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ملخص

 أسالميب مختلفة لتقدير طميف دوبلر، من أجل الحصول على معلمات الطقس والميزات أقرب

.ممكن للمعلمات الحقميقمية، قد تم فحصها ومناقشتها

 وقد تم تصمميم أسلوب .ويستند هذا المبدأ على إزالة أي شوائب في إشارة الرادار

 .لزالة الضوضاء لطميف دوبلر الكلسميكمية الأكثر شهرة من قمبل الثنائي هميلدبراند وسميخون 

.في هذا العمل، يتم استخدام تحويل الويجات على أساس رفع خطة الرتمبطة بتكميف العتمبة

 ويتم مقارنة ما بي الجراءين، واتضح أن تحويل الويجات على أساس رفع خطة الرتمبطة

.بتكميف  العتمبة  يتفوق أسلوب الكلسميكمية



RESUME

Des méthodes variées pour l'estimation du spectre Doppler, dans le but d'obtenir 

des paramètres météorologiques les plus proches possibles des vrais, ont été examinées 

et discutées.

Le principe est basé sur l'extraction de toute impureté du signal radar. La méthode 

classique connue est conçue par le duo Hildebrand et Sekhon. Dans ce travail, la méthode 

de la transformée en ondelettes basée sur les schémas de lifting associée à un seuillage 

adaptif est utilisée.

Une comparaison est réalisée entre les deux procédures et il s'est avéré que la 

méthode de la transformée en ondelettes basée sur les schémas de lifting associée à un 

seuillage adaptif suclasse la procédure classique.



ABSTRACT

Various methods for Doppler spectrum estimation, in order to obtain weather 

parameters and features as close as possible to the true ones have been examined and 

discussed.

The principle is based on removing any impurity in the radar signal. The most 

known classical method was designed by the duo Hildebrand and Sekhon to denoise 

Doppler spectrum. In this work, the lifting scheme based wavelet transform and adaptive 

threshold is proposed and implemented.

A comparison is carried out between the two procedures and it turned out that the 

lifting scheme based wavelet transform method associated with an adaptive thresholding 

outperforms the classical one.
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Chapter 1 :  Introduction

1.1. Motivation

Weather radar plays a vital role in improving early severe storm detection and 

warning [1]. Weather radar can provide important information such as rainfall, snow and 

hail rates as well as wind shear and tornadoes with high temporal and spatial resolutions 

over a large area including those region where a weather station can not be built or can't 

get access to (because of high and steep mountains).

Research on weather radar systems and technologies is dictated by the society's 

need to improve the prediction quality (lead time warning, accuracy,…) of weather events. 

Research is oriented according to the inherent capabilities (whether there is Doppler 

function? Polarimetry? Phased array antenna?…) of the available weather radar system.

Furthermore, with the precious help of the new radar systems, research is 

focussing on understanding weather phenomena. This is the case of the dual polarization 

(dual-pol) weather radar providing very significant and more accurate information on 

classification of precipitation types as well as on precipitation rates.

These new radar systems can also help saving human lives. This is the case of 

rapid scanning radars (Phased array radars) which improve detection and forecast of fast 

weather phenomena such as thunderstorms, downbursts and tornadoes that can take lives 

in a few minutes. Conventional systems, rotating mechanically are inherently limited by the 

huge spinning dish at relatively low scan rates.

With the advent of low cost electronic components and powerful computing 

systems, it became possible to use algorithms and approaches that used to be impractical 

to implement in the past. Several algorithms and works in advanced signal processing 



have been designed for these emerging radar technologies.

Indeed, research and development is continuously performing to improve data 

quality and explore new radar applications, new information and new capabilities. Using 

Doppler weather radar, we could estimate spectral moments that are reflectivity (Ze) , 

mean radial velocity (V r) , and spectrum width (σ v) that are considered base data. 

Recently, radar systems are provided with dual polarization capability in weather 

applications. This new capability allow detection of new weather information. In addition to 

base data, polarimetric (dual-pol) weather radar can also provide polarimetric variables 

including differential reflectivity ( ZDR ), cross correlation coefficient at lag zero ( ρ(0)HV

), differential phase ( ϕDP ). For some system, the linear depolarization ratio ( LDR ) is 

also available. 

Moreover, currently, spectral processing is one of the important parts in weather 

radar signal processing [2]. As a reason, spectral processing helps improving accuracy 

and sensitivity of meteorological information.

More recently, spectral polarimetry (some authors refer to it by Doppler polarimetry 

[3][4][5]) has been added in the field of advanced signal processing. It was developed to 

combine Doppler and polarimetric measurements to consider polarimetric variables as a 

function of Doppler velocity within a range bin using spectral processing. This is used in 

order to improve data quality and gain more knowledge about the microphysics of 

precipitations.

1.2. Literature review of weather radar signal processing

The bulk of recent work on weather radar spectral processing focusing on 

parameter estimation such as the base data (first three spectral moments) or polarimetric 

variables (obtained with a polarimetric radar), or designing techniques and algorithms to 

identify and remove noise and clutter from received signals in order to enhance data 

quality or to gain more information about the microphysics of precipitation or obtain some 

more information about the environment such as turbulence, is achieved in spectral 

domain and therefore based on spectrum estimation.

The main reason to choose spectral approaches is to gain more accuracy in 

estimates. This is known since ever but the other reason that has contributed to this option 

is the processing power which is in constant increase for lower cost.

As a statistical inference problem, the estimation of spectral moments can be 

classified as parametric or nonparametric approach.



Spectrum estimation of a stochastic process is typically performed using the Fast 

Fourier Transform (FFT) [6]. This procedure to spectrum analysis produces reasonable 

results for a large number of signal types and processes. Despite of its advantages, the 

FFT approach has several performance limitations. Due to the huge variety of spectra, that 

one can find in practical applications, estimates are usually designed for a restricted 

subclass of spectra and consequently can show poor performance in other classes [7]. 

The prominent assumption for this technique is that all the useful information is contained 

in the data window, which is unrealistic.

For the current approach, indeed, the FFT presents a prominent limitation in 

frequency resolution [6][8][9] especially when the data set is short. In weather radar 

application, the limited number of samples corresponding to the number of pulses may 

cause leakage of power from stronger frequencies to weaker ones. Particularly when 

clutter power is very strong, its power leakage may overwhelm the weather signal and thus 

bias the weather spectrum estimate [8].

A second limitation is due to the implicit windowing of the data while executing the 

FFT. The application of tapered windows skillfully selected can greatly reduce the power 

leakage when power spectrum is being estimated [6][8] knowing that a window function 

may smear and broaden the spectrum. We need to consider the tradeoff between side 

lobe level and spectrum broadness.

In order to alleviate the inherent limitations to the FFT approach, which is classified 

as a nonparametric fashion, several alternative spectral estimation methods have been 

designed. Some of them have already been implemented and are operational on real 

weather radar applications.

By modeling the random process in a parametric way, we may obtain better 

spectral estimates with lower uncertainty than those obtained by nonparametric 

procedures [10][9][11]. The reason is that parametric methods don't assume that the 

process is zero outside the length of the data set. This removes the smearing effect of the 

spectrum caused by the window in nonparametric ones.

The major drawback of parametric approaches is that they have higher complexity 

and therefore, they need more computational resources than nonparametric ones.

Moreover, selecting parameters of a model so as the parameterized model can fit 

the true spectrum with accuracy is another issue [11][10].

A newer alternative method is gaining terrain in signal processing field. It is based 

on wavelets. Several works have attempted to solve the spectrum estimation problem 

3



using different wavelets techniques [12][13][14][7].

Wavelet techniques applied to spectra estimation are smoothing spectra  

techniques by the use of skillful choice of threshold to apply on the empirical wavelet 

coefficients. The procedure consists of four basic steps.

1. Calculation of the periodogram of the given raw signal.

2. Decomposition: Apply a discrete wavelet transform (DWT) out to a specified level 

J0 .

3. Threshold processing: Apply a thresholding procedure to the empirical wavelet 

coefficients.

4. Reconstruction: Invert the DWT to produce a smoothed estimate of the 

periodogram representing the spectrum.

The last step is common to all the different works that have been done. Some 

authors decide to deal with the periodogram [15][16] while others act on log periodogram 

[14][13] and multitaper estimators [7].

Technically, the second step of the procedure can be applied to a level J0>1

only if the data set is many times longer than the filter (wavelet) length. Weather radar 

signals are typically short. They range from 40 samples or less, if the weather perturbation 

is fast, to 128  samples if the weather event is slower, in a horizontal sweeping.

In the case of atmospheric radar applications (wind profilers), signal can be very 

long and therefore, one can apply a multilevel DWT.

In more recent works, instead of using the classical DWT, we can find the lifting-

based wavelet transform (LWT) as in [17][15].

The third step is the widest area for research where strategies of thresholding can 

vary from the simplest ones (soft or hard) to complicated ones as in [18] (p.561). Indeed, 

Mallat has shown that we can apply a thresholding strategy between the soft one and the 

hard one called diagonal attenuation function.

Moreover, many classical thresholds can be applied to the empirical wavelet 

coefficients containing noise components. In 1994, Donoho and Johnstone [19] proposed 

a universal threshold where the risk of thresholding, no matter soft or hard, is small 

enough to satisfy the requirements of most applications. The duo also proposed in 1998 

[20] the minimax threshold such that the maximal risk of the estimator is minimal among all 

estimators.

4



1.3. Scope of this thesis

Globally, this work deals with various spectral methods in use with spectra 

estimation and spectral moment estimation leading to enhance the quality of weather radar 

products helping weather forecast operators to better interpret current weather conditions 

shown on their screen.

Chapter 2 is devoted to fundamentals of weather radar. In the first section, 

common features of radars are introduced. The next sections are related to Doppler 

weather radar specific features like mean radial velocity, Doppler dilemma between 

maximum velocity and maximum range resolved without ambiguity, output products. It also 

deals with the specific weather radar equation, signal processing and statistical parameter 

estimation. The last section of the chapter is an outline on dual polarization weather radar 

and its commonly used variables.

Chapter 3 is about base data estimation in both time and frequency domains using 

classical methods, in the first section. In the next section, enhancing spectra estimation 

methods are presented and discussed (AR and ARMA modeling). In the last section, noise 

and ground clutter removal is examined.

Chapter 4 is devoted to the contribution of this work in Doppler spectrum 

estimation based on lifted wavelet transform associated with an adaptive threshold (LWT-

AT). Motivation, wavelet choice and non-linear functions for thresholding are discussed in 

detail. The proposed algorithm is examined and followed by a case study to test the 

performance using synthetic and real data.

In chapter 5, synthetic data are generated. Both synthetic and real data have been 

analyzed and results have been discussed. Circumstances of the selected real data are 

presented. A comparison between performances of lifting-based wavelet transform 

algorithm and Hildebrand & Sekhon procedure is presented.

In chapter 6, a summary of this work is presented and future work is proposed.
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Chapter 2 : Fundamentals of weather radar

2.1. Introduction

With the advent of technological advances, the current features of the Doppler 

weather radar, like the US Weather Surveillance Radar (WSR-88D), far exceed those of 

the oldest Doppler systems. These features include a better velocity detection, greater 

power and sensitivity, and integration of advanced computers. This automation provides 

forecasters a wealth of information. The WSR-88D radar not only detects motions and 

target velocity, but also may consider internal storm circulations as well as detecting 

atmospheric motions in clear air. The WSR-88D excels in detecting severe weather 

events, and more importantly, increased advance-warning time.

2.1.1. Frequencies and wavelengths

Weather radars use the frequency bands S, C and X.

The S-band radars signals are not easily attenuated. For this, they are used for 

near and far meteorological observations. The disadvantage of this type of radars is that 

they require large antennas (over 8m diameter). They also require a large transmission 

power (> 750 kW).

C-band radars are more easily attenuated than the previous ones. They are used 

for meteorological observations at short distances. They do not require larger antennas 

than those of S-band radars. The required power is up to 270 KW.

As for the X-band radars, they are used for meteorological observations at shorter 

distances. They are used to detect very small water particles in clouds. They are also used 

in airborne applications.
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The following table shows the different frequency bands of electromagnetic signals 

that can be used by radars.

Band Frequency (f) Wavelength (λ)
Maximum 

observable range

S 2 – 4 GHz 8 – 15 cm At least 200 km

C 4 – 8 GHz 4 – 8 cm Around 200 km

X 8 – 12 GHz 2.5 – 4 cm Around 60 km

Ku 12 – 18 GHz 1.7 – 2.5 cm Satellite-borne

Ka 27 – 40 GHz .75 – 1.2 cm Around 30 km

W 40 – 300 GHz 1 – 7.5 mm Around 10 km

Table 1 Summary of operational radar frequencies. S, C and X bands are commonly used by  
operational ground based weather radars.

2.1.2. Antenna

Typically, the radar is monostatic: the same antenna is used for both transmitting 

and receiving signals. It can be a parabolic dish or a phased array antenna. This latter can 

be flat or cylindrical (as made in ARRC at Oklahoma University).

2.1.3. Transmitter

The transmitter of radar provides the power for the microwave pulses emitted in 

the form of radio frequency energy.

▪ Stores energy during the time interval between two pulses.

▪ Uses a series of timing pulses (trigger) at a rate establishing the PRT (Pulse 

Repetition Frequency).

▪ The timing pulse excites the modulator to deliver energy for a short time 

(pulse width) in a high voltage and high power.

▪ The pulse is amplified and plugged into the circulator in the form of a sine 

wave along the pulse.

2.1.4. Transmission 

▪  The pulse travels through a waveguide to the feed-horn.

▪  This sends the pulse to the reflector of the antenna.

▪  The reflector concentrates the pulse in a narrow beam.

▪  The shape of the reflector determines the shape of the beam.
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2.1.5. Reception

▪ The reflector intercepts the energy backscattered from targets.

▪ The energy is collected and conducted to the receiver through the circulator.

▪ The size of the reflector affects the amount of received energy.

