RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> UNIVERSITÉ de BLIDA 1 Faculté de Technologie Département de Génie des Procédés

Mémoire

En vue de l'obtention du diplôme de

MASTER EN GENIE DES PROCEDES

Spécialité : Génie Chimique.

Simulation et Analyse Exergétique de la Section de Stabilisation de la Raffinerie d'Alger

Etudié par

Bounila Maroua et Yahiaoui Aya

Encadré par

Pr D.Touil

Année universitaire 2018/2019

REMERCIEMENTS

Avant tout, on souhaite adresser quelques lignes pour remercier d'abord notre Dieu tout puissant de nous avoir accordé la Force, le courage et la patience pour dépasser toutes les difficultés rencontrées pendant notre travail.

Nous tenons à exprimer nos remerciements à Monsieur « Touil Djamel » et d'avoir accepté de nous encadrer et diriger ce mémoire, et de nous avoir initié et accompagne tout au long de notre travail et pour la confiance qui nous a accordé tout au long de la préparation du mémoire.

Nous remercions très chaleureusement les membres du jury pour l'honneur qu'ils nous ont fait en acceptant d'examiner notre travail.

Nous tenons aussi à remercier les personnels de la raffinerie d'Alger et spécialement « Mr Hamdoun, Mr chikhi, Mr Hadjebar, Mme Ibtissem, Mme bessma et Mme Sara» pour leur accueil et leur aide durant le stage que nous avons effectué.

Nous voulons adresser du fond du cœur nos plus fervents remerciements à nos parents, car nul autres qu'eux se sont plus sacrifiés pour notre bien et à l'accomplissement de nos projets. Ils ont fait de nous ce que nous sommes aujourd'hui.

Enfin, tous nos remerciements à toutes les personnes qui ont contribué de prés ou de loin à l'aboutissement de ce modeste travail. Nous leurs sommes très reconnaissantes.

DEDICACE

Grace à ALLAH qui m'a éclairé le chemin vers cette réussite

Je dédie ce modeste travail à :

Ma Mère, qui m'a donné la vie, la tendresse et le courage pour réussir. Tout ce que je peux t'offrir ne pourra exprimer l'amour et la reconnaissance que je te porte.

A mon Père, L'épaule solide, l'œil attentif compréhensif et la personne la plus digne de mon estime et de mon respect.

Aucune dédicace ne saurait exprimer mes sentiments, que dieu vous préserve et vous procure santé et longue vie.

A mon très cher frère Aymen

A ma très chère sœur Melissa

A toute ma famille

A mon binôme Aya

A toutes mes chères amies et spécialement Chaima et Souhila

A toutes les personnes proches à mon cœur et spécialement B.Mohamed

A tous ceux qui me connaissent de prêt et de loin.

A tous ceux qui m'ont aidé et soutenu à la réalisation de ce mémoire.

Maroua.

DEDICACE

Grace à ALLAH qui m'a éclairé le chemin vers cette réussite

Je dédie ce modeste travail à :

Ma Mère, qui m'a donné la vie, la tendresse et le courage pour réussir. Tout ce que je peux t'offrir ne pourra exprimer l'amour et la reconnaissance que je te porte.

A mon Père, L'épaule solide, l'œil attentif compréhensif et la personne la plus digne de mon estime et de mon respect.

Aucune dédicace ne saurait exprimer mes sentiments, vos prières et vos bénédictions m'ont été d'un grand secours pour mener à bien mes études, que dieu vous préserve et vous procure santé et longue vie.

A ma petite chère sœur Alaâ

A toute ma famille

A mon binôme Maroua

A toutes mes chères amies

A toutes les personnes proches à mon cœur

A tous ceux qui me connaissent de prêt et de loin.

A tous ceux qui m'ont aidé et soutenu à la réalisation de ce mémoire.

Aya.

ملخص

يتكون هذا العمل من محاكاة قسم الاستقرار في مصفاة الجزائر بعد إعادة التأهيل بواسطة برنامج (هايسيس). يتم تطبيق منهجية تحليل عمليات الطاقة القابلة للاستعمال على هذا القسم في ظل شروط التصميم. هذه الأخيرة عرّفت عمود الفصل(C001) بالعملية الأكثر إهدارًا للطاقة ، ومقر مختلف أشكال التفاعلات الغير عكوسه. قمنا بدراسة تأثير شروط التصميم على الطاقة القابلة للاستعمال المهدرة خلال هذه العملية. تُبيِّن النتائج انَّ درجة حرارة الحمولة المُزوّدة لعمود الفصل، وبصورة اقل قوة الضغط ذاتا تأثير على الطاقة القابلة للاستعمال الإجمالية المُهْرة.

الكلمات المفتاحية : الطاقة القابلة للاستعمال، الطاقة، تحليل الطاقة القابلة للاستعمال، عمود الفصل، مصفاة، محاكاة، هايسيس

RESUME

Ce travail consiste à simuler la section de stabilisation de la raffinerie d'Alger après réhabilitation par le logiciel HYSYS. L'approche de l'analyse exergétique des procédés est appliquée à cette section sous les conditions opératoires du Design. Cette analyse a identifié la colonne de séparation C001 comme le procédé le plus dégradant d'énergie, siège de différentes formes d'irréversibilités. L'influence des conditions opératoires sur la perte exergétique de ce procédé est étudiée. Les résultats montrent que la température de la charge d'alimentation et d'un degré moindre sa pression ont un effet sur la perte exergétique globale du système.

<u>Mots clés</u> : Exergie, Energie, Analyse Exergétique, Colonne de stabilisation, Raffinerie, Simulation, HYSYS

ABSTRACT

This work consists of simulating the stabilization section of the Algiers refinery after rehabilitation by the HYSYS software. The Exergetic process analysis approach is applied to this section under the operating conditions of the Design. This analysis identified the C001 separation column as the most energy-degrading process, the site of different forms of irreversibility. The influence of operating conditions on the Exergetic loss of this process is studied. The results show that the temperature of the feedstock and in a lower degree the pressure have an effect on the overall system exergy loss.

Keywords: Exergy, Energy, Exergy Analysis, Stabilisation column, refinery, Simulation,

HYSYS.

TABLE DES MATIERES

RESUME
REMERCIEMENT
LISTE DES ABREVIATIONS
LISTE DES FIGURES
LISTE DES TABLEAUX
LISTE DES SYMBOLES
INTRODUCTION GENERALE1

CHAPITRE I : CONSOMMATION INDUSTRIELLE DU GAZ NATURELEN ALGERIE

1.	Nature et Formes de l'Energie 1 Energie thermique	.3
	1.7 Energie électrique	د د
	1.3 Conversion de l'Energie	3
2.	Généralités sur le gaz naturel	4
	2.1 Origines et caractéristiques physiques du gaz naturel	4
	2.1.1 Caractéristiques physiques du gaz naturel	4
	2.2 Domaine d'utilisation du gaz naturel	5
3.	2.3 Place du gaz naturel dans le bilan énergétique mondial Le gaz naturel en Algérie	5 6
	3.1 Réserves gazières en Algérie	.6
	3.2 Évolution de la consommation du gaz naturel en Algérie	.6
	3.3 Défis et perspectives du gaz naturel en Algérie	.7
4.	Sécurité et transition énergétiques	8
	4.1 Besoins en économie d'énergie	8
	4.2 Efficacité énergétique en vue d'une économie durable et environnementale	.8
	CHAPITRE II : SIMULATION DU PROCEDE DE LA SECTION DE STABILISTATION DE LA RAFFINERIE D'ALGER : ETUDE DE CAS	
1.	Présentation du MS Block 1.1 Description du MS Block	.9 10
	1.1.1 Unité de prétraitement et de fractionnement du naphta	10
	1.1.2 Unité isomérisation du naphta léger	10

1.1.3 Unité reformage catalytique du naphta lourd	10
2. Description de la section de récupération GPL et stabilisateur	11
3. Modélisation de la section de stabilisation	13
3.1 Introduction au logiciel HYSYS	13
3.2 Modèles de représentation des Procédés	13
3.2.1 Mélangeurs	13
3.2.2 Échangeurs de chaleur (Tube Calandre)	14
3.2.3 Aéroréfrigérant	14
3.2.4 Condenseurs	14
3.2.5 Colonne de séparation	15
3.2.6 Pompes	15
3.3 Modèles thermodynamiques utilisés	16
3.3.1 Le choix du modèle thermodynamique	16
3.3.2 Equation d'état de SOAVE-REDLICH-KWONG (SRK)	17
4. Données et résultats de calcul	17
4.1 Données opératoires	17
4.2 Résultats de calcul	20
4.2.1 Calcul de température, pression et débit	20
4.2.2 Calcul de la composition de vapeur de tête et du fond de C001	23

CHAPITRE III : OPTIMISATION ENERGETIQUE DES PROCEDES PAR L'APPROCHE EXERGETIQUE

1. Conservation de l'énergie dans les systèmes ouverts 1.1 Système ouvert	
1.2 Bilan énergétique d'un système ouvert en régime permanent	
1.3 Insuffisance du bilan énergétique	27
2 Bilan entropique d'un système ouvert	27
2.1 Entropie d'un système fermé	
2.2 Rendement d'une machine motrice à deux sources de chaleur	
2.3 Production d'entropie dans un système ouvert	
2.4 Réversibilité et Irréversibilité	
3. Analyse exergétique des systèmes ouverts en régime permanent	31

5. Calcul de la température T _F de la source de chaleur Q	
4. Calcul des grandeurs thermodynamiques	
3.3.2 Bilan d'exergie	34
3.3.1 Notion d'exergie	
3.3 Bilan exergétique du système ouvert	
3.2 Expression du travail dégradé	31
3.1 Insuffisance du bilan entropique	31

CHAPITRE IV : RESULTATS ET INTERPRETATION

1. Bilans exergétique des installations	39
1.1 Hypothèses de calcul	39
1.2 Méthodologie de calcul du bilan exergétique	39
1.3 Résultats d'analyse exergétique	41
1.3.1 Le choix des sections	41
1.3.2 Calcul des flux exergétiques.	42
1.3.3 Etablissement des bilans exergétiques des différentes sections	43
2. Simulation de la perte exergétique de la colonne de séparation C001	47
2.1 Domaine de variation des paramètres opératoires	48
2.2 Sensibilité de la perte exergétique aux conditions opératoires	48
2.2.1 Influence de taux de reflux de la colonne de séparation C001	48
2.2.2 Influence de la température d'alimentation de la colonne de séparation	49
2.2.3 Influence de la pression d'alimentation de la colonne de séparation C001	49
2.2.4 Influence de l'énergie calorifique Q _{FG} (kW)	50
2.2.5 Influence du facteur d'air λ	51
2.2.6 Influence de la température d'air de combustion	51
2.2.7 Influence de la température de référence T ₀ (°C)	51

CONCLUSION GENERALE

REFERENCES BIBLIOGRAPHIQUES

LISTE DES ANNEXES.

