UNIVERSITE DE BLIDA 1

Faculté de Technologie Département de Génie Civil

THÈSE DE DOCTORAT

Spécialité : Génie Civil

ESTIMATION DE L'EFFET DE LA TORSION DANS LES BATIMENTS SOUMIS A L'ACTION SISMIQUE

Par

Mohamed Draidi BENSALAH

Devant le jury composé de :

K. Grine	Professeur, U. Blida1	Président
A. Bali	Professeur, ENP, Alger	Examinateur
M.K. Mihoubi	Professeur, Directeur de l'ENSH, Blida	Examinateur
N. Bourahla	Professeur, U. Blida1	Examinateur
R. Taleb	Maître de conference « A », U. Blida1	Examinateur
M. Bensaibi	Professeur, GITRAMA, Alger	Directeur de Thèse
A. Modaressi	Professeur, CentraleSupélec, Paris, France	Inviter

REMERCIEMENT

En premier lieu, je voudrais exprimer ma gratitude à mon directeur de thèse, Mahmoud BENSAIBI, Cadre Dirigeant à la GITRAMA (Groupe d'Infrastructure de Travaux Maritimes), pour m'avoir encadré et dirigé avec sérénité et détermination afin de mener à bien ma thèse de doctorat. Je lui dois tout mon respect et gratitude et je lui dis tout simplement Merci.

J'adresse mes profonds remerciements à Madame Arezou MODARESSI, Professeur au Laboratoire MSSMat Mécanique des Sols, Structures et Matériaux, CentraleSupélec, LMSS- Mat, CNRS UMR 8579, Bât EIFFEL 91190 GIF sur YVETTE, France, pour avoir bien accepté de me co-encadrer. Je la remercie aussi pour sa disponibilité, ses conseils et encouragements qui m'ont été d'une aide précieuse pendant mes travaux de thèse. Je lui en suis profondément reconnaissant.

Je voudrais remercier, Professeur Fernando Lopez-CABALLERO, enseignant chercheur au Laboratoire MSSMat Mécanique des Sols, Structures et Matériaux, CentraleSupélec, LMSS- Mat, CNRS UMR 8579, Bât EIFFEL 91190 GIF sur YVETTE, France, qui n'a ménagé aucun effort pour m'orienter, m'aider et encourager et dont la longue expérience m'a été d'un apport inestimable.

Je remercie respectueusement, Monsieur Khaled GRINE, Professeur à l'Université Blida 1, pour avoir bien voulu accepté de présider le jury et de n'avoir ménagé aucun effort pour faire aboutir la soutenance de cette thèse. Je lui transmets toute ma reconnaissance.

Mes vifs remerciements s'adressent particulièrement à Monsieur Noureddine BOURAHLA, Professeur à l'Université Blida 1, pour avoir accepté de donner un peu de son temps pour examiner et commenter cette thèse.

Mes vifs remerciements s'adressent particulièrement à Monsieur Rafik TALEB, Maître de conférences « A » à l'Université Blida 1, pour avoir accepté de donner un peu de son temps pour examiner et commenter cette thèse.

Il m'est particulièrement honorable, d'adresser ma reconnaissance à Monsieur Abderrahim BALI, Professeur à l'ENP (l'Ecole Nationale Polytechnique) Alger, qui a accepté de se rendre disponible afin d'examiner et apporter un regard critique sur ce travail.

Un remerciement particulier et chaleureux s'adresse aussi à Monsieur Mustapha Kamel MIHOUBI, Professeur et directeur de l'école nationale supérieur de l'hydraulique (ENSH) Blida, pour l'honneur qu'il m'a fait en acceptant d'examiner et commenter cette thèse.

J'exprime ma reconnaissance à Mr Mehdi BOUKRI du CGS, qui n'a ménagé aucun effort pour m'aider et encourager pendant la préparation de ce travaille de recherche.

Je remercie tous ceux qui, de près ou de loin, ont contribué à ce qu'une partie des travaux de cette thèse ait été réalisée, par l'intermédiaire du co-encadrement, dans le cadre du programme de coopération intergouvernementale pour l'enseignement supérieur et la recherche entre l'Algérie et la France (PROFAS).

En dernier, j'exprime toute ma reconnaissance et ma gratitude à mon épouse, ma mère et mon défunt père, mes frères et sœurs pour leur soutien inaltérable.

DEDICACE

Ala mémoire de mon père,

A ma mère,

H ma femme et mes chers enfants

Mes sæurs et mes frères

A ma cousine

H mes beaux-parents, beaux-frères et belles-sœurs,

H tous mes amis.

RESUME

Les effets de torsion peuvent modifier de façon significative la réponse sismique des bâtiments asymétriques. Le présent travail traite l'influence des paramètres d'entrée sur la réponse sismique d'une structure asymétrique. Plusieurs analyses dynamiques non linéaires sont effectuées afin d'évaluer les effets de la torsion sur la réponse sismique d'une structure asymétrique et de montrer leurs prépondérances. L'importance des caractéristiques incertaines du mouvement sismique d'entrée sur le dommage structurel et la sensibilité de la réponse aux paramètres d'entrée sont évaluées en utilisant la simulation de Monte Carlo (MC). L'influence de ces paramètres est quantifiée par l'utilisation du coefficient de corrélation partielle (PCC). La réponse inélastique en termes de déplacement au sommet est calculée et utilisée pour construire des courbes de fragilité afin de quantifier la probabilité d'atteindre différents niveaux de dommages considérés en fonction du mouvement d'entrée.

Mots-clés: Effets de torsion; Séismes; Bâtiments asymétriques ; Comportement nonlinéaire ; Analyse temporelle ; Incertitudes ; Courbes de vulnérabilité.

SUMMARY

Torsional effects may significantly modify the seismic response of asymmetric buildings. The present work deals with the influence of input parameters on the seismic response of an asymmetric structure. Several nonlinear dynamic analyses are performed in order to evaluate the effects of torsion on the seismic response of an asymmetric structure and to show their preponderances. The importance of the uncertain characteristics of input seismic motion on structural damage and the sensitivity of response to input parameters are assessed using Monte Carlo simulation (MC). The influence of these parameters is quantified through the use of the partial correlation coefficient (PCC). The inelastic response in terms of top displacement is calculated and used to build seismic fragility curves in order to quantify the probability of attaining different considered damage levels according to the input motion.

Keywords: Torsion effects; Earthquakes; Asymmetric Buildings; Non-linear Behaviour; Time history Analysis; Uncertainty; Vulnerability curves.

الملخص

يمكن لآثار الاتواء أن تغير بطريقة كبيرة في الاستجابة الزلزالية للمباني الغير المتماثلة. يهدف هذا العمل إلى دراسة تأثير المعاملات المدخلة على الاستجابة الزلزالية لمبنى غير متماثل. حيث تم إجراء العديد من التحليلات الديناميكية الغير خطية لتقييم آثار الاتواء على الاستجابة الزلزالية لمبني غير متماثل وإظهار رجحانها. يتم تقييم أهمية الخصائص غير المؤكدة للحركة الزلزالية المدخلة على الأضرار الهيكلية وحساسية الاستجابة للمعاملات المدخلة باستخدام محاكاة مونتي كارلو (MC). يتم قياس تأثير هذه المعاملات باستخدام معامل الارتباط الجزئي (PCC). يتم تقييم الاستجابة غير المرنة من حيث مقدار الإزاحة في أعلى المبنى و المعاملات المدخلة باستخدام محاكاة مونتي كارلو رالك الية قياس تأثير هذه المعاملات باستخدام معامل الارتباط الجزئي (PCC). يتم تقييم الاستجابة غير المرنة من حيث مقدار الإزاحة في أعلى المبنى و المعاملات المدخلة.

كلمات مفتاحية : آثار الالتواء؛ الزلازل؛ المباني الغير المتناظرة؛ السلوك اللاخطي ؛ التحليل الزمني؛ الارتياب؛ منحنيات الهشاشة.

TABLE DES MATIERES

INTRODUTION GENERALE	20
CHAPITRE 1 :	23
ETUDE BIBLIOGRAPHIQUE	23
1.1. Introduction	23
1.2. Phénomène de torsion	23
1.3. Natures de la torsion	24
1.4. Excentricité	24
1.5. Irrégularités structurelles	26
1.6. Conséquences des séismes sur les structures irrégulières	26
1.6.1. Dommages dûs a l'irrégularité en plan	27
1.6.2. Dommages dûs à l'irrégularité en élévation	32
1.6.2.1. Conséquence de l'irrégularité de la rigidité – (Cas d'étage souple)	32
1.6.2.2. Conséquence de la distribution irrégulières de la géométrie, de la de la rigidité latérale	masse et
1.7. Etudes analytiques réalisés sur des structures asymétriques	35
1.8. Travaux effectués pour des structures asymétriques plan à un seul étage	37
1.9. Etudes expérimentales	43
1.10. Dispositions de la torsion dans des codes de conception parasismiques	44
1.10.1. RPA99/Version 2003	46
1.10.2. IBC et ASCE/SEI 7	47
1.10.3. Eurocode 8	48
1.10.4. NBCC	50
1.10.5. KBCS	51
1.11. Comparaison des excentricités de conception	51
1.12. Conclusions	52
CHAPITRE 2 :	54
FONDEMENTS THEORIQUES DE LA METHODE D'ANALYSE	54
2.1. Introduction	54
2.2. Description du modèle	54
2.3. Matrice de rigidité élastique	55
2.4. Matrice de rigidité à deux composants	58

2.5. Modèle constitutif de poutre non linéaire	64
2.6. Surfaces rendement (Yield surfaces) de la poutre	66
2.7. Forces de résistance (Resisting force) dans un élément	68
2.8. Excentricité d'extrémité dans l'élément	70
2.9. Formulation dynamique	71
2.9.1. Matrice de masse cohérente (Consistent mass matrix)	73
2.9.2. Matrice de masse localisée (Lumped mass matrix)	74
2.9.3 Vecteur de force nodale d'un élément cohérent	74
2.10. Conclusion	74
CHAPITRE 3 :	76
CARACTERISATION DE LA TORSION	76
3.1. Introduction	76
3.2. Modèle de poutre utilisé	76
3.3. Description des cas étudiés	77
3.3.1. Caractéristiques des structures à un seul étage étudiés	78
3.3.2. Caractéristiques de la structure multi-étage étudié	80
3.4. Évaluations du facteur ductilité (μ) et du facteur de réduction (<i>Re</i>)	
3.5. Caractéristiques des enregistrements sismiques	
3.6. Résultats et discussion	
3.6.1. Structure à un seul étage (AS et SY)	
3.6.2. Structure multi-étage (SPEAR)	93
3.7. Conclusion	95
CHAPITRE 4 :	97
QUANTIFATION DE LA TORSION	97
4.1. Introductions	97
4.2. Démarche suivie	97
4.3. Analyse des incertitudes	98
4.4. Analyse de sensibilité	98
4.5. Méthodes basées sur l'échantillonnage (Simulation Monte Carlo)	99
4.6. Analyse de régression	99
4.7. Coefficients de corrélation	
4.8. Structure utilisée pour l'étude de sensibilité	

4.8.1. Caractéristiques de la structure étudiée	102
4.8.2. Caractéristiques des enregistrements sismiques	106
4.9. Résultats et discussion de l'analyse de sensibilité	109
4.9.1. Quantification des incertitudes	109
4.9.2. Quantification des incertitudes structure « SPEAR »	112
4.9.3. Simulations numériques d'une structure irrégulière en plan	114
4.9.3.1. Déplacement au sommet	114
4.9.3.2. Réduction de la force	117
4.9.3.3. Analyses de sensibilités	
4.10. Courbes de fragilités	
4.10.1. Calcul des courbes de vulnérabilité	
4.10.2. Application sur la structure irrégulière en plan	124
4.11. Conclusion	
CHAPITRE 5 :	129
ETUDE COMPARATIF ENTRE L'ANALYSE DYNAMIQUE NON LI L'ANALYSE EXPERIMENTALE DE DEUX STRUCTURES ASYN (BENCHMARK STUDIES)	NEAIRE ET 1ETRIQUES 129
5.1. Introductions	129
5.2. Description des modèles physiques	129
5.2.1. Caractéristique du modèle A	131
5.2.2. Caractéristique du modèle B	
5.3. Description des tests	136
5.4. Mouvements d'entrée	137
5.5. Génération de mouvement cible	139
5.6. Génération de mouvement de référence de la table de secousse	142
5.6.1. Essais préliminaires et résultats avec spécimen d'étalonnage	142
5.6.2. Mouvement de référence	143
5.7. Changements importants dans le modèle et la configuration expérimenta	ale145
5.8. Etudes analytiques	147
5.9. Résultats	151
5.9.1. Déplacements relatives de la structure « A »	151
5.9.2. Déplacements relatives de la structure « B »	154

5.10. Conclusions	157
CONCLUSIONS	158
Conclusion générale	158
ANNEXE A : DEFINITION DES CARACTERISTIQUES DU MOUVEMEN	NT DU SOL 161
ANNEXE B : DEFINITION DES EXCENTRICITES STATIQUES ET DYI	NAMIQUES 162
ANNEXE C : LISTE DES ENREGISTREMENTS DES MOUVEMENTS SELECTIONNES	SISMIQUES 164
C.1. Iverlino et Cornell (2005)	164
C.2. Bradley et <i>al</i> . (2010)	168
C.3. Akkar et <i>al</i> . (2005)	170
C.4. Sorrentino et <i>al</i> . (2008)	173
ANNEXE D : DEFINITION DE L'ERREUR DANS LES DEPLACEMENTS ENTRE RESULAT ANALYTIQYE ET CELUI EXPERIMENTALE ET RES CHALLENGE	S RELATIFS SULTAT DU 175
ANNEXE E : LISTE DES SYMBOLES ET DES ABREVIATIONS	179
REFERENCES	181
REFERENCES SCIENTIFIQUES DU DOCTORANT EN RELATION THESE	AVEC LA 192

LISTE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX

Figure 1.1 : Les Déplacements relatifs latéraux
Figure 1.2 : (a) Irrégularité de torsion. (b) Système structurel régulier25
Figure 1.3 : Classification de différents types d'irrégularités structurelles
Figure 1.4 : Causes de rupture du au tremblement de terre de 1985 au Mexique27
Figure 1.5 : Les dommages causés par l'irrégularité en plan au cours du séisme de 1978 à
Miyagi-Ken-Oki, (Japon)
Figure 1.6 : Dommages causés par une irrégularité au cours du tremblement de terre de
2010 du bâtiment du ministère de la Culture en Haïti
Figure 1.7 : Dommages causés par une irrégularité au cours du tremblement de terre de
1976 au Guatemala, d'un hôtel en (R+5)
Figure 1.8 : Dommages dans les angles rentrants dûs aux oscillations différentielles,
(séisme de Kobé, Japon 1995)
Figure 1.9 : Effondrement de structures dues à des déplacements importants, séisme de
Boumerdès, (2003)
Figure 1.10 : Dommages causés par une irrégularité en élévation (Cas de présence d'étage
souple) au cours du tremblement de terre de 2007 à Pisco-Chincha, (Pérou)33
Figure 1.11 : Dommages causés par une irrégularité en élévation (Cas de présence d'étage
souple) au cours du séisme de Kobe, (Japon) en 1995
Figure 1.12 : (a) : Le Minaret est effondré à une Mosquée à Boudouaou, (b) : Le RDC est
effondré complètement, Zemmouri ville, W. Boumerdès (Algérie) suite au Séisme de
(2003)
Figure 1.13 : Effondrement des étages supérieurs avec des dimensions réduites (a) :
Kalamata (GR) 1986; (b) : Kocaeli (TR) 1999
Figure 1.14 : Les effondrements du niveau intermédiaire dûs à des changements brusques
de rigidité ou de résistance des éléments verticaux (Kobe 1995)
Figure 1.15 : (a) Modèle massique excentrique (M) et (b) modèle de rigidité et de
résistance excentrique (SR) : périodes latérales découplées de 0,3 s et 0,4 s, et une période
de vibration de torsion de 0.254 s sont assumés
Figure 1.16 : Rapports entre déplacements normalisés inélastiques et élastiques obtenus par
Figure 1.17 : Les modèles d'hystérésis de la rigidité et de détérioration de la résistance
utilisés par

Figure 1.18 : Emplacements CR et CV des quatre modèles comparés et historiqu	ie des
temps de rotation des tabliers sous les excitations sismiques bidirectionnelles El Centr	ro41
Figure 1.19. : Les méthodes communes d'analyse structurale utilisées dans les coc	les de
conceptions, $Cl\acute{e}$, E = Analyse élastique; I = Analyse inélastique	45
Figure 2.1 : Modèle à deux composants.	55
Figure 2.2 : Convention de signe pour les champs de déplacements et de rotations	56
Figure 2.3 : Poutre à deux composantes.	61
Figure 2.4 : Représentation graphique de l'essai de traction simple et l'interprétati	on du
paramètre de durcissement $R = k(\varepsilon^{p})$ et $k'(\varepsilon^{p})$.	65
Figure 2.5 : Surfaces d'interaction de rendement (Yield interaction surfaces)	67
Figure 2.6 : Correction d'équilibre pour dépassement de la surface de rendement	68
Figure 2.7 : Déformations et déplacements.	69
Figure 2.8 : Excentricités d'extrémité (cas 2D)	70
Figure 2.9 : Fonctions de forme de l'élément Poteau-poutre	72
Figure 3.1 : Modèle à deux composants.	77
Figure 3.2 : Description de la géométrie et de la section transversale des éléments des	deux
structures	78
Figure 3.3 : Courbe de surface d'interaction moment de flexion-effort axiale (M-N)) pour
les éléments « Poteaux-Poutres » des deux structures	80
Figures 3.4 : Description de la géométrie de la structure multi-étage	81
Figure 3.5 : Détails du plan de ferraillage des éléments (Unités: m pour la longueur	r, mm
pour Φ des barres)	82
Figure 3.6 : Excentricité statique (es) entre (CM) et (CR) de la structure [Unité : m]	83
Figure 3.7 : Périodes élastiques et déformés modales à partir de l'analyse de v	aleurs
propres 3D	84
Figure 3.8 : Courbe de surface d'interaction moment de flexion-effort axiale (M-N)) pour
les éléments poteaux des deux structures.	85
Figure 3.9 : Spectres de réponse des mouvements sismiques d'entrée et spectre de ré	ponse
élastique normalisé pour un amortissement critique ξ égale à 5%	87
Figure 3.10 : Courbe de capacité : Effort tranchant à la base VS déplacements maxim	ale au
sommet pour les deux directions orthogonales X et Y	89
Figure 3.11 : Courbe du déplacement au sommet fonction de l'intensité d'Arias (I_a) pour
les deux directions orthogonales en [Unité : m/s]	90

Figure 3.12 : Courbe de la ductilité en fonction de l'intensité d'Arias (I_a) en [Unité : m/s].
Figure 3.13 : Courbe de la ductilité en fonction de la période dominante (T_p) en [Unité : s].
Figure 3.14 : Courbe facteur de réduction en fonction de l'intensité d'Arias (I_a) en
[Unité : m/s]91
Figure 3.15 : Courbe facteur de réduction en fonction de la période dominante (T_p) en
[Unité : s]
Figure 3.16 : Courbe de l'excentricité dynamique normalisée en fonction de l'intensité
d'Arias (I_{α}) en [Unité : m/s]
u Figure 3.17 : Courbe de canacité : Effort tranchant à la base VS déplacements maximal
nour les deux directions orthogonales X et V
Figures 3.18 · Déplacements (drift) inter-étages (IDx) et (IDx) dans les deux directions
orthogonales respectives de la structure multi étages (IDX) et (IDY) duits les deux directions
Figure 3.19 : Courbe de l'excentricité dynamique normalisée en fonction de l'intensité
d'Arias (L_{α}) en [Unité : m/s] 95
Figure 4.1 : Configuration géométrique et détails du ferraillage des éléments de la structure
[Section (Unités: cm) et harres d'aciers (Unité : mm)]
Figure 4.2. Courbe de surface d'interaction moment de flexion- effort axiale (M-N) pour
les éléments de la structure.
Figure 4.3 : Spectres de réponse des 150 séismes sélectionnés
Figure 4.4 : Spectres de réponse des mouvements sismiques d'entrée (Valeurs max et min)
et le spectre de réponse élastique normalisé à $\xi=5\%$ selon le RPA99/V2003108
Figure 4.5 : Effets des paramètres d'entrée sur le déplacement maximal au sommet suivant
la direction (X) pour la structure (SY)
Figure 4.6 : Effets des paramètres d'entrée sur le déplacement maximal au sommet suivant
la direction (Y) pour la structure (SY)111
Figure 4.7 : Effets des variables d'entrée sur le déplacement maximal au sommet suivant la
direction (X) pour la structure (AS)111
Figure 4.8 : Effets des variables d'entrée sur le déplacement maximal au sommet suivant la
direction (Y) pour la structure (AS)112
Figure 4.9 : Effets des variables d'entrée sur l'excentricité dynamique normalisée112

Figure 4.10 : Effets des variables d'entré sismiques sur le déplacement (drift) inter-étages
dans la direction X pour la structure SPEAR113
Figure 4.11 : Effets des variables d'entré sismiques sur le déplacement (drift) inter-étages
dans la direction Y pour la structure SPEAR113
Figure 4.12 : Effets des variables d'entré sismiques sur l'excentricité dynamique
normalisée ratio (ed/es)114
Figure 4.13 : Déplacement maximal au sommet pour les deux directions orthogonales
respectives (X, Y) en fonction de l'intensité d'Arias (Ia) [unité : m/s]115
Figure 4.14 : Déplacement maximal au sommet pour les deux directions orthogonales
respectives (X, Y) en fonction de l'accélération du sol (PGA) [unité : g]116
Figure 4.15 : Courbe de capacité : efforts tranchants à la base en fonctions du déplacement
maximal au sommet (Vbase/Droof) dans les deux directions orthogonales (X et Y) 118
Figure 4.16 : Courbe de l'excentricité normalisée Ratio (ed/es) fonctions de l'Intensité
d'Arias (Ia) [Unité : m/s]
Figure 4.17 : Coefficients de corrélation (a) et Coefficients de corrélation partielle (b) des
variables aléatoires d'entrée en fonction de la valeur de Droof dans les deux directions
orthogonales (X et Y)
Figure 4.18 : Coefficients de corrélation partielle des variables aléatoires d'entrée en
fonction de la valeur du ratio (ed/es)122
Figure 4.19 : Déplacement maximal au sommet dans la direction Y en fonctions de : (a)
Accélération maximale au sol (PGA) en [Unité : g], et (b) l'Intensité Arias (Ia) en [Unité
m/s]
Figure 4.20 : Courbe de fragilité pour les quatre niveaux de dommages en fonction de : (a)
Accélération maximale du sol (PGA), et (b) Les Probabilités de dommages pour un PGA =
0.50g
Figure 4.21 : Courbe de fragilité pour les quatre niveaux de dommages en fonction de : (a)
Intensité d'Arias (Ia), et (b) Les Probabilités de dommages pour une valeur de Ia = 2.15m/s
Figure 5.1 : Dimensions générales des modèles physiques130
Figure 5.2 : Position des masses sur la dalle et détail de l'une des masses
Figure 5.3 : Plan d'exécutions du modèle A131
Figure 5.4 : Plan de ferraillages des éléments « Poteaux et poutres » en béton armée du
modèle A132
Figure 5.5 : Plan d'exécutions des semelles pour le modèle A

figure 5.6 : Plan d'executions du modele B	134
Figure 5.7 : Plan de ferraillages des éléments « Poteaux et poutres » en bétor	n armée du
nodèle B	
Figure 5.8 : Plan d'exécutions des semelles pour le modèle B	
Figure 5.9 : Configuration du test de la table vibrante	137
Figure 5.10 : Mouvement sismique de référence (REF) utilisée pour g	générer les
nouvements d'entrée pour la table vibrante	
Figure 5.11 : Enregistrement réel et segment temporel utilisé dans le pr	ocessus de
zénération	140
Figure 5.12 : Mouvements du sol cibles	141
Figure 5.13 : Spectre de réponse élastique (5% d'amortissement critique) por	ur les deux
nouvements du sol cibles	141
Figure 5.14 : Vue générale de spécimen 0 avant l'essai préliminaire	142
Figure 5.15 : Série chronologique de référence et d'accélération cible pour	r le niveau
l'intensité de référence	144
Figure 5.16 : Spectre de réponse D-V-A combiné pour le niveau d'intensité d	le référence
Comp 1)	145
Figure 5.17 : Spectre de réponse D-V-A combiné pour le niveau d'intensité d	le référence
Comp 2)	145
· · · · · · · · · · · · · · · · · · ·	143
Figure 5.18 : Vue générale des spécimens	143
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté	
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles	143 146 147 148
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (143 146 147 148 (M-N) pour
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles	143 146 147 148 (M-N) pour 149
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles. Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles. Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20%	143 146 147 147 (M-N) pour 149 du niveau
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles. Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles. Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% l'intensité cible.	
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles. Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles. Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% l'intensité cible. Figure 5.23 : Mouvement sismique généré « MED » correspondant à 70%	
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles. Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles. Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% l'intensité cible. Figure 5.23 : Mouvement sismique généré « MED » correspondant à 70% l'intensité cible.	
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% l'intensité cible. Figure 5.23 : Mouvement sismique généré « MED » correspondant à 70% l'intensité cible. Figure 5.24 : Mouvement sismique généré « REF » correspondant à 100%	
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles. Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles. Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% l'intensité cible. Figure 5.23 : Mouvement sismique généré « MED » correspondant à 70% l'intensité cible. Figure 5.24 : Mouvement sismique généré « REF » correspondant à 100% l'intensité cible.	
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles. Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% l'intensité cible. Figure 5.23 : Mouvement sismique généré « MED » correspondant à 70% l'intensité cible. Figure 5.24 : Mouvement sismique généré « REF » correspondant à 100% l'intensité cible. Figure 5.25 : Mouvement sismique généré « HIGH » correspondant à 20%	
Figure 5.18 : Vue générale des spécimens Figure 5.19 : Position des masses et système de coordonnées adopté Figure 5.20 : Descriptions des modèles. Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (es éléments « Poteaux-Poutres » des deux modèles. Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% l'intensité cible. Figure 5.23 : Mouvement sismique généré « MED » correspondant à 70% l'intensité cible. Figure 5.24 : Mouvement sismique généré « REF » correspondant à 100% l'intensité cible. Figure 5.25 : Mouvement sismique généré « HIGH » correspondant à 20% l'intensité cible.	

Figure 5.27 : Déplacement relative de la structure A suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous MED intensité en [Unité : mm]. .153 Figure 5.28 : Déplacement relative de la structure A suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous REF intensité en [Unité : mm]. ... 153 Figure 5.29 : Déplacement relative de la structure A suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous HIGH intensité en [Unité : mm]. ... 154 Figure 5.30 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous LOW intensité en [Unité : mm]. . 155 Figure 5.31 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous MED intensité en [Unité : mm]. . 155 Figure 5.31 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous MED intensité en [Unité : mm]. . 156 Figure 5.32 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous MED intensité en [Unité : mm]. . 156 Figure 5.32 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous REF intensité en [Unité : mm]. ... 156 Figure 5.33 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous REF intensité en [Unité : mm]. 156

Tableau 1.1 Comparaison des excentricités de conception dans différents codes de
conception internationaux
Tableau 2.1 : Coefficients de rigidité effectifs. 63
Tableau 2.2 : Paramètres du modèle constitutif de Prandtl-Reuss. 66
Tableau 3.1 : Caractéristiques des données de mouvement d'entrée 88
Tableau 4.1 : Récapitulatifs des Propriétés mécaniques du matériau utilisé pour la structure
Tableau 4.2 : Caractéristiques statistiques pour les séismes sélectionnés 109
Tableau 4.3 : Réponse dynamique structurelle obtenue pour la structure dans les deux
directions orthogonales (X et Y)
Tableau 4.4 : États limites des déplacements suivant la direction Y adoptées par Penna et al. 125
Tableau 5.1 : Résultats des essais de compression standard du béton pour le spécimen
d'étalonnage
Tableau 5.2 : Valeurs des masses 147
Tableau C.1 : Propriétés des tremblements de terre selon Iverlino et Cornell (2005) 164
Tableau C.1 : Suite des propriétés des tremblements de terre selon Iverlino et Cornell
(2005)
Tableau C.1 : Suite des propriétés des tremblements de terre selon Iverlino et Cornell
(2005)
Tableau C.1 : Suite des propriétés des tremblements de terre selon Iverlino et Cornell
(2005)
Tableau C.2 : Propriétés des tremblements de terre selon Bradley et al. (2010)
Tableau C.2 : Suite des propriétés des tremblements de terre selon Bradley et al. (2010).
Tableau C.2 : Suite des propriétés des tremblements de terre selon Bradley et al. (2010).
Tableau C.3 : Propriétés des tremblements de terre selon Akkar et <i>al.</i> (2005). [138]171
Tableau C.3 : Suite des propriétés des tremblements de terre selon Akkar et al. (2005)172
Tableau C.3 : Suite des propriétés des tremblements de terre selon Akkar et al. (2005)173
Tableau C.4 : Propriétés des tremblements de terre selon Sorrentino et al. (2008)
Tableau D.1 : Classement des 10 premières équipes participantes pour les déplacements
relatives obtenus dans la structure « A » selon l'erreur (eRMS)176

INTRODUTION GENERALE

Parmi les risques naturels, les tremblements de terre sont les plus imprévisibles et peuvent être dévastateurs. Pendant un séisme, les structures asymétriques subissent habituellement des vibrations de torsion en plus des oscillations latérales. L'une des sources principales de la réponse en torsion des constructions est la distribution asymétrique des centres de masse et de rigidité dans le plan, ce qui est habituellement rapporté à l'excentricité de masse ou de rigidité. Dans le cas de séismes extrêmes ou même modérés, la plupart des bâtiments se comportent de manière inélastique. En raison de ce comportement inélastique, les vibrations couplées de torsion latérale de la structure peuvent être significativement plus élevées que celles prédites par l'analyse linéaireélastique. Dès que l'un des éléments résistants latéraux cède, la position du centre de rigidité change et cela peut induire un changement significatif de l'excentricité de la structure entière.

Différents types de réponse en torsion peuvent se produire que ce soit dans des structures symétriques ou bien asymétriques. La réponse en torsion peut alors survenir pour diverses raisons telles que le comportement inélastique d'éléments résistants ou le rendement irrégulier des éléments latéraux résistant à la charge sismique (i.e. perte de la résistance par plastifications).

Les nouveaux codes sismiques tentent de prendre en compte les effets de la torsion, mais lors de la modélisation il est difficile d'évaluer tous les paramètres qui influent sur le comportement sismiques d'une construction. Ceci est dû à l'utilisation des procédures d'analyses statique linéaire et ou dynamique linéaire qui sont basés sur la réponse élastique linéaire et par conséquent ne peuvent prédire le comportement inélastique des éléments résistants pour des excitations importantes. Les procédures incorporant l'analyse inélastique peuvent réduire l'incertitude et le conservatisme lié aux procédures linéaires par contre il est difficile de trouver des accélerogrammes représentatifs pour chaque zone d'étude.

La prise en compte des effets de la torsion dans les calculs nécessite la quantification des différentes sources induisant ce phénomène. La multitude de ces sources ainsi que leur complexité rend pratiquement impossible de les considérer dans leur

ensemble, néanmoins une évaluation des sources les plus prépondérantes est possible.

Nous nous sommes attelés donc à l'identification et à la quantification des paramètres les plus influant sur le phénomène de torsion ce qui nous a permis d'élaborer le présent document subdivisé en cinq chapitres.

Après une introduction générale donnant le contexte de l'étude, le premier chapitre présente une revue de la littérature liée au phénomène de torsion. Ce chapitre fait état des dommages observés suite à des irrégularités structurelles lors de séismes antérieurs, passe en revue les recherches antérieures sur la réponse sismique des structures irrégulières et présente des dispositions de la torsion dans les réglementations des différents codes de conception parasismiques.

Le deuxième chapitre présente les fondements théoriques de la méthode d'analyse utilisée. Une description du modèle « Poutre 33 » contenu dans le logiciel de calcul élément finis GEFDYN est donnée. Ce modèle est utilisée dans la modélisation des éléments structuraux pour effectuer les analyses statiques non linéaires, dynamiques linéaires et dynamiques non linéaires temporelles, ainsi que pour l'introduction des propriétés non linéaires des éléments des structures étudiées dans le cadre de cette thèse.

Le troisième chapitre traite de l'influence des effets de torsion sur le comportement sismiques des structures irrégulières. Les réponses en torsion élastique et inélastique de structures auto-stables « poteaux-poutres » en béton armé à un et trois étages lors de mouvements sismiques ont été évaluées. Le comportement de la structure à un seul étage est influencé par de nombreux paramètres liés au mouvement du sol, on site l'intensité sismique, la période prédominante, le contenu fréquentiel, et l'effet de torsion induit. Ces effets peuvent être caractérisés par une forte demande en termes d'effort de résistance latéral précisément dans le côté flexible, de ductilité et du facteur de réduction de la résistance. Ces effets sont plus importants dans le cas de structure multi étages (de faible hauteur).

Le quatrième chapitre est réservé à la quantification des différentes sources influençant la réponse en torsion des structures irrégulières en plan à un et trois étages. Les résultats obtenus après une évaluation des sources les plus prépondérantes a montré que l'influence des effets de torsion sur les dommages structuraux est significativement liée aux caractéristiques des séismes d'entrée.

Le cinquième chapitre est dédié à l'étude comparative entre l'analyse dynamique non linéaire et l'analyse expérimentale de deux structures asymétriques dans le cadre de la 15éme Conférence Internationale de Génie Parasismique (15WCEE) qui a eu lieu au Portugal. Nous avons participé à un concours en aveugle «15WCEE Blind Test Challenge ». Les résultats obtenus en termes de déplacements pour les deux modèles étudiés sont très satisfaisante en comparaison avec les résultats expérimentaux, ceci nous conforte sur la fiabilité du modèle élément finis considéré dans l'analyse dynamique non linéaire.

Enfin, une conclusion générale donnant les principaux résultats obtenus ainsi que les perspectives au présent travail achève la présentation de notre travail.

CHAPITRE 1 : ETUDE BIBLIOGRAPHIQUE

1.1. Introduction

Les tremblements de terre sont imprévisibles et peuvent être dévastateurs, il est donc important d'identifier le comportement des structures vis-à-vis des séismes. Parmi les structures les plus importantes et les plus répondus nous avons les bâtiments et nous pouvons distinguer les bâtiments symétriques et les bâtiments asymétriques.

La vulnérabilité sismique des structures asymétriques a été démontrée à plusieurs reprises lors de forts séismes. Les dommages dus au phénomène de torsion ont été fréquemment observés au cours de nombreux tremblements de terre de part le passé.

1.2. Phénomène de torsion

La réponse réelle des bâtiments pendant le tremblement de terre peut généralement être affecté par le couplage entre le mode latéral (i.e. vibrations translationnelle) et le mode de torsion (i.e. vibration rotationnelle). Dans ces bâtiments le centre de masse, par lequel les forces d'inertie induites par le tremblement de terre sont appliquées, ne coïncide pas avec le centre de rigidité, par lequel agissent les forces de réaction générées par les membres latéraux résistant à la charge. La vibration de torsion générée par l'excentricité entre le centre de masse (CM) et le centre de rigidité (CR) peut entraîner une augmentation considérable de la demande de déformation, entraînant des dommages importants [1].

Les enquêtes et analyses menées après le tremblement de terre de 1985 au Mexique ont conclu qu'environ 50% des défaillances étaient directement ou indirectement attribuables à l'asymétrie de la forme structurale [2, 3, 4, 5], c'est-à-dire une répartition irrégulière de la masse, de la rigidité, de la force de résistance selon le plan. Le déplacement excessif et la demande de ductilité qui peuvent être générés dans certains des éléments de résistance dans la gamme de comportement post-élastique de ces bâtiments sous d'important séisme ne sont pas pris en compte de manière adéquate dans les dispositions de conception utilisées pour ces bâtiments [6, 7]. Ceci est reconnu dans les codes de conception sismique et des restrictions sur les changements brusques de masse et de rigidité sont imposées. Les irrégularités de dimensions affectent la répartition de la rigidité et, à leur tour, affectent la capacité, tandis que les irrégularités de masse tendent à influencer la demande imposée. Les dimensions irrégulières constituent le principal domaine de recherche.

<u>1.3. Natures de la torsion</u>

Les réponses de torsion dans les structures proviennent principalement de deux sources : (1) torsion naturelle et (2) torsion accidentelle.

La torsion naturelle : est considérée comme la réponse de torsion résultant du fait de couplage entre les mouvements latéraux et de torsion des bâtiments avec l'asymétrie plan inhérente. Les forces dynamiques agissant sur une structure lors d'un séisme sont fonction de l'inertie de masse et sont considérées comme agissant à travers le centre de masse, (CM), à chaque étage. Si le centre de masse et le centre de rigidité, (CR), de chaque étage ne coïncident pas avec les mouvements de torsion lorsque la structure est soumise à des tremblements de terre [8].

La torsion accidentelle : est le résultat de toute variabilité imprévue dans les propriétés structurelles du bâtiment (i.e. incertitude dans la masse et la rigidité) et les mouvements du sol d'entrée qui conduisent à des changements dans la réponse en torsion. La répartition réelle de la masse dans un bâtiment est probablement différente de l'hypothèse généralement adoptée selon laquelle la masse du bâtiment est concentrée aux étages et uniformément répartie. La torsion accidentelle est responsable de l'incertitude quant à la détermination des emplacements de (CM) et de (CR), ainsi que de l'incertitude quant à la résistance aux charges latérales et aux résistances dues à la variabilité des propriétés des matériaux, des dimensions des éléments, de la fabrication, du contrôle de qualité, des méthodes de construction et l'histoire de chargement précédent (previous load history). Cela implique que même les structures nominalement symétriques sont intrinsèquement asymétriques dans une certaine mesure. D'autres sources de torsion accidentelle sont à signaler tels que : les variations de rigidité dans le temps, l'action inélastique supplémentaire possible, les vibrations de torsion dues au mouvement de rotation de la base (i.e. du sol) et aux variations spatiales des mouvements du sol, ainsi que d'autres sources de torsion imprévues [8, 9, 10, 11, 12].

<u>1.4. Excentricité</u>

Pour de nombreuses structures asymétriques, une torsion excessive est la principale raison de la mauvaise performance sismique. Les effets de torsion augmentent les déformations latérales dans la direction faible de la structure (côté flexible) et diminuent dans la direction forte (côté rigide) comme c'est indiqué sur la figure 1.1. La différence entre les emplacements du centre de masse (CM) et du centre de rigidité (CR) provoque une torsion dans les structures soumises à des charges latérales. Les murs en béton, les ouvertures dans les dalles, l'emplacement des cages d'ascenseurs, etc. peuvent provoquer une excentricité entre le centre de masse et le centre de rigidité comme c'est indiqué sur la figure 1.2 [13].

Figure 1.1 : Les Déplacements relatifs latéraux [13].

 $(\Delta_i)_{\min}$ et $(\Delta_i)_{\max}$ (figure 1.1) représentent respectivement le déplacement latéral relatif minimal et maximal de l'étage i.

 $(\Delta_i)_{ort}$ (figure 1.1) est la valeur moyenne de déplacement latéral relatif de l'étage i.

Figure 1.2 : (a) Irrégularité de torsion. (b) Système structurel régulier [13].

 e_x et e_y (figure 1.2a) représentent respectivement l'excentricité entre le centre de masse (CM) et le centre de rigidité (CR) suivant les deux directions orthogonales (i.e. X et Y).

1.5. Irrégularités structurelles

Les structures réelles sont presque toujours irrégulières car la régularité parfaite est une idéalisation qui se produit très rarement. Les irrégularités structurelles peuvent varier considérablement dans leur nature et, en principe, sont très difficiles à définir. En ce qui concerne les bâtiments, à des fins pratiques, les codes sismiques majeurs distinguent l'irrégularité en plan et en élévation, mais il faut bien comprendre que, bien souvent, l'irrégularité structurelle est le résultat d'une combinaison des deux types (voir figure 1.3).

Figure 1.3 : Classification de différents types d'irrégularités structurelles [14].

1.6. Conséquences des séismes sur les structures irrégulières

Les séismes les plus récents ont montrés que les structures irrégulières en plan et /ou en élévation souffrent souvent de graves dommages dus au phénomène de torsion. Statistiquement, les irrégularités structurelles ont été une cause majeure de rupture ou de l'effondrement des structures dans les tremblements de terre passés. La figure 1.4 présente des statistiques sur les causes de rupture des constructions dans la partie la plus sévèrement touchée de la ville de Mexico pendant le tremblement de terre de 1985 [6]. Cette figure indique que 15% des bâtiments gravement endommagés étaient des structures irrégulières ayant une asymétrie de rigidité. Cependant, les bâtiments d'angle peuvent être classés comme des structures irrégulières, car ils ont des murs solides perpendiculaires aux rues et aux murs adjacents avec des ouvertures de fenêtres parallèles aux rues, ce qui entraîne des centres de masse et de rigidité non coïncidents [15]. Ainsi, plus de 40% des bâtiments qui ont subi de graves dommages ou un effondrement à Mexico pendant le tremblement de terre de 1985 étaient en fait des structures irrégulières.

Figure 1.4 : Causes de rupture du au tremblement de terre de 1985 au Mexique [6].

L'effet de la torsion sur la réponse des structures asymétriques lors d'une sollicitation sismique est un problème complexe en raison du grand nombre de paramètres à considérer. Les principaux dommages observés lors des tremblements de terre majeurs sont dus principalement à l'irrégularité en plan et/ou en élévation.

1.6.1. Dommages dus a l'irrégularité en plan

L'irrégularité en plan est due principalement a l'excentricité entre le centre de masse (CM) et le centre de rigidité (CR) dans une structure provoquant des vibrations de torsion par rapport au centre de rigidité, entraînant de graves dommages aux composants structurels dans les régions les plus flexibles latéralement de la structure. Le bâtiment de la figure 1.5 montre ce type de dommages pour un bâtiment en béton armé de trois étages suite au tremblement de terre de Miyagi-Ken-Oki (Japon) en 1978. Ici, en raison de l'existence d'une paroi rigide, le centre de rigidité s'est déplacé vers le coté le plus flexible. Ensuite, le bâtiment s'est tordu par rapport au centre de rigidité dû à la torsion générée par l'excentricité entre les centres de masse et de rigidité et, par conséquent, les poteaux le long de la périphérie loin du mur ont été gravement endommagés [4].

(a) Vue d'ensemble des dommages causés à un bâtiment en béton armé de trois étages.

(b) Dommage des poteaux le long de la périphérie loin du mur rigide.