2.1.6. Duty cycle

 The duration of the pulse is: τ  [µsec]

 The length of the pulse is: h [m]

 The pulse repetition time is: T s  [ms]

The duty cycle is
τ
T s

and relates the peak and average power in the 

determination of total energy output.

2.1.7. Pulse volume

▪ The angular resolution is particularly good as the width of the antenna beam 

is small.

▪ When the beam width is smaller, the required time to scan a volume is 

longer.

▪ The antenna is even larger when the beam width is smaller.

▪ Most weather radars (NexRad) use beam widths of about 1 °.

Example: To sweep 360° and 20° elevation, 360x20 = 7200 elements should be 

addressed. The dwell time is around 0.05 sec.

The time required to scan the entire volume is

T = 7200 x 0.05 = 360 sec = 6 min.

If a convective storm (rapidly changing) is considered, then 6 minutes is too long!

2.1.8. Receiver

The receiver is the most important organ of the entire composition of the radar, 

without neglecting the roles of the other components. It is mainly used to:

▪ Lower the frequency of the received signal to an intermediate frequency (IF).
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▪ Amplify the IF signal.

▪ Filter the signal from the noise and other interferences.

▪ Amplify the desired signal to a level where the target information can be used 

by the signal processor.

2.2. Doppler weather radar

The Doppler weather radar is an active remote sensing instrument for a short 

term. It generates and emits pulses of electromagnetic waves of a given frequency.

Its purpose can be summarized by: 

▪  Observation of clouds,

▪  Estimation of rainfall, hail, snow,

▪  Measurement of the wind velocity.

The pulsed Doppler weather radar consists mainly: [21]

▪ Radar: composed of an antenna, a transmitter, a receiver.

▪ Signal processing system: reflectivity, velocity and spectrum width of 

velocities estimation. Cancellation of ground clutter, data formatting.

▪ Analysis and data visualization system: weather analysis processors,  

associated colors display and different communication ports.

The modulator instructs the transmitter to transmit a pulse of a short duration 

(typically 1 microsecond). The transmitter generates the high amount of energy needed for 

sending. The antenna focuses this beam-shaped energy directed to a desired direction 

and waits for the reception of the echo to notify the receiver. The role of the duplexer is,  

first, to connect the transmitter to the antenna during the transmission phase. And then, it  

connects the antenna to the receiver during the reception phase.

The receiver amplifies the received energy, because it is very low, up to a usable 

level by the processing block.

The processing block deals with the received information and sends it to the 

display. Finally, the operator may interpret the displayed image.

The principle of detection is based on the transmission of powerful and very short 

pulses of electromagnetic energy concentrated in a narrow beam in the atmosphere 
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followed by the dispersion (backscattering) of the signal on the particles met in the air 

(droplets of water, dust, insects, ...) and the reception of this backscattered energy with an 

antenna.

2.2.1. Doppler effect

Discovered by the Austrian physicist Christian Doppler, it consists of a frequency 

shift of the sound proportional to the velocity of the moving source.

f D=
−vD

λ /2
=
−2 vD

λ (1)

The Doppler radar operates in the same way. While a target moves towards the 

radar, the frequency is increased; if the target is moving away (receding) from the radar, 

the frequency is reduced. The radar, then, compares the frequency of the received signal 

to the frequency of the transmitted signal. The difference is the frequency shift, giving the 

velocity of the target. 

While moving targets changes the frequency of the electromagnetic energy, the 

change is usually too small to be accurately measured. Therefore, the Doppler radar 

focuses on the phase of the electromagnetic energy, as this aspect has a greater degree 

of variation and increases the probability of detecting the movement [22]. 

2.2.2. Phase shift

The phase of a wave is a specific point or landmark along this wave. A phase shift 

is observable by repositioning this mark between successive transmissions. A Doppler 

radar, in its simplest form, provides a reference signal, which can identify changes in the 

phase of the successively received pulses. The known phase of the transmitted signal 

allows the measurement of the phase of the received signal. The Doppler effect is 

associated to the phase change rate [22].

Δϕ
Δ t

=4 π
λ v (2)
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2.2.3. Radial velocity

It should be emphasized that we only can extract the radial component of the 

velocity of the moving target seen by the Doppler radar. This is achieved by measuring the 

phase difference between two given instants.

vD =
Δϕ
Δ t

x λ
4π (3)

2.2.4. Ambiguous velocity

The maximum Doppler frequency, also called the Nyquist frequency, which can be 

measured unambiguously, is half the Pulse Repetition Frequency (PRF) of the radar:

f Dmax
= PRF

2
(4)

Consequently, the maximum unambiguous velocity (Nyquist velocity) is

va = PRF λ
4 (5)

Thus, the range of unambiguous velocities that we can measure is [−va ,+va] . A 

velocity v>va  would be interpreted as velocity of opposite direction.

2.2.5. Doppler dilemma

If one wants to detect higher velocities, he will need to either stretch the 

wavelength of the signal (but then, it would be impossible to detect some of the smaller 

particles: Rayleigh scattering) or increase the PRF.

The maximum unambiguous range is defined as the maximum distance from 

which the reflected signal of a pulse is received before the transmission of the next pulse.

ra = c
2⋅PRF

(6)

The echo of a target at a distance r > ra  is interpreted as an echo of a new 
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pulse to a distance ( r−ra ).

Doppler dilemma is summarized by the expression.

va⋅ra = c λ
8 (7)

Doppler dilemma is caused by physical restrictions based on the laws of nature. 

The WSR-88D radar handles this dilemma by operating at staggering PRFs, collecting the 

range information at low PRFs and the velocity information at high PRFs. The two sets of 

information gathered are compared and processed to estimate the true radial velocities 

and ranges [23].

In Figure 2.1, the dashed lines highlight the association couples unambiguous 

speeds and unambiguous ranges.

2.3. Doppler weather radar products

Doppler weather radar provides estimates of basic atmospheric parameters:

▪ Radar reflectivity factor Z  [dBZ]

▪ Mean radial velocity V D  [ms-1]

▪ Spectrum width σ v [ms-1]
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F i g u r e 2.1: Illustration of the Doppler dilemma for a frequency 
f = 2.8 Ghz  

2.4. Weather radar equations

We consider the WSR-88D radar with a transmitted peak power, Pt  antenna 

gain, G , illuminating one single target whose radar cross section σ b  and is at a range 

r  from the radar.

The incident power density Pi , assuming that there is no loss, is

P i=
PtG

4π r2 (8)

If the target does not absorb energy and backscatters isotropically then the 

backscattered power, Pr , intercepted by the radar antenna is
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Pr=
PtG

4 π r2 σ b

1

4π r2 Ae (9)

where A e  represents the effective aperture area of the antenna and is 

(according to the theory of antennas)

A e=
G λ2

4π
(10)

Thereby obtaining expression of the reverse power measured at the antenna level,

Pr = |{[( PtG

4 πr2 )σ b] 1

4 πr2 }Gλ2

4 π | (11)

Pr  : Collected power by the antenna

[( PtG

4π r2 )σb]  : Backscattered power by the target

{[( PtG

4π r2 )σb] 1

4π r2 }  : Power density at the antenna

( PtG

4 πr2 )  : Incident power density

In the case of weather targets, the radar illuminates a large number of targets 

(distributed targets, ex. raindrops) at the same time and the average power return is

P̄r =
PtG

2λ2

(4 π )3r4 ∑
i=1

N

σbi (12)

The sum is performed on the volume receiving the power. If targets are uniformly 

distributed then

∑
i=1

N

σbi=volume×η (13)
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η is the radar cross section per unit volume. The volume in question is (see Figure

2.2):

volume = Vol = π( r θ2 )( rϕ2 )( c τ2 ) (14)

Or

Vol=πθϕ r2

8
c τ (15)

Figure 2.2: Volume resolution at range r

2.4.1. Equivalent radar reflectivity

For a meteorologist, the amount of water contained in a detection volume is very 

significant. Weather radar describes targets by a factor called equivalent radar reflectivity, 

Ze  connected to η by the following expression:[24][21]

η = π5

λ4 |K|
2
Ze (16)

where |K|2  represents the complex refractive index (K = 0.93 for water and K = 

0.208 for ice). Considering that the diameter of raindrops spheres is De , then the 

expression of the equivalent reflectivity Ze  is reduced to

Ze=
6λ4σ bM

π6|K|2 ρDe
3

(17)

where M is the mass of liquid water and ρ the density of water. This ratio is 

commonly expressed in mm6m−3 . It requires a 10−18  conversion factor to be 
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consistent with the units of η  [ m−1 ] (unit area over unit volume).

2.4.2. Radar equation

The composite radar cross section is given by the following expression

∑
i=1

N

σbi=Vol×η=c τ
2

πθ2r2

8 ln 2
π 5

λ4|K|
2
Z e (18)

Substituting this expression into the equation of the reflected average power,

P̄r=
π3 PtG

2θ2c τ|K|2Ze

210λ2 r2 ln 2
L (19)

Or 

P̄r=
π3c

1024 ln 2⏟
constants

Pt τG
2θ2

λ2⏟
radar

|K|2Z e

r2⏟
target

L (20)

where: 

▪ P̄r  Backscattered mean power, [watts]

▪ Pt : Transmitted peak power, [watts]

▪ G: Antenna gain, [unitless]

▪ λ  : Wavelength, [m]

▪ θ  : Beamwidth, [radian]

▪ τ : Pulse duration, [sec]

▪ c : Speed of light , [ms-1]

▪ r : Range to the considered volume, [m]

▪ Ze : Equivalent radar reflectivity factor, m3  (units [ mm6m−3 ] are often 

used for the empirical equation of precipitation).

▪ K : Complex refractive index.

▪ L : Loss factor associated with the propagation and detection of the receiver.

Hence the expression of the equivalent radar reflectivity factor
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Ze = 1024 ln 2

c π3
λ2

Pt τG
2θ2

P̄r r
2

|K|2
1
L

(21)

If the following conditions are satisfied, then the equivalent reflectivity factor Ze  

becomes simply the reflectivity factor Z, and the expression is:

Z=1024 ln2

c π3
λ2

Pt τG
2θ2

P̄r r
2

|K|2
(22)

[ mm6/m3 ] is the standard used unit.

▪ The particles of precipitations are homogeneous dielectric spheres of the 

same nature.

▪ The particles are widespread throughout the volume.

▪ The reflectivity factor Z is uniform and constant throughout the volume.

▪ The microwave attenuation is negligible over the entire distance between the 

target and the radar antenna.

This expression represents the intensity of the received signal by the radar. It is 

normally used on a logarithmic scale. It is displayed on screens in dBZ

Z in dBZ=10 log10 (Z ) (23)

Numerical span of Z

The following table (Table 2) shows the reflectivity span in correspondence to the 

type of precipitation and that it is more convenient to use a logarithmic scale dBZ than the 

linear scale Z.

dBZ=10l og10( Z

1
mm6

m3 ) Z=1010log10 (Z ) Precipitation

75 31 622 777 Large hailstones

50 100 000 Heavy rain

25 316 Snow

-28 0.001585 Fog droplets

Table 2 Reflectivity span in correspondence to the type of precipitation.

2.5. Signal processing

The purpose of signal processing is to: [24]
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▪ Provide accurate and unbiased estimates of the characteristics of the desired 

atmospheric echoes.

▪ Estimate the measurement accuracy.

▪ Mitigate the effects of interfering signals.

▪ Reduce the flow of data.

The signal received by the radar and from meteorological target is represented by 

a narrow-band Gaussian process [25] for the following reasons:

▪ The number of backscattering particles contained in the volume of a pulse is 

very large ( >106 ).

▪ The volume of the pulse is very large compared to the wavelength of the 

transmitted signal.

▪ The entire volume of the pulse is filled with backscattering particles.

▪ All backscattering particles are in motion caused among others by turbulence 

and shear.

The power spectral density of a weather signal is shown in Figure 2.3.

 
Figure 2.3: Doppler spectrum depicting the received power from a simulated  
weather perturbation, the mean radial velocity and spectral width of velocity.

The received power is the area under the curve and its expression is:

Pr = ∫ S( f )df=∫ S (v)dv (24)

This expression is also the zeroth spectral moment.
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The frequency f  and the velocity v  are related by

f = 2
λ v (25)

The first spectral moment is the mean velocity

v̄D =
∫ v S(v)dv

∫S(v)dv
(26)

The second spectral moment is the variance

σ v
2 =

∫(v−v̄)2S(v )dv

∫S (v )dv
(27)

σ v  is the spectral width of velocities. This parameter measures the degree of 

perturbation prevailing in the given area.

Doppler spectrum contains information necessary for the measurement of 

atmospheric perturbation parameters.

The quadrature phase detection is used to obtain the real and imaginary parts of 

the complex envelope of the signal [24]. The complex signal is digitized into range gates 

as spatial resolution. A range gate is a distance equal to the radar pulse length. The time 

series obtained for each range gate is processed using various methods to estimate the 

parameters of interest.

Estimation of weather signal parameters is complicated by the presence of white 

noise and ground clutter. Most of this dissertation is based on how to deal with these 

problems.

2.6. Statistical parameter estimation

Doppler radar provides (for each radar resolution volume) estimates of the spectral 

moments of great importance [26]. The first three moments of the Doppler power spectral 

density (PSD) are directly related to the desired base parameters of the atmospheric 

perturbations: radar reflectivity ( Z ), mean radial velocity ( vD ) and spectrum width of 

velocities ( σ v ) [24]. The estimation of meteorological parameters is performed by range 

19



cells. More detail is in the section devoted to signal processing (Chapter 3) [27].

Since the echo signal received by the radar from a range gate is generated by the 

reflection of a large number of randomly distributed particles and / or by variations of the 

refractive index of the atmosphere, then the process of the received signal may be 

considered (central limit theorem) or approximated by a Gaussian random process. [24]

[26]

Therefore, signal processing techniques should be assessed within the context of 

a theory of statistical estimation framework where it is to determine the best estimates of 

all parameters.

