Ministère de l'enseignement supérieur et de la recherche scientifique

Université saad dahleb blida

Institut d'aéronautique et des études spatiales



### Mémoire de fin d'étude

### Pour l'obtention du diplôme de master en aéronautique

**Option : CNS/ATM (Communication Navigation Surveillance/Air Traffic Management)** 

# Méthode de décorrélation adaptative symétrique pour la réduction de bruit aux bords des avions

Encadré par :

Réalisé par : BRAHIMIA Houssem Eddine

SAADOUDI Mouhamed Sami

Promotion 2017/2018

M.AZINE

# **Dédicace**

Je souhaite dédier ce modeste travail, synonyme de concrétisation de tous mes efforts fournis ces dernières années d'études

À :

Ma chère mère « messaouda» Mon père « fodhil» Mon frère « tarek »

Mes très chères sœurs « chahrazed , yousra , ryhab» -Tous mes Amis et à toute la promotion 2017-2018

SADOUDI MOHAMMED SAMI

# **Dédicace**

Je souhaite dédier ce modeste travail, synonyme de concrétisation de tous mes efforts fournis ces dernières années d'études À : Ma chère mère « Fatima»

Mon père

« Bellahcen»

Mon frère

« Yasser »

Mes très chères sœurs

« Imen , Rihab»

-Tous mes Amis et à toute la promotion 2017-2018

BRAHIMIA HOUSSEM EDDINE

# Remerciements

Avant tout, nous remercions en premier lieu Dieu, le tout Puissant, de nous avoir donné autant de courage, de volonté et de patience pour pouvoir achever ce travail.

Nous tenons à exprimer toute notre reconnaissance et notre profond respect à Madame , **BENKHADA** , et M. **KOUIDER Abd Elwahed** pour l'honneur qu'il nous a attribué et son accueil.

Nous voudrons exprimer notre gratitude à Madame **AZINE** pour son encadrement, qui nous a aidés par ses conseils et ses directives.

Nous sommes très particulièrement reconnaissants envers M.SADOUDI Tarek pour sa disponibilité, qui nous a prêté de son temps les plus précieux et nous a donné beaucoup de propositions tout au long de ce stage et de nous avoir offert un environnement jovial.

Nos vifs remerciements à nos familles pour leur soutien moral, et à tous

qui ont contribué de près ou de loin à l'accomplissement de ce travail.

Nos remerciements vont aussi à tous ceux qui ont contribué de près ou de loin à la concrétisation de ce travail. Qu'ils trouvent tous ici l'expression de notre gratitude et notre parfaite considération.

Merci à tous.

## Table des matiéres

| Liste des | s figui | res                                                    |      |
|-----------|---------|--------------------------------------------------------|------|
| Liste des | s tabl  | eaux                                                   |      |
| Liste des | abrév   | iations                                                |      |
| Introduc  | tion    | générale                                               |      |
| CHAPITE   | RE I :  | ETUDE DU BRUIT ACOUSTIQUE                              | . 13 |
| I.1.      | Intr    | oduction                                               | . 13 |
| 1.2.      | Déf     | inition du son                                         | . 13 |
| 1.3.      | Ori     | gine d'un son                                          | . 13 |
| 1.4.      | Diff    | érences entre son et bruit                             | . 14 |
| 1.5.      | Diff    | érents types de bruits                                 | . 14 |
| 1.6.      | Les     | unités de base liées à l'acoustique                    | . 15 |
| I.7.      | Pro     | pagation dans l'air                                    | . 16 |
| 1.8.      | Par     | amètres du son                                         | . 16 |
| 1.8.      | 1.      | Niveau sonore                                          | . 16 |
| 1.9.      | Fré     | quences                                                | . 17 |
| 1.9.      | 1.      | Octaves                                                | . 17 |
| 1.9.1     | 2.      | Timbre                                                 | . 18 |
| I.10.     | Cou     | ıleurs de bruit                                        | . 18 |
| 1.10      | 0.1.    | Bruit blanc                                            | . 18 |
| 1.10      | ).2.    | Bruit rose                                             | . 19 |
| I.11.     | Effe    | ets d'une exposition permanente au bruit               | . 20 |
| I.12.     | Bru     | it dans une salle                                      | . 20 |
| 1.12      | 2.1.    | Problèmes survenus à la conception                     | . 20 |
| I.12      | 2.2.    | Différentes transmissions du bruit à travers une paroi | . 20 |
| I.13.     | Cor     | nclusion                                               | . 21 |
| CHAPITE   | RE II : | BRUIT DANS L'AVION                                     | . 22 |
| II.1.     | Intr    | oduction                                               | . 22 |
| II.2.     | Des     | cription du bruit des avions                           | . 22 |
| II.3.     | Prir    | ncipales sources de bruit des avions                   | . 23 |
| II.4.     | Bru     | it de jet                                              | . 23 |
| 11.4      | .1.     | Bruit de la soufflante et la turbine                   | . 24 |

| 11.4.1          | 2.            | Bruit de la chambre de combustion                                                              | 24      |
|-----------------|---------------|------------------------------------------------------------------------------------------------|---------|
| 11.4.3          | 3.            | Bruit hélice                                                                                   | 25      |
| 11.4.4          | 4.            | Bruit de la cellule                                                                            | 25      |
| II.5.           | Prop          | pagation de bruit dans l'avion                                                                 | 26      |
| II.6.           | Con           | trôle passif                                                                                   | 27      |
| II.7.           | Con           | trôle actif                                                                                    | 28      |
| II.8.           | Le b          | ut du contrôle                                                                                 | 29      |
| II.9.           | Con           | clusion                                                                                        | 29      |
| CHAPITR         | E III :       | REHAUSSEMENT DE LA COMMUNICATION BRUITEE DANS UN AVION                                         | 31      |
| III.1.          | Intro         | oduction                                                                                       | 31      |
| III.2.          | Mél           | ange convolutif des signaux                                                                    | 31      |
| 111.2           | .1.           | Séparation aveugle des sources                                                                 | 33      |
| III.3.<br>SAD)  | Algo<br>35    | rithm de la décorrélation symétrique adaptative (Symétrique Adaptive Decorrelatio              | n-      |
| III.3           | .2.           | Annulation du bruit par la séparation des signaux                                              | 37      |
| III.3           | .3.           | Structure Forward                                                                              | 38      |
| III.3           | .4.           | Condition de causalité :                                                                       | 40      |
| III.3           | .5.           | Stabilité de SAD                                                                               | 40      |
| III.3           | .6.           | Convergence de l'algorithme SAD                                                                | 40      |
| 111.4.          | Con           | clusion                                                                                        | 41      |
| CHAPITR         | E IV :        | RESULTATS DES SIMULATIONS                                                                      | 42      |
| IV.1.           | Intro         | oduction                                                                                       | 42      |
| IV.2.           | Мос           | dèle expérimental de mélange convolutif                                                        | 42      |
| IV.3.           | Sim           | ulation de réponses impulsionnelles                                                            | 42      |
| IV.4.           | Sign          | aux utilisés en simulations                                                                    | 43      |
| IV.5.           | Déte          | ection d'activité vocale (DAV)                                                                 | 51      |
| IV.6.           | Crite         | ère du désajustement                                                                           | 51      |
| IV.7.           | Rap           | port signal à bruit (RSB)                                                                      | 52      |
| IV.8.<br>avec u | Eval<br>n Bru | uation du comportement l'algorithme SAD avec un bruit théorique (Simulations fait<br>it Blanc) | e<br>52 |
| IV.9.           | Sim           | ulation de l'algorithme de décorrélation symétrique avec différents types de bruit             |         |
| d'avio          | ns            |                                                                                                | . 56    |
| IV.9            | .1.           | Simulation faite avec du bruit d'avion de type A320                                            | . 56    |
| IV.9            | .2.           | Simulation faite avec du bruit d'avion de type B747                                            | . 58    |
| IV.9            | .3.           | Simulation faite avec du bruit d'avion de type Cessna 172                                      | 61      |

| IV.9.4.   | Simulation faite avec du bruit d'avion de type F16                          | 63 |
|-----------|-----------------------------------------------------------------------------|----|
| IV.9.5.   | Simulation faite avec du bruit d'avion de type Hercules C130                | 65 |
| IV.10.    | Evaluation du rapport- signal-à-bruit segmentale (RSBseg)de l'algorithme de |    |
| décorréla | ation symétrique (SAD) avec différents types de bruit d'avions              | 67 |
| IV.11.    | Conclusion                                                                  | 70 |

### Liste des figures

| Figure 1:Propagation du son                                                     | 13 |
|---------------------------------------------------------------------------------|----|
| Figure 2:Mouvement vibratoire d'une lame                                        | 14 |
| Figure 3:Paramètres du son                                                      | 16 |
| Figure 4:La déférence entre un son grave et une autre aigue                     | 17 |
| Figure 5:Spectrogramme du Bruit blanc                                           | 19 |
| Figure 6:spectrogramme du bruit rose                                            | 19 |
| Figure 7:Voies de transmission du bruit dans le bâtiment                        | 21 |
| Figure 8:Évolution du bruit de jet                                              | 24 |
| Figure 9:Vibrations de la structure provoquées par de moteur                    | 25 |
| Figure 10:Bruit de la turbulence aérodynamique                                  | 25 |
| Figure 11:Voies de transfert du bruit du moteur dans la cabine                  | 26 |
| Figure 12:Voies de transfert du bruit des hélices dans la cabine                | 26 |
| Figure 13:Contrôle passif                                                       | 27 |
| Figure 14:Contrôle passif des vibrations                                        | 28 |
| Figure 15:Le contrôle actif des vibrations                                      | 29 |
| Figure 16: Structure du mélange convolutif complète                             | 32 |
| Figure 17: Structure du mélange convolutif                                      | 33 |
| Figure 18: Structure symétrique directe « Forward »                             | 34 |
| Figure 19:Structure symétrique récursive « Backward »                           | 34 |
| Figure 20:Modèle de mélange simple (entre le signal de la parole et le bruit)   | 36 |
| Figure 21:Modèle de mélange complexe (entre le signal de la parole et le bruit) | 36 |
| Figure 22:L'annuleur adaptatif classique de bruit                               | 36 |
| Figure 23:La structure de decorrelation symétrique adaptative (SAD)             | 36 |
| Figure 24:Implémentation de la structure Forward                                | 38 |
| Figure 25:Implémentation de la structure Backward                               | 39 |
| Figure 26 : la réponse impulsionnelle simulée h12                               | 42 |
| Figure 27: la réponse impulsionnelle simulée h21                                | 43 |
| Figure 28 : Signal de parole utilisé (original)                                 | 43 |
| Figure 29 : le spectre du signal de parole utilisé (original)                   | 44 |
| Figure 30 : signal d un bruit blanc                                             | 45 |
| Figure 31 : spectre du bruit blanc                                              | 45 |
| Figure 32 : Bruit avion A320                                                    | 46 |
| Figure 33 : Le spectrogramme du bruit avion A320                                | 46 |
| Figure 34 : Bruit avion B747                                                    | 47 |
| Figure 35 : Le spectrogramme du bruit avion B747                                | 47 |
| Figure 36 : Bruit avion Cessna 172                                              | 48 |
| Figure 37 : Le spectrogramme du bruit d'avion cassna 172                        | 48 |
| Figure 38 : Bruit avion F16                                                     | 49 |
| Figure 39 : Le spectrogramme du Bruit avion F16                                 | 49 |
| Figure 40 : Bruit avion Hercules C130                                           | 50 |
| Figure 41 : Le spectrogramme du bruit avion Hercules C130                       | 50 |
| Figure 42 : Signal de parole utilisé avec la segmentation manuelle              | 51 |
| Figure 43 : Signal du mélange (signal bruité) p1                                | 53 |
| Figure 44 : Signal du mélange (signal bruité) p2                                | 53 |