LISTE DES ABREVIATIONS

GPL	Gaz du Pétrole Liquéfié
PCI	Pouvoir Calorifique Inférieure
PCS	Pouvoir Calorifique Supérieure
AIE	Agence International de L'énergie
Mtoe	Million Tonnes of Oil Equivalent
GNL	Gaz Naturel Liquéfié
ММ Тер	Méga Million de Tonnes Equivalent Pétrole
MW	Mégawatt
MS Block	Motor Spirit Bloc
CCR	Continuous Catalytic Reforming
DCS	Distributed Control System
NHT	Naphtha Hydrotreating Unit
RON	Research Octane Number
MON	Motor Octane Number
ISOM	Isomérisation
GP	Gaz Plant
PR	Peng Robinson
SRK	Soave Ridlich Kwong
VLE	Vapor–Liquid Equilibrium
PFD	Process Flow Diagram

LISTE DES FIGURES

Figure	Titre	Page
Figure 1.1	Sources énergétique scénario centrale AIE (2000-2040)	5
Figure 1.2	Répartition des réserves gazières en Algérie	6
Figure 1.3	Consommation nationale du gaz naturel (2015-2050)	7
Figure 2.1	Configuration de la raffinerie d'Alger après réhabilitation	9
Figure 2.2	Schéma PFD de la section de stabilisation	12
Figure 2.3	Bilan de matière d'un mélangeur	13
Figure 2.4	Configuration type rebouilleur-absorbeur utilisé	15
Figure 2.5	Schéma simplifié de représentation de la section de stabilisation.	18
Figure 2.6	Configuration de la section de stabilisation simulée par HYSYS	18
Figure 2.7	Comparaison entre les températures design et simulé	20
Figure 2.8	Comparaison entre les pressions design et simulé	21
Figure 2.9	Comparaison entre les débits design et simulé	22
Figure 2.10	Comparaison entre la composition du vapeur de tête de C001 design et simulé	24
Figure 2.11	Comparaison entre la composition du fond de C001 design et simulé.	25
Figure 3.1	Bilan énergétique d'un système ouvert	26
Figure 3.2	Machine motrice à deux sources de chaleur	28
Figure 3.3	Bilan entropique du système ouvert	30
Figure 3.4	Travail maximal d'un processus physique réversible	32
Figure 3.5	Réaction chimique réversible à (T0, P0)	33
Figure 3.6	Bilan exergétique du système ouvert	34
Figure 3.7	Four de rebouillage de la colonne de séparation C001	38
Figure 4.1	Organigramme de calcul par Matlab	40

Figure 4.2	Représentation des sections du procédé de la section de stabilisation pour le calcul du bilan exergétique	41
Figure 4.3	Bilan exergétique de la section 1	43
Figure 4.4	Bilan exergétique de la section 2	43
Figure 4.5	Bilan exergétique de la section 3	44
Figure 4.6	Bilan exergétique de la section 4	44
Figure 4.7	Bilan exergétique de la section 5	45
Figure 4.8	Bilan exergétique de la section 6	45
Figure 4.9	Répartition de la Perte exergétique par section	46
Figure 4.10	Répartition de la forme de perte exergétique	47
Figure 4.11	Simulation de la colonne de séparation C001	47
Figure 4.12	Variation de la perte exergétique en fonction du taux de reflux	48
Figure 4.13	Effet de la température d'alimentation sur la perte exergétique	49
Figure 4.14	Effet de la pression d'alimentation sur la perte exergétique	50
Figure 4.15	Effet de l'énergie calorifique Q _{FG} sur la perte exergétique	50
Figure 4.16	Effet du facteur d'air λ sur la perte exergétique.	51
Figure 4.17	Effet de la température d'air de combustion sur la perte exergétique	52
Figure 4.18	Effet de la température de référence T_0 (°C) sur la perte exergétique	52

LISTE DES TABLEAUX

Tableau	Titre	Page
Tableau 1.1	Propriétés physiques du gaz naturel	4
Tableau 2.1	Le domaine d'application de PR et SRK	16
Tableau 2.2	Nomenclature des constituants	17
Tableau 2.3	Composition de la charge d'alimentation	19
Tableau 2.4	Flux énergétique des équipements	19
Tableau 2.5	La Nomenclature des équipements	19
Tableau 2.6	Comparaison entre les températures design et simulé	20
Tableau 2.7	Comparaison entre les pressions design et simulé	21
Tableau 2.8	Comparaison entre les débits design et simulé	22
Tableau 2.9	Comparaison entre la composition du vapeur de tête de C001 design et simulé	23
Tableau 2.10	Comparaison entre la composition du fond de C001 design et simulé	24
Tableau 4.1	Valeurs des flux d'exergie physique et chimique molaires en (kJ/mol)	42
Tableau 4.2	Perte exergétique de la section 1	43
Tableau 4.3	Perte exergétique de la section 2	43
Tableau 4.4	Perte exergétique de la section 3	44
Tableau 4.5	Perte exergétique de la section 4	44
Tableau 4.6	Perte exergétique de la section 5	45
Tableau 4.7	Perte exergétique de la section 6	45
Tableau 4.8	Résultats du bilan exergétique des différentes sections du procédé	46
Tableau 4.9	Domaine de variation des paramètres opératoires	48

LISTE DES SYMBOLES

Symbole	Désignation	Unité
А	Surface d'échange thermique moyenne	m²
а	Une constante qui tient compte de l'attraction entre molécules	/
b	Une constante qui corrige les erreurs de volume.	/
Ср	La chaleur spécifique moyenne	J/mol.K
DT	Différence moyenne logarithmique de température	°C
$e_{x_{Lph}}$	Exergie liquide physique	kJ/mol
$e_{x_{L_{chim}}}$	Exergie liquide chimique	kJ/mol
$e_{xG_{ph}}$	Exergie gaz physique	kJ/mol
$e_{x_{G_{chim}}}$	Exergie gaz chimique	kJ/mol
$e_{x_{totale}}$	Exergie totale	kJ/mol
e ⁰ _{x_{ch,i}}	Exergie spécifique standard des différents constituants du liquide et du gaz	kJ/mol
E	La puissance	kW
Ex _c	Exergie cinétique	kJ/mol
Ex _P	Exergie potentielle	kJ/mol
Ex _{ph}	Exergie physique	kJ/mol
Ex chim	Exergie chimique	kJ/mol
Ex sortante	Exergie sortante	kJ/mol
Ex entrante	Exergie entrante	kJ/mol
F	Flux	kmol/s
F _t	Facteur de correction	/
g	La gravitation	m/s ²
G	Fonction de Gibbs	kJ/mol
h	La hauteur	m
Н	Enthalpie	kW
m	Coefficient	/
• m	Débit massique	kg/h
Mi	Masse molaire du constituant i	kg/mol
m _e	Flux de matière à l'entrée du système portant l'énergie	mol/s
	spécifique e _e	
m _s	Flux de matière à la sortie du système portant l'énergie	mol/s

	spécifique e _s	
η	Efficacité	%
$\eta_{\scriptscriptstyle M}$	Rendement d'une machine motrice	%
$\eta_{\scriptscriptstyle MR}$	Rendement de Carnot	%
η_{ex}	Efficacité exergétique	%
Р	Pression	bar
P _c	Pression critique du corps pur	atm
Q	Flux thermique	W
Q _k	Energie thermique reçue par le système à la température T_k	W
Qo	Perte totale d'énergie thermique vers l'environnement à la température T ₀	W
R	Constante des gaz parfaits	J/K.mol
S	L'entropie	kJ/kmol.K
Т	Température	°C
T ₀	Température de référence	°C
T _r	Température réduite	K
T _c	Température critique du corps pur	K
U	Coefficient de transfert de chaleur global	W/m²°C
V	Volume molaire	m ^{3/} mol
v ₀	Vitesse moyenne du fluide par rapport à la surface de la terre	m/s
W_ℓ	Energie non thermique (mécanique, électrique,) Reçue par le système	J
W _{idéale}	Le travail idéal	J
w	La puissance mécanique ou autre échangé.	kW
W _r	Travail réversible	J
W _p	Travail dégradé ou perdu	J
W _{max}	Travail maximal	J
ω	Facteur acentrique	/
X	La teneur du liquide	/
X _i	Fraction molaire	/
Y	La teneur du gaz	/
Z	Composition	/
Z ₀	Altitude du fluide au-dessus du niveau de la mer	m
$ ho_1$	Densité de liquide	kg/m ³

INTRODUCTION GENERALE

L'industrie pétrolière et gazière est un grand secteur consommateur d'énergie et une source fortement émettrice de gaz à effet de serre (CO_2 , NOx et les imbrûlés), provenant des besoins en énergie calorifique pour le fonctionnement des fours, rebouilleurs, chaudières et de la production d'électricité consommée **[1]**.

La conférence sur le climat de Kyoto en 1997 a mis en exergue le réchauffement du climat dû à l'effet de serre. La volonté affirmée de réduire les émissions de gaz à effet de serre dans ce secteur, doit porter sur la maîtrise de l'énergie par des actions à entreprendre en faveur de l'accroissement de l'efficacité énergétique **[2]**.

L'efficacité énergétique, évoquée jusque-là, ne tient pas compte de la dégradation de l'énergie qu'introduit systématiquement toute transformation, du fait de son irréversibilité, conformément au deuxième principe de la thermodynamique. L'analyse thermodynamique des procédés, par l'approche exergétique, est une démarche qui se généralise actuellement. Elle est essentielle en vue de l'optimisation énergétique des procédés. Elle se définit comme étant l'utilisation rationnelle et judicieuse des réserves énergétiques, dans une perspective de développement durable qui répond aux besoins du présent sans compromettre la capacité des générations futures **[3].**

L'objectif de la première partie de ce travail est de modéliser et simuler sous les conditions opératoires du Design, au moyen du logiciel HYSYS, la section de stabilisation de la raffinerie d'Alger, rénovée récemment dans le cadre du nouveau programme de réhabilitation et d'adaptation lancé par Sonatrach. Ensuite, l'analyse exergétique est appliquée à cette section dans le but d'identifier la partie du procédé pour laquelle la perte exergétique est la plus importante.

Pour comprendre les mécanismes et les causes qui président à son imperfection thermodynamique, des tests de simulation de la sensibilité de sa perte exergétique pour différentes conditions opératoires sont dégagées.

Pour ce faire, la méthodologie de travail proposée consiste en :

 Maitrise du procédé de fonctionnement de la section de stabilisation réalisée à l'issue de notre stage dans la raffinerie d'Alger

- Modélisation et simulation de ce procédé sous les données opératoires du Design par le logiciel HYSYS
- Analyse exergétique de la section de stabilisation de la raffinerie d'Alger
- Tests de simulation de sensibilité de la perte exergétique aux paramètres opératoires.

Le plan de ce mémoire est le suivant :

- Le premier chapitre est consacré à une étude bibliographique sur la consommation de gaz naturel en Algérie.
- Le deuxième chapitre est consacré pour la simulation de la section de stabilisation par le logiciel HYSYS.
- Le troisième chapitre comporte l'optimisation énergétique des procèdes par l'approche exergétique.
- Le dernier chapitre comporte les résultats est interprétation de l'analyse exergétique.
- Enfin, on termine avec une conclusion .

CHAPITRE I

CONSOMMATION DU GAZ NATUREL EN ALGERIE

1. Nature et Formes de l'Energie

1.1 Energie thermique

Les phénomènes de combustion ont permis à l'homme, depuis qu'il a su les déclencher et les maîtriser, d'assurer sa survie puis d'accéder à la civilisation industrielle. Dans notre monde moderne, la combustion des hydrocarbures, du charbon ou d'autres produits organiques permettent le fonctionnement des foyers domestiques et industriels [2]. Le gaz naturel était le combustible le plus utilisé par les industries pour produire l'énergie thermique [4].

La demande de chaleur représente une part importante de la demande totale d'énergie, ce qui signifie que la réduction de la demande de chaleur ainsi que l'approvisionnement en énergie thermique à partir de sources renouvelables est cruciale pour réaliser la transition future vers un système d'énergie renouvelable [5].

1.2. Energie électrique

L'énergie électrique est une énergie incomparable pour de nombreuses utilisations, que ce soit pour l'éclairage, le chauffage industriel, la cuisine, le chauffage des locaux, et la traction ferroviaire **[6].** L'électricité, forme propre de l'énergie par excellence, est aujourd'hui produite, à près de 80 %, à partir de combustibles fossiles (pétrole, gaz,...) ou fissiles (nucléaire) **[2].**

1.3 Conversion de l'Energie

L'énergie électrique, énergie générée par la conversion d'autres formes d'énergie, telles que l'énergie mécanique, thermique ou chimique **[6].** La production d'énergie électrique utilise principalement des combustibles fossiles et fissiles (nucléaire). Un recours systématique aux combustibles fossiles, tels que le pétrole, le charbon ou le gaz naturel, permet d'avoir de faibles coûts de production mais conduit à un dégagement massif de gaz polluant et de gaz à effet de serre **[7].**

2. Généralités sur le gaz naturel

2.1 Origines et caractéristiques physiques du gaz naturel

Le gaz naturel est un gaz riche en hydrocarbures constitué principalement de méthane. La haute énergie résultant de la combustion du gaz naturel le rend utile comme combustible. Il est considéré comme le combustible fossile le plus propre, le plus facile à transporter, à utiliser et à stocker. Les techniques d'exploration du gaz naturel dépendent principalement de son origine. Le gaz naturel peut provenir de différents processus :

-Processus thermogéniques (gaz thermique) : Ce processus implique la décomposition relativement lente de matières organiques présentes dans les bassins sédimentaires sous l'influence de la température et de la pression associées à une profondeur accrue **[8]**, qui va donner à côté des hydrocarbures, une large gamme de composés non hydrocarbonés **[9]**.