This is a way to act effectively since, in this case, it is to quickly explore (by the 

rotating radar antenna) a meteorological phenomenon. This is because the nature of the 

random process of a meteorological signal will require to make averages. [24]

The process is Gaussian, the output voltage of the receiver of the radar has a zero 

mean. For this reason, the autocovariance function and the autocorrelation function are 

identical.

The power conservation connects the Doppler spectrum S (v)  to the power 

spectrum S (f )  by [26]

S̄ (v) = 2
λ S̄(f ) (28)

Radar signals (transmitted and received) can be represented by [28]

x ( t) = a(t)cos [2π f 0 t+α(t)] (29)

where f 0  is the carrier frequency, a (t )  and α(t)  represent the amplitude 

and the signal phase modulation respectively.

This expression can be developed:

x(t) = a(t )cos [α(t)]cos(2π f 0 t )−a(t)sin [α(t )]sin(2π f 0 t)
 = I (t)cos(2π f 0 t)−Q (t)sin(2 π f 0 t )

(30)

I (t)  a n d Q (t)  are the in-phase and quadrature components of the 

modulation.

The received signal is complex:
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s(t ) = [ I (t )+ jQ(t )]e j2π f 0 t (31)

To distinguish between the received signal and the transmitted signal, it is 

necessary to write

str = U tr (t)e
j2π f 0 t  as the transmitted signal.

sr = V r(t )e
j 2π f0 t  as the received signal.

U tr  and V r are the complex envelope.

Typically, a precipitation is composed of a large number of hydrometeors 

extending over a large volume, each with its scattering amplitude and velocity. The 

received voltage may be expressed by:

V r (t) = ∑
k

Ak ( τk , t)e
− j2π f 0 τ kU tr (t−τk) (32)

A k  is the scattering amplitude of the kth particle and τk=2⋅
rk
c

V r  is the resultant of the elemental phasors.

Figure 2.4: Set of random particles for which the instantaneous positions  
are described by vectors rk  relative to the radar.

Each one of the particles backscatter a portion of the total power towards the 

radar. The resultant complex signal at the detector embeds information of magnitude and 

information of phase.
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2.6.1. Estimation of received mean power

The prominent measure of the radar is the average power corresponding to the 

voltage V r(t) . It can be related to the radar cross section per unit volume of 

precipitation. [28]

The average power of the received signal, V r( t)  in Figure 2.4 is obtained by 

averaging the samples of instantaneous power. These are a sequence of voltages:

IQ [m] , m = 1,2,…,M (33)

Hence ^̄P = 1
M
∑
m=1

M

Pm , where Pm = |IQ [m ]|2  and P̄  is the average power.

Radar reflectivity and equivalent reflectivity factor ( Ze ) are proportional to the 

average power of the received signal [28]. The estimated average power converges to the 

average power of the signal as the number of samples used for estimation increases.

A complex sample I+ jQ is the summation of all the elementary backscatterred 

voltages from the resolution volume as it is shown in the Figure 2.5.

Figure 2.5: The resultant phasor is I+ jQ  where I refers to the 
in-phase component and Q refers to the quadrature-phase  
component.

The variance of the estimated average power can be obtained by: [28]

var [ ^̄P ] = 1
M2∑

i=1

M

∑
j=1

M

cov (Pi , P j) (34)

where cov (Pi , P j)  is the covariance between i and j samples. We can simplify 

the expression to
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var [ ¯̂P ] = P̄2

M
∑

l=−(M−1)

M−1

(1−|l|
M

)ρP [l ] (35)

where ρp [l ]  is the correlation coefficient at lag l.

2.7. Dual polarization Doppler weather radar

Typically, single polarized Doppler weather radar only estimates the first three 

spectral moments of the echo signal, namely the reflectivity ( Z ), the mean radial 

velocity ( vD ) and the spectrum width ( σ v ), whereas polarimetric signals contain 

significant information about hydrometeor features and the information can be retrieved 

with sufficient accuracy to be useful. 

To fully take advantage of polarimetry, it is necessary to probe the hydrometeor 

medium with two orthogonal polarizations: Horizontal and vertical polarizations. The 

vertical–horizontal polarization basis is well suited for surveillance radars because the 

electric fields are aligned with the principal axis of several hydrometeor types. This 

maximizes the contrasts between scattering properties of vertically and horizontally 

polarized waves [29]. 

The transmitted signals can be either alternated or simultaneous. In the alternate 

transmission mode, signals power is the same for the two polarization channels, but the 

number of collected samples is divided by two in each channel.

In the simultaneous mode, each channel is fed by half of the total power (loss of 

sensitivity) whereas the number of samples is the total number that can be collected in a 

dwell time, in each channel.

The most commonly exploited radar quantity used by radar meteorologists is 

arguably the power-based radar reflectivity factor (Z). The equivalent radar reflectivity 

factor can be expressed as

Z i =
λ4

π5|Kw|
2∫

0

∞

σ(D)N (D)dD = 4λ4

π4|K w|
2∫

0

∞

|f hh, vv(b) (D)|2N (D)dD (36)

where the index i = h ,v  stands for one of the two polarizations (horizontal h 

and vertical v), λ is the radar wavelength, K w=
m2−1

m2+2
 is a dielectric factor of water 
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(and m is the complex index of refraction), σ(D)  is the radar backscattering cross-

section, N (D)  is the drop-size distribution (DSD), f ii , ii
(b) (D)  is the backscattering 

amplitudes at two orthogonal polarizations (typically horizontal (H) and vertical (V)). Zi  

is calculated in units of mm6m−3 .

Additional power-based products are produced by radar systems that transmit and 

receive along two orthogonal polarization planes (H and V). The utility of a ratio-based 

quantity, differential reflectivity, was first noted by Seliga and Bringi (1976).  Differential 

reflectivity is defined as the logarithmic ratio of the horizontal to vertical power returns in a 

pulse volume

ZDR = 10 log10

Z h

Z v

=ZH−ZV (dB) (37)

where Zh  and Z v  are given in linear units and ZH  and ZV  are given in 

logarithmic units. Differential reflectivity, in dBZ units, is the difference between horizontal 

and vertical reflectivities. Its values range from -7.9 to 7.9 decibels (dB).

Shape

Spherical (Drizzle, small hail)
Horizontally oriented (Rain, 

melting hail)
Vertically oriented (Ice 

crystals)

ZH ≈ZV ZH>ZV ZH<ZV

ZDR≈0 ZDR>0 ZDR<0

Table 3 Differential reflectivity ( ZDR ) is a good indicator of the mean drop shape of the dominant 
hydrometeor within the resolution volume.

At smaller diameters, raindrops tend to be spherical and at larger diameters the 

drops are rather oblate with the major axis aligned in the horizontal and the minor axis 

aligned in the vertical (Pruppacher 1970). This is why ZH  is larger than ZV  in rain, 

resulting in ZDR>0dBZ as it is shown in the Table 3.
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Chapter 3 : Doppler weather radar signal processing

3.1. Introduction

One major hypothesis is the following: the output signal from the receiver is a 

weighted sum with contributions from all scatterers in a resolution volume. The signal may 

be affected by independent sources (raindrops, snow, hail, …). Consequently, we can 

apply the central-limit theorem to model it as a stochastic process with a Gaussian 

distribution [9].

Pulse Doppler weather radar signals are discrete and consists of a number of 

samples that must be processed in order to obtain accurate estimates. The dwell time, 

which is the collection time, is restricted by the necessity for faster antenna rotation rates. 

Nonetheless there is a high processing rate for a large number of radar volumes to cope 

with in a short time.

The weather radar signal processing objective is to provide accurate and unbiased 

estimates of the characteristics of meteorological echoes [25]. To achieve this, the signal 

processing algorithms have to eliminate or at least reduce the degrading effects of ground 

clutter and noise. After that, we can proceed with the estimation of weather echo 

characteristics.

Generally, weather targets velocities are about 50 m/s at most. The working 

frequencies of a weather radar are about 109  Hz corresponding to wavelengths of a few 

centimeters (<10 cm). The Doppler effect links the frequency shift of the transmitted signal 

to the velocity of the target. This frequency shift is just a few hundreds of Hz: it is far too  

low to be measured directly. To address this difficulty, various signal processing techniques 

can be performed on raw receiver signals. Digital signal processing is used in almost all 
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modern radars to perform these signal processing operations. We use different  

approaches in time-domain and in frequency-domain. In time-domain, we measure the 

phase difference between two successive pulses having probed the same resolution 

volume in space. Indeed, after the return of the second pulse, the target has changed its 

position which would result in a phase shift between the two pulses. Hence the birth of the 

pulse pair method.

The pulse pair estimator calculates the first three moments of the Doppler 

spectrum using the autocovariance function or autocorrelation.

In frequency-domain, the Fourier method is a nonparametric technique based on 

estimating the power spectral density (PSD) of the received signal.

This estimator based on the periodogram is not optimal in the sense that it is not 

derived from an optimality criterion [10][11]. Specifically, periodogram becomes an 

unbiased estimator when the number of samples tends to infinity. Additionally, the variance 

of periodogram is in proportion to the spectrum value [30]. It is, however, relatively of low 

complexity among other non-parametric methods. For this reason, other methods are used 

to improve the estimation of the spectrum (AR, ARMA).

The accuracy on the spectrum estimation is a real concern. We need to address 

the noise problem which is inherent to any electronic system. We also need to cope with 

the ground clutter which is also another issue especially when detected weather targets 

are moving too slow. 

We usually consider the noise level as a constant. In reality, the noise depends on 

varying factors: temperature of receivers, fluctuations of the system gain and external 

noise. The sources of the external noise can be antenna elevation and precipitation along 

the radar beam[31][32]. Indeed, the noise increases if there is precipitation along the beam 

because particles radiate noise. Also, at low elevations, contribution from the ground 

increases the noise level.

3.2. Base data estimation

Weather echo is a sampled analog signal and the samples are taken at the 

PRT or T s  pace. The obtained time series IQ k  is M samples length. The number M 

is dictated by the PRT  or T s  and the dwell time. Each sample is a weighted sum of 

echoes from randomly located scatterers. And because the scatterers are moving there 

will be fluctuations between all the samples powers Sk  to which is added the noise 
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power . N k .

This is to say the total power of each sample is Pk = Sk+N k .

Signal processor provides the first three spectral moment. The zeroth moment 

corresponds to the weather signal mean power which is, in turn, related to the reflectivity 

Z, the first moment corresponds to the mean radial velocity vD and the second moment 

corresponds to the spectral width of the spectrum σ v .

3.2.1. Time domain estimators

Time domain moment estimation is based on the autocorrelation function of the 

received complex signal. An estimate of the autocorrelation function can be calculated 

from the complex time series IQ k  [25]

R̂(m) = (M−m)−1 ∑
k=0

M−m−1

IQk
*⋅IQk+m (38)

where m is the lag between the two time series ( IQ k  and IQ k+m ).

3.2.1.1. Signal power

In modern radars, we use receivers with a square law transfer function because of 

the generated unbiased power estimate [30]. The signal power is the average of the M 

samples power of the time series.

Ŝ = 1
M
∑
k=0

M−1

(Pk−N k) (39)

where Pk  is the power of the kth sample Pk = |IQk|
2

and N k is the noise 

power accompanying the kth sample.

3.2.1.2. Mean Doppler velocity

In time domain, we use the pulse pair or complex covariance technique to 

estimate the mean radial velocity [30][33][34].
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^̄vD = − λ
4 πT s

arg( R̂ [1]) = − λ
4πT s

tan−1(Im( R̂ [1 ])
Re( R̂ [1]) ) (40)

3.2.1.3. Spectrum width

Spectrum width of velocities is the square root of the second central moment of 

the Doppler spectrum measuring the dispersion of velocities in the considered resolution 

volume. It is significant because it helps the interpretation of weather data.

It is assumed that the shape of the Doppler spectrum is Gaussian. In such a 

situation, the autocovariance or autocorrelation function takes the form [30]

R [mT s] = S e
−8(πσ v

mT s

λ )
2

e
− j 4π v̄

mT s

λ + N δ[mT s ] (41)

where S is the signal power, λ is the wavelength and N is the noise power.

From this expression, we infer the spectrum width of velocities as [30][33][34]

σ̂v = λ
2πT s√2|ln( R̂ [0 ]−N

R̂ [1] )|
1/2

sgn( R̂ [0]−N

R̂ [1] ) (42)

where

R̂ [0 ] = 1
M ∑

k=0

M−1

| ^IQ [k ]|2 (43)

and

R̂ [1] = 1
M−1 ∑k=0

M−2

^IQ*[k ]⋅ ^IQ [k+1 ] (44)

According to [25], the pulse pair spectrum width is given by

σ̂v = λ
2πT s√2 [1−P [1 ](1+ 1

SNR )]
1 /2

(45)

where P [1] =
|R [1]|
R [0]

 is the normalized power at first lag. 
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As regards the SNR, it must be estimated separately.

By expanding the function ln  in the equation (42), [35][34] an expression of the 

spectral width is derived as follows

σ̂v = λ
2πT s√2|1−|R̂ [1]|

Ŝ |
1/2

sgn(1−|R̂ [1 ]|
Ŝ ) (46)

where

Ŝ = R̂ [0 ] − N = 1
M ∑

k=0

M−1

| ^IQ [k ]|2 − N (47)

is the estimated power when noise is deducted.

3.2.2. Frequency domain estimators

The objective of spectral estimation is to infer the power spectral density (PSD) 

from a finite observation of the underlying process. The usage of spectral techniques to 

estimate the moments necessitates to assume that the data model is a sum of sinusoids. It 

is only after this that we can apply the Discrete Fourier Transform (DFT) to the complex 

signal in order to decompose it into a sum of sinusoids having amplitudes and phases that 

will be able to reconstruct the original discrete signal [25]. This simple periodogram based 

estimator is not optimal in the sense that it was not derived from any optimality criterion, 

and it is not able to achieve uniformly optimal statistical properties [10][11].