| Figure 45 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 46 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un                                                                                  |
| Figure 47 : Représentation de la fonction de décorrélation employée dans le SAD                                                                                                     |
| blanc                                                                                                                                                                               |
| blanc                                                                                                                                                                               |
| Figure 50 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le cas d'un bruit d'avion de type A320                                                  |
| Figure 51 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit d'avion de type A320                                                       |
| Figure 52 : Représentation de la fonction de décorrélation employée dans la SAD58<br>Figure 53 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le |
| cas d'un bruit d'avion de type B74759<br>Figure 54 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un                                         |
| bruit d'avion de type B74760                                                                                                                                                        |
| Figure 55 : Représentation de la fonction de décorrélation employée dans la SAD60                                                                                                   |
| Figure 56 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le                                                                                      |
| cas d'un bruit d'avion de type Cessna 17261                                                                                                                                         |
| Figure 57 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit d'avion de type Cessna 172                                                 |
| Figure 58 : Représentation de la fonction de décorrélation employée dans la SAD                                                                                                     |
| Figure 59 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le                                                                                      |
| cas d'un bruit d'avion de type F1663                                                                                                                                                |
| Figure 60 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un                                                                                  |
| bruit d'avion de type F1664                                                                                                                                                         |
| Figure 61 : Représentation de la fonction de décorrélation employée dans la SAD                                                                                                     |
| Figure 62 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le                                                                                      |
| cas d'un bruit d'avion de type Hercules C13065                                                                                                                                      |
| Figure 63 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un                                                                                  |
| bruit d'avion de type Hercules C130 66                                                                                                                                              |
| Figure 64 : Représentation de la fonction de décorrélation employée dans la SAD                                                                                                     |

### Liste des tableaux

| Table 1:quelques bruits-types [http://www.delaunay-acoustique.com/glossaire/bruit/]                 | . 15 |
|-----------------------------------------------------------------------------------------------------|------|
| Table 2:Découpage en octaves (Hz)                                                                   | . 17 |
| Table 3:Une classification des sources de bruit à bord des avions.                                  | . 23 |
| Table 4:Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit  |      |
| d'avion Hercule C-130.                                                                              | . 67 |
| Table 5:Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit  |      |
| d'avion f16                                                                                         | . 68 |
| Table 6: Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit |      |
| d'avion Cessna 172                                                                                  | . 68 |
| Table 7:Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit  |      |
| d'avion A320                                                                                        | . 69 |
| Table 8:Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit  |      |
| d'avion                                                                                             | . 69 |
|                                                                                                     |      |

### LISTE DES ABREVIATIONS

| BF:    | Basses Fréquences.                  |
|--------|-------------------------------------|
| HF:    | Hautes Fréquences.                  |
| TBF:   | Très Basses Fréquences.             |
| MF:    | Moyennes Fréquences.                |
| UHF:   | Ultra Hautes Fréquences.            |
| SHF:   | Super Hautes Fréquences.            |
| EHF :  | Extra Hautes Fréquences.            |
| IR :   | Infra Rouge.                        |
| UV:    | Ultra-Violet.                       |
| RIF :  | Réponse Impulsionnelle Finie.       |
| RII :  | Réponse Impulsionnelle Infinie.     |
| MMSE : | Minimum Mean Square Error.          |
| EQMM : | Erreur Quadratique Moyenne Minimum. |
| SAD :  | Symetric Adaptative Decorrelation.  |
| RSB :  | Rapport Signal Bruit.               |
| DAV :  | Detection d'Activité Vocale.        |
| SM :   | System Mismatch.                    |
| MSE :  | Mean Square Error.                  |

### **INTRODUCTION GENERALE**

Au cours des dernières décennies la réduction du bruit des avions est devenue une préoccupation majeure pour les acteurs du transport aérien.

L'impact du bruit autour des avions est plus qu'important sur la qualité de la communication et la transmission d'information depuis l'avion, il peut causer notamment différents difficultés de santé de l'équipage et les passagers.

Le débruitage comprend l'ensemble des techniques qui permettent d'annuler le bruit contenu dans un signal. Le bruit étant un composant indésirable, il est nécessaire de l'éliminer le plus possible pour recueillir le signal qui nous intéresse.

L'objectif de ce travail le rehaussement de la communication bruitée dans un avion par l'algorithme de décorrélation adaptative symétrique (SAD) appliqué à une architecture d'annulation de bruit avec présence d'interférences.

Partant de l'hypothèse que le signal et le bruit sont décorrélés et stationnaire, l'idée est de chercher à estimer un signal utile à partir des observations très bruités mesurées principalement dans des cockpits d'avions.

Ce travail est organisé en quatre parties:

La première partie, est consacrée aux différents types de bruit acoustique dans l'environnement.

La seconde partie est consacrée au bruit dans l'avion et quelque méthode de réduction de bruit dans l'habitacle de l'avion.

La troisième partie est dédiée à l'étude analytique du problème.

**Finalement, la dernière partie** est consacrée à la présentation des résultats de simulation de la réduction du bruit dans différents cockpits d'avions

Les avantages apportés par l'étude ainsi que les recommandations et les compléments permettant l'installation effective de l'optimisation sont discutés dans une conclusion générale.

### **CHAPITRE I : ETUDE DU BRUIT ACOUSTIQUE**

#### I.1. Introduction

Les ondes acoustiques sont par définition, perceptibles par l'oreille humaine mais elles ne constituent qu'une partie des ondes mécaniques qui se transmettent par vibration de la matière. Il existe aussi des infrasons et des ultrasons dont les fréquences sont respectivement trop basses ou trop élevées pour être audibles. Le bruit est un son complexe produit par des vibrations diverses, souvent amorties et qui ne sont pas des harmoniques.

#### I.2. Définition du son

Le son est une sensation auditive provoquée par une onde acoustique. D'un point de vue physique, c'est une vibration se propageant dans un milieu matériel, d'un point de vue physiologique, c'est un signal perçu par le sens de l'ouïe. Le son, c'est donc ce que l'oreille perçoit de la vibration d'un corps. Généralement il se propage sous la forme d'une onde dans l'air jusqu'à notre oreille, mais il se transmet aussi dans les liquides et dans les corps solides. Cet ébranlement de la matière se caractérise par une variation de pression se propageant de proche en proche. Plus la pression acoustique est grande, plus le volume sonore est important.



Figure 1: Propagation du son

De toutes les ondes acoustiques, seules certaines peuvent être perçues par l'oreille:

Il s'agit des ondes dont la fréquence est comprise entre 20 Hz et 20 kHz. En dessous de 20 Hz, on parle d'infrasons et, au-dessus de 20 kHz, d'ultrasons [2].

### I.3. Origine d'un son

Au départ, un son est initié par un objet animé d'un mouvement vibratoire. Une vibration est un mouvement d'oscillation rapide autour d'une position d'équilibre. C'est un déplacement périodique qui se répète à l'identique à intervalle de temps régulier. On peut observer ce

phénomène à partir de systèmes mécaniques simples comme une lame ou une corde vibrante dont le principe est repris dans différents instruments de musique [2].



Figure 2: Mouvement vibratoire d'une lame

### I.4. Différences entre son et bruit

On distingue deux faces appropriées au son :

- la face physique c'est-à-dire l'ébranlement, la perturbation dans un milieu matériel élastique ;
- 2. la face perceptive c'est-à-dire le signal perçu par l'ouïe.

Le son est donc un transfert d'énergie dans un milieu élastique qu'on peut résumer en un mot « l'onde ».

Le bruit est différencié du son généralement par une sensation désagréable à l'oreille. Il peut aussi se définir comme :

- un signal acoustique, électrique ou électronique constitué d'un mélange incohérent de longueurs d'onde.
- Il est plus précisément composé de partiels très nombreux qui peuvent donner un spectre continu.

Ce qui fait la différence entre bruit et son, est que la fréquence de vibration du bruit est irrégulière et ne permet donc pas de lui donner une hauteur précise contrairement au son. Le bruit est physiquement caractérisé par son intensité, la présence d'harmoniques non périodiques, de fortes modulations et l'existence de discordances; c'est pourquoi on le trouve désagréable.