-Processus biogéniques (gaz bactérien) : Dans ce processus, le méthane est formé par l'action d'organismes vivants (bactéries méthanogènes) sur des matières organiques pendant le dépôt des sédiments et au début de leur enfouissement **[8].** Le gaz ainsi formé est appelé gaz bactérien ou biochimique.

-Processus non biogènes (gaz inorganique) : Le mode inorganique de formations des gaz d'hydrocarbures reste très secondaire [9]. Le méthane est formé par la réduction du dioxyde de carbone lors du refroidissement du magma, généralement dans les systèmes hydrothermaux lors de l'interaction eau-roche [8].

2.1.1 Caractéristiques physiques du gaz naturel

Le tableau 1.1 donne les caractéristiques physiques du gaz naturel aux conditions standards (1atm, 15°C), au stade final de son exploitation [10].

Propriété	PCI	PCS	Densité	Masse volumique	Volume
					massique
Valeur	10,32	11,5	0,6 (plus	0,782 kg/m ³	1,278 m³/kg
	kWh/m³	kWh/m³	léger que		
			l'air = 1)		

Tableau 1.1	. Propriétés	physiques	du gaz	naturel	[10].
					L . J.

2.2 Domaine d'utilisation du gaz naturel

Le gaz naturel est largement considéré comme un combustible industriel pour la production d'énergie thermique et d'électricité, et domestique pour le chauffage et la cuisson dans les habitations **[11].** Le gaz naturel est aussi utilisé industriellement pour la production des engrais, de produits pétrochimiques **[8],** de plastiques, de produits pharmaceutiques et de tissus. Il est également utilisé dans la fabrication d'un large éventail de produits chimiques tels que l'ammoniac, le méthanol, le butane, l'éthane, le propane et l'acide acétique. Les entreprises qui produisent et transportent le gaz naturel sont également des consommateurs **[11].**

2.3 Place du gaz naturel dans le bilan énergétique mondial

Au fil des années, le gaz naturel a pris une place prépondérante dans le marché mondial de l'énergétique, il est devenu une source concurrentielle au pétrole. Le gaz est l'énergie fossile la moins polluante **[12]**, propre et de plus en plus utilisée grâce à la quantité de chaleur qu'il peut générer par simple combustion **[13]**. D'après la figure (1.1), le gaz naturel représente la troisième énergie derrière le pétrole et le charbon. Les prévisions de cette source énergétique, selon le scénario de L'AIE (Agence International de l'énergie) indiquent une hausse de 50% de la demande entre 2014 et 2040, avec une croissance deux fois supérieure à celle du pétrole brut **[14]**. Le gaz est ainsi la seule énergie fossile dont la part de marché augmente dans le mix énergétique à horizon 2040, notamment grâce à sa complémentarité avec les énergies renouvelables et son faible contenu carbone **[15]**.

Figure 1.1. Sources énergétique Scénario centrale AIE (2000-2040) [14].

3. Le gaz naturel en Algérie

3.1 Réserves gazières en Algérie

En Algérie, les hydrocarbures occupent une place très importante dans le développement économique du pays. Les réserves de gaz naturel en Algérie ont été estimées à environ 4,5 trillions de m³ en 2015, les dixièmes plus grandes réserves de gaz naturel dans le monde et la deuxième position en Afrique après le Nigeria (environ 30% de réserves de gaz prouvées de l'ensemble du continent africain) **[16].**

Près de 3000 milliards de m³ de réserves ont été découverte dans le sous-sol algérien qui reste encore largement inexploré. Cette réserve représente 57% des réserves totales en hydrocarbures du pays. Cette richesse qui confère à l'Algérie une dimension gazière d'envergure internationale, à savoir, la première place gazière en Méditerranée, deuxième et troisième exportateur de GNL et de gaz naturel, respectivement **[9]**, elle possède près des trois quarts de la production gazière de l'Afrique et 3.2% du total des réserves mondiales **[17]**.

Le gaz naturel algérien est produit au sud du pays dans des gisements de renommée internationale tels que Tin Fouye, Adrar, In Salah, et Hassi-R'mel, qui est le plus grand à l'échelle nationale (figure 1.2) **[9].**

Figure 1.2. Répartition des réserves gazières en Algérie [13].

3.2 Évolution de la consommation du gaz naturel en Algérie

La consommation algérienne d'hydrocarbures a doublé en 10 ans et atteint 58,3 MM Tep en 2016, avec une nette prédominance du gaz naturel et du GPL :

- ➢ 67% en Gaz naturel.
- > 33% en produits pétroliers (y compris 4% en GPL) [18].

En supposant un même modèle de consommation, la figure 1.3 montre que pour des besoins de cette source de 1686 milliard de m³ sur la période 2015-2050, la consommation du gaz naturel passe de 23 milliard de m³ en 2015 à 86 milliard de m³ en 2050.

Figure 1.3. Consommation nationale du gaz naturel (2015-2050) [19].

3.3 Défis et perspectives du gaz naturel en Algérie

Les hydrocarbures en Algérie ont beaucoup de défis à relever en matière d'innovation, le principal défi en matière de sécurité énergétique n'est pas du seul ressort du secteur de l'énergie, parce qu'il est d'abord humain en ce qui concerne le niveau d'expertise, donc de formation, et technologique parce qu'il nécessite un secteur de recherche producteur de progrès, d'outils, d'innovations. Il faut aussi préciser que ce défi sera social parce qu'il nécessite l'adhésion des consommateurs d'énergie d'aujourd'hui et de demain, qui doivent être « au cœur du processus de transition **[18].** Donc il faut obligatoirement :

- développer un modèle énergétique durable spécifique à notre pays.

- dégager les différents scenarios énergétiques possibles qui seront modulables suivant le contexte énergétique national et mondial, afin d'éviter de tomber dans des situations énergétiques catastrophiques dans le futur.

- optimiser l'exploitation de ses gisements existants et augmenter fortement ses réserves de gaz pour pouvoir répondre à ses besoins, tant nationaux qu'à l'exportation **[20]**.

4. Sécurité et transition énergétiques

La transition énergétique en Algérie est le passage d'un système énergétique basé en quasitotalité sur des hydrocarbures conventionnels en voie d'épuisement vers un nouveau système basé sur un bouquet énergétique aussi diversifié que possible pour assurer au mieux la sécurité énergétique et économique du pays [21].

Le programme de transition énergétique est plus que stratégique et doit comporter en plus des 22.000 MW de capacité en Energies Renouvelables, un programme encore plus audacieux en matière d'Economie d'Energie [18].

4.1 Besoins en économie d'énergie

Il existe actuellement une augmentation sans précédent de la consommation. Cela peut être attribué non seulement aux progrès des techniques de production et de la transformation et de la consommation d'énergie, mais également à une croissance régulière et marquée de la population mondiale. Ce type de forte augmentation de la demande a suscité de plus en plus d'inquiétudes quant à la stabilisation du gradient de demande d'énergie. Cela peut être considéré comme le symptôme d'un progrès économique global à l'échelle mondiale, qui a conduit à un excès de ressources injustifié **[22]**.

Au sens large, l'économie d'énergie mesure les gains d'efficacité énergétique induits par les évolutions de contenu et les évolutions structurelles. Au sens strict, l'économie d'énergie mesure les gains d'efficacité énergétique induits par les seules évolutions de contenu, lesquelles résultent à la fois des modifications dans la technologie et dans la façon de s'en servir **[23].**

4.2 Efficacité énergétique en vue d'une économie durable et environnementale

Les transformations d'énergie, notamment la production d'électricité, ayant clairement été identifiées comme les causes principales du réchauffement planétaire et du changement climatique, doivent nous pousser à agir **[24]**. Prendre des mesures pour limiter la consommation énergétique et augmenter l'efficacité énergétique des procédés est nécessaire pour réaliser des économies en énergie et augmenter l'efficacité énergétique tout en diminuant la consommation d'énergie est devenue une priorité qui doit être soutenue soit par l'intégration des nouveaux procèdes moins énergivores, la modification des procèdes génériques ou bien par l'optimisation des procèdes déjà existants.

CHAPITRE II

SIMULATION DU PROCEDE DE LA SECTION DE STABILISTATION DE LA RAFFINERIE D'ALGER : ETUDE DE CAS

1. Présentation du MS Block

Un programme de réhabilitation et d'adaptation pour la raffinerie d'Alger a été lancé par Sonatrach. Ce programme portait principalement sur :

- Installation d'un ensemble d'unités dénommé "MS Block" pour la production des essences aux normes Euro V [25]. Composé des unités suivantes :
 - Unité de prétraitement et de fractionnement du naphta.
 - Unité isomérisation du naphta léger.
 - Unité reforming catalytique du naphta lourd (type CCR).
- Installation d'une unité de craquage catalytique pour la valorisation du résidu.
- Modernisation du réseau électricité et de l'instrumentation (passage au DCS).
- Réhabilitation, modernisation et extension des utilités et off sites.
- Installation d'une nouvelle unité de traitement des effluents.

Figure 2.1. Configuration de la raffinerie d'Alger après réhabilitation [25].

1.1 Description du MS Block

1.1.1 Unité de prétraitement et de fractionnement du naphta

L'unité d'hydrotraitement de naphta est alimentée en naphta de distillation directe, provenant de la distillation de pétrole brut située en amont. Ce naphta contient des concentrations en contaminants qui sont préjudiciables aux catalyseurs de reformage et d'isomérisation, et il nécessite par conséquent un prétraitement.

L'unité NHT sert à séparer le naphta de distillation directe en naphta léger et naphta lourd pour alimenter respectivement les unités d'isomérisation et de reformage catalytique (CCR) placées en aval **[26].**

1.1.2 Unité isomérisation du naphta léger

L'isomérisation est le processus de conversion d'hydrocarbures en leurs isomères. Le processus s'effectue dans une série de deux réacteurs à lit fixe. La section d'isomérisation C_5/C_6 convertit spécifiquement les paraffines normales C_5/C_6 en leurs isomères, à savoir dans une disposition ramifiée présentant un indice d'octane supérieur, sur un catalyseur breveté à base de platine, en présence d'hydrogène.

Ce procédé a pour objectif d'améliorer l'indice d'octane recherche (RON) et l'indice d'octane moteur (MON) de la charge de naphta léger (principalement C_5/C_6) [27].

1.1.3 Unité reformage catalytique du naphta lourd

Cette unité de reformage à régénération catalytique en continu (CCR) produira un reformat ayant un RON de 102, contient en principe des paraffines en C₆ à C₁₁, des naphtènes et des aromatiques. Ce procédé a pour but de produire des aromatiques à haut indice d'octane à partir de paraffines et de naphtènes, destinés à servir de composants de mélange à haut indice d'octane, un gaz riche en hydrogène utilisé dans l'unité de purification d'hydrogène, dans les unités ISOM, NHT et de régénération. Il y a trois produits primaires issus de l'unité de reformage CCR

- Un flux de reformat
- Un flux de GPL
- Un flux de gaz riche en hydrogène.

L'unité de reformage CCR comprend les sections suivantes :

- Section de réaction.
- Section compression et absorbeur.
- Sections de récupération GPL et stabilisateur.
- Section de régénération.

2. Description de la section de récupération GPL et stabilisateur

La section de notre étude fait partie de l'unité de reformage catalytique. Le but de cette section est de récupérer la quantité maximale de GPL, à savoir les C_3 et C_4 provenant de la tête du stabilisateur.

La vapeur provenant du ballon (005) est envoyée au fuel gaz. Le liquide séparé provenant de ballon (005) est pompé par une pompe de fond (002), puis il est envoyé par l'intermédiaire des échangeurs de stabilisateur (008) pour entrer dans la colonne de séparation sur le plateau 19.La tête du stabilisateur (C001) est partiellement condensée dans l'aéroréfrigérant (002) puis le condenseur(009) avant la collecte dans le ballon de reflux du stabilisateur (008).le vapeur de tête du ballon de reflux est renvoyée vers (D-005) pour la récupération du GPL. Le liquide provenant du ballon de reflux du stabilisateur (D-008) est pompé par une pompe de reflux. Une partie du liquide séparé est renvoyée à (C-001) en tant que reflux pour stabiliser la température du tête de la colonne .Le reste du liquide(GPL) séparé est envoyé vers l'unité de production de gaz plant. Le reformat provenant du fond du stabilisateur est refroidi par l'intermédiaire des échangeurs E-008 A/B/C), les refroidisseur de reformat -003) et -E-010) [28].