3.2.2.1. Windowing effects on spectrum estimation

The magnitude of a temporal window in the frequency domain provides two 

significant features. The width of its main lobe and the levels of its side lobes. A narrow 

main lobe provides a better frequency resolution [36][6] and low side lobes enhance the 

smoothing of the spectrum [36]. 

In practice, these two properties are never met together. In fact, the narrower its 

main lobe, the higher its side lobes. This constitute a typical tradeoff in spectrum 

estimation.

In frequency domain, a rectangular window has the narrowest main lobe, but its 

side lobes are the most important whereas Blackman window has weaker side lobes, but a 
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broader main lobe. The type of window is to choose according to what one wishes to 

observe in a spectrum.

Ideally, one has to use a window that can be transformed into the Dirac function in 

the frequency domain so as when convolved with the given signal, he would get the true 

spectrum. This is because the Dirac function is the neutral element of the convolution 

operation. Unfortunately, the desired window would be the rectangular window of infinite 

length. To overcome the problem of infinite length, we approximate the Dirac peak by 

narrowest peak with very low side lobes. Most often, the Von Hann window is used in 

weather radar applications.

If the true power spectrum is in a narrow bandwidth, its convolution operation with a 

window will smear it into adjacent frequency bins [6]. This frequency leakage phenomenon 

is window type dependent and has a detrimental effect on power spectrum estimation. 

Side lobes from adjacent frequency bins add in a constructive or destructive way to the 

main lobe of a response in another frequency bin of the spectrum [36]. This can mask 

weaker frequency components.

The applied window is the significant factor that determines the frequency resolution 

of a spectrum. For a rectangular window the width between 3 dB levels determines the 

frequency resolution [36].
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Figure 3.1: Typical windows behavior in the spectral domain. The rectangular window  
has the narrowest main lobe and the Blackman window has the lowest side lobes.  
The Von Hann window is the best bargain between the three windows.



3.2.2.2. Mean Doppler Velocity

The power spectrum using periodogram is calculated by

S [k ] =
T s

M |∑
m=0

M−1

w [m]⋅IQ [m ]e
− j

2πmk
M |

2

(48)

where k = 0,1,. .. , M−1 and w  is the weighting window that can be of any 

type like Hanning, Hamming, etc. This window is used to reduce the side lobes of  spectra.

The Doppler mean velocity of the scatterers contained in the resolution volume is 

[37]

^̄vD = − λ
2 P̂T s

∑
k=−M

2

M
2
−1

Ŝ(k )⋅( k
M−1 ) (49)

where

P̂ = 1
M ∑

m=0

M−1

|IQ(m)|2 (50)

To avoid biases due to aliasing of symmetric spectrum, a solution is found by 

Doviak and Zrnić by [30][34] 

^̄vD = − λ
2MT s {km + 1

P̂
∑

k=−
M
2

km+
M
2

(k−km) Ŝ [modM(k)]} (51)

where P̂  is the total power in the periodogram, modM (k )  is the remainder of 

the division of k  by M  and −M /2≤km≤M /2  is the index of the strongest Fourier 

coefficient.

3.2.2.3. Spectrum width

Several ways to estimate the spectrum width are proposed. In 1993, D. Aalfs et al.

[37] has given the expression
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σ̂v
2 = λ2

4 P̂T s
2 ∑

k=−M
2

M
2
−1

Ŝ(k)( k
M−1

+ 2 ^̄vD

T s

λ )
2

(52)

And Doviak and Zrnić [35][34] have estimated the spectrum width by the 

expression

σ̂v
2 = λ2

4 P̂T s
2 ∑

k=km−
M
2

km+
M
2

Ŝ [modM(k)]( k
M

+ 2 ^̄vD
T s

λ )
2

(53)

which acceptably avoids bias due to aliasing for only small widths but still has bias 

due to the windowing effect.

3.2.3. Enhancing spectra estimators performance

In weather radar applications using spectral approaches, periodogram based 

spectra are commonly used because a periodogram presents a good tradeoff between the 

complexity of computations and the efficiency of the mean Doppler velocity and spectral 

width estimations. It is classified as a non-parametric spectral approach.

The drawback of the method is the bias [38][30] of the estimators because of the 

windowing effect and short discretized signal (low frequency resolution) associated with 

the discrete Fourier transform.

In order to improve the spectral quality (accuracy, frequency resolution and 

detectability), one can use parametric techniques to define the spectrum model. Maximum 

entropy is one of the techniques in which we use the given weather signal samples to 

derive the parameters of the model. Hence the problem of spectral estimation is reduced 

to a parametric estimation where the spectrum is expressed by the model parameters. The 

most frequently used models in the literature are the autoregressive (AR), the moving 

average (MA), the autoregressive moving average (ARMA).

Atmospheric echoes can be modeled by autoregressive techniques and if noise is 

added to the data then the autoregressive moving average modeling will be more 

appropriate [37][39]. 

3.2.3.1. Autoregressive Modeling

In AR model, we assume that the observed data have been generated by a 
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system whose input-output is a linear difference equation given by

xn = −∑
k=1

p

ak⋅xn−k + nn (54)

where xn  is the observed output of the system, nn  is the unobserved input of 

the system, and the ak  are its parameters to determine. The input nn  is a zero mean 

white noise process driving the sequence with unknown variance σ n
2 , and p is the order 

of the system. AR models are called all-pole models. The power spectral density 

associated with the AR (p)  model is expressed by

SAR(f ) =
σn

2T s

|1+∑
k=1

p

ak⋅e− j 2π f k T s|
2 (55)

where T s  is the sampling interval.

The spectral analysis in modeling approaches is a three step procedure:

▪ Select the model for the time series,

▪ Estimate the parameters of the assumed model from the data,

▪ Obtain the spectral estimate by substituting the estimated model 

parameters into the theoretical PSD implied by the model.

The autocorrelation estimate of a data set x0 , ... , xN−1  is given by

R̂ xx(m) = 1
N ∑

n=0

N−m−1

xn+m xn
* (56)

for m = 0,... , M  and M≤N−1

If we multiply the equation 54  by xn−k
*  and take the expectations of the two 

sides, we will obtain the equation 57 which is the relationship between the AR parameters 

and the autocorrelation function of xn  and also known as the Yule-Walker equations.

E [ xn xn−k
* ] = −∑

l=1

p

alE [ xn−l xn−k
* ] + E [nn xn−k

* ] (57)
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which is equivalent to the equation 58

R xx(k ) = −∑
l=1

p

alR xx(k−l) + E [nn xn−k
* ] (58)

or

R xx(k ) = {−∑l=1

p

al Rxx (k−l) , for k>0

−∑
l=1

p

alRxx (−l) + σn
2 , for k=0

(59)

These equations can be rewritten in a matrix form

[R xx(0) R xx(−1) ... R xx(−p)
R xx(1) R xx(0) ... R xx(−( p−1))
⋮ ⋮ ⋮ ⋮

Rxx (p) R xx( p−1) ... R xx(0)
]⋅[ 1
a1

⋮
ap
] = [σn

2

0
⋮
0
] (60)

There are several ways to solve these linear equations for the parameters 

a1,... ,a p  and σ n
2  [40][41].

In accordance with the conjugate symmetric property of the autocorrelation 

function of a stationary process, we calculate the negative lags estimate by

R̂ xx(−m) = R̂ xx
* (m) (61)

The Levinson-Durbin algorithm [42][43] is used to compute the parameters instead 

of the Gaussian elimination because of its computational efficiency ( p2  operations 

instead of p3  for the Gaussian method). The algorithm proceeds recursively to compute 

all the parameters even those of orders lower than p :

{a11 ,σ1
2} ,{a21 , a22σ2

2 } , ... ,{ap1 , ap 2, ...app ,σ p
2 }

The final set {ap1 , ap 2, ...app ,σ p
2 }  is the desired solution.

The algorithm is initialized by
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a11 = −R xx(1)/R xx(0) (62)

σ1
2 = (1−|a11|

2)Rxx (0) (63)

for any other parameter of index k = 2, ... , p

akk = −[R xx(k ) + ∑
l=1

k−1

ak−1, lRxx (k−l)]/σk−1
2 (64)

akl = ak−1, l + akk ak−1,k−l
* (65)

σ k
2 = (1−|akk|

2)σ k−1
2 (66)

Several research works have been done to solve the Yule-Walker equations but 

the most popular approach was introduced by Burg in 1975 [44].

The autoregressive modeling approach suffers from the selection of the right order 

p  for the model to choose for the data set. Indeed, a too low order results in a highly 

smoothed spectral estimate and a too high order introduces spurious spikes in the 

spectrum. For these reasons, several criteria have been proposed to solve the problem but 

none of them was really satisfying in all cases[45][46][47].

For low SNR, the resolution is degraded and is no longer better than that obtained 

by the periodogram approach. The degradation reason is that the AR model assumed is 

no longer valid in presence of noise. To reduce the effect of this problem, one can use 

different approaches:

▪ Use ARMA modeling,

▪ Filter the data to reduce the noise,

▪ Use a larger order for the AR model.

3.2.3.2. ARMA modeling

The power spectral density estimation using ARMA modeling goes through the 

Yule-Walker equations as well. The ARMA model assumes that the data set can be 

modeled as an output of a p  poles and q  zeros filter driven by a white noise.

The difference equation of the model is given by

xn = −∑
k=1

p

ak xn−k + ∑
k=0

q

bk nn−k (67)
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If we multiply the equation (67) by xn−k
*  and take the expectations of the two 

sides, we will obtain the equation (68) which is the relationship between the ARMA 

parameters and the autocorrelation function of the data set xn  and also known as the 

Yule-Walker equations.

R xx(l) = E [ xn⋅xn−l
* ] = −∑

k=1

p

ak Rxx (l−k ) + ∑
k=0

q

bk Rnx(l−k ) (68)

where Rnx(l−k ) = σ n
2hk−l

*  because the ARMA process plays the role of a stable 

and causal filter.

From the equation (68), we derive the Yule-Walker equations

R xx(l) = {−∑k=1

p

akR xx(l−k) + σ n
2∑
k=1

q

bk hk−l
* , for l = 0, 1, ...q

−∑
k=1

p

ak Rxx (l−k ) , for l = q+1, q+2, ...

(69)

After solving this set of nonlinear equations for a1, a2, ... , ap , b1, b2, ... , bq  and 

σ n
2 , we can obtain the power spectral density by

SARMA(f ) =
σn

2T s|1 + ∑
k=1

q

bk e
− j2π f kT s|

2

|1 + ∑
k=1

p

ak e− j 2π f k T s|
2 (70)

But the solution to this set of nonlinear equations (69) needs too much 

computation resources because of the matrices and iterative optimization techniques 

which don't fit real time processing applications [41] and most of all, it is not guaranteed to 

converge to the right solution. To avoid this issue, suboptimal approaches have been 

proposed in which the ARMA process is split into two processes (AR and MA) to be 

addressed separately.

Or, taking advantage of the Wold theorem asserting that any stationary ARMA 

model or MA process of finite variance can be represented as an AR model of possibly 

infinite order. This assertion [41] is very important because if a wrong model is chosen, we 
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may still obtain an acceptable approximation by using a higher order.

3.2.4. Artifacts removal

In polarimetric Doppler weather radar, noise powers in both receiving channels 

must be estimated. On the WSR-88D, noise is measured at highest elevations where 

radiation contribution from precipitation and ground is insignificant. Then the measured 

noise power is applied to low elevation observations where weather echo noise exists and 

the antenna intercepts thermal noise of the ground. Additional noise at lower elevations will 

bias the estimated weather characteristics unless it is correctly estimated which is hard to 

do [31].

3.2.4.1. Noise removal

Weather radar signals are usually contaminated with noise which has to be at least 

mitigated if not completely removed in order to gain more accuracy while estimating 

weather parameters values. When an erroneous noise level is used at low signal to noise 

ratios (SNR), estimators produce biased weather parameters (Reflectivity, radial velocity, 

spectrum width, …).

In the USA, on the National  Radar (WSR-88D), the noise level is measured as 

part of online calibrations. The measurement is performed after each volume scan at high 

antenna elevation angle. The obtained noise level value is adjusted for other elevations of 

the antenna.

Clearly, the drawback of such a procedure is that it doesn't take into account the 

temporal variations that can occur from one range location to another along one radial or 

from one azimuth to another on the same elevation. Temporal variations of the noise can 

be caused by many sources (cosmic radiations, water vapor, …) [30]. Consequently, it is 

obvious that measuring the noise level at antenna pointing angle is very advantageous. 

This can be achieved operationally during data collection (online).

In 1974, P.H. Hildebrand and R.S. Sekhon [48] developed a method to objectively 

determine noise level in Doppler spectra. They took advantage from the property of white 

Gaussian noise considering that the standard deviation of the spectral densities is equal to 

the mean spectral density.

In 1992, Urkowitz and Nespor [49] used Kolmogorov-Smirnov test applied to the 

periodogram by iteratively discarding the Fourier spectral lines until satisfying the noise 
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hypothesis criterion.

In 2010, I.R. Ivic et al developed a method to estimate noise power dynamically 

from data. The approach requires an initial rough guess on the noise power. It attempts to 

disregard all samples at range locations where the presence of signal is detected [50].

3.2.4.2. Ground clutter removal

Ground clutter is a severe problem for weather radar when collecting information 

at close ranges and low elevations, in the vicinity of airports for instance. It is a factor 

limiting the performance of the weather radar system.

This clutter is received when the main lobe or side lobes of the antenna beam 

illuminate objects on the ground. If not removed, these clutter returns will seriously 

degrade meteorological estimates and tend reflectivity (Z) higher, Doppler velocity and 

spectrum width lower (toward zero).

A ground clutter filter (GCF) can mitigate the contamination and provide unbiased 

estimates with a reduced quality.

Moreover, significant biases may occur if the filter is applied when the clutter is 

simply absent and the radial velocity of the meteorological perturbation is low (close to 

zero). The presence or absence of the ground clutter is changing dynamically and thus 

making the problem of applying a GCF very complex.

So, designing a GCF to achieve the suppression of that clutter is the first part of 

the solution to the problem. We have to make the filter intelligent to decide to apply it only 

when it is needed.