### I.5. Différents types de bruits

L'acoustique définit une collection de bruits-types bien définis.

| Bruit                                                      | D¶finition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bruit a¶rien<br>Propagation<br>a¶rienne                    | Bruit propag¶ dans l $$ air, par opposition aux bruits solidiens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bruit ambiant                                              | Niveau sonore incluant l'ensemble des bruits environnants. Dans le cas<br>d'une g, ne li¶e – une source sonore particuli·re, le bruit ambiant est la<br>somme du bruit r¶siduel et du bruit particulier ¶mis par la source. Il est<br>compos¶ de l'ensemble des bruits ¶mis par toutes les sources proches et<br>¶oign¶es.                                                                                                                                                                                                                                                                                                                                           |
| Bruit blanc                                                | L'un des bruits-types, compos¶ de toutes les fr¶quences au m, me niveau<br>statistique. Il pr¶sente la m, me ¶nergie pour toutes les fr¶quences sa<br>densit¶ spectrale de puissance est constante quelle que soit sa fr¶quence.<br>Ces fr¶quences doublent d'une octave – l'autre et ont toutes la m, me<br>¶nergie qui cro½ de trois d¶cibels par octave. Il donne l'impression d'un<br>souffle. exemple : ĭ effet neige ŏ sur un t¶¶viseur                                                                                                                                                                                                                        |
| Bruit d´impact                                             | Bruit qui provient d´un choc sur une paroi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bruit de fond                                              | Le bruit de fond est le bruit total existant en un point pendant une certaine<br>dur¶e. Il contient l'ensemble des sons ¶mis par les sources sonores qui<br>influent au point de mesure : les conversations, les bruits de ventilation,<br>les bruits de machines ou d'¶quipements, les sons provenant des couloirs,<br>des autres pi·ces ou des bruits de circulation, etcǔ                                                                                                                                                                                                                                                                                         |
| Bruit liquidien <sup>-</sup><br>Propagation<br>liquidienne | Bruit transmis dans un liquide et d¶placement de l`onde sonore dans un liquide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bruit particulier                                          | Bruit produit par une source sonore g¶n¶rant une g, ne dans<br>l`environnement, ou composante du bruit ambiant pouvant , tre identifi¶e<br>sp¶cifiquement et que l`on distingue du bruit ambiant                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bruit r¶siduel                                             | Niveau sonore en l'absence du bruit particulier. Le bruit r¶siduel peut, tre<br>le niveau sonore mesur¶lorsque la machine est l'arr, t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bruit rose                                                 | Un bruit rose est un bruit normalis¶ qui poss de la m, me ¶nergie dans les<br>bandes d'octave de 125 <sup>-</sup> 4000 Hz. Le bruit rose est la r¶f¶rence pour<br>caract¶riser les qualit¶s des structures d'une construction : murs,<br>planchers, fa´ades, menuiseries, toiture, etc. Pour les fr¶quences<br>croissantes les niveaux sont d¶croissants <sup>-</sup> raison de 3 dB/octave.<br>est un signal al¶atoire dont la densit¶ spectrale diminue de trois d¶cibels<br>par octave, il est obtenu en ¶iminant les fr¶puences hautes du bruit blanc.<br>Il est notamment utilis¶ pour calculer la r¶ponse fr¶quentielle d'une cha½e<br>de reproduction sonore. |
| Bruit route                                                | Un bruit route, ou bruit routier, est un bruit normalis¶, Il est une r¶f¶rence<br>pour le bruit des trafics routiers et ferroviaires. Son spectre est enrichi en<br>basses fr¶puences et appauvri dans les aigu <sup>1</sup> s par rapport – un bruit rose.                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bruit solidien<br>Propagation<br>solidienne                | Bruit propag¶ dans un solide. La propagation solidienne est le d¶placement de l`onde sonore dans un solide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### ≈Цтив ठачбтиебţг↑СССССС

### I.6. Les unit¶s de base li¶es l`acoustique

Le bruit se mesure en D¶cibel (dB) qui correspond - la plus petite pression acoustique

susceptible d'être perçue par l'homme. Pour prendre en compte le niveau réellement perçu par l'oreille, on utilise le décibel « physiologique » appelé décibel A, dont l'abréviation est dB(A). L'échelle de bruit s'étend de 0 à 130 dB, avec des paliers identifiants la pénibilité du bruit, jusqu'au seuil de douleur.

La pression acoustique s'exprime en pascal (Pa) et quantifie l'amplitude d'un son. Cependant l'oreille humaine est un récepteur ultrasensible et détecte les sons dont l'amplitude varie de 2.10<sup>-5</sup> à 20 Pa, c'est pourquoi nous utilisons le niveau de pression acoustique (Lp) qui correspond à la pression acoustique convertie à l'échelle des décibels et qui facilite donc la mesure et le traitement des données. Une échelle logarithmique, exprimée en dB, est utilisée pour effectuer cette conversion.

#### I.7. Propagation dans l'air

C'est la variation de pression qui se déplace de proche en proche. L'onde acoustique est une onde de pression à l'image d'une onde à la surface de l'eau [2].

#### I.8. Paramètres du son

Le schéma synoptique ci-dessous nous montre les 3 paramètres qui L'oreille est sensible aux 3 paramètres suivants du son



Figure 3:Paramètres du son

#### I.8.1. Niveau sonore

On définit le niveau sonore, comme le rapport de deux 02 pressions acoustiques :

- 1. *P* : Pression acoustique de la source.
- 2.  $p_0$ : Pression acoustique correspondant au plus petit son audible par l'oreille humaine.

On choisit d'exprimer ce rapport sous une forme logarithmique pour le ramener dans des proportions raisonnables [3].

Le niveau de pression acoustique (*lp*)est ainsi définit :

$$l_p = 10\log\left(\frac{p^2}{p_0^2}\right)en - dB$$

### I.9. Fréquences

L'oreille humaine est sensible à des variations de fréquences entre 20 Hz à 20 000 Hz (oreille jeune et en bonne santé). Ce grand domaine de sensibilité est divisé en paquets de fréquences qui sont ordonnés de façon régulière pour l'oreille [3].



Figure 4:La déférence entre un son grave et une autre aigue.

On distingue trois types de fréquences :

- 1. Les fréquences graves (de 20 à 400 Hz).
- 2. Les fréquences médium (de 400 à 1600 Hz).
- 3. Les fréquences aiguës (de 1600 à 20000 Hz) [1].

#### I.9.1. Octaves

Les octaves sont définies par une fréquence centrale et regroupent l'ensemble de fréquences suivant :  $\frac{fc}{\sqrt{2}} < fc < fc\sqrt{2}$ 

| Octave | F max                                                   |
|--------|---------------------------------------------------------|
| 63     | 88                                                      |
| 125    | 176                                                     |
| 250    | 353                                                     |
| 500    | 707                                                     |
| 1k     | 1414                                                    |
| 2k     | 2828                                                    |
| 4k     | 5656                                                    |
| 8k     | 11313                                                   |
| 16k    | 20000                                                   |
|        | Octave   63   125   250   500   1k   2k   4k   8k   16k |

Table 2:Découpage en octaves (Hz).

#### I.9.2. Timbre

Le Timbre est la qualité qui permet de distinguer deux sons émis par deux instruments différents. Si le son est "musical" au sens acoustique du terme, c'est-à-dire créé par un mouvement vibratoire périodique, on montre que le son peut être considéré comme la superposition de sons simples harmoniques, dont les fréquences sont des multiples entiers de la fréquence d'un son de base, appelé le fondamental. Le timbre d'un tel son dépend des intensités relatives des différents sons simples harmoniques qui le composent [3].

#### I.10. Couleurs de bruit

La couleur du bruit est un système de termes inscrivant les couleurs définies aux certains types de signaux de bruit suivant l'analogie entre le spectre du signal d'un caractère arbitraire (ou précisément, de sa densité spectrale ou en utilisant la langue mathématique, des paramètres de la distribution du processus aléatoire), et les spectres de couleurs différentes de la lumière visible. Les correspondances des couleurs de différents types de signal de bruit sont déterminées à l'aide des graphiques (histogrammes) de la densité spectrale, c'est-à-dire, la distribution de puissance du signal sur les fréquences [4].

#### I.10.1. Bruit blanc

Le bruit blanc est un signal de valeur moyenne nulle. Son spectre en amplitude est constant, ça densité spectrale est constante. La fonction d'auto corrélation temporelle du bruit blanc est une impulsion de Dirac.

Pratiquement, un tel bruit n'existe pas, mais on parlera du bruit blanc à chaque fois que le spectre de densité de puissance est constant à l'intérieur de la bande passante [4].



Figure 5:Spectrogramme du Bruit blanc

#### I.10.2. Bruit rose

Un bruit rose est un bruit dont le spectre en amplitude est inversement proportionnel à la fréquence.

En réalité, il s'agit d'un bruit blanc dont la densité spectrale de puissance est modélisée par une fonction porte de largeur 2up.

(up) : Est la fréquence maximale du bruit rose.



La fonction d'auto corrélation du bruit rose est très étroite et centrée sur  $\tau = 0$  [4].

Figure 6:spectrogramme du bruit rose

### I.11. Effets d'une exposition permanente au bruit

- Perturbations de l'activité, du sommeil et du repos.
- Perturbations de la communication, Modifications de l'état émotionnel, pouvant engendrer des troubles psychiques.
- Troubles de l'apprentissage et de la performance consécutifs à une perturbation, de l'attention et à une diminution de la capacité à traiter les informations.
- Réactions de stress, modifications de l'équilibre hormonal.
- Décès prématurés ; des changements physiques peuvent déjà intervenir même si l'individu n'est pas conscient de la perturbation due au bruit [4].

#### I.12. Bruit dans une salle

Un local peut être un lieu où l'écoute doit être favorisée (salle de spectacle, salle d'enseignement ...), un lieu où le niveau sonore doit être diminué (locaux industriels, ateliers, bureaux ...) ou bien encore un lieu où l'acoustique est spécifique (salle de sport, restaurants...). Pour les petits locaux (jusqu'à quelques centaines de m3), les caractéristiques acoustiques appropriées seront obtenues en maintenant la durée de réverbération entre certaines limites [2].

#### I.12.1. Problèmes survenus à la conception

Oubliée lors de la conception, il sera néanmoins possible après construction de corriger l'acoustique d'un petit local en répartissant des surfaces absorbantes et des surfaces réverbérantes sur ses parois.

Les surfaces pouvant recevoir des matériaux absorbants doivent néanmoins exister en quantité suffisante pour permettre cette opération [2].

#### I.12.2. Différentes transmissions du bruit à travers une paroi

- Transmissions directes(TD) :Par les parois opaques (façade, séparatif, toiture, plancher).
- Transmissions parasites(TP) :Par certains points singuliers (entrées d'air, coffres de volets roulants, défauts d'exécution ...).
- Transmissions latérales(TL) :Par les parois liées à la façade, à la paroi séparative, à la terrasse ou au plancher.



Figure 7: Voies de transmission du bruit dans le bâtiment.

### I.13. Conclusion

Le bruit est généralement désagréable et gênant ; il est parfois dangereux. Il est source de fatigues auditives et nerveuses. En milieu de travail (cockpit) notamment, il est facteur d'accidents par diminution sensible de la vigilance. Isoler du bruit suppose la connaissance des sources de bruit et la mise en œuvre de techniques et de matériaux adaptés.

Le chapitre suivant décrit les sources principales de bruit et les techniques de réduction de bruit dans un avion.

### **CHAPITRE II : BRUIT DANS L'AVION**

### **II.1.** Introduction

Même si le bruit des aéronefs ne touche qu'une faible partie de la population, il est extrêmement gênant car il se manifeste par la survenance plus au moins aléatoire d'événements brefs très forts. Sa réduction est une des priorités du transport aérien.

Ce chapitre commencera par le rappel des sources de bruit des avions, par la suite nous allons citer quelques techniques de réduction de bruit.