Figure 1.5 : Les dommages causés par l'irrégularité en plan au cours du séisme de 1978 à Miyagi-Ken-Oki, (Japon) [4].

Le bâtiment du ministère de la Culture de Haïti représenté sur la figure 1.6 a également souffert de la réponse de torsion lors du tremblement de terre de 2010. En raison de l'existence d'une zone centrale rigide d'un côté du bâtiment et les éléments résistants à la charge loin du centre de rigidité ont été gravement endommagés. La rupture de ces membres a entraîné toute l'étage, conduisant à l'effondrement total du bâtiment [16]. De

même, l'hôtel en béton armé de six étages de la ville de Guatemala (voir figure 1.7a) présentait un plan irrégulier en raison de l'emplacement excentrique d'une zone centrale rigide et a été gravement endommagé pendant le tremblement de terre au Guatemala de 1976. Encore une fois, les poteaux sur le côté flexible n'ont pas résistés à la force de cisaillement accrue en raison de la torsion, et a provoqué l'effondrement du deuxième étage du bâtiment comme c'est illustré sur la figure 1.7b et la figure 1.7c [17].

(a) Vue d'ensemble des dommages causés au bâtiment du ministère de la Culture.

(b) Dommages sur le côté flexible.

(c) Dommages sur le côté rigide.

Figure 1.6 : Dommages causés par une irrégularité au cours du tremblement de terre de 2010 du bâtiment du ministère de la Culture en Haïti [16].

(a) Vue d'ensemble des dommages causésà un terminal hôtelier de la ville de Guatemala.

(**b**) Effondrement de deuxième étage en raison de rupture par cisaillement des poteaux.

(c) Gros plan de l'un des poteaux effondrés.

Figure 1.7 : Dommages causés par une irrégularité au cours du tremblement de terre de 1976 au Guatemala, d'un hôtel en (R+5) [17].

La figure 1.8 montre les dommages observés dans les angles rentrants dus aux oscillations différentielles suite au séisme de Kobé (Japon, 1995). Le bâtiment était conforme aux règles parasismiques mais le choix architectural d'une forme en « L » sans présence de joints ou de renforts a conduit à des dommages au niveau de l'angle rentrant dans le plan horizontal [18].

Figure 1.8 : Dommages dans les angles rentrants dus aux oscillations différentielles, (séisme de Kobé, Japon 1995) [18].

La figure 1.9 montre les dommages causés par le séisme de Boumerdès, (Algérie) en 2003 avec une magnitude de (6.8) sur des structures irrégulières en plan ou la surestimation de leur ductilité, généralement évaluée par le coefficient de comportement (R) qui est prise égale à 3.5 était la conséquence de grave dommage. Ainsi lors de la phase de conception, il est supposé que les structures en portiques auto-stables avec remplissage en maçonnerie reprennent prés de 70% de l'énergie sismique par le biais de déformations plastiques, ce qui parait démesuré au vu des dommages observés du fait de leur grande flexibilité [19, 20].

Figure 1.9 : Effondrement de structures dues à des déplacements importants, séisme de Boumerdès, (2003), [19, 20].

Enfin, des dommages importants ou un effondrement des structures avec des dispositions asymétriques des éléments résistants à la charge latérale ont été attribués à des effets de torsion par Wyllie et *al.* [5], Anderson [21] et Elnashai et *al.* [3].

1.6.2. Dommages dus à l'irrégularité en élévation

Les irrégularités en élévation peuvent être la cause de dommages importants dans les structures en bâtiment car engendrant le phénomène de torsion qui lorsqu'il n'est pas prévu donne lieu à des contraintes supplémentaires particulièrement lors de sollicitations sismiques.

<u>1.6.2.1. Conséquence de l'irrégularité de la rigidité – (Cas d'étage souple)</u>

L'irrégularité de l'élévation provoque des défaillances au niveau des étages souples, qui est l'un des types de dommages les plus courants aux structures irrégulières. Généralement, les structures irrégulières en élévation ont un étage plus faible que les autres, donnant lieu à ce qui est appelé «étage souple». Dans de nombreux cas, les bâtiments commerciaux ou résidentiels ont un étage souple au rez-de-chaussée parce que cet étage est généralement conçu pour avoir de grandes ouvertures pour une utilisation différente comme un espace de stationnement ou de commerce [22]. Dans la figure 1.10, le premier étage a été utilisé comme aire de stationnement. En comparaison avec les énormes deuxième et troisième étages, le premier étage était très faible. Cette figure montre le mode de défaillance typique d'un bâtiment avec un étage souple [2]. La figure 1.11 montre également les dommages causés par la présence d'un étage souple au niveau du premier étage et de l'étage intermédiaire dans une structure en béton armé pendant le tremblement de terre de Kobe, (Japon) en 1995 [23]. La figure 1.12 montre également les dommages causés par la présence d'étages souples suite au séisme de 2003 qui a frappé la ville de Boumerdès (Algérie), [18, 20]. En plus, des effondrements de structures causés par des étages souples ont été signalés lors du séisme de 2010 au Maule (Chili) par (Elnashai et al., 2010) [3].

(a) L'effondrement de l'étage de la (b) Vue des poteaux endommagées.structure en Béton armé.

Figure 1.10 : Dommages causés par une irrégularité en élévation (Cas de présence d'étage souple) au cours du tremblement de terre de 2007 à Pisco-Chincha, (Pérou) [2].

(a) Effondrement de premier étage. (b) Effondrement de l'étage intermédiaire.

Figure 1.11 : Dommages causés par une irrégularité en élévation (Cas de présence d'étage souple) au cours du séisme de Kobe, (Japon) en 1995 [23].

Figure 1.12 : (a) : Le Minaret est effondré à une Mosquée à Boudouaou, (b) : Le RDC est effondré complètement, Zemmouri ville, W. Boumerdès (Algérie) suite au Séisme de (2003) [18, 19, 20].

<u>1.6.2.2.</u> Conséquence de la distribution irrégulières de la géométrie, de la masse et de la rigidité latérale

Dans la plupart des codes de conceptions sismiques, il est admit que les structures soumises à l'action sismique puissent subir des déformations dans le domaine posteélastique et préconise l'utilisation des méthodes d'analyses statiques linéaires «statiques équivalentes» ou «forces latérales» pour les évaluer. Les forces et les déformations obtenues pour l'élément considéré à partir des méthodes d'analyse statiques équivalentes pour les charges de conception recommandées peuvent différée sensiblement des forces et des déformations qui seraient observées sur la structure sous les effets d'un séisme majeur si la masse de l'étage ou les dimensions horizontales ou la rigidité latérale du bâtiment changent de façon significative d'un étage à l'autre ceci dans les deux directions orthogonales [24].

La figure 1.13 montre les effondrements des étages supérieurs dans les bâtiments avec des retraits significatifs (i.e. des structures avec des décrochements) dus à des distributions irrégulières de la masse et de la géométrie. La figure 1.14 montre les effondrements du niveau intermédiaire dus à des changements brusques de la rigidité ou de la résistance des éléments verticaux (Kobe 1995).

Figure 1.13 : Effondrement des étages supérieurs avec des dimensions réduites (a) : Kalamata (GR) 1986; (b) : Kocaeli (TR) 1999 [24].

Figure 1.14 : Les effondrements du niveau intermédiaire dus à des changements brusques de rigidité ou de résistance des éléments verticaux (Kobe 1995) [24].

1.7. Etudes analytiques réalisés sur des structures asymétriques

De nombreux dommages ont été observés lors de nombreux tremblements de terre majeurs et mineurs causés par des irrégularités. La réponse en torsion sismique de structures irrégulières en plan et /ou en élévation a été étudiée par de nombreux chercheurs au cours des dernières décennies, nous pouvons cité Paulay [25-29], Chopra [30-33], Tso [34-39], Chandler [40-47], Fajfar [48-52], et Anagnostopoulos [53-57]. En particulier, la

réponse en torsion inélastique de structures irrégulières a été d'un grand intérêt parce que l'irrégularité en plan est l'une des causes majeures du dommage grave où de l'effondrement [6]. Il y a eu des recherches concomitantes portant sur cet intérêt, y compris certaines revues de ces études [58-61].

Cependant, malgré une étude intensive, il existe toujours un manque de compréhension de la réponse sismique inélastique des structures plan-irrégulières due au couplage non linéaire complexe entre les réponses latérales et de torsion. En effet, les études montrent de nombreux résultats contradictoires en raison d'incohérences dans la conception du modèle, de la configuration structurelle, de la définition des paramètres et de l'application des différentes dispositions du règlement parasismique utilisé. Comme dans la plupart des cas, le déplacement latéral maximal des structures irrégulières ne se produit pas simultanément avec la rotation maximale [62-64], la contribution effective de la torsion peut varier considérablement selon la façon dont les mouvements latéraux et rotationnelle contribuent à la réponse globale. Ce fait explique comment certains résultats peuvent être très différents les uns des autres. En outre, en ce qui concerne l'effet de l'intensité du mouvement du sol, de nombreux chercheurs rapportent qu'au fur et à mesure qu'il augmente, la réponse en torsion augmente d'abord modérément puis diminue. L'augmentation initiale peut être liée à l'augmentation de l'excentricité entre le centre de masse et le centre de rigidité, due au fait que certains éléments résistent à la charge latérale dans la structure [33].

Il est intéressant de noter que certaines études ont remis en question la validité de ces résultats, alors que la plupart des recherches antérieures reposaient sur des modèles trop simplifiés, tels que les modèles à un seul étage ; les modèles à trois degrés de liberté et les modèles avec un système structurelle auto stable « poteaux-poutres » (**shear-beam type models**) [22]. Stathopoulos et Anagnostopoulos [54-57] affirment qu'il est possible que des modèles plus détaillés puissent changer les résultats qualitativement et quantitativement.

Dans la plupart des recherches antérieures, la réponse de torsion sismique de structures irrégulières a été évaluée par une demande de déformation sismique telle que le déplacement maximum (drift) ou la ductilité inter-étages. Cependant, comme la déformation est affectée par les réponses latérales et de torsion, il est difficile d'évaluer l'effet de torsion pur lui-même. Par conséquent, au lieu de la déformation, l'excentricité qui est directement corrélée au mouvement de torsion, peut être plus efficace pour évaluer l'effet de torsion dans les structures plan irrégulières. De plus, la variation de l'excentricité
observée lors d'un événement sismique peut fournir des informations supplémentaires reflétant la contribution effective de la torsion [22].

1.8. Travaux effectués pour des structures asymétriques plan à un seul étage

Dans le passé, les effets du couplage en torsion dans les structures asymétriques ont été largement étudiés au moyen de modèles simples à un seul étage. Ces modèles ont été jugés appropriés pour clarifier l'influence des paramètres structurels clés et développer des mesures de conception applicables à certaines classes de bâtiments asymétriques à plusieurs étages. Au cours des dernières années, des modèles de bâtiments à plusieurs étages ont été utilisés pour étudier de façon plus réaliste la réponse sismique inélastique des bâtiments asymétriques. Néanmoins, en raison de leur complexité, de tels modèles sont applicables à l'étude de quelques cas de bâtiments réels. Pour cette raison, les modèles à un seul étage attirent toujours de nombreux chercheurs, car ils restent suffisants pour obtenir des informations générales sur le comportement en torsion des bâtiments asymétriques, notamment d'un point de vue qualitatif [70].

Au cours des dernières années, les articles sur les modèles à un étage se sont concentrés sur le comportement inélastique des éléments résistants, les effets de l'excitation bidirectionnelle et d'autres aspects négligés dans les recherches antérieures. Des investigations ont également été menées en référence à des modèles bi-asymétriques, en plus des modèles mono-symétriques utilisés jusqu'à présent [70].

En particulier, le comportement inélastique est d'un grand intérêt, car la capacité des structures à résister à de forts séismes dépend de leur ductilité et de leur capacité de dissipation d'énergie. Malgré de nombreux efforts de recherche, la complexité de la réponse sismique inélastique et le grand nombre de paramètres influençant le comportement des bâtiments irréguliers, par rapport à leurs homologues élastiques, conduisent à un manque de conclusions générales et universellement acceptées. Ainsi, plusieurs études visent toujours à tirer des conclusions définitives [70-72].

Parmi ces études, nous citons, en particulier, celles réalisées principalement au moyen de modèles à un seul étage avec une excentricité bi-axiale sans restrictions de conception de code [49, 51, 65]. Les principaux résultats de l'analyse paramétrique, réalisées principalement sur des systèmes en torsion de rigidité et de masse excentrique (voir figure 1.15) sont résumés comme suit : (1) les effets de torsion diminuent avec l'augmentation des déformations plastiques, (2) l'effet de torsion sur les déplacements dans

le côté flexible (FS) est plus petit que celui dans le côté rigide (SS) dans les deux directions horizontales, (3) la réponse du côté rigide (SS) est influencée par les caractéristiques structurelles et le mouvement du sol (i.e. le contenu fréquentiel du séisme) dans les deux sens, (4) Des transitions de la de-amplification à l'amplification de la demande de déplacement peuvent se produire sur le côté rigide (SS) dans certains cas.

Figure 1.15 : (a) Modèle massique excentrique (M) et (b) modèle de rigidité et de résistance excentrique (SR) : périodes latérales découplées de 0,3 s et 0,4 s, et une période de vibration de torsion de 0.254 s sont assumés [49, 51].

Les déplacements normalisés inélastique/élastiques (i.e. le rapport entre les déplacements inélastique et élastique) au niveau du bord flexible diminuent généralement avec l'augmentation de la ductilité, à l'exception des valeurs très faibles (inférieures à 2) comme illustré dans la figure 1.16.

Figure 1.16 : Rapports entre déplacements normalisés inélastiques et élastiques obtenus par [49, 51].

Néanmoins, la réponse en torsion inélastique a été jugée fortement dépendante des caractéristiques de l'entrée sismique et affectée par une plus grande dispersion que dans la plage de comportement élastique. Dans la plage inélastique, les effets de torsion peuvent être plus grands ou plus petits que les déplacements élastiques, en fonction du contenu fréquentiel du mouvement du sol. En général, Peruš et Fajfar [65] ont trouvé une diminution pour les structures flexibles et une amplification pour les structures rigides (intervalle de temps court), en fonction de la forme du spectre de réponse.

Les demandes en ductilité dans le côté rigide d'une structure à un seul étage en béton armée est supérieure à celle du côté flexible, contrairement aux structures à plusieurs étages, où la demande en ductilité dans le côté flexible est supérieure à celle du côté rigide. Cette conclusion est en contraste avec les dispositions actuelles du code parasismique existant [56], qui peuvent surestimer ou sous-estimer les forces de conception, conduisant à des demandes en ductilité incompatibles. En particulier, il a été rapporté que la méthode modale sous-estime les forces de conception pour les éléments résistants du bord flexible soumis au le phénomène de torsion [66].

Plusieurs études ont cherché à développer des modèles à un seul étages plus raffinées pour tenir compte du comportement post-élastique (post-yield) des éléments résistants. Dans Dutta et Das, [67, 68], les effets de la dégradation de la force sur la réponse bidirectionnelle des systèmes conçus par le code ont été étudiés. Les auteurs ont proposé les deux modèles hystérétiques simples représentés sur la (figure 1.17), qui peuvent tenir compte des caractéristiques de rigidité et de la détérioration de la résistance des éléments structuraux RC sous chargement cyclique. Les résultats suggèrent que les demandes de pointe locales (sur le bord flexible aussi bien comme sur le bord rigide) sont plus significatifs lorsque les phénomènes de dégradation de la résistance sont pris en compte et, dans ce cas, les analyses unidirectionnelles sous-estiment systématiquement la réponse. Ceci, cependant, contraste apparemment avec les conclusions de Tso et Myslimaj [69], qui ont conclu que les résultats d'un modèle hystérétique dégradant sont similaires à ceux obtenus par un modèle élasto-plastique.

Figure 1.17 : Les modèles d'hystérésis de la rigidité et de détérioration de la résistance utilisés par [68].

De Stefano et Pintucchi ont proposé un modèle à un seul étage qui prend en compte les effets de l'interaction inélastique entre la force axiale et les forces horizontales bidirectionnelles dans les éléments résistants. L'influence de tels effets sur la réponse en torsion a été évaluée pour des systèmes rigides en torsion sous des excitations sismiques bidirectionnels. Les auteurs ont conclu que les modèles précédents de structures asymétriques planes, qui ne tiennent pas compte des phénomènes d'interaction, surestiment généralement la réponse en torsion; en effet, les phénomènes d'interaction inélastique se traduisent par une réduction de la rotation du plancher comprise entre 20% et 30%, sauf pour de courtes périodes [70].

Au cours des dernières années, Tso et Myslimaj se sont intéressés aux implications sur la conception sismique de l'interdépendance entre la résistance et la rigidité des éléments résistants latéraux [73, 74]. De nombreux chercheurs ont souligné qu'étant donné que les déplacements de résistance des éléments résistants ne dépendent que de la géométrie et des propriétés du matériau, la rigidité ne peut être considérée comme indépendante de la résistance. Tso et Myslimaj ont étudié le problème de résistance des éléments à la rigidité à l'aide d'un modèle à un étage sous excitations bidirectionnelles. Ils ont conclu qu'une distribution de la masse, de la rigidité et de la résistance pour réduire la réponse en torsion localisait le centre de rigidité (CR) et le centre de résistance (CV) sur les côtés opposés du centre de masse (CM), une condition appelée «localisation CV-CR équilibrée». Ils ont également proposé deux procédures de conception de la force pour atteindre l'emplacement CV-CR décrit, l'un est basé sur l'utilisation de l'analyse d'équilibre statique (appelée SEAB) et l'autre caractérisée par une distribution de la résistance égale à celle des déplacements de rendement (**yield**) (procédure YDDB). Une comparaison avec les résultats des systèmes conçus par les codes de conceptions (voir la figure 1.18) a démontré l'efficacité de l'emplacement équilibré.

Figure 1.18 : Emplacements CR et CV des quatre modèles comparés et historique des temps de rotation des tabliers sous les excitations sismiques bidirectionnelles El Centro [74].

En corrélation avec ces études, Aziminejad et Moghadam [75] ont étudié le comportement non linéaire des structures irrégulières à un seul étage conçues pour optimiser la configuration des centres de masse, de rigidité et de résistance en fonction des

différents niveaux d'incursions plastiques. Le cadre de la conception sismique axée sur la performance. Il s'est avéré que l'emplacement équilibré proposé par Tso et Myslimaj optimisait la réponse du système au niveau de la performance de sécurité (c'est-à-dire lorsque le système est soumis à une grande inélasticité), alors que ce n'était pas le cas. De plus, il a été constaté que la meilleure configuration varie non seulement avec le niveau de performance supposé, mais aussi avec le paramètre de réponse sélectionné ou les indices d'endommagement. À cet égard, l'emplacement équilibré n'a pas atteint les exigences de ductilité mineures de l'élément résistant au niveau du bord flexible.

Dans leur étude, Pettinga et *al.* [76] ont analysé un modèle à un étage sous des excitations sismiques unidirectionnelles et bidirectionnelles. Leur objectif était d'étendre aux bâtiments asymétriques en plan 3D le cadre de conception basé sur la performance proposé, qui souligne l'importance d'évaluer et de limiter les déformations résiduelles. Des analyses paramétriques sur les systèmes excentriques de masse ont été réalisées afin d'identifier les principaux paramètres influençant les déformations par rapport aux déplacements résiduels. Selon la définition de Paulay [78] et à travers les travaux effectués par (Castillo et *al.*, [77]), différentes configurations ont été envisagées, conduisant à des systèmes soumis à une torsion restreinte ou non restreinte. Contrairement aux attentes, leurs résultats suggèrent que les systèmes à faible résistance à la torsion améliorent le comportement de rotation résiduelle. D'autres études ont également été présentées pour évaluer les effets des caractéristiques hystérétiques, le rapport de rigidité post-rendement, les effets P-delta et l'intensité sismique.

Dans Heredia-Zavoni et Machicao-Barrionuevo [79], un système linéaire asymétrique d'un seul étage a été utilisé pour évaluer les effets des composantes orthogonales des séismes. Il a été constaté que de tels effets varient différemment avec la période de translation naturelle, selon que le système est flexible ou rigide en torsion, ainsi qu'avec les conditions du sol. En particulier, l'application d'entrées bidirectionnelles peut affecter sensiblement la réponse des systèmes rigides en torsion avec de longues périodes de translation sur les sols mous, tandis que sur les sols fermes, elle s'avère importante pour les systèmes flexibles en torsion avec de courtes périodes de translation. À cet égard, il convient toutefois de rappeler que, malgré les indications de plusieurs études antérieures, les effets de la composante orthogonale des séismes ne semblent pas vraiment importants [60], en particulier si des éléments orthogonaux sont inclus dans le modèle.

1.9. Etudes expérimentales

Malgré le peu de recherche expérimentale sur la réponse couplée latérale-torsionnelle des structures irrégulières, quelques études ont été menées sur ce sujet nous citons à titre d'exemple celle de Ghobarah et *al.*, [80], Negro et *al.*, [81], Jeong et Elnashai, [82, 83] et De-la-Colina et *al.*, [84].

L'étude de Ghobarah et *al.* [80], traite du problème particulier des composants non structuraux et des équipements ou installations critiques (systèmes secondaires) attachés à un système primaire massique excentrique, en utilisant une table à secousses à petite échelle. À partir des résultats des tests, il a été constaté que le rendement en torsion du système primaire a des implications significatives sur l'amplitude de la réponse des systèmes secondaires proches.

Negro et *al.* [81] ont effectué des tests pseudo-dynamiques bidirectionnels sur des structures poteau-poutre à trois étages de taille réelle et irrégulière. Cette recherche a été réalisée au Laboratoire Européen d'Evaluation Structurelle (ELSA, **European Laboratory for Structural Assessment**) du centre commun de recherche (JRC, **Joint Research Centre**) à Ispra, en Italie, dans le cadre du projet Performance Sismique de l'Union Européenne (Jeong, [82, 83]). Les données d'essai ont été présentées en mettant l'accent sur la mise en évidence des effets de torsion dans la réponse sismique de l'échantillon.

En outre, des études récentes de De-la-Colina et *al.* [84] ont tenté de quantifier les facteurs d'amplification appropriés utilisés pour la torsion dans la conception des structures. Huit structures simples à ossature en acier à un seul étage, à torsion non équilibrée, ont été testées à plusieurs niveaux d'excitation dans des plages de comportement à la fois élastiques et inélastiques. Les chercheurs ont trouvé que, pour des excentricités normalisées supérieures à 2,5% par rapport aux dimensions du plan, le facteur d'amplification pour l'excentricité de conception primaire pourrait être entre 2 et 3, ce qui était significativement différent du facteur d'amplification codifié de 1.

Dusicka [85, 87] a complété des études expérimentales d'une structure ductile à un seul étage. La structure comprenait une seule masse reliée à des barres plates rectangulaires verticales pour résister aux forces latérales dynamiques. Les modèles ont différentes raideurs, résistances et distributions de masse. Le changement de rigidité a été obtenu en réduisant la hauteur des barres plates. Des mouvements de sol bidirectionnels ont également été introduits dans la structure. Des comparaisons entre les modèles

expérimentaux et idéalisés ont été entreprises, et un niveau constant de corrélation a été trouvé dans les résultats. Ils ont suggéré que cette recherche confirmait les modèles numériques et expérimentaux utilisés pour étudier la réponse inélastique des structures ductiles sensibles à la torsion. Une réponse en torsion a été observée pour tous les modèles, y compris ceux qui n'avaient pas d'excentricité de rigidité. Les modèles excentriques de résistance ont des exigences significativement plus élevées sur l'élément le plus fort et le plus rigide.

De Stefano et *al.* [86, 87], Ont effectués plusieurs essais sur table vibrante d'une structure en acier de trois étages. Le modèle utilisé dans le test est un modèle réduit à l'échelle 1/5 du modèle réel. La structure était constituée de sections creuses rectangulaires soudées. La masse du premier test était située symétriquement le long de la structure. Les centres de résistance (CS, **Center of Strength**) et de masse coïncident également avec le centre géométrique du système. Dans un deuxième test, les éléments du modèle sont restés inchangés; cependant, l'asymétrie structurelle a été obtenue en déplaçant le centre de masse de 200 mm de son centre géométrique. Par conséquent, les centres de masse et de force ne coïncident pas. Des comparaisons entre les modèles de construction asymétrique était caractérisée par des mouvements de torsion similaires et significatifs le long de la hauteur du bâtiment. Il a également été constaté que les déplacements latéraux induits par les rotations maximales étaient en moyenne de 29% de la demande de déplacement maximal atteinte au centre de la rigidité à tous les étages.

1.10. Dispositions de la torsion dans des codes de conception parasismiques

Les méthodes de conception et d'analyse actuelles ne peuvent pas prédire de manière fiable les changements de rigidité lors de fortes actions sismiques qui introduisent une excentricité supplémentaire [88]. Ces méthodes d'analyse sismique sont généralement classées en deux types (voir figure 1.19), avec un aspect linéaire et un autre non linéaire pour chacun. En outre, l'analyse statique linéaire appelée méthode d'analyse statique équivalente (ELSA, **Equivalent Linear Static Analysis**) peut être utilisée pour une structure régulière avec une hauteur limitée avec des exigences rigoureuse des dispositions constructives à savoir : (1) Une ductilité suffisante et (2) Une capacité de dissiper l'énergie vibratoire transmise à la structure par des secousses sismiques majeures. La méthode d'analyse statique non linéaire est connue sous le nom d'analyse statique Pushover souvent utilisée dans l'évaluation sismique et la réhabilitation des bâtiments en béton. Dans ce type d'analyse, le système latéral de la structure est modélisé avec des rotules plastiques non linéaires dans les composants où le comportement inélastique est possible. Ces rotules sont généralement bilinéaires avec une branche de déchargement et sont affectées à des degrés de liberté axiaux, de cisaillement et de flexion. L'analyse dynamique linéaire est divisée en deux catégories, en première lieu la méthode d'analyse par spectre de réponse (RSA, **Response Spectrum Analysis**) qui fournit une amélioration par rapport à l'analyse statique où des irrégularités significatives existent parce que les modes linéaires réels de vibration sont pris en compte dans la réponse sismique de calcul.

Figure 1.19. : Les méthodes communes d'analyse structurale utilisées dans les codes de conceptions [89], *Clé*, **E** = Analyse élastique; **I** = Analyse inélastique.

Les codes parasismiques préconisent des dispositions spéciales afin de prendre en compte le phénomène de torsion, en termes d'excentricité de conception [90-97]. D'autre part, ils fournissent des méthodes d'analyses fondées, principalement, sur des analyses élastiques linéaires, telles que la méthode statique équivalente (ELSA) et l'analyse dynamique linéaire spectrale. Ces méthodes de conception ne prennent pas en compte le comportement non linéaire des bâtiments asymétriques et conduisent à une surestimation ou une sous-estimation de la réponse en torsion de ces bâtiments en termes d'effort

tranchant de conception, de ductilité (i.e. ratio entre le déplacement inélastique ultime (Δu) et le déplacement élastique (Δy)) et de dissipation d'énergie. Actuellement, l'analyse la plus rationnelle et les méthodes d'évaluation de la performance semblent simplifier les procédures inélastiques, qui combinent la méthode statique non-linéaire (Pushover) simple et l'analyse modale par spectre de réponse [50].

La plupart des dispositions actuelles de conception sismiques exigent la prise en compte des effets de la torsion en adoptant des excentricités de conception qui tiennent compte à la fois des sources inhérentes (naturelle) et accidentelles de torsion. Deux types d'excentricités de conception sont définit par la majorité des règlements parasismiques, l'une dite primaire e_{d1} et l'autre secondaire e_{d2} , qui tiennent compte de l'augmentation ou de la diminution de la résistance des éléments. Les excentricités de conception (e_{d1}, e_{d2}) sont obtenues en superposant l'excentricité inhérente (définit comme la distance entre les centres de masse (CM) et la rigidité (CR)) multipliées par un coefficient représentant un facteur d'amplification pour les éléments du côté flexible et un facteur de réduction pour les éléments du côté nigide et l'excentricité accidentelle, calculée en pourcentage de la dimension en plan perpendiculaire à l'action sismique :

$$e_{d1} = \alpha e_s + \beta L \tag{1.1}$$

$$e_{d2} = \delta e_s - \beta L \tag{1.2}$$

Où e_s est l'excentricité inhérente (statique), L est la dimension en plan de la structure perpendiculairement à la direction l'action sismique, α et β et δ sont les coefficients spécifiés dans les différents codes de conception. Les deux différentes excentricités de conception e_{d1} , e_{d2} sont appelés excentricité de conception primaire et secondaire, utilisés pour la conception des éléments de résistance aux charges latérales situés sur les côtés flexibles et rigides, respectivement.

1.10.1. RPA99/Version 2003

Dans le Règlement Parasismique Algérien (RPA 99/Version 2003- Paragraphe 4.2.7) l'augmentation de l'effort tranchant provoqué par la torsion d'axe vertical due à l'excentricité entre le centre de gravité (CDG) et le centre de rigidité (CR) doit être prise en compte. Contrairement aux efforts tranchants négatifs dus à la torsion qui devront être négligés [98]. Pour toutes les structures comportant des planchers ou diaphragmes horizontaux rigide dans leur plan, le code parasismique Algérienne suppose qu'à chaque niveau et dans chaque direction, la résultante des forces horizontales a une excentricité par rapport au centre de torsion égale à la plus grande des deux valeurs [98] :

- 5% de la plus grande dimension du bâtiment à ce niveau (cette excentricité doit être prise en considération de part et d'autre du centre de torsion);
- Excentricité théorique résultant des plans.

Cette éventuelle majoration par rapport à l'excentricité calculée est sensée prendre en compte les effets aussi bien de l'excentricité accidentelle que d'une éventuelle amplification de la torsion.

1.10.2. IBC et ASCE/SEI 7

Selon le IBC 2009 (International Building Code) qui se réfère à L'ASCE/ SEI 7-05 (American Society of Civil Engineers/ Structural Engineering Institute Standard 7-05), la conception du moment de torsion à un étage donnée est définie comme étant le moment résultant des excentricités inhérentes (i.e. excentricités statiques) entre les forces latérales de conception appliquées aux niveaux de l'étage et les membres résistants à la charge latérale dans l'étages, plus une torsion accidentelle. Le moment de torsion accidentelle est déterminé par le déplacement de la masse d'une distance égale à 5% de la dimension en plan perpendiculaire à l'action sismique. L'irrégularité torsionnelle est considéré existante lorsque le déplacement maximale inter-étages (ID, drift), calculé y compris la torsion accidentelle, à chaque extrémité de la structure est plus de 1.2 fois la moyenne du déplacement inter-étages (ID, drift) aux deux extrémités de la structure. Dans un tel cas, les effets de torsion doivent être réévalués en augmentant la torsion accidentelle à chaque niveau avec un facteur d'amplification (A_x) entre 1 et 3, déterminé à partir de la formule suivante [99] :

$$1.0 \le A_x = \left(\frac{\delta_{\max}}{1.2\delta_{moy}}\right) \le 3.0 \tag{1.3}$$

Où δ_{\max} est le déplacement maximal au niveau *i* et δ_{moy} est la moyenne des déplacements aux points extrêmes de la structure au niveau *i*.

L'excentricité primaire de conception e_{d1} et l'excentricité secondaire de conception e_{d2} , adoptée par les codes IBC 2009 et ASEC 7-05, sont les suivants [99, 100] :

$$e_{d1} = 1.0e_s + 0.05bA_x \tag{1.4}$$

$$e_{d2} = 1.0e_s - 0.05bA_x \tag{1.5}$$

Où e_s est l'excentricité inhérente (statique) entre le centre de masse (CM) et le centre de rigidité (CR), et *b* est la dimension en plan perpendiculaire à l'action sismique considérée. Dans les deux excentricités de conception, l'excentricité inhérente (statique) ne soit pas amplifiée où réduit. Une excentricité accidentelle de 5% de la dimension en plan est utilisée, mais cette valeur peut être amplifiée en fonction de l'intensité de la réponse en torsion.

1.10.3. Eurocode 8

Le code sismique de conception européenne (**Eurocode 8**) fournit une méthode d'analyse approximative, qui peut tenir compte des effets de la torsion. Deux modèles plans sont utilisés, un pour chaque direction. Les effets de la torsion pour chaque direction sont déterminés séparément. Afin de considérer les effets dynamiques de la vibration simultanée de translation et de torsion (i.e. Couplages des modes de translations et de torsion), le centre de masse est déplacé de la position initiale avec une excentricité inhérente (distance entre le centre de masse (CM) et le centre de rigidité (CR)) et une excentricité supplémentaire. L'excentricité additionnelle est appelée e_2 , et elle peut être approximée comme la plus basse des deux valeurs suivantes [101] :

$$e_2 = 0.1(L+B)\sqrt{10e_0} / L \le 0.1(L+B)$$
(1.6)

$$e_{2} = \frac{1}{2e_{0}} \left[l_{s}^{2} - e_{0}^{2} - r^{2} + \sqrt{\left(l_{s}^{2} - e_{0}^{2} - r^{2} \right)^{2} + 4e_{0}^{2}r^{2}} \right]$$
(1.7)

Où e_0 est l'excentricité inhérente (statique), L est la dimension en plan perpendiculaire à la direction de l'action sismique, B représente la dimension de l'étage parallèle à la direction de l'action sismique, r^2 est le rapport de la rigidité en torsion de l'étage sur la rigidité latérale et l_s^2 est le carré du rayon de giration [101] :

$$l_s^2 = \frac{\left(L^2 + B^2\right)}{12} \tag{1.8}$$

Les effets de torsion sont déterminés comme l'enveloppe des effets résultant d'une analyse utilisant le moment de torsion (M_i) pour deux conditions de charge statique [101] :

$$M_i = F_i e_{d1} = F_i (e_0 + e_1 + e_2)$$
(1.9)

$$M_i = F_i e_{d2} = F_i (e_0 - e_1) \tag{1.10}$$

Où F_i est la force sismique horizontale à l'étage i, e_0 est l'excentricité inhérente (statique), e_1 est l'excentricité accidentelle égale à 5% de la dimension en plan perpendiculaire à la direction de l'action sismique, et e_2 est l'excentricité additionnelle définie ci-dessus.

Si la rigidité latérale et la masse sont réparties symétriquement dans le plan, et à moins qu'une méthode plus précise soit appliquée, les effets de torsion accidentelle sont pris en compte en multipliant les effets d'action individuellement dans les charges latérales et les éléments de résistance, évalués selon la méthode ci-dessus, avec le facteur donné par [101] :

$$1 + 0.6 \frac{x}{L_e}$$
 (1.11)

Où x est la distance entre le centre de masse de l'élément considéré, mesurée perpendiculairement à la direction de l'action sismique considérée, et L_e : est la distance entre les deux éléments de résistance les plus externes et la charge latérale mesurée perpendiculairement à la direction de l'action sismique.

Cependant, l'Eurocode 8 énonce des restrictions sur l'utilisation de cette méthode d'analyse approximative. Cette analyse peut être appliquée aux conditions suivantes [101] :

- Le bâtiment a des revêtements et des cloisons bien distribués et relativement rigides;
- 2) La hauteur du bâtiment ne dépasse pas 10 m;
- Le rapport d'aspect du bâtiment (hauteur/longueur) dans les deux directions principales ne dépasse pas 0.4 ;
- La rigidité dans le plan des étages est assez grand par rapport à la rigidité latérale des éléments structurels verticaux, de sorte que le comportement diaphragme rigide peut être supposée;

 Les centres de rigidité latérale et de masse sont situés chacun à peu près sur une ligne verticale.

Dans l'Eurocode 8, l'excentricité de conception primaire e_{d1} et l'excentricité de conception secondaire e_{d2} sont définis comme [101] :

$$e_{d1} = 1.0e_s + e_2 + 0.05b \tag{1.12}$$

$$e_{d2} = 1.0e_s - 0.05b \tag{1.13}$$

Où e_s est l'excentricité inhérente (statique) entre le centre de masse (CM) et le centre de rigidité (CR), *b* est la dimension en plan perpendiculaire à l'action sismique, et e_2 est l'excentricité supplémentaire définie précédemment. Les deux excentricités utilisent une excentricité accidentelle de 5% de la dimension en plan. Alors que l'excentricité inhérente (statique) n'est pas amplifiée ou réduit dans l'excentricité de conception secondaire, l'excentricité de conception primaire utilise l'excentricité inhérente (statique) avec le facteur de modification suivante [101] :

$$\alpha = 1.0 + \frac{e_2}{e_s}$$
(1.14)

Où e_s est l'excentricité inhérente (statique) et α est un facteur d'amplification pour l'excentricité inhérente (statique).

1.10.4. NBCC

Dans le Code national du bâtiment du Canada (NRC : National Building Code of Canada, 1995), la résistance (strength) d'un élément dans le côté flexible est déterminée à partir de l'excentricité de conception primaire e_{d1} donnée par [102] :

$$e_{d1} = 1.5e_s + 0.1b \tag{1.15}$$

$$e_{d1} = 0.5e_s + 0.1b \tag{1.16}$$

Où e_s est l'excentricité inhérente (statique) entre les centres de masse et de rigidité, et *b* est la dimension en plan perpendiculaire à l'action sismique considérée.

De même, la résistance d'un élément sur le côté rigide est déterminée à partir de l'excentricité de conception secondaire e_{d2} donnée par [102] :

$$e_{d2} = 0.5e_s - 0.1b \tag{1.17}$$

$$e_{d2} = 1.5e_s - 0.1b \tag{1.18}$$

Où e_s est l'excentricité inhérente (statique) et b est la dimension en plan, tel que défini cidessus.

Dans les deux excentricités de conception primaire et secondaire, NBCC-95 utilise une excentricité accidentelle égale à 10% de la dimension en plan tandis que l'excentricité inhérente (statique) peut être amplifiée ou réduite avec le facteur de 1,5 où 0,5. En vertu de ce code de conception, la charge latérale et les éléments de résistance sur le côté flexible devraient être conçues en fonction de la demande sismique maximale provoquée par l'une des deux différentes valeurs de l'excentricité primaire de conception [102].

1.10.5. KBCS

Selon le code KBCS (Code du Bâtiment Coréenne – Structurel : Korean Building Code – Structural, 2005), l'excentricité de conception primaire e_{d1} et l'excentricité de conception secondaire e_{d2} , qui sont applicables pour la charge latérale- les éléments de résistance sur les côtés souples et rigides respectivement, sont définis comme [103] :

$$e_{d1} = 1.0e_s + 0.05b \tag{1.19}$$

$$e_{d2} = 1.0e_s - 0.05b \tag{1.20}$$

Où e_s est l'excentricité inhérente (statique) entre le centre de masse (CM) et le centre de rigidité (CR), et *b* est la dimension en plan perpendiculaire à l'action sismique considérée. Les deux excentricités de conception primaires et secondaires utilisent l'excentricité inhérente (statique), qui n'est pas amplifié où réduit, et une excentricité accidentelle de 5% de la dimension en plan [103].

1.11. Comparaison des excentricités de conception

Les excentricités de conception primaires et secondaires adoptées dans divers codes de conception sismique internationaux sont résumées dans le tableau 1.1. On constate que, chaque code adopte des valeurs différentes pour le facteur d'amplification et où de réduction pour l'excentricité inhérente (statique) et l'excentricité accidentelle. Ainsi, la conception de torsion sismique d'une structure basée sur un code de conception spécifique pourrait être très différente d'un code à l'autre. En outre, une grande partie de récentes recherches ont souligné l'insuffisance des excentricités de conception de code défini puisque ces valeurs sont basées sur des modèles élastiques où des modèles inélastiques trop simplifiées nous citons par exemple Stathopoulos et Anagnostopoulos, [55, 56, 57]; Anagnostopoulos et *al.* [57].

	Excentricités de conceptions		
Règlement parasismique	Excentricité de	Excentricité de	
	conception primaire	conception secondaire	
	e_{d1}	e_{d2}	
RPA99/Version 2003	$e_{d1} = 1.0e_s + 0.05b$	$e_{d2} = 1.0e_s - 0.05b$	
2009 IBC ASCE/SEI 07-05	$e_{d1} = 1.0e_s + 0.05bA_x$	$e_{d2} = 1.0e_s - 0.05bA_x$	
Eurocode 8 (2003)	$e_{d1} = 1.0e_s + e_2 + 0.05b$	$e_{d2} = 1.0e_s - 0.05b$	
	$e_{d1} = 1.5e_s + 0.1b$	$e_{d2} = 0.5e_s - 0.1b$	
NBCC-95	$e_{d1} = 0.5e_s + 0.1b$	$e_{d2} = 1.5e_s - 0.1b$	
KBCS (2005)	$e_{d1} = 1.0e_s + 0.05b$	$e_{d2} = 1.0e_s - 0.05b$	

 Tableau 1.1 : Comparaison des excentricités de conception dans différents codes de conception internationaux.

1.12. Conclusion

Malgré un certain nombre d'études antérieures consacrées à l'étude du phénomène de torsion, il y a encore un manque de compréhension de la réponse sismique inélastique de structure irrégulière en plan en raison de la complexité de couplage latéral-torsion non linéaire et le grand nombre de paramètres qui influencent la réponse à la torsion élastique. En outre, l'analyse comparative des dispositions de torsion actuelles dans les différents codes sismiques indique que la conception de torsion sismique utilisant les excentricités actuelles de conception de code défini doit être améliorée. En outre, les excentricités de conception adoptées par les codes de conception sismiques actuelles ont été remis en question parce qu'ils ont conduit à des résultats médiocres.

Généralement l'utilisation des méthodes simplifiées permettent de prendre en compte facilement les actions sismiques associées à des modes de flexion pour la vérification d'un ouvrage, alors que la torsion d'axe vertical est en revanche beaucoup plus difficile à prendre en compte lors de sollicitations sismiques. Cela est dû à l'influence de plusieurs paramètres complexes et difficiles à appréhender. Dans le but de prendre en compte les effets de la torsion dans les structures asymétriques soumises à l'action sismique, des analyses statiques et dynamiques non linéaires et dynamiques linéaires seront effectués en utilisant le logiciel de calcul GEFDYN.

Dans le cadre du présent travail de recherche, nous nous intéressons dans une première phase à l'étude des effets de torsion sur la réponse des structures asymétriques à un seul étage en béton armée soumise à l'action sismique. La réponse en termes de déplacement maximal au sommet (Dtop), de ductilités (μ), de facteur de réduction (R_e), d'Effort tranchant à la base (Vbase) et d'excentricité dynamique normalisée (Ratio ed/es) est déterminée.