3. Modélisation de la section de stabilisation

Dans cette partie nous présentons la simulation de la section de stabilisation par le logiciel HYSYS, objet de notre étude. Ce logiciel est très utilisé pour la simulation des procédés dans l'industrie du pétrole et du gaz.

3.1 Introduction au logiciel HYSYS

La simulation peut être classée comme une méthode commode qui ne coûte pas chère et sans intervention sur le procédé réel en cours de fonctionnement. Le développement de l'informatique dans le domaine de simulation, nous permet de résoudre le problème de calcul manuel, en utilisant comme outil des logiciels de simulation. Les simulateurs existants tels que **Aspen plus, CHEMCAD, HYSIM, HYSYS,** sont les plus commercialisés et qui deviennent de plus en plus indispensables pour concevoir de nouvelles unités et pour optimiser les procédés industriels. Le simulateur HYSYS est l'un des plus performants logiciels de simulation [29].

Le logiciel HYSYS est un logiciel de simulation de procédés de génie chimique développé par Hyprotech (Canada) **[9].** Il permet le traitement des problèmes simples, tels que les séparations et les problèmes plus complexes tel que la distillation atmosphérique du pétrole brut et les transformations chimiques.

3.2 Modèles de représentation des Procédés

Avec ce type de logiciel, les ingénieurs peuvent à partir d'une donnée des corps purs présents dans le procédé et du schéma de procédé, développer un modèle du processus reposant sur la mise en commun des équations décrivant les différentes opérations unitaires, les réactions chimiques, les propriétés des substances et des mélanges. Ils peuvent aussi communiquer avec d'autres applications comme Excel, Visual Basic et Matlab [30].

3.2.1 Mélangeurs :

Figure 2.3. Bilan de matière d'un mélangeur.

• Bilan de matière global

$$Fs = F_1 + F_2 + \dots + F_3 + F_n = \sum_{i=1}^n Fi$$
(2.1)

• Bilan de matière partiel

$$F_{s} Z_{s} = F_{1} Z_{1} + F_{2} Z_{2} + \dots + F_{3} Z_{3} + F_{n} Z_{n} = \sum_{i=1}^{n} F_{i} Z_{i}$$
(2.2)

La résolution des bilans de matière permet de déterminer le débit et la composition de sortie.

• Bilan enthalpique

$$H_s = H_1 + H_2 + \dots + H_n = \sum_{i=1}^n Hi$$
 (2.3)

La résolution de cette dernière équation permet de déterminer la température de sortie

3.2.2 Échangeurs de chaleur (Tube Calandre):

Le calcul des échangeurs se base sur deux équations principales :

• Bilan d'énergie sur l'échangeur :

$$m_{\text{froid}} (H_{\text{s}} - H_{\text{e}})_{\text{froid}} - m_{\text{chaude}} (H_{\text{s}} - H_{\text{e}})_{\text{fchaude}} = 0$$
(2.4)

✓ Calcule du flux thermique en (Watt)

$$Q = U.A.DT_{LM} \cdot F_t$$
 (2.5)

Avec F_t : facteur de correction

3.2.3 Aéroréfrigérant :

Cet appareil est basé sur le bilan d'énergie entre l'air et le flux de matière à refroidir :

$$m_{air} (H_s - H_e)_{air} = m_{fluide} (H_e - H_s)_{fluide}$$
(2.6)

Le flux thermique « Duty » de l'échangeur est déterminé, aussi, à partir de l'équation (2.5).

3.2.4 Condenseurs :

Le condenseur est un échangeur avec un seul flux de matière. Le flux d'alimentation est refroidi, jusqu'à l'atteinte des conditions de sortie. Ce type d'appareil est employé lorsque

l'utilisateur ne s'intéresse qu'à la quantité d'énergie nécessaire pour le refroidissement ou le chauffage de l'alimentation par une utilité.

$$Q_{\text{Entrée}} - E_{\text{échangée}} = Q_{\text{Sortie}}$$
(2.7)

Afin de résoudre ces appareils, l'utilisateur doit spécifier pour une alimentation donnée :

- La pression de sortie ou la perte de charge à travers l'échangeur.
- La température de sortie ou la quantité d'énergie échangée

3.2.5 Colonne de séparation :

L'absorption est la séparation par voie physique ou physicochimique d'un ou de plusieurs constituant d'un mélange gazeux. La phase liquide est constituée par un solvant qui est mis en contact avec la phase gazeuse. Le ou les constituants absorbés doivent être, le plus souvent, séparés du solvant par détente, stripping (ou stripage) ou distillation.

Parmi plusieurs types de colonnes disponibles dans le HYSYS, on a utilisé la configuration de type rebouilleur-absorbeur. (Voir figure 2.4)

Figure 2.4. Configuration type rebouilleur-absorbeur utilisé.

3.2.6 Pompes :

Le travail théorique est donné par la relation :

W idéale =
$$\frac{(Ps - Pe).D}{\rho_1}$$
 (2.8)

Le travail réel fourni à la pompe est :

W réel =
$$\frac{(Ps - Pe).D}{\rho_1} \cdot \eta$$
 (2.9)

L'énergie nécessaire pour fonctionner la pompe peut être exprimée, aussi, en fonction de l'enthalpie sous la forme suivante : [31].

$$\mathbf{E}_{\text{nésessaire}} = \mathbf{H}_{\text{s}} - \mathbf{H}_{\text{e}}$$
(2.10)

15

3.3 Modèles thermodynamiques utilisés

Pour l'optimisation de procédés existants et l'évaluation des changements effectués sur les conditions opératoires, il faut des modèles pour prédire les propriétés physiques de la matière. C'est pourquoi les simulateurs disposent d'une base de données thermodynamiques contenant les propriétés des corps purs (masse molaire, température d'ébullition sous conditions normales, paramètres des lois de tension de vapeur, etc.).

3.3.1 Le choix du modèle thermodynamique :

Les modèles thermodynamiques les plus utilisés dans le domaine des hydrocarbures sont les modèles de Peng-Robinson (PR) et de Soave-Ridlich-Kwong (SRK), ces modèles englobent les Avantages suivants :

- Variante de l'équation de Van der Waals pour les hydrocarbures légers non polaire.
- Les deux modèles sont une amélioration de l'équation d'état de Redlich-Kwong.
- Amélioration de la prédiction des équilibres liquide-vapeur (VLE).
- Utilisé pour les hydrocarbures non-polaires légers (C₁-C₄).
- Utilisé pour les hydrocarbures lourds (C₅+).
- Utilisé pour le CO₂, CO et H₂S (jusqu'à 25% en mole) dans les hydrocarbures légers.
- Utilisé pour le N₂ et H₂ dans les hydrocarbures légers.
- Température du point critique jusqu'aux températures cryogéniques [30].

Le modèle utilisé dans notre simulation est celui de SRK. Le domaine d'application de cette équation d'état (en terme de pression et de température), est compatible avec le cas de la raffinerie d'Alger (pression et température d'entrée dans la section de stabilisation P =14.3 bar, T =20.8 °C), Le tableau suivant donne le domaine d'applicabilité de cette équation d'état :

Modèle	Température (°C)	Pression (bar)
SRK	>-143	<350
PR	>-271	<1000

Tableau 2.1. Le domaine d'application de PR et SRK [32].

3.3.2 Equation d'état de SOAVE-REDLICH-KWONG (SRK)

Cette équation modifiée celle de REDLICH-KWONG, par l'introduction d'une fonction a (T) qui dépend du facteur acentrique ω .

L'équation de SOAVE est de la même forme générale que l'équation.

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}$$
(2.11)

SOAVE a introduit les relations suivantes pour exprimer la fonction a (T) :

$$a(T) = a(T_c).a(T_r)$$
 (2.12)

$$a(T_{c}) = 0.42748 \frac{RT_{c}}{P_{c}}$$
(2.13)

a (T_r) =
$$\left[1 + m \left(1 - \sqrt{T_r}\right)\right]^2$$
 (2.14)

Le coefficient m est calculé en fonction du facteur acentrique ω : [30].

 $m = 0.480 + 1.574 \,\omega - 0.176 \omega^2 \tag{2.15}$

4. Données et résultats de calcul

L'objectif de cette étape est de simuler le fonctionnement de la section de stabilisation avec les paramètres opératoires du design. La simulation du cas design de la section de stabilisation a été effecutée selon la représentation simplifiée de cette section avec une nouvelle numérotation de flux de matiere et d'energie (figure 2.5). La figure 2.6 donne la configuration de simulation de cette section par le logiciel HYSYS.

4.1 Données opératoires

La simulation nécessite l'introduction de plusieurs données opératoires telle que la composition, débit, température et pression de la charge ainsi que les flux d'énergie qui sont regroupe dans les tableaux ci-après. Le tableau 2.2 donne la nomenclature des constituants de la charge d'alimentation définie dans le tableau 2.3.

Abréviation Nomenclature		Formules
Р	Paraffine (alcane)	$C_n H_{2n+2}$
i-P	Iso-paraffine	$i-C_nH_{2n+2}$
n-P	Normal paraffine	$n-C_nH_{2n+2}$
N	Naphténique (cycloalcane)	$5C_nH_{2n}$
А	Aromatique	C _n H _{2n-6}

Tableau 2.2.Nomenclature des constituants

Figure 2.5. Schéma simplifié de représentation de la section de stabilisation.

Figure 2.6. Configuration de la section de stabilisation simulée par HYSYS.

Charge d'alimentation				
Constituants	Constituants approchés	Compositions (% mol)		
H2	Hydrogène	1.42		
P1	CH ₄	0.40		
P2	C ₂ H ₆	1.20		
P3	C ₃ H ₈	2.41		
nP4	n-C ₄ H _{1 0}	4.97		
iP4	i-C ₄ H _{1 0}	4.65		
nP5	n-C ₅ H _{1 2}	1.47		
iP5	i-C ₅ H _{1 2}	2.54		
nP6	n-C ₆ H _{1 4}	3.55		
N6	C ₆ H _{1 2}	0.28		
Benzène	C ₆ H ₆	0.94		
nP7	n-C ₇ H _{1 6}	8.65		
N7	C ₇ H _{1 4}	0.11		
Toluène	C ₇ H ₈	20.55		
nP8	n-C ₈ H _{1 8}	3.12		
N8	C ₈ H _{1 6}	0.04		
A8	C ₈ H ₁₀	24.55		
nP9	n-C ₉ H _{2 0}	0.09		
iP9	i- C ₉ H _{2 0}	0.61		
N9	C ₉ H _{1 8}	0.01		
A9	C ₉ H _{1 2}	12.74		
iP10	i-C _{1 0} H _{2 2}	0.01		
A10	C ₁₀ H ₁₄	5.66		
Total	/	99.97		

Tableau 2.3. Composition de la charge d'alimentation.

Tableau2.4. Flux énergétique des équipements

Energies	Valeurs (kW)
E Ar002	2033.88
E E009	278.93
E f005	4904.57
E E008	2033.88
E Ar003	1371.42
E E010	418.4
E p ₀₀₄	56
E p ₀₀₃	39
E p ₀₀₂	39

Tableau 2.5. La Nomenclature des équipements

Abréviation	Nomenclature		
Ar	Aéroréfrigérant		
E	Condenseur		
Р	Pompe		
F	Four		

4.2 Résultats de calcul

4.2.1 Calcul de température, pression et débit

Dans cette partie nous présentons les résultats de simulation de la section étudiée. Les tableaux ci-après donnent une comparaison entre les paramètres opératoires température, pression et débit calculées par le simulateur et ceux donnés par le design du constructeur. Au vu de cette comparaison, nous pouvons dire que les valeurs obtenues à partir du logiciel HYSYS sont assez proches des valeurs du cas design et parfois similaires. Toutefois, un écart est constaté entre les valeurs de pression et de débit des flux de matières des courants (2, 11) et (13) respectivement.