### **II.2.** Description du bruit des avions

Les avions sont des sources de bruit complexe. Donc, une variété de méthodes de protection contre le bruit est utilisée autour des aéroports, y compris des Méthodes techniques, opérationnelles et organisationnelles. Les principales sources de bruit sur un aéronef en vol sont l'unité de puissance et le bruit aérodynamique. Le bruit Aérodynamique devient particulièrement perceptible lors de l'approche d'atterrissage des avions à réaction lourds, lorsque les moteurs sont à faible poussée.

En général, les sources de bruit des avions à réaction comprennent : le bruit de jet, Bruit de combustion, bruit compresseur, bruit de la soufflante par l'entrée d'air en amont et aval et le bruit de la turbine. Le tableau 3 présente une classification des sources de bruit des avions [5].

| Type d'aéronef         |                 | Les principales           | sources de bruit          |
|------------------------|-----------------|---------------------------|---------------------------|
|                        |                 | Unité de puissance        | La cellule                |
|                        |                 |                           |                           |
| Avions ordinaire       | turboréacteur   | tuyère d'éjection, la     | becs au bord d'attaque    |
| Décollage et           |                 | soufflante, bruit de      | des ailes, volets au bord |
| l'atterrissage         |                 | combustion.               | de fuite, train           |
|                        | turbopropulseur | Hélice, l'arbre d'hélice, | d'atterrissage, fuselage  |
|                        |                 | tuyère d'éjection.        | et les turbulentes des    |
|                        |                 |                           | couches limites           |
|                        |                 |                           |                           |
|                        |                 |                           |                           |
| Avions court Décollage | turboréacteur   | la soufflante, tuyère     | Interférence de jet avec  |
| et l'atterrissage      |                 | d'éjection.               | les volets                |
|                        | turbopropulseur | Hélice                    |                           |
|                        |                 |                           |                           |

| Avion supersonique<br>(Ex : concorde,<br>F16) |                 | tuyère d'éjection     | Interférence de flux<br>avec<br>La carcasse de Moteur |
|-----------------------------------------------|-----------------|-----------------------|-------------------------------------------------------|
| Hélicoptères                                  |                 | Les pales du rotor    | N'est pas important                                   |
|                                               |                 | principal,            |                                                       |
|                                               |                 | l'échappement du      |                                                       |
|                                               |                 | moteur                |                                                       |
| Les aéronefs de                               | turboréacteur   | tuyère d'éjection, la | N'est pas important                                   |
| l'aviation générale                           |                 | soufflante            |                                                       |
| (petits avions)                               | turbopropulseur | Hélice, tuyère        |                                                       |
|                                               |                 | d'éjection.           |                                                       |
|                                               |                 |                       |                                                       |

Table 3: Une classification des sources de bruit à bord des avions.

En approche, c'est le bruit de cellule qui domine car les moteurs sont ralentis, alors que les dispositifs hypersustentateurs sont sortis (becs au bord d'attaque des ailes et volets au bord de fuite), ainsi que les trains d'atterrissage. L'émission globale des moteurs est cependant peu inférieure.

Dans les deux autres conditions de certification (décollage et survol), c'est le bruit des moteurs qui dominent [6].

### **II.3.** Principales sources de bruit des avions

On classe les bruits selon deux grandes Catégories :

- 1. Le bruit moteur dans lequel on distingue:
  - a) Le bruit de jet lié à l'expulsion des gaz à l'arrière du moteur, ce qui génère des turbulences au contact de l'air ambiant.
  - b) Le bruit des parties tournantes du moteur.
  - c) Le bruit de combustion.
- Le bruit dit aérodynamique qui concerne les turbulences aérodynamiques autour de l'avion c'est-à-dire les mouvements d'air créés par les parties extérieurs (volets, trains d'atterrissage .....).Cette source de bruit est aussi importante que le bruit moteur, notamment en phase d'atterrissage [5].

### II.4. Bruit de jet

Le bruit de jet est dû à la génération de fortes turbulences dans la zone où les gaz chauds à haute pression éjectés de la tuyère du moteur se mélangent à l'air ambiant.

Le bruit de jet est un bruit à large bande, sa directivité est maximale à l'arrière et il est

fonction De  $D^2V^8$ , D étant le diamètre de la tuyère et V la vitesse d'écoulement du jet. Le bruit de Jet a été fortement réduit dans les moteurs modernes à double flux, de grand diamètre et à Basse vitesse d'éjection [5].



Figure 8: Évolution du bruit de jet.

#### II.4.1. Bruit de la soufflante et la turbine

La soufflante, le compresseur et la turbine d'un moteur d'avion génèrent du bruit tonal et à large bande. Résultats de bruit large bande est à cause de l'interaction de pression non homogène avec un écoulement turbulent. La tonalité de lame de passage et ses harmoniques pour des nombres de Mach subsonique résultant de l'interaction des champs de pression produite par l'écoulement dans les rangées d'aubes du rotor/stator.

Il y a plusieurs sons purs supplémentaires –bruit «buzz-saw» - qui accompagne le nombre de Mach supersonique associés à l'écoulement supersonique sur les pales et la formation d'ondes de choc. Ce dernier phénomène est typique pendant le décollage. Pour déterminer les caractéristiques acoustiques de la soufflante, du compresseur et de la turbine, il est nécessaire de tenir compte de la génération de bruit, la propagation du bruit dans la conduite et le rayonnement acoustique de l'avant, le rayonnement vers l'arrière à partir de la conduite de dérivation et le noyau du moteur [5].

#### II.4.2. Bruit de la chambre de combustion

Le bruit est créé lors de la combustion de carburant dans la chambre de combustion du moteur. Les composantes de basse fréquence du bruit de combustion se propagent à travers les zones avec des fluctuations de température, par le saut de pression à la turbine, puis rayonnent à travers la tuyère d'échappement (bruit de base). (Par exemple, lors de l'approche de l'avion) [5].

#### II.4.3. Bruit hélice

L'hélice est la source principale de bruit sur un turbopropulseur. Le bruit se fait par le déplacement périodique de volume d'air par la lame d'hélice qui tourne.

Un spectre de bruit de l'hélice contient à la fois le bruit à large bande et harmonique. Le bruit harmonique a des composantes à des fréquences indiquées par :

 $f_k = n.z_k(ou - k = 1, 2, ..., n)$  est la vitesse de rotation et z est le nombre de pales.

S'il n'y a qu'un petit nombre de pales et de vitesses de section de pale subsoniques, alors que le bruit est principalement déterminé par les deux ou trois premières harmoniques. Pour un tel propulseur, le niveau de bruit à large bande est inférieur au premier harmonique niveau d'environ 10 dB [5].

#### II.4.4. Bruit de la cellule

Le bruit de la cellule est le résultat de bruit de plusieurs sources génératrices aérodynamiques sur l'aile, l'empennage horizontal et vertical, les volets, les becs, les trains d'atterrissage (Figure 9 et Figure 10) [5].



Figure 9: Vibrations de la structure provoquées par de moteur.



Figure 10:Bruit de la turbulence aérodynamique.

#### **II.5.** Propagation de bruit dans l'avion

Une analyse antérieure basée en particulier sur les techniques d'imagerie acoustique de Metravib RDS avait démontré que la principale source de bruit était la transmission au fuselage des vibrations des deux moteurs et de son harmonique d'ordre 02, via les attaches des moteurs et les pylônes dans ce cas très courts (figure 11) [7].



Figure 11:Voies de transfert du bruit du moteur dans la cabine.

Dans le cas d'un avion à hélices tel que les avions turbopropulsés, le mode principal de génération de bruit dans la cabine est plus immatériel puisqu'il s'agit de la pression dynamique fluctuante du sillage de chaque pale d'hélice sur la tranche voisine du fuselage, qui se propage ensuite à la fois sous forme vibratoire et sous forme de bruit interne (Figure 12). S'y ajoutent les contributions solidiennes par les ailes, ainsi que les vibrations des ailes et de la queue créées par le sillage direct des hélices. La majeure partie de l'énergie sonore indésirable est concentrée sur les trois ou quatre premières harmoniques du passage de pale [7].



Figure 12: Voies de transfert du bruit des hélices dans la cabine.

#### II.6. Contrôle passif

On entend généralement par contrôle passif des vibrations la stratégie qui consiste à introduire des dispositions constructives et des matériaux particuliers permettant de minimiser la transmission des bruits et des vibrations à l'environnement [7].

Il y a principalement deux types de contrôle passif (figure 13) comme le montre le schéma synoptique ci-dessous





- Le découplage (figure 14), ou isolation vibratoire, qui consiste à désorganiser la propagation des vibrations en alternant des milieux d'impédance mécanique très contrastée (d'où l'emploi fréquent d'élastomères qui constituent des interfaces molles relativement aux structures mécaniques traditionnelles).
- 2. L'amortissement (figure 14), qui consiste à dissiper en chaleur, du fait d'une forte hystérésis du matériau, les ondes vibratoires qui le sollicitent. On utilise fréquemment des revêtements de matériaux dits viscoélastiques (là aussi, il s'agit le plus souvent d'élastomères) pour accroître sensiblement les capacités de dissipation intrinsèquement faibles des matériaux usuels.



Figure 14:Contrôle passif des vibrations.

#### II.7. Contrôle actif

Le concept de contrôle actif des vibrations est l'idée de bloquer la vibration en exerçant une vibration antagoniste créée artificiellement avec des propriétés en miroir, à tout instant, relativement à la vibration indésirable, pour rendre nulle leur somme vectorielle. L'espérance de performance est donc illimitée, puisqu'en théorie, la vibration initiale pourrait être totalement annulée. Cette performance a un coût puisqu'il faut cette fois fournir de l'énergie pour contrôler les vibrations initiales du système que l'on contrôle activement.

On accroît dès lors l'énergie vibratoire de la structure en amont du contrôle, en principe du double : 1 - 1 = 0 en aval implique 1 + 1 = 2 en amont dans un schéma d'ondes progressives (figure 15) [7].



Figure 15:Le contrôle actif des vibrations.

Les applications du contrôle actif sont nombreuses dans l'industrie aéronautique et peuvent être classées selon divers critères :

- Le type de contrôle actif, qui peut être acoustique, vibro-acoustique ou vibratoire.
- Le type d'avion concerné, à hélice ou à réaction.

#### **II.8.** Le but du contrôle :

La réduction du bruit dans la cabine (localement, au niveau des passagers, ou dans toute la cabine) ou du bruit émis par l'avion dans l'environnement [8].