En deuxième partie, et afin d'étudier l'influence des paramètres d'entrée sur la réponse sismique de la structure asymétrique, plusieurs analyses dynamiques non linéaires sont effectuées. L'importance des caractéristiques du mouvement d'entrée sur l'endommagement structurel est évaluée par une analyse probabiliste. La réponse en termes de déplacement au sommet a été calculée et utilisée pour construire des courbes de fragilité afin de quantifier les effets du mouvement d'entrée sur les dommages structuraux. L'influence de ces paramètres est quantifiée par l'utilisation de coefficients de corrélation partielle (PCC).

CHAPITRE 2 :

FONDEMENTS THEORIQUES DE LA METHODE D'ANALYSE

2.1. Introduction

Dans le but de prendre en compte les effets de la torsion dans les structures asymétriques soumises à l'action sismique. Des analyses statiques et dynamiques non linéaires et dynamiques linéaires seront effectuées en utilisant le logiciel de calcul GEFDYN. Ce dernier utilise un modèle poutre dénoté « Poutre 33 » qui sera utilisée pour la modélisation des différents éléments de la structure (Poteaux, poutres, dalles, etc.).

Ce chapitre présente les fondements théoriques du modèle « Poutre 33 » qui se basent sur les concepts de la méthode des éléments finis (M.E.F). À cet effet, l'approche qui a été développée est sous-tendue par la théorie des poutres de Timoshenko. Cette théorie a été améliorée en considérant une modification ayant pour effet de créer un modèle poutre à deux composants.

2.2. Description du modèle

Le modèle de poutre dénoté Poutre 33 intégré dans le logiciel de calcul élément finis GEFDYN [104, 105] a des caractéristiques de rotation en flexion hystérétique non linéaire. Le modèle est basé sur le modèle à deux composants présenté par Giberson [106] et les modifications incluses dans les logiciels DRAIN-2DX (Prakash et *al.*, [107]) et PC-ANSR (Maison, [108]) pour tenir compte de l'interaction de la force axiale et de moment de flexion.

Ce modèle est constitué d'une composante linéaire et une composante idéalement élasto-plastique comme illustré sur la figure 2.1a, de sorte que chaque poutre ne peut avoir que des boucles d'hystérésis bilinéaires à chaque extrémité en raison de la nature du modèle. Pour ce modèle, la pente initiale sur le courbe Moment-Courbure (M- ψ) est déterminée à partir de la somme de la rigidité des deux composants tandis que la deuxième pente est déterminée par la rigidité de la seule composante linéaire de la poutre (voir figure 2.1a). Le rendement de la rotule plastique avec un moment constant forment une composante élasto-plastique (inélastique). Le moment dont la composante élastique

continue à augmenter, simule le durcissement par écrouissage (simulating strain hardening) [104, 105].

Figure 2.1 : Modèle à deux composants [104, 105, 109].

2.3. Matrice de rigidité élastique

Le champ de déplacement cinématiquement admissible \underline{u} pour une poutre peut être écrit comme suit (Voir l'équation 2.1) [109] :

$$u_{r} = u_{0r} - s u_{1t} + t u_{1s}$$

$$u_{s} = u_{0s} - t u_{1r}$$

$$u_{t} = u_{0t} + s u_{1r}$$

(2.1)

Où u_{1r} , u_{1s} et u_{1t} , sont les rotations autour des directions locales \underline{e}_r , \underline{e}_s et \underline{e}_t respectivement (voir figure 2.2) avec la convention de signe de la règle de la main droite. Nous supposons un matériau isotrope homogène et élastique :

Figure 2.2 : Convention de signe pour les champs de déplacements et de rotations [109].

Le champ de contrainte est alors défini comme suit [109] :

$$\underline{\underline{\sigma}} = \lambda tr(\underline{\underline{\varepsilon}})(\underline{\underline{I}}) + 2\mu \underline{\underline{\varepsilon}}$$
(2.2)

Avec la notation habituelle pour les constantes de Lamé la relation précédente peut être réduite à l'équation (2.3) suivante [109] :

$$\sigma_{rr} = E\varepsilon_{rr}; \ \sigma_{rs} = 2\mu\varepsilon_{rs} \text{ et } \sigma_{rt} = 2\mu\varepsilon_{rt}$$
(2.3)

De même, les équations de déformation- déplacement peuvent être résumées comme suit [109] :

$$\varepsilon_{rr} = \partial_r u_{0r} - s \partial_r u_{1t} + t \partial_r u_{1s}$$

$$\varepsilon_{rs} = \frac{1}{2} (\partial_r u_{0t} + s \partial_r u_{1r} + u_{1s})$$

$$\varepsilon_{rt} = \frac{1}{2} (\partial_r u_{0s} - t \partial_r u_{1r} - u_{1s})$$
(2.4)

Selon l'équation (2.4), les déformations dues au cisaillement γ_{rs} et γ_{rt} , la déformation axiale ε_{rr} et la torsion ψ peuvent être obtenues comme suit (2.5) [109] :

$$\gamma_{s} = \partial_{r} u_{0t} + u_{1s}$$

$$\gamma_{t} = \partial_{r} u_{0s} - u_{1t}$$

$$\varepsilon_{r} = \partial_{r} u_{0r}$$

$$\psi = \partial_{r} u_{1r}$$
(2.5)

Nous supposons également que les axes locaux (r, s, t) sont des axes géométriques principaux :

$$\int_{S} s \, dS = \int_{S} t \, dS = \int_{S} s \, t \, dS = 0 \tag{2.6}$$

Avec les définitions (2.5) pour les déformations et les torsions, les composantes des forces q et des moments internes <u>m</u> peuvent être exprimées comme suit [109] :

$$q_{r} = \int_{s} \sigma_{rr} dS = \int_{s} \partial_{r} u_{0r} - s \partial_{r} u_{1t} + t \partial_{r} u_{1s} dS = EA\varepsilon_{r}$$

$$q_{s} = \int_{s} \sigma_{sr} dS = \mu \int_{s} \partial_{r} u_{0t} + s \partial_{r} u_{1r} + u_{1s} dS = \mu A \gamma_{s}$$

$$q_{s} = \int_{s} \sigma_{st} dS = \mu \int_{s} \partial_{r} u_{0s} - t \partial_{r} u_{1r} - u_{1s} dS = \mu A \gamma_{t}$$

$$m_{r} = \int_{s} \sigma_{rr} s - \sigma_{rs} t dS = \mu \int_{s} (\partial_{r} u_{0t} + s \partial_{r} u_{1r} + u_{1s}) s - (\partial_{r} u_{0s} - t \partial_{r} u_{1r} - u_{1s}) t dS = \mu I \psi$$

$$m_{s} = \int_{s} \sigma_{rr} t dS = E \int_{s} (\partial_{r} u_{0r} - s \partial_{r} u_{1t} + t u_{1s}) t dS = EI_{s} k_{s}$$

$$m_{t} = \int_{s} \sigma_{rr} s dS = E \int_{s} (\partial_{r} u_{0r} - s \partial_{r} u_{1t} + t u_{1s}) s dS = -EI_{t} k_{t}$$

$$(2.7)$$

Avec les définitions standard pour la section (A), les moments d'inertie (I_s) et (I_t) et l'inertie (J) des moments polaires [109] :

$$I_s = \int_{s} t^2 dS$$
; $I_t = \int_{s} s^2 dS$ et $J = I_s + I_t$ (2.8)

En décomposant le test de terrain $\underline{\omega}_b$ (**the field test**) d'une manière similaire, il est possible de calculer la même expression pour $\overline{\gamma}_{rs}, \overline{\gamma}_{rt}, \overline{\varepsilon}_{rr}, \overline{\psi}, \overline{k}_s$ et \overline{k}_t (notée avec une barre pour différencier celles-ci associées au champ de déplacement réel<u>u</u>). En injectant ces définitions dans (2.9) on obtient pour une poutre isotrope élastique linéaire [109] :

$$\int_{\Omega} \underline{\underline{\sigma}} : \underline{\underline{e}}(\underline{\underline{\omega}}_{b}) dV = \int_{L} \int_{S} (\underline{\underline{\sigma}}_{b} \underline{\underline{e}}_{r}) (\partial_{r} \underline{\underline{\omega}}_{b} - \underline{\underline{\omega}}_{1} \wedge \underline{\underline{e}}_{r}) dSdl$$
$$= \int_{L} \int_{S} (-\underline{\underline{e}}_{r} \wedge (\underline{\underline{\sigma}}_{b} \underline{\underline{e}}_{r})) \underline{\underline{\omega}}_{1} + (\underline{\underline{\sigma}}_{b} \underline{\underline{e}}_{r}) \partial_{r} \underline{\underline{\omega}}_{b} dSdl$$
$$= \int_{L} \int_{S} (-\underline{\underline{e}}_{r} \wedge \underline{\underline{q}}) \underline{\underline{\omega}}_{1} + \underline{\underline{q}} \partial_{r} \underline{\underline{\omega}}_{0} + \underline{\underline{m}} \partial_{r} \underline{\underline{\omega}}_{1} dl$$
(2.9)

Où q et \underline{m} sont la force résultante et le moment de flexion sur la section :

$$\underline{q} = \int_{S} \underline{\underline{\sigma}}_{b} \underline{e}_{r} \, dS \quad \text{et} \quad \underline{\underline{m}} = \int_{S} \underline{\underline{x}}^{*} \wedge \left(\underline{\underline{\sigma}}_{b} \underline{\underline{e}}_{r}\right) dS \tag{2.10}$$

Les équations finales sont alors exprimées comme suit :

$$\int_{\Omega} \underline{\sigma} : \underline{\underline{\varepsilon}} dV = \int_{L} \left(\overline{\gamma}_{s} \mu A_{s}^{s} \gamma_{s} + \overline{\gamma}_{t} \mu A_{t}^{s} \gamma_{t} + \overline{k}_{s} EI_{s} k_{s} + \overline{k}_{t} EI_{t} k_{t} + \overline{\varepsilon}_{r} EA \varepsilon_{r} + \overline{\psi} EJ \psi \right) dl \qquad (2.11)$$

Où A_s^s et A_t^s sont la zone de cisaillement efficace pour les directions s et t, respectivement. En introduisant l'approximation par éléments finis \underline{u}_0^h et \underline{u}_1^h dans l'équation (2.12), la matrice de rigidité élastique peut être calculée directement (Hughes, [110]).

Dans le domaine de la superstructure Ω_b , nous introduisons l'approximation par éléments finis suivante \underline{u}_0^h et \underline{u}_1^h pour le champ de déplacement \underline{u}_0 et les rotations \underline{u}_1 [109] :

$$\underline{u}_{0}^{h}(x,t) = \sum_{i=1}^{3} \sum_{I=1}^{n_{b}} N_{0}^{I} \underline{(x)} \underline{e}_{i} u_{0_{Ii}}(t) \quad \forall \underline{x} \in \overline{\Omega}_{b}$$

$$\underline{u}_{1}^{h}(x,t) = \sum_{i=1}^{3} \sum_{I=1}^{n_{b}} N_{1}^{I} \underline{(x)} \underline{e}_{i} u_{1_{Ii}}(t) \quad \forall \underline{x} \in \overline{\Omega}_{b}$$
(2.12)

Où n_b sont les nombres de nœuds totaux où les déplacements et/ou les rotations sont définis, Ω_b est le domain de la superstructure (Ω_b) dénote le domaine discrétisé et $u_{0_{Ii}}$, et $u_{1_{Ii}}$ sont les valeurs nodales. L'index I représente les noeuds et i les degrée de liberté (DOF) associés à chaque noeud. On peut remarquer qu'il n'est pas nécessaire d'assumer les mêmes fonctions de forme pour le déplacement transversal et extensionnel N_1^I ou pour la flexion et la rotation en torsion N_0^I [109].

2.4. Matrice de rigidité à deux composants

En appliquant la condensation statique par rapport aux moments de rotations dans la matrice de rigidité locale définie par l'équation 2.11, les relations de la rigidité en flexion et la rigidité axiale des éléments locale dans le plan r-s pour l'élément élastique sont [105, 109] :

$$\begin{cases} M_I^e \\ M_J^e \end{cases} = \frac{EI_t}{L} \begin{bmatrix} k_{II} & k_{IJ} \\ k_{IJ} & k_{JJ} \end{bmatrix} \begin{bmatrix} \theta_I \\ \theta_J \end{bmatrix}$$
(2.13)

$$F = \frac{E.A}{L}\delta \tag{2.14}$$

Où M_I^e et M_J^e sont les moments de flexion élastiques des extrémités aux nœuds I et Jdans le plan r-s (vecteurs dans la direction e_t), θ_I (ou $u_{1_{I3}}$) et θ_J (ou $u_{1_{J3}}$) sont les rotations totales des noeuds finaux correspondants et δ la déformation axiale [105, 109].

Pour un élément de section transversale élastique linéaire, les coefficients de rigidité en flexion sont définis comme suit [105, 109] :

$$k_{II} = k_{JJ} = 4$$
 et $k_{IJ} = 2$ (2.15)

Habituellement, on suppose que la poutre a une section transversale uniforme sur toute la longueur, mais des éléments de section transversale variable peuvent être considérés en spécifiant des coefficients de rigidité en flexion appropriés pour la poutre élastique. Des déformations dues au cisaillement élastiques peuvent être incluses en spécifiant une zone de cisaillement efficace A_t^S [105, 109].

Une rotule plastique se forme lorsque le moment dans la composante inélastique de l'élément atteint sa valeur de rendement. Une rotule est ensuite introduite dans ce composant, la composante élastique restant inchangée. La mesure de la déformation plastique en flexion est la rotation de la rotule plastique [105, 109].

Afin d'obtenir les équations incrémentales de moment-rotation, les incréments de rotation d'extrémité totale doivent être liés aux rotations dans les composants élastiques et élasto-plastiques (figure 2.3). Dans cette figure M_I et M_J sont le moment fléchissant total aux extrémités I et J, M_I^e et M_J^e sont les moments de flexion aux extrémités de l'élément élastique; M_I^p et M_J^p sont les moments fléchissant aux extrémités du composant élasto-plastique; θ_I et θ_J sont les rotations aux extrémités; θ_I^p et θ_J^p sont les rotations extrêmes de la composant élasto-plastique; α_I et α_J l'angle plastique engagé aux extrémités du composant élasto-plastique [105, 109].

La rigidité rotationnelle est égale a $k_t = \frac{4EI}{L}$ (section transversale uniforme) de la poutre totale est divisé en deux composantes [105, 109] :

$$k_e = pk_t \text{ et } k_p = qk_t; \ p+q=1$$
 (2.16)

Où k_e est la rigidité du composant linéaire et k_p la rigidité du composant élastiqueplastique (inélastiques). Les paramètres p et q régissent la distribution de la rigidité, généralement $p \approx 0.05$ [105, 109].

A partir de l'équation (2.13), les équations fondamentales des moments aux extrémités et les rotations pour les deux composants sont [105, 109] :

$$M_{I}^{e} = pk\left(\theta_{I} + \frac{1}{2}\theta_{J}\right); M_{J}^{e} = pk\left(\frac{1}{2}\theta_{I} + \theta_{J}\right) \text{ (élastique)}$$
(2.17)

$$M_{I}^{p} = qk \left(\theta_{I}^{p} + \frac{1}{2}\theta_{J}^{p}\right); M_{J}^{p} = qk \left(\frac{1}{2}\theta_{I}^{p} + \theta_{J}^{p}\right) \text{ (élasto-plastique)}$$
(2.18)

A partir de la figure 2.3 on déduit θ_I^p et θ_J^p [105, 109] :

$$\theta_I^p = \theta_I - \alpha_I; \ \theta_J^p = \theta_J - \alpha_J \tag{2.19}$$

(a) Deux- Composantes

Figure 2.3 : Poutre à deux composantes [105, 109].

En combinant (2.18) et en substituant (2.19), la forme incrémentale de la relation du moment de flexion peut s'écrire comme suit [105, 109] :

$$\Delta M_{I}^{e} = qk \left(\left(\Delta \theta_{I} - \Delta \alpha_{I} \right) + \frac{1}{2} \left(\Delta \theta_{J} - \Delta \alpha_{J} \right) \right)$$

$$\Delta M_{J}^{e} = qk \left(\frac{1}{2} \left(\Delta \theta_{I} - \Delta \alpha_{I} \right) + \left(\Delta \theta_{J} - \Delta \alpha_{J} \right) \right)$$
(2.20)

L'ajout de moments de flexion aux extrémités des composantes élastiques et élastoplastiques (**inélastiques**) donne le moment de flexion total [105, 109] :

$$M_I = M_I^e + M_I^p; \ M_J = M_J^e + M_J^p$$
(2.21)

Enfin, les équations fondamentales de la flexion et de la rotation aux extrémités pour l'élément complet sont obtenues par l'équation suivante [105, 109] :

$$\Delta M_{I} = k \left(\left(\Delta \theta_{I} - q \Delta \alpha_{I} \right) + \frac{1}{2} \left(\Delta \theta_{J} - q \Delta \alpha_{J} \right) \right)$$

$$\Delta M_{J} = k \left(\frac{1}{2} \left(\Delta \theta_{I} - q \Delta \alpha_{I} \right) + \left(\Delta \theta_{J} - q \Delta \alpha_{J} \right) \right)$$
(2.22)

En supposant que l'état de rendement reste constant tout au long de chaque incrément de temps, les moments de flexion incrémentaux ΔM_I et ΔM_J sont liés à la fois aux deux rotations incrémentales $\Delta \theta_I$ et $\Delta \theta_J$, et les angles plastique incrémentales $\Delta \alpha_I$ et $\Delta \alpha_J$. Pour tout état de rendement qui est maintenu constant tout au long d'un incrément de temps, il est possible d'établir des équations de la forme $\Delta \alpha = \Delta \alpha (\Delta \theta_I, \Delta \theta_J)$ reliant les angles plastiques incrémentaux aux rotations d'extrémité incrémentielles. Avec ces équations, il est possible d'éliminer les angles plastiques incrémentaux des équations incrémentales moment-rotation résultant en des équations de la forme $\Delta M = \Delta M (\Delta \theta_I, \Delta \theta_J)$ [105, 109].

Lorsque l'état de rendement est linéaire à la fin I ou à la fin J, ou les deux à la fois, l'angle plastique incrémental correspondant doit être nul : $\Delta \theta_I = \Delta \theta_J = 0$ [105, 109].

Lorsque l'état de rendement est non linéaire à la fin du nœud I ou à la fin du nœud J, ou les deux à la fois, les moments de flexion totaux incrémentiels correspondants sont égaux au moment fléchissant incrémental de la composante linéaire et le moment fléchissant incrémental dans la composante élasto-plastique est nul : à la fin du nœud I, $\Delta M_I = \Delta M_I^e$ et $\Delta M_I^p = 0$; ou à la fin du nœud J, $\Delta M_J = \Delta M_J^e$ et $\Delta M_J^p = 0$; ou les deux à la fois [105, 109].

D'autre part, ΔM_I^e et ΔM_J^e dépendent du même paramètre de rigidité p. Par conséquent, ce modèle peut avoir des boucles d'hystérésis aux extrémités avec seulement deux pentes k et pk bien que les niveaux de rendement puissent être différents [105, 109].

Il y a quatre états de rendement possibles pour une poutre [105, 109] :

- (a) Linéaire aux extrémités I et J.
- (b) Non linéaire à la fin I et linéaire à la fin J.
- (c) Linéaire à la fin I et non linéaire à la fin J.

(d) Non-linéaire aux extrémités I et J.

Parce que les équations de moment-rotations incrémentales aux extrémités ont un modèle régulier pour les quatre états de rendement. Les équations matricielles suivantes, utilisant les paramètres de rigidité effective S_A , S_B et S_C , peuvent être établies (voir l'équation 2.23 et le tableau 2.1) [105, 109] :

$$\begin{cases} \Delta M_I \\ \Delta M_J \end{cases} = \begin{bmatrix} S_A & S_B \\ S_B & S_C \end{bmatrix} \begin{bmatrix} \Delta \theta_I \\ \Delta \theta_J \end{bmatrix}$$
(2.23)

État	S_A	S_B	S_C
(a)	k	$\frac{1}{2}k$	k
(b)	pk	$\frac{1}{2}pk$	$\left(1-\frac{q}{4}\right)k$
(c)	$\left(1-\frac{q}{4}\right)k$	$\frac{1}{2}pk$	pk
(d)	pk	$\frac{1}{2}pk$	pk

Tableau 2.1 : Coefficients de rigidité effectifs [105, 109].

Même si l'élément de poutre peut être placé arbitrairement en 3D, cette approche à deux composantes est prise en compte que dans le plan local r-s (plan de flexion primaire), donc le modèle est bidimensionnel dans un sens non linéaire. La rigidité à la flexion de l'axe secondaire (plan r-t) peut être obtenue en multipliant la rigidité élastique primaire par un facteur spécifié f. La déformation en torsion est liée au couple Tdéfinie par la formule suivante [105, 109] :

$$\Delta T = \frac{GJ}{L} \Delta \alpha \tag{2.24}$$

Dans lequel il est supposé que G = 0.4E et J égale à :

$$J = f \left(k_{II} + k_{JJ} \right) \frac{I_t}{8}$$
 (2.25)

dans lequel k_{II} et k_{JJ} sont les facteurs de rigidité primaire en flexion, après toute modification des déformations due au cisaillement.

2.5. Modèle constitutif de poutre non linéaire

Le comportement du matériau non-linéaire est modélisé par un modèle constitutif élastoplastique de Prandtl-Reuss [112, 113] avec un critère de rendement (yield) de Von Mises et un durcissement isotrope. L'incompressibilité plastique est supposée, c'est-à-dire que la fonction de rendement (yield function) f dépend uniquement des invariants du tenseur de contrainte déviatorique <u>s</u> :

$$f(\underline{\sigma}_b, \varepsilon^p) = \sigma_{eq} - R - \sigma_y = \sqrt{3J_2(\underline{s})} - k(\varepsilon^p) - \sigma_y$$
(2.26)

Où J_2 est le deuxième invariant de $s : R = k(\varepsilon^p)$ est la règle de durcissement isotrope en termes de déformation plastique cumulée ε^p :

$$\varepsilon^{p} = \int_{0}^{t} \sqrt{\underline{\dot{\varepsilon}}^{p}(\tau)} : \underline{\dot{\varepsilon}}^{p}(\tau) d\tau$$
(2.27)

Et σ_y est la contrainte limite élastique initiale. Une règle d'écoulement associé et de durcissement normale sont utilisées :

$$\dot{\underline{\varepsilon}}^{P} = \dot{\lambda}^{P} \frac{\partial f}{\partial \underline{\sigma}_{b}} = \frac{3}{2\sigma_{eq}} \dot{\lambda}^{P} \underline{\underline{s}}$$

$$\dot{\underline{\varepsilon}}^{P} = -\dot{\lambda} \frac{\partial f}{\partial R} = \dot{\lambda}^{P}$$
(2.28)

Selon la cinématique des poutres de « **Bernouilli** », la forme explicite de s = s est donnée par :

$$\underbrace{s}_{=} = \frac{2}{3}\sigma_{rr}\underline{e}_{r} \otimes \underline{e}_{r} - \frac{1}{3}\sigma_{rr}\underline{e}_{s} \otimes \underline{e}_{s} - \frac{1}{3}\sigma_{rr}\underline{e}_{t} \otimes \underline{e}_{t} + \sigma_{rs}\underline{e}_{r} \otimes s\underline{e}_{s} + \sigma_{rt}\underline{e}_{r} \otimes s\underline{e}_{t} \quad (2.29)$$

Lorsque la plasticité est activée, la condition de cohérence donne directement le multiplicateur plastique $\dot{\lambda}^p$:

$$\dot{f} = \dot{\sigma}_{eq} - k'(\varepsilon^p)\dot{\varepsilon}^p = 0 \rightarrow \dot{\lambda}^p = \dot{\varepsilon}^p = \frac{1}{k'(\varepsilon^p)}\dot{\sigma}_{eq}$$
 (2.30)

En utilisant la valeur calculée précédente du multiplicateur plastique, la forme incrémentale totale peut être résumée comme suit :

$$\frac{\dot{\underline{\varepsilon}}}{\underline{\varepsilon}}^{e} = \frac{\underline{\dot{\varepsilon}}^{e}}{E} + \underline{\underline{\dot{\varepsilon}}}^{p} \\
\underline{\dot{\underline{\varepsilon}}}^{e} = \frac{1+\nu}{E} \underline{\underline{\dot{\sigma}}}_{b} - \frac{\nu}{E} tr(\underline{\dot{\sigma}}_{b})\underline{\underline{I}} \\
\underline{\dot{\varepsilon}}^{p} = \frac{3}{2} \frac{1}{k'(\varepsilon^{p})\sigma_{eq}} \dot{\sigma}_{eq} \underline{\underline{s}}$$
(2.31)

L'expression de la relation de durcissement $k'(\varepsilon^p)$ peut être facilement dérivée de l'essai de traction simple. Dans cette condition, la seule composante non-nulle du tenseur de contrainte est $\sigma_1 = \sigma$, et les composantes non nulles du tenseur des contraintes déviatoriques sont $s_{11} = \frac{2}{3}\sigma$ et $s_{22} = s_{33} = -\frac{1}{3}\sigma$. La déformation plastique totale est $\varepsilon^p = \varepsilon^p$ et $\sigma_{eq} = \sigma$. Dans ce cas, l'écoulement plastique est :

$$\dot{\varepsilon}^{p} = \frac{1}{k'(\varepsilon^{p})} \dot{\sigma} \rightarrow k'(\varepsilon^{p}) = \frac{\partial \sigma}{\partial \varepsilon^{p}}$$
(2.32)

Selon l'expression précédente, la fonction R peut être calculée comme suit :

$$R = k\left(\varepsilon^{p}\right) = \int_{0}^{\varepsilon} k'\left(\varepsilon^{p}\right) d\varepsilon^{p} = \int_{\sigma_{y}}^{\sigma} d\sigma = \sigma - \sigma_{y}$$
(2.33)

En supposant une relation contrainte-déformation bilinéaire (voir la figure 2.4), le module tangent peut être exprimé par l'équation 2.34 suivante :

$$R = k\left(\varepsilon^{p}\right) = \frac{EE_{t}}{E - E_{t}}\varepsilon^{p} \longrightarrow k'\left(\varepsilon^{p}\right) = \frac{EE_{t}}{E - E_{t}}$$
(2.34)

Figure 2.4 : Représentation graphique de l'essai de traction simple et l'interprétation du paramètre de durcissement $R = k(\varepsilon^p)$ et $k'(\varepsilon^p)$ [109].

Le prédicateur de l'incrément de contrainte est divisé en une partie élastique et une partie plastique. En posant $\Delta \underline{\varepsilon}^*$ la partie plastique de l'incrément total, et en inversant les relations incrémentales de l'équation 2.31, l'incrément de contrainte associé à $\Delta \underline{\varepsilon}^*$ peut être calculé comme :

$$\Delta \underline{\underline{\sigma}}^{*} = \underline{\underline{C}}^{ep}(\underline{\underline{s}}, \sigma_{eq}): \Delta \underline{\underline{\varepsilon}}^{*}$$
(2.35)

Comme le tenseur élastoplastique C_{eq}^{ep} est une fonction du tenseur de contrainte déviatorique, la contrainte équivalente σ_{eq} et de sa dérivée, l'incrément plastique est subdivisé en plusieurs étapes et le tenseur élastoplastique évalué pour les valeurs mises à jour de \underline{s} , σ_{eq} et $d\sigma_{eq}$ pour chaque étape.

Les paramètres du modèle pour l'élément de poutre continu sont résumés dans le tableau 2.2. Comme expliqué précédemment, ces paramètres sont liés aux résultats expérimentaux d'un test de traction simple.

Les valeurs numériques utilisées sont données pour chaque exemple dans la section correspondante.

Paramètre	Description
Ε	Module d'élasticité.
V	Coefficients de poisson.
$\sigma_{_{y}}$	Contrainte de rendement (yield) initiale.
E_t	Module de durcissement par écrouissage.

Tableau 2.2 : Paramètres du modèle constitutif de Prandtl-Reuss [112, 113].

2.6. Surfaces rendement (Yield surfaces) de la poutre

L'effet de la force axiale sur la résistance à la flexion est pris en compte en spécifiant les surfaces de rendement P-M. Trois types de surface d'interaction de rendement peuvent être spécifiée pour les extrémités de l'élément de la poutre [105, 109] :

- Type Poutre (voir figures 2.5a). Ce type de surface doit être spécifié lorsque les forces axiales sont faibles ou ignorées. Le rendement est affecté uniquement par le moment de flexion.
- Type Poteau en acier (voir figure 2.5b). Ce type de surface est destiné à être utilisé avec des colonnes en acier.
- Type Poteau en béton (voir figure 2.5c). Ce type de surface est destiné à être utilisé avec des colonnes en béton.

(a) Type Poutre
(b) Type Poteau en acier
(c) Type Poteau en béton (B.A)
Figure 2.5 : Surfaces d'interaction de rendement (Yield interaction surfaces) [105, 109].

Pour toute combinaison de la force axiale et de moment de flexion à l'intérieur d'une surface de rendement, la section transversale est supposée élastique. Si la combinaison force axial-moment de flexion se trouve sur/ ou à l'extérieur de la surface, une rotule plastique est introduite. Les combinaisons en dehors de la surface de rendement ne sont permises que temporairement, étant compensées en appliquant des charges correctives dans l'étape suivante. Cette procédure n'est pas strictement correcte car les déformations axiales et les déformations en flexion interagissent après rendement, et il est donc faux de supposer que seule la raideur en flexion change alors que la raideur axiale reste inchangée [105, 109].

Si la combinaison force axiale-moment de flexion va de la plage élastique à au-delà de la surface de rendement dans toute sous-étape de chargement; une correction d'équilibre est faite comme indiqué sur la figure 2.6a. Puisque la rigidité axiale est supposée rester inchangée, dans les sous-étapes subséquentes, la combinaison force axial-moment de flexion au niveau d'une rotule plastique s'éloignera généralement de la surface

d'écoulement à l'intérieur de toute sous-étape, comme le montre la figure 2.6b. Une correction d'équilibre, comme montré, est donc faite [105, 109].

(a) Le rendement (Yield) dans une rotule existante(b) Formation d'une nouvelle rotuleFigure 2.6 : Correction d'équilibre pour dépassement de la surface de rendement [105, 109].

La force axiale dans un élément avec une surface d'interaction de type poteau ne peut jamais dépasser la valeur de rendement pour le moment zéro. Cependant, en raison de la procédure de calcul utilisée, des forces axiales supérieures au rendement peuvent être calculées. Pour les forces axiales supérieures au rendement, le moment de rupture est supposé nul [105, 109].

2.7. Forces de résistance (Resisting force) dans un élément

On appliquant le modèle poutre à deux composantes définie dans le paragraphe 2.2 l'élément est considéré comme la somme d'une composante élastique et d'une composante inélastique. Les actions et les déformations de l'élément sont représentées sur la figure 2.7.

(a) Actions primaires et déformations (dans le plan des nœuds I, J et K)

(b) Actions secondaires et déformations (hors plan)

(c) Déplacements d'extrémité d'élément (global)

Figure 2.7 : Déformations et déplacements [104, 105, 109].

La rigidité axiale est constante et elle est donnée par l'équation 2.36 [105] :

$$\Delta F = \frac{E.A}{L} \Delta \delta \tag{2.36}$$

En combinant les équations (2.23) et (2.36), il est possible d'obtenir la matrice de rigidité primaire élasto-plastique (inélastique) $[K_{ep}]$ en termes de déformation d'incréments locale [105] :

$$\begin{cases} \Delta F \\ \Delta M_I \\ \Delta M_J \end{cases} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 \\ 0 & S_A & S_B \\ 0 & S_B & S_C \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \theta_I \\ \Delta \theta_J \end{bmatrix}$$
(2.37)

$\operatorname{Ou} \{\Delta s\} = [K_{ep}] \{\Delta u\}$

Où $\{s\}$ est le vecteur d'action élastoplastique (inélastique).

2.8. Excentricité d'extrémité dans l'élément

Les rotules plastiques dans les éléments poteau- poutre et les structures mixtes (Poteau- poutre-voile, **coupled frame-shear-wall structures**) formeront des faces proches des joints plutôt que des axes centraux communs. Cet effet peut être approché en postulant des liens de liaison rigides et infiniment forts entre les nœuds (qui sont situés sur les axes centraux communs) et les extrémités des éléments, comme le montre la figure 2.8. La transformation de déplacement reliant les déplacements nodaux $\{d^n\}$, à ceux de l'élément extrémités $\{d\}$ est facilement établie, et peut être écrite comme suit [105] :

$$\{d\} = [A_e] \{d^n\}$$

$$(2.38)$$

Figure 2.8 : Excentricités d'extrémité (cas 2D) [105, 109].

Si des excentricités d'extrémité sont spécifiées, les coefficients de rigidité doivent s'appliquer à la partie de l'élément située entre les faces des joints, en ignorant la région de joint. De même, les forces d'extrémité fixes sont celles qui s'appliquent aux faces des joints. Les excentricités d'extrémité n'affectent pas la rigidité géométrique [105, 109].

2.9. Formulation dynamique

L'élément Poteau-poutre complet plan est obtenu par la combinaison d'un élément barre à deux nœuds et d'un élément poutre spatial basé sur la théorie de poutre de Bernouilli-Euler (voir figure 2.7c). Dans un élément barre à deux nœuds (figure 2.9a), la seule variation possible des déplacements axiaux $u(\xi)$ peut être exprimée par la formule d'interpolation suivante [105, 109] :

$$u(\xi) = N_1(\xi)u_1 + N_7(\xi)u_7 = \begin{bmatrix} N_1(\xi) & N_7(\xi) \end{bmatrix} \begin{bmatrix} u_1 \\ u_7 \end{bmatrix}$$
(2.39)

Dans l'élément de poutre spatial (**Bernouilli-Euler**) à dix degrés de liberté : Le déplacement transversal nodal est définie par u_2 , u_3 , u_8 et u_9 ; La rotation nodale est définie par u_5 , u_6 , u_{11} et u_{12} et la déformation en torsion par u_4 et u_{10} . Ces degrés de liberté sont utilisés pour définir uniquement la variation du déplacement transversal $v(\xi)$ sur l'élément dans les plans r-s et r-t. Afin de satisfaire les exigences de continuité entre les deux $v(\xi)$ et la pente $\theta(\xi) = \frac{dv(\xi)}{d\xi}$ sur l'élément entier et entre les éléments, les fonctions de forme cubique Hermitienne sont utilisées (figure 2.9b). La formule d'interpolation basée sur ces fonctions pour le déplacement transversal sur le plan r-s est donnée comme suit [105, 109] :

$$\nu_{r-s}(\xi) = \begin{bmatrix} N_2(\xi) & N_6(\xi) & N_8(\xi) & N_{12}(\xi) \end{bmatrix} \begin{bmatrix} u_2 \\ u_6 \\ u_8 \\ u_{12} \end{bmatrix}$$
(2.40)

Les fonctions de formes sont exprimées en termes de coordonnées naturelles adimensionnel $\xi = \frac{2x}{l} - 1$; où (l) est la longueur de l'élément. La coordonnée ξ varie de $\xi = -1$ (nœud I) à $\xi = +1$ (nœud J). Les fonctions de forme en termes de ξ sont [105, 109] :

$$N_{1}(\xi) = \frac{1}{2}(1-\xi)$$

$$N_{2}(\xi) = \frac{1}{4}(1-\xi)^{2}(2+\xi)$$

$$N_{6}(\xi) = \frac{1}{8}l(1-\xi)^{2}(1+\xi)$$

$$N_{7}(\xi) = \frac{1}{2}(1+\xi)$$

$$N_{8}(\xi) = \frac{1}{4}(1+\xi)^{2}(2-\xi)$$

$$N_{12}(\xi) = -\frac{1}{8}l(1+\xi)^{2}(1-\xi)$$
(2.41)

La même expression s'applique à r-t plan de flexion. Les fonctions d'interpolation linéaire sont utilisées pour définir la variation de la torsion $t(\xi)$ sur l'élément [105, 109] :

$$t(\xi) = N_1(\xi)u_4 + N_7(\xi)u_{10} = \begin{bmatrix} N_1(\xi) & N_7(\xi) \end{bmatrix} \begin{bmatrix} u_4 \\ u_{10} \end{bmatrix}$$
(2.42)
$\left[u_{1} \right]$

En combinant les relations précédentes, il est possible d'obtenir les expressions d'interpolation pour l'élément poteau-poutre complet [105, 109] :

$$\begin{bmatrix} u(\xi) \\ v_{-s}(\xi) \\ v_{-s}(\xi) \\ t(\xi) \end{bmatrix} = \begin{bmatrix} N_{1}(\xi) & 0 & 0 & 0 & 0 & 0 & N_{2}(\xi) & 0 & 0 & 0 & 0 & 0 \\ 0 & N_{2}(\xi) & 0 & 0 & 0 & N_{6}(\xi) & 0 & N_{8}(\xi) & 0 & 0 & 0 & N_{12}(\xi) \\ 0 & 0 & N_{2}(\xi) & 0 & -N_{6}(\xi) & 0 & 0 & 0 & N_{8}(\xi) & 0 & -N_{12}(\xi) & 0 \\ 0 & 0 & 0 & N_{1}(\xi) & 0 & 0 & 0 & 0 & N_{12}(\xi) & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{4} \\ u_{5} \\ u_{4} \\ u_{1} \\ u_{12} \end{bmatrix}$$

$$\begin{bmatrix} u(\xi) \\ v_{-s}(\xi) \\ v_{-$$

Où [N] est la matrice de forme.

2.9.1. Matrice de masse cohérente (Consistent mass matrix)

Selon la théorie des éléments finie FEM, [110, 111], la matrice de masse cohérente $\left[\overline{M_{c}}\right]$ pour un élément de densité ρ est obtenue comme suit [105, 109] :

$$\begin{bmatrix} -\\ M_C \end{bmatrix} = \int_{\Omega} e \,\rho[N]^t [N] dV^e \tag{2.44}$$

En supposant que seule l'inertie de translation due au mouvement latéral de la poutre peut être utilisée pour calculer l'énergie cinétique de l'élément (inertie rotationnelle ignorée), la matrice de forme (équation 2.43) donne la matrice de masse cohérente locale correspondante. Chaque terme de flexion générique peut être calculé par l'équation suivante [105, 109] :

$$\bar{m}_{ij} = \rho \frac{AL}{2} \int_{-1}^{1} N_i(\xi) N_j(\xi) d\xi \qquad i, j \neq 4, 10$$
(2.45)

Pour les termes de torsion, le moment d'inertie de masse polaire $I_m \approx \frac{\rho J}{A}$ doit être introduit :

$${}^{-}_{mij} = \rho J L \int_{-1}^{1} N_i(\xi) N_j(\xi) d\xi \qquad i, j = 4, 10$$
(2.46)

Pour la globalisation, la transformation suivante est appliquée [105, 109] :

$$[M_c] = [T]^t \begin{bmatrix} -\\ M_c \end{bmatrix} [T]$$
(2.47)

Où [T] est la matrice de transformation usuelle du repère locale a celui globale.

2.9.2. Matrice de masse localisée (Lumped mass matrix)

Dans ce cas, la masse totale de l'élément Poteau-poutre est directement répartie (distribuer) aux nœuds libres, en ignorant tout couplage croisé. La masse totale de l'élément ρAL est divisée en deux parties égales et affectées à chaque nœud pour produire le terme suivant [105, 109] :

$$-\frac{1}{mij} = \frac{1}{2}\rho AL \qquad i = 1...3, 7...9 \qquad (2.48)$$

La procédure de globalisation est analogue au cas précédent.

2.9.3 Vecteur de force nodale d'un élément cohérent

Selon la théorie de la MEF, donné par [110, 111], le vecteur de force nodale d'un élément cohérent locale pour un élément « Poteau-poutre » est $\{\bar{f}_b\}$ selon la direction axiale (ω_r) et les deux directions transversales respectives ω_s et ω_t est donnée par l'équation suivante [105, 109] :

$$\left\{\bar{f}_{b}\right\} = \int_{\Omega} e\left[N\right]^{t} \begin{cases} \omega_{r} \\ \omega_{s} \\ \omega_{t} \\ 0 \end{cases} dV^{e}$$
(2.49)

2.10. Conclusion

Le modèle constitutif utilisés pour la modélisation numérique des éléments (Poutre, Poteau, dalle, etc.) de la structure ont été présentés. Ce modèle constitutif non linéaire prend en compte le comportement dynamique non linéaire des différents matériaux impliqués (i.e. Béton et Aciers). La méthode des éléments finis (M.E.F) utilisée dans GEFDYN a été améliorée par la mise en œuvre d'un modèle de poutre en rotule plastique tridimensionnelle dénoté « Poutre 33 ».

Ce modèle sera utilisé dans les prochains chapitres pour effectuer les analyses statiques et dynamiques non linéaires et dynamiques linéaires sur les cas d'études choisis pour étudier l'effet de la torsion dans les bâtiments soumis à l'action sismiques.

CHAPITRE 3 : CARACTERISATION DE LA TORSION

3.1. Introduction

Les structures irrégulières sont de plus en plus utilisées dans l'architecture moderne. Ces irrégularités induisent le phénomène de torsion qui peut être préjudiciable particulièrement lors d'événements sismiques. Ce phénomène peut résulter de la distribution non uniforme de la masse, de la rigidité, de la force latérale et/ou des composantes de torsion du mouvement du sol. Les nouveaux codes sismiques tentent de prendre en compte cet effet mais lors de la modélisation il est difficile d'évaluer tous les paramètres qui influent sur le comportement de ce type de structures.

Aussi, nous nous proposons d'évaluer l'influence des effets de la torsion sur le comportement sismiques des structures irrégulières. Pour ce faire, des modèles constitués d'un système structurel composé d'éléments auto-stables « Poteaux-Poutres » en béton armé sont choisis. Un programme d'analyse par code éléments finis « GEFDYN » est utilisé pour effectuer les analyses nécessaires [104, 105]. Pour ces analyses, une sélection d'enregistrements sismiques est utilisée. Les enregistrements ont été sélectionnés à partir de la base de données du Centre de recherche sur le tremblement de terre du Pacifique (PEER).

Les réponses obtenues sont comparées en termes : de courbe de capacité (effort tranchant à la base en fonction du déplacement maximal), de déplacement maximal, de ductilité (μ), de facteur de réduction (R_e) et de l'excentricité dynamique afin de montrer leur prépondérance.

3.2. Modèle de poutre utilisé

Afin d'introduire les propriétés non linéaires des éléments poteaux et poutres, le logiciel GEFDYN [104, 105] donne la possibilité d'utiliser une loi de comportement cyclique non linéaire. C'est un modèle poutre avec des caractéristiques hystérétiques non linéaires en moment de flexion-rotation (M- ψ) sans dégradation de la rigidité comme illustré sur la figure 3.1a.