N° de	Température Température		Différence (%)
courant	(°C)	(°C)	
	Design	Simulé	
1	20.8	20	0.8
2	20.5	20	0.5
3	20.8	20.2	0.6
4	183.4	186	-2.6
5	81.2	77.0	4.2
6	50	50	0
7	40.0	40.0	0
8	40.0	40.0	0
9	41.47	41.47	0
10	40.2	41.4	0.2
11	40	41.4	-1.4
12	241.8	/	/
13	259	252	7
14	241.8	239.5	2.3
15	77.5	71.70	5.8
16	50	50	0
17	40.3	40.3	0

Tableau 2.6. Comparaison entre les températures design et simulé.

N° de	Pression (bar)	Pression (bar)	Différence (%)	
courant	Design	Simulé		
1	14.30	13.65	0.65	
2	6.00	8.5	-2.5	
3	22.5	21.91	0.59	
4	15.2	14.47	1.55	
5	15.00	14.26	1.35	
6	14.60	14.06	0.95	
7	14.40	13.65	0.75	
8	14.40	13.65	0.75	
9	28.5	28.5	0	
10	15.00	16.1	-1.1	
11	24	28.03	-4.03	
12	17.30	/	/	
13	15.30	14.57	0.73	
14	15.80	14.57	1.23	
15	14.60	12.83	1.77	
16	14.30	14.30	0	
17	7.00	7.00	0	

Tableau 2.7. Comparaison entre les pressions design et simulé.

N° de	Débit (kg/h)	Débit (kg/h)	Différence (%)	
courant	Design	Simulé		
1	78 806	78 810	-4	
2	52	53.87	-1.87	
3	78 754	78 750	4	
4	78 754	78 750	4	
5	25 015	25 523	-508	
6	25 015	25 523	-508	
7	25 015	25 523	-508	
8	509	782	-273	
9	4 950	4 862	0	
10	19 689	20 140	-451	
11	4 818	4 881	-63	
12	116 345	/	/	
13	116 345	100470	15875	
14	73 428	73 090	338	
15	73 428	73 090	338	
16	73 428	73 090	338	
17	73 428	73 090	338	

Tableau 2.8. (Comparaison	entre les	débits	design	et simulé.
----------------	-------------	-----------	--------	--------	------------
4.2.2 Calcul de la composition de vapeur de tête et du fond de C001

La comparaison entre la composition du GPL provenant de la tête du stabilisateur du cas design et cas simulé (tableau 2.9) montre que les mêmes constituants existent dans le cas design et cas simulé à l'exception des traces de C₅ dans le cas design. La teneur simulée en butane et les constituants plus légers (C₄-) est proche à celle de cas design. La composition de la vapeur de tête de la colonne de stabilisation dans le cas simulé représente bien celle du GPL (69.5 % de butane et 20.4% de propane).

Aussi, la comparaison entre le reformat provenant du fond du stabilisateur du cas design et cas simulé (tableau 2.10) montre que les mêmes constituants existent dans le cas design et cas simulé avec des traces de C_4 dans le cas design.

Composition du vapeur de tête du stabilisateur						
Constituants	Compositions (%) Design	Compositions (%) Simulé	Différence (%)			
Hydrogène	1.41	0.86	0.55			
CH ₄	1.50	1.17	0.33			
C ₂ H ₆	7.59	8.04	-0.45			
C ₃ H ₈	18.51	20,42	-1.91			
n-C ₄ H _{1 0}	34.42	27,3	7.12			
i-C ₄ H _{1 0}	36.39	42,21	-5.82			
n-C ₅ H _{1 2}	0.02	0	0.02			
i-C ₅ H _{1 2}	0.17	0	0.17			
n-C ₆ H _{1 4}	/	/	/			
C ₆ H _{1 2}	/	/	/			
C ₆ H ₆	/	/	/			
n-C ₇ H _{1 6}	/	/	/			
5C ₇ H _{1 4}	/	/	/			
C ₇ H ₈	/	/	/			
n-C ₈ H _{1 8}	/	/	/			
C ₈ H _{1 6}	/	/	/			
C ₈ H ₁₀	/	/	/			
n-C ₉ H _{2 0}	/	/	/			
i- C ₉ H _{2 0}	/	/	/			
C ₉ H _{1 8}	/	/	/			
C ₉ H _{1 2}	/	/	/			
i-C _{1 0} H _{2 2}	/	/	/			
C _{1 0} H _{1 4}	/	/	/			
Total (%)	100	100	/			

Tableau 2.9. Comparaison entre la composition du vapeur de tête de C001 design et simulé.

Composition du fond du stabilisateur						
Constituants	Compositions (%) Design	Compositions (%) Simulé	Différence (%)			
Hydrogène	/	/	/			
CH ₄	/	/	/			
C ₂ H ₆	/	/	/			
C ₃ H ₈	/	/	/			
n-C ₄ H _{1 0}	0.97	0	0.97			
i-C ₄ H _{1 0}	0.28	0	0.28			
n-C ₅ H _{1 2}	1.69	1.73	-0.04			
i-C ₅ H _{1 2}	2.90	3	-0.1			
n-C ₆ H _{1 4}	4.14	3.34	0.8			
C ₆ H _{1 2}	0.33	0.34	-0.01			
C ₆ H ₆	1.09	1.12	-0.03			
n-C ₇ H _{1 6}	10.06	10.3	-0.24			
C ₇ H _{1 4}	0.13	0.13	0			
C ₇ H ₈	23.89	24.40	-0.51			
n-C ₈ H ₁₈	3.66	3.73	-0.07			
C ₈ H _{1 6}	0.05	0.05	0			
C ₈ H _{1 0}	28.55	29.15	-0.6			
n-C ₉ H _{2 0}	0.10	0.10	0			
i- C ₉ H _{2 0}	0.72	0.73	0.01			
C ₉ H _{1 8}	0.01	0.01	0			
C ₉ H _{1 2}	14.82	15.14	-0.32			
i-C _{1 0} H _{2 2}	0.01	0.01	0			
$C_{1\ 0}\ H_{1\ 4}$	6.59	6.73	-0.14			
Total (%)	99.99	100	/			

Tableau 2.10. Comparaison entre la composition du fond de C001 design et simulé.

CHAPITRE III

OPTIMISATION ENERGETIQUE DES PROCEDES PAR L'APPROCHE EXERGETIQUE

Introduction

L'analyse exergétique des procédés est une démarche qui se généralise actuellement. Elle est essentielle en vue de l'optimisation énergétique des procédés. Les notions d'exergie fortement liées aux dégradations d'énergie sont présentées et approfondies compte tenu de leur importance dans les applications industrielles.

1. Conservation de l'énergie dans les systèmes ouverts

1.1 Système ouvert

Les systèmes les plus courants dans les applications pratiques restent toutefois les systèmes ouverts. Ces systèmes thermodynamiques échangent de l'énergie et de la matière avec l'extérieur. De nombreux exemples de tels systèmes existent en pratique, tels les ventilateurs, les turbines, les compresseurs, les échangeurs thermiques, les réacteurs chimiques, ou autres systèmes plus complexes: atelier, usine, etc. Il est donc important de définir d'abord et avec précision le système à étudier et ses limites, puis à dresser les bilans des grandeurs attachées au système en liaison avec les flux d'autres grandeurs qui en traversent les parois. Le domaine macroscopique associé au domaine sera appelé système thermodynamique [33].

1.2 Bilan énergétique d'un système ouvert en régime permanent

La conservation en régime établi des bilans massique et énergétique du système ouvert (figure 3.1), donne l'équation suivante :

Figure3.1. Bilan énergétique d'un système ouvert.

$$\sum_{e} m_{e} e_{e} + Q_{k} + W_{\ell} - \sum_{s} m_{s} e_{s} - Q_{0} = 0$$
(3.1)

me : Flux de matière à l'entrée du système portant l'énergie spécifique ee

ms : Flux de matière à la sortie du système portant l'énergie spécifique es

 Q_k : Energie thermique reçue par le système à la température T_k

 Q_0 : Perte totale d'énergie thermique vers l'environnement à la température T_0

 W_{ℓ} : Energie non thermique (mécanique, électrique,....) reçue par le système

e étant l'énergie spécifique totale définie par : [34].

$$e = h + gz + \frac{v^2}{2}$$
 (3.2)

Les densités d'énergie respectives $\frac{v}{2}^2$ et gz, représentent l'énergie cinétique et l'énergie potentielle.

1.3 Insuffisance du bilan énergétique

Le bilan de conservation d'énergie (équation 3.1) établit simplement l'équivalence de l'énergie mécanique reçue et de la chaleur perdue ; il met en quelque sorte sur le même plan les deux énergies mécanique et thermique. Cependant, on constate que s'il y a égalité quantitative des diverses formes d'énergie, la qualité des diverses formes d'énergie varie d'une forme à l'autre. Ainsi, une mégajoule d'énergie thermique à 1000°C ne représente pas le même potentiel énergétique à 20°C. De même, le potentiel d'utilisation d'une mégajoule d'énergie mécanique, apparaît rapidement différent du potentiel d'utilisation d'une mégajoule d'énergie thermique. En effet, si l'énergie mécanique peut être spontanément transformée en énergie thermique (par frottements par exemple), la transformation inverse, non spontanée nécessite de procéder selon un schéma très précis. Ce sont tous ces éléments, liés à la qualité de l'énergie et aux processus de transfert et de transformation de l'énergie qui constituent le deuxième principe de la thermodynamique, considéré comme un principe d'évolution [**34**].

2. Bilan entropique d'un système ouvert

La grandeur physique liée au principe d'évolution est l'entropie, dont on observe la création dès que des opérations ont lieu en dehors de l'équilibre strict, c'est-à-dire pour toutes les opérations industrielles qui nécessairement doivent présenter une certaine cinétique pour avoir lieu en un temps fini.

2.1 Entropie d'un système fermé

L'entropie est une grandeur qui caractérise l'énergie thermique. Il s'agit d'une grandeur d'état extensive additive. L'entropie de tous les corps est nulle à 0 K.

Lorsqu'un système échange de la chaleur de à T (uniforme), son entropie varie de la quantité :

$$dS = \frac{\delta q}{T} + \delta S_{créee}$$
(3.3)

Les phénomènes vraiment « réversibles » ne sont pas créateurs d'entropie. Aucune transformation réelle n'est réversible, mais il existe des cas où l'on peut s'en approcher (les phénomènes très lents en particulier).

2.2 Rendement d'une machine motrice à deux sources de chaleur

Le rendement d'une transformation d'énergie à deux sources de chaleur (figure 3.2) est égal au rapport de l'énergie utile sur l'énergie thermique que doit fournir la source chaude. En appelant η_M ce rendement, la définition précédente permet d'écrire **[35]**:

$$\eta_{\rm M} = \frac{W}{Q_1} \tag{3.4}$$

Comme

$$\mathbf{W} = \mathbf{Q}_1 - \mathbf{Q}_2 \tag{3.5}$$

On aura

$$\eta_{\rm M} = \frac{Q_1 - Q_2}{Q_1} \tag{3.6}$$

Soit

$$\eta_{M} = \begin{bmatrix} 1 - \frac{Q_{2}}{Q_{1}} \end{bmatrix}$$

$$(3.7)$$

$$Machine \qquad W \qquad Energie$$

$$Q_{2} \qquad T_{2}$$

Figure 3.2 : machine motrice à deux sources de chaleur

D'après le deuxième principe de la thermodynamique, les entropies totales avant et après transfert sont données par :

$$\Delta S_1 = \frac{Q_1}{T_1} \tag{3.8}$$

et

$$\Delta S_2 = \frac{Q_2}{T_2} \tag{3.9}$$

Comme cette grandeur est conservative, la différence donne l'entropie crée, soit:

$$\Delta \mathbf{S}_{\text{créee}} = \left[\frac{\mathbf{Q}_2}{\mathbf{T}_2} - \frac{\mathbf{Q}_1}{\mathbf{T}_1}\right] \ge 0 \tag{3.10}$$

Pour un mode réversible de la transformation on a :

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$$
(3.11)

D'où, le rendement réversible de cette machine motrice

$$\eta_{\rm MR} = \left[1 - \frac{T_2}{T_1}\right] \tag{3.12}$$

 η_{MR} est appelé aussi le rendement de Carnot

Dans le cas du mode irréversible :

$$\frac{\mathbf{Q}_1}{\mathbf{Q}_2} < \frac{\mathbf{T}_1}{\mathbf{T}_2} \tag{3.13}$$

soit :

$$\eta_{\rm M} < \eta_{\rm MR} \tag{3.14}$$

Ainsi, η_{M} est toujours inférieur à η_{MR}

Ce résultat montre que l'efficacité maximale de cette machine motrice fonctionnant entre deux sources de chaleur à deux températures différentes sera égale au rendement de Carnot.