#### **II.9.** Conclusion

Le but de notre étude est de réduire l'émission sonore des différentes parties d'un avion. Alors un silencieux de jet diminue certainement le bruit émis mais aussi la poussée du réacteur(typiquement, perte de 1% de rendement par gain de 2 dB). Des solutions pour retrouver les performances initiales consisteraient soit à embarquer moins de passagers ou de fret (ce qui est exclu par les compagnies aériennes), soit à augmenter la puissance fournie aux

moteurs (la consommation de kérosène serait supérieure). Donc on a pensé à une technique de rehaussement de la parole qui permet de filtrer le bruit et d'envoyer le message de communication entre pilote-contrôleur et pilote-passagers, et c'est ce que nous allons présenter dans les deux chapitres suivants.

# CHAPITRE III :REHAUSSEMENTDELACOMMUNICATION BRUITEE DANS UN AVION

### **III.1.** Introduction

Dans ce chapitre, nous discuterons une approche symétrique basée sur le principe de décorrélation et ceci pour deux structures appelées Forward et Backward. On peut montrer que le critère des moindres carrés est équivalent à une décorrélation de l'estimation du signal avec référence bruit seule. Si la référence de bruit contient une partie du signal désiré, un tel critère semble être raisonnable et il serait meilleur si une estimation libre du bruit était disponible. Pour obtenir une estimation libre du bruit, un filtre symétrique est ajouté et qui est représenté dans la figure(18).

- Le fonctionnement des systèmes basés sur un filtrage adaptatif dépend fortement de la qualité de la référence de bruit seul. D'une part, le bruit dans la voie de référence et la voie primaire doit être suffisamment pour obtenir la réduction de bruit substantielle. D'autre part, n'importe quelle interférence du signal primaire dans la référence de bruit doit être évitée.
- Les méthodes les plus utilisées dans le rehaussement du signal de parole sont les méthodes mono-capteur, bi-capteur et multiplicateurs, dans notre travail nous allons utiliser les applications bi-capteur.

### **III.2.** Mélange convolutif des signaux

- La classe générale des mélanges convolutifs tient compte de la déformation du signal propagé et la modélise par un filtrage entre la source et l'observation, ce qui s'écrit mathématiquement sous la forme d'une convolution.
- On prend par exemple le cas le plus simple, deux microphones, une source de parole (locuteur) se situe près du 1er microphone, l'autre source de perturbation (un bruit) est près du 2<sup>ème</sup> microphone. A la sortie des microphones, on observe une superposition des signaux primitifs inconnus selon un mélange inconnu Figure(16).
- En général, c'est un mélange convolutif des signaux à large bande, qui dépend de la propagation des signaux dans le milieu, de la position des microphones,

### REHAUSSEMENT DE LA COMMUNICATION BRUITEE DANS UN AVION

des sources, et des caractéristiques de la salle. Les équations du mélange s'écrivent donc :

$$p_1(n) = s(n) * h_{11}(n) + b(n) * h_{21}(n)$$
 (3.1)

 $p_2(n) = b(n) * h_{22}(n) + s(n) * h_{12}(n)$  (3.2)

| Paramètres            | Fonction                                                    |
|-----------------------|-------------------------------------------------------------|
| $h_{11}$ et $h_{22}$  | les réponses impulsionnelles des canaux directs de couplage |
| $h_{21}$ et $h_{12}$  | les effets du couplage mutuel entre les signaux.            |
| <i>s</i> ( <i>n</i> ) | le signal parole.                                           |
| <i>b</i> ( <i>n</i> ) | le signal de bruit                                          |
| p1(n)et p2(n)         | les deux signaux de la sortie du mélange.                   |



Figure 16: Structure du mélange convolutif complète

On suppose que la source s(n) plus proche de la sortie p2(n)c.à.d. que h11n'existe pas  $(h11 \text{ c'est} \text{ une impulsion } \delta(n))$ , pour h12c'est la même chose  $(h22 = h11 = \delta(n))$  donc la structure devient comme suit figure (17).





#### III.2.1. Séparation aveugle des sources

La séparation aveugle de mélanges convolutifs est un domaine de recherche récent et très prometteur. Elle étudie la séparation des mélanges linéaires généraux, les mélanges linéaires instantanés et à atténuations et retards étant des cas particuliers réalistes pour certaines applications uniquement. En effet, le temps de propagation entre une source et un capteur n'est jamais parfaitement nul, même s'il peut parfois être négligé.

La sous-classe des mélanges atténuations et retards modélise ces retards de propagation mais suppose que le signal n'est pas déformé par le milieu, ce qui ne peut pas être conforme à la réalité.

La séparation aveugle des sources cherche à estimer les sources $p_j(n)$ . Dans le cas d'un mélange convolutif, cette estimation n'est possible qu'à une indétermination de filtrage près. En fait, il est parfois suffisant d'estimer un jeu de filtres de séparation W(n)qui suppriment les interférences des autres sources introduites par le processus de mélange.

Ces filtres peuvent être à réponse impulsionnelles finies (RIF) ou à réponse impulsionnelles infinies (RII) [9].

Le système de séparation devra réaliser une combinaison linéaire convolutive à partir de deux structures bien connues se représentent respectivement dans les Figures (18) et (19).



Figure 18: Structure symétrique directe « Forward »



Figure 19:Structure symétrique récursive « Backward »

Les sorties de la structure du mélange direct da la figure (17)

$$p_1(n) = s(n) + b(n) * h_{21}(n)$$
 (3.3)

$$p_2(n) = b(n) + s(n) * h_{12}(n)$$
 (3.4)

Et les sorties  $u_1(n)$  et  $u_2(n)$  de la structure de séparation des sources directe qui s'est présenté par la figure (18) sont données par les équations (3.5) et (3.6) :

$$u_1(n) = p_1(n) + p_2(n) * w_{21}(n)(3.5)$$

 $u_2(n) = p_2(n) + p_1(n) * w_{12}(n)(3.6)$ 

En remplaçant les expressions  $p_1(n)$  et  $p_2(n)$  dans les expressions de  $u_1(n)$  et  $u_2(n)$ , nous trouvons :

$$u_1(n) = b(n) * [h_{21}(n) - w_{21}(n)] + s(n) * [\delta(n) - h_{21}(n) * w_{21}(n)](3.7)$$

#### REHAUSSEMENT DE LA COMMUNICATION BRUITEE DANS UN AVION

$$u_2(n) = s(n) * [h_{12}(n) - w_{12}(n)] + b(n) * [\delta(n) - h_{21}(n) * w_{12}(n)]$$
(3.8)

En utilisant l'hypothèse d'optimalité pour les deux filtres adaptatifs  $(W_{21}^{opt} = h_{21} et W_{12}^{opt} = h_{12})$  On obtient les sorties  $u_1(n) et u_2(n)$  selon les deux expressions suivantes :

$$u_1(n) = s(n) * [\delta(n) - h_{12}(n) * h_{21}(n)](3.9)$$
$$u_2(n) = b(n) * [\delta(n) - h_{21}(n) * h_{12}(n)](3.10)$$

Nous notons que les solutions optimales des filtres adaptatifs sont obtenues en utilisant les critères du minimum de l'erreur quadratique moyenne (MMSE ou bien EQMM).

# **III.3.** Algorithm de la décorrélation symétrique adaptative (Symétrique Adaptive Decorrelation- SAD)

Pour illustrer le problème, un modèle de signal avec et sans interférence est donné dans l'annuleur adaptatif à simple face de bruit (Figures (20) et (21)). Le modèle de Widrow est représenté sur la figure (22)[10].

La décorrélation se fait entre une estimation du signal et une estimation du bruit. Le critère des moindres carrés est remplacé par le critère de décorrélation et en raison de sa symétrie complète, l'algorithme est un séparateur de signal plutôt qu'un annuleur de bruit. II est désigné sous le nom de l'algorithme de décorrélation symétrique adaptative (SAD) [10].

Son principe est illustré sur la figure (23). Nous nous limiterons au problème à deux voies comme présenté dans la figure (23). L'algorithme SAD a été développé pour la séparation des signaux à bande large tels que la parole (300 Hz–3500 Hz) dans un mélange convolutif.

Dans une formulation plus générale du problème de séparation de signaux, les chemins directs ne seront pas des identités et alors les solutions seront indéterminées jusqu'à la formation d'un filtre. Séparation de sources par l'algorithme SAD



Figure 20:Modèle de mélange simple (entre le signal de la parole et le bruit)



Figure 21:Modèle de mélange complexe (entre le signal de la parole et le bruit)



#### Figure 22:L'annuleur adaptatif classique de bruit



Figure 23:La structure de decorrelation symétrique adaptative (SAD)
#### III.3.1.1. Notations

Les notations nécessaires pour l'étude théorique de l'algorithme SAD sont les suivantes :

-Surface d'erreur quadratique :

$$\varepsilon_i(n) = E\left[u_i^2(n)\right] \tag{3.11}$$

-Vecteur des coefficients filtre :

$$w_i^{(n)} = \left[ W_i^{(n)}(o) W_i^{(n)}(1) \dots W_i^{(n)}(L_i) \right]^T (3.12)$$

-Equation d'intercorrelation entre deux signaux :

$$C_{up}(m) = E[u(n), p(n-m)]$$
 (3.13)

Vecteur d'intercorrelation :

 $C_{up} = [C_{up}(0)C_{up}(1) \dots C_{up}(L)]^T$  (3.14)

Densité d'iterspectrale :

$$\phi_{up}(z) = Z[C_{up}] \tag{3.15}$$

Nous supposons que les deux signaux s(n), b(n) sont indépendants, donc les vecteurs du produit de l'intercorrelation entre les deux sont nulles, ce dernier exigé pour le fonctionnement de l'algorithme SAD.

$$C_{cb}(m) = E[s(n).b(n-m)] \forall m \in \mathbb{Z}$$
(3.16)

Les variances des signaux parole et bruit sont  $\sigma_1^2 \sigma_2^2$  respectivement.

#### III.3.2. Annulation du bruit par la séparation des signaux

Le fonctionnement de l'algorithme SAD basé sur la minimisation de l'énergie d'erreur, cette minimisation d'erreur est équivalente à l'intercorrelation entre le signal estimé  $u_1(n)$  et le signal du mélange  $p_2(n)$ .

$$\frac{\partial \varepsilon_1(n)}{\partial W_{21}(m)} = 2C_{u1\,p2} (m) \qquad m = 0 \dots L_1$$
$$\frac{\partial \varepsilon_1(n)}{\partial W_{21}(m)} = 0$$
$$\rightarrow C_{u1\,p2}(m) = 0 \qquad m = 0 \dots L_1$$
(3.17)

L1:La taille du filtre.