Ce modèle est constitué de deux composantes, l'une est une composante linéaire et l'autre est une composante idéalement élasto-plastique comme illustré sur la figure 3.1b, de sorte que chaque poutre ne peut avoir que des boucles d'hystérésis bilinéaires à chaque extrémité. Pour ce modèle, la pente initiale du diagramme moment-courbure (M- ψ) est déterminée à partir de la somme de la rigidité des deux composants, tandis que la deuxième pente est déterminée uniquement par la rigidité de la composante linéaire de la poutre voir la figure 3.1a. Le rendement de la rotule plastique avec un moment constant forme un composant élasto-plastique. Les moments dans le composant élastique continuent à augmenter, simulant le durcissement par écrouissage [104, 105, 109].

Figure 3.1 : Modèle à deux composants [104, 105, 109].

3.3. Description des cas étudiés

Des analyses statiques non linéaires, dynamiques temporelle linéaires et dynamiques temporelles non linéaires ont été réalisées à l'aide du logiciel élément finis «GEFDYN » [104, 105].

Nous avons choisis d'étudier deux types de structures une asymétrique noté (AS) et l'autre symétrique noté (SY) à un seul étage en béton armé [114, 115] et une structure en béton armée de 3 étages [116, 117]. Les structures sont constituées d'un système qui se compose d'éléments auto-stables « Poteaux-Poutres » et de dalle plein considéré infiniment rigide « **Body** ». Ils sont présentés dans les sections 3.3.1 et 3.3.2 respectivement.

3.3.1. Caractéristiques des structures à un seul étage étudiés

La configuration géométrique des sections transversales des éléments de résistances « poteaux et poutres » est illustré sur la figure 3.2 [114, 115]. Le ferraillage des éléments résistants a été réalisé selon les règles techniques du béton armé aux états limites [118, 119] et conformément au règlement parasismique Algérien [98]. Les dimensions en plan sont définies par: une largeur totale de 7 m, une longueur totale de 7 m et une hauteur d'étage de 4 m. Les sections transversales des poteaux dans le côté rigide noté (ER1 et ER4) ont des dimensions de 45×45 cm² et dans le coté flexible noté (EF2 et EF3) ont des dimensions de 40×40 cm² pour la structure asymétrique (AS), tandis que les poteaux noté (E1, E2, E3 et E4) de la structure symétrique (SY) ont des dimensions de 45×45 cm². Les poutres dans les deux directions orthogonales (X et Y) des deux structures sont égales à 30×50 cm² [114, 115].

(a) noté (AS) (b) noté (SY) Figure 3.2 : Description de la géométrie et de la section transversale des éléments des deux structures [114, 115].

La masse de la dalle est supposée uniformément répartie le long des éléments de la poutre et les poteaux sont considérées sans masses (i.e. leurs masse participatif est négligeable). On suppose également que la dalle des deux structures est infiniment rigide dans son propre plan. En outre, la même rigidité est considéré pour chaque élément de poteau dans la structure symétrique (i.e. $k_1 = k_2 = k_3 = k_4$) alors que dans le côté rigide de la structure asymétrique la rigidité pour les éléments (ER1 et ER4) sont égales à $k_1 = k_4 = K$ et dans le côté flexible la rigidité des éléments (EF2 et EF3) sont égales à $k_2 = k_3 = 1.13K$.

Dans ce modèle, les six degrés de liberté sont considérés [114, 115].

La masse uniformément distribuée noté (W) est calculée selon le code parasismique Algérien comme suit [98] :

$$W = W_G + \beta W_Q; \quad \beta = 0.2 \tag{3.1}$$

En considérant la charge permanente $W_G = 0.583$ t/m² et la charge d'exploitations $W_Q = 0.5$ t/m², W = 0.583 + 0.2 * 0.5 = 0.683 t/m².

La surface totale (S) est: $S = 7 * 7 = 49 \text{ m}^2$.

Donc la masse totale de la structure W_T est égale à :

$$W_T = W * S + 4 * (2.5 * 0.3 * 0.5 * 7) \approx 44 \text{ tones.}$$

Le module d'élasticité (E) est calculé à partir de la formule suivante :

$$E = E_{\rm bi} = 11000 * \sqrt[3]{f_{c28}} = 3340248 \,Mpa \approx 33.4 \,GPa$$
.

La résistance standard à la compression du béton est calculée à partir de la formule suivante [118, 119] :

$$f_{bc} = 0.85* \frac{f_{c28}}{1.15}$$
(3.2)

Où.la résistance de compression du béton à 28j est pris égal à $f_{c28} = 28Mpa$ et la résistance standard à la compression du béton $f_{bc} = 20.7$ MPa.

La masse totale (W_T) du bâtiment est de 44 t. Le module d'élasticité (*E*) des éléments est de 33.4 GPa avec un coefficient de poisson v égal à 0.2. La résistance standard à la compression du béton (f_{bc}) est égale à 20.7 MPa, la limite de résistance de l'acier fy= 400 MPa. L'amortissement critique (ξ) est pris égal à 5% [114, 115].

Les coordonnées du centre de rigidité (XK, YK) et du centre de masse (XM, YM) pour la structure (AS) sont égale respectivement à (CRx=-0.81 m, CRy=0.0 m) et (CMx=-0.21 m, CMx=0.0 m). L'excentricité statique pour les deux directions orthogonales (X et Y) est alors égale à (e_{sx} =0.60 m et e_{sy} =0.0 m) par rapport au centre géométrique (CDG) de la structure asymétrique [114, 115]. L'analyse élastique dynamique de la structure sur base fixe (i.e. structure encastré à la base considérée comme base rigide) donne la fréquence fondamentale (fstr) de 6.32 Hz (0.158 s) et 7.02 Hz (0.142 s) pour les structures symétriques et asymétriques respectivement [114, 115].

Afin d'introduire les propriétés non-linéaires des éléments « poteaux-poutres » des deux structures (AS et SY), un modèle non linéaire de rotule plastique a été utilisé. La figure 3.3 illustre les courbes de la surface de rendement moments de flexion-effort axiale (M-N) qui contrôlent la fonction de rendement non-linéaire de la rotule plastique des éléments poteaux pour les deux structures respectives symétriques et asymétriques [114, 115].

(a) Poteaux (40x40 & 45x45 cm²)
(b) Poutre 30x50 cm²
Figure 3.3 : Courbe de surface d'interaction moment de flexion-effort axiale (M-N) pour les éléments « Poteaux-Poutres » des deux structures [114, 115].

3.3.2. Caractéristiques de la structure multi-étage étudié

La structure considérée est un bâtiment de trois étages. Elle a été réalisée au Laboratoire européen d'évaluation structurelle (ELSA, European Laboratory for Structural Assessment) du centre commun de recherche (JRC, Joint Research Center) à Ispra, en Italie et a fait l'objet d'un test grandeur nature sur table vibrante, sous les auspices de l'union européen projet d'évaluation et de réhabilitation des performances sismiques (SPEAR, EU project Seismic Performance Assessment and Rehabilitation) [116, 117].

La structure SPEAR représente une structure en béton armé (RC) de trois étages typique des anciennes constructions des années 70 construites dans les pays du sud de l'Europe sans dispositions spécifiques pour la résistance aux séismes. La structure est régulière en élévation avec une hauteur d'étage de 3 mètres; elle est non symétrique dans les deux directions orthogonales, avec des travées de 2×2 s'étendant sur 3 à 6 mètres (voir la figure 3.4b). La vue 3D et en plan du modèle structurel est illustrée sur la figure 3.4a [116, 117].

La structure a le même renfort dans les poutres et les poteaux de chaque étage avec des dalles plein de 15 cm d'épaisseurs considéré par hypothèse infiniment rigide. Les sections transversales des poutres ont une largeur de 25 cm et une hauteur de 50 cm et pour tous les poteaux de [C1-C5] à [C7-C9] ont une dimension de 25×25 cm² à l'exception du poteau C6 qui a une dimension de 25×75 cm². Ils sont renforcés au moyen de barres d'acier lisses de 12 mm, comme c'est illustré sur la figure 3.5 [116, 117].

(a) Vue 3D et en plan de la structure

(b) Vue en plan et de face de la structure Figures 3.4 : Description de la géométrie de la structure multi-étage [116, 117].

(a) Géométrie des sections transversales des éléments et leurs ferraillages

(b) Plan de ferraillage de la poutre 0.25x0.50 [unité : m]

Figure 3.5 : Détails du plan de ferraillage des éléments (Unités: m pour la longueur, mm pour Φ des barres) [116, 117].

La masse de la dalle est supposée uniformément répartie le long des éléments de la poutre et les poteaux sont considérés sans masses. On suppose également que les dalles des différents niveaux du bâtiment sont infiniment rigides dans leurs plans [120, 121].

Les étapes suivantes ont été réalisées :

1. La masse totale des deux premiers étages est calculés comme suit [120, 121] : En utilisons l'équation 3.1 la masse uniformément distribuée noté (W) est égal à W =0.43 t/m²; ceci en considérant la charge permanente W_G =0.40 t/m² et la charge d'exploitations W_Q =0.15 t/m². La surface en plan (S) est calculé comme suit : S = 9.7*10+0.75*3=99.25 m². La masse totale du premier et deuxième niveau est égale à :

 $W_T = W * S + 12.683 \approx 55.36 tones.$

2. La masse totale de la terrasse est calculés comme suit [120, 121] :

Même procédure est applique pour le calcul de la masse total de la terrasse où est égale à W = 0.42 t/m²; Avec $W_G = 0.40$ t/m² et $W_O = 0.1$ t/m².

 $W_T = W * S + 12.683 \approx 54.46$ tones.

Les masses totales pour les différents étages (i.e. étages courants et terrasse) sont calculées selon les critères de conceptions fixés par le code parasismique Algérien [98], une masse totale (W_T) de 55,36 t pour les étages 1 et 2 et 54,46 t pour la terrasse a été considérée, le module d'élasticité E de la structure est pris égal à 206000 MPa selon [116] et le coefficient de Poisson est égale à v = 0,2. La résistance standard à la compression du béton (f_{bc}) est égale à 25 MPa [116], la limite de résistance de l'acier est pris égale à fy= 400 MPa. L'amortissement critique (ξ) est pris égal à 5% [120, 121].

L'excentricité statique définie par la différence entre le centre de masse (CM) et le centre de rigidité (CR) est excentrique par rapport au centre de gravité de la structure. Les coordonnées du centre de rigidité (XK, YK) et du centre de masse (XM, YM) pour les trois niveaux d'étages représentés sur la figure 3.6 sont égale respectivement à (CRx=3.73 m, CRy=1.31 m) et (CMx=4.08 m, CMx=5.24 m). L'excentricité statique pour les deux directions orthogonales (X et Y) est alors égale à (esx=0.35 m et esy=3.92 m) par rapport au centre géométrique de la structure (CDG).

Figure 3.6 : Excentricité statique (es) entre (CM) et (CR) de la structure [Unité : m].

Les périodes élastiques et déformés modales de la structure multi-étage sont représentées sur la figure 3.7 et ils sont obtenus à partir de l'analyse élastique dynamique avec une base fixe (i.e. base rigide). Où la fréquence fondamentale (fstr) du premier mode correspondant est égale à T1 = 1.606 Hz (0.623s) et pour le deuxième et troisième mode elles sont égale respectivement à T2 = 2.049 Hz (0.488s) et T3 = 2.958 Hz (0.338s) [120, 121].

Figure 3.7 : Périodes élastiques et déformés modales à partir de l'analyse de valeurs propres 3D.

Afin d'introduire les propriétés non-linéaires des éléments poteaux de [C1-C5] et [C7-C9] ainsi que du poteau C6 et de la poutre type de dimension (25x50), un modèle non linéaire de rotule plastique a été utilisé. La figure 3.8 montre les courbes d'interactions moments de flexion- efforts axial (M-N) qui contrôle la fonction de rendement non-linéaires de la rotule plastique des éléments « poteaux-poutres » de la structure multi-étage [120].

Figure 3.8 : Courbe de surface d'interaction moment de flexion-effort axiale (M-N) pour les éléments poteaux des deux structures [120].

3.4. Évaluations du facteur ductilité (μ) et du facteur de réduction (R_e)

La ductilité a été calculée pour les structures considérées. Premièrement, dans le cas d'une structure symétrique, la demande de ductilité de déplacement du système a été calculée à l'aide de l'équation 3.3 suivante [29] :

$$\mu_{\Delta} = \frac{\Delta_{u}}{\Delta_{y}} \tag{3.3}$$

Où Δ_{u} est le déplacement inélastique ultime et Δ_{y} est le déplacement élastique limite du système. Dans le cas d'une structure asymétrique, la demande de ductilité dépend en plus des déplacements latéraux des deux angles de torsion du système, nommé respectivement angle de torsion ultime et angle de torsion optimal (θ_{tu} et θ_{to}). L'angle de torsion ultime (

 θ_{uu}) dépend de la rigidité et du moment de torsion du système. Il est défini dans l'équation 3.4 [29] :

$$\theta_{tu} = \frac{M_{tor}}{K_{tor}} = \frac{e_{vx} \sum_{i}^{V} v_{ji}}{\sum_{i} y_{i}^{2} K_{xi} + \sum_{i} x_{i}^{2} K_{yi}}$$
(3.4)

Où M_{tor} est le moment de torsion ; V_{yi} est l'effort de cisaillement dans la direction y ; e_{vx} est l'excentricité de résistance induite par le moment de torsion et K_{tor} la rigidité en torsion du système; x_i et y_i sont respectivement la distance à partir de chaque élément (poteau) au centre de rigidité (CR) et ou centre de gravité (CG).

De plus, sachant que le déplacement inélastique ultime (Δ_u) obtenu dans le cas asymétrique n'est pas nécessairement identique dans le côté rigide (Δ_{u1}) par rapport à celui du côté flexible (Δ_{u2}), l'angle de torsion optimal θ_{to} qui correspond à l'excentricité de résistance, doit être calculé par l'équation 3.5 suivante [29] :

$$\theta_{to} = \frac{\Delta_{u1} - \Delta_{u2}}{L} \tag{3.5}$$

Où *L* est la longueur de la structure.

Dans le cas ou l'angle de torsion ultime θ_{tu} est inférieur à la valeur optimale ($\theta_{tu} < \theta_{to}$), la demande en termes de ductilité est donnée par l'équation 3.6 suivante [29] :

$$\mu_{\Delta} = \frac{\Delta_u}{\Delta_y} = \frac{(\Delta_{u1} + X_1 \theta_{tu})}{\Delta_y}$$
(3.6)

Cependant, lorsque $\theta_{tu} > \theta_{to}$, la demande de ductilité du système est donnée par l'équation 3.7 [29] :

$$\mu_{\Delta} = \frac{\Delta_u}{\Delta_v} = \frac{(\Delta_{u2} - X_2 \theta_{tu})}{\Delta_v}$$
(3.7)

Où X_1 est la distance à partir de l'élément ER1 jusqu'au centre de masse et X_2 est la distance entre l'élément ER2 et le centre de masse.

En ce qui concerne le facteur de réduction de la résistance (R_e), il reflète la capacité de la structure à dissiper l'énergie par un comportement inélastique. Cela ne dépend pas seulement des caractéristiques du système, mais aussi du mouvement du sol influencé par

la période de vibration et de la ductilité (i.e. ratio entre le déplacement ultime inélastique et le déplacement limite élastique) [122]. Ce facteur est défini comme le rapport de la demande de résistance élastique à celui inélastique est donné par l'équation 3.8 [122] :

$$R_e = \frac{F_{el}}{F_y} \tag{3.8}$$

Où F_{el} est la force latérale maximale élastique obtenue à partir de l'analyse dynamique linéaire sous mouvement sismique, et (F_y) est la résistance inélastique latérale limite obtenue à partir de l'analyse non linéaire et correspondant à la force obtenue pour la valeur du déplacement ultime sous le même séisme [122].

3.5. Caractéristiques des enregistrements sismiques

Afin de définir les caractéristiques des mouvements d'entrée utilisées pour l'analyse dynamique temporelle linéaire (EL) et non linéaire (NL), une sélection d'enregistrements sismiques est utilisée. Les signaux sismiques adoptés pour cette étude sont proposés dans [123, 124, 125]. Ainsi, les 116 enregistrements (sans facteur d'échelle) ont été sélectionnés à partir de la base de données du centre de recherche sur les tremblements de terre du Pacifique (PEER) [126]. On peut noter que le spectre de réponse moyen est cohérent avec le spectre de réponse normalisée (avec un taux d'amortissement critique égale à 5%) correspondant à un type de sol (Rocheux) de type A selon l'Eurocode 8 (voir la figure 3.9).

Figure 3.9 : Spectres de réponse des mouvements sismiques d'entrée et spectre de réponse élastique normalisé pour un amortissement critique ξ égale à 5%.

Dans cette étude une base de 116 enregistrements sismiques a été utilisée, d'une magnitude variant entre 6,2 et 7,7. Les paramètres qui intègrent l'amplitude et la durée du mouvement du sol sont susceptibles d'être des prédicteurs de dommages plus fiables que les paramètres qui capturent uniquement l'amplitude du séisme. L'intensité Arias (I_a) est une mesure de la sévérité des séismes qui correspond bien à plusieurs mesures de la demande structurelle. Cette intensité est définie comme suit dans l'équation 3.9 (voir Annexe A, Equations A.1) [153] :

$$I_a = \frac{\pi}{2g} \int_0^T [a(t)]^2 dt \quad , [\text{Unité : s}]$$
(3.9)

Où a(t) est l'accélération maximale du sol T_d est la durée du séisme et g est l'accélération de gravité.

L'effet de la période prédominante T_p [s] est également étudié comme l'intensité d'Arias I_a [m/s], la période moyenne T_m [s] et l'accélération maximale du sol PGA [g] pour les mouvements d'entrée donné. Les plages de variation de ces paramètres pour les mouvements d'entrée utilisés sont reportées dans le tableau 3.1.

Paramètre		Variation	Moyenne	*CV [%]
PGA	[g]	0.05-0.88	0.24	66
Tp	[s]	0.08-1.15	0.35	59
T _m	[s]	0.21-1.46	0.61	36
I _a	[m/s]	0.04-6.21	0.78	115

Tableau 3.1 : Caractéristiques des données de mouvement d'entrée [120, 121].

Tous les signaux sont cohérents avec les spectres de réponse du type A de l'Eurocode 8. *CV est la Covariance exprimée par l'équation 3.10 :

$$CV = \frac{\sigma_X}{\mu_X} \tag{3.10}$$

Où σ_{χ} est l'écart-type et μ_{χ} est la fonction de la moyenne.

Type de sol A (sol rocheux) selon la classification de l'Eurocode 8 avec une vitesse moyenne des ondes de cisaillement V_{s30} varient entre 760 m/s < V_{s30} < 1500 m/s.

Où V_{s30} représente la vitesse moyenne des ondes de cisaillement dans les 30 premiers mètres du sol.

3.6. Résultats et discussion

Des analyses (dynamique linéaire (EL), dynamique non linéaire (NL) et push over (NSP)) ont été réalisées sur les structures cité dans la section 3.3.1 et 3.3.2. Les résultats obtenus pour les cas d'études sont donnés en termes de courbes de capacité (effort tranchant à la base/déplacement au sommet), de ductilité et de facteur de réduction, déplacement maximale (drift) inter-étages et l'excentricité dynamique sont présentés.

3.6.1. Structure à un seul étage (AS et SY)

Les résultats obtenus en termes de résistance latérale ultime (Vu) respectivement pour les deux types de structure asymétrique (AS) et symétrique (SY) sont représentés sur les figures 3.10a et 3.10b. Comme on peut le constatée, la résistance latérale respectivement (Vx) et (Vy) dans les deux directions orthogonales (X et Y) pour la structure symétrique est supérieure à celle de la structure asymétrique. Ceci est dû principalement à la plastification des éléments de résistance ce qui a conduit à une baisse de résistance de la force latéral [114, 115].

Figure 3.10 : Courbe de capacité : Effort tranchant à la base VS déplacements maximale au sommet pour les deux directions orthogonales X et Y [114, 115].

Afin de montré les effets du mouvement du sol sur la réponse des structures, nous avons comparé la variation du déplacement ultime au sommet en fonction de l'intensité d'Arias (I_a) . Tout d'abord, il convient de noter que dans le cas de la structure asymétrique

(AS), la structure se comporte de manière non linéaire avec plus de 60% des séismes d'entrées utilisées. Tandis que la structure symétrique (SY) se comporte de manière non linéaire pour seulement 40% des séismes d'entrées. De plus, le déplacement maximal au sommet (respectivement, Dx et Dy) représentés sur les figures 3.11a et 3.11b pour les deux directions orthogonales (X et Y) obtenu dans le cas de la structure asymétrique est toujours supérieur à celui obtenu pour le cas symétrique. Cet effet est dû à la réduction de la rigidité de la structure asymétrique qui influence la réponse en termes de déplacement ultime [121].

Figure 3.11 : Courbe du déplacement au sommet fonction de l'intensité d'Arias (I_a) pour les deux directions orthogonales en [Unité : m/s] [121].

Les représentations de la ductilité (μ_{Δ}) par rapport à l'intensité d'Arias (I_a) et à la période prédominante (T_p) sont montrées sur la figure 3.12 et figure 3.13. Comme on peut le voir, la ductilité augmente avec l'augmentation du mouvement d'entrée en termes d'intensité d'Arias et diminue avec la période prédominante pour les deux types de structures asymétrique (AS) et symétrique (SY). L'effet de la ductilité est plus important pour les cas de la structure asymétrique. L'évolution des facteurs de réduction (R_e) est illustrée sur la figure 3.14 et la figure 3.15 pour les deux types de structures. Comme le montre la figure 3.15, le facteur de réduction diminue lorsque la période dominante du séisme augmente. Contrairement à la variation de l'intensité d'Arias illustré sur la figure 3.14, le facteur de réduction augmente avec la diminution des mouvements d'entrées.

Figure 3.12 : Courbe de la ductilité en fonction de l'intensité d'Arias (I_a) en [Unité : m/s]

Figure 3.13 : Courbe de la ductilité en fonction de la période dominante (T_p) en [Unité : s]

Figure 3.14 : Courbe facteur de réduction en fonction de l'intensité d'Arias (I_a) en [Unité : m/s] [114, 115]

Figure 3.15 : Courbe facteur de réduction en fonction de la période dominante (T_p) en [Unité : s] [114, 115].

Les résultats obtenus en termes d'excentricité dynamique normalisée (définie comme le rapport entre l'excentricité dynamique et l'excentricité statique) sont montrés sur la figure 3.16, on a observé pour le comportement élastique et plastique une amplification des excentricités normalisée avec des valeurs d'intensité d'Arias inférieur ou égale à deux (\leq 2), tandis que dans le cas non linéaire on constate une diminution de l'excentricité dynamique normalisée qui atteint une limite en fonction des caractéristiques des éléments structurels pour des intensité d'Arias supérieurs à 2 (> 2). Ces effets sont dus à la création de rotule plastique dans les éléments résistants [114, 115].

Figure 3.16 : Courbe de l'excentricité dynamique normalisée en fonction de l'intensité d'Arias (I_a) en [Unité : m/s] [114, 115].

3.6.2. Structure multi-étage (SPEAR)

Les résultats obtenus en termes de résistance latérale ultime (V_u) sont représentés sur la figure 3.17. Comme on peut le voir, la force latérale ultime dans la direction (Y) est égale à 163 KN correspondant à un déplacement ultime de 5.6 cm. Cette force est supérieure à celles dans la direction (X) qui vaut 50 KN et correspondant à un déplacement ultime de 2 cm. Ceci est dû à la dégradation significative de la rigidité et la diminution de la résistance à cause de la plastification des éléments résistants par effet de torsion [120, 121].

Figure 3.17 : Courbe de capacité : Effort tranchant à la base VS déplacements maximal pour les deux directions orthogonales X et Y [120, 121].

Le déplacement (drift) inter-étages (*ID*) est l'un des indicateurs de dommages les plus simples et les plus couramment utilisés. Il est défini comme suit dans l'équation 3.11 [116] :

$$ID_{i} = \frac{\Delta_{i} - \Delta_{i-1}}{h_{i}} \tag{3.11}$$

Où $\Delta_i - \Delta_{i-1}$ est le déplacement relatif entre les étages successives et h_i est la hauteur d'étage.

Les résultats obtenus en termes de déplacement (drift) inter-étages (*ID*) dans les deux directions orthogonales (X et Y) sont montrées sur la figure 3.18. Les résultats

obtenus montrent que le déplacement (*ID*) est plus important au premier niveau dans la direction (Y), avec une valeur de 3.62% par rapport à la direction X ou il est égale à 2.44%. Nous constatons que la valeur de (*ID*) pour la direction Y est supérieurs à la valeur limite de 3% recommandés par Broderick et Elnashai [127] et Kappos [128] ainsi que celle suggéré par SEAoC (**Structural Engineers Association of California**) qui est de 2.5% [129]. D'après nos résultats on peut dire que la structure à subit des dommages. Ceci est dû d'une part au fait que la structure considéré n'est pas construite avec des codes sismiques modernes et d'autre part aux déplacements excessives engendrés par l'actions sismiques dans la direction Y, ainsi qu'à la plastification de la majorité des poteaux du premier étages et à l'effet de torsion induit qui à conduit à cette valeur de *ID* [120, 121].

Figures 3.18 : Déplacements (drift) inter-étages (IDx) et (IDy) dans les deux directions orthogonales respectives de la structure multi étages [120, 121].

Les résultats obtenus en termes d'excentricité dynamique normalisée (définie comme le rapport entre l'excentricité dynamique et l'excentricité statique) sont montrés sur la figure 3.19. Il a été observé que les excentricités dynamique normalisée diminuent lorsque l'intensité d'Arias (I_a) augmente et ils sont proches ou inférieurs à un pour des valeurs d'intensités d'arias < 1m/s [120, 121].

Figure 3.19 : Courbe de l'excentricité dynamique normalisée en fonction de l'intensité d'Arias (I_a) en [Unité : m/s] [120, 121].

3.7. Conclusion

La réponse en torsion dans les structures irrégulières en plan soumises au mouvement du sol peut être influencée par de nombreux paramètres, tels que le mouvement du sol, les méthodes d'analyses et la modélisation. La présente étude à pris en compte comme paramètre influant la réponse sismique. Les effets étudiés sont : le déplacement maximal au sommet, la ductilité, le facteur de réduction et l'excentricité dynamique normalisée dans le cas d'une structure à un seul étage et le déplacement (drift) inter étage et l'excentricité dynamique pour le cas de la structure multi étage.

Le comportement de la structure à un seul étage est influencé par de nombreux paramètres liés au mouvement du sol, on site l'intensité sismique, la période prédominante, le contenu fréquentiel, et l'effet de torsion induit. Ces effets peuvent être caractérisés par une forte demande en termes d'effort de résistance latéral précisément dans le côté flexible, de ductilité et de facteur de réduction de la résistance. Ces effets deviennent plus importants dans le cas de structures multi étages.

Ces résultats sont insuffisants pour avancer des recommandations générales pouvant être inclus dans le règlement parasismique Algérien à savoir le choix de facteur de réduction (R_e) pour la prise en compte du comportement non linéaire des structures auto stables, des méthodes d'analyse et de la modélisation idéale qui permet de prendre en compte le phénomène de torsion. La limite de l'effondrement recommandé par le règlement parasismique Algérien de 1% de la hauteur d'étage est une valeur très conservatrice par rapport aux valeurs trouvées dans cette étude et celle recommandée par L'Eurocode 8 ou par SEAoC. Néanmoins nous pouvons suggérer qu'une valeur de 2% de la hauteur d'étage serait une valeur « raisonnable » à utiliser dans un premier temps.

CHAPITRE 4 : QUANTIFATION DE LA TORSION

4.1. Introductions

La prise en compte des effets de la torsion dans les calculs nécessite la quantification des différentes sources induisant ce phénomène. La multitude de ces sources ainsi que leur complexité rend pratiquement impossible de les considérer dans leur ensemble, néanmoins une évaluation des sources les plus prépondérantes est possible. Ayant identifié auparavant les paramètres que nous avons jugé important, nous allons donc les quantifier en suivant un cheminement donné.

4.2. Démarche suivie

Une évaluation probabiliste de l'influence des paramètres d'entré sur le comportement sismiques des bâtiments irréguliers en plan a été réalisées, en prenant en compte quelques paramètres incertains associées aux mouvements du sol. Afin dévaluer l'importance de ces caractéristiques sur le dommage structurel et la sensibilité de la réponse aux paramètres d'entrée choisis, nous avons choisis d'utiliser la simulation de Monte Carlo (MC). L'influence de ces paramètres est mise en évidence par l'utilisation du coefficient de corrélation partielle (PCC).

Tout d'abord, nous avons considéré les structures présentées dans le chapitre 3 section 3.3.1 et 3.3.2 afin d'estimer l'influence des paramètres d'entrée sur leurs réponses sismiques en termes de déplacements maximal au sommet, de déplacements maximal inter étages (ID) et d'excentricité dynamique. Ceci en prenant en compte certains paramètres d'entrées (Inputs) définies à partir des 116 enregistrements sismiques choisis Ces paramètres d'entrée sont : L'accélération maximale du sol (PGA), l'intensité d'Arias (Ia), la période prédominante (Tp) et la période moyen (Tm). La variabilité de ces paramètres d'entrée dépend des variations dans les magnitudes, les distances sources-à-sites (épicentres, foyers) et les conditions du sol (effets de site). Cette variabilité peut affecter la réponse de la structure et donc sa conception.

Pour généraliser les résultats obtenus, et étudier l'existence de corrélations entre les caractéristiques structurelles et les paramètres de mouvement d'entrée, nous avons choisis

une autre structure asymétrique à un seul étage composé d'éléments auto-stables « poteaux-poutres » en béton armé que nous avons sollicité avec 150 séismes.

La réponse de la structure en termes de déplacement maximal au sommet (Droof), d'efforts tranchant à la base (Vbase) et d'excentricité dynamique normalisée (i.e. le ratio ed/es) est obtenue par analyse dynamique linéaire, analyse dynamique temporelle par accélérogramme (NLTH) et analyse statique non linéaire Pushover (NSP). La réponse en termes de déplacement au sommet est calculée et utilisée pour construire des courbes de fragilité.

4.3. Analyse des incertitudes

Les paramètres d'entrée des modèles ne sont pas toujours connus avec un degré de certitude suffisant. L'incertitude d'entrée peut être causée par la variabilité naturelle ainsi que par les erreurs et les incertitudes associées aux mesures. L'incertitude des paramètres d'entrée est souvent exprimée en termes de distributions de probabilité, qui dérive des échantillons de valeurs mesurées, c'est-à-dire des distributions de probabilité empiriques. Les différents paramètres d'entrée peuvent avoir des dépendances l'un par rapport à l'autre, c'est-à-dire qu'ils peuvent être corrélés [130-133].

Généralement, la principale raison d'effectuer une analyse d'incertitude est d'évaluer l'incertitude dans la variable de sortie (output) du modèle qui découle de l'incertitude des entrées (inputs). La question à étudier est la suivante: *Comment y (variable de sortie) varie-t-il lorsque x (variable d'entrée) varie selon certaines distributions de probabilité conjointes supposées?*

4.4. Analyse de sensibilité

Les méthodes d'analyse de sensibilité (SA) sont des outils qui permettent d'étudier comment l'incertitude de la variable sortie (Output) d'un modèle peut être répartie sur différentes sources d'incertitude de la variable d'entrée (Input) du modèle. Cette méthode d'analyse peut être utilisé pour déterminer les variables d'entrée qui contribuent le plus à un comportement de la variable de sortie en tant qu'intrants non influents, ou pour déterminer certains effets d'interaction dans le modèle [131].

L'analyse de sensibilité vise à déterminer dans quelle mesure la variable de sortie d'un modèle est sensible aux changements dans les variables d'entrées du modèle. Lorsque les paramètres d'entrée sont relativement certains, on peut regarder la dérivée partielle de la fonction de sortie par rapport aux paramètres d'entrée. Cette mesure de sensibilité peut facilement être calculée numériquement en effectuant plusieurs simulations en faisant varier les paramètres d'entrée autour d'une valeur nominale. Cette technique d'analyse est appelée « analyse de sensibilité locale » [130-133].

Pour les évaluations du risque lié aux phénomènes naturels tels que les séismes, les paramètres d'entrée sont souvent incertains et, par conséquent, les techniques d'analyse de sensibilité locales ne sont pas utilisables pour une analyse quantitative. Pour savoir comment les incertitudes dans la variable source affectent les réponses d'un système structurel l'analyse de sensibilité globale est habituellement mise en œuvre en utilisant la simulation de Monte Carlo (MC) et qui est, par conséquent, appelée « méthode basée sur l'échantillonnage » [130-133].

4.5. Méthodes basées sur l'échantillonnage (Simulation Monte Carlo)

Les méthodes basées sur l'échantillonnage sont parmi les techniques les plus couramment utilisées dans l'analyse de sensibilité. Ils sont calculés sur la base de la correspondance entre la relation entrée-sortie générée par la simulation Monte Carlo.

Les méthodes basées sur l'échantillonnage sont parfois appelées globales puisque ces méthodes évaluent l'effet de la variable Xi alors que tous les autres paramètres d'entrée Xj, $j \neq i$, sont modifiés simultanément et varient sur toute leur gamme. Ceci contrairement aux approches de perturbation locale où l'effet de Xi est évalué lorsque les autres Xj, $j \neq i$ sont maintenus constants à une valeur nominale [130].

4.6. Analyse de régression

Une mesure de sensibilité d'un modèle peut être obtenue en utilisant une régression multiple pour ajuster les données d'entrée à une équation théorique qui pourrait produire les données de sortie avec une erreur aussi faible que possible. La technique de régression la plus courante dans l'analyse de sensibilité est la régression linéaire par les moindres carrés. Ainsi, l'objectif est d'ajuster les données d'entrée à une équation linéaire ($\hat{Y} = aX + b$) approximant la sortie Y, avec le critère que la somme de la différence au carré entre la ligne et les points de données dans Y est minimisée. Un modèle de régression linéaire de l'échantillon d'entrée N×k variable d'entrée simple (Xi) à la variable de sortie (Y) qui prend la forme suivante [130-136, 120, 121] :

$$Y_i = \beta_0 + \sum_{j=1}^k \beta_j X_{ij} + \varepsilon_i$$
(4.1)

Où β_0 est le terme constant, β_i sont les coefficients de régression à déterminer et ε_i est l'erreur due à l'approximation, c'est-à-dire $\varepsilon_i = Y_i - \hat{Y}_i$.

Une mesure de l'ampleur dans laquelle le modèle de régression peut correspondre aux données observées est appelé le coefficient de modèle de détermination, R^2 , qui est défini comme :

$$R^{2} = \frac{\sum_{i=1}^{N} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}}$$
(4.2)

Où \hat{Y}_i est l'approximation de la variable de sortie obtenue à partir du modèle de régression et Y_i et \overline{Y} sont les valeurs d'origine et leur moyenne respectivement.

Si R^2 est proche de 1, alors le modèle de régression représente la majeure partie de la variabilité de Y, sinon l'approximation linéaire n'est pas bonne.

Les coefficients de régression β_j , j = 1, ..., k, mesurent la relation linéaire entre les paramètres d'entrée et la variable de sortie.

4.7. Coefficients de corrélation

Les coefficients de corrélation (CC) habituellement connus sous le nom de coefficients de corrélation des moments de produit de Pearson, fournissent une mesure de la force de la relation linéaire entre deux variables. Le coefficient de corrélation ρ_{XY} entre deux vecteurs N-dimensionnels X et Y est défini par [134-137, 120, 121] :

$$\rho_{XY} = \frac{\sum_{i=1}^{N} (X_i - \overline{X}) (Y_i - \overline{Y})}{\left[\sum_{i=1}^{N} (X_i - \overline{X})^2 \right]^{1/2} \left[\sum_{i=1}^{N} (Y_i - \overline{Y})^2 \right]^{1/2}}$$
(4.3)

Où \overline{X} et \overline{Y} sont définis comme la moyenne de X_i et Y_i respectivement. Le CC peut être reformulé comme suit :

$$\rho_{XY} = \frac{Cov[X,Y]}{\sigma(X)\sigma(Y)}$$
(4.4)

Où Cov[X,Y] est la covariance entre les ensembles de données X et Y et $\sigma(X)$ et $\sigma(Y)$ représentent les écarts types échantillonnés des deux variables aléatoires X et Y.

La covariance de deux variables aléatoires X et Y est donné par l'équation 4.5 suivante :

$$Cov[X,Y] = E[(X - E(x))(Y - E(Y))] = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - E[X]E[Y]$$
(4.5)

Ainsi, le coefficient de corrélation ρ_{XY} est alors la covariance normalisée entre les deux ensembles de données, il produit un indice sans unité compris entre -1 et +1 (c'est-àdire, $-1 \le \rho_{XY} \le +1$). Le CC est égal en valeur absolue à la racine carrée du coefficient de détermination R^2 du modèle associé à la régression linéaire.

Le coefficient de corrélation (CC) ne mesure que la relation linéaire entre deux variables sans tenir compte de l'effet que pourraient avoir d'autres variables possibles. Ainsi, lorsque plus d'un paramètre d'entrée est considéré, comme c'est habituellement le cas, les coefficients de corrélation partiels (PCC) peuvent être utilisés pour fournir une mesure des relations linéaires entre deux variables lorsque tous les effets linéaires des autres variables ont été supprimés. Le PCC entre une variable individuelle Xi et Y pour un ensemble de covariables $X_{/i} = \{X_1, ..., X_{i-1}, X_{i+1}, ..., X_p\}$ est défini par [134-137, 120, 121] :

$$PCC_{X_{i},Y} = \hat{\rho}_{X_{i},Y.X_{i}} = \hat{\rho}\left(e_{X_{i}.X_{i}}, e_{Y.X_{i}}\right)$$
(4.6)

Le PCC peut être obtenu à partir de l'utilisation d'une séquence de modèles de régression. La procédure commence par la construction des modèles de régression suivants :

$$\hat{X}_{i} = \alpha_{o} + \sum_{j \neq i} \alpha_{j} \cdot X_{j}$$
(4.7)

$$\hat{Y} = \beta_0 + \sum_{j \neq i} \beta_j . X_j$$
(4.8)

 $PCC_{X_i,Y}$ est alors égal au coefficient de corrélation estimé pour les variables résiduelles

données par les équations (4.9) et (4.10), respectivement :

$$e_{X_i \cdot X_{i}} = X_i - \hat{X}_i \tag{4.9}$$

$$e_{Y.X_{i}} = Y - \hat{Y} \tag{4.10}$$

Où β , α sont les indexes de fiabilités; X_i , Y sont les variables aléatoires et $X_{\backslash i}$ désigne les covariables. $\hat{\rho}$ est le coefficient de corrélation partielle; $e_{X_i,X_{\backslash i}}$ est le résidu de la prédiction de X_i par $X_{\backslash i}$ et $e_{Y,X_{\backslash i}}$ est le résidu de la prédiction de Y par $X_{\backslash i}$; \hat{X}_i et \hat{Y} sont les variables de régression. Le coefficient de corrélation $\rho_{X,Y}$ entre deux variables aléatoires X et Y avec les valeurs attendues μ_X et μ_Y et les écarts-types $\sigma(X)$ et $\sigma(Y)$.

4.8. Structure utilisée pour l'étude de sensibilité

En plus des modèles présentés dans le chapitre 3 section 3.3.1 et 3.3.2, une autre structure asymétrique en plan a été choisis dans le cadre de ce travaille afin de traité l'influence des paramètres d'entrée sur la réponse sismique de la structure en béton armée.

Les données d'entrée sont celles qui sont liées à la structure étudiée, qui inclus le choix et les détails du système structurelle, et les caractéristiques des 150 enregistrements sismiques utilisés comme mouvement du sol.

4.8.1. Caractéristiques de la structure étudiée

Il s'agit d'une structure asymétrique à un seul étage composé d'éléments auto-stables « Poteaux-Poutres » en béton armé. La figure 4.1 montre la configuration géométrique des sections transversales des éléments et leurs ferraillages conçus selon les règlements techniques du béton armée aux états limites [118, 119] et le règlement parasismique Algérien [98]. Les dimensions en plan sont définies comme suit : une largeur totale de 8 m, une longueur totale de 15 m et une hauteur d'étage de 4 m. Les sections transversales des poteaux ont des dimensions de 35×35 cm², et les poutres dans la direction (X) sont de 30×50 cm², alors que dans la direction (Y) ils sont de 30×35 cm² [137].

Figure 4.1 : Configuration géométrique et détails du ferraillage des éléments de la structure [Section (Unités: cm) et barres d'aciers (Unité : mm)] [137].

La masse uniformément distribuée noté (W) est calculée selon le code parasismique Algérien en utilisant l'équation 3.1 cité antérieurement (Chapitre 3). En considérant la charge permanente $W_G = 0.69$ t/m² et la charge d'exploitations $W_Q = 0.10$ t/m², W = 0.69 + 0.2 * 0.1 = 0.710 t/m².

La surface totale (S) est: $S = 15 * 8 = 120 \text{ m}^2$.

Donc la masse totale de la structure W_T est égale à :

$$W_T = W * S + 3 * (S_{B1} * L * \gamma c) + 4 * (S_{B2} * 1 * \gamma c)$$

Où S_{B1} est la surface de la poutre 1 noté (B1); S_{B2} est la surface de la poutre 2 noté (B2); L est la longueur totale et l est la largeur totale; γc c'est la densité du béton égal à (25 KN/m3).

$$W_T = 0.71 * 120 + 3 * (0.30 * 0.50 * 15 * 2.5) + 4 * (0.30 * 0.35 * 8 * 2.5) = 110.475 t \approx 110.48 t.$$

La masse de la dalle considérée infiniment rigide dans son plan est supposée uniformément répartie le long des poutres et les poteaux sont considérés sans masses. Nous n'avons donc pas la même masse à chaque nœud i, contrairement à la rigidité des éléments poteaux considérés identiques dans les deux directions orthogonales (où, Kx = Ky). Les six degrés de liberté dans toutes les directions sont pris en compte.

Les caractéristiques mécaniques du matériau sont représentées dans le tableau 4.1 suivant [137] :

Tableau 4.1 : Récapitulatifs	des Propriétés mécaniques o	du matériau utilisé pour	la structure
	[137].		