2.3 Production d'entropie dans un système ouvert

Il y a lieu dans ce cas de tenir compte des transferts d'entropie liés au transfert de matière. En effet à toute matière est associée une entropie spécifique s. en conséquence le bilan entropique d'un système ouvert recevant des flux de matière s'écrit [**35**]:

Figure 3.3. Bilan entropique du système ouvert.

$$\left(\sum_{e} m_{e} \mathbf{s}_{e} - \sum_{s} m_{s} \mathbf{s}_{s}\right) - \frac{\mathbf{Q}_{0}}{\mathbf{T}_{0}} + \frac{\mathbf{Q}_{k}}{\mathbf{T}_{k}} + \mathbf{S}_{créee} = 0$$
(3.15)

Le flux S_{créée} peut provenir des différentes formes d'irréversibilités recensées pour le système.

2.4 Réversibilité et Irréversibilité

Une transformation thermodynamique est dite réversible si elle est parfaite, c'est-à-dire si l'entropie créée est nulle. Il n'y a pas alors de dégradation d'énergie, de sorte que toutes les formes d'énergie se comportent de façon identique. Toutes les variables d'extensivité se conservent. Une transformation réversible apparaît comme une transformation idéale, inaccessible en pratique.

La transformation irréversible est en fait une transformation réelle. Elle est définie par opposition à la précédente et entraîne une création d'entropie. Pour bien comprendre et déceler l'origine de l'énergie dégradée, il est nécessaire de bien comprendre les phénomènes physiques qui constituent les causes d'irréversibilités.

Nous citons ci-dessous quelques exemples fondamentaux des processus irréversibles :

- Mélangeage ; homogénéisation des températures
- Transfert de chaleur ; gradient de température
- Perte de pression du fluide due aux frottements
- Réaction chimique.

3. Analyse exergétique des systèmes ouverts en régime permanent

3.1 Insuffisance du bilan entropique

La création d'entropie a servi aux scientifiques, pour mesurer la dégradation de l'énergie causée par les irréversibilités des transferts et des transformations énergétiques. Cependant, pour l'ingénieur habitué à raisonner en termes énergétiques, donc en Joules ou kWh, cette mesure n'est pas pratique. En effet, l'entropie, ou son évolution dans le temps, se mesure en unité d'énergie par Kelvin (J.K⁻¹). Ce fait constitue au moins l'une des raisons de l'intérêt de l'emploi de la notion d'exergie pour traiter de ces problèmes de dégradations d'énergie [**34**].

3.2 Expression du travail dégradé

En considérant le système thermodynamique ouvert (figure 3.1), dont la frontière est conventionnellement à une température T_0 non affectée par les transferts thermiques (milieu extérieur), les transferts sont assurés par des écarts de températures supposées localisées à l'intérieur du volume de contrôle.

Par élimination de Q_o entre les équations (3.1) et (3.15), il vient :

$$W_{l} = \sum_{s} m_{s} (e_{s} - T_{0} s_{s}) - \sum_{e} m_{e} (e_{e} - T_{0} s_{e}) - Q_{k} (1 - \frac{T_{o}}{T_{k}}) + T_{0} S_{créee}$$
(3.16)

Si le système fonctionne réversiblement, il vient pour W_r travail réversible, correspondant soit au travail minimum à fournir au système, soit au travail maximum cédé à l'extérieur.

$$W^{rev} = \sum_{s} m_{s}(e_{s} - T_{0}s_{s}) - \sum_{e} m_{e}(e_{e} - T_{0}s_{e}) - Q_{k}(1 - \frac{T_{o}}{T_{k}})$$
(3.17)

Il en résulte que

$$W_l = W^{rev} + W_p \tag{3.18}$$

W_p étant le travail dégradé ou perdu dans le système, soit :

$$W_p = T_0 S_{créee} \tag{3.19}$$

L'équation (3.19) montre le lien entre le travail dégradé et la création d'entropie, à savoir la température de référence To. L'usage courant veut que la température de référence soit la température ambiante conventionnelle de 25°C ou 298,15K.

3.3 Bilan exergétique du système ouvert

3.3.1 Notion d'exergie

L'exergie est définie comme étant la quantité d'énergie mécanisable qu'il est possible d'obtenir avec de la matière qui est portée, dans la transformation réversible mise en œuvre, à l'équilibre thermodynamique avec les composants naturels de l'environnement avec lesquelles elle interagit et uniquement avec ceux-ci [36].

De ce point de vue général, les auteurs définissent diverses formes de l'exergie (Ex) qui est une grandeur extensive additive.

$$Ex_{M} = Ex_{c} + Ex_{p} + Ex_{ph} + Ex_{ch}$$

$$(3.20)$$

Exc, Exp, Exph, Exch: exergie cinétique, potentielle, physique et chimique

• Les énergies cinétiques et potentielles des fluides sont deux formes d'énergie ayant la totale

faculté de fournir un travail mécanique ou son équivalent. Leur évaluation exergétique par rapport au niveau des données de référence donne :

$$Ex_c = m\left(\frac{v^2}{2} - \frac{v_0^2}{2}\right)$$
 et $Ex_p = mg\left(z - z_0\right)$ (3.21)

 v_0 : vitesse moyenne du fluide par rapport à la surface de la terre

 z_0 : altitude du fluide au dessus du niveau de la mer

- m : débit du fluide
- L'exergie physique représente le travail que peut fournir une certaine quantité de matière lors

d'un processus réversible d'un état initial (T, P) à un état final déterminé par les paramètres de l'environnement (T_0, P_0) .

Le bilan d'énergie et d'entropie du système de la figure 3.4 donne les équations suivantes :

Figure 3.4. Travail maximal d'un processus physique réversible [37].

$$Q_0^{rev} - W^{rev} = m(h_0 - h)$$
(3.22)

$$Q_0^{rev} = T_0 m(s_0 - s) \tag{3.23}$$

Eliminons Q0^{rev} entre ces deux équations, on obtient

$$W^{rev} = Ex_{ph} = m[(h - T_0 s) - (h_0 - T_0 s_0)]$$
(3.24)

$$Ex_{ph} = m \left[(h - h_0) - T_0 (s - s_0) \right]$$
(3.25)

(*h*, *s*), (h_0 , s_0) : enthalpie et entropie spécifiques du fluide respectivement à (T, P) et (T₀, P₀)

• L'exergie chimique est le travail que peut fournir une quantité de matière, si elle était amenée

de T_0 , P_0 à un état d'équilibre thermodynamique avec les composants communément présents dans l'environnement naturel.

Considérons la réaction chimique réversible se déroulant à (T_0, P_0) indiquée sur la figure (3.5):

Figure 3.5. Réaction chimique réversible à (T₀, P₀) [37].

D'après le premier et le second principe de la thermodynamique on a :

$$Q - W_{max} = H_{0p} - H_{0R}$$
(3.26)

$$Q = T_0 (S_{0p} - S_{0R})$$
(3.27)

La combinaison de ces deux équations donne:

$$W_{\max} = (H_{0R} - H_{0P}) - T_0(S_{0R} - S_{0P})$$
(3.28)

En définissant la fonction de Gibbs par :

$$\mathbf{G} = \mathbf{H} - \mathbf{T}\mathbf{S} \tag{3.29}$$

La variation de l'enthalpie libre de la réaction s'écrit :

$$\Delta G^0 = G_p - G_R \tag{3.30}$$

Soit pour le travail maximal fourni vers le milieu extérieur :

$$W_{\rm max} = -\Delta G^0 \tag{3.31}$$

Se basant sur l'équation (3.31), la variation d'exergie standard associée à la réaction de formation $\mbox{\ensuremath{\mathbb{R}}}$ du composé $A_a X_x Y_y$ à (P₀, T₀), est :

$$aA + xX + yY \longrightarrow A_a X_x Y_y$$
$$e^0_{xch}(A_a X_x Y_y) - ae^0_{xch}(A) - xe^0_{xch}(X) - ye^0_{xch}(Y) = \Delta G^0_f(T_0)$$
(3.32)

Soit pour l'exergie standard du composé A_a X_x Y_y:

$$e_{xch}^{0}(A_{a}X_{x}Y_{y}) = \Delta G_{f}^{0}(T_{0}) + ae_{xch}^{0}(A) + xe_{xch}^{0}(X) + ye_{xch}^{0}(Y)$$
(3.33)

Ainsi, l'exergie d'un composé A_a X_x Y_y peut être calculée à partir de son enthalpie libre de formation et les exergies standard des éléments simples (A, X et Y). En choisissant le composé de référence suivant des critères bien définis, Szargut et coll [36]ont ainsi tabulé les exergies standard d'un nombre important de composés solide, liquide et gazeux.

D'autre part, l'exergie chimique du composé i dans le mélange s'écrit :

$$\mathbf{e}_{\mathrm{xchi}} = \mathbf{e}_{\mathrm{xchi}}^0 + \mathbf{R}\mathbf{T}_0 \ln \mathbf{a}_{\mathrm{i}} \tag{3.34}$$

3.3.2 Bilan d'exergie

En définissant l'exergie par les équations ci-dessus, le bilan de l'équation (3.16), peut s'écrire sous la forme du bilan exergétique (3.35). Seule cette forme de comptabilité permet d'évaluer qualitativement et quantitativement les dégradations d'énergie.

Figure 3.6. Bilan exergétique du système ouvert

$$Ex_{p} = T_{0}S_{créee} = \left[\sum m_{e}(e_{xe}) - \sum m_{s}(e_{xs})\right] + Q_{k}(1 - \frac{T_{o}}{T_{k}}) + W_{l}$$
(3.35)

- L'expression $\left[\sum m_e(e_{xe}) - \sum m_s(e_{xs})\right]$ correspond à la somme des flux exergétiques entrant et sortant du système ouvert.

- Le terme $Q_k(1 - \frac{T_o}{T_k})$ correspond à l'exergie fournie par la source de chaleur.

- Le terme \dot{W} est la puissance mécanique ou autre échangé.

- Une exergie perdue ou détruite Ex_p , correspondante à la création d'entropie due aux différentes irréversibilités du système est égale à $T_0 S_{créée}$.

Afin d'évaluer sur le plan exergétique les performances d'un organe d'une installation à celles de l'installation toute entière, on calcule son efficacité exergétique.

$$\eta_{ex} = \frac{Ex_{sortante}}{Ex_{entrante}} \times 100$$
(3.36)

Ainsi, un processus est thermodynamiquement idéal s'il ne s'y produit aucune perte d'exergie, et il s'écarte de l'idéal thermodynamique dans la mesure où de l'exergie est consommée. L'amélioration et l'optimisation d'un procédé peuvent être aux mieux guidées par la détermination des sources et des grandeurs de ses pertes d'exergie [3].

4. Calcul des grandeurs thermodynamiques

Les équations de calcul étant destinées à l'élaboration des différents bilans, un certain nombre de précautions sont à mentionner.

Les bilans exergétiques font intervenir le plus souvent une faible part de l'énergie mise en jeu, par contre leur utilisation constitue une grande partie de l'exergie utilisée ou détruite. D'où l'importance de la précision des mesures pour le calcul des énergies d'origine calorifique, de façon à ce que les différentes exergies calculées, qu'elles soient d'origine calorifique ou mécanique, restent significatives et comparables.

Le bilan énergétique doit être cohérent et bouclé, sa validité est facile à vérifier alors que le bilan exergétique n'est pas aussi facilement vérifiable. Il doit être calculé à l'aide d'équations cohérentes faisant intervenir celles utilisées dans le bilan énergétique. Cette cohérence est indispensable pour ne pas imputer des erreurs dues au calcul à une perte exergétique.