Il est important de noter que les équations ci-dessus sont valides pour tous les types de signaux. L'intercorrelation entre les deux signaux  $u_1(n)$  et  $p_2(n)$ est :

$$C_{u1 p2}(m) = (h_{21}(m) - w_{21}(m))\sigma_2^2$$
  

$$\nabla_m = \frac{\partial C_{u1 p2}(m)}{\partial W_{21}(m)} = -\sigma_2^2$$
  

$$w_{21}^{(n+1)}(m) = w_{21}^{(n)}(m) - \gamma \frac{c_{u1 p2}(m)}{\nabla_m} (3.18)$$

L'idée de cette algorithme est de remplacer le terme de l'intercorrelation par ses valeurs instantanées et par un choix approprié de  $\gamma(0 < \gamma < 2 \rightarrow 0 < 2/\sigma_2^2)$ , on obtient la relation Suivante

$$w_{21}^{(n+1)}(m) = w_{21}^{(n)}(m) + \mu(u_1(n)p_2(n-m))$$
(3.19)

 $\mu$ : pas d'adaotation

#### **III.3.3.** Structure Forward

La structure Forward est très importante dans le domaine de séparation aveugle de sources. Dans notre travail, nous étudions l'algorithme SAD avec la structure Forward (voir la figure (24), la décorrealtion se fait entre les deux sorties  $u_1(n), u_2(n)$ .



Figure 24:Implémentation de la structure Forward

En adaptant l'équation de mise à jour de l'algorithme SAD à la structure Forward, nous obtenons les deux équations de mises à jour de deux filtres  $w_{12}(n), w_{21}(n)$  qui sont données comme suit :

$$w_{21}^{(n+1)}(m) = w_{21}^{(n)}(m) + \mu_1 (u_1(n)u_2(n-m)) \quad m = 0.1 \dots L_1$$
(3.20)

$$w_{12}^{(n-1)}(k) = w_{12}^{(n)}(k) + \mu_2 (u_2(n)u_1(n-k)) \qquad k = 0.1 \dots L_2 \qquad (3.21)$$

Si les valeurs de l'intercorrelation sont nulles, les équations de mise à jour (3.20) et (3.21) convergent, les deux signaux  $u_1(n)$  et  $u_2(n)$ seront decorrelés

#### REHAUSSEMENT DE LA COMMUNICATION BRUITEE DANS UN AVION

$$C_{u1\,u2}(m) = E[u_1(n)u_2(n-m)] = 0 \qquad m = 0.1\dots L_2$$
(3.22)

$$C_{u2\,u1}(k) = E[u_2(n)u_1(n-k)] = 0 \qquad k = 0.1\dots L_1$$
(3.23)

Quand les deux réponses impulsionnelles  $h_{12}(n)$  et  $h_{21}(n)$ égalent respectivement les deux filtres  $w_{12}(n)$  et  $w_{21}(n)$ , on obtient une solution correcte pour la séparation de sources.

On peut reconstruit les deux signaux s(n) *et* b(n)originaux une étape de post-traitement additionnel [11].

$$p(n) = \frac{1}{1 - w_{12}(n)w_{21}(n)}$$
(3.24)

#### **III.3.3.1.** Structure Backward

La structure Backward est très importante dans le domaine de séparation aveugle de sources. Dans ce cas la décorrélation se fait entre le signal estimé  $u_1(n)$  et le bruit estimé  $u_2(n)$  cette structure est mieux que la structure Forward, mais l'analyse de cette structure est complexe.(voir figure (25).



Figure 25:Implémentation de la structure Backward

Les signaux estimées sont données par :

$$v_1(n) = p_1(n) - v_2(n) * w_{21}(n)$$
(3.25)  
$$v_2(n) = p_2(n) - v_1(n) * w_{12}(n)$$
(3.26)

Les équations de mise à jour sont identiques aux équations (3.20) et (3.21) sauf que  $v_i(n)$  apparait au lieu de  $u_i(n)$ :

$$w_{21}^{(n+1)}(m) = w_{21}^{(n)}(m) + \mu_1 (v_1(n)v_2(n-m)) \qquad m = 0.1 \dots L_1 \qquad (3.27)$$

39

#### 

III.3.4. Condition de causalit¶:

La causalit¶ est un facteur important dans les filtres adaptatifs. La condition n¶cessaire pour le fonctionnement correct de cet algorithme est :

#### 

Dans les ¶quations (4.20) et (4.21), on mesure la valeur instantan¶e  $C_{u_1u_2}(0)(u_1(n).u_2(n))$ 

Pour mettre jour les deux filtres  $w_{12}(0)$ ,  $w_{21}(0)$ .

- Δ Dans le fonctionnement de la structure Forward, si la condition 促動 基礎 區 E st vraie, le post-filtre 傳 認識 oit, tre r¶alisable. On place au moins un coefficient z¶ro pour v¶rifier la condition pr¶c¶dente.
- △ Dans le fonctionnement de la structure Backward, le calcul devient impossible si le produit促成 基础 是 Dans le produit (日本 Dan

Toute la raison ci-dessus m· ne  $\bar{}$  la m, me conclusion : au moins un des filtres doit , tre causal.

Donc, les ¶puations (3.20) et (3.21) sont valides pour 侹 喼 ⊡ 则加吐 侷 唸 ⊡ 则加吐 respectivement.

#### III.3.5. Stabilit¶de SAD

La stabilit¶ est un probl·me fondamental <sup>–</sup> tous les algorithmes de s¶paration de signaux convolutifs. Pour r¶soudre ce probl·me, il faut ¶tudier la stabilit¶ du filtre [11] :

$$p(n) = \frac{1}{1 - H_{21}(n) H_{12}(n)}$$
(3.29)

III.3.6. Convergence de l'algorithme SAD

a convergence de l'algorithme SAD vers la solution souhait n est pas une question triviale . Pour les filtres causaux avec 御殿離劇離紀 正为余命急惶<sup>w</sup> et en commen ant les conditions initiales z n, l'algorithme convergera tr·s probablement la solution souhait n.

distinguer deux s¶ries obtenues analytiquement.

La premi· re s¶rie est une solution inverse :

La deuxi· me s¶rie est une s¶rie de phantom :

Nous pouvons en d¶duire qu'une contrainte suffisante pour satisfaire – la condition de stabilit¶ci-dessus est donn¶par:

#### **海波聯進於**建築 正为徐徐追望<sup>田</sup> (3.34)

En g¶n¶ral, toutes les propri¶t¶s de convergence et de stabilit¶ peuvent , tre int¶gr¶es dans un concept unique. Les valeurs th¶priques de toutes les intercorr¶ations peuvent , tre calcul¶es.

A lors, les ¶puations de mise  $\bar{}$  jour peuvent , tre r¶¶crites avec les estimations remplac¶es par leurs valeurs attendues. Cela conduit  $\bar{}$ 

#### 侩<sup>噓騆쮅她</sup>隐侩<sup>噓動</sup>苗得而<sub>那短</sub>。目開起了一個一個一個一個一個

Le terme Tres autant que vecteur de petite taille [11].

#### III.4. Conclusion

Dans ce chapitre, nous avons pr¶sent¶ la th¶orie de l`algorithme de d¶corr¶ation sym¶trique adaptative (SAD) pour la r¶duction du bruit et la s¶paration des sources, comme nous avons vu les deux techniques qui sont utilis¶es dans le (SAD) Forward et Backward.

Dans le chapitre suivant, nous pr¶senterons les r¶sultats de simulation du (SAD) pour la technique du Forward.

### **CHAPITRE IV:** RESULTATS DES SIMULATIONS

#### **IV.1.** Introduction

Dans ce chapitre, nous présenterons les résultats de la réduction du bruit acoustiques dans les avions en utilisant l'algorithme de décorrélation avec la structure Forward.

Nous commencerons par la présentation de la structure du mélange convolutif, les différentes sources des signaux (parole et bruit) qui sont utilisées dans les simulations, et les réponses impulsionnelles, puis nous présenterons les résultats de la simulation de la structure Forward.

Nous présenterons également l'influence des paramètres (la taille du filtre L, le pas d'adaptation  $\mu$  et le rapport signal à bruit RSB) sur la structure que nous avons réalisée.

#### **IV.2.** Modèle expérimental de mélange convolutif

Dans cette partie, nous utilisons une implémentation spécifique du modèle de mélange convolutif ((Figure 17) du chapitre précédent). L'idée que nous poursuivons vise à utiliser un modèle conforme à la physique du problème.

### **IV.3.** Simulation de réponses impulsionnelles

La figure ci-après (Figure 26,27) représente un exemple typique de réponses impulsionnelles acoustiques. La majeure partie de l'énergie contenue dans une réponse impulsionnelle correspond à un support temporel d'environ L = 64 échantillons à la fréquence d'échantillonnage Fe = 16 KHz.



Figure 26 : la réponse impulsionnelle simulée h12



Figure 27: la réponse impulsionnelle simulée h21

### IV.4. Signaux utilisés en simulations

Notons tout d'abord qu'une fréquence d'échantillonnage de 8 kHz été utilisée pour obtenir l'ensemble des simulations présentées dans ce chapitre. De plus, les résultats présentés sont obtenus à partir du signal de parole de durée 8 secondes (locuteur féminin) représenté cidessous figure (28,29).



Figure 28 : Signal de parole utilisé (original)



Figure 29 : le spectre du signal de parole utilisé (original)

En ce qui concerne la seconde source, elle correspond à un bruit stationnaire. Un bruit blanc gaussien qui est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences et sert surtout à vérifier la stabilité numérique de l'algorithme utilisé.

Aussi, nous avons utilisé cinq (05) types de bruits d'avions (ces bruits sont pris dans des conditions réelles dans les habitacles de ces avions) :

- Bruit d'avion A320, figure (32,33).
- Bruit d'avion F16, figure (38,39).
- ➢ Bruit d'Hercules C130, figure (40,41).
- Bruit d'avion Cessna 172, figure (36,37).
- $\blacktriangleright$  Bruit d'avion B747, figure (34,35).





Figure 30 : signal d'un bruit blanc Sperctrogramme du bruit blanc



Figure 31 : spectre du bruit blanc



#### Figure 32 : Bruit avion A320



Figure 33 : Le spectrogramme du bruit avion A320



Figure 34 : Bruit avion B747



Figure 35 : Le spectrogramme du bruit avion B747



Figure 36 : Bruit avion Cessna 172



Figure 37 : Le spectrogramme du bruit d'avion cassna 172



Figure 38 : Bruit avion F16



Figure 39 : Le spectrogramme du Bruit avion F16







Sperctrogramme du avion Hercule C130

Figure 41 : Le spectrogramme du bruit avion Hercules C130

### **IV.5.** Détection d'activité vocale (DAV)

Il a déjà été noté que les signaux en sortie de la structure de séparation symétrique de sources de type Forward sont obtenus à partir d'un système d'aiguillage (c'est-à-dire que selon la configuration souhaitée par l'utilisateur, il est possible de maitriser le fait que l'estimée d'un signal source soit disponible sur la sortie primaire ou secondaire de cette structure).

