvanique de matériaux composites à matrice d'alliage d'aluminium renforcée par des fibres de carbone haut-module", Thèse de doctorat, L'UNIVERSITE BORDEAUX I, (2001).

[30]Bernard, T et Gérard, D. "Électrochimie lois régissant les processus", Techniques de l'Ingénieur, traité Génie des procédés, J 1 604.

[31]Imane, I., "Étude électrochimique de l'inhibition classique ou par des monocouches autoassemblées d'un dérivé de la thiourée, vis-à-vis de la corrosion en milieu acide de l'acier au carbone XC38", Université Abou Bakr Belkaid, page 27.

[32] Mendibide. "Caractérisation de revêtements PVD nanostructures à base de nitrures de métaux de transition pour application mécanique : aspect chimiques, mécaniques et tribologiques", Thèse de Doctorat, INSA de Lyon, (2003) page 43.

[33]Ben Ali, A., "Synthèse et caractérisation électrochimique du poly-pyrrole", Université M'hamed bougara Boumerdes, (2009), page 32-33-34-35-36-37.

[34]Philip A., "Schweitzer, Fundamentals of CORROSION Mechanisms, Causes, and Preventative Methods, CRC Press Taylor & Francis Group".(2010), page 120.

[35] Millero, F.J., Huang, F., Laferiere, A.L., "Solubility of oxygen in the major sea salts as a function of concentration and temperature", Marine Chemistry, V. 78, (2002), 217–230.

[36] Sato, N., "An overview on the passivity of metals", Corrosion science, V. 31, (1990), 119.