Propriété mécanique	Symbole	Valeurs
La résistance à la compression standard du béton à 28j	f _{c28}	25 [MPa]
La résistance à la compression standard du béton	f	18 48 [MPa]
$f_{bc} = 0.85 * \frac{T_{c28}}{1.15}$; (cas accidentelle)	L _{bc}	10.10[1114]
La limite d'élasticité de l'acier	\mathbf{f}_{y}	400 [MPa]
La contrainte ultime de l'acier	\mathbf{f}_{su}	480 [MPa]
Module d'élasticité instantané du béton $E_{bi} = 11000*\sqrt[3]{f_{c28}}$	E _{bi}	32.2 [GPa]
Module d'élasticité de l'acier	Es	200 [GPa]
La densité du béton	γc	25 [KN/m³]
Déformation ultime à la rupture en compression du béton à 28j	Ebu	0.003

Les coordonnées du centre de rigidité est ($C_{Rx} = 8.0 \text{ m}$, $C_{Ry} = 4.0 \text{ m}$) et du centre de masse est ($C_{Mx} = 7.538 \text{ m}$, $C_{My} = 4.0 \text{ m}$), l'excentricité statique entre le centre de masse (CM) et le centre de rigidité (CR) est esx = 800 - 753,8 = 46,2 cm dans la direction (X) et esy = 0 cm dans la direction (Y) à cause de $C_{Ry} = C_{My} = 4,0 \text{ m}$ [137]. Ces valeurs on été calculé à partir des équations données dans l'annexe B du présent document.

L'analyse élastique dynamique avec une base fixe donne une fréquence fondamentale (fstr) du premier mode égale à la valeur de : T1 = 1.425 Hz (0.702s). Les deux fréquences correspondantes aux deuxièmes et troisièmes modes, respectivement [137] ont pour valeur T2 = 1.439 Hz (0.695s) et T3 = 1.679 Hz (0.596s).

Les propriétés non linéaires des éléments poteaux et poutres suivent la même loi de comportement décrite dans le Chapitre 3, (Section 3.2). Les courbes d'interactions moment de flexion- effort axiale (M-N) qui contrôlent la fonction de rendement non linéaire de la rotule plastique des éléments poteaux (C1-C12) et des poutres (B1 et B2) de la structure sont représentés sur la figure 4.2, et seront utilisés dans l'analyse dynamique non linéaire [137].

(a) Poteaux C1 à C12 (35×35, [Unités : cm²])

(c) Poutres 30×35 [Unités : cm²]

Figure 4.2 : Courbe de surface d'interaction moment de flexion- effort axiale (M-N) pour les éléments de la structure [137].

4.8.2. Caractéristiques des enregistrements sismiques

Pour l'analyse dynamique non linéaire, une sélection de 150 séismes enregistrés est utilisée et appliquée dans la direction Y. Les enregistrements ont été sélectionnés à partir de la base de données du Centre de recherche sur le tremblement de terre du Pacifique (PEER) [138, 123, 124, 126]. Les magnitudes (Mw) varient entre 6,2 et 7,6 et les enregistrements ont des distances du site à la source (i.e. distances épicentrales, (R*)) de 2 à 28 km avec des conditions du sol qui varient d'un sol dense à un sol ferme [i.e. (200m/s $\leq V_{s30} <400$ m/s, Sol Ferme (S3)) et (400m/s $\leq V_{s30} <800$ m/s, Sol Ferme (S2))] selon le code parasismique Algérien [98], avec V_{s30} représentant la vitesse moyenne des ondes de cisaillement dans les 30 premiers mètres du sol.

Les spectres de réponse des mouvements sismiques d'entrée choisis sont illustrés sur la figure 4.3, la courbe moyenne des spectres de réponse et les courbes des spectres de réponse avec une probabilité de dépassement (PE) comprise entre 2.75% et 97.5% (i.e. spectre de réponse maximal et minimal) sont illustrés sur la figure 4.4. A partir du spectre de réponse moyen, nous avons extrait les périodes caractéristiques limites T1 et T2 de la branche d'accélérations spectrales constantes (plateau), qui ont pour valeurs respectives (0.2 s et 0.5 s) correspondant à un type de sol (meuble) de classe S3 selon le RPA99 version 2003. Ces deux périodes T1 et T2 sont utilisées pour construire le spectre de réponse élastique normalisé correspondant avec un amortissement critique (ξ) pris égal à 5% (voir l'équation 4.11 et la figure 4.4). Sa formulation est donnée comme suit [137] :

/

$$\frac{S_{a}}{g} = \begin{cases} 1.25A_{c} \left(1 + \frac{T}{T_{1}} \left(2.5\eta \frac{Q}{R} - 1 \right) \right) & 0 \le T \le T_{1} \\ 2.5\eta (1.25A_{c}) \frac{Q}{R} & T_{1} \le T \le T_{2} \\ 2.5\eta (1.25A_{c}) \left(\frac{Q}{R} \right) \left(\frac{T_{2}}{T} \right)^{7/5} & T_{2} \le T \le 3s \\ 2.5\eta (1.25A_{c}) \left(\frac{Q}{R} \right) \left(\frac{T_{2}}{3} \right)^{7/5} \left(\frac{3}{T} \right)^{5/3} & T \ge 3s \end{cases}$$
(4.11)

Figure 4.4 : Spectres de réponse des mouvements sismiques d'entrée (Valeurs max et min) et le spectre de réponse élastique normalisé à $\xi=5\%$ selon le RPA99/V2003 [137].

1.5

1

2 T [s]

2.5

3

3.5

4

Où A_c est le coefficient d'accélération du site [unité : g] ; T1 et T2 [unité: s] représentent les limites des périodes supérieures et inférieures définissant la branche d'accélération spectrale constante ; Q est le facteur de qualité (Q = 1); R représente le coefficient de comportement de la structure (R = 1) et η est le facteur de correction de l'amortissement défini par l'équation 4.12 suivante [137] :

$$\eta = \sqrt{7/(2+\xi)} \tag{4.12}$$

Où ξ est le pourcentage d'amortissement critique.

0₀

0.5

Le coefficient d'accélération du site pris égal à 0.31 [Unité : g] afin de déterminer le
spectre de réponse élastique normalisée avec un amortissement critique ξ égal à 5% et Q, R et η sont pris égal à l'unité [137].

Dans les analyses de sensibilité, les paramètres variables d'entrée définis à partir des tremblements de terre considérées dans cette études sont : PGA, Ia, Tp, Tm et t5 95, et qui représentent respectivement l'Accélération maximal du Sol, l'intensité d'Arias, la période prédominante, la période moyenne et la durée significative. Le tableau 4.2 résume les données statistiques sur ces paramètres pour les 150 séismes considérés (voir Annexe A).

Paramètres		Intervalle de Variation	Moyenne (μ_{χ})	* CV [%]
PGA	[Unité: g]	0.08-0.96	0.31	60
Ia	[Unité: m/s]	0.06-8.69	1.39	121
Тр	[Unité: s]	0.08-1.23	0.35	68
Tm	[Unité: s]	0.21-1.71	0.59	40
t5 95	[Unité: s]	1.98-62.13	15.18	65

Tableau 4.2 : Caractéristiques statistiques pour les séismes sélectionnés [137].

**CV* (i.e. Covariance) est le coefficient de variation exprimé par l'équation (3.8) donné dans le chapitre 3 (Section 3.5), il représente le rapport entre l'écart type (σ_{χ}) et la moyenne (μ_{χ}).

4.9. Résultats et discussion de l'analyse de sensibilité

L'importance des caractéristiques incertaines du mouvement sismique d'entrée sur le dommage structurel et la sensibilité de la réponse aux paramètres d'entrée sont évaluées par une analyse probabiliste. L'influence de ces paramètres est quantifiée par l'utilisation du coefficient de corrélation partielle (PCC). Afin d'estimer l'influence des paramètres d'entrée sur la réponse sismique d'une structure irrégulière en plan, des analyses de régression «simulations de Monte Carlo» sont effectuées afin de tenir compte des paramètres variables d'entrée source.

Ces variables ont une distribution non uniformes à causes de la variabilité existante dans la magnitude, la distance site-source, le contenue fréquentiel et les conditions du sol (effet de site).

4.9.1. Quantification des incertitudes

Une étude d'incertitude a été effectué pour les deux structure (SY) et (AS). Les

résultats obtenus pour le déplacement maximal au sommet dans les deux directions orthogonales (X et Y) en fonctions des variables d'entrée sont représentées respectivement sur les figures 4.5 et 4.6. Le déplacement dans la direction Y est bien corrélée avec les deux variables Ia et PGA (voir la figure 4.6a et 4.8a) avec des valeurs respectives égales à : Pour la structure symétrique ($\rho_{Dy,Ia}$ =61.86% et $\rho_{Dy,PGA}$ =61.68%) et pour la structure asymétrique ($\rho_{Dy,Ia}$ =63.49% et $\rho_{Dy,PGA}$ =59.56%). Contrairement à la direction X illustrés sur les figures 4.5a et 4.7a ou le coefficient de corrélations est moins significatifs par rapport au deux variables considérés pour les deux structures [121].

Le coefficient de corrélation partielle (PCC) est utilisé pour quantifier l'effet de chaque variable d'entrée sur la variable de sortie considérée. Les valeurs du PCC résultantes entre les paramètres de tremblement de terre et la variable de sortie (i.e. déplacement au sommet) respectivement dans les deux directions orthogonales (X et Y) sont représentées sur les figures 4.5b et 4.6b pour la structure symétrique et les figures 4.7b et 4.8b pour la structure asymétrique. Les résultats obtenus montre que l'intensité d'Arias (Ia) est la variable d'entrée la plus influente sur le déplacement maximal au sommet suivant la direction (Y) avec une valeur de 46.69% pour la structure asymétrique et une valeur de 42.38% pour la structure symétrique [121].

(a) Coefficients de corrélation
 (b) Coefficients de corrélation partielle
 Figure 4.5 : Effets des paramètres d'entrée sur le déplacement maximal au sommet suivant la direction (X) pour la structure (SY).

(a) Coefficients de corrélation
 (b) Coefficients de corrélation partielle
 Figure 4.6 : Effets des paramètres d'entrée sur le déplacement maximal au sommet suivant la direction (Y) pour la structure (SY).

Figure 4.7 : Effets des variables d'entrée sur le déplacement maximal au sommet suivant la direction (X) pour la structure (AS).

(a) Coefficients de corrélation
 (b) Coefficients de corrélation partielle
 Figure 4.8 : Effets des variables d'entrée sur le déplacement maximal au sommet suivant la direction (Y) pour la structure (AS).

Sur la figure 4.9, il a été montré que l'excentricité dynamique normalisée est influencée par la période moyenne Tm avec une valeur de 19.60% cependant la période prédominante Tp a moins d'influence avec une valeur de 6.05% [121].

(a) Coefficients de corrélation(b) Coefficients de corrélation partielleFigure 4.9 : Effets des variables d'entrée sur l'excentricité dynamique normalisée.

4.9.2. Quantification des incertitudes structure « SPEAR »

L'effet des différents paramètres d'entrée (PGA, Ia, Tp et Tm) sur la variable de sortie déplacements (drift) inter-étages (ID) dans les deux directions orthogonales est obtenues en utilisant le coefficient de corrélation partiel (PCC) lés résultats obtenues sont illustrés sur les figures (4.10b) et (4.11b) respectivement. On peut observer que l'accélération maximale du sol PGA est le paramètre le plus influent avec des valeurs respectives égales à 43,68% et 44,69% pour les deux directions orthogonales X et Y. Sur la figure 4.12, la même observation est faite pour l'excentricité dynamique normalisée avec une valeur de 9,41% [120].

(a) Coefficients de corrélation
 (b) Coefficients de corrélation partielle
 Figure 4.10 : Effets des variables d'entré sismiques sur le déplacement (drift) inter-étages dans la direction X pour la structure SPEAR.

(a) Coefficients de corrélation
 (b) Coefficients de corrélation partielle
 Figure 4.11 : Effets des variables d'entré sismiques sur le déplacement (drift) inter-étages dans la direction Y pour la structure SPEAR.

4.9.3. Simulations numériques d'une structure irrégulière en plan

Nous avons effectuées des analyses statiques non linéaires (NSP), dynamiques linéaires et non linéaires par accélérogrames sur la structure présentée dans la section 4.6.1., pour se faire nous avons considérés les mêmes enregistrements que précédemment. Nous considérons que le mouvement du sol est unidirectionnelle le long de l'axe Y et nous ne tiendrons pas compte de l'effet de l'excentricité accidentelle [137].

Nous présentons tout d'abord l'influence des paramètres d'entrée sur la réponse sismique en termes de déplacement maximal au sommet, de facteur de réduction de la force et de l'excentricité dynamique normalisée. Ensuite une analyse de sensibilité des paramètres d'entrée sismique sur la réponse sismique en termes de déplacements au sommet et de l'excentricité dynamique normalisée a été réalisée pour quantifier les effets du mouvement d'entrée sur la réponse.

4.9.3.1. Déplacement au sommet

Les résultats obtenues en termes de demande pour les déplacements dans les deux directions orthogonales (X et Y) obtenus par les analyses dynamiques linéaires et non linéaires sont illustrés sur les figures 4.13a et 4.13b, selon l'intensité d'Arias (Ia), et sur les figures 4.14a et 4.14b en fonction de l'accélération maximale du sol (PGA), respectivement [137].

Figure 4.13 : Déplacement maximal au sommet pour les deux directions orthogonales respectives (X, Y) en fonction de l'intensité d'Arias (Ia) [unité : m/s] [137].

Figure 4.14 : Déplacement maximal au sommet pour les deux directions orthogonales respectives (X, Y) en fonction de l'accélération du sol (PGA) [unité : g] [137].

Les résultats obtenus montrent que la demande en termes des déplacements au sommet dans les deux directions orthogonales augmente avec l'augmentation de l'intensité d'Arias (Ia) et de l'accélération maximale du sol (PGA). De plus, une bonne corrélation linéaire est observée avec une valeur d'environ 73% pour le déplacement inélastique dans la direction Y, en fonction de l'intensité d'Arias alors que seulement 51% est obtenu pour l'accélération maximale du sol (PGA). La structure étudiée est conçue pour un PGA égal à 0.40g, celui-ci représente environ 42% de l'accélération maximal du sol (PGA=0.96g) appliquée entre tous les mouvements d'entrée. Ceci induit un déplacement ultime au sommet (Δ u) égal à 9.36cm représenté sur les figures 4.13b et 4.14b sous Ia et PGA respectivement [137].

Les déplacements Y sont dans la direction de chargement et les déplacements X ne sont que des déplacements induits dus aux effets de torsion ce qui expliquent leurs faibles valeurs. Plus encore, il peut expliquer que les déplacements X obtenus par des simulations linéaires sont supérieurs à ceux des simulations inélastiques.

4.9.3.2. Réduction de la force

Les résultats obtenus par l'analyse dynamique non linéaire en termes de force latérale ultime (Vu) dans les deux directions orthogonales (X et Y) sont illustrés sur les figures 4.15a et 4.15b. La courbe idéalisée est obtenue à partir d'une analyse dynamique non linéaire dans la direction de chargement en fonction de la réponse de la structure. Le logiciel GEFDYN permet de déterminer sous chargement sismique les rotations aux extrémités des éléments θ_i^p et θ_j^p des rotules plastiques en fonctions des déplacements ultimes au sommet. Dans le cas d'une analyse dynamique temporelle non linéaire (NLTH), lorsque les rotations θ_i^p et θ_j^p des rotules plastiques sont différentes de zéro, le déplacement est alors considéré inélastique; cependant, lorsque ceux-ci sont égaux à zéro, le déplacement est alors considéré comme étant élastique [137].

Figure 4.15 : Courbe de capacité : efforts tranchants à la base en fonctions du déplacement maximal au sommet (Vbase/Droof) dans les deux directions orthogonales (X et Y) [137].

La figure 4.15b montre que le comportement non linéaire de la structure dans la direction y commence à partir de $D_{roof} > 0,78$ cm, donc celui-ci correspond au déplacement de la capacité de rendement (Δ_V) de la structure. Le déplacement ultime (Δ_u) est

représenté sur les figures (4.13b) et (4.14b) et il est égal à 9,36 cm [137].

Les résultats obtenus ont montré que la demande en termes d'effort de cisaillement ultime (V_u) est supérieure à la capacité de résistance structurelle (voir le tableau 4.3) dans la direction sismique (i.e. la direction Y), avec un facteur de réduction $R_e \sim 10$. Au contraire dans la direction X la capacité de résistance structurelle est supérieure à la demande en termes d'effort de cisaillement ultime. Ceci est dû au choix de la conception structurelle et à la plastification de plus de 90% des éléments de résistance (c'est-à-dire des poteaux) sous les séismes induits dans la direction Y [137].

NLTH- Analyses dynamiques temporelles					
	Vy [KN]	Δ_y [cm]	V _u [KN]	$\Delta_{\mathbf{u}}$ [cm]	
Directions - X	196.30	0.33	216.30	0.40	
Directions - Y	326.70	0.78	400.10	9.36	
NSP-Analyses statiques non linéaires					
	V,* [KN]	$\Delta^{*}_{}$ [cm]	V. KNI	$\Delta^*_{}$ [cm]	
	yti	уг і	ur j	u t j	
Directions - X	322.30	0.36	357.30	4,00	

Tableau 4.3 : Réponse dynamique structurelle obtenue pour la structure dans les deux directions orthogonales (X et Y) [137].

Le facteur de réduction « R_e » est définie comme le rapport entre la résistance au cisaillement élastique Ve et la demande en termes d'effort de cisaillement ultime V_u, où Ve est obtenu à partir de l'analyse dynamique linéaire et V_u est obtenu à partir de l'analyse dynamique temporelle non linéaire [137].

Dans le tableau 4.3, l'effort de résistance au cisaillement limite élastique V_y est obtenu par l'analyse dynamique linéaire temporelle (NLTH), tandis que la capacité de résistance au cisaillement limite élastique V_y^* est obtenue à partir de l'analyse statique non linéaire (NSP).

L'effort de cisaillement ultime V_u^* en fonction du déplacement limite conventionnelle (1% h, **h** étant la hauteur d'étage) donnée par le code parasismique Algérien est égale à 4cm, cette limite est utilisée pour l'analyse statique non linéaire (NSP), tandis que pour l'analyse

dynamique non linéaire temporelle (NLTH) il n'y a pas de limite (puisque le modèle a un durcissement linéaire et aucun critère de rupture, donc pour un autre mouvement d'entrée donnée avec une plus grande valeur de PGA, Vu (NLTH) peut être plus important) [137].

Les résultats obtenus en termes d'excentricité dynamique normalisée représentés sur la figure 4.16 montrent que le rapport entre l'excentricité dynamique et statique diminue avec l'augmentation de l'intensité Arias, cette dernière étant importante pour une intensité Arias faible, et tend vers l'unité lorsque l'intensité Arias est élevée [137].

Figure 4.16 : Courbe de l'excentricité normalisée Ratio (ed/es) fonctions de l'Intensité d'Arias (Ia) [Unité : m/s] [137].

4.9.3.3. Analyses de sensibilités

Dans le but de confirmer l'influence des différents paramètres sismiques sur la réponse sismique de la structure en termes de déplacement maximal au sommet et de l'excentricité dynamique normalisée, une analyse de sensibilité basée sur les coefficients de corrélation partielle (PCC) a été réalisée. Les résultats de l'analyse des paramètres d'entrée sur la variable de déplacement au sommet (Droof) suivant la direction Y sont montrés sur les figures 4.17a et 4.17b [137].

Figure 4.17 : Coefficients de corrélation (a) et Coefficients de corrélation partielle (b) des variables aléatoires d'entrée en fonction de la valeur de Droof dans les deux directions orthogonales (X et Y) [137].

Dans cette étude, les paramètres de sortie considéré sont les déplacements maximal au sommet et l'excentricité dynamique normalisée obtenues à partir de l'analyse dynamique non linéaire temporelle, tandis que les paramètres variables d'entrée (i.e. PGA, Ia, Tp, Tm et t595) sont calculés suivent une loi de régression linéaire à partir des 150 enregistrements sismiques [137]. La figure 4.17a montre les coefficients de corrélation (ρ) entre les paramètres d'entrée source et la variable de sortie. Celui-ci varie entre -1 et +1 ($-1 \le \rho \le +1$). On trouve que la variable de sortie en termes de déplacement maximal au sommet (Droof) dans la direction Y est bien corrélée avec les deux variables sources respectives (Ia) et (PGA). Les coefficients de corrélation obtenus sont illustré sur la figure 4.17a avec des valeurs respectives égales à : $\rho_{Droof, Ia} = 73\%$ et $\rho_{Droof, PGA} = 51\%$ [137].

Les valeurs PCC résultantes entre les paramètres de tremblement de terre et la variable de sortie (Droof) respectivement dans les deux directions orthogonales (X et Y) sont représentées sur la figure 4.17b. Comme indiqué par ces analyses, l'intensité d'Arias (Ia) est la variable d'entrée la plus influente sur le déplacement maximal au sommet suivant la direction (Y) avec une valeur d'environ 66%. On constate que l'Accélération maximal du Sol (PGA) est le paramètre le plus influent avec une valeur d'environ 27% pour l'excentricité dynamique normalisée comme c'est illustré sur la figure 4.18. Ces valeurs montrent que l'excentricité est plus influencée par le PGA (i.e. contenue fréquentiel) et les caractéristiques géométriques de la structure considérée. Il est à noter que la même tendance est obtenue pour le déplacement maximal au sommet dans la direction (X), cette influence dans les déplacements joue un rôle important dans l'excentricité dynamique [137].

Figure 4.18 : Coefficients de corrélation partielle des variables aléatoires d'entrée en fonction de la valeur du ratio (ed/es) [137].

4.10. Courbes de fragilités

La fragilité d'une structure ou d'un composant est déterminée par rapport à sa capacité, notée (A). La capacité est définie comme la charge sismique limite avant défaillance et modélisée par une variable aléatoire. La charge sismique limite peut être caractérisée par un paramètre lié au niveau du mouvement du sol, tel que PGA, Ia ou autres. Par exemple, si PGA a été choisi pour caractériser le niveau de mouvement du sol sismique, la capacité est également exprimée en termes de PGA. La probabilité de défaillance P_f d'une structure ou d'un composant conditionné au niveau du mouvement sol sismique (a) est exprimée par des courbes de fragilité [139-143] :

$$P_f(a) = P(\text{failure}|a) = P(A < a) \tag{4.13}$$

Les fonctions de vulnérabilité, requises pour les courbes de fragilité, sont exprimées en fonction d'une fonction de probabilité cumulative log normale sous la forme des équations suivantes (4.14) [139-143] :

$$P_f\left(D_{roof} \ge D_{\lim} | PGA\right) = \Phi\left(\frac{\ln(PGA / \alpha)}{\beta}\right)$$
 (4.14)

Où Pf (.) est la probabilité que le paramètre d'endommagement Droof soit égal où supérieur à la valeur Dlim pour le i-ème état d'endommagement correspondant à un niveau d'intensité sismique donné. Il défini par le paramètre sismique choisi (PGA où Ia). $\Phi(.)$ est la fonction de distribution cumulative gaussienne standard et α et β sont la moyenne et l'écart type du logarithme du PGA où Ia (notez que β est aussi parfois appelé la « dispersion » de PGA et que e^{α} est une estimation de la médiane des PGA à l'effondrement).

4.10.1. Calcul des courbes de vulnérabilité

Afin de confirmer l'influence des paramètres d'entrée sur la réponse de la structure asymétrique, une étude a été menée pour montrer la vulnérabilité de ce type de structure sous les deux variables d'entrée les plus influentes (PGA) et (Ia). Les 04 états de dommage à savoir : Légers (Slight), Modérés (Moderate), Importants (Extensive) et Sévères (Complete) sont définis à partir du déplacement maximal au sommet. Les principales étapes suivantes ont été faites pour le développement de la courbe de fragilité et l'estimation des taux de dommage [137] :

• Déterminations des états limites pour chaque niveau de dommage

Le calcul des états limites des déplacements pour chaque niveau de dommage sont obtenus selon [144] à partir du déplacement maximal au sommet suivant la direction du séisme (i.e. directions Y). La réponse en termes de déplacement maximal au sommet qui résulte de l'analyse dynamique non linéaire est déterminée en fonction des paramètres principaux les plus influents, à savoir l'accélération maximale du sol (PGA) et l'intensité d'Arias (Ia).

Générations des courbes de fragilités

Les courbes de fragilité sont déterminées selon la méthode développée dans [139-143].

• Calcul des probabilités spécifiques des catégories de dommages

La probabilité spécifique à chaque catégorie de dommage, correspondant au niveau de dommage, est ensuite dérivée des probabilités cumulées comme suit [145, 146] :

Dommage Complet "C" :	P[C] = P[C PGA]	(4.15)
Dommage Important "E" :	P[E] = P[E PGA] - P[C PGA]	(4.16)
Dommage Modéré " M " :	$P[\mathbf{M}] = P[\mathbf{M} PGA] - P[E PGA]$	(4.17)
Dommage Léger "S" :	P[S] = P[S PGA] - P[M PGA]	(4.18)
Dommage Négligeable "N" :	$P[\mathbf{N}] = 1 - P[S PGA]$	(4.19)

4.10.2. Application sur la structure irrégulière en plan

Les états de déplacement limite sont déterminés selon Penna et *al.*, [144] sur la base du déplacement maximal au sommet de la structure (voir tableau 4.4). Les quatre niveaux de dommages sélectionnés sont illustrés sur les figures 4.19a et 4.19b en fonction de l'accélération maximale du sol (PGA) et l'intensité d'Arias (Ia), respectivement. Ils correspondent aux valeurs $D_{roof} = 0.55$, 0.78, 2.93 et 9.36 [Unité : cm] [137].

		Valeurs des déplacements
Etats de dommage	Seuil des déplacements	[Unité : cm]
Légers (Slight)	0.7*Δy	0.55
Modérés (Moderate)	Δy	0.78
Importants (Extensive)	Δy +0.25*(Δu - Δy)	2.93
Sévères (Complete)	Δu	9.36

Tableau 4.4 : États limites des déplacements suivant la direction Y adoptées par Penna etal. [137].

Figure 4.19 : Déplacement maximal au sommet dans la direction Y en fonctions de : (a) Accélération maximale au sol (PGA) en [Unité : g], et (b) l'Intensité Arias (Ia) en [Unité : m/s] [137].

Selon les quatre niveaux de dommages retenus, on construit d'abord les courbes de fragilité puis on estime les taux de dommage en fonction des deux paramètres sismiques à savoir l'accélération maximal du sol (PGA) et l'intensité d'Arias (Ia). Les résultats obtenus sont représentés respectivement sur les figures 4.20a et 4.20b et les figures 4.21a et 4.21b [137].

Comme on peut le constater à partir des résultats obtenus pour le paramètre sismique PGA, que la structure asymétrique est vulnérable à partir d'une valeur PGA égale à 0,50g qui est supérieur à la valeur pris dans la conception de cette structure (i.e. Une accélération limite de 0,40g préconisée pour une structure classé selon son importance groupe d'usage (1A) et situé dans la zone III d'intensité sismique selon le code parasismique Algérien) avec un taux de dommages cumulatifs (Importants et complets) de l'ordre de 62,31%, alors que pour la variable (Ia), le taux de dommages cumulatifs (Importants et complets) est de l'ordre de 50,36% pour la valeur d'intensité d'Arias égale à 2,15 m/s [137].

Figure 4.20 : Courbe de fragilité pour les quatre niveaux de dommages en fonction de : (a) Accélération maximale du sol (PGA), et (b) Les Probabilités de dommages pour un PGA = 0.50g [137].

Figure 4.21 : Courbe de fragilité pour les quatre niveaux de dommages en fonction de : (a) Intensité d'Arias (Ia), et (b) Les Probabilités de dommages pour une valeur de Ia = 2.15m/s [137].

4.11. Conclusion

L'influence des paramètres d'entrée sur la réponse sismique de plusieurs structures asymétriques en béton armé (i.e. structure à un seul étage et structure multi étages) ont étaient étudiée par une approche déterministe utilisant trois types d'analyse (à savoir, l'analyse dynamique linéaire, l'analyse dynamique non linéaire temporelle et l'analyse statique non linéaire). De plus, une analyse probabiliste a été utilisée dans le but de confirmer l'influence des paramètres du mouvement du sol sur la réponse sismique en termes de déplacement maximal ultime au sommet, déplacement inter étages (drift) et d'excentricité dynamique normalisée.

Les résultats en termes d'effort tranchant à la base et du déplacement maximal au sommet ont été obtenus à partir de l'analyse statique et l'analyse dynamique temporelle non linéaire. Une comparaison entre la demande et la capacité de la structure asymétrique a été effectué les résultats ont montrés l'influence du phénomène de torsion sur la réponse en termes de demande pour le déplacement maximal au sommet et l'effort tranchant maximal en comparaison avec ceux en termes de capacité.

Il ressort que l'analyse inélastique de la structure sous mouvements sismiques d'entrée a montré l'influence du signal d'entrée sur la réponse structurelle en termes de déplacement maximal au sommet. La demande en termes de déplacement maximal dans le domaine non linéaire pour les deux directions orthogonales augmente avec l'augmentation de l'intensité Arias (Ia) et de l'accélération maximale du sol (PGA). Cette demande est excessive sur le coté flexible à cause du couplage entre les modes de translations et de torsion induit par la distribution non uniformes entre le centre de masse, de rigidités et des efforts de cisaillement dans les éléments de résistance.

L'excentricité dynamique normalisée dans le domaine élastique et inélastique diminue avec l'augmentation de l'intensité Arias. Cette excentricité dynamique est importante pour de faibles intensités Arias, et tend vers l'unité quand les intensités Arias sont élevées. Ainsi, on peut dire que les effets d'amplification de l'excentricité dynamique normalisée ne dépendent pas seulement des caractéristiques structurelles, mais aussi des caractéristiques sismiques des mouvements d'entrée.

Les analyses de sensibilité réalisée pour les structures (à un ou plusieurs étages) asymétriques en bétons armée a permis de montrer les effets de l'influence du déplacement maximal, du déplacement inter étages (drift) et de l'excentricité dynamique. Les résultats obtenus ont montrés l'importance de l'effet d'intensité d'Arias (Ia) et de l'accélération maximal du sol (PGA) sur la réponse de la structure asymétriques. Ces effets ont été pris en considérations dans l'étude de performance de ce type de structure afin de confirmer leurs prépondérances.

Les courbes de fragilité sismique développées ont été utilisées pour estimer le taux de dommages selon les deux paramètres les plus influents sur la réponse sismique de la structure asymétrique, à savoir l'accélération maximal du sol (PGA) et l'intensité d'Arias (Ia). Ainsi, nous pouvons dire que l'influence des effets de torsion sur les dommages structuraux est significativement liée aux caractéristiques des séismes d'entrée (c'est-àdire : Intensité sismique, Magnitude, Distance site-source, contenue fréquentiel et les conditions du sol).

CHAPITRE 5 :

ETUDE COMPARATIF ENTRE L'ANALYSE DYNAMIQUE NON LINEAIRE ET L'ANALYSE EXPERIMENTALE DE DEUX STRUCTURES ASYMETRIQUES (BENCHMARK STUDIES)

5.1. Introductions

Dans le cadre de la 15éme Conférence Internationale de Génie Parasismique (15WCEE) qui a eu lieu au Portugal, nous avons participé à un concours en aveugle « **15WCEE Blind Test Challenge** » ayant pour but de déterminer le comportement sismique non linéaire de deux structures en béton armé, géométriquement identiques, conçues pour des niveaux de ductilité faibles et élevés selon les dispositions de l'Eurocode 8, ceci par le biais de notre programme et de comparer nos résultats à ceux donnés par l'expérimentation. Plusieurs équipes ont participé à ce concours parmi eux notre équipe dénommée « **VESTE** ». Les prédictions à l'aveugle fournies par chaque équipe ont été évaluées sur la base des résultats obtenus avec des structures grandeur nature testées pendant la 15WCEE sur la table vibrante LNEC-3D. Les valeurs d'erreur « **RMS** » entre les valeurs obtenues expérimentalement sur le modèle physique et les déplacements relatifs calculés numériquement, dans deux points de contrôle sélectionnés, ont été comparées et utilisées à des fins de classification.

5.2. Description des modèles physiques

Une brève description des modèles physiques construits pour les tests effectués sont présentées. Les deux modèles physiques sont construits en béton armé avec la même géométrie générale mais avec des détails de renforcement en acier différents. Les deux modèles sont des structures 3D constitués d'un système structurel composé d'éléments auto-stables « Poteaux-Poutres » en béton armé avec quatre poteaux, quatre poutres et une dalle avec les dimensions générales illustrées sur la figure 5.1 [147].

Figure 5.1 : Dimensions générales des modèles physiques [147].

La dalle, d'une épaisseur de 0,10 m, ne couvre pas toute la travée dans une direction. Un ensemble de neuf masses additionnelles d'environ 1200 kg sont placés au dessus de la dalle comme illustré sur la figure 5.2, les dimensions de chaque masse sont également montrées dans le détail inclus dans la figure 5.2 [147].

Figure 5.2 : Position des masses sur la dalle et détail de l'une des masses [147].

Les propriétés mécaniques des matériaux béton et aciers utilisé dans la conception des deux modèles sont les suivants : le béton de classe C25/30 a une résistance à la compression à 28j (fck= 25 MPa), une résistance à la traction égale respectivement à fctk,0.05 = 1.8 MPa et fctk,0.95 = 3.3 MPa. La limite de résistance de l'acier (Fe500) fyk = 500 MPa [147].

5.2.1. Caractéristique du modèle A

Le modèle « A » est caractérisé par un enrobage pour le béton d'exécutions des poteaux de 1 cm et pour les poutres de 2cm et un espacement constant des cadres et des étriers de 15 cm. Les plans d'exécutions détaillés du modèle A sont présentés dans les figures 5.3, 5.4 et 5.5 [147].

Figure 5.3 : Plan d'exécutions du modèle A [147].

Figure 5.4 : Plan de ferraillages des éléments « Poteaux et poutres » en béton armée du modèle A [147].

Figure 5.5 : Plan d'exécutions des semelles pour le modèle A [147].

5.2.2. Caractéristique du modèle B

Le modèle « B » est caractérisé par un enrobage pour le béton d'exécutions des poteaux de 2,5 cm et pour les poutres de 2cm et un espacement entre l'étrier et le cadre de 15 cm au milieu des poutres et à mi-hauteur des poteaux et de 5 cm près des joints « Poutres-Poteaux » et les fondations. Les plans d'exécutions détaillés du modèle B sont présentés sur les figures 5.6, 5.7 et 5.8 [147].

Figure 5.6 : Plan d'exécutions du modèle B [147].

Figure 5.7 : Plan de ferraillages des éléments « Poteaux et poutres » en béton armée du modèle B [147].

Figure 5.8 : Plan d'exécutions des semelles pour le modèle B [147].

5.3. Description des tests

Dans cette étude les tests ont été effectués sur la table vibrante « LNEC 3D », dont les principales caractéristiques sont données dans [151]. Les modèles ont été fixés sur la table vibrante selon l'orientation présentée dans la figure 5.9.

Figure 5.9 : Configuration du test de la table vibrante [147].

Les mouvements d'entrés sont simultanément imposés à la table vibrante sur deux axes horizontaux, identifiés comme «Transversaux» (d'Ouest en Est comme direction positive) et «Longitudinaux» (du nord au sud comme direction positive). Aucun mouvement vertical ou de rotation n'est imposé à la table vibrante.

Les déplacements absolus de la structure sont mesurés dans deux points de contrôle situés en haut de la structure à l'intersection de l'axe longitudinal de la poutre avec la surface de poteau (points A et B comme illustré sur la figure 5.9). Les mesures sont faites avec un système optique infrarouge parallèle à l'axe transversal et longitudinal défini cidessus. Le système optique est capable de mesurer des déplacements absolus avec une précision de l'ordre du micron; les déplacements relatifs des points A et B seront évalués par rapport à un troisième point dirigé, fixé rigidement à la table vibrante et placé juste en dessous de la distance médiane des points de contrôle A à B du côté nord de la table vibrante [147].

5.4. Mouvements d'entrée

Le mouvement d'entrée de référence imposée « REF » utilisée pour excité la table vibrante est compatible avec le format standard de l'Eurocode 8 (EC8) pour les spectres de réponse élastiques normalisée à 5% d'amortissement critique. Pour reproduire les spectres de réponse de référence « REF », les valeurs des paramètres à prendre en compte sont les suivants : a_{gR} =1.5 m/s², S=1.3, T_B =0.1 s, T_C =0.6 s et T_D = 2 s, ces derniers sont utilisées dans l'équation 5.1 pour générer le spectre de réponse représenté dans la figure 5.10 [147].

$$0 \le T \le T_B : S_e(T) = a_{gR} \cdot S \cdot \left[1 + \frac{T}{T_B} \cdot 1.5\right]$$

$$T_B \le T \le T_C : S_e(T) = a_{gR} \cdot S \cdot 2.5$$

$$T_C \le T \le T_D : S_e(T) = a_{gR} \cdot S \cdot 2.5 \cdot \left[\frac{T_C}{T}\right]$$

$$T_D \le T \le 4s : S_e(T) = a_{gR} \cdot S \cdot 2.5 \cdot \left[\frac{T_C \cdot T_D}{T^2}\right]$$
(5.1)

Où *T* est la période de vibration d'un système à un degré de liberté, a_{gR} est l'accélération maximale de référence au niveau d'un sol de classe A (sol de type rocheux), T_B et T_C sont les périodes caractéristiques limites de la branche d'accélération spectrale constante (plateau), *S* est le paramètre du sol et T_D est la valeur définissant le début de la branche à déplacement spectral constant.

Figure 5.10 : Mouvement sismique de référence (REF) utilisée pour générer les mouvements d'entrée pour la table vibrante [147].

Deux mouvements sismiques d'entrée non corrélés artificiels sont générés avec une durée de 30 secondes et une phase stationnaire d'environ 20 secondes. La réduction en cosinus au début et à la fin des enregistrements a été utilisée [147].

5.5. Génération de mouvement cible

Les mouvements sismiques cibles à la base des modèles (A et B) imposés par la table vibrante sont des séries temporelles synthétiques, compatibles avec le format de spectre de réponse élastique standard de l'EC8 pour un amortissement de 5% comme il a été mentionné dans la section 5.4 (voir figure 5.10).

En terme générale, la méthode de génération d'une série temporelle d'accélération compatible avec un spectre de réponse cible est réalisée par un processus itératif dans lequel les amplitudes de la transformée de Fourier discrète (DFT) de la série temporelle d'accélération, calculées dans une itération donnée (i), sont corrigées par la racine carrée du quotient entre les ordonnées du spectre de réponse cible et les ordonnées du spectre de réponse calculées pour la série temporelle d'accélération de l'itération précédente (i-1) [148].

La série chronologique initiale d'accélération peut être n'importe quelle série temporelle aléatoire (modulée par une fonction d'enveloppe) ou tout enregistrement particulier d'un séisme réel. Dans le premier cas, les phases sont uniformément réparties de manière aléatoire, alors que dans le second cas, la phase pour chaque fréquence particulière est égale à la phase de l'enregistrement réel (même spectre de phase de Fourier). Dans ce cas, l'enveloppe et le contenu non-stationnaire de l'enregistrement réel sont conservés dans le signal synthétique. De plus, si deux composantes orthogonales d'un séisme réel sont utilisées dans le processus de génération, le spectre de cohérence entre les deux composantes est le même que celui présent dans la fenêtre temporelle sélectionnée des deux enregistrements [148].

Pour ces raisons, il a été décidé d'utiliser un segment temporel de deux composantes orthogonales horizontales d'un signal de mouvement réel fort enregistré pendant le séisme du Grand Japon oriental (**Great East Japan**) Tohoku et le tsunami du (11-03-2011). Ce segment de temps est défini par une durée de 40,96 secondes, commençant à 16,50 secondes et se terminant à 57,46 secondes de l'enregistrement sismique, comme le montre la figure 5.11 [148].

Figure 5.11 : Enregistrement réel et segment temporel utilisé dans le processus de génération [148, 152].

Les mouvements d'entrée cible sont présentés pour les deux directions orthogonales (Comp 1 et Comp 2) sur la figure 5.12. La figure 5.13 montre les spectres de réponse élastique normalisée à 5% d'amortissement critique des deux composants et le spectre de réponse EC8 respectif, déjà présenté sur la figure 5.10 du paragraphe 5.4 [148].

Figure 5.12 : Mouvements du sol cibles [148].

Figure 5.13 : Spectre de réponse élastique (5% d'amortissement critique) pour les deux mouvements du sol cibles [148].

A partir des mouvements cibles présentés dans la figure 5.12, il a été décidé de générer quatre nouveaux mouvements cibles d'intensités nominales croissantes identifiées comme [148] :

- 1. FAIBLE (LOW) : Correspondant à 20% du niveau d'intensité cible.
- 2. MOYEN (MED) : Correspondant à 70% du niveau d'intensité cible.
- 3. REFERENCE (REF) : Correspondant à 100% du niveau d'intensité cible.
- 4. ELEVEE (HIGH) : Correspondant à 200% du niveau d'intensité cible.

5.6. Génération de mouvement de référence de la table de secousse

C'est un fait bien connu que les tables vibrantes reproduisent les signaux cibles avec une certaine approximation due à plusieurs aspects de l'ingénierie de contrôle. Ainsi, les mouvements de référence sont définis ici comme les mouvements réels de la table vibrante en tenant compte de ces limitations physiques. Notez que les mouvements d'entraînement introduits dans les actionneurs de la vibration (mouvements d'entraînement) sont différents des mouvements de référence car ils permettent d'obtenir les mouvements de référence si le même échantillon (ou similaire) est testé. En résumé, les effets d'interaction entre le banc d'essai et les éprouvettes sont pris en compte lors des essais sur table vibrantes [148].

5.6.1. Essais préliminaires et résultats avec spécimen d'étalonnage

Afin de minimiser les différences entre les mouvements de référence et le mouvement cible, un spécimen d'étalonnage a été intentionnellement construit et utilisé pour obtenir des mouvements d'entraînement de la table vibrante qui seront utilisés pendant l'épreuve. A cet effet, le spécimen d'étalonnage a la même géométrie des spécimens A et B, mais a été conçue et construit avec des détails en acier visant les mêmes niveaux de résistance et de déformabilité maximales compte tenu des deux spécimens. La figure 5.14 montre une vue de spécimen d'étalonnage avant la mise en place et le test de l'instrumentation [148].

Figure 5.14 : Vue générale de spécimen 0 avant l'essai préliminaire [148].

Au cours de la construction du spécimen d'étalonnage, des échantillons de béton ont été prélevés dans chaque étape de bétonnage utilisée dans les colonnes et les poutres. Les résultats des essais de compression standard cubique sont présentés dans le tableau 5.1.