Ground clutter is characterized by a strong power at reception with a very narrow 

spectrum width (0.3 m/s) and near zero velocity [30].

There have been several techniques addressing the ground clutter removal/mitiga-

tion problem.

In 1992, Sirmans developed a five pole elliptic infinite impulse response (IIR) filter 

to mitigate the effect of the ground clutter.

In 2004, Siggia and Passarelli [2] took advantage from the new generation of 

signal processors which provides greater processing power than on previous systems and 

proposed a greatly improved algorithm to deal with the ground clutter in the frequency 

domain. The designed filter is GMAP, standing for Gaussian Model Adaptive Processing [2]. 

The authors use a Gaussian clutter model to remove the ground clutter over a variable 

number of spectral components that is dependent on the assumed clutter width, signal 
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power, Nyquist Interval and number of samples. The filter is used to iteratively interpolate 

power over the components that have been removed (if there are any) and restore any 

overlapped weather spectral components with minimum bias.
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Chapter 4 : Lifting-based wavelet transform in Doppler 
spectrum estimation

4.1. Introduction

Wavelet analysis is based on a key function ψ(x) that is, more often, compactly 

supported (defined on a short interval) than not, where the wavelet basis is constructed by 

translating and dilating the function ψ(x) as follows: {ψ j , k } j , k∈ℤ , where 

ψ j , k = 2
j
2 ψ(2 j x−k ) (71)

The parameters j and k are the dilation and the translation, respectively.

The basic unit in a wavelet transform is a filter bank, consisting of two filters: a 

high pass filter ~g and a low pass filter
~
h . A discrete signal is filtered by both filters 

and then both down-sampled. The outputs are a high pass signal and a low pass signal, 

each containing half as much samples as the original signal.

In the inverse wavelet transform, both signals (high pass one and low pass one) 

are, first, up-sampled by inserting zeros in between every sample, then they are filtered by 

the filters g (high pass) and h (low pass) and the output is the merging of both signals 

(cf. Figure 4.1).
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Figure 4.1: Discrete wavelet transform (one level).

The wavelet filters g and h define the primal wavelet function ψ(x) and the 

primal scaling function ϕ(x) , respectively. Also, the wavelet filters ~g and h define 

the dual wavelet function ~ψ(x ) and the dual scaling function ~ϕ(x) , respectively. 

If g = ~g and h = ~
h then both wavelets (analysis and synthesis) coincide 

and called orthogonal. If the equalities are not satisfied then the wavelets are called 

biorthogonal wavelets. 

Wavelet transform has a mother, ψ(x) , and a father, ϕ(x) , wavelet and the 

link between them is

ϕ(x) = √(2)∑
k∈ℤ

hkϕ(2 x−k ) (72)

ψ(x) = √(2)∑
k∈ℤ

gkϕ(2 x−k ) (73)

~ϕ(x) = √(2)∑
k∈ℤ

~
hk
~ϕ(2 x−k) (74)

~ψ(x ) = √(2)∑
k∈ℤ

~gk
~ϕ(2 x−k ) (75)

While ~gk are coefficients representing the high pass filter coefficients,
~
hk are 

coefficients representing the low pass filter coefficients associated with the particular used 

wavelet function for decomposition. And gk are coefficients representing the high pass 

filter coefficients, hk are coefficients representing the low pass filter coefficients 

associated with the particular used reconstruction wavelet function.

So any function f (x ) can be represented by a discrete series as follows:

f (x ) = ∑
k

c j0 , k
ϕ j0 , k

(x) + ∑
k
∑
j> j0

d j , kϕ j , k (x) (76)

= c0,0ϕ0,0( x) + ∑
k
∑
j> j0

d j , kϕ j , k (x ) (77)
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where c j , k  are associated with the father wavelet or scaling function (called the 

approximations) and d j ,k are associated with the mother wavelet (called the details). The 

index k  refers to the location when translating the wavelet and the index j refers to 

the scale or level when dilating the wavelet.

The lifting scheme consists of three steps to achieve a wavelet transform. They 

are used in the following way [51]  as it is shown in  Figure 4.2.

1. Split: in this stage, the signal is split into even indexed samples s j ,2k and odd 

indexed samples s j ,2k+1 :

(even j−1 , odd j−1 ) = split (s j) (78)

2. Predict: the even samples are used to predict each odd sample by interpolation:

d j−1 = odd j−1 − P(even j−1) (79)

where P is the interpolating polynomial for prediction.

3. Update: this step is used to update the detail computed in the previous stage.

s j−1 = c j−1 = even j−1 + U (d j−1) (80)

Figure 4.2: Wavelet transform via lifting scheme.

The inverse wavelet transform using the lifting scheme is achieved by first undoing 

the update stage to recover the even samples, then add the prediction to the details and 

recover the odd samples, as it is shown in Figure 4.3.
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Figure 4.3: Inverse wavelet transform via lifting 
scheme.

1. Undo update: d j  and c j  are known, so 

even j−1 = c j−1 − U (d j−1) (81)

2. Undo predict:  even j−1 and odd j−1  are known, so

odd j−1 = d j−1 + P(even j−1) (82)

3. Merge: odd j−1 and even j−1  are known, so

s j = merge (odd j−1 , even j−1) (83)

The inverse transform is computed by reversing the order of operations and 

flipping the signs.

The lifting scheme can be used for three (03) purposes:

▪ Generate a second generation wavelet [52][51].

▪ Enhance the performance of an existing wavelet by increasing the number of 

its vanishing moments [53].

▪ Decompose any wavelet transform into a finite sequence of simple filtering 

steps (known as lifting steps or ladder structure) [54].
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Figure 4.4: DWT:
~
h  (Low pass) and ~g  (High pass) are the analysis filters of the 

forward transform; h  (Low pass) and g  (High pass) are the synthesis filters of the 
inverse transform.

To guarantee the perfect reconstruction of a signal, the following condition must be 

satisfied:

{ h( z)~h ( z−1) + g(z)~g ( z−1) = 2

h( z)~h (−z−1) + g(z)~g (−z−1) = 0
(84)

Modulation matrices, for synthesis and analysis, can be defined, respectively, as 

M (z) = [h( z) h (−z)
g(z) g (−z)] (85)

and

~M (z) = [~h ( z) ~
h (−z)

~g ( z) ~g (−z)] (86)

So the perfect reconstruction condition becomes

~M (z−1)t⋅M (z) = 2⋅I = 2 x [1 0
0 1 ] (87)

Nota bene: if the wavelet transform is orthogonal, then h = ~
h and g = ~g .

The polyphase representation of filters h and g is

{h(z ) = he(z
2) + z−1hO(z

2)
g(z) = ge(z

2) + z−1gO(z
2)

(88)

where the index “e” refers to the even coefficients and the index “o” refers to the 
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odd coefficients of the filters h and g .

he( z) = ∑
k

h2k z
−k and ho(z) = ∑

k

h2k+1 z
−k

(89)

ge( z) = ∑
k

g2k z
−k and go(z) = ∑

k

g2k+1 z
−k

(90)

Running the Euclidean division algorithm starting from he and ho will yield [54]

[55]

[he (z)
ho( z)] = ∏

i=1

n [qi( z) 1
1 0] [k0] (91)

where k  is a constant.

Given the pair of filters (h, g) there exist Laurent polynomials si(z ) and 

t i(z) for 1≤i≤m and k≠0 so that the polyphase matrix be

P( z) = ∏
i=1

m [1 si(z )
0 1 ][ 1 0

t i( z) 1][k 0

0
1
k ] (92)

and the dual polyphase matrix as

~P( z) = ∏
i=1

m

[ 1 0
−si( z

−1) 1][1 −t i(z
−1)

0 1 ][ 1
k

0

0 k ] (93)

The general lifted wavelet transform is given below by the Figure 4.5,

Figure 4.5: Forward wavelet transform using lifting scheme.

The corresponding inverse transform wavelet using lifting scheme is given in 

Figure 4.6.
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Figure 4.6: Inverse wavelet transform using lifting scheme

4.1.1. Example

Let's factor the Daubechies 4 (D4) into lifting steps. The corresponding h and 

g  filters are given by [56][54]

h(z) = h0+h1 z
−2+h2 z

−2+h3 z
−3

g(z) = −h3 z
2+h2 z−h1+h0 z

−1 (94)

where h0=
1+√3
4√2

, h1=
3+√3
4√2

, h2=
3−√3
4√2

and h3=
1−√3
4√2

The polyphase matrix is 

P( z) = [h0+h2 z
−1 −h3 z−h1

h1+h3 z
−1 h2 z+h0

] (95)

The factorization of this matrix (reconstruction) will be

P( z) = [1 −√3
0 1 ] [ 1 0

√3
4
+ √3−2

4
z−1 1][1 z

0 1][ √3+1

√2
0

0 √3−1

√2
] (96)

The corresponding diagram is shown in Figure 4.7.
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Figure 4.7: Inverse wavelet transform through 
lifting scheme using D4 wavelet.

and the dual polyphase matrix (analysis) is as follows:

~P( z−1)t = [ √3+1

√2
0

0 √3−1

√2
][ 1 0
z−1 1 ][1 √3

4
+√3−2

4
z−1

0 1 ][ 1 0
−√3 1 ] (97)

The corresponding diagram is shown in Figure 4.8.

Figure 4.8: Forward wavelet transform through 
lifting scheme using D4 wavelet.

The implementation of the LWT through equations corresponding to the polyphase 

matrices computed previously are given by equations 98 and 99 for the forward wavelet 

transform and the inverse wavelet transform respectively.

dl
(1) = x2l+1−√3 x2 l

cl
(1) = x2l+

√3
4

dl
(1)+√3−2

4
dl+1
(1)

dl
(2) = dl

(1)+cl−1
(1)

cl = √3+1

√2
cl
(1)

dl = √3−1

√2
d l
(2)

(98)

and
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d l
(2) = √3+1

√2
dl

cl
(1) = √3−1

√2
cl

d l
(1) = dl

(2)−cl−1
(1)

x2l = cl
(1)−√3

4
dl
(1)−√3−2

4
dl+1
(1)

x2 l+1 = dl
(1)+√3 x2 l

(99)

4.2. Motivation

One of the challenges in real-time signal processing, in rapidly changing weather 

phenomena, is to process a large amount of data using newer algorithms consuming 

larger amount of computing resources because of the complexity of algorithms and 

because the Weather Service is required to deliver:

• Earlier warnings of potential hazardous storms such as tornadoes, hail, wind-shear, 

etc

• More accurate weather parameters such as rainfall rate, hydrometeors  

classification, etc.

For these reasons, in this work, a method is proposed for better estimating 

weather parameters without overwhelming the weather radar signal processor with extra 

computations.

The suggested procedure is estimating the Doppler spectrum using the well known 

lifting-based wavelet transform (LWT).

It's proven by [54] that for long and symmetric filters the lifting scheme halves the 

computation complexity ( O (n /2) ) compared to the standard wavelet transform with a 

complexity of O (n) .The standard wavelet transform is known to be more efficient than 

the FFT with its computation complexity of ( O (n logn) ), as it is shown in Figure 4.9.
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Figure 4.9: Computational complexity vs number of samples: Lifted wavelet  
transform is faster than DWT and FFT.

The specificity of this work lies in the determination of an adaptive threshold to 

apply on wavelet coefficients to mitigate the effect of different types of noises on weather 

parameters estimates. Next section will be devoted to the procedure presentation.

4.3. Wavelet choice

The selection of an optimal wavelet impacts substantially the performance of the 

denoising procedure. In weather radar applications, denoising signals using wavelet 

transform is a task requiring:

1. Perfect reconstruction conditions to be satisfied by the wavelet transform,

2. Smoothness of the denoised spectrum,

3. Fast processing to avoid being a burden for the radar system software.

There are many filters which satisfy the perfect reconstruction conditions but not 

as many for the fast processing requirement.

As for the smoothness of the spectrum after denoising, the wavelet needs to have 

more than one vanishing moment.

Fast processing is achieved by a lifted wavelet transform. This would be faster if 

the filters would be symmetric [54].
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For all these requirements, the suitable wavelet for this application may be the 

biorthogonal wavelet Bior4.4.

This particular wavelet is symmetric and has four (4) vanishing moments.

4.4. Thresholding strategy choice

There is a variety of thresholds to apply for a given situation. These thresholds can 

be divided into two categories:

▪ Global thresholds,

▪ Level dependent thresholds.

The first category means that one applies one threshold value on all wavelet 

coefficients (over all different levels, if any), {d jk : j = j0 ,... , J−1 ; k = 0,1,... ,2 j−1} , 

whereas for the second category, one applies one different threshold value T j for each 

level j = j0 , ... , J−1 .

Any threshold requires knowledge of the noise level σ . In 1995, Donoho and 

Johnstone [57] argued that it is more important to estimate the noise level from given data 

than to assume it as known. In practice, it derives from the wavelet coefficients at the 

finest resolution. At this level, wavelet coefficients tend to consist only of noise. The 

authors derived the noise level as

σ̂ =
MAD (d )
0.6745

(100)

where MAD stands for Median Absolute Deviation.

Deriving thresholds is performed by means of some known methods such as:

▪ Universal threshold,

▪ Minimax threshold,

▪ SURE (Stein's Unbiased Risk Estimate).

4.4.1. Minimax threshold

It is developed by Donoho and Johnstone [19] in 1994. This threshold is signal 

size dependent as well as noise level dependent:

T minimax = σTM
*

where TM
* is defined as the largest value of T  by the expression
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TM
* = inf

T
sup
d { ρ(T ,d)

M−1+min(d2 ,1) } (101)

w h e r e ρ(T ,d) = E [ (d̂T−d )2 ] is the risk on the estimate d̂ of wavelet 

coefficient d .

4.4.2. Universal threshold

As an alternative to Minimax thresholds, Donoho and Johnstone suggested 

thresholding wavelet coefficients by using the universal threshold.

T u = σ̂√2log (M ) (102)

where M is the length of the sequence.