Nous utilisons dans la structure de séparation de source avec l'algorithme (SAD) un mécanisme de Détection d'Activité Vocale (DAV) manuel pour contrôler l'adaptation des filtres  $w_{12}, w_{21}$ .

Cette adaptation est contrôlée de la manière suivante : le filtre w21 est adapté uniquement en période de bruit seule, alors que le filtre w12 est adapté uniquement pendant les périodes d'activité vocale (période de présence du signal de parole utile). La figure (42) présente un exemple de DAV manuelle sur le même signal de parole que celui décrit précédemment.



Figure 42 : Signal de parole utilisé avec la segmentation manuelle

### IV.6. Critère du désajustement

Ce critère est noté SM pour « System Mismatch » est défini par l'expression suivante :

$$(SM)_{db} = 10 \log_{10} \left( \frac{\left\| \hat{w}_{ij} - h_{ij} \right\|^2}{\left\| h_{ij} \right\|^2} \right)$$

 $i \neq j \in \left[1,2\right]$ 

Où  $h_{ij}$  représente les coefficients du filtre réel (utilisé dans la convolution), et  $w_{ij}$  représente la valeur moyenne des coefficients estimés (coefficient du filtre adaptatif).

La vitesse de convergence du *SM* nous permet d'évaluer la vitesse de convergence de notre algorithme.

#### **IV.7.** Rapport signal à bruit (RSB)

Le rapport signal à bruit de sortie calculé pour l'algorithme SAD S se calcule avec la relation ci-dessous :

$$(RSB)_{db} = 10\log_{10}\left(\frac{E_s}{E_b}\right)$$

Tel que :

 $\succ$   $E_s$ : la puissance du signal utile à la sortie

 $\blacktriangleright$   $E_{b}$ : la puissance du bruit à la sortie.

# **IV.8.** Evaluation du comportement l'algorithme SAD avec un bruit théorique (Simulations faite avec un Bruit Blanc)

Avant d'entamer la partie de test dans l'habitacle d'avions, nous avons évalué l'algorithme SAD avec des bruits théoriques tel que le bruit blanc. Pour cela, nous avons évalué les trois critères de désajustement, l'erreur quadratique moyenne et celui de la décorrélation afin de mieux voir son comportement.

Dans cette simulation, nous avons utilisé les paramètres de simulations suivants : Signal de parole source : celui de la figure (28,29).

Surce de bruit : un bruit blanc. La taille des filtres (L) = 128.

Le pas du filtre adaptatif :  $\mu_{12} = \mu_{21} = 0.9$ .

Les résultats de simulation en termes de l'erreur quadratique moyenne (MSE), du System



Mismatch (SM) et du critère de décorrélation (Dec) sont donnés par les figures suivantes :





Figure 44 : Signal du mélange (signal bruité) p2



Figure 45 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le cas d'un bruit blanc



Figure 46 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit blanc





Time

Figure 48 : Signal rehaussé e1 (signal de sortie) et son spectre respectivement dans le cas d'un bruit blanc





Figure 49 : Signal rehaussé e1 (signal de sortie) et son spectre respectivement dans le cas d'un bruit blanc

A partir de ces résultats (de Figure 45 à la Figure 49), nous avons remarqué un bon comportement de cet algorithme SAD dans l'annulation du bruit acoustique de type blanc. Dans la prochaine étape, nous allons appliquer cet algorithme dans la réduction des bruits mesurés dans des habitacles d'avions.

# **IV.9.** Simulation de l'algorithme de décorrélation symétrique avec différents types de bruit d'avions

Le but principal de ce projet est de tester l'algorithme de décorrélation symétrique (SAD) dans un environnement réel et très proche de la réalité et qui a un lien direct avec le domaine de l'aéronautique. Ce sont les bruits mesurés dans des habitacles d'avions que nous allons tester et évaluer la procédure de leurs suppressions avec le SAD.

#### IV.9.1. Simulation faite avec du bruit d'avion de type A320

Dans cette simulation, nous avons utilisé les paramètres de simulations suivants : Signal de parole source : celui de la figure (28,29).

Source de bruit : un bruit d'avion de type A320, celui de la figure (32,33).

La taille des filtres (L) = 128. Paramètres  $\mu 12 = \mu 21 = 0.7$ .

Les résultats de simulations en termes de (MSE), du system Mismatch (SM) et du critère de décorrélation (Dec) sont donnés par les figures suivantes



Figure 50 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le cas d'un bruit d'avion de type A320.



Figure 51 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit d'avion de type A320



Figure 52 : Représentation de la fonction de décorrélation employée dans la SAD

#### **IV.9.2.** Simulation faite avec du bruit d'avion de type B747

Dans cette simulation, nous allons utiliser les paramètres de simulations suivants : Signal

de parole source : celui de la figure (28,29).

Source de bruit : un bruit d'avion de type B747, celui de la figure (34,35). La taille des filtres (L) = 128.

Paramètres $\mu 12 = \mu 21 = 0.65$ .

Les résultats de simulations en termes de l'erreur quadratique moyenne (MSE), du system Mismatch (SM) et du critère de décorrélation (Dec) sont donnés par les figures suivantes :



Figure 53 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le cas d'un bruit d'avion de type B747



Figure 54 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit d'avion de type B747



Figure 55 : Représentation de la fonction de décorrélation employée dans la SAD

#### IV.9.3. Simulation faite avec du bruit d'avion de type Cessna 172

Dans cette simulation, nous allons utiliser les paramètres de simulations suivants : Signal de parole source : celui de la figure (28,29).

Source de bruit : un bruit d'avion de type Cessna 172, celui de la figure (36,37). La taille des filtres (L) = 128;

Paramètres  $\mu 12 = \mu 21 = 0.8$ ;

Les résultats de simulations en termes de l'erreur quadratique moyenne (MSE), du system Msimatch (SM) et du critère de décorrélation (Dec) sont donnés par les figures suivantes :



Figure 56 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le cas d'un bruit d'avion de type Cessna 172



Figure 57 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit d'avion de type Cessna 172



Figure 58 : Représentation de la fonction de décorrélation employée dans la SAD

#### IV.9.4. Simulation faite avec du bruit d'avion de type F16

Dans cette simulation, nous allons utiliser les paramètres de simulations suivants : Signal de parole source : celui de la figure (28,29).

Source de bruit : un bruit d'avion de type F16, celui de la figure (38,39). La taille des filtres (L) = 128.

Paramètres  $\mu 12 = \mu 21 = 0.95$ .

Les résultats de simulations en termes de l'erreur quadratique moyenne (MSE), du system Msimatch (SM) et du critère de décorrélation (Dec) sont donnés par les figures suivantes :



Figure 59 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le cas d'un bruit d'avion de type F16



Figure 60 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit d'avion de type F16



Figure 61 : Représentation de la fonction de décorrélation employée dans la SAD

#### IV.9.5. Simulation faite avec du bruit d'avion de type Hercules C130

Dans cette simulation, nous allons utiliser les paramètres de simulations suivants : Signal de parole source : celui de la figure (28,29).

Source de bruit : un bruit d'avion de type Hercules C130, celui de la figure (40,41). La taille des filtres (L) = 128.

Paramètres  $\mu 12 = \mu 21 = 0.85$ .

Les résultats de simulations en termes de l'erreur quadratique moyenne (MSE), du system Mismatch (SM) et du critère de décorrélation (Dec) sont donnés par les figures suivantes



Figure 62 : Représentation de l'erreur quadratique moyenne (MSE) exprimée en dB obtenu dans le cas d'un bruit d'avion de type Hercules C130



Figure 63 : Représentation du critère de désajustement (SM) exprimée en dB obtenu dans le cas d'un bruit d'avion de type Hercules C130



Figure 64 : Représentation de la fonction de décorrélation employée dans la SAD

A partir de ces diff¶rents r¶sultats obtenus avec l`algorithme d¶ d¶corr¶ation sym¶trique, nous avons remarqu¶ une bonne performance en termes de vitesse de convergence exprim¶e en fonction des crit· res de d¶sajustement et de l`erreur quadratique moyenne et celle de d¶corr¶ation. Les r¶sultats du crit· re de d¶corr¶ation ont prouv¶ l`efficacit¶ de ce crit· re dans le contr×le du filtre adaptatif w21 afin de fournir la m, me quantit¶ du bruit estim¶ sur la voie primaire.

### IV.10. Evaluation du rapport- signal--bruit segmentale (RSBseg)de l'algorithme de d¶corr¶ation sym¶trique (SAD) avec diff¶rents types de bruit d'avions

Afin de bien ¶valuer les performances de r¶duction de bruit de l`algorithme de d¶crorr¶ation sym¶trique (SAD), nous avons fait plusieurs simulations avec diff¶rents types de bruits d`avions <sup>-</sup> savoir le bruit des avions suivants : Hercule C-130, F16, Cessena 172, A320 et celui du B747. Cette simulation est r¶alis¶e avec les param tres suivants:

- $\Delta$  Trois tailles du filtre adaptatif (10, 64 et 128).
- $\Delta$  5 niveaux du RSB d entre (612 dB, 6dB, 0dB, 6dB et 12 dB).
- $\Delta$  Trois pas d'adaptation (0.1, 0.5 et 0.9).

| Lataille | L e pas | RSB dĭentr¶e (dB) |         |         |          |         |
|----------|---------|-------------------|---------|---------|----------|---------|
| Dufiltre | I       | -12               | -6      | 0       | 6        | 12      |
| L =10    | 01      | 43 9519           | 45 1011 | 46 0441 | 54 5365  | 61 6817 |
| 2 10     | 0.1     | 13.5515           | 13,1011 | 10.0111 | 5 1.5505 | 01.0017 |
|          | 0.5     | 39.0399           | 39.2119 | 39.3564 | 39.4841  | 43.1671 |
|          | 0.9     | 34.8248           | 34.9291 | 35.0264 | 35.1249  | 42.5792 |
| L=64     | 0.1     | 23.4372           | 29.1745 | 34.4078 | 38.6793  | 41.6530 |
|          | 0.5     | 31.9442           | 33.3457 | 34.2770 | 34.8379  | 35.1538 |
|          | 0.9     | 29.5783           | 30.2978 | 30.8007 | 31.1174  | 31.3128 |
| L=128    | 0.1     | 6.4933            | 12.4928 | 18.4892 | 24.4721  | 30.4003 |
|          | 0.5     | 20.1186           | 25.7358 | 30.7749 | 34.9033  | 37.9844 |
|          | 0.9     | 24.9581           | 28.1535 | 30.9698 | 33.3876  | 35.3414 |