Exemple	Date	Date du	Âge	Résistance à la	Moyenne
d'identifiant	d'échantillon	test	(jours)	compression	(MPa)
				(MPa)	
Poteaux #1	28-02-2012	18-04-2012	50	43.6	
Poteaux #2	28-02-2012	18-04-2012	50	43.4	43.5
Poteaux#3	28-02-2012	18-04-2012	50	43.5	-
Poutres & dalles #1	07-03-2012	18-04-2012	42	32.3	31.8
Poutres & dalles #2	07-03-2012	18-04-2012	42	31.3	
Poutres & dalles #3	07-03-2012	18-04-2012	42	31.7	
Pieds (base) #1	27-02-2012	18-04-2012	51	15.9	16.0
Pieds (base) #2	27-02-2012	18-04-2012	51	16.3	
Pieds (base) #3	27-02-2012	18-04-2012	51	15.9	

Tableau 5.1 : Résultats des essais de compression standard du béton pour le spécimen d'étalonnage [148].

Ces données révèlent une grande dispersion de la résistance à la compression. Cela n'était pas prévu et peut être lié au fait que plusieurs étapes de bétonnage, qui ont été soumises à un contrôle plus souple dû à cette maquette, ont été considérées comme étant utilisées uniquement à des fins d'étalonnage [148].

Une attention particulière sera accordée à ce problème pour les maquettes d'essai.

5.6.2. Mouvement de référence

Pour obtenir les mouvements de référence, on utilise une procédure adaptative dans laquelle le mouvement d'entraînement est incrémenté progressivement, minimisant à chaque étape la série temporelle d'erreurs obtenue par les différences entre les mouvements de référence et les mouvements cibles. Le processus se termine lorsque l'erreur est considérée comme faible ou lorsque l'adaptation n'est plus efficace.

A titre d'exemple, la figure 5.15 montre l'enregistrement de référence d'accélération tracé par rapport à l'enregistrement cible respectif, à la fois pour le niveau d'intensité de

référence.

Figure 5.15 : Série chronologique de référence et d'accélération cible pour le niveau d'intensité de référence [148].

Cette figure est complétée par le spectre de réponse D-V-A combiné pour les deux directions horizontales, présenté sur les figures 5.16 et 5.17. Ces tracés combinent le spectre EC8 cible, celui obtenu à partir du mouvement cible, et celui associé au mouvement de référence obtenu après étalonnage. Comme prévu, une petite différence peut être identifiée dans les franges du signale cible [148].

La composante horizontale identifiée comme « Comp 1 » est utilisée dans la direction transversale de la table vibrante (Est-Ouest), alors que « Comp 2 » est considérée comme étant utilisée dans la direction longitudinale (Sud-Nord, le long de

l'axe de symétrie simulée), ils sont représentés dans la figure 5.12 [148].

Figure 5.16 : Spectre de réponse D-V-A combiné pour le niveau d'intensité de référence (Comp 1) [148].

Figure 5.17 : Spectre de réponse D-V-A combiné pour le niveau d'intensité de référence (Comp 2) [148].

5.7. Changements importants dans le modèle et la configuration expérimentale

À partir de l'expérience acquise lors du test d'étalonnage, certaines modifications ont été introduites par rapport à ce qui avait été précédemment indiqué [148].

 Le test d'étalonnage a conduit à de petits changements dans les points de déplacement qui seront utilisés à des fins de classification. Au lieu des points identifiés dans le paragraphe 5.3, les points (A et B) identifiés sur la figure 5.18 seront utilisés. Ces points sont situés sur la face supérieure de la dalle, le long des axes des poteaux, c'est-à-dire à 10 cm du coin de la dalle dans chaque direction horizontale.

Figure 5.18 : Vue générale des spécimens [148].

- 2. Pour faire face à ce changement et parce que des transducteurs de déplacement optiques seront utilisés pour les mesures, une légère modification de la position de la masse se produira pour faciliter la lecture à partir des transducteurs de déplacement optiques. La répartition de la masse sera la même que celle décrite dans le paragraphe 5.2, mais les masses extérieures sont rapprochées de 13 cm du centre de la dalle au lieu de 12 cm (voir la figure 5.18). La position et valeurs des masses sont décrites en détail dans la figure 5.19 et le tableau 5.2. [148]
- L'enrobage adopté pour le ferraillage des éléments (i.e. poteaux, poutres et dalle) des deux modèles A et B est égal à 2cm au lieu des valeurs données dans la section 5.2.1 et 5.2.2. [148]

Figure 5.19 : Position des masses et système de coordonnées adopté [149].

Masses ID	Poids en [Kg]
#1T	1126
#2T	1134
#3T	1122
#4T	1130
#5T	1128
#6T	1138
#7T	1134
#8T	1131
#9T	1131

Tableau 5.2 : Valeurs des masses [149].

 La résistance à la compression du béton à 28j des éléments de résistances des deux modèles est fck=49.2 MPa.

5.8. Etudes analytiques

Dans ce paragraphe, nous présentons les résultats obtenus à partir de l'analyse dynamique non linéaire pour les deux modèles « A et B ». La figure 5.20 présente une vue des deux modèles utilisés pour les testes expérimentaux et la discrétisation du modèle

équivalent en élément finis adopter pour l'analyse dynamique non linéaire effectuée par le logiciel GEFDYN.

La masse de la dalle est supposée uniformément répartie le long des éléments poutre et les poteaux sont considérés sans masses. On suppose également que la dalle des deux modèles est infiniment rigide dans son propre plan. Les propriétés non-linéaires des éléments « Poteaux-Poutres » des deux modèles a été considéré en suivant la même loi de comportement décrite dans le Chapitre 3, (Section 3.2).

(a) Vue 3D des deux prototypes [3] (b) Modèle élément finis de la structure

Figure 5.20 : Descriptions des modèles.

Le module d'élasticité E est égal à 40.3 GPa correspondant à une résistance du béton à la compression égale à 49.2 MPa et le coefficient de Poisson est v = 0.2. La figure 5.21 illustre les courbes de la surface de rendement moments de flexion-effort axiale (M-N) qui contrôlent la fonction de rendement non-linéaire de la rotule plastique des éléments poteaux et poutres pour les deux modèles.

Figure 5.21 : Courbe de surface d'interaction moment de flexion-effort axiale (M-N) pour les éléments « Poteaux-Poutres » des deux modèles.

Les mouvements d'entrée générés (i.e. LOW, MED, REF et HIGH) à partir des deux mouvements cibles décrit dans le paragraphe 5.5 sont représentés respectivement sur les figures 5.22, 5.23, 5.24 et 5.25 pour les deux directions orthogonales (X et Y).

Figure 5.22 : Mouvement sismique généré « LOW » correspondant à 20% du niveau d'intensité cible.

Figure 5.23 : Mouvement sismique généré « MED » correspondant à 70% du niveau d'intensité cible.

Figure 5.24 : Mouvement sismique généré « REF » correspondant à 100% du niveau d'intensité cible.

Figure 5.25 : Mouvement sismique généré « HIGH » correspondant à 200% du niveau d'intensité cible.

5.9. Résultats

Les résultats obtenus pour les deux modèles de structure « A et B » sont données en termes de déplacement relatives au niveau des deux points indiqués (A et B), pour les quatre types de mouvements d'entrée.

5.9.1. Déplacements relatives de la structure « A »

Les résultats obtenus en termes de déplacement relatives à partir de l'analyse dynamique non linéaire au niveau des points A et B pour la structure A augment en fonction des mouvements d'entrée pour les quatre types respectives (i.e. LOW, MED, REF et HIGH) et ils sont plus prépondérant dans la direction X en comparaison avec ceux de la direction Y. La comparaison de ces résultats avec ceux mesurées dans les testes expérimentaux donne une valeur de l'erreur (e_{RMS}) de 264.148 qui est satisfaisante en comparaison avec les autres résultats des autres équipes présenté dans le tableau D.1 « Annexe D ».

Figure 5.26 : Déplacement relative de la structure A suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous LOW intensité en [Unité : mm].

Figure 5.27 : Déplacement relative de la structure A suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous MED intensité en [Unité : mm].

Figure 5.28 : Déplacement relative de la structure A suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous REF intensité en [Unité : mm].

Figure 5.29 : Déplacement relative de la structure A suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous HIGH intensité en [Unité : mm].

5.9.2. Déplacements relatives de la structure « B »

Les résultats obtenus en termes de déplacement relatives à partir de l'analyse dynamique non linéaire au niveau des points A et B pour la structure B augment en fonction des mouvements d'entrée pour les quatre types respectives (i.e. LOW, MED, REF et HIGH) et ils sont plus prépondérant dans la direction X en comparaison avec ceux de la direction Y. La comparaison de ces résultats avec ceux mesurées dans les testes expérimentaux donne une valeur de l'erreur (e_{RMS}) de 260.651 qui est satisfaisante en comparaison avec les autres résultats des autres équipes présenté dans le tableau D.2 « Annexe D ».

On constate que pour les deux modèles étudiés il n'y a pas de variations significatives pour les déplacements relatives dans les deux directions orthogonales, ceci est dû à la conception presque identique des éléments de résistances « Poteaux 20x20

cm² et 8barres de 10mm » et l'application d'un même enrobage de 2cm pour les éléments de résistances.

Figure 5.30 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous LOW intensité en [Unité : mm].

Figure 5.31 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous MED intensité en [Unité : mm].

Figure 5.32 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous REF intensité en [Unité : mm].

Figure 5.33 : Déplacement relative de la structure B suivant les deux directions orthogonales (X et Y) au niveau du nœud A et B sous HIGH intensité en [Unité : mm].

5.10. Conclusion

Les résultats obtenus en terme de déplacement pour les deux modèles étudiés sont très satisfaisants en comparaison avec les résultats expérimentaux, ceci nous conforte sur la fiabilité du modèle élément finis considéré dans l'analyse dynamique non linéaire. Ce dernier peut être amélioré pour des travaux futur afin d'introduire l'influence des incertitudes sur la modélisation d'une structure asymétrique en béton armé à un seul étage soumise à des sollicitations sismiques bidirectionnelles.

CONCLUSION

Conclusion générale

La réponse en torsion dans les structures irrégulières en plan soumises au séisme peut être influencée par de nombreux paramètres complexes et difficiles à appréhender.

L'objectif de ce travail consiste d'une part à la caractérisation du phénomène de torsion afin d'évaluer l'influence des effets de la torsion sur le comportement sismique des structures irrégulières en plan en béton armée à un seul étage et multi-étages (faible hauteur) et d'autre part, à la quantification des différentes sources affectant la réponse sismique des structures irrégulières en plan.

L'influence des paramètres d'entrée sur la réponse sismique de structures asymétriques en béton armé (i.e. structure à un seul étage et structure multi étages) ont été étudiée par une approche déterministe utilisant trois types d'analyse (à savoir, l'analyse dynamique linéaire, l'analyse dynamique non linéaire temporelle et l'analyse statique non linéaire). De plus, une analyse probabiliste a été utilisée dans le but de confirmer l'influence des paramètres du mouvement du sol sur la réponse sismique en termes de déplacement maximal ultime au sommet, du déplacement inter étages (drift) et de l'excentricité dynamique normalisée.

Ainsi il ressort que le comportement de la structure à un seul étage est influencé par de nombreux paramètres liés au mouvement du sol, comme l'intensité sismique, la période prédominante, le contenu fréquentiel, ou l'effet de torsion induit. Ces effets peuvent être caractérisés par une forte demande en termes d'effort de résistance latéral (précisément dans le côté flexible), de ductilité et de facteur de réduction de la résistance. Ces effets deviennent plus importants dans le cas de structure multi étages.

Les résultats obtenus en termes de facteur de réduction (R_e) pour la prise en compte du comportement non linéaire des structures auto stables sont insuffisants pour avancer des recommandations générales pouvant être inclus dans le règlement parasismique Algérien, à savoir le choix de ce facteur pour son utilisation dans les méthodes d'analyse.

La limite de l'effondrement recommandé par le règlement parasismique Algérien de 1% de la hauteur d'étage est une valeur très conservatrice par rapport aux valeurs trouvées dans cette étude et celle recommandée par L'Eurocode 8 ou par la SEAoC, aussi nous suggérons une valeur de 2% de la hauteur d'étage.

La comparaison entre la demande et la capacité de la structure asymétrique réalisée dans le cadre de cette recherche a montré que le phénomène de torsion est plus influant sur la réponse en termes de demande pour le déplacement maximal au sommet et l'effort tranchant maximal à la base en comparaison avec les réponses obtenus en terme de capacité.

Il ressort que l'analyse inélastique de la structure sous excitations sismiques a montré l'influence du signal d'entrée sur la réponse structurelle en terme de déplacement maximal au sommet. La demande en terme de déplacement maximal dans le domaine non linéaire pour les deux directions orthogonales augmente proportionnellement pour différent intensité sismique (i.e. Ia et/ ou PGA). Sous l'effet du phénomène de torsion induit cette demande devient excessive sur le coté flexible en comparaison avec celui du côté rigide. Ceci est dû à la distribution non uniforme entre le centre de masse, le centre de rigidité et les efforts de cisaillement dans les éléments de résistance.

L'excentricité dynamique normalisée dans le domaine élastique et inélastique diminue avec l'augmentation de l'intensité Arias. Cet effet ne dépend pas seulement des caractéristiques structurelles, mais aussi des caractéristiques du séisme.

Les analyses de sensibilité réalisée pour les structures (à un ou plusieurs étages) asymétriques en bétons armée a permis de montrer les effets de l'influence du déplacement maximal, du déplacement inter étages (drift) et de l'excentricité dynamique. Les résultats obtenus ont montrés l'importance de l'effet d'intensité d'Arias (Ia) et de l'accélération maximal du sol (PGA) sur la réponse de la structure asymétrique. Ces effets ont été pris en considération dans l'étude de performance de ce type de structure afin de confirmer leur prépondérance.

Les courbes de fragilité sismique développées ont été utilisées pour estimer le taux de dommages selon les deux paramètres les plus influents sur la réponse sismique de la structure asymétrique, à savoir l'accélération maximal du sol (PGA) et l'intensité d'Arias (Ia). Ainsi, nous pouvons dire que l'influence des effets de torsion sur les dommages structuraux est significativement liée aux caractéristiques des séismes (c'est-à-dire : Intensité sismique, Magnitude, Distance site-source, Contenue fréquentiel et les Conditions du sol).

La fiabilité du modèle élément finis considéré dans le cadre de cette recherche a été testée lors du concours en aveugle « 15WCEE Blind Test Challenge » ayant pour but de déterminer le comportement sismique non linéaire de deux structures en béton armé. Les résultats obtenus sont très satisfaisante en comparaison avec les résultats expérimentaux. Néanmoins des améliorations peuvent être proposées pour des travaux futur afin d'introduire l'influence des incertitudes sur la modélisation d'une structure asymétrique en béton armé à un seul étage soumise à des sollicitations sismiques bidirectionnelle.

Pour généraliser les résultats obtenus et étudier l'existence de corrélations entre les caractéristiques structurelles et les paramètres du mouvement d'entrée, l'étude paramétrique doit être poursuivie pour d'autres cas tels que les bâtiments à plusieurs étages médians et de grande hauteur soumis à des excitations bidirectionnelles.

ANNEXE A : DEFINITION DES CARACTERISTIQUES DU MOUVEMENT DU SOL

Les caractéristiques des séismes obtenues pour les mouvements de sol sont les suivants :

- Accélération maximal du sol (PGA),
- Intensité d'Arias (Ia), (Arias, 1970) [153].

$$I_a = \frac{\pi}{2g} \int_0^{T_d} [a(t)]^2 dt , \text{[Unité: m/s]}$$
(A.1)

Où: a(t) est l'accélération du sol, T_d est la durée du séisme et g est l'accélération de la gravité.

/

- Période prédominante (Tp),
- Période moyenne (Tm) (Rathje et al., 1998) [154].

$$T_m = \frac{\sum_{i=1}^{n} c_i^2 \left(\frac{1}{f_i}\right)}{\sum_{i=1}^{n} c_i^2} , \quad \text{[Unité:s]}$$
(A.2)

Pour 0.25 HZ $\leq f_i \leq 20$ HZ avec $\Delta f \leq 0.05$ HZ .

Où: c_i est l'Amplitude de la transformée de Fourier de l'accélération, f_i est la transformée de Fourier rapide discrète (FFT).

• Durée significative (t5 95).

$$t_{5\,95} = t_{Iarias}^{95} - t_{Iarias}^5,$$
[Unité: s] (A.3)

ANNEXE B : DEFINITION DES EXCENTRICITES STATIQUES ET DYNAMIQUES

Dans cette étude, les excentricités statiques et dynamiques sont obtenues à l'aide des équations suivantes :

L'excentricité statique (e_s) est définie comme la différence entre le centre de masse (CM) et le centre de rigidité (CR). Les coordonnées du centre de masse sont obtenues à partir de l'équation (B.1) suivante :

$$C_{Mx} = \frac{\sum m_i x_i}{\sum m_i}$$
(B.1)
$$C_{My} = \frac{\sum m_i y_i}{\sum m_i}$$

Où m_i est la masse de l'élément *i* et x_i et y_i représentent respectivement les coordonnées du centre de gravité de l'élément *i*.

Les coordonnées du centre de rigidité sont obtenues à partir de l'équation (B.2) suivante :

$$C_{Rx} = \frac{\sum K_{yi} x_i}{\sum K_{yi}}$$

$$C_{Ry} = \frac{\sum K_{xi} y_i}{\sum K_{xi}}$$
(B.2)

Avec K_{xi} et K_{yi} représentent les rigidités latérales de l'élément *i* selon les deux directions orthogonales (X et Y) respectives.

L'excentricité dynamique (e_d) est définie comme la différence entre le centre de masse (CM) et le centre de résistance (CS) où les coordonnées du centre de résistance (CS) sont obtenues à partir de l'équation (B.3) suivante :

$$C_{Sx} = \frac{\sum V_{yi} x_i}{\sum V_{yi}}$$

$$C_{Sy} = \frac{\sum V_{xi} y_i}{\sum V_{xi}}$$
(B.3)

Avec V_{xi} et V_{yi} représentent les efforts de cisaillement de l'élément *i* selon les deux directions orthogonales (X et Y) respectives.

L'excentricité dynamique (e_d) est ensuite calculée à partir des équations (B.4) et (B.5) suivantes :

$$e_{dx} = C_{Sx} - C_{Mx}$$

$$e_{dy} = C_{Sy} - C_{My}$$

$$e_{d} = \sqrt{(e_{dx})^2 + (e_{dy})^2}$$
(B.5)

ANNEXE C : LISTE DES ENREGISTREMENTS DES MOUVEMENTS SISMIQUES SELECTIONNES

Cette annexe répertorie les ensembles d'enregistrements choisis en tant qu'entrée pour les modèles élément finis étudié.

C.1. Iverlino et Cornell (2005)

Les mouvements du sol dans le tableau C.1 sont constitués de 64 enregistrements de sols denses à fermes avec des magnitudes de surface (Mw) allant de 6.2 à 7.28. Les profiles du sol correspondent aux sites C et D du NEHRP (**National Earthquake Hazards Reduction Program**) avec des vitesses moyennes d'ondes de cisaillement de 360 $<V_{s30}$ <750m/s et 180 $<V_{s30}$ <360m/s et une distance Source-Site (R) de 1.46 à 40.23 km, respectivement.

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
S 1	Cape Men-	25/04/1992	89509 Eureka –	CAPEMEND/EUR000	7.01	40.23
	docino	18:06	Myrtl & West			
S2	Cape Men-	25/04/1992	89509 Eureka –	CAPEMEND/EUR090	7.01	40.23
	docino	18:06	Myrtl & West			
S3	Landers	28/06/1992	5070 North	LANDERS/NPS000	7.28	26.84
		11:58	Palm Springs			
S4	Landers	28/06/1992	5070 North	LANDERS/NPS090	7.28	26.84
		11:58	Palm Springs			
S5	Landers	28/06/1992	12025 Palm	LANDERS/NPS000	7.28	36.15
		11:58	Springs Airport			
S6	Landers	28/06/1992	12025 Palm	LANDERS/NPS090	7.28	36.15
		11 :58	Springs Airport			
S7	Cape Men-	25/04/1992	89486 Fortuna-	CAPEMEND/EUR000	7.01	15.97
	docino	18:06	Fortuna Blvd			
S 8	Cape Men-	25/04/1992	89486 Fortuna-	CAPEMEND/EUR090	7.01	15.97
	docino	18:06	Fortuna Blvd			
S9	Imperial	15/10/1979	6622 Compuer-	IMPVALL/H-	6.53	13.52
	Valley	23 :16	tas	CMP015		
S10	Imperial	15/10/1979	6622 Compuer-	IMPVALL/H-	6.53	13.52
	Valley	23 :16	tas	CMP105		

Tableau C.1 : Propriétés des tremblements de terre selon Iverlino et Cornell (2005) [123].

Imperial 15/10/1979 6621 Composant [km] S11 Imperial 15/10/1979 6621 IMPVALL/H-CHI012 6.53 7.29 S12 Imperial 15/10/1979 6621 IMPVALL/H-CHI012 6.53 7.29 S13 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04000 6.93 14.34 S14 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04090 6.93 14.34 S15 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/WAH000 6.93 11.03 00:05 Array #4 Iomo :05 Array #4 Ioma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 00:05 Crintry City C Corth Ioma Ioma Ioma 15.54 S17 Northridge 17/01/1994 24389 LA - Century City NORTHR/CN360 6.69 15.54 S18 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 <t< th=""><th>N°</th><th>Séisme</th><th>Année</th><th>Station</th><th>Enregistrement /</th><th>Mw</th><th>R*</th></t<>	N°	Séisme	Année	Station	Enregistrement /	Mw	R*
S11 Imperial Valley 15/10/1979 23 :16 6621 Chinuahua IMPVALL/H-CHI012 MPVALL/H-CHI102 6.53 7.29 S12 Imperial Valley 15/10/1979 6621 IMPVALL/H-CHI102 6.53 7.29 S13 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04000 6.93 14.34 S14 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04090 6.93 14.34 S15 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 S16 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH090 6.93 11.03 S17 Northridge 17/01/1994 24389 LA - Century City CC North NORTHR/CCN360 6.69 15.54 S18 Northridge 17/01/1994 24283 NORTHR/CCN270 6.69 16.92 S17 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S18 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92					Composant		[km]
Valley 23:16 Chihuahua Imperial 15/10/1979 6621 IMPVALL/H-CHI102 6.53 7.29 Valley 23:16 Chihuahua IMPVALL/H-CHI102 6.53 7.29 S13 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04000 6.93 14.34 S14 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04000 6.93 14.34 S14 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 00:05 00:05 14 WAHO LOMAP/WAH000 6.93 11.03 00:05 00:05 12:31 Century City CC North 6.69 15.54 S18 Northridge 17/01/1994 24389 LA - NORTHR/CN270 6.69 16.92 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP000 6.93 17.94 S21 Cape Men- 25/04/1992 <td>S11</td> <td>Imperial</td> <td>15/10/1979</td> <td>6621</td> <td>IMPVALL/H-CHI012</td> <td>6.53</td> <td>7.29</td>	S11	Imperial	15/10/1979	6621	IMPVALL/H-CHI012	6.53	7.29
S12 Imperial Valley 15/10/1979 23 :16 6621 Chihuahua IMPVALL/H-CHI102 6.53 7.29 S13 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04000 6.93 14.34 S14 Loma Prieta 18/10/1989 57382 Gilroy LOMAP/G04090 6.93 14.34 S15 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 S16 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 00:05 00:05 00:05 12:31 Century City 00:05 15.54 S17 Northridge 17/01/1994 24389 LA - 24389 LA - 12:31 NORTHR/CCN270 6.69 15.54 S18 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S21 Cape Men- docino 18:06 Overpass-FF CAPEMEND/R10360 7.01 7.88 S22		Valley	23 :16	Chihuahua			
Valley 23:16 Chinuahua	S12	Imperial	15/10/1979	6621	IMPVALL/H-CHI102	6.53	7.29
S13 Loma Prieta 00 :05 18/10/1989 Array #4 57382 Gilroy Array #4 LOMAP/G04000 6.93 14.34 S14 Loma Prieta 18/10/1989 57382 Gilroy On :05 LOMAP/G04090 6.93 14.34 S15 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 O0 :05 00 :05 0 0 6.93 11.03 S16 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 O0 :05 00 :05 0 0 6.93 11.03 S17 Northridge 17/01/1994 24389 LA - CC North NORTHR/CCN270 6.69 15.54 S18 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S21 Cape Men- docino 18 :06 Overpass-FF 7.01 7.88 S22 Cape Men- docino 18 :06 Overpass-FF 7.01		Valley	23 :16	Chihuahua			
	S13	Loma Prieta	18/10/1989	57382 Gilroy	LOMAP/G04000	6.93	14.34
S14 Loma Prieta 18/10/1989 00:05 57382 Gilroy Array #4 LOMAP/G04090 6.93 14.34 S15 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH000 6.93 11.03 S16 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH090 6.93 11.03 S17 Northridge 17/01/1994 24389 LA - Century City CC North NORTHR/CCN360 6.69 15.54 S18 Northridge 17/01/1994 24389 LA - Century City CC North NORTHR/CCN270 6.69 16.92 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass- FF 0 1 S22 Cape Men- docino 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S24<			00:05	Array #4			
	S14	Loma Prieta	18/10/1989	57382 Gilroy	LOMAP/G04090	6.93	14.34
S15 Loma Prieta 18/10/1989 00:05 14 WAHO LOMAP/WAH000 6.93 11.03 S16 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH090 6.93 11.03 S17 Northridge 17/01/1994 24389 LA - 12 :31 NORTHR/CCN360 6.69 15.54 S18 Northridge 17/01/1994 24389 LA - CC North NORTHR/CCN270 6.69 15.54 S18 Northridge 17/01/1994 24283 NORTHR/CCN270 6.69 16.92 S18 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass-FF 0 7.01 7.88 S22 Cape Men- docino 18:06 Overpass-FF IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 E1 Centro IMPVALL/H-E01140 6.53 17.94 S25 Imp			00 :05	Array #4			
00:05 00:05 00:05 S16 Loma Prieta 18/10/1989 14 WAHO LOMAP/WAH090 6.93 11.03 S17 Northridge 17/01/1994 24389 LA- NORTHR/CCN360 6.69 15.54 S18 Northridge 17/01/1994 24389 LA- NORTHR/CCN270 6.69 15.54 S18 Northridge 17/01/1994 24389 LA- NORTHR/CCN270 6.69 15.54 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S21 Cape Men- 25/04/1992 89324 Rio Dell CAPEMEND/RI0360 7.01 7.88 docino 18:06 Overpass- FF IMPVALL/H-E12140 6.53 17.94 S22 Cape Men- 25/04/1992 89324 Rio Dell CAPEMEND/RI0270 7.01 7.88 docino 18:06 Overpass- FF IMPVALL/H-E12140 6.53 17.94	S15	Loma Prieta	18/10/1989	14 WAHO	LOMAP/WAH000	6.93	11.03
S16 Loma Prieta 18/10/1989 00:05 14 WAHO LOMAP/WAH090 6.93 11.03 S17 Northridge 17/01/1994 24389 LA - L2:31 NORTHR/CCN360 6.69 15.54 S18 Northridge 17/01/1994 24389 LA - L2:31 NORTHR/CCN270 6.69 15.54 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass-FF CAPEMEND/RI0360 7.01 7.88 S22 Cape Men- docino 15/10/1979 931 El Centro IMPVALL/H-E12140 6.3 17.94 Yalley 23:16 Array #12 IMPVALL/H-E01140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 19.76 Valley 23:16 <td></td> <td></td> <td>00:05</td> <td></td> <td></td> <td></td> <td></td>			00:05				
00 :05 00 :05 00 :05 S17 Northridge 17/01/1994 24389 LA - (2 : 31) NORTHR/CCN360 6.69 15.54 S18 Northridge 17/01/1994 24389 LA - (2 : 31) NORTHR/CCN270 6.69 15.54 S18 Northridge 17/01/1994 24283 NORTHR/CCN270 6.69 15.54 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S21 Cape Men- docino 18 :06 Overpass- FF - - - S22 Cape Men- docino 25/04/1992 89324 Rio Dell docino CAPEMEND/RI0360 7.01 7.88 S22 Cape Men- docino 18 :06 Overpass- FF - - - S23 Imperial Moperial 15/10/1979 931 El Centro Valley IMPVALL/H-E12140 6.53 17.94 S24 Imperial Valley 23:16 Array #12 - <t< td=""><td>S16</td><td>Loma Prieta</td><td>18/10/1989</td><td>14 WAHO</td><td>LOMAP/WAH090</td><td>6.93</td><td>11.03</td></t<>	S16	Loma Prieta	18/10/1989	14 WAHO	LOMAP/WAH090	6.93	11.03
S17 Northridge 17/01/1994 24389 LA- Century City CC North NORTHR/CCN360 6.69 15.54 S18 Northridge 17/01/1994 24389 LA- 24389 LA- 12 :31 NORTHR/CCN270 6.69 15.54 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass- FF 0 7.01 7.88 S22 Cape Men- docino 18:06 Overpass- FF 0 7.01 7.88 S23 Imperial docino 15/10/1979 931 El Centro Valley IMPVALL/H-E12140 6.53 17.94 S24 Imperial Hiperial 15/10/1979 931 El Centro Valley IMPVALL/H-E01140 6.53 19.76 S24 Imperial Hiperial 15/10/1979 5056 El Centro Valley IMPVALL/H-E01140 6.53 19.7			00 :05				
12:31 Century City CC North Northridge 17/01/1994 24389 LA - Century City CC North NORTHR/CCN270 6.69 15.54 S18 Northridge 17/01/1994 24283 NORTHR/CCN270 6.69 16.92 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass-FF - - - S22 Cape Men- docino 18:06 Overpass-FF IMPVALL/H-E12140 6.53 17.94 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 19.76 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 <tr< td=""><td>S17</td><td>Northridge</td><td>17/01/1994</td><td>24389 LA -</td><td>NORTHR/CCN360</td><td>6.69</td><td>15.54</td></tr<>	S17	Northridge	17/01/1994	24389 LA -	NORTHR/CCN360	6.69	15.54
CC North CC North S18 Northridge 17/01/1994 24389 LA - Century City CC North NORTHR/CCN270 6.69 15.54 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass- FF - - - S22 Cape Men- docino 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 19.76 S24 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53			12:31	Century City			
S18 Northridge 17/01/1994 24389 LA - Century City CC North NORTHR/CCN270 6.69 15.54 S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass- FF 0 7.01 7.88 S22 Cape Men- docino 15/10/1979 89324 Rio Dell Overpass- FF CAPEMEND/RI0270 7.01 7.88 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 19.76 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26				CC North			
12 :31 Century City CC North Century City CC North S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 18:06 Overpass- FF 0 7.01 7.88 S22 Cape Men- docino 15/10/1979 931 El Centro Overpass- FF IMPVALL/H-E12140 6.53 17.94 S23 Imperial 15/10/1979 931 El Centro Valley IMPVALL/H-E01140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 17.94 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 Valley 23:16 Array #1 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 Valley 23:16 <td>S18</td> <td>Northridge</td> <td>17/01/1994</td> <td>24389 LA -</td> <td>NORTHR/CCN270</td> <td>6.69</td> <td>15.54</td>	S18	Northridge	17/01/1994	24389 LA -	NORTHR/CCN270	6.69	15.54
S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 12 :31 Moorpark - Fire Sta - - S21 Cape Men- docino 18 :06 Overpass- FF - - - S22 Cape Men- docino 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S23 Imperial Hoperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 17.94 S24 Imperial Hoperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S25 Imperial Hoperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial Hoperial<			12:31	Century City			
S19 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP180 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- 25/04/1992 89324 Rio Dell CAPEMEND/RI0360 7.01 7.88 S22 Cape Men- 25/04/1992 89324 Rio Dell CAPEMEND/RI0270 7.01 7.88 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 19.76 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Lan	<u> </u>		1 - 10 1 11 0 0 1	CC North		6.60	1600
I2 :31 Moorpark - Fire Sta Moorpark - Fire Sta NORTHR/MRP090 6.69 16.92 S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 12 :31 Moorpark - Fire Sta - 7.01 7.88 S21 Cape Men- docino 18 :06 Overpass- FF Overpass- FF 7.01 7.88 S23 Imperial docino 18 :06 Overpass- FF IMPVALL/H-E12140 6.53 17.94 S23 Imperial Valley 23 :16 Array #12 IMPVALL/H-E12140 6.53 17.94 S24 Imperial Valley 23 :16 Array #12 IMPVALL/H 6.53 17.94 S25 Imperial Valley 23 :16 Array #12 IMPVALL/H 6.53 19.76 S26 Imperial Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers	819	Northridge	17/01/1994	24283	NORTHR/MRP180	6.69	16.92
S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 S21 Cape Men- docino 25/04/1992 89324 Rio Dell CAPEMEND/RI0360 7.01 7.88 S22 Cape Men- docino 18:06 Overpass- FF CAPEMEND/RI0270 7.01 7.88 S23 Imperial docino 15/10/1979 931 El Centro Array #12 IMPVALL/H-E12140 6.53 17.94 S24 Imperial Valley 15/10/1979 931 El Centro Array #12 IMPVALL/H 6.53 17.94 S24 Imperial Valley 15/10/1979 931 El Centro Array #12 IMPVALL/H 6.53 19.76 S25 Imperial Valley 15/10/1979 5056 El Centro Array #1 IMPVALL/H 6.53 19.76 S26 Imperial Valley 15/10/1979 5056 El Centro Valley IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/WVH090 7.			12:31	Moorpark			
S20 Northridge 17/01/1994 24283 NORTHR/MRP090 6.69 16.92 12:31 Moorpark - Fire Sta - - 16.92 S21 Cape Men- 25/04/1992 89324 Rio Dell CAPEMEND/RI0360 7.01 7.88 docino 18:06 Overpass- FF - - - - S22 Cape Men- 25/04/1992 89324 Rio Dell CAPEMEND/RI0270 7.01 7.88 docino 18:06 Overpass- FF - - - - S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 Valley 23:16 Array #12 - - - - S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 Valley 23:16 Array #1 - - - - S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 Valley 23:16 Array #1 - - - 1	020	NT (1 · 1	17/01/1004	- Fire Sta		((0	16.00
International Notice International Network Internatin Network International Network <th< td=""><td>820</td><td>Northridge</td><td>1//01/1994</td><td>24283</td><td>NORTHR/MRP090</td><td>6.69</td><td>16.92</td></th<>	820	Northridge	1//01/1994	24283	NORTHR/MRP090	6.69	16.92
S21 Cape Men- docino 25/04/1992 89324 Rio Dell Overpass- FF CAPEMEND/RI0360 7.01 7.88 S22 Cape Men- docino 18:06 Overpass- FF CAPEMEND/RI0270 7.01 7.88 S23 Imperial docino 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S23 Imperial Valley 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S24 Imperial Valley 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S24 Imperial Valley 15/10/1979 931 El Centro IMPVALL/H 6.53 19.76 S25 Imperial Valley 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S26 Imperial Valley 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/WVH090 7.28 <			12:31	Moorpark			
S21 Cape Men- docino 25/04/1992 89524 Rio Dell Overpass- FF CAPEMEND/R10360 7.01 7.88 S22 Cape Men- docino 18:06 Overpass- FF CAPEMEND/R10270 7.01 7.88 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S25 Imperial 15/10/1979 931 El Centro IMPVALL/H-E01140 6.53 19.76 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 <t< td=""><td>021</td><td>Cana Man</td><td>25/04/1002</td><td>- Fire Sta</td><td>CADEMEND/DI0260</td><td>7.01</td><td>7.00</td></t<>	021	Cana Man	25/04/1002	- Fire Sta	CADEMEND/DI0260	7.01	7.00
S22 Cape Men- docino 25/04/1992 89324 Rio Dell Overpass- FF CAPEMEND/RI0270 7.01 7.88 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 <t< td=""><td>521</td><td>Cape Men-</td><td>25/04/1992</td><td>89324 KIO Dell</td><td>CAPEMEND/KI0300</td><td>7.01</td><td>/.88</td></t<>	521	Cape Men-	25/04/1992	89324 KIO Dell	CAPEMEND/KI0300	7.01	/.88
322 Cape Meli- docino 23/04/1992 39324 Rto Dell CAPEMEND/R102/0 7.01 7.88 S23 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 Valley 23 :16 Array #1 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo	522	Cana Man	16.00	80224 Dia Dall	CADEMEND/DI0270	7.01	7 00
S23 Imperial Valley 15/10/1979 931 El Centro Array #12 IMPVALL/H-E12140 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers <td< td=""><td>522</td><td>Cape Mell-</td><td>23/04/1992</td><td>Overpass FE</td><td>CAPEIVIEND/KI02/0</td><td>7.01</td><td>1.00</td></td<>	522	Cape Mell-	23/04/1992	Overpass FE	CAPEIVIEND/KI02/0	7.01	1.00
323 Imperial 13/10/1979 931 El Centro IMI VALL/II-E12140 0.33 17.94 Valley 23 :16 Array #12 IMPVALL/H 6.53 17.94 S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 Valley 23 :16 Array #12 IMPVALL/H 6.53 19.76 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 Valley 23 :16 Array #1 Imperial 15/10/1979 15/10/1979 10.56 17.32 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 22074 Yermo LANDERS/YER3	\$23	Imperial	15/10/1070	031 El Centro	IMDVALL/H E12140	6.53	17.04
S24 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S25 Imperial 15/10/1979 931 El Centro IMPVALL/H 6.53 17.94 S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H-E01140 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 Valley 23 :16 Array #1 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11 :58 Fire Station <td>525</td> <td>Valley</td> <td>23.16</td> <td>$\Delta rray \#12$</td> <td><math display="block">\mathbf{HV}\mathbf{H}\mathbf{V}\mathbf{A}\mathbf{L}\mathbf{L}/\mathbf{H}\mathbf{-}\mathbf{L}12140</math></td> <td>0.55</td> <td>17.94</td>	525	Valley	23.16	$\Delta rray \#12$	$\mathbf{HV}\mathbf{H}\mathbf{V}\mathbf{A}\mathbf{L}\mathbf{L}/\mathbf{H}\mathbf{-}\mathbf{L}12140$	0.55	17.94
S24 Imperial 15/10/1979 951 EF Centro INIT VALE/II 6.53 17.94 Valley 23 :16 Array #12 IMPVALL/H-E01140 6.53 19.76 S25 Imperial 15/10/1979 5056 EI Centro IMPVALL/H-E01140 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 EI Centro IMPVALL/H 6.53 19.76 Valley 23 :16 Array #1 IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 S29 Landers 28/06/1992 Fire Station LANDERS/YER360 7.28 23.62	\$24	Imperial	15/10/1979	931 El Centro	ΙΜΡΥΔΙΙ/Η	6.53	17.94
S25 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H-E01140 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 2074 Yermo LANDERS/YER360 7.28 23.62 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62	524	Valley	23.16	Array #12		0.55	17.74
S26 Imperial Valley 16/16/19/9 5050 El Centro IMI VIEL/IT E0/170 5050 El Centro S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S26 Imperial 15/10/1979 5056 El Centro IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11 :58 Fire Station I1 :58 Fire Station I 1 1	S25	Imperial	15/10/1979	5056 El Centro	IMPVALL/H-E01140	6 53	19.76
S26 Imperial Valley 15/10/1979 5056 El Centro Array #1 IMPVALL/H 6.53 19.76 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11 :58 Fire Station I1 :58 Fire Station IIII :58 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	525	Valley	23.16	Array #1		0.55	17.70
Valley 23:16 Array #1 0.05 D.16 S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11:58 Fire Station 11:58 Fire Station 10 10 10	S26	Imperial	15/10/1979	5056 El Centro	IMPVALL/H	6 5 3	19 76
S27 Landers 28/06/1992 5071 Morongo LANDERS/MVH000 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11 :58 Fire Station I I I I I I	020	Valley	23:16	Array #1		0.00	19.70
S29 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11 :58 Fire Station 11 :58 Fire Station 11 11	S27	Landers	28/06/1992	5071 Morongo	LANDERS/MVH000	7 28	17 32
S28 Landers 28/06/1992 5071 Morongo LANDERS/MVH090 7.28 17.32 S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11 :58 Fire Station 58 5000	~		11:58	Valley			- / 10 -
11:58 Valley Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11:58 Fire Station 11:58 Fire Station 11:58	S28	Landers	28/06/1992	5071 Morongo	LANDERS/MVH090	7.28	17.32
S29 Landers 28/06/1992 22074 Yermo LANDERS/YER360 7.28 23.62 11:58 Fire Station 11	-		11:58	Vallev			
11:58 Fire Station	S29	Landers	28/06/1992	22074 Yermo	LANDERS/YER360	7.28	23.62
			11:58	Fire Station			
S30 Landers 28/06/1992 22074 Yermo LANDERS/YER270 7.28 23.62	S30	Landers	28/06/1992	22074 Yermo	LANDERS/YER270	7.28	23.62
11:58 Fire Station			11:58	Fire Station			

Tableau C.1 : Suite des propriétés des tremblements de terre selon Iverlino et Cornell (2005) [123].

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
S31	Loma	18/10/1989	1652 Anderson	LOMAP/AND360	6.93	19.90
	Prieta	00:05	Dam (Down-			
			stream)			
S32	Loma	18/10/1989	1652 Anderson	LOMAP/AND270	6.93	19.90
	Prieta	00:05	Dam (Down-			
			stream)			
S33	Loma	18/10/1989	57066 Agnews	LOMAP/AGW000	6.93	24.27
	Prieta	00:05	State Hospital			
S34	Loma	18/10/1989	57066 Agnews	LOMAP/AGW090	6.93	24.27
	Prieta	00:05	State Hospital			
S35	Northridge	17/01/1994	24461 Alham-	NORTHR/ALH360	6.69	35.66
		12:31	bra Fremont			
			School			
S36	Northridge	17/01/1994	24461 Alham-	NORTHR/ALH270	6.69	35.66
		12:31	bra Fremont			
			School			
S37	Northridge	17/01/1994	24055 Leona	NORTHR/LV5000	6.69	37.47
		12:31	Valley #5			
S38	Northridge	17/01/1994	24055 Leona	NORTHR/LV5090	6.69	37.47
		12:31	Valley #5			
S39	Imperial	15/10/1979	5059 El Centro	IMPVALL/H-E13140	6.53	21.98
	Valley	23 :16	Array #13			
S40	Imperial	15/10/1979	5059 El Centro	IMPVALL/H	6.53	21.98
	Valley	23 :16	Array #13			
S41	Landers	28/06/1992	12149 Desert	LANDERS/BRS000	7.28	21.78
		11:58	Hot Springs			
S42	Landers	28/06/1992	12149 Desert	LANDERS/BRS090	7.28	21.78
		11:58	Hot Springs			
S43	Loma	18/10/1989	57504 Coyote	LOMAP/CLD195	6.93	20.44
	Prieta	00 :05	Lake Dam			
			(Downst)			
S44	Loma	18/10/1989	57504 Coyote	LOMAP/CLD285	6.93	20.44
	Prieta	00:05	Lake Dam			
			(Downst)			
S45	Loma	18/10/1989	1695	LOMAP/SLV360	6.93	23.92
	Prieta	00 :05	Sunnyvale-			
			Colton Ave			
S46	Loma	18/10/1989	1695	LOMAP/SLV270	6.93	23.92
	Prieta	00 :05	Sunnyvale-			
			Colton Ave			

Tableau C.1 : Suite des propriétés des tremblements de terre selon Iverlino et Cornell (2005) [123].

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
S47	Northridge	17/01/1994	24303 LA -	NORTHR/H0L360	6.69	19.73
		12:31	Hollywood Stor			
			FF			
S48	Northridge	17/01/1994	24303 LA -	NORTHR/H0L270	6.69	19.73
		12:31	Hollywood Stor			
<u> </u>	<u> </u>	0	FF		6.40	
S49	Coalinga	05/02/1983	1162 Pleasant	COALINGA/H-	6.40	7.69
		23:42	Valley P.P	PVY045		
0.50	<u> </u>	05/02/1000	yard		6.40	- (0)
\$50	Coalinga	05/02/1983	1162 Pleasant	COALINGA/H-	6.40	7.69
		23:42	Valley P.P	PVY135		
0.51	Q 1	00/07/1000	yard		5.00	10.00
851	Coalinga	22/07/1983	46104 CHP	CUALINGA/D-	5.80	10.00
0.50	0.1	02:39	(temp)	CHP000	5.00	10.00
852	Coalinga	22/07/1983	46104 CHP	CUALINGA/D-	5.80	10.00
052	<u>Clashford</u>	02:39	(temp)	CHP090	(20	14.20
803	Chalfant	21/0//1986	54100 Benton	CHALFANI/A- DEN270	6.20	14.38
054	Chalfant	14:42	54100 Douton	BEN2/U	6.20	14.20
554	Vallay	21/0//1980	54100 Benton	CHALFAN I/A- DEN260	0.20	14.38
955	Chalfant	14.42	54171 Dishon		6 20	1120
533	Vallay	21/0//1980	J41/1 DISHOP -	UTALFANI/A-	0.20	14.38
	valley	14.42	LAD WF South	LADIOU		
\$56	Chalfant	21/07/1986	5/1171 Bishon -		6 20	1/ 38
550	Valley	14.42	LADWP South	LAD270	0.20	14.50
	vancy	17.72	St			
S57	Kobe	16/01/1995	0 Nishi-Akashi	KOBE/NIS000	6 90	7.08
201	11000	20:46			0.50	,
S58	Kobe	16/01/1995	0 Nishi-Akashi	KOBE/NIS090	6.90	7.08
~~~		20:46				
S59	Kobe	16/01/1995	0 Takatori	KOBE/TAK000	6.90	01.46
		20:46				
S60	Kobe	16/01/1995	0 Takatori	KOBE/TAK090	6.90	01.46
		20:46				
S61	Landers	28/06/1992	23559 Barstow	LANDERS/BRS000	7.28	34.86
		11:58				
S62	Landers	28/06/1992	23559 Barstow	LANDERS/BRS090	7.28	34.86
		11:58				
S63	Northridge	17/01/1994	24309 Leona	NORTHR/LV6360	6.69	37.70
		12:31	Valley #6			
S64	Northridge	17/01/1994	24309 Leona	NORTHR/LV6270	6.69	37.70
		12:31	Valley #6			

Tableau C.1 : Suite des propriétés des tremblements de terre selon Iverlino et Cornell (2005) [123].

Les 50 mouvements au sol du tableau C.2 ont été sélectionnés en fonction d'une large gamme de Magnitude (Mw), R et Vs30 : 6.2 Mw 7.7 ; 10 R 28km ; 300 Vs30 800m/s.

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
<b>S</b> 1	Friuli	06/05/1976	Tolmezzo	FRIULI/A-TMZ000	6.50	14.97
	Italy	20:00				
S2	Friuli	06/05/1976	Tolmezzo	FRIULI/A-TMZ090	6.50	14.97
	Italy	20:00				
S3	Victoria	09/06/1980	Cerro Prieto	VICT/CPE045	6.33	13.80
	Mexico	03 :28				
S4	Victoria	09/06/1980	Cerro Prieto	VICT/CPE135	6.33	13.80
	Mexico	03 :28				
S5	Coalinga	02/05/1983	Parkfield Fault	COALINGA/H-	6.36	28.00
		23 :42	Zone 15	Z15000		
S6	Coalinga	02/05/1983	Parkfield Fault	COALINGA/H-	6.36	28.00
		23 :42	Zone 15	Z15090		
S7	Coalinga	02/05/1983	Parkfield Vin-	COALINGA/H-	6.36	24.83
		23 :42	eyard Cany 1E	PV1000		
S8	Coalinga	02/05/1983	Parkfield Vin-	COALINGA/H-	6.36	24.83
		23 :42	eyard Cany 1E	PV1090		
S9	Coalinga	02/05/1983	Slack Canyon	COALINGA/H-	6.36	25.98
	_	23 :42		SCN045		
S10	Coalinga	02/05/1983	Slack Canyon	COALINGA/H-	6.36	25.98
	_	23 :42		SCN135		
S11	New	02/03/1987	Matahina Dam	NEWZEAL/A-	6.60	16.09
	Zealand	23 :42		MAT083		
S12	New	02/03/1987	Matahina Dam	NEWZEAL/A-	6.60	16.09
	Zealand	23 :42		MAT173		
S13	Loma	18/10/1989	Coyote Lake	LOMAP/CYC195	6.93	19.97
	Prieta	00:05	Dam (SWAbut)			
S14	Loma	18/10/1989	Coyote Lake	LOMAP/CYC285	6.93	19.97
	Prieta	00 :05	Dam (SWAbut)			
S15	Loma	18/10/1989	Hollister-South	LOMAP/HSP000	6.93	27.67
	Prieta	00:05	& Pine			
S16	Loma	18/10/1989	Hollister-South	LOMAP/HSP090	6.93	27.67
	Prieta	00:05	& Pine			
S17	Northridge	17/01/1994	Beverly Hills-	NORTHR/MU2035	6.69	12.39
		12:31	12520 Mulhol			
S18	Northridge	17/01/1994	Beverly Hills-	NORTHR/MU2125	6.69	12.39
		12:31	12520 Mulhol			

Tableau C.2 : Propriétés des tremblements de terre selon Bradley et al. (2010) [124].

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
S19	Northridge	17/01/1994 12 :31	Castaic – Old Ridge Route	NORTHR/ORR090	6.69	20.10
S20	Northridge	17/01/1994	Castaic – Old	NORTHR/ORR180	6.69	20.10
	e	12:31	<b>Ridge Route</b>			
S21	Northridge	17/01/1994	LA- Hollywood	NORTHR/PEL090	6.69	19.73
	e	12:31	Stor FF			
S22	Northridge	17/01/1994	LA- Hollywood	NORTHR/ PEL180	6.69	19.73
	e	12:31	Stor FF			
S23	Northridge	17/01/1994	LA- Saturn St	NORTHR/STN020	6.69	21.17
	C	12:31				
S24	Northridge	17/01/1994	LA- Saturn St	NORTHR/STN110	6.69	21.17
		12:31				
S25	Northridge	17/01/1994	LA- Wadsworth	NORTHR/5082-325	6.69	14.55
	_	12:31	VA Hospital			
			South			
S26	Northridge	17/01/1994	LA- Wadsworth	NORTHR/5082-235	6.69	14.55
		12:31	VA Hospital			
			South			
S27	Northridge	17/01/1994	Santa Monica	NORTHR/STM090	6.69	17.28
		12:31	City Hall			
S28	Northridge	17/01/1994	Santa Monica	NORTHR/STM180	6.69	17.28
		12:31	City Hall			
S29	Chi-Chi	20/09/1999	TCU045	CHICHI/TCU045-E	7.62	26.00
	Taiwan	18:03				
S30	Chi-Chi	20/09/1999	TCU045	CHICHI/TCU045-N	7.62	26.00
	Taiwan	18:03				
S31	Chi-Chi	20/09/1999	CHY028	CHICHI03/CHY028-N	6.20	23.44
	Taiwan	18:03				
S32	Chi-Chi	20/09/1999	CHY028	CHICHI03/CHY028-O	6.20	23.44
~ • •	Taiwan	18:03				
S33	Chi-Chi	20/09/1999	CHY080	CHICHI03/CHY080-N	6.20	21.34
~ • •	Taiwan	18:03				
S34	Chi-Chi	20/09/1999	CHY080	CHICHI03/CHY080-O	6.20	21.34
<b>G2 5</b>	Taiwan	18:03	TOLIO ( F		6.00	05.15
\$35	Chi-Chi	20/09/1999	TCU065	CHICHI03/1CU065-N	6.20	25.17
<b>GQC</b>	Taiwan	18:03	TOLIO ( F		6.00	05.15
\$36	Chi-Chi	20/09/1999	TCU065	CHICHI03/1CU065-0	6.20	25.17
0.27	l aiwan	18:03			( 20	07.00
837	Chi-Chi	20/09/1999	TCU067	CHICHI03/TCU067-N	6.20	27.66
020	1 aiwan	18:03			( 20	27.66
838	Chi-Chi	20/09/1999	100067	CHICHI03/TCU067-0	6.20	27.66
1	l aiwan	18:03			1	

Tableau C.2 : Suite des propriétés des tremblements de terre selon Bradley et al. (2010)[124].

N°	Séisme	Année	Station	Enregistrement / Composant	Mw	R*
						[km]
S39	Chi-Chi	20/09/1999	TCU075	CHICHI03/TCU075-N	6.20	18.47
	Taiwan	18:03				
S40	Chi-Chi	20/09/1999	TCU075	CHICHI03/TCU075-O	6.20	18.47
	Taiwan	18:03				
S41	Chi-Chi	20/09/1999	TCU076	CHICHI03/TCU076-N	6.20	13.04
	Taiwan	18:03				
S42	Chi-Chi	20/09/1999	TCU076	CHICHI03/TCU076-O	6.20	13.04
	Taiwan	18:03				
S43	Chi-Chi	20/09/1999	TCU122	CHICHI03/TCU122-N	6.20	18.10
	Taiwan	18:03				
S44	Chi-Chi	20/09/1999	TCU122	CHICHI03/TCU122-O	6.20	18.10
	Taiwan	18:03				
S45	Chi-Chi	20/09/1999	TCU138	CHICHI03/TCU138-N	6.20	21.11
	Taiwan	18:03				
S46	Chi-Chi	20/09/1999	TCU138	CHICHI03/TCU138-O	6.20	21.11
	Taiwan	18:03				
S47	Chi-Chi	20/09/1999	CHY074	CHICHI06/CHY074-N	6.30	27.57
	Taiwan	18:03				
S48	Chi-Chi	20/09/1999	CHY074	CHICHI06/CHY074-O	6.30	27.57
	Taiwan	18:03				
S49	Chi-Chi	20/09/1999	TCU129	CHICHI06/TCU129-N	6.30	22.69
	Taiwan	18:03				
S50	Chi-Chi	20/09/1999	TCU129	CHICHI06/TCU129-O	6.30	22.69
	Taiwan	18:03				

Tableau C.2 : Suite des propriétés des tremblements de terre selon Bradley et al. (2010)[124].

### C.3. Akkar et al. (2005)

Les 50 mouvements du sol dans le tableau C.3 sont constitués d'enregistrements de sols denses à fermes avec des magnitudes de surface (Mw) allant de 5,01 à 7,62. Les profiles du sol correspondent aux sites C et D du NEHRP (**National Earthquake Hazards Reduction Program**) avec des vitesses moyennes d'ondes de cisaillement de 360 <Vs30 <750m/s et 180 <Vs30 <360m/s, respectivement. Ces conditions de sol correspondent à la géologie du site local associé à l'ensemble de données du bâtiment (c'est-à-dire la Turquie) [138].

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
<b>S</b> 1	Cape Men-	25/04/1992	89156 Petrolia	CAPEMEND/PET000	7.01	8.18
	docino	18:06				
S2	Cape Men-	25/04/1992	89156 Petrolia	CAPEMEND/PET090	7.01	8.18
	docino	18:06				
S3	Cape Men-	25/04/1992	89324 Rio Dell	CAPEMEND/RIO360	7.01	7.88
	docino	18:06	Overpass-FF			
S4	Cape Men-	25/04/1992	89324 Rio Dell	CAPEMEND/RIO270	7.01	7.88
	docino	18:06	Overpass-FF			
S5	Chi-Chi	20/09/1999	WNT	CHICHI/WNT-E	7.62	1.84
	Taiwan	18:03				
S6	Chi-Chi	20/09/1999	WNT	CHICHI/WNT-N	7.62	1.84
	Taiwan	18:03				
S7	Chi-Chi	20/09/1999	TCU076	CHICHI/TCU076-N	7.62	2.76
	Taiwan	18:03				
S8	Chi-Chi	20/09/1999	TCU076	CHICHI/TCU076-O	7.62	2.76
	Taiwan	18:03				
S9	Chi-Chi	20/09/1999	TCU049	CHICHI/TCU049-E	7.62	3.78
	Taiwan	18:03				
S10	Chi-Chi	20/09/1999	TCU049	CHICHI/TCU049-N	7.62	3.78
	Taiwan	18:03				
S11	Chi-Chi	20/09/1999	TCU082	CHICHI/TCU082-E	7.62	5.18
	Taiwan	18:03				
S12	Chi-Chi	20/09/1999	TCU082	CHICHI/TCU082-N	7.62	5.18
	Taiwan	18:03				
S13	Chi-Chi	20/09/1999	TCU028	CHICHI/TCU028-E	7.62	3.14
	Taiwan	18:03				
S14	Chi-Chi	20/09/1999	TCU028	CHICHI/TCU028-N	7.62	3.14
	Taiwan	18:03				
S15	Chi-Chi	20/09/1999	TCU051	CHICHI/TCU051-E	7.62	7.66
	Taiwan	18:03				
S16	Chi-Chi	20/09/1999	TCU051	CHICHI/TCU051-N	7.62	7.66
	Taiwan	18:03				
S17	Chi-Chi	20/09/1999	TCU074	CHICHI/TCU074-E	7.62	13.46
	Taiwan	18:03				
S18	Chi-Chi	20/09/1999	TCU074	CHICHI/TCU074-N	7.62	13.46
~	Taiwan	18:03				
S19	Livermore	27/01/1980	57T02 Liver-	LIVERMOR/B-	5 42	10.33
217		02.33	more Morgan	LM0265		10.00
		° <b>-</b>	Terr Park			
S20	Livermore	27/01/1980	57T02 Liver-	LIVERMOR/B-	5 42	10.33
		02:33	more Morgan	LM0355		10.00
			Terr Park			
1	1	1		1	1	1

Tableau C.3 : Propriétés des tremblements de terre selon Akkar et al. (2005) [138].

Chi-Chi         Composant         [km]           S21         Chi-Chi         20/09/1999         TCU070         CHICHI/TCU070-N         7.62         19.02           S22         Chi-Chi         20/09/1999         TCU070         CHICHI/TCU070-O         7.62         19.02           S23         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H-         6.36         7.69           S24         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H-         6.36         7.69           S25         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03050         5.74         6.75           Lake         17.05         Array #3         COYOTELK/G03140         5.74         8.47           Lake         17.05         Array #2         COYOTELK/G02140         5.74         8.47           Lake         17.05         Array #2         COYOTELK/G02140         5.74         8.47           Lake         17.05         Array #2         COYOTELK/G02140         5.74         8.47           Lake         17.05         Array #2         COYOTELK/SIB213         5.74         19.46           S30         Coyote         06/08/1979         47126 San Juan         COYO	N°	Séisme	Année	Station	Enregistrement /	Mw	R*
S21         Chi-Chi Taiwan         20/09/1999 18:03         TCU070         CHICHI/TCU070-N         7.62         19.02           S22         Chi-Chi Taiwan         18:03         COUTO         CHICHI/TCU070-O         7.62         19.02           S23         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY045         6.36         7.69           S24         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY135         6.36         7.69           S25         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03140         5.74         6.75           Lake         17:05         Array #3         COYOTELK/G02140         5.74         8.47           S26         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02130         5.74         8.47           S29         Coyote         06/08/1979         471380 Gilroy         COYOTELK/SJB213         5.74         8.47           S30         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           S31         Coyote <t< td=""><td></td><td></td><td></td><td></td><td>Composant</td><td></td><td>[km]</td></t<>					Composant		[km]
Taiwan         18:03         Chi         Chi         Chi           S22         Chi-Chi         20/09/1999         TCU070         CHICHI/TCU070-0         7.62         19.02           S23         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY045         6.36         7.69           S24         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY135         6.36         7.69           S24         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY135         6.36         7.69           S25         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03140         5.74         6.75           Lake         17:05         Array #3         COYOTELK/G02140         5.74         8.47           S27         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           Lake         17:05         Array #2         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02130         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/SJB213         5.74         19.46           S30         Coyote         06/08/1979         <	S21	Chi-Chi	20/09/1999	TCU070	CHICHI/TCU070-N	7.62	19.02
S22         Chi-Chi Taiwan         20/09/1999 18:03         TCU070         CHICHI/TCU070-0         7.62         19.02           S23         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY045         6.36         7.69           S24         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY135         6.36         7.69           S25         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03050         5.74         6.75           Lake         17:05         Array #3         COYOTELK/G02140         5.74         6.75           S27         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02130         5.74         8.47           Lake         17:05         Array #2         COYOTELK/SJB213         5.74         19.46           S29         Coyote         06/08/1979         471380 Gilroy         COYOTELK/SJB303         5.74         19.46           S30         Coyote         06/08/1979         47136 San Juan         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         <		Taiwan	18:03				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S22	Chi-Chi	20/09/1999	TCU070	CHICHI/TCU070-O	7.62	19.02
S23         Coalinga         02/05/1983         1162 Pleasant Valley P.P. yard         COALINGA/H- PVY045         6.36         7.69           S24         Coalinga         02/05/1983         1162 Pleasant Valley P.P. yard         COALINGA/H- PVY135         6.36         7.69           S25         Coyote Lake         06/08/1979         47381 Gilroy Array #3         COYOTELK/G03100         5.74         6.75           S26         Coyote Lake         06/08/1979         47380 Gilroy Array #3         COYOTELK/G02140         5.74         8.47           S27         Coyote Lake         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02140         5.74         8.47           S28         Coyote Lake         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02230         5.74         8.47           S29         Coyote Coyote Lake         06/08/1979         47126 San Juan Sat         COYOTELK/SJB213         5.74         19.46           S30         Coyote Lake         06/08/1979         47315 SJB         COYOTELK/SJB303         5.74         19.46           S31         Coyote Lake         06/08/1979         47315 SJB         COYOTELK/SJ3157         5.74         20.44           S32         Coyote Lake         17.05         orerras, Bent 3 g.1.		Taiwan	18:03				
23:42         Valley P.P. yard         PVY045         6           S24         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY135         6.769           S25         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03100         5.74         6.75           Lake         17:05         Array #3         COYOTELK/G02140         5.74         6.75           S26         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           S27         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02230         5.74         8.47           Lake         17:05         Array #2         COYOTELK/SJB213         5.74         8.47           S29         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           Lake         17:05         Bautista, 24 Polk         St         -         -         -           S31         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           Lake	S23	Coalinga	02/05/1983	1162 Pleasant	COALINGA/H-	6.36	7.69
S24         Coalinga         02/05/1983         1162 Pleasant         COALINGA/H- PVY135         6.36         7.69           S25         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03140         5.74         6.75           Lake         17:05         Array #3         COYOTELK/G02140         5.74         8.47           S27         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           Lake         17:05         Array #3         COYOTELK/G02230         5.74         8.47           Lake         17:05         Array #2         COYOTELK/G02230         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/S02230         5.74         8.47           Lake         17:05         Array #2         Coyote         06/08/1979         47316 San Juan         COYOTELK/SJB303         5.74         19.46           S30         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           Lake         17:05         Overpass, Bent 3         g.1         S         S         S         S         S         S         S         S         S			23 :42	Valley P.P. yard	PVY045		
23 :42         Valley P.P. yard         PVY135         PVY135           S25         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03050         5.74         6.75           S26         Coyote         06/08/1979         47381 Gilroy         COYOTELK/G03140         5.74         6.75           S26         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           S27         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02230         5.74         8.47           S28         Coyote         06/08/1979         471380 Gilroy         COYOTELK/G02230         5.74         8.47           Lake         17:05         Array #2         COYOTELK/SJB213         5.74         8.47           S29         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           Lake         17:05         Bautista, 24 Polk         St         5         20.44         17:05           S31         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           Lake         17:05         Overpass, Bent 3         g.1.         17         0verpass, Bent 3         <	S24	Coalinga	02/05/1983	1162 Pleasant	COALINGA/H-	6.36	7.69
S25         Coyote Lake         06/08/1979 17:05         47381 Gilroy Array #3         COYOTELK/G03160         5.74         6.75           S26         Coyote         06/08/1979         47381 Gilroy Array #3         COYOTELK/G03140         5.74         6.75           S27         Coyote         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02140         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02230         5.74         8.47           S28         Coyote         06/08/1979         47180 Gilroy Array #2         COYOTELK/G02230         5.74         8.47           S28         Coyote         06/08/1979         47126 San Juan Array #2         COYOTELK/SJB213         5.74         19.46           S30         Coyote         06/08/1979         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJ3067         5.74         20.44           S31         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           Lake         17:05         Overpass, Bent 3         g.1         Sor         5.74         20.44           S31         Coyote         06/08/1979         47315 SJB         OVCYOTELK/SJ3157         5.74			23 :42	Valley P.P. yard	PVY135		
Lake         17:05         Array #3         COYOTELK/G03140         5.74         6.75           S26         Coyote         17:05         Array #3         COYOTELK/G02140         5.74         6.75           S27         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02230         5.74         8.47           S28         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB213         5.74         8.47           Lake         17:05         Array #2         COYOTELK/SJB213         5.74         19.46           Lake         17:05         Bautista, 24 Polk         COYOTELK/SJB303         5.74         19.46           S30         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         47135 SJB         COYOTELK/SJ3067         5.74         20.44           Lake         17:05         Overpass, Bent 3         g.1         20.44         20.44         20.44         20.44         20.44         20.44         20.44         20.44         20.44         20.44	S25	Coyote	06/08/1979	47381 Gilroy	COYOTELK/G03050	5.74	6.75
S26         Coyote Lake         06/08/1979         47381 Gilroy Array #3         COYOTELK/G03140         5.74         6.75           S27         Coyote Lake         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02140         5.74         8.47           S28         Coyote Lake         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02230         5.74         8.47           S28         Coyote Lake         17:05         Array #2         COYOTELK/SD233         5.74         8.47           S28         Coyote Lake         17:05         Array #2         COYOTELK/SJB213         5.74         19.46           S30         Coyote Lake         06/08/1979         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJB303         5.74         19.46           S31         Coyote Lake         06/08/1979         47315 SJB Querpass, Bent 3 g.1.         COYOTELK/SJ3157         5.74         20.44           S32         Coyote Lake         06/08/1979         47315 SJB Querpass, Bent 3 g.1.         COYOTELK/SJ3157         5.74         20.44           S33         Gazli, Lake         17:05         Overpass, Bent 3 g.1.         3.92         3.92         3.92           S33         Gazli, Lake         17:05/1976         9201 Karakyr         GAZLI/GAZ000<		Lake	17:05	Array #3			
Lake         17 :05         Array #3         COYOTELK/G02140         5.74         8.47           S27         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02140         5.74         8.47           S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02230         5.74         8.47           S28         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB213         5.74         19.46           S29         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           Lake         17 :05         Bautista, 24 Polk         St         -         -         -         -           S30         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           Lake         17 :05         Bautista, 24 Polk         St         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>S26</td> <td>Coyote</td> <td>06/08/1979</td> <td>47381 Gilroy</td> <td>COYOTELK/G03140</td> <td>5.74</td> <td>6.75</td>	S26	Coyote	06/08/1979	47381 Gilroy	COYOTELK/G03140	5.74	6.75
S27         Coyote Lake         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02140         5.74         8.47           S28         Coyote Lake         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02140         5.74         8.47           S28         Coyote Lake         06/08/1979         47380 Gilroy Array #2         COYOTELK/G02140         5.74         8.47           S29         Coyote         06/08/1979         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJB303         5.74         19.46           S30         Coyote         06/08/1979         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         47315 SJB Overpass, Bent 3 g.l.         COYOTELK/SJ3067         5.74         20.44           S32         Coyote         06/08/1979         47315 SJB Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S33         Gazli, USSR         17'.05         9201 Karakyr         GAZLI/GAZ000         6.80         3.92           S34         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S35         Imperial         15/10/1979         5158 El Centro Valley		Lake	17:05	Array #3			
Lake         17:05         Array #2         Counce         Array #2         Counce         Array #2         Counce         State	S27	Coyote	06/08/1979	47380 Gilroy	COYOTELK/G02140	5.74	8.47
S28         Coyote         06/08/1979         47380 Gilroy         COYOTELK/G02230         5.74         8.47           S29         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB213         5.74         19.46           Lake         17 :05         Bautista, 24 Polk         COYOTELK/SJB303         5.74         19.46           S30         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           Lake         17 :05         Bautista, 24 Polk         St         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           Lake         17 :05         Overpass, Bent 3         g.l.         -         -         -         -           S32         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3157         5.74         20.44           Lake         17 :05         Overpass, Bent 3         g.l.         -         -         -           S33         Gazli,         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S34         Gazli,         15/10/1979         5158 E		Lake	17:05	Array #2			
Lake         17 :05         Array #2         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB213         5.74         19.46           S29         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB213         5.74         19.46           S30         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         47126 San Juan         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           S32         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3157         5.74         20.44           Lake         17 :05         Overpass, Bent 3         g.1.         -         -         -         -           S32         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3157         5.74         20.44           Lake         17 :05         overpass, Bent 3         g.1.         -         -         -         -         -           S33         Gazli,         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92<	S28	Coyote	06/08/1979	47380 Gilroy	COYOTELK/G02230	5.74	8.47
S29         Coyote Lake         06/08/1979 17:05         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJB213         5.74         19.46           S30         Coyote Lake         06/08/1979         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJB303         5.74         19.46           S31         Coyote Lake         06/08/1979         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJB303         5.74         19.46           S31         Coyote Lake         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           Lake         17:05         Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S32         Coyote Lake         06/08/1979         47315 SJB         COYOTELK/SJ3157         5.74         20.44           S33         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ000         6.80         3.92           S34         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S35         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06230         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06320		Lake	17:05	Array #2			
Lake         17 :05         Bautista, 24 Polk St         Coyote         17 :05         Bautista, 24 Polk St           S30         Coyote         06/08/1979         47126 San Juan Bautista, 24 Polk St         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         47315 SJB Overpass, Bent 3 g.l.         COYOTELK/SJ3067         5.74         20.44           S32         Coyote         06/08/1979         47315 SJB Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S33         Gazli,         17 :05         Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S33         Gazli,         17/05/1976         9201 Karakyr         GAZLI/GAZ000         6.80         3.92           S34         Gazli,         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S34         Gazli,         15/10/1979         5158 El Centro         IMPVALL/A-E06230         5.01         13.16           S36         Imperial         15/10/1979         5053 Calexico         IMPVALL/A-E06320         5.01         13.16           S37         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45 </td <td>S29</td> <td>Coyote</td> <td>06/08/1979</td> <td>47126 San Juan</td> <td>COYOTELK/SJB213</td> <td>5.74</td> <td>19.46</td>	S29	Coyote	06/08/1979	47126 San Juan	COYOTELK/SJB213	5.74	19.46
Image: stress of stresstress of stress of stress of stress of stress of s		Lake	17:05	Bautista, 24 Polk			
S30         Coyote         06/08/1979         47126 San Juan Bautista, 24 Polk         COYOTELK/SJB303         5.74         19.46           S31         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           S31         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3067         5.74         20.44           Lake         17 :05         Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S32         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3157         5.74         20.44           Lake         17 :05         Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S33         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ000         6.80         3.92           S34         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S35         Imperial         15/10/1979         5158 El Centro Valley         IMPVALL/A-E06320         5.01         13.16           S36         Imperial         15/10/1979         5053 Calexico         IMPVALL/A-E06320         5.01         13.16           S37         Imperial<				St			
Lake         17 :05         Bautista, 24 Polk St         Count         Image: Count <thimage: count<="" th=""> <thimage: count<="" th=""> <t< td=""><td>S30</td><td>Coyote</td><td>06/08/1979</td><td>47126 San Juan</td><td>COYOTELK/SJB303</td><td>5.74</td><td>19.46</td></t<></thimage:></thimage:>	S30	Coyote	06/08/1979	47126 San Juan	COYOTELK/SJB303	5.74	19.46
Image: stress of stress		Lake	17:05	Bautista, 24 Polk			
S31       Coyote Lake       06/08/1979       47315 SJB Overpass, Bent 3 g.l.       COYOTELK/SJ3067       5.74       20.44         S32       Coyote Lake       06/08/1979       47315 SJB Overpass, Bent 3 g.l.       COYOTELK/SJ3157       5.74       20.44         S32       Coyote Lake       06/08/1979       47315 SJB Overpass, Bent 3 g.l.       COYOTELK/SJ3157       5.74       20.44         S33       Gazli, USSR       17/05/1976       9201 Karakyr       GAZLI/GAZ000       6.80       3.92         S34       Gazli, USSR       17/05/1976       9201 Karakyr       GAZLI/GAZ090       6.80       3.92         S35       Imperial Valley       15/10/1979       5158 El Centro Array #6       IMPVALL/A-E06230       5.01       13.16         S36       Imperial Valley       15/10/1979       5158 El Centro Array #6       IMPVALL/A-E06320       5.01       13.16         S37       Imperial Valley       15/10/1979       5053 Calexico Valley       IMPVALL/H-CX0315       5.01       10.45         S38       Imperial Valley       15/10/1979       5053 Calexico Valley       IMPVALL/H-       5.01       10.45         S38       Imperial Valley       15/10/1979       5053 Calexico       IMPVALL/H-       5.01       10.45         S38<				St			
Lake         17:05         Overpass, Bent 3 g.l.         Covorte         17:05         Overpass, Bent 3 g.l.           S32         Coyote         06/08/1979         47315 SJB         COYOTELK/SJ3157         5.74         20.44           Lake         17:05         Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S33         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ000         6.80         3.92           S34         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S35         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06230         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06320         5.01         13.16           S37         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-         5.01         10.45           S38         Imperial         15/10/1979         S053 Calexico         IMPVALL/H-         5.01         10.45           S38         Imperial	S31	Coyote	06/08/1979	47315 SJB	COYOTELK/SJ3067	5.74	20.44
Image: Signer law         Image: Signer law <thimage: law<="" signer="" th="">         Image: Signer law</thimage:>		Lake	17:05	Overpass, Bent 3			
S32         Coyote Lake         06/08/1979 17:05         47315 SJB Overpass, Bent 3 g.l.         COYOTELK/SJ3157         5.74         20.44           S33         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ000         6.80         3.92           S34         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S35         Imperial Valley         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06230         5.01         13.16           S36         Imperial Valley         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06320         5.01         13.16           S37         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H- CX03105         5.01         10.45				g.l.			
Lake       17:05       Overpass, Bent 3 g.l.       Gazli,       17/05/1976       9201 Karakyr       GAZLI/GAZ000       6.80       3.92         S33       Gazli,       17/05/1976       9201 Karakyr       GAZLI/GAZ090       6.80       3.92         S34       Gazli,       17/05/1976       9201 Karakyr       GAZLI/GAZ090       6.80       3.92         S35       Imperial       15/10/1979       5158 El Centro       IMPVALL/A-E06230       5.01       13.16         S36       Imperial       15/10/1979       5158 El Centro       IMPVALL/A-E06320       5.01       13.16         S37       Imperial       15/10/1979       5053 Calexico       IMPVALL/H-CX0315       5.01       10.45         S38       Imperial       15/10/1979       5053 Calexico       IMPVALL/H-       5.01       10.45         S38       Imperial       15/10/1979       5053 Calexico       IMPVALL/H-       5.01       10.45         S38       Imperial       15/10/1979       5053 Calexico       IMPVALL/H-       5.01       10.45         Valley       23:19       Fire Station       CX03105       5.01       10.45	S32	Coyote	06/08/1979	47315 SJB	COYOTELK/SJ3157	5.74	20.44
Image: Signeric station         Image: Signeri		Lake	17:05	Overpass, Bent 3			
S33       Gazli, USSR       17/05/1976       9201 Karakyr       GAZLI/GAZ000       6.80       3.92         S34       Gazli, USSR       17/05/1976       9201 Karakyr       GAZLI/GAZ090       6.80       3.92         S35       Imperial Valley       15/10/1979       5158 El Centro Array #6       IMPVALL/A-E06230       5.01       13.16         S36       Imperial Valley       15/10/1979       5158 El Centro Array #6       IMPVALL/A-E06320       5.01       13.16         S37       Imperial Valley       15/10/1979       5053 Calexico       IMPVALL/H-CX0315       5.01       10.45         S38       Imperial       15/10/1979       5053 Calexico       IMPVALL/H- CX03105       5.01       10.45				g.l.			
USSR         Imperial         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S35         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06230         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06320         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06320         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06320         5.01         13.16           S37         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-         5.01         10.45           Valley         23:19         Fire Station         CX03105         5.01         10.45	S33	Gazli,	17/05/1976	9201 Karakyr	GAZLI/GAZ000	6.80	3.92
S34         Gazli, USSR         17/05/1976         9201 Karakyr         GAZLI/GAZ090         6.80         3.92           S35         Imperial Valley         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06230         5.01         13.16           S36         Imperial Valley         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06320         5.01         13.16           S36         Imperial Valley         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06320         5.01         13.16           S37         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H- CX03105         5.01         10.45		USSR					
USSR         Imperial         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06230         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06320         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06320         5.01         13.16           S37         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-         5.01         10.45           S38         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-         5.01         10.45           S48         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-         5.01         10.45	S34	Gazli,	17/05/1976	9201 Karakyr	GAZLI/GAZ090	6.80	3.92
S35         Imperial Valley         15/10/1979 23 : 19         5158 El Centro Array #6         IMPVALL/A-E06230         5.01         13.16           S36         Imperial Valley         15/10/1979         5158 El Centro Array #6         IMPVALL/A-E06320         5.01         13.16           S37         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H- CX03105         5.01         10.45		USSR					
Valley         23 :19         Array #6         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06320         5.01         13.16           S36         Imperial         15/10/1979         5158 El Centro         IMPVALL/A-E06320         5.01         13.16           S37         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-         5.01         10.45           S38         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-         5.01         10.45           Valley         23 :19         Fire Station         CX03105         5.01         10.45	S35	Imperial	15/10/1979	5158 El Centro	IMPVALL/A-E06230	5.01	13.16
S36         Imperial Valley         15/10/1979 23 :19         5158 El Centro Array #6         IMPVALL/A-E06320         5.01         13.16           S37         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H- CX03105         5.01         10.45		Valley	23:19	Array #6			
Valley         23:19         Array #6            S37         Imperial         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           Valley         23:19         Fire Station	S36	Imperial	15/10/1979	5158 El Centro	IMPVALL/A-E06320	5.01	13.16
S37         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H-CX0315         5.01         10.45           S38         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H- Imperial         5.01         10.45           Valley         23 :19         Fire Station         IMPVALL/H- S053 Calexico         IMPVALL/H- Imperial         5.01         10.45           Valley         23 :19         Fire Station         CX03105         Imperial         10.45		Valley	23:19	Array #6			
Valley23:19Fire StationS38Imperial15/10/19795053 CalexicoIMPVALL/H- CX031055.0110.45	S37	Imperial	15/10/1979	5053 Calexico	IMPVALL/H-CX0315	5.01	10.45
S38         Imperial Valley         15/10/1979         5053 Calexico         IMPVALL/H- CX03105         5.01         10.45		Valley	23 :19	Fire Station			
Valley23 :19Fire StationCX03105	S38	Imperial	15/10/1979	5053 Calexico	IMPVALL/H-	5.01	10.45
		Valley	23 :19	Fire Station	CX03105		

Tableau C.3 : Suite des propriétés des tremblements de terre selon Akkar et *al.* (2005) [138].

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
S39	Imperial	15/10/1979	5051 Parachute	IMPVALL/H-PTS315	5.01	12.69
	Valley	23 :19	Test Site			
S40	Imperial	15/10/1979	5051 Parachute	IMPVALL/H-	5.01	12.69
	Valley	23 :19	Test Site	PTS3105		
S41	Imperial	15/10/1979	5056 El Centro	IMPVALL/H-E01230	5.01	19.76
	Valley	23 :19	Array #1			
S42	Imperial	15/10/1979	5056 El Centro	IMPVALL/H-E01320	5.01	19.76
	Valley	23 :19	Array #1			
S43	Imperial	15/10/1979	1336 EC	IMPVALL/H-	6.53	0.07
	Valley	23 :19	Meloland	EMO000		
			Overpass FF			
S44	Imperial	15/10/1979	1336 EC	IMPVALL/H-	6.53	0.07
	Valley	23 :19	Meloland	EMO090		
			Overpass FF			
S45	Kocaeli,	17/08/1999	Arcelik	KOCAELI/ARC000	7.51	10.56
	Turkey					
S46	Kocaeli,	17/08/1999	Arcelik	KOCAELI/ARC090	7.51	10.56
	Turkey					
S47	Landers	28/06/1992	5071 Morongo	LANDERS/MVH000	7.28	17.32
		11:58	Valley			
S48	Landers	28/06/1992	5071 Morongo	LANDERS/MVH090	7.28	17.32
		11:58	Valley			
S49	Livermore	24/01/1980	57187 San Ra-	LIVERMOR/A-	5.80	17.13
		19:00	mon Eastman	KOD270		
			Kodak			
S50	Livermore	24/01/1980	57187 San Ra-	LIVERMOR/A-	5.80	17.13
		19:00	mon Eastman	KOD360		
			Kodak			

Tableau C.3 : Suite des propriétés des tremblements de terre selon Akkar et al. (2005)[138].

## C.4. Sorrentino et al. (2008)

Les 14 mouvements au sol du tableau C.4 ont été sélectionnés en fonction de la distance Source-Site (R), de magnitude (Mw), de l'accélération maximale au sol (**Peak Ground Acceleration,** PGA) et de la vitesse maximale au sol (**Peak Ground Velocity**, PGV) : R > 15km ; Mw < 7.1 ; 0.07.< PGA < 0.1g et 7.4 < PGV < 8cm/s, respectivement.

N°	Séisme	Année	Station	Enregistrement /	Mw	R*
				Composant		[km]
S1	Livermore	24/01/1980	57063 Tracy-	LIVERMOR/A-	5.80	28.50
		19:00	Sewage Treatm	STP183		
			Plant			
S2	Livermore	24/01/1980	57063 Tracy-	LIVERMOR/A-	5.80	28.50
		19:00	Sewage Treatm	STP273		
			Plant			
S3	Northridge	17/01/1994	90094 Bell	NORTHR/JAB220	6.69	41.27
		12:31	Gardens			
			Jaboneria			
S4	Northridge	17/01/1994	90094 Bell	NORTHR/ JAB310	6.69	41.27
		12:31	Gardens			
			Jaboneria			
S5	Northridge	17/01/1994	90040 Carson-	NORTHR/CAT090	6.69	46.05
		12:31	Catskill Ave			
S6	Northridge	17/01/1994	90040 Carson-	NORTHR/ CAT000	6.69	46.05
		12:31	Catskill Ave			
S7	Northridge	17/01/1994	14196	NORTHR/ING000	6.69	37.18
		12:31	Inglewood-			
			Union Oil			
<b>S</b> 8	Northridge	17/01/1994	14196	NORTHR/ING090	6.69	37.18
		12:31	Inglewood-			
			Union Oil			
S9	Northridge	17/01/1994	24281 Port	NORTHR/PTH180	6.69	47.58
		12:31	Hueneme			
S10	Northridge	17/01/1994	24281 Port	NORTHR/PTH270	6.69	47.58
		12:31	Hueneme			
S11	Northridge	17/01/1994	12673 San Jac-	NORTHR/CDF090	6.69	147.47
		12:31	into CDF Fire			
			Sta			
S12	Northridge	17/01/1994	12673 San Jac-	NORTHR/CDF180	6.69	147.47
		12:31	into CDF Fire			
			Sta			
S13	San	09/02/1971	994 Gormon –	SFERN/OPP000	6.61	43.95
	Fernando	14 :00	Oso Pump Plant			
S14	San	09/02/1971	994 Gormon –	SFERN/OPP090	6.61	43.95
	Fernando	14 :00	Oso Pump Plant			

Tableau C.4 : Propriétés des tremblements de terre selon Sorrentino et al. (2008) [125].

# ANNEXE D : DEFINITION DE L'ERREUR DANS LES DEPLACEMENTS RELATIFS ENTRE RESULAT ANALYTIQYE ET CELUI EXPERIMENTALE ET RESULTAT DU CHALLENGE

Les déplacements relatifs obtenus à partir de l'analyse dynamique non linéaire pour les deux modèles de structure « A et B » soumises aux quatre types de mouvements d'entrée (i.e. LOW, MED, REF et HIGH) sont comparées avec les résultats expérimentaux obtenus à partir des essais sur table vibrante. L'erreur des déplacements estimés dans les points sélectionnés de la structure par rapport aux déplacements mesurés est obtenu en utilisons la formule suivante :

$$error_{RMS} = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} \left( LA_comp_i - LA_exp_i \right)^2} + \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} \left( TA_comp_i - TA_exp_i \right)^2} + \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} \left( TA_comp_i - TA_exp_i \right)^2} + \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} \left( TB_comp_i - TB_exp_i \right)^2}$$
(D.1)

Où :

*error_{RMS}* est la fonction qui calcul l'erreur entre les valeurs analytiques et expérimentales.

 $LA_comp_i$  et  $TA_comp_i$  correspondent aux valeurs des déplacements relatives obtenus par analyse dynamique non linéaire au niveau du point (A) pour les directions respectives longitudinales et transversales.

 $LB_comp_i$  et  $TB_comp_i$  correspondent aux valeurs des déplacements relatives obtenus par analyse dynamique non linéaire au niveau du point (B) pour les directions respectives longitudinales et transversales.

 $LA_\exp_i$  et  $TA_\exp_i$  correspondent aux valeurs des déplacements relatives mesurés à partir du teste expérimental au niveau du point (A) pour les directions respectives longitudinales et transversales.

 $LB_\exp_i$  et  $TB_\exp_i$  correspondent aux valeurs des déplacements relatives mesurés à partir du teste expérimental au niveau du point (B) pour les directions respectives longitudinales et transversales.

 Classement pour nos résultats sous l'identifiant « TEAM015 » pour la structure « A » donne une valeur d'erreur (*eRMS*) de 264.148. le tableau D.1 suivant donne le classement de notre équipe nommé « VESTE ».

Tableau D.1 : Classement des 10 premières équipes participantes pour les déplacements relatives obtenus dans la structure « A » selon l'erreur (*eRMS*) [150].

Team ID	Team Name	eRMS
TEAM002	Tongji	273.74
TEAM005	UUEES	276.771
TEAM009	Boruken	225.973
TEAM 014	CEA/EM SI	260.927
TEAM015	VESTE	264.148
TEAM 016	ANATOLIA	182.597
TEAM017	University of Houston	369.755
TEAM025	KTK	1191.24
TEAM026	Arup	257.247
TEAM027	PB-San Francisco	265.592

 Classement pour nos résultats sous l'identifiant « TEAM015 » pour la structure « B » donne une valeur d'erreur (*e_{RMS}*) de 260.651 le tableau D.2 suivant donne le classement de notre équipe nommé « VESTE ».

Tableau D.2 : Classement des 10 premières équipes participantes pour les déplacements relatives obtenus dans la structure « B » selon l'erreur (*eRMS*) [150].

Team ID	Team Name	eRMS
TEAM002	Tongji	249.541
TEAM 005	UUEES	271.059
TEAM 009	Boruken	222.986
TEAM 014	CEA/EMSI	254.983
TEAM 015	VESTE	260.651
TEAM 016	ANATOLIA	174.403
TEAM 017	University of Houston	420.38
TEAM025	KTK	2176.3
TEAM 026	Arup	229.988
$\mathrm{TEAM027}$	PB-San Francisco	251.485

Classement pour nos résultats sous l'identifiant « TEAM015 » pour les deux structures « A et B » donne une valeur d'erreur (*e_{RMS}*) de 524.799 le tableau D.3 suivant donne le classement de notre équipe nommé « VESTE ».

Te am ID	Team Name	$e_{RMS}$
TEAM 002	Tongji	523.281
TEAM 005	UUEES	547.83
TEAM 009	Boruken	448.959
TEAM 014	CEA/EM SI	51 5.91
TEAM 015	VESTE	524.799
TEAM 016	ANATOLIA	357
TEAM 017	University of Houston	790.134
TEAM 025	KTK	3367.55
TEAM 026	Arup	487.234
TEAM 027	PB-San Francisco	517.077

Tableau D.3 : Classement des 10 premières équipes participantes pour les déplacements relatives obtenus dans les deux structures « A et B » selon l'erreur (*eRMS*) [150].

 Classement final globale pour notre équipe sous l'identifiant « TEAM015 » pour les deux structures « A et B » donne une valeur d'erreur (*e_{RMS}*) de 524.799 le tableau D.4 suivant donne le classement de notre équipe nommé « VESTE ».

Tableau D.4 : Classement finale des équipes participantes en fonction des déplacements relatifs obtenus pour les deux structures « A et B » selon l'erreur (*eRMS*) [150].

Position	Team ID	Team Name	eRMS
001	TEAM058	BOPE	311.641
002	TEAM016	ANATOLIA	357
003	TEAM028	IEM	418.463
004	TEAM068	Chibchacum	436.455
005	TEAM009	Boruken	448.959
006	TEAM092	Fatigue Group	473.432
007	TEAM097	NED	482.379
008	TEAM026	Arup	487.234
009	TEAM077	Arup AT+R Sydney	495.522
010	TEAM014	CEA/EMSI	515.91
011	TEAM027	PB-San Francisco	517.076
012	TEAM113	Tongji University - WuXiaohan	518.462
013	TEAM002	Tongji	523.281
014	TEAM060	ShiraiLab@NihonUniv.	524.732
015	TEAM015	VESTE	524.799
016	TEAM048	K-Power	524.904
017	TEAM119	WindDUT	527.907
018	TEAM081	PARKALE	530.669
019	TEAM103	University of Osijek, Faculty of Civil Engineering	534.074
020	TEAM089	2N	537.907

021	TEAM104	3SR Lab Grenoble	538,635
022	TEAM005	UUEES	547.83
023	TEAM075	LESE - FEUP	558.621
024	TEAM109	KTMJM	565.373
025	TEAM080	Degenkolb Engineers	572.133
026	TEAM038	TUCEB - SRRA	579.617
027	TEAM043	Ceredetec	581.576
028	TEAM074	PRINCIPIA	582.651
029	TEAM030	Yaron-Offir Engineers	585.843
030	TEAM057	Wiss, Janney, Elstner Associates	629.752
031	TEAM040	NJUT-LI	648.937
032	TEAM029	Ozer	662.747
033	TEAM039	EDF-SEPTEN	672.667
034	TEAM036	EUCENTRE - Structural Analysis	744.872
035	TEAM046	UAP	771.77
036	TEAM017	University of Houston	790.134
037	TEAM025	KTK	3367.55
038	TEAM033	St. Petersburg	16254.5

Suite Tableau D.4

## ANNEXE E : LISTE DES SYMBOLES ET DES ABREVIATIONS

- M : Moment de flexion
- $\psi$ : Rotation
- fc28 : La résistance à la compression standard du béton à 28j.
- fbc : La résistance à la compression standard du béton
- fy : La limite d'élasticité de l'acier
- fsu : La contrainte ultime de l'acier
- Ebi : Module d'élasticité instantané du béton
- Es : Module d'élasticité de l'acier
- yc : La densité du béton
- єь : Déformation ultime à la rupture en compression du béton à 28j
- $\mu_{\Delta}$  : Demande de ductilité
- $\Delta u$ : Le déplacement inélastique ultime
- $\Delta y$ : Le déplacement élastique limite
- $\theta_{tu}$ : Angle de torsion ultime
- $\theta_{to}$ : Angle de torsion optimal
- $\theta_i^p$ : Rotation plastique au niveau du nœud i de l'élément
- $\theta_{i}^{p}$ : Rotation plastique au niveau du nœud j de l'élément
- Re : Facteur de réduction
- Fel : La force latérale maximale élastique
- Fy : La résistance inélastique latérale limite
- PGA : Accélération maximale au sol (Peak Ground Acceleration)
- Ia : Intensité Arias
- PGV : Vitesse maximale au sol (Peak Ground Velocity)
- Td : La durée du séisme
- T_p : La période prédominante
- Tm: La période moyenne
- t5 95 : La durée significative
- Vs30 : Vitesse moyenne des ondes de cisaillement dans les 30 premiers mètres du sol
- Vbase : Effort tranchant à la base

Vu : Effort de cisaillement ultime

Vy : Effort de résistance au cisaillement limite élastique

W : Poids de la structure

Droof : Déplacement maximal au sommet

ID : déplacement inter-étage (drift)

Ac : Coefficient d'accélération du site (g)

ξ: Pourcentage d'amortissement critique

R : Coefficient de comportement de la structure

T1 et T2 : Limites inférieures et supérieures de l'intervalle des périodes définissant la branche de l'accélération spectrale constante

Q : Facteur de qualitéc

 $\eta$ : Facteur de correction d'amortissement

 $\xi$ : Pourcentage d'amortissement critique

Mw : Magnitude de moment

R* : Distances du site à la source

CV : Covariance (coefficient de variation)

 $\sigma_x$ : Ecart type

 $\mu x$ : La moyenne

 $\rho_{XY}$ : Coefficient de corrélation (CC)

 $PCC_{X_i, Y} = \hat{\rho}_{X_i, Y.X_{i}}$ : Coefficient de corrélation partiel (PCC)

 $\beta$ ,  $\alpha$ : Les indexes de fiabilités

 $\hat{X}_i$  et  $\hat{Y}$  : Les variables de régression

 $e_{X_i \cdot X_{i}}$ : Le résidu de la prédiction de  $X_i$  par  $X_{i}$ 

 $e_{Y,X_{i}}$ : Le résidu de la prédiction de Y par  $X_{i}$ 

 $\Phi(.)$ : Fonction de répartition de distribution normale standardisée

 $P_{f}$ : La probabilité de défaillance

NLTH : Analyse dynamique temporelle par accélérogramme

NSP : Analyse statique non linéaire Pushover

MC : Simulation de Monte Carlo
# REFERENCES

- 1. Dutta, S.C., "Effect of strength deterioration on inelastic seismic torsional behaviour of asymmetric RC buildings", Building and Environment, V.36, n°10, (2001), 1109-1118.
- Elnashai, A.S., Hurtado, J.A., Pineda, O., Kwon, O.S., Moran-Yanez, L., Huaco, G., Pluta, G. "The Pisco-Chincha Earthquake of August 15, 2007: Seismological, Geotechnical and Structural Assessments", Mid-America Earthquake (MAE) Center Report, 08-01, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA, (2008).
- Elnashai, A.S., Gencturk, B., Kwon, O.S., Al-Qadi, I.L., Hashash, Y., Roesler, J.R., Kim, S.J., Jeong, S.H., Dukes, J., Valdivia, A. "The Maule (Chile) Earthquake of February 27, 2010: Consequence Assessment and Case Studies", Mid-America Earthquake (MAE) Center Report, 10-04, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. (2010).
- 4. Ellingwood, B.R., "An Investigation of the Miyagi-ken-oki, Japan Earthquake of June 12, 1978", U.S. Department of Commerce/National Bureau of Standards, NBS Special Publication 592, (1980).
- Wyllie, L.A., Abrahamson N., Bolt, B., Castro, G., Durkin, M.E., Escalante, L., Gates, H.J., Luft, R., McCormick, D., Olson, R.S., Smith, P.D., Vallenas, J., "The Chile Earthquake of March 3, 1985", Earthquake Spectra, V.2, n°2, (1986), 293-371.
- 6. Rosenblueth, E., Meli, R., "The 1985 earthquake: causes and effects in Mexico City", Concrete International, V.8, n°5, (1986), 23-34.
- 7. Chandler, A.M., "Building damage in Mexico city earthquake". Nature, 320(6062), (1986), 497-501.
- 8. Sewell, C.D., "Inelastic response of torsionally unbalanced multistorey shearwall buildings designed using elastic static and dynamic analyses", BASc., University of British Columbia, Vancouver Canada, August (2000).
- 9. Bourahla, N., "Seismic Accidental Eccentricity: Origins, Effects and Evaluation", Conference: International Conference on innovations on structural engineering, At Hyderabad, India, Conference Paper. December 2015.
- 10. Stathopoulos, K.G., Anagnostopoulos, S.A., "Accidental design eccentricity: Is it important for the inelastic response of buildings to strong earthquakes?", Soil Dynamics and Earthquake Engineering, December, V.30, n°9, (2010), 782-797.
- 11. Bourahla, N., "Considération de la torsion dans les règlements parasismiques", Rapport de recherche, Département de Génie Civil, Université de Sâad Dahleb, (Novembre 1993), Algérie.
- De la Llera, J.C., Chopra, A.K., "Estimation of Accidental Torsion Effects for Seismic Design of Buildings", Journal of structural engineering, V. 121, n°1, (1995), 102-114. DOI: 10.1061/(ASCE)0733-9445(1995)121:1(102).

- Gokdemir, H., Ozbasaran, H., Dogan, M., Unluoglu, E., Albayrak, U., "Effects of torsional irregularity to structures during earthquakes", Engineering Failure Analysis, V.35, (2013), 713-717.
- Ghuse, S.R., Ghumde, M.K., "Study of torsional effect under seismic condition on building with irregularities", International Research Journal of Engineering and Technology (IRJET), V.3, n°12, (2016), 768-774.
- 15. Scholl, R.E., "Observations of the Performance of Buildings during the 1985 Mexico Earthquake, and Structural Design Implications", International Journal of Mining and Geological Engineering, V.7, (1989), 69-99.
- Varadharajan, S., "Study of Irregular RC Buildings under Seismic effect", Ph.D. thesis, National Institute of Technology KURUKSHETRA-136119, INDIA, (2014), DOIhttp://nitkkr.ac.in/nit_kuk/docs/SVRAJAN_phd_2015.pdf.
- Bertero, V.V., "An Illustrated Introduction to Earthquake Engineering Principles Simplicity, Symmetry, and Regularity", Web version by Vivian Isaradharm, National Information Service for Earthquake Engineering University of California, Berkeley, (1997). http://nisee.berkeley.edu/bertero/html/simplicity_symmetry_regularity.
- 18. Kassoul, A, "Pathologie des Bâtiments Endommages par les Séismes", polycopie de cours, (2015). http://www.univ-chlef.dz/fgca/Chapitre-2-Pathologie.pdf.
- 19. AFPS, "Rapport préliminaire de la mission AFPS : le séisme du 21 Mai en Algérie", Organisée avec le concours du Ministère de l'Ecologie et du Développement Durable (MEDD/DPPR/SDPRM), (2003).
- Davidovici V., "Rapport de mission séisme de Boumerdès 2003", Ministère de l'Habitat et de l'Urbanisme. Ministère de l'Aménagement du Territoire et de l'Environnement, Algérie, (2003).
- Anderson, R.W., "The San Salvador Earthquake of October 10, 1986 Review of Building Damage", Earthquake Spectra, V.3, n°3, (1987), 497-541.
- 22. Moon, D.S., "Integrated Seismic Assessment and Design of Plan-Irregular Structures", Ph.D. thesis, University of Illinois at Urbana-Champaign, (2012).
- 23. Elnashai, A.S., Di Sarno, L., "Introduction to Earthquake Engineering", Wiley, Chichester, United Kingdom, (2008).
- Fardis, M.N., "Seismic Design, Assessment & Retrofitting of Concrete Buildings: based on EN-Eurocode 8", Geotechnical, geological, and earthquake engineering, V.8, (2009). https://link.springer.com/book/10.1007%2F978-1-4020-9842-0.
- Paulay, T., "Seismic Design for Torsional Response of Ductile Buildings", Bulletin of the New Zealand National Society for Earthquake Engineering, V.29, n°3, (1996), 178-198.
- Paulay, T., "Seismic Torsional Effects on Ductile Structural Wall Systems", Journal of the Earthquake Engineering, V.1, n°4, (1997), 721-745. https://doi.org/10.1080/13632469708962385.
- Paulay, T., "A Review of Code Provisions for Torsional Seismic Effects in Buildings", Bulletin of the New Zealand National Society for Earthquake Engineering, 1997, V.30, n°3, (1997), 252-263.

- 28. Paulay, T., "Are Existing Seismic Torsion Provisions Achieving the Design Aims?", Earthquake Spectra, V.13, n°2, (1997), 259-280.
- 29. Paulay, T., "A Simple Seismic design strategy Based on Displacement and Ductility Compatibility", Earthquake Engineering and Engineering Seismology, V.1, n°1, (1999), 51-67.
- Goel, R.K., Chopra, A.K., "Inelastic seismic response of one-storey, asymmetric-plan systems: Effects of system parameters and yielding", Earthquake Engineering and Structural Dynamics, V.20, (1991a), 201-222.
- Goel, R.K., Chopra, A.K., "Effects of plan asymmetry in inelastic seismic response of one-storey systems", Journal of Structural Engineering, ASCE, V.117, (1991b), 1492-1513.
- 32. Chopra, A.K., Goel, R.K., "Evaluation of torsional provisions in seismic codes", Journal of Structural Engineering, ASCE, V.117, (1991), 3762-3782.
- De La Llera, J.C., Chopra, A.K., "Understanding the Inelastic Seismic Behaviour of Asymmetric-plan Buildings", Earthquake Engineering & Structural Dynamics, V.24, n°4, (1995), 549-572.
- Tso, W.K., Sadek, A.W., "Inelastic Seismic Response of Simple Eccentric Structures", Earthquake Engineering & Structural Dynamics, V.13, n°2, (1985), 255-269.
- 35. Bozorgnia, Y., Tso, W.K., "Inelastic Earthquake Response of Asymmetric Structures", Journal of Structural Engineering, V.112, n°2, (1986), 383-400.
- Sadek, A.W., Tso, W.K., "Strength Eccentricity Concept for Inelastic Analysis of Asymmetrical Structures", Engineering Structures, V.11, n°3, (1989), 189-194. https://doi.org/10.1016/0141-0296(89)90006-0
- 37. Tso, W.K., Ying, H., "Additional seismic inelastic deformation caused by structural asymmetry", Earthquake Engineering and Structural Dynamics, V.19, (1990), 243-258.
- Tso, W.K., Ying, H., "Lateral strength distribution specification to limit additional inelastic deformation of torsionally unbalanced structures", Engineering Structures, V.14, (1992), 263-277.
- 39. Wong, C.M., Tso, W.K., "Inelastic Seismic Response of Torsionally Unbalanced Systems Designed using Elastic Dynamic Analysis", Earthquake Engineering & Structural Dynamics, V.23, n°7, (1994), 777-798.
- 40. Chandler, A.M., Duan, X.N., "Evaluation of Factors Influencing the Inelastic Seismic Performance of Torsionally Asymmetric Buildings", Earthquake Engineering & Structural Dynamics, V.20, n°1, (1991), 87-95.
- Chandler, A.M., Hutchinson, G.L., Jiang W., "Inelastic Torsional Response of Buildings to the 1985 Mexican Earthquake: A Parametric Study", Soil Dynamics and Earthquake Engineering, V.10, n°8, (1991), 429-439.
- 42. Chandler, A.M., Hutchinson, G.L., "Effect of structural period and ground motion parameters on the earthquake response of asymmetric buildings", Engineering Structures, V.14, (1992), 354-360.

- 43. Duan X.N., Chandler A.M., "Inelastic seismic response of code-designed multistorey frame buildings with regular asymmetry", Earthquake Engineering and Structural Dynamics, V.22, n°5, (1993), 431-445.
- 44. Correnza, J.C., Hutchinson, G.L., Chandler, A.M., "Effect of Transverse Load-resisting Elements on Inelastic Earthquake Response of Eccentric-plan Buildings", Earthquake Engineering & Structural Dynamics, V.23, n°1, (1994), 75-89.
- 45. Chandler, A.M., Correnza, J.C., Hutchinson, G.L., "Influence of Accidental Eccentricity on Inelastic Seismic Torsional Effects in Buildings", Engineering Structures, V.17, n°3, (1995), 167-178.
- 46. Chandler, A.M., Duan, X.N., Rutenberg, A., "Seismic Torsional Response: Assumptions, Controversies and Research Progress", European Earthquake Engineering, V.1, (1996), 37-51.
- 47. Chandler, A.M., Duan, X.N., "Performance of Asymmetric Code-designed Buildings for Serviceability and Ultimate Limit States", Earthquake Engineering & Structural Dynamics, V.26, n°7, (1997), 717-735.
- Fajfar, P., Marusic, P., Perus. I., "Influence of Ground Motion Intensity on the Inelastic Torsional Response of Asymmetric Buildings", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, (2004).
- 49. Fajfar, P., Kilar, V., Marusic, D., Perus, I., "Torsional effects in the pushover-based seismic analysis of buildings", Journal of Earthquake Engineering, V.9, n°6, (2005), 831-854.
- Fajfar, F., "Structural analysis in earthquake engineering a breakthrough of simplified nonlinear methods", 12th European Conference on Earthquake Engineering, London UK, (2002), Paper 843.
- Peruš, I., Fajfar, P., "On the Inelastic Torsional Response of Single-Storey Structures under Bi-Axial Excitation", Earthquake Engineering & Structural Dynamics, V.34, n°8, (2005), 931-941.
- Marušić, D., Fajfar, P., "On the Inelastic Seismic Response of Asymmetric Buildings under Bi-axial Excitation", Earthquake Engineering & Structural Dynamics, V.34, n°8, (2005), 943-963.
- 53. Stathopoulos, K.G., Anagnostopoulos, S.A., "Inelastic Earthquake Response of Buildings subjected to Torsion", Proceedings of the 12th World Conference on Earthquake Engineering, Vancouver, Auckland, New Zealand, (2000).
- 54. Stathopoulos, K.G., Anagnostopoulos, S.A., "Inelastic Earthquake Response of Singlestory Asymmetric Buildings: An Assessment of Simplified Shear-beam Models", Earthquake Engineering & Structural Dynamics, V.32, n°12, (2003), 1813-1831.
- 55. Stathopoulos, K.G., Anagnostopoulos, S.A., "Earthquake Induced Inelastic Torsion in Asymmetric Multistory Buildings", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, (2004).
- 56. Stathopoulos, K.G., Anagnostopoulos, S.A., "Inelastic Torsion of Multistorey Buildings under Earthquake Excitations", Earthquake Engineering & Structural Dynamics, V.34, n°12, (2005), 1449-1465.

- 57. Anagnostopoulos, S.A., Alexopoulou, C., Stathopoulos, K.G., "An Answer to an Important Controversy and the Need for Caution when Using Simple Models to Predict Inelastic Earthquake Response of Buildings with Torsion", Earthquake Engineering & Structural Dynamics, V.39, n°5, (2010), 521-540.
- Rutenberg, A., Benbenishti, A., Pekau, O.A., "Nonlinear seismic behaviour of codedesigned eccentric systems", Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, Spain, (1992a), 5751-5756.
- 59. Rutenberg, A., Eisenberger, M., Sholet, G., "Inelastic seismic response of codedesigned single storey asymmetric structures", Engineering Structures, V.14, (1992b), 91-102.
- 60. Rutenberg, A., "Behaviour of Irregular and Complex Structures Asymmetric Structures–Progress since 1998", Proceedings of the 12th European Conference on Earthquake Engineering, London, England, (2002).
- De Stefano, M., Pintucchi, B., "A Review of Research on Seismic Behaviour of Irregular Building Structures since 2002", Bulletin of Earthquake Engineering, V.6, n°2, (2008), 285-308.
- Faella, G., Kilar, V., "Asymmetric Multistory R/C Frame Structures: Push-Over versus Nonlinear Dynamic Analysis", Proceedings of the 11th European Conference on Earthquake Engineering, Paris, France, (1998).
- 63. Lucchini, A., Monti, G., Kunnath, S., "Seismic behavior of single-story asymmetricplan buildings under uniaxial excitation", Earthquake Engineering & Structural Dynamics, V.38, n°9, (2009), 1053-1070.
- 64. Castillo, R., Carr, A. J., Restrepo, J. I., "The rotation of asymmetric plan structures", Proceedings of Conference of the New Zealand Society for Earthquake Engineering, 2001.
- 65. Peruš, I., Fajfar, P., "On inelastic seismic response of asymmetric single-storey structures under bi-axial excitation", In: Proceedings of the third European workshop on the seismic behaviour of irregular and complex structures, Florence, (2002).
- 66. Jarernprasert, S., Bazan, E., Bielak, J., "Inelastic torsional single-story systems", 14th World Conference on Earthquake Engineering, Beijing, China, (2008).
- 67. Dutta, S.C., Das, P.K., "Inelastic seismic response of code-designed reinforced concrete asymmetric buildings with strength degradation", Engineering Structures, Elsevier, V.24, n°10, (2002a), 1295-1314.
- 68. Dutta, S.C., Das, P.K., "Validity and applicability of two simple hysteresis models to assess progressive seismic damage in R/C asymmetric buildings", Journal of Sound and Vibration, Elsevier, V.257, n°4, (2002b), 753-777.
- 69. Tso, W.K., Myslimaj, B., "Effect of strength distribution on the inelastic torsional response of asymmetric structural systems", In: Proceedings of the 12th European conference on earthquake engineering, London, (2002).
- 70. De Stefano, M., Pintucchi, B., "A model for analyzing inelastic seismic response of plan-irregular building structures", In: Proceedings of the 15th ASCE engineering mechanics conference, New York, (2002).

- 71. Crisafulli, F., Reboredo, A., Torrisi G., "Consideration of Torsional Effects in the Displacement Control of Ductile Buildings", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, Paper N°1111, August (1-6), 2004.
- 72. Ciongradi, I., Budescu, M., "Evaluation of the Seismic Torsion Effects on structures", EOvidius University Annals of Constructions V.3, n°4, (2002), 65-72.
- 73. Tso, W.K., Myslimaj, B., "A yield displacement distribution-based approach for strength assignment to lateral force-resisting elements having strength dependent stiffness", Earthquake Engineering & Structural Dynamics, V.32, (2003), 2319-2351.
- Myslimaj, B., Tso, W.K., "A design-oriented approach to strength distribution in single story asymmetric systems with elements having strength-dependent stiffness", Earthquake Spectra, V.21, (2005), 197-212.
- 75. Aziminejad, A., Moghadam, A.S., "Performance of asymmetric single story buildings based on different configuration of center of mass, rigidity and resistance", In: Proceedings of the 4th European workshop on the seismic behaviour of irregular and complex structures, Thessaloniki, (2005).
- 76. Pettinga, D., Pampanin, S., Christopoulos, C., Priestley, M.J.N., "Effects of irregularities on the residual displacements of structures subjected to inelastic torsional response", In: Proceedings of the 4th European workshop on the seismic behaviour of irregular and complex structures, Thessaloniki, (2005).
- 77. Castillo, R., Paulay, T., Carr, A.G., "Design concepts for ductile single mass asymmetric systems", In: Proceedings of the third European workshop on the seismic behaviour of irregular and complex structures, Florence, (2002).
- 78. Paulay, T., "An estimation of displacement limits for ductile systems", Earthquake Engineering & Structural Dynamics, V.31, (2002), 583-599.
- 79. Heredia-Zavoni, E., Machicao-Barrionuevo, R., "Response to orthogonal components of ground motion and assessment of percentage combination rules", Earthquake Engineering & Structural Dynamics, V.33, (2004), 271-284.
- Ghobarah, A., Aziz, T.S., Mohammed, H.H., "Response of Mass Eccentric Torsionally Coupled Primary-secondary System", Proceedings of the 4th European Conference on the Seismic Behaviour of Irregular and Complex Structures, Thessaloniki, Greece, (2005).
- 81. Negro, P., Mola, E., Molina, J., Magonette, G., "Full scale bi-directional PSD testing of a torsionally imbalanced three storey non-seismic RC Frame", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, (2004).
- Jeong, S.H., Elnashai A.S., "Analytical Assessment of an Irregular RC Frame for Full-Scale 3D Pseudo-Dynamic Testing Part I: Analytical Model Verification", Journal of Earthquake Engineering, V.9, n°1, (2005a), 95-128.
- Jeong, S.H., Elnashai, A.S., "Analytical Assessment of an Irregular RC Frame for Fullscale 3D Pseudo-dynamic Testing Part II: Condition Assessment and Test Deployment", Journal of Earthquake Engineering, V.9, n°2, (2005b), 265-284.
- De la Colina, J., Acuña, Q., Hernández, A., Valdés, J., "Laboratory Tests of Steel Simple Torsionally Unbalanced Models", Earthquake Engineering & Structural Dynamics, V.36, n°7, (2007), 887-907.

- 85. Dusicka, P., "Numerical and Experimental Investigation of Seismic Torsional Response of Single Storey Ductile Structures", Master of Applied Science, The University of British Columbia, (2000).
- 86. Severn, R.T., Taylor, C.A., Bairrao, R., "Cable-Stayed Bridges, Irregular Bridges and Asymmetrical Structures", European Consortium of Earthquake Shaking Tables-Innovative Seismic Design Concepts for New and Existing Structures, CAFEELIECOEST2/ICONS Technical Report: n°8, (2001).
- 87. Castillo, R., "Seismic Design of Asymmetric Ductile Systems", Ph.D. thesis, University of Canterbury Christchurch, New Zealand, (2004).
- 88. Kyrkos, M.T., Anagnostopoulos, S.A., "Eccentric Steel Buildings Designed for Uniform Ductility Demands Under Earthquake Actions", COMPDYN 2013, 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece, (2013).
- Elnashai, A.S., Di Sarno, L., "Fundamentals of earthquake engineering", John Wiley & Sons, Ltd, (2008). http://onlinelibrary.wiley.com/book/10.1002/9780470024867. DOI: 10.1002/9780470024867.
- 90. Paz, M., "International Hand Book of Earthquake Engineering: codes, programs, and examples", Chapman & Hall, Inc, (1994).
- Escobar, J. A., "Seismic Torsion in Non-Linear Nominally Symmetric Structures due to Random Properties", 11th World Conference on Earthquake Engineering, Elsevier Science, Paper N°1403, (1996).
- Humar, J., Kumar, P., "A New look at The Torsion Design Provisions in Seismic Buildings Code", 12th World conference on Earthquake Engineering, 30 January - 4 February (2000), Auckland, New Zeland.
- 93. Newmark, N.M., Rosenblueth, E., "Fundamentals of earthquake engineering", Prentice Hall, Englewood Cliffs, NJ, USA, (1971).
- 94. Basu, D., Sudhir, K.J., "Seismic analysis of Asymmetric Buildings with Flexible Floor diaphragm", Journal of Structural Engineering, ASCE, V.130, n°8, (2004), 1169-1176.
- 95. Goel, R.K., Chopra, A.K., "Seismic Code Analysis of Buildings without Locating Centers of Rigidity", Journal of Structural Engineering, ASCE, V.119, n°10, (1993), 3039-3055.
- 96. Shakib, H., "Evaluation of dynamic eccentricity by considering soil-structure interaction: a proposal for seismic design codes", Soil Dynamics and Earthquake Engineering journal soil dynamic, V.24, (2004), 369-378.
- 97. CEN, "Eurocode 8–designs of structures for earthquake resistance", European standard EN 1998–1, European Committee for Standardization, Brussels, Belgium, (2004).
- 98. Ministère de l'habitat et de l'urbanisme, "Règles Parasismiques Algériennes, RPA99/version 2003", DTR-BC 2.48, Centre National de Recherche Appliquée en Génie Parasismique, (2004), Algérie.
- 99. ASCE, "Minimum Design Loads for Buildings and Other Structures", (ASCE/SEI Standard 7-05), American Society of Civil Engineers, Reston, VA, (2005), USA.

- 100. ICC, "International Building Code (IBC)", International Code Council, (2009), Washington, D.C., USA.
- 101. CEN, "Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings", Comité Européen de Normalisation, (2004), Brussels.
- 102. NRC, "National Building Code of Canada (NBCC)", National Research Council, (1995), Ottawa, Canada.
- 103. AIK, "Korean Building Code Structural (KBCS)", Architectural Institute of Korea (AIK), (2005), Seoul, Korea.
- 104. Aubry, D., Chouvet, D., Modaressi, A., Modaressi, H., "GEFDYN : Logiciel d'Analyse de Comportement Mécanique des Sols par Eléments Finis avec Prise en Compte du Couplage Sol-Eau-Air", Manuel scientifique, Ecole Centrale Paris, LMSS-Mat, 1986.
- 105. Aubry, D., Modaressi, A., "GEFDYN: Manuel scientifique", Ecole Centrale Paris, LMSS-Mat, 1996.
- 106. Giberson, M., "Two nonlinear beams with definitions of ductility", Journal of Structural Division, ASCE, V.95, n°2, (1969), 137-157.
- 107. Prakash, V., Powel, G., Campbell, S., "DRAIN 2D-X, Base program description and User Guide", (1993).
- 108. Maison, F., "PC-ANSR: A Computer program for Nonlinear Structural Analysis", (1992).
- 109. Saez Robert, E.P., "Dynamic Nonlinear Soil-Structure Interaction", Ph.D. Thèses, Ecole Centrale des arts et manufactures, Ecole Centrale Paris, 2009-ECAP0012, (2009).
- 110. Hughes, T., "The Finite Element Method, Linear Static and Dynamic Finite Element Analysis", Dover Publications, Mineola, New York, (2000).
- 111. Bathe, K., "Finite Element Procedures", Pretince-Hall, New Jersey, USA, (1996).
- 112. Lemaitre, J., Chaboche, J., "Mécanique des matériaux solides", Dunod, Paris, 2ème édition, (2001).
- 113. Chen, W., Mizuno, E., "Nonlinear analysis in soil mechanics", Elsevier, New York, (1990).
- 114. Bensalah, M.D., Modaressi, A., Bensaibi, M., Caballero, F. L., "Estimation of the torsion effect on buildings subjected to seismic load", Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011: Leuven, Belgium, (4–6 July 2011), MS15-515, 2751-2756. ISBN 978-90-760-1931-4. 512.
- 115. Bensalah, M.D., Bensaibi, M, Modaressi, A., "Assessment of the Torsion Effect in Asymmetric Buildings Under Seismic Load", 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, V.5, (24-28 September 2012), 3524–3532. ISBN: 978-1-63439-651-6.
- 116. Jeong, S. H., Elnashai, A. S., "Analytical Assessment of an Irregular RC Full Scale 3D Test Structure", Department of Civil and Environmental Engineering, Urbana, Illinois, Report, 04-03, March (2004).

- 117. DI Ludovico, M., "Comparative assessment of seismic rehabilitation techniques on the full scale spear structure", PH.D. Thesis, Department of Structures for Engineering and Architecture, University of Naples Federico II, Italy, (2007).
- 118. Mougin, J.P., "Béton armé BAEL 91 modifié 99 et DTU associé", 2ème éditions, Eyrolles, (2000), France.
- 119. CBA93, "Règles de conception et de calcul des structures en béton armée", DTR-BC 2.41, Ministère de l'habitat document technique réglementaire, (1993), Algérie.
- Bensalah, M. D., Bensaibi, M., Modaressi, A., "Assessment of the Torsion Effect in Asymmetric Buildings under Seismic Loading", Applied Mechanics and Materials, V. 256-259, (2013), 2222-2228.
- 121. Bensaibi, M., Bensalah, M.D., Modaressi, A., "Uncertainties in the estimation of the torsion effect in buildings subjected to seismic loading", Fifth Asian-Pacific Symposium on Structural Reliability and its Applications, Sustainable Civil Infrastructures, (5APSSRA), 23-25 May 2012, Singapore.
- 122. Miranda, E., Bertero, V.V., "Evaluation of strength reduction factors for earthquake –resistant design", Earthquake Spectra, V.10, n°2, (1994), 357-379.
- 123. Iervolino, I., Cornell, C.A., "Record selection for nonlinear seismic analysis of structures", Earthquake Spectra. Vol. 21, n°3, (2005), 685-713.
- 124. Bradley, B., Dhakal, R., MacRae, G., Cubrinovski, M., "Prediction of spatially distributed seismic demands in specific structures: Ground motion and structural response", Earthquake Engineering and Structural Dynamics, V.39, n°5, (2010), 501-520.
- Sorrentino, L., Kunnath, S., Monti, G., Scalora, G., "Seismically induced one-sided rocking response of unreinforced masonry façades", Engineering Structures, V.30, n°8, (2008), 2140-2153.
- 126. PEER Strong Motion Database, http://peer.berkeley.edu/smcat/search.html. Accès en (2009).
- 127. Broderick, B.M., Elnashai, A.S., "Seismic resistance of composite beam-columns in multi-storey structures, Part 2: Analytical model and discussion of results", Journal of Construction Steel Research, V.30, n°3, (1994), 231-258.
- 128. Kappos, A.J., "A comparative assessment of R/C structures designed to the 1995 Eurocode 8 and the 1985 CEB seismic code", The Structural Design of Tall Buildings, V.6, n°1, (1997), 59-83.
- 129. SEAOC, "Performance based seismic engineering of buildings", Vision 2000 Committee, Structural Engineers Association of California, Sacramento, (1995), California.
- Ekstrm, P., Broed, R., "Sensitivity Analysis Methods and a Biosphere Test Case Implemented in EIKOS", Working Report 2006-31, Posiva OY. FI-27160 Olkiluoto, Finland, (2006). http://www.posiva.fi/files/240/WR2006-31web.pdf.
- 131. Iooss, B., Lemaître, P., "A review on global sensitivity analysis methods", Uncertainty Management in Simulation-Optimization of Complex Systems, V.59, (2015), Springer, 101-122. https://hal.archives-ouvertes.fr/hal-00975701/document.

- 132. Saltelli, A., Tarantola, S., Chan, K., "A quantitative, model independent method for global sensitivity analysis of model output", Technometrics, V.41, n°1, (1999), 39-56.
- 133. Helton, J.C., "Uncertainty and Sensitivity Analysis for Models of Complex Systems", Computational Methods in Transport: Verification and Validation, V.62, Springer, (2008), 207-228.
- 134. Lopez-Caballero, F., Modaressi-Farahmand-Razavi, A., "Assessment of variability and uncertainties effects on the seismic response of a liquefiable soil profile", Soil Dynamics and Earthquake Engineering, V.30, n°7, (2010), 600-613.
- 135. Helton, J.C., Johnson, J.D., Sallaberry, C.J., Storlie, C.B., "Survey of samplingbased methods for uncertainty and sensitivity analysis", Reliability Engineering and System Safety, V.91, n°(10-11), (2006), 1175-1209. DOI: 10.1016/j.ress.2005.11.017.
- Fellin, W., King, J., Kirsch, A., Oberguggenberger, M., "Uncertainty modelling and sensitivity analysis of tunnel face stability, Structural Safety", V.32, n°6, (2010), 402-410.
- 137. Bensalah, M.D., Bensaibi, M., Modaressi, A., "Uncertainties in seismic response of a torsional irregular structure", European Journal of Environmental and Civil Engineering, (2017), Taylor & Francis, DOI: 10.1080/19648189.2017.1304271.
- Akkar, S., Sucuo`glu, H., Yakut, A., "Displacement-based fragility functions for low- and mid-rise ordinary concrete buildings", Earthquake Spectra, V.21, n°4, (2005), 901-927.
- 139. Kinali, K., Ellingwood, B.R., "Seismic fragility assessment of steel frames for consequence based engineering: A case study for Memphis TN", Engineering Structures, V.29, (2007), 1115-1127.
- 140. Hamburger, R.O., Foutch, D.A., Cornell, C.A., "Translating Research to Practice: FEMA/SAC Performance-based Design Procedures", Earthquake Spectra, V.19, n°2, (2003), 255-267.
- 141. Shinozuka M., Feng, Q., Lee, J., Naganuma T., "Statistical analysis of fragility curves", Journal of Engineering Mechanics, ASCE, V.126, n°12, (2000), 1224-1231.
- 142. Shinozuka, M., "Statistical analysis of bridge fragility curves", in: Proceedings of the US-Italy workshop on protective systems for bridges, (1998), Italy.
- 143. Zentner I., Nadjarian A., Humbert N., Viallet E., "Numerical calculation of fragility curves for probabilistic seismic risk assessment", in: Proceedings of WCEE, 14ème World conference of earthquake engineering, Beijing, (2008), China.
- 144. Penna, A., Cattari, S., Galasco, A., Lagomarsino, S., "Seismic assessment of masonry structures by non-linear macro-element analysis", in IV International Seminar on Structural Analysis of Historical Construction-Possibilities of Numerical and Experimental Techniques, Padova, Italy, V.2, (2004), 1157-1164.
- 145. Boukri, M., Farsi, M.N., Mébarki, A., Belazougui, M., "Development of an integrated approach for Algerian building seismic damage assessment", Structural Engineering and Mechanics, V.47, n°4, (2013), 471-493. DOI: http://dx.doi.org/10.12989/sem.2013.47.4.471.

- 146. Boukri, M., Farsi, M.N., Mébarki, A., Belazougui, M., Amellal, O., Mezazigh, B., Guessoum, N., Bourenane, H., Benhamouche, A., "Seismic risk and damage prediction: case of the buildings in Constantine city (Algeria)", Bulletin of Earthquake Engineering, Springer, V.12, n°6, (2014), 2683-2704. DOI: 10.1007/s10518-014-9594-0.
- 147. 15WCEE Blind Test Challenge, Design report, 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, (24-28 September 2012).
- 148. 15WCEE Blind Test Challenge, Preliminary Test report, 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, (24-28 September 2012).
- 149. 15WCEE Blind Test Challenge, Material Data and Construction report, 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, (24-28 September 2012).
- 150. 15WCEE Blind Test Challenge, Report, 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, (26 September 2012).
- 151. Caractéristique de la table vibrante LNEC 3D. http://www.lnec.pt/organization/de/nesde/ptriaxialcaracteristicas.
- 152. Enregistrement http://smo.kenken.go.jp/smdb/drawwave/201103111446SND/B2F.
- 153. Arias, A., "A mesure of earthquake intensity", In Seismic Design for Nuclear Power Plants, (1970), 438-483. R.J. Hansen (Ed.), MIT Press, Cambridge, Massachusetts.
- 154. Rathje, E.M., Abrahamson, N.A., Bray, J.D., "Simplified frequency content estimates of earthquake ground motions", Journal of Geotechnical and Geoenvironmental Engineering, V.124, n°2, (1998), 150-159.

Réel.

## **REFERENCES SCIENTIFIQUES DU DOCTORANT EN RELATION AVEC LA THESE**

#### Publications dans des revues scientifiques :

### Base de données Thomson and Reuters :

<u>Bensalah, M.D.</u>, Bensaibi, M., Modaressi, A., (2017), "Uncertainties in seismic response of a torsional irregular structure", European Journal of Environmental and Civil Engineering, Taylor & Francis, DOI: 10.1080/19648189.2017.1304271.

## ✤ <u>Base de Données Scopus</u>:

Bensalah, M. D., Bensaibi, M., Modaressi, A., "Assessment of the Torsion Effect in Asymmetric Buildings under Seismic Loading", Applied Mechanics and Materials, V. 256-259, (2013), 2222-2228.

#### Revue nationales & internationales :

Bensaibi M., <u>Bensalah M.D.</u>, Badaoui M., (2006), "Comportement des bâtiments asymétriques sous chargements sismiques", Annales du bâtiment et des travaux publics, (Décembre 2006), France.

<u>Bensalah M.D.</u>, Bensaibi M., (2010), "Estimation de l'effet de la torsion dans les bâtiments soumis a l'action sismique", Algérie Equipement, n°47, 2-11, Mai 2010.

#### Publications dans des conférences internationales :

<u>Bensalah M.D.</u>, Bensaibi M., (2009), "Torsion effect on buildings subjected to seismic load", ECCOMAS Thematic conference on computational Methods in structural Dynamics and Earthquake Engineering, (22-24 Juin 2009), Rohdes, Greece.

<u>Bensalah, M.D.</u>, Modaressi, A., Bensaibi, M., Caballero, F. L., (2011), "Estimation of the torsion effect on buildings subjected to seismic load", Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011: Leuven, Belgium, (4–6 July 2011), MS15-515, 2751-2756. ISBN 978-90-760-1931-4. 512.

Bensalah, M.D., Bensaibi, M, Modaressi, A., (2012), "Assessment of the Torsion Effect in Asymmetric Buildings Under Seismic Load", 15th World Conference on Earthquake Engineering (15WCEE), V.5, Lisbon, Portugal, (24-28 September 2012), 3524-3532. ISBN: 978-1-63439-651-6.

Bensaibi, M., <u>Bensalah, M.D.</u>, Modaressi, A., (2012), "Uncertainties in the estimation of the torsion effect in buildings subjected to seismic loading". Fifth Asian-Pacific Symposium on Structural Reliability and its Applications, Sustainable Civil Infrastructures, (5APSSRA), 23-25 May 2012, Singapore.