It is based on the hypothesis that noise superimposed on the underlying data is 

white and Gaussian. Its energy is distributed over all frequency bands (decomposition 

levels). Therefore, the standard deviation is calculated in a band where the useful signal 

(data) is absent or almost non-existent (in high frequency band).

4.4.3. SURE threshold

The threshold is selected for each resolution level of the wavelet transform. It is 

estimated based on the principle of minimizing the risk of unbiased estimate of Stein 

(SURE).

For actual signals (sequences), if μ̂ = μ̂(x) is a particular estimator of μ and 

if x ~ N (μ ,1) , then according to [57], one can state that 

μ̂ (x) = x + g (x ) (103)

where g (x ) is a function from ℝ into ℝ . If g (x ) is weakly differentiable, 

then

Eμ {‖μ̂(x)−μ‖2 } = 1 + Eμ{‖g (x)‖2 + 2
dg(x )
dx } (104)
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This equation is the risk on estimating μ(x) in an unbiased manner (SURE).

As regard to thresholding strategies, one can use one of the two most known and 

used in denoising applications. Hard thresholding and soft thresholding. Their 

corresponding effects are shown in Figure 4.10

4.4.4. Hard thresholding

i f d is a wavelet coefficients vector and T  is a selected threshold, then hard 

threshold estimator is as follows

ηT
Hard (d ) = {d if |d|≥T

0 if |d|<T
(105)

4.4.5. Soft thresholding

Soft threshold estimator is given by

ηT
Soft(d ) = {d (1− T

|d|) if |d|>T

0 if otherwise

(106)

Soft thresholding produces smoother results compared to those of hard 

thresholding. Hard thresholding, by contrast, produces a better preservation of 

discontinuities. 

4.4.6. Other thresholds

Alongside soft and hard thresholds, other mitigation diagonal non-linearities can 

improve estimation of a desired signal [18].

ηT
Diagonal(d ) = max (1− Tβ

|d|β
,0) (107)

where β>0 .

When β=1 , the function corresponds to a soft thresholding non-linearity.

When β=2 , the function is between soft and hard thresholding.

When β→∞ , the function corresponds to a hard thresholding.
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Figure 4.10: Output of hard and soft thresholds nonlinearities.

4.5. Algorithm for spectrum estimation

Doppler weather radar signal in a range gate is consisted of a time series or a 

sequence IQ (k T s) o f M  complex samples with T s  ms apart. M is defined by 

the dwell time M T s  (collection time of M samples for one estimate) of the radar. 

Currently, operational values can be: 

▪ 40 for the phased array weather radar test-bed located in Norman, OK, 

USA,

▪ 40-280 for radars of the U.S. National Weather Service network (WSR-

88D).

IQ (k T s) = s (k )e− jwDk T s + σ n(k) , k = 0,... , M−1

where s(k ) is the weather echo signal free of white noise n (k ) . This noise is 

an additive sequence of independent identically distributed (i.i.d.) Gaussian random 

variables, σ is the noise level and wD is the Doppler pulsation (frequency).

Weather signals spectra from areas of uniform reflectivity would be closely 

resembling a Gaussian function [30]. Strong shear and turbulence would contribute to 

broaden spectra until obtaining a closely horizontal line in a “skirt” shape in the case of 

severe weather like tornadoes.

It is convenient to assume a Gaussian power spectrum for more than 75 % cases 

[30].
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S(v) = S

√2πσv

e
−
( v−vD)

2

2σ v
2

+ N
2va

(108)

where:

▪ S  , signal power [W], 

▪ σ v , spectral width [m/s], 

▪ v , radial velocity [m/s],

▪ vD , mean radial velocity [m/s],

▪ N , noise power [W],

▪ va , maximum unambiguous velocity [m/s].

Removing the noise from the sequence for IQ (kT s)  (in the time domain) or 

removing it from S (v) (in the frequency domain) is the same problem. But as I am 

required to work on spectral approaches, I decided to handle the denoising procedure in 

the frequency domain.

The periodogram of the time sequence IQ is given by

S (k ) =
T s

M |∑
m=0

M−1

w(m)IQ (m)e
− j 2πmk

M |
2

(109)

where w is the window applied to the weather sequence IQ .

4.5.1. Spectral moments dependence with noise

It is obvious that noise affects substantially the quality of spectral moments 

estimates. Signal power is increased by noise power. Consequently, mean Doppler radial 

velocity estimate will decrease and spectrum width will be increased, as it is shown in 

Figure 4.11.
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Figure 4.11: Evolution of radial velocity estimate and spectrum width estimate with  
noise level. In the present case, true radial velocity is 4 m/s and true spectrum width is  
2m/s.

4.5.2. Procedure course

The proposed algorithm for the denoising procedure is built on two underlying 

parts:

Part 1: Obtain initial guesses for the threshold to use and for Doppler velocity and 

spectrum width. The corresponding flow chart is shown in Figure 4.12.

1. Windowing of the weather sequence for better performance. Usually, Hanning 

window works fine.

2. Calculation of periodogram is performed using the standard FFT.

3. Application of the LWT on the previously computed power spectral density to obtain 

at each level of decomposition two sequences of size m = 2− j M  ( j is the 

current decomposition level): coefficients of detail ( dm )  and coefficients of 

approximation ( cm ). 

4. Calculation of the noise variance σ n using the coefficients of wavelet previously 

obtained. 
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σn =
MAD (dm)

0.6745
(110)

where MAD is the median absolute value of the coefficients of details.

5. Set the universal threshold t u = σn⋅√ 2log (m)
m

and apply the soft threshold 

nonlinearity ηt (dij) = {sgn(d ij)(|d ij|−t) if d ij≥tu
0 if d ij<t u

. 

This means, a soft thresholding is applied on every wavelet coefficient d ij , 

where j = 1,.. , J ( J is the maximum decomposition level), i = 1, ... ,m ,knowing 

that m = 2− j M .

6. Invert the LWT, getting an estimated spectrum.

7. Compute the Doppler velocity V D and spectral width σ v using equations 51 and 

53 respectively.

Part 2: Implementation of an iterative calculation of Doppler parameters.  The 

corresponding flow chart is shown in Figure 4.13.

1. Increment the previously calculated threshold by dT u step:

T u = T u + dT u

2. Apply soft threshold non-linearity on the details previously calculated (in step 1) to 

obtain thresholded coefficients d thresh  with the new value of T u .

3. Reconstruct the original spectrum sequence by inverse lifted wavelet transform: 

Srec = ilwt (c ,d thresh)

4. Estimate weather parameters (V D )new and (σ v )new

5. Compute increments of these parameters: 
dV = |(V D )new| − |(V D )old|
dσ = |(σ v )old| − |(σ v )new|

6. Test if (dV >0 ∧ dσ<0 ) : if the result is true, then loop from step1. If the result is 

false, then current values of V D  and σ v are kept because the corresponding 

spectrum is optimally denoised.

56



Figure 4.12: First step of weather radar spectrum 
denoising using lifted wavelet transform.

4.6. Case study

4.6.1. Available sources

In order to achieve a comprehensive test of the proposed algorithm, one should 

have real weather radar technical specifications along with actual data. The given 

opportunity is the phased array radar in the National Weather Radar Testbed (NWRT) 

located in Norman (Oklahoma, USA).
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Figure 4.13: Second step of weather radar spectrum 
denoising using lifted wavelet transform.

The corresponding needed technical specifications of the phased array radar 

testbed are summarized in the Table 4

Feature Value

Antenna (circular aperture) 3.66 m

Wavelength ( λ ) 0.0937 m

Beam width 1.5° (2.1° at 45° from beam center)

Transmitting peak power 750 Kw

Pulse width 1.57 μs or 4.71 μs

Pulse repetition time (PRT or T s ) 0.984 ms

Table 4: Technical specifications of  the weather phased array radar testbed located in Norman  
(Oklahoma, USA).

4.6.2. Synthetic data

The first step is to generate synthetic weather signals corresponding to the radar 

specifications. This part is achieved by using the method proposed by Zrnić in 1975 [58].
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Zrnić method can be conceived as a routine requiring some parameters as input 

(Radar power, maximum unambiguous Doppler velocity, SNR, sequence length, radial 

mean velocity and spectrum width corresponding to a weather perturbation) in order to 

produce a time series as output expected to represent a desired meteorological 

phenomenon.

However, some assumptions must be done. The radar return signal from a range 

gate is generated by backscattering from a large number of particles (meteorological, 

biological, dust, …) randomly distributed and/or by refractive index changes in the 

atmosphere. The received signal can be considered (Central limit theorem) as or 

approximated by a Gaussian random process.

Furthermore, the random return is assumed to be a stationary process. It is 

characterized by the power spectral density (PSD) of a Gaussian statistical distribution 

given by the expression 111,

S (f ) = 1

√(2π)σv

e
−
( f−f D)

2

2σ v
2

(111)

where f is a frequency contained in the Nyquist interval, f D is the Doppler 

frequency and σ v is the spectrum width.

Moreover, some other assumptions are needed [58]:

▪ The spectrum of a weather echo is narrow band, unlike the noise 

spectrum that is broadband.

▪ Power of weather signal is larger than noise power.

▪ Statistical properties of a weather echo and those of noise are almost 

similar (Gaussian).

The probability density of a Doppler weather signal U can be written as [28]:

f (U ) = 1

2πσv
2 e

−
|U|2

2σ v
2

= a

2πσ v
2 e

− a2

2σv
2

= f (a,θ) (112)

These equations can be decomposed into a product of two (02) functions f Θ(θ)

and f A(a) representing phase and amplitude respectively. This indicates that amplitude 

and phase are independent.

59



f (a ,θ) = f A(a)⋅f Θ(θ) (113)

where

f A(a) = a

σ v
2
e
− a2

2σv
2

, a>0 (114)

is a function representing a Rayleigh distribution, as in Figure 4.14.a, and

f Θ(θ) = 1
2π

, 0<θ≤2π (115)

is a function representing a uniform distribution, illustrated in Figure 4.14.b.

Since for every sample k  of the signal, its power is Pk = |V k|
2 and mean 

power of the signal is P̄ = E (|V|2 ) = 2σv
2 , one can write

f P(P) = 1
P̄
e
−P
P̄ , P>0 (116)

is a function representing an exponential distribution, shown in Figure 4.14.c. 

4.6.3. Real data

The corresponding actual data are obtained for a full sector of this radar made of 

109 radials. Each radial is an array of 2166 range bins and each range bin consists of 40 

samples. These 40 samples from one range bin constitute one time series to analyze in 

order to produce the relevant spectral moments (Power, velocity, spectrum width). 

We have dealt with actual radar raw data in the following circumstances: 

•  Date and time: 03.31.2009 at 02 h 23 min 53 s

• Elevation: 1.5◦

• Range bins: two portions have been selected from two separate radials. 

◦ Radial # 1: the selected portion spans from range bin 70 to range bin 249, 

azimuth = 130°.

◦ Radial # 100: the selected portion spans from range bin 350 to range bin 549, 

azimuth = 239°.
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Figure 4.14: Signal features distributions: a) Rayleigh distribution for amplitude.  
b) Uniform distribution for phase. c) Exponential distribution for power.
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Chapter 5 : Results and comments

5.1. Synthetic signals

The generated signals mimic the real phased array radar signals as follows:

▪ Length of sequences: M = 40 samples,

▪ Wavelength: λ = 0.0937 m,

▪ Sampling period: T s = 0.984 ms,

▪ Maximum non-ambiguous radial velocity: V a = λ
4T s

= 23.81 m/s,

▪ Peak power: P peak = 750 KW.

To compute periodograms, the FFT algorithm is needed, so zero-padding of the 

sequences (of length 40) to 64 points is mandatory to achieve spectra calculation.

Through all the following figures depicting spectral width σ v , in some cases, 

estimated values are erroneous and because of that the continuity of the corresponding 

curve is disrupted as in Figure 5.8, Figure 5.10 and Figure 5.12. This phenomenon is more 

evident in Figure 5.15 and Figure 5.17.

5.1.1. Generation of weather sequences

In this section, the following curves, each of which represents time series (Top) 

and corresponding spectrum (Bottom), are obtained under these circumstances:

▪ Spectral width: σ v = 2 m/s,

▪ Radial velocity: V D = −15 m/s,

▪ SNR = −5,+2,+15 in Figure 5.3, Figure 2.3 and Figure 5.1 respectively.

Visually, spectra are more talkative than counter-part time series. All of the spectra 
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in the bottom of illustrations Figure 5.3, Figure 2.3 and Figure 5.1 are centered at the 

Doppler velocity particularly on high SNR. In some cases, spectrum is bimodal or even 

more. Ground clutter can be located and centered at zero Doppler in addition to weather 

spectrum as it is illustrated by Figure 5.4. Therein, the red curve (Bottom) depicts the ideal 

spectrum whereas the blue curve is the actual spectrum.
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Figure 5.1: Simulated time series of 40 samples and the corresponding spectrum  
for V D=−15m/s , σ v=2m /s  and SNR=−5 .
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Figure 5.2: Simulated time series of 40 samples and the corresponding spectrum  
for V D=−15m/s , σ v=2m /s  and SNR=2 .

63



0 5 10 15 20 25 30 35 40

Time x0.984 [ms]

-3

-2

-1

0

1

2

3

A
m

p
lit

u
d

e
 [

V
]

In-phase and quadrature-phase of one range gate:
Doppler velocity = -15, spectrum width = 2, SNR = 15

-25 -20 -15 -10 -5 0 5 10 15 20 25

V [m/s]

-60

-50

-40

-30

-20

-10

0

P
o

w
e

r 
[d

B
]

Spectrum of the corresponding range gate:
Doppler velocity = -15, spectrum width = 2, SNR = 15

 
Figure 5.3: Simulated time series of 40 samples and the corresponding spectrum  
for V D=−15m/s , σ v=2m /s  and SNR=15 .

Figure 5.4: Bimodal signal composed of weather centered at 10 m/s and ground 
clutter centered at zero Doppler.The red curve (Bottom) depicts the ideal  
spectrum whereas the blue curve is the actual spectrum.