Les différents flux de matière étudiés déterminent les produits mis en jeu. Ils se divisent en trois catégories :

- Les gaz, pour lesquels on retiendra : les mélanges gazeux d'hydrocarbures, de l'air humide et les fumées de combustion
- 2- Les liquides, où il s'agira principalement des mélanges liquides d'hydrocarbures.
- 3- Les mélanges diphasiques liquides-gaz d'hydrocarbures

Pour les flux de matière liquides, il s'agira des équations relatives aux mélanges idéaux de corps purs, dont les données sont facilement accessibles à partir des relations de base ciaprès.

Pour l'enthalpie spécifique molaire :

$$h_L = \sum_i X_i h_{i\,liq} \tag{3.37}$$

$$h_{i\,liq} = h_{i\,liq}^{o}_{(To)} + \int_{To}^{T} Cp_{i,liq}(T) \, dT$$
(3.38)

Pour l'entropie spécifique molaire

$$s_{L} = \sum_{i} X_{i} s_{i,liq} - R \sum_{i} X_{i} \ln X_{i}$$
(3.39)

$$s_i = s_{i,liq_{(T_0)}}^o + \int_{T_0}^T Cp_{i,liq}(T) \, dlnT$$
(3.40)

Ainsi, l'exergie physique spécifique molaire s'écrit conformément à l'équation (3.25) :

$$e_{x_{Lph}} = \sum_{i} X_{i} \left[\int_{T_{0}}^{T} Cp_{i}(T) dT - T_{0} \int_{T_{0}}^{T} Cp_{i}(T) dlnT \right]$$
(3.41)

L'exergie chimique molaire intervenant pour les flux de matière subissant un changement de composition ou une transformation chimique se calcule conformément à l'équation (3.34) par :

$$e_{x_{Lchim}} = \sum X_i \left(e_{xchi}^0 + RT_0 ln X_i \right)$$
(3.42)

D'autre part, pour les flux de matière gazeux, il s'agira des mélanges idéaux de gaz parfaits Pour l'enthalpie spécifique molaire :

$$h_G = \sum_i X_i h_{i,g} \tag{3.43}$$

$$h_{i,g} = h_{i,g(T0)}^{o} + \int_{T0}^{T} Cp_{i,g}(T) dT$$
(3.44)

35

Pour l'entropie spécifique molaire :

$$s_G = \sum_{i} X_i s_{i,g} - R \sum_{i} X_i \ln X_i$$
(3.45)

$$S_{i,g} = S_{i,g(T_0)}^o + \int_{T_0}^T Cp_{i,g}(T) \, dlnT - R \, ln \, \frac{P}{P_0}$$
(3.46)

Soit pour l'exergie physique spécifique molaire du gaz s'écrit :

$$e_{xG_{ph}} = \sum_{i} X_{i} \left[\int_{T_{0}}^{T} Cp_{i,g}(T) dT - T_{0} \int_{T_{0}}^{T} Cp_{i,g}(T) dlnT + RT \circ ln \frac{P}{P_{0}} \right]$$
(3.47)

L'exergie chimique molaire du flux de matière gazeux se calcule par voie similaire à celle du liquide, soit:

$$e_{x_{G_{chim}}} = \sum X_i \left(e_{x_{chi}}^0 + RT_0 ln X_i \right)$$
(3.48)

En négligeant les énergies cinétiques et potentielles, l'exergie spécifique molaire totale du flux de matière peut s'écrire :

$$e_{x_{totale}} = e_{x_{physique}} + e_{x_{chimique}}$$
(3.49)

Pour les flux de matière diphasiques liquide-gaz, l'exergie spécifique molaire totale se calcule par l'équation ci-après, en fonction de la teneur du liquide (x) et celle du gaz (y)

$$e_{x_{totaleL-G}} = x e_{xtotale_L} + y e_{xtotaleG}$$
(3.50)

La chaleur spécifique moyenne Cp_i (T) du composé i pour les liquides et gaz, fonction de la température, est calculée à l'aide du polynôme suivant :

$$Cp_i(T) = a_i + b_i T + c_i T^{-2}$$
(3.51)

La masse molaire moyenne du gaz et liquide est calculée par l'équation

$$M = \sum_{i} X_{i} M_{i} \tag{3.52}$$

X_i , M_i fraction molaire et masse molaire du constituant i

Les exergies spécifiques standard $(e_{x_{ch,i}}^0)$ des différents constituants du liquide et du gaz sont fournies par [36], [37].et données en annexe 4.

5. Calcul de la température TF de la source de chaleur Q

Le Four de rebouillage du fluide au bas de la colonne de séparation C001 de la section de stabilisation est représenté en figure (3.7), Q étant la chaleur dégagée par la combustion du Fuel gaz utilisé et T_F sa temperature, suppose uniforme et égale à celle de la flamme produite.

Figure 3.7. Four de rebouillage de la colonne de séparation C001

En négligeant les pertes thermiques à travers les parois du four et en considérant la temperature de la flamme est égale à celle des fumées dégagées T_F , les bilans de conservation de masse et d'énergie sur la combustion donnent: **[38].**

(

$$m_f = m_{air} + m_{CB} \tag{3.53}$$

$$Q_{FG} + Q_{air} = Q_f \tag{3.54}$$

avec

$$Q_{FG} = m_{FG}.PCI_{FG} \tag{3.55}$$

$$Q_{air} = m_{air} C p_{air} (T_{air} - T_0)$$
(3.56)

$$Q_f = m_f \, C p_f \, (T_F - T_0) \tag{3.57}$$

En introduisant le facteur d'air de combustion λ définit en fonction du volume d'air stochiométrique ou pouvoir comburivore α (Nm³ d'air /Nm³ de gaz) par:

$$m_{air} = \lambda \alpha \, \frac{\rho_{air}}{\rho_{FG}} \cdot m_{FG} \tag{3.58}$$

$$T_{F} = T_{0} + \frac{\lambda \alpha \frac{\rho_{air}}{\rho_{FG}} \cdot cp_{air} \cdot (T_{air} - T_{0}) + PCI}{(1 + \lambda \alpha \frac{\rho_{air}}{\rho_{FG}}) \cdot cp_{fumée}}.$$
(3.59)

CHAPITRE IV

RESULTATS ET INTERPRETATION

Introduction

Le logiciel HYSIS ayant assez bien représenté le fonctionnement du procédé de la section de stabilisation, il est ainsi utilisé dans cette partie pour effectuer la simulation de cette section sous différentes conditions opératoires.

1. Bilans exergétique des installations

Afin de simplifier le calcul du bilan exergétique des différentes installations de la section de stabilisation, plusieurs hypothèses sont considérées.

1.1 Hypothèses de calcul

Les hypothèses de calcul considérées sont :

- L'énergie cinétique et potentielle de différents flux de matière sont négligeables
- Les transformations sont effectuées en régime permanent
- Les pertes de charge dans les conduites de l'installation sont négligées
- La température et la pression de référence adoptée sont respectivement T₀=298K et P₀=1atm
- Les capacités calorifiques sont indépendantes de la température est estimée à la première constante (a_i) du polynôme :

 $Cp_i(T) = a_i + b_i T + c_i T^2$ [2]

 Les pertes thermiques à travers les parois pour les différentes installations sont négligeables.

1.2 Méthodologie de calcul du bilan exergétique

Pour le calcul des flux exergétiques et l'établissement du bilan exergétique des différentes installations, les étapes de la méthodologie suivie sont illustrées par l'organigramme ciaprès. Le calcul est effectué au moyen du logiciel Matlab dont le programme est donné en annexe 5.

Figure 4.1. Organigramme de calcul par Matlab.

1.3 Résultats d'analyse exergétique

1.3.1 Le choix des sections

L'objectif de cette étape est d'effectuer une analyse exergétique de la section de stabilisation afin de déterminer les pertes exergétiques. A cette fin plusieurs sections ont été choisies et qui sont délimitées par les lignes discontinues, comme le montre la figure 4.2 ci-dessous. A titre d'exemple :

- ✓ La section 4 considère uniquement l'aéroréfrigérant et le condenseur avec le courant d'entrée 5 et le courant de sortie7.
- ✓ La section 6 considère uniquement la colonne de séparation, la pompe et le four avec les courants d'entrées 4 et 10 et les courants de sorties 5 et 15.

Figure 4.2.Représentation des sections du procédé de la section de stabilisation pour le calcul du bilan exergétique.

1.3.2 Calcul des flux exergétique

Les tableaux ci-après donnent les valeurs des différents flux d'exergie spécifiques physique et chimique sous les conditions opératoires du Design. Ce tableau montre que les valeurs des exergies chimique sont plus importantes devant celle des exergies physiques. Ceci est dû à la valeur élevé de l'enthalpie libre de formation des constituants hydrocarbures par rapport au potentiel exergétique de la pression et de la température.

N° Flux	ex _{phy} (kJ/mol)	ex _{chim} (kJ/mol)	ex _{tot} (kJ/mol)
1	0.55226	426030	426030
2	443.68	45025	45468
3	0.55644	429670	429670
4	584.22	429670	430260
5	701.01	254110	254820
6	670.38	254110	e _{xG} : 254790
	6.3903	254110	$e_{xL}: 254120$ $e_{xL-G}: 254150$
7	662.92	254110	e _{xG} : 254780
	2.3498	254110	e _{xL} : 254120
			$e_{xL-G}: 254130$
8	660.61	154490	155150
9	6.7792	257720	257720
10	5.7897	257720	257720
11	5.6408	257720	257720
12	1038	458090	459120
13	1158.3	458160	e _{xG} : 459310
	1158.3	458160	e _{xL} : 459310
			e _{xL-G} : 459310
14	1038.7	458350	459390
15	79.882	458350	458430
16	19.149	458350	458370
17	7.3210	458350	458350

Tableau 4.1. Valeurs des flux d'exergie physique et chimique molaires en (kJ/mol)

1.3.3 Etablissement des bilans exergétiques des différentes sections

Les résultats du bilan exergétique des sections du procédé mentionnées ci-dessus sont regroupés dans les tableaux ci-après.

• Section 1 : Ballon D005+ Pompe 002

Figure 4.3.Bilan exergétique de la section 1.

	Ex Entrante	Ex sortante	Energie de la	Exp
	(kW)	(kW)	pompe (kW)	(kW)
Section1	9.7859 10 ⁷	9.7849 10 ⁷	39	9.1754 10 ³

 Tableau 4.2. Perte exergétique de la section 1.

• Section 2 : Echangeur E 008

Figure 4.4.Bilan exergétique de la section 2.

	Ex _{Entrante}	Ex _{sortante}	Energie	Exp
	(kW)	(kW)	(kW)	(kW)
Section 2	$1.8856 \ 10^8$	1.8846 10 ⁸	0	5.5375 10 ⁴

• Section 3 : Aéroréfrigérant EA 003+ condenseur E010

Figure 4.5.Bilan exergétique de la section 3.

```
Tableau 4.4 Perte exergétique de la section 3
```

	Exentrante	Exsortante	Energie de	Exp
	(kW)	(kW)	l'hélice (kW)	(kW)
Section 3	9.0576 10 ⁷	9.0569 10 ⁷	1371.42	8.6819 10 ³

• Section 4 : Aéroréfrigérant EA 002 + condenseur E009

Figure 4.6.Bilan exergétique de la section 4.

Tableau 4.5	. Perte	exergétique	de l	la sect	tion 4	4.
-------------	---------	-------------	------	---------	--------	----

	Ex Entrante	Ex sortante	Energie de	Exp
	(kW)	(kW)	l'hélice (kW)	(kW)
Section 4	3.4043 10 ⁷	3.3955 10 ⁷	2033.88	9.0210 10 ⁴

• Section 5 : Ballon D008+ Pompe 003

Figure 4.7.Bilan exergétique de la section 5.

Tableau 4.6	Perte	exergétique	de	la	section	5.
-------------	-------	-------------	----	----	---------	----

	Ex _{Entrante}	Ex _{sortante}	Energie de la	Exp
	(kW)	(kW)	pompe (kW)	(kW)
Section 5	3.3952 10 ⁷	3.3951 10 ⁷	39	4.68 10 ²

• Section 6 : Colonne 001

Figure 4.8.Bilan exergétique de la section 6.