Les r¶sultats obtenus sont r¶sum¶s dans les tableaux suivants

| La taille | Le pas | RSB d'entrée (dB) |         |         |         |         |  |
|-----------|--------|-------------------|---------|---------|---------|---------|--|
| du filtre | μ      |                   |         |         |         |         |  |
|           |        | -12               | -6      | 0       | 6       | 12      |  |
| L=10      | 0.1    | 47.6552           | 48.3948 | 49.7524 | 50.3273 | 50.5998 |  |
|           | 0.5    | 44.3764           | 44.5177 | 44.6362 | 44.7393 | 44.8290 |  |
|           | 0.9    | 40.8212           | 40.9216 | 41.0129 | 41.0958 | 41.1766 |  |
| L=64      | 0.1    | 21.8587           | 27.7718 | 33.4841 | 38.6765 | 42.8533 |  |
|           | 0.5    | 34.6306           | 36.7166 | 38.2269 | 39.2439 | 39.8280 |  |
|           | 0.9    | 34.4286           | 35.2990 | 35.9220 | 36.3197 | 36.5812 |  |
| L=128     | 0.1    | 3.1548            | 8.1538  | 15.1500 | 21.1356 | 26.0802 |  |
|           | 0.5    | 23.5700           | 28.4208 | 32.4971 | 35.7642 | 38.2496 |  |
|           | 0.9    | 29.3552           | 31.4616 | 33.1825 | 34.5681 | 35.6690 |  |

 Table 5:Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit d'avion f16

| La taille | Le pas | RSB d'entrée (dB) |         |         |         |         |
|-----------|--------|-------------------|---------|---------|---------|---------|
| du filtre | μ      |                   |         |         |         |         |
|           | •      | -12               | -6      | 0       | 6       | 12      |
|           |        |                   |         |         |         |         |
| L=10      | 0.1    | 51.3347           | 51.6576 | 52.2788 | 52.5171 | 52.7308 |
|           | 0.5    | 45.9743           | 46.1128 | 46.2575 | 46.3932 | 46.3740 |
|           | 0.9    | 42.7571           | 42.8745 | 43.0258 | 43.2291 | 43.4607 |
| L=64      | 0.1    | 26.7806           | 31.1088 | 33.3416 | 36.4488 | 37.5939 |
|           | 0.5    | 30.4916           | 31.2518 | 31.8385 | 32.3120 | 32.6891 |
|           | 0.9    | 27.8601           | 28.6576 | 29.2620 | 29.9279 | 30.3135 |
| L=128     | 0.1    | 14.3504           | 20.3122 | 27.1768 | 31.7552 | 36.6520 |
|           | 0.5    | 22.0655           | 26.3076 | 32.1083 | 33.3315 | 35.7708 |
|           | 0.9    | 14.0445           | 19.3711 | 24.1966 | 28.5460 | 32.1399 |

 

 Table 6: Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit d'avion Cessna 172

| La taille | Le pas | RSB d'entrée (dB) |         |         |         |         |
|-----------|--------|-------------------|---------|---------|---------|---------|
| du filtre | u      |                   |         |         |         |         |
|           | P      | -12               | -6      | 0       | 6       | 12      |
|           |        |                   |         |         |         |         |
| L=10      | 0.1    | 30.0689           | 42.4615 | 46.1078 | 37.8464 | 49.6569 |
|           | 0.5    | 36.1202           | 43.7705 | 42.0373 | 38.5526 | 47.4961 |
|           | 0.9    | 37.7215           | 33.9446 | 41.0335 | 37.7104 | 42.6561 |
| L=64      | 0.1    | 09.8638           | 15.8605 | 21.8423 | 28.7628 | 33.4628 |
|           | 0.5    | 12.7760           | 18.6931 | 24.4258 | 29.6410 | 33.7702 |
|           | 0.9    | 11.2135           | 18.0677 | 22.6437 | 27.5254 | 31.1503 |
| L=128     | 0.1    | 08.7520           | 14.7504 | 21.7420 | 27.7049 | 32.5558 |
|           | 0.5    | 16.2422           | 23.0777 | 27.5531 | 32.2514 | 35.8181 |
|           | 0.9    | 19.1829           | 25.2718 | 28.4037 | 31.5100 | 33.7661 |

Table 7:Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit d'avion A320

| La taille | Le pas | RSB d'entrée (dB) |         |         |         |         |
|-----------|--------|-------------------|---------|---------|---------|---------|
| du filtre | μ      |                   |         |         |         | -       |
|           |        | -12               | -6      | 0       | 6       | 12      |
|           |        |                   |         |         |         |         |
| L=10      | 0.1    | 38.3638           | 40.6642 | 42.3320 | 43.3623 | 43.8752 |
|           | 0.5    | 37.4942           | 37.7722 | 37.9647 | 38.0837 | 38.2953 |
|           | 0.9    | 34.0474           | 34.1402 | 34.2167 | 34.2944 | 34.4152 |
| L=64      | 0.1    | 07.4980           | 13.4941 | 18.4772 | 25.4095 | 31.1651 |
|           | 0.5    | 17.3708           | 22.9116 | 26.7641 | 31.6185 | 34.3944 |
|           | 0.9    | 22.0775           | 25.6010 | 28.4961 | 31.6266 | 32.1828 |
| L=128     | 0.1    | 03.7350           | 09.7333 | 15.7288 | 21.7163 | 26.6768 |
|           | 0.5    | 09.3191           | 15.3087 | 21.2718 | 28.1383 | 32.6875 |
|           | 0.9    | 13.5926           | 20.5204 | 25.2099 | 30.2814 | 35.3419 |

 Table 8:Les valeurs moyennes du RSB de sortie calculée avec l'algorithme SAD en utilisant le bruit d'avion

A partir des résultats de simulations des Tableaux (4) à (8), nous pouvons clairement voire le bon comportement de l'algorithme SAD dans la suppression du bruit acoustique dans différents cockpits d'avions. Aussi, nous avons remarqué que les valeurs du RSB segmental

obtenues avec l'algorithme SAD sont inversement proportionnelles à la taille du filtre adaptatif, mais en contrepartie, directement proportionnelles aux valeurs du pas  $\mu$ . En conclusion, ce travail nous a permis de confirmer le bon comportement et la bonne utilisation de l'algorithme SAD dans l'annulation du bruit acoustiques à bord des avions de différents types, militaires et civils.

### IV.11. Conclusion

Dans ce chapitre, nous avons présenté les résultats de simulation de l'algorithme SAD dans les applications de téléphonie à bord des avions de différents types. L'évaluation de la performance de suppression du bruit acoustique dans différents types d'avions a permis de mettre en exergue les bonnes capacités de cet algorithme dans la suppression du bruit acoustiques qui représente une gêne permanente aux différents types de communication vers et en provenance de cockpits de différents avions.

### CONCLUSION GENERALE

#### **CONCLUSION GENERALE**

Le vrombissement d'un moteur d'avion et le grondement au décollage font partie du quotidien des commandants de bord, Cela n'empêche pas que le bruit contribue fortement à la perturbation de la communication

Dans notre travail, nous avons exposé les différentes manières permettant la réduction du bruit acoustique et le rehaussement du signal de parole lors d'une communication dans un cockpit d'avion.

Nous avons testé l'algorithme de décorrélation symétrique adaptatif (SAD) dédié à ce type d'applications dans des conditions de communications très bruitées en utilisant plusieurs types d'avions.

La simulation réduit fortement les coûts de tests et rend possible l'analyse d'avantage de configurations innovantes : changements de designs, de matériaux, d'emplacement des moteurs sur l'avion...

Ce travail permettra de servir comme support pour des éventuelles futures recherches dans le domaine de réduction de bruit et du rehaussement du signal de parole dans les systèmes de télécommunications utilisé dans les cockpits des avions.

Une possible implémentation du programme généré par notre travail dans un circuit électronique ayant pour capacité de traiter le signal correctement pour une transmission parfaite des informations.

### Bibliographie

| [1]  | M.BELLENGER. « TRAITEMENT NUMERIQUE DU SIGNAL ». EDITION 8, DUNOD, 1987.                                                                                                                                                                     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2]  | MEMENTO TECHNIQUE DU BATIMENT « CONFORT ACOUSTIQUE » DATE DE PUBLICATION : JUILLET 2003.                                                                                                                                                     |
| [3]  | NICOLAS REMY ECOLE NATIONALE SUPERIEURE ARCHITECTURE GRENOBLE<br>«Environnement sonore L5C Caracteristiques physiques des sons<br>et des bruits – Notions de bases » date de publication 2012.                                               |
| [4]  | JEAN-JACQUES BARBARA TECHNIQUE DE L'INGENIEUR « BRUIT :<br>SYNTHESE DES DONNEES REGLEMENTAIRES » DATE DE PUBLICATION<br>: 10/04/2002                                                                                                         |
| [5]  | OLEKSANDR ZAPOROZHETS, VADIMTOKAREV ET KEITH ATTENBOROUGH<br>«AIRCRAFT NOISE ASSESSMENT, PREDICTION AND CONTROL » DATE DE<br>PUBLICATION: 2011.                                                                                              |
| [6]  | SERGE LEWY TECHNIQUES DE L'INGENIEUR « L'AEROACOUSTIQUE EN AERONAUTIQUE» DATE DE PUBLICATION : 10/04/2007                                                                                                                                    |
| [7]  | BERNARD GARNIER TECHNIQUES DE L'INGENIEUR «CONTROLE ACTIF DES VIBRATIONS» DATE DE PUBLICATION : 10/06/2002.                                                                                                                                  |
| [8]  | GERARD MANGIANTE TECHNIQUES DE L'INGENIEUR « CONTROLE<br>ACTIF DES BRUITS -CONCEPTION DES SYSTEMES ET APPLICATIONS»<br>DATE DE PUBLICATION : 10/04/2008.                                                                                     |
| [9]  | J. THOMAS « ALGORTHME TEMPORELS RAPIDE A POINT FIXE POUR LA<br>SEPARATION AVEUGLE DE MELANGES CONVOLUTIFS ET/OU SOUS-<br>DETERMINES » THESE DOCTORAT, L'UNIVERSITE DE TOULOUSE DELIVRE PAR<br>UNIVERSITE DE TOULOUSE III- PAUL SABATIER 1975 |
| [10] | WINDOW B « ADAPTATIVE NOISE CANCELLING : PRAICIPLES AND APPLICATIONS ». PROCEEDING OF THE IEEE, VOL 63(12), PP. 1962-1716, DECEMBRE 1975                                                                                                     |
| [11] | El Mhamdi, F. Regragui et M. Harnafi, «Traitement adaptatif appliqué au signal sismique », Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Terre no.30, 2008                                                              |
## Bibliographie