5.1.2. Statistical properties of weather sequences

In this section, complex sequences IQ are assumed to be ground clutter free 
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and only weather return is considered. Both parts, real and imaginary, of weather complex 

sequences comply with theory (Central limit theorem). The distribution is Gaussian Figure

5.5.a Figure 5.5.b. In addition, both parts are uncorrelated , cov (real (IQ) , imag(IQ)) = 0 , 

as it is shown by the scatter plot in Figure 5.6.

Figure 5.5: Statistical properties of a simulated sequence.

5.1.3. Denoising using lifted wavelets and optimum threshold

The following set of figures (from Figure 5.7 t o Figure 5.12) depicts the 

performance of standard algorithm (blue curves), Lifted Wavelet Transform in conjunction 

with Universal Threshold LWT-UT (green curves) and Lifted Wavelet Transform in 

conjunction with an Adaptive Threshold LWT-AT (red curves) through the first and the 

second spectral moments estimation ( V D and σ v ).

For any Doppler radial velocity in the Nyquist interval, [−V a :V a] =

[−23.81:23.81] m/s, as a true velocity (black slanting line), the corresponding estimate 

using LWT-UT (blue curve) or without any treatment (green curve) is very poor for low SNR 

( SNR<10 ). This is depicted in Figure 5.7 and Figure 5.9. But for higher SNR, SNR>15 , 
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the corresponding estimates are considerably enhanced as shown in Figure 5.11. So it is 

for the estimates of spectrum width σ v that are enhanced only for high SNR.

But one can notice very clearly that the proposed method LWT-AT (red curve) 

outperforms the LWT-UT method (green curve) in estimating both the Doppler radial 

velocity V D and spectrum width σ v whatever may be the SNR value as shown in 

Figure 5.7 through Figure 5.12 where SNR = −5,+2,+15 .

Figure 5.6: Scatter plot of quadrature-phase vs in-
phase of a simulated weather sequence.
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Figure 5.7: Doppler Radial velocity: Denoising of simulated signals 
(throughout Nyquist interval) for SNR=−5 , σ v=2m /s , using the 
standard LWT in green and the proposed algorithm in red.

Figure 5.8: Spectrum width: Denoising of simulated signals (throughout  
Nyquist interval) for SNR=−5 , σ v=2m /s , using the standard LWT 
in green and the proposed algorithm in red.
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Figure 5.9: Doppler Radial velocity: Denoising of simulated signals 
(throughout Nyquist interval) for SNR=2 , σ v=2m /s , using the 
standard LWT in green and the proposed algorithm in red.

Figure 5.10: Spectrum width: Denoising of simulated signals (throughout  
Nyquist interval) for SNR=2 , σ v=2m /s , using the standard LWT in  
green and the proposed algorithm in red.
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Figure 5.11: Doppler Radial velocity: Denoising of simulated signals  
(throughout Nyquist interval) for SNR=15 , σ v=2m /s , using the 
standard LWT in green and the proposed algorithm in red.

Figure 5.12: Spectrum width: Denoising of simulated signals (throughout  
Nyquist interval) for SNR=15 , σ v=2m /s , using the standard LWT in 
green and the proposed algorithm in red.

5.1.4. Denoising using Hildebrand and Sekhon algorithm

In the current section, previous considerations are reproduced ( V D spans from 
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−V a=−23.81 m/s to +V a=+23.81 m/s, SNR=−5,+2,+15 and σ v=2 m/s) to test the 

efficiency of an old method proposed by Hildebrand and Sekhon (HS) to objectively 

estimate Gaussian noise level in spectra.

It turned out that HS method does an acceptable job on low SNRs to estimate 

radial velocity V D as it is shown in Figure 5.14 and Figure 5.16 but wouldn't say as much 

about spectrum width estimate for the same low SNRs values as it is depicted by the 

Figure 5.15 and Figure 5.17 where most of the values are discarded because they are 

erroneous.

For high SNR values (>15), HS algorithm is very efficient. The result is shown in 

Figure 5.18 for the radial velocity V D  and in Figure 5.19 for the spectrum width σ v .

The performance of HS algorithm is shown in Figure 5.13 through simulated radar 

signals. As input, noisy weather sequence is plugged in (varying noise level) from 

SNR=−10 t o SNR=50 and the output of the algorithm is the estimated noise level 

from the calculated corresponding spectrum of the sequence.

Figure 5.13: Hildebrand & Sekhon algorithm performance.
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Figure 5.14: Doppler Radial velocity: Denoising of simulated signals  
(throughout Nyquist interval) for SNR=−5 , σ v=2m /s , using the 
Hildebrand & Sekhon algorithm in red.

Figure 5.15: Spectrum width: Denoising of simulated signals (throughout  
Nyquist interval) for SNR=−5 , σ v=2m /s , using the Hildebrand &  
Sekhon algorithm in red.
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Figure 5.16: Doppler Radial velocity: Denoising of simulated signals  
(throughout Nyquist interval) for SNR=2 , σ v=2m /s , using the 
Hildebrand & Sekhon algorithm in red.

Figure 5.17: Spectrum width: Denoising of simulated signals (throughout  
Nyquist interval) for SNR=2 , σ v=2m /s , using the Hildebrand &  
Sekhon algorithm in red.
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Figure 5.18: Doppler Radial velocity: Denoising of simulated signals  
(throughout Nyquist interval) for SNR=15 , σ v=2m /s , using the 
Hildebrand & Sekhon algorithm in red.

Figure 5.19: Spectrum width: Denoising of simulated signals (throughout  
Nyquist interval) for SNR=15 , σ v=2m /s , using the Hildebrand & 
Sekhon algorithm in red.

5.1.5. Comparison 

In this section, comparison between LWT-AT method performance and HS method 
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performance is carried out. Previous conditions are also reused here to test the efficiency 

Figure 5.20: Doppler Radial velocity: Comparison in denoising of simulated  
signals (throughout Nyquist interval) for , SNR=−5  , using the proposed 
algorithm in red and the Hildebrand & Sekhon algorithm in green.

of both algorithms.

Figure 5.21: Spectrum width: Comparison in denoising of simulated signals  
(throughout Nyquist interval) for , SNR=−5  , using the proposed 
algorithm in red and the Hildebrand & Sekhon algorithm in green.
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Figure 5.22: Doppler Radial velocity: Comparison in denoising of simulated  
signals (throughout Nyquist interval) for , SNR=2  , using the proposed  
algorithm in red and the Hildebrand & Sekhon algorithm in green.

Clearly, it is shown that the proposed method (LWT-AT) outperforms the 

counterpart HS method in all the testing conditions (regarding the SNR value) particularly 

in low SNRs. For higher values of the SNR, performance of both methods are almost alike 

with a slight superiority of the LWT-AT method as it is depicted in Figure 5.24 for the 

velocity and in Figure 5.25 for the spectrum width.
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Figure 5.23: Spectrum width: Comparison in denoising of simulated signals  
(throughout Nyquist interval) for , SNR=2  , using the proposed algorithm  
in red and the Hildebrand & Sekhon algorithm in green.

Figure 5.24: Doppler Radial velocity: Comparison in denoising of simulated  
signals (throughout Nyquist interval) for , SNR=15 , using the proposed 
algorithm in red and the Hildebrand & Sekhon algorithm in green.
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Figure 5.25: Spectrum width: Comparison in denoising of simulated signals  
(throughout Nyquist interval) for , SNR=15 , using the proposed 
algorithm in red and the Hildebrand & Sekhon algorithm in green.

5.2. Actual data

5.2.1. Representation of weather sequences

I n Figure 5.26 and Figure 5.28, true radar signals corresponding to range cells 

#380 and #432 respectively. Both are extracted from the same radial #109 of the 

aforementioned phased array radar.

Accordingly, Figure 5.29 and Figure 5.27 depict the corresponding spectra. One 

can speculate that both spectra are noisy because of the presence of skirt-like shape in 

the base all over the Nyquist interval. The first spectrum (#380) is centered at 10 m/s and 

the second one (#432) is centered at 14 m/s.
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Figure 5.26: Time series: Real radar signal corresponding to range cell  
#380 from the radial #109.
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Figure 5.27: Spectrum of time series: Real radar signal corresponding to  
range cell #380 from the radial #109.
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Figure 5.28: Time series: Real radar signal corresponding to range cell  
#432 from the radial #109.
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Figure 5.29: Spectrum of time series: Real radar signal corresponding to  
range cell #432 from the radial #109.

79



5.2.2. Statistical properties of real radar signals

As an illustration, range bin #380 of the radial #109 is considered and depicted by 

the Figure 5.30. All of the tested range gates signals of the real radar data in our hands 

have shown their statistical properties as in Figure 5.32.

Both in-phase and quadrature-phase signals distributions are Gaussians centered 

at zero. There is no correlation between both signals as it is depicted by the scatter plot in 

Figure 5.31.

Figure 5.30: Real phased array radar signal and the corresponding  
spectrum (Range bin #380 from radial #109).
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Figure 5.31: Scatter plot of a real signal  corresponding to range bin #380  
from radial #109.

Figure 5.32: Statistical properties of a selected range bin sequence from  
the radial #109.
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5.2.3. Denoising using lifted wavelets and optimum threshold

through the following figures of this section, Figure 5.34 to Figure 5.37, where 

Figure 5.34 and Figure 5.35 correspond to radial velocity and spectrum width of an excerpt 

from radial #1 (uttermost left of the sector shown in Figure 5.38), from range bin #70 to 

range bin #249 and Figure 5.36 along with Figure 5.37 correspond to radial velocity and 

spectrum width of another excerpt from radial #100 (uttermost right of the sector shown in 

Figure 5.38), from range bin #350 to range bin #549.

On these two sets of data, the proposed method (LWT-AT) is applied. The results 

show that the performance of the proposed algorithm on the data looks like selective (acts 

on some areas and not on others) but it is not the case. This rather shows that the noise  

level is not the same even along one single azimuth (radial). That's why when there is 

noise the estimated velocity has increased and the estimated spectrum width has 

decreased.

Figure 5.33: Performance of the proposed algorithm on real data to estimate the  
spectrum, radial Doppler velocity and spectrum width of the range bin #380 (radial  
#109)

The high performance of the adaptive threshold is shown on one single range bin 

82

-20 -15 -10 -5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

Spectrum of phased array radar time series
Radial # 109 and range gate # 380

Raw spectrum
Denoised spectrum

2 2.5 3 3.5 4 4.5
3

4

5

6

7
Doppler velocity

Raw
Denoised

10.5 11 11.5 12 12.5 13
10.8

11

11.2

11.4

11.6

11.8

12
Spectrum width

Raw
Denoised



(range bin #380 of radial #109) where both spectra (raw and denoised) are represented on 

top of Figure 5.33 and Doppler velocity along with the corresponding spectrum width are 

depicted as well. Doppler velocity has increased from 3.43 m/s to 6.57 m/s. Regarding 

spectrum width, it has decreased from 11.88 m/s to 10.92 m/s as it is expected in 

presence of noise.

Figure 5.34: Performance of the proposed algorithm on real data to  
estimate the radial Doppler velocity from range bin #70 to range bin #249.
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Figure 5.35: Performance of the proposed algorithm on real data to  
estimate the corresponding spectrum width from range bin #70 to range bin 
#249.

Figure 5.36: Performance of the proposed algorithm on real data to  
estimate the radial Doppler velocity from range bin #350 to range bin #549.
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Figure 5.37: Performance of the proposed algorithm on real data to  
estimate the corresponding spectrum width from range bin #350 to range  
bin #549.

5.2.4. Global view of real data

T h e Figure 5.39 shows the filtered PPI view for reflectivity obtained by the 

proposed method using the data from the phased array weather radar testbed located in 

Norman (close to Oklahoma City in Oklahoma State, USA) and shown in Figure 5.38.
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Figure 5.38: Sectorial view of real data from the phased array weather  
radar located in Norman, OK (USA).

Figure 5.39: Filtered real data from the phased array weather radar located  
in Norman, OK (USA).

A comparison of results obtained by two different radars closely to each other is 

carried out. The closest radar to the phased array radar located in Norman is KTLX which 

belongs to the National Weather Service radars network. It is located in North West at 20 

km (in a straight line) from Norman as it is shown by Figure 5.40.

The available data from the phased array radar is picked up at 02:23:53 but the 
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data available from KTLX radar is picked up at 02:22:47 (one minute earlier). The two 

views illustrated by Figure 5.38 and Figure 5.41 are alike despite the minute gap.

Therefore, one can infer that the velocity of the weather perturbation is not high. 

So the two sets of data from the two radars are comparable.

In Figure 5.42, the grid is narrower than the one in Figure 5.41. It complies with the 

one in the Figure 5.38 corresponding to the phased array radar located in Norman.

The Figure 5.43 depicts a projection onto Google Earth of the gridded view of the 

Figure 5.42 through a kmz file (Google Earth file format) created by the Weather Toolkit of 

the federal agency NOAA (National Oceanic and Atmospheric Administration).

Figure 5.40: Location of the phased array radar (Norman, OK) relatively to the WSR-88D  
KTLX radar (S.W. of Oklahoma City).
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Figure 5.41: View of the same weather perturbation by KTLX radar.

Figure 5.42: Gridded and labeled view of the sector corresponding to the phased array radar  
sight for the storm.
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Figure 5.43: Reconstruction of the shade of the storm in conjunction of Google Earth and  
NOOA Weather and Climate Toolkit.
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Chapter 6 : Conclusion and recommendations for 
future work

6.1. Summary and conclusions

The objective of this work is to estimate the dynamic properties of a weather radar 

signal using spectral approaches. A number of various methods for spectrum estimation 

were developed using both simulated and actual data. Parametric and non-parametric 

procedures are the two major approaches that are assessed and used in many fields, 

including weather radar domain. Both have advantages and drawbacks. Mainly, parametric 

methods have a higher complexity and need more computational resources than non-

parametric ones. On this aspect, non-parametric approaches are faster than parametric 

ones.