	Ex Entrante	Ex sortante	Fuel gaz	Energie de la	Exp
	(kW)	(kW)	(kW)	pompe (kW)	(kW)
Section 6	1.2490 10 ⁸	1.2462 10 ⁸	4904.57	56	2.8593 10 ⁵

Sections	Exentrante(kW)	Exsortante(k W)	Exergie (kW	reçue	Exp (kW)	φ (%)
Section1	9.7859 10 ⁷	9.7849 10 ⁷	39		9.1754 10 ³	2.04
Section2	1.8856 10 ⁸	1.8846 10 ⁸	0		5.5375 10 ⁴	12.31
Section3	9.0576 10 ⁷	9.0569 10 ⁷	1371.	.42	8.6819 10 ³	1.93
Section4	3.4043 10 ⁷	3.3955 10 ⁷	2033.	.88	9.0210 10 ⁴	20.05
Section5	3.3952 10 ⁷	3.3951 10 ⁷	39		$4.68 \ 10^2$	0.1
Section6	1.2490 10 ⁸	1.2462 10 ⁸	Fuel gaz	P004	2.8593 10 ⁵	63.57
			4904.57	56		

Tableau 4.8. Résultats du bilan exergétique des différentes sections du procédé

Interprétation

Le tableau 4.8 ci-dessus donne la part de la perte exergétique de la section ($\varphi(\%)$)par rapport à la perte globale du procédé. Il révèle que cette perte d'exergie se localise principalement dans les sections 6(63%), 4(20%) et 2(12%). De même, la figure 4.9 donne une répartition de la perte exergétique par section. La section 6 est une source de dégradation d'énergie causée par les processus irréversible tels que : la séparation chimique des constituants, la combustion dans le rebouilleur, la perte de charge dans la colonne et le transfert de chaleur.

Figure 4.9. Répartition de la Perte exergétique par section.

Par ailleurs, la figure 4.10 donne une répartition par forme de perte exergétique. On constate que la perte exergétique chimique est plus significative que celle physique soit 99.96% contre 0.04% pour la perte exergétique physique.

Figure 4.10. Répartition de la forme de perte exergétique.

2. Simulation de la perte exergétique de la colonne de séparation C001

Dans cette partie, nous étudions l'influence des paramètres opératoires sur le procédé de fonctionnement de la section C001, dans le but d'analyser la sensibilité de sa perte exergétique aux conditions opératoires et afin de comprendre les mécanismes qui contrôlent la dégradation d'énergie dans cette section.

Figure 4.11 Simulation de la colonne de séparation C001.

2.1 Domaine de variation des paramètres opératoires

Le tableau ci-dessous donne le domaine de variation des paramètres opératoires.

Variable	Unité	Domaine de variation
Т	(°C)	140 - 200
Р	(bar)	10-20
Taux de reflux	/	1-6
Q _{FG}	(kW)	1000- 9000
λ	/	1- 1.5
T_0	(°C)	5-45
T _{air}	(°C)	5-120

Tableau 4.9 Domaine de variation des paramètres opératoires

2.2 Sensibilité de la perte exergétique aux conditions opératoires

Dans cette partie on analyse la sensibilité de sa perte exergétique à différentes conditions opératoires

2.2.1 Influence du taux de reflux de la colonne de séparation C001

L'évolution de la perte exergétique de la colonne de séparation C001 en fonction de taux de reflux est représentée en figure 4.12.On constate quel que soit le taux de reflux, la perte exergétique reste constante, ce qui montre qu'elle est insensible à ce paramètre.

Figure 4.12. Variation de la perte exergétique en fonction du taux de reflux.

2.2.2 Influence de la température d'alimentation de la colonne de séparation C001

L'évolution de la perte exergétique de la colonne de séparation C001 en fonction de la température d'alimentation est représentée en figure 4.13. On constate que la perte exergétique augmente avec l'augmentation de la température d'alimentation. Cette augmentation de température ayant conduit à la diminution de la température du flux de matière au fond de la colonne, ceci engendrera un flux exergétique de matière sortant du système plus faible, d'où une perte exergétique plus grande et une dégradation d'énergie importante.

Figure 4.13. Effet de la température d'alimentation sur la perte exergétique.

2.2.3 Influence de la pression d'alimentation de la colonne de séparation C001

L'effet de la pression d'alimentation de la charge sur la perte exergétique est illustré en figure 4.14 ci-dessous. La perte exergétique diminue faiblement avec l'augmentation de la pression d'alimentation. Cette augmentation de pression ayant conduit à l'augmentation de la température au fond de la colonne, ce qui conduira à un flux exergétique de matière

légèrement supérieure et en conséquence une faible diminution de perte d'exergie du systèm

Figure 4.14.Effet de la pression d'alimentation sur la perte exergétique.

2.2.4 Influence de l'énergie calorifique QFG

L'évolution de la perte exergétique de la colonne de séparation C001 en fonction de l'énergie calorifique Q_{FG} fournie par la combustion du fuel gaz est représentée en figure 4.15. Elle montre que la perte exergétique de la colonne C001 augmente très faiblement et n'affecte pas significativement la perte exergétique du système.

Figure 4.15. Effet de l'énergie calorifique Q_{FG} sur la perte exergétique.

2.2.5 Influence du facteur d'air λ

L'effet du facteur λ de l'excès d'air de combustion sur la perte exergétique est illustré en figure 4.16.On constate que la perte exergétique est insensible à l'augmentation du facteur d'air λ . Etant donné que la température de flamme, considérée comme température de la source de chaleur fournie au système, est inversement proportionnelle au facteur λ (Eq. 3.59) son augmentation n'engendre guère une diminution de la perte exergétique globale du système.

Figure 4.16. Effet du facteur d'air λ sur la perte exergétique.

2.2.6 Influence de la température d'air de combustion

L'évolution de la perte exergétique de la colonne de séparation C001 en fonction de la température d'air de combustion T_{air} (°C) est représentée en figure 4.17. On constate que quel soit l'augmentation de la température d'air (°C) produite par un éventuel préchauffage de l'air de la perte exergétique n'affecte pas la perte exergétique de la colonne C001.

2.2.7 Influence de la température de référence T₀ (°C)

L'effet de la température de référenceT₀ (°C) sur la perte exergétique est illustré en figure 4.18.La perte exergétique reste insensible à l'augmentation de la température de référence T₀ (°C) du milieu ambiant.

Figure 4.17. Effet de la température d'air de combustion sur la perte exergétique.

Figure 4.18. Effet d la température de référence T₀ (°C) sur la perte exergétique.

CONCLUSION GENERALE

La modélisation et la simulation de la section de stabilisation sous les conditions opératoires du design a été effectuée par le logiciel HYSYS. En dépit, des différences constatées pour quelques flux de matière, les écarts entre les valeurs des paramètres opératoires (pression, température, débit et composition) du cas design et du cas simulé sont acceptables et assez cohérent pour dire que le modèle thermodynamique utilisé par le logiciel permet une représentation assez satisfaisante du procédé de fonctionnement de cette section de stabilisation.

Sur la base de données opératoire du cas design, un programme sous langage Matlab est établit pour le calcul des flux de matière, d'énergie et d'exergie. Il peut être transposé sans difficultés à d'autres installations de procédés similaires. Ainsi, l'application de l'approche exergétique à la section de stabilisation a permis d'identifier la colonne de séparation avec son rebouilleur comme le système le plus dégradant d'énergie noble. De plus, la perte d'exergie chimique reste très significative comparée à celle de l'exergie physique.

Les principaux résultats, de simulation des tests de sensibilité de la perte exergétique dans la colonne C001 et ses équipements auxiliaires, montrent que la température de la charge d'alimentation et d'un degré moindre sa pression affectent la perte exergétique globale du système. L'augmentation de la température de la charge implique l'augmentation du taux d'irréversibilités associée à l'échange thermique et à la séparation des constituants. Quant au processus de combustion dans le rebouilleur caractérisé par ses paramètres opératoires (Q, T_k, T_{air}, T₀ et le facteur d'air λ) n'a pas d'effet sur la perte d'exergie globale, car l'exergie associée à la chaleur de combustion reste très faible devant celle associée aux flux de matière à l'entrée et à la sortie de la colonne de séparation.

REFFERENCES BIBLIOGRAPHIQUES

[1] Club EnergyAIED-IAP., Problématique de la sécurité Eénergétique pour l'Algérie à l'horizon 2030 et au-delà, cinquieme Colloque, IFEG, Alger 30 juin 2018

[2] Akrour B., Simulation et Optimisation Multicritere de la Récupération de Chaleur de Refroidissement du clinker aspects économique et environnemental, Mémoire de Magister, Université Blida 1, Juillet 2016

[3] Brodyanski V., Sorin M., Le Goff P., The efficiency of Industrial Processes, Exergy Analysis and Optimization, Amsterdam, Elsevier, (1994).

[4]. Colin M., Boardman R, Michael M, Sabharwall P, Ruth M, and Bragg-Sitton S., Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduceits Carbon Emissions, Article, National Renewable Energy Laboratory, (2016).

[5]. Eugene G., Thermal Energy Storage» ; The Report of a NATO Science Committee Conference Heldat Turnberry, Livre ,1 ère Edition, (1976).

[6]. Augustyn A., Electric power PHYSICS, Encyclopaedia britannica, Article, (Mar 6,2019).

[7]. Belakehal S., Conception et commande des machines à aimants permanents Dédiées aux énergies renouvelables, Thèse doctorat, Université de Constantine, (2010).

[8]. Faramawy S, Zaki T, Sakr A A E., Natural gas origin, composition, and processing, Journal of Natural Gas Science and Engineering, vol.34 (19 june 2016).

[9]. Benlagha A et Setti A., Optimisation des paramètres opératoires relatifs a la section de Stabilisation en vue de récupérer le maximum de produits finis (GPL, condensat), Mémoire de Master, Université Mohamed Khider de Biskra, (Juin 2012).

[**10**]. Caractéristiques du gaz naturel importé, Société anonyme suisse pour le gaz naturel, (2017).

[11]. Hobart M., Natural gasis an important fuel and a raw material in manufacturing, Article (October 1, 2014).

[12]. Mekhelfi D., Evolution des exportations gazières de l'Algérie et son impact au sein de l'Opec (1970 à 2012), مجلة أداء المؤسسات الجزائرية, Université Kasdi Merbah – Ouargla, (2013).

[13]. Hafani M., Problèmes rencontrés dans le séchage du gaz naturel, Mémoire de master, Université abdelhamid ibn badis de mostaganem, (2010-2011).

[14]. Hached.A., Le contexte International du marcher Gazier entre perspective et défi, Problématique de la sécurité énergétique pour l'Algérie à l'horizon 2030 ben Aknoun, (30 juin 2018).

[15]. Duterque A., Un monde d'energie, engie, Édition 2017 Publiée en (mars 2018).

[16]. Abada Z, Bouharkat M., Study of management strategy of energy resources in Algeria, Energy Reports, Article, University of Batna 2, Algerie, (26 décembre 2017).

[17]. Hammache K, hamitouche S., Etude économétrique de la consommation du gaz naturel en Algérie : « cas des ménages1980-2012 », Mémoire de master, Université Abderrahmane Mira de Bejaïa, Année, (2013-2014).

[18]. Mr. Attar A., Transition et sécurité énergétique les défis a l'horizon 2030, Conférence scientifique sur l'energie en Algérie kabylie – Djurdjura,(13 Mai 2018).

[19]. Amecheraoui A., Quel sera l'impact de l'avènement du renouvelable sur la consommation des énergies fossiles en Algérie, Problématique de la sécurité énergétique pour l'Algérie à l'horizon 2030 ben Aknoun, (30 juin 2018).

[20]. Boughali S, Bechki D, Mennouche D, Mahcene H, Bouguettaia H et Bouchekima B., Opportunités et challenges de la promotion des énergies renouvelables en Algérie, Université Kasdi Merbah Ouargla Algérie, (Mai 2013).

[21]. Terkmani M., Quelle transition énergétique pour l'Algérie ?, Journal Liberté DZ, (06-Mai-2015).

[22]. André G., Energy, Economy and Prospective, Book, (1