On the other hand, using parametric methods may help to produce better spectral 

estimates with lower uncertainty than those obtained with non-parametric procedures.

The ideal approach would be the one that would offer a high accuracy of estimates 

without being greedy in computational resources.

In this work, an alternative approach is developed and assessed using both 

synthetic and real data. This approach is based on the synergy of three (03) elements: 

Periodogram, Lifting Scheme Wavelet Transform and Adaptive Thresholding.

The advantage of periodogram is that it is fast to compute but it lacks of accuracy, 

which is a serious drawback. This inconvenience is corrected by the use of a Lifted 

Wavelet Transform (LWT). This latter is enhanced by the use of an adaptive thresholding 

of wavelet coefficients.

In weather radar applications, the wavelet transform is not very used. It is rather 
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used in atmospheric radars. The two types of radars operate differently. The major 

consequence is the large difference between lengths of their respective signals. 

Atmospheric radar signals (time series) are much longer than weather radar counterparts.

Wavelet transform is much better suited for long signals because many levels can 

be exploited in search of any remaining noise power in those signals.

Unlike the case of the weather radar signals which are short, wavelet transform 

can be performed only on very few levels. Consequently, the associated standard 

thresholds to apply on wavelet coefficients are never efficient to remove all the existing 

noise as it has been shown by the obtained results.

So the prominent problem of efficiency of wavelet transform performed on weather 

radar signals is the short length thereof associated with standard thresholds (universal, 

minimax, SURE, etc.).

Another problem inherent to the use of wavelet transform is the computational 

burden substantially implied when the involved wavelet is a long filter. 

The filter length is paired with the number of vanishing moments of the wavelet. As 

this number characterizes smoothness, the result of the wavelet transform processing is in 

turn smooth without sharp edges, provided that the selected wavelet has a high number of 

vanishing moments.

This complex problem is solved, in this work, by using a LWT associated with a 

long filter but symmetric (Biorthogonal wavelets). While the length of the filter provides 

smoothness, symmetry provides half the burden of computations (because we don't need 

to recalculate symmetric (equal) coefficients).

To enhance the performance of the LWT on Doppler spectrum, the Universal 

Threshold, which is a very simple and fast to determine is used as a first guess. This type 

of threshold could be very efficient if weather radar signals were long. This initial value is 

iteratively incremented while Doppler radial velocity along with spectrum width are 

recalculated and compared to their corresponding previous values. All the procedure is 

designed and described.

As long as noise still remains in the Doppler spectrum, both Doppler radial velocity 

and spectrum width will be biased. The former (i.e, V D ) is underestimated and the latter 

(i.e, σ v ) is overestimated.

So, while removing an amount of noise after each iteration, the two estimates get 

closer to their respective true values. The final iteration will be the one where both 
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Doppler radial velocity and spectrum width don't get enhanced any better. This means that 

almost all the noise is no longer present in the estimated spectrum.

The necessary number of iterations is noise level dependent. The higher the level 

of noise is, the higher the necessary number of iterations is. If there is no noise, then there 

will not be any iteration. This fact is incentive and encouraging to apply the algorithm at all 

range bins and all elevations because if, at any range bin, there would be no noise then 

there would be no waste of time upon iterations.

The performance of the algorithm on real data (Figure 5.33 through Figure 5.37) 

shows that the noise level is not the same everywhere, not even on a same radial. This 

attests the necessity to estimate noise level at all range bins and elevations in contrast to 

the fact that it is commonly considered as a constant valued for a whole radar sweep.

The performance of the algorithm on simulated data shows that as of  

SNR = 15 dB, there is no need for any algorithm to improve spectrum estimate.

On the other hand, when SNR is lower than 2 dB, the algorithm is still very 

efficient, as it is shown on Figure 5.7 through Figure 5.10.

The detection threshold of the U.S Weather Surveillance Radar (WSR-88D) is 2 

dB for reflectivity ( Z ) and 3 dB for Doppler radial velocity ( V D ). through the simulated 

data, the algorithm can extract weather spectrum even at SNR = −5  dB.

The selected real data, in this work, are chosen on the basis that they are ground 

clutter free. This is to show the true performance achieved by the developed algorithm to 

estimate Doppler spectrum with a high accuracy.

As regards the simulated signals, they not only are ground clutter free but also 

generated to very unfavorable cases ( SNR = −5 dB), again to highlight the efficiency 

reached by the developed technique.

6.2. Recommendation for future work

Logical actions to be taken consequently to this work may be suggested in the 

following topics for future research:

▪ To be able to apply the developed algorithm (in this work), without any 

limiting circumstances like presence of ground clutter, it is recommendable to 

first remove this latter. So, it is desirable to devise an intelligent technique to 

carry out the task using wavelet transform. The intelligence refers to the 

detection capability of presence or absence of ground clutter in the current 
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range location, followed by the decision whether to apply, or not, the 

technique to remove it.

▪  Once all the data are cleaned from all any impurities (noise, ground clutter, 

etc.), any further processing would be less subject to uncertainties. It is 

desirable to carry out a thorough study of the most challenging application of 

weather radars (dual polarized) which is the precipitation estimation in 

presence of a mixture of hydrometeors according to their respective drop 

size distributions (DSD),  as well as understanding the microphysics of 

hydrometeors in order to be capable to recognize their corresponding 

signatures and classify them. 
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Appendix A: 

Factorizing of the biorthogonal wavelet filter pair that has been used in 
this work

The biorthogonal wavelet that has been selected in this thesis is the well known 

9/7 filter pair. It is used in several domains because it is very effective.

The reason it is called that way is that the analysis filter
~
h has 9 coefficients, 

while the synthesis filter h  has only 7 coefficients. The corresponding number of 

vanishing moments of the two involved wavelets ( g and ~g )are four (4).

The achievement of a transform through this biorthogonal wavelet needs two 

wavelets (one for analysis and the other for reconstruction) and two corresponding scaling 

functions (again, one for analysis and the other for reconstruction). These four elements 

are considered as FIR filters and their corresponding equations are as follows:

Analysis low pass filter (Decomposition scaling function):

~h (z )=~h4(z
4+z−4)+~h3(z

3+z−3)+~h2(z
2+z−2)+~h1(z+1)+~h0

Analysis high pass filter (Decomposition wavelet): 

~g (z )=~g3(z
3+z−3)+~g2(z

2+z−2)+~g1(z+1)+~g0

Reconstruction low pass filter (Reconstruction scaling function): 
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h(z)=h3(z
3+z−3)+h2(z

2+z−2)+h1(z+1)+h0

Reconstruction high pass filter (Reconstruction wavelet):

g(z)=g4(z
4+z−4)+g3(z

3+ z−3)+g2(z
2+z−2)+g1(z+1)+g0

where the coefficients values are as follows:

h0=0.788485616614, h1=0.418092273333,
h2=−0.040689417620, h3=−0.064538882646

g0=0.852698679009, g1=−0.377402855613, g2=−0.110624404418,
g3=0.023849465019, g4=0.037828455507

~h0=g0 ,
~h1=−g1 ,

~h2=g2 ,
~h3=−g3 ,

~h4=g4
~g0=h0 ,

~g1=−h1 ,
~g2=h2 ,

~g3=−h3 .

Curves of this biorthogonal wavelet are depicted in Figure 6.1 where 

analysis/synthesis wavelets along with scaling functions and their corresponding filters are 

represented.  
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Factorization of the filters

The analysis filter
~
h (z) will be decomposed into two filters (even part and odd 

part).
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Figure 6.1: Biorthogonal 9/7 wavelet: Decomposition wavelet and its scaling function and their  
corresponding filters (Top). Reconstruction wavelet and its scaling function and their corresponding  
filters (Bottom). 



~
h (z ) =

~
h4 (z

4+z−4)+~h3(z
3+ z−3)+~h2(z

2+z−2)+~h1(z+1)+~h0

=
~
he(z )+z

−1~ho(z )

The even polynomial and the odd polynomial are derived as follows:

~he(z ) = ∑
k

~h2k z
−k

= ~h 4(z
2+z−2)+~h 2(z+ z

−1)+~h o

for the even part, and

~ho(z) = ∑
k

~h2k+1 z
−k

=
~
h3(z+z

−1)+~h1(z+1)
for the odd part.

As regards to the analysis wavelet filter 

~g (z ) = ~g3(z
3+z−3) + ~g2(z

2+ z−2) + ~g1(z+1) + ~g0 , it will be decomposed into the two 

following filters (even part and odd part).

~ge(z)=
~h2(z+z

−1)+~ho for the even part, and

~go(z )=−~h3(z
2+z−2)−~h1(z+1) for the odd part.

From these equations, a polyphase matrix is derived as follows:

~P (z ) = (
~
h e(z ) ~g e(z )
~h o(z) ~go (z )) = ∏

i=1

m

( 1 0
−si(z

−1) 1)(1 −t i(z
−1)

0 1 )(k 0
0 1/k)

where si(z
−1) are the lifting polynomials of the low pass sub-band with the help of the 

high pass sub-band and ti(z
−1)  are the lifting polynomials of the high pass sub-band 

with the help of the low pass sub-band.

The polynomials are as follows:

s1(z )=α1(1+z
−1) t1(z)=β1(1+z

−1)
s2(z )=α2(1+z

−1) t2(z)=β2(1+z
−1)

where 
α1=−1.586134342060 , β1=−0.052980118573,
α2=0.882911075531, β2=0.443506852044,
k=1.149604398860 .
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Implementation of the biorthogonal wavelet transform 9/7

If S is the input signal of the wavelet transform, then the equations involved would 

yield the following implementation.

d(1)[n]=S [2n+1]+αS [2n]+αS [2n+2]

c(1)[n]=S [2n]+βd(1)[n]+βd(1)[n−1]

d(2)[n]=d(1)[n]+α2c
(1)[n]+α2c

(1)[n+1]

c(2)[n]=c(1) [n ]+β2d
(2)[n]+β2d

(2)[n−1]

c=k c(2)[n]

d=d(2)[n] /k

The inverse wavelet transform implementation will be as follows:

d(2)[n]=d⋅k

c(2)[n]=c /k

c(1)[n]=c(2) [n]−β2 (d(2)[n]+d(2)[n−1])

d(1)[n]=d(2)[n]−α1 (c(1)[n]+c(1)[n+1])

S [2n]=c(1)[n]−β1 (d(1)[n ]+d(1)[n−1])

S [2n+1]=d(1)[n]−α1 (S [2n+1]+S [2n+2])
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Appendix B: 

Generation of weather-like Doppler radar signals

It is a prominent task to compare, under controlled conditions, the performance of 

various Doppler radar signal processing techniques. Zrnic [58] presented a method that 

generates directly an arbitrarily shaped power spectrum with the essential weather-like 

signal properties.

Some hypotheses have to be taken into account:

• Weather echo spectrum is narrow-band, unlike noise spectrum that is broadband.

• Weather signal power is larger than noise power.

• Weather echo and receiver noise have almost similar statistical properties.

For a given range bin, the ith sample in-phase I and quadrature-phase Q 

components can be written as

{ I (i) = s (i)cos(ϕ(i))+n(i)cos(ϕ(i))
Q(i) = s (i)sin(ψ(i))+n(i)sin(ψ(i))

where:

s(i) : weather signal envelope

ϕ(i) : uniformly distributed phase of s(i)

n(i) : radar noise
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ψ(i) : uniformly distributed phase of n(i)

This pair of equations can be written as follow

I (i)+ jQ (i) = 1
n∑k=1

n

Pk e
jθke

(− j 2π
n

ki)

where Pk is the exponentially distributed instantaneous power of the signal plus 

noise, and θk is a uniformly distributed phase.

Let X_k be a uniform random variable between 0 and 1. The basic probability law 

relates X_k and P_k through

P(Pk)dPk = P x(X k)dXk

Integrating both sides of the equation between 0 and Pk  in the left side and 

between 0 and X k  in the right side, the resulting equation relating the power of the total 

signal Pk  and the random variable X k  is, after simplification,

Pk = −(Sk+N ) log(X k)

The probability density of pk can be written as

P(Pk) = 1
Sk+N

e
−

P k

Sk+N

The steps of the implemented algorithm are:

1. Generate a power spectrum of signal with an arbitrarily shaped Sk

2. Choose the noise power N so as to have a signal to noise ratio as follow

SNR = signal
noise

= 1
nN

∑
k=1

n

Sk

3. The signal and noise powers are added, at each frequency, and multiplied with the 

logarithm of a uniformly distributed random number X k  to generate a desired 

power spectral component Pk .
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Appendix C: 

Determination of the noise level from a Doppler radar spectrum by 
Hildebrand & Sekhon

The importance of identifying the noise threshold may be seen from computation 

of the variance of the Doppler spectrum. The computed Doppler spectrum variance can be 

seriously affected by noise, if the signal to noise ratio is low. To avoid this problem, spectral 

lines due to radar system noise should be removed from the variance computation.

The signals due to weather and to radar system noise are both Gaussian. Where 

the former has a colored spectrum and the latter has a white one. The following figure (left 

part) depicts a typical spectrum of a combined signal (weather + noise).

From this spectrum, we construct a new spectrum by rejecting spectral densities 
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stronger than an arbitrarily assigned threshold (central part of the figure), and by forming a 

continuous spectrum out of the remaining parts of the spectrum.

For a given spectrum, we can apply a series of decreasing thresholds until the 

constructed spectrum satisfies the conditions of white noise. This particular threshold 

would, then, be the noise threshold.

In order to test for white noise, the following parameters are calculated:

σ2 = ∑ f n
2Sn

∑ Sn

− (∑ f nSn

∑ Sn
)

2

σN
2 = F2

12

P =
∑ Sn

N

Q = ∑ (Sn
2

N ) − P2

R1 =
σN

2

σ2

R2 = P2

Q p

F is the frequency spread of the spectrum, N is the number of spectral densities, p 

is the number of lines over which a moving average is taken.

For white noise, the ratios R1  and R2  should be equal to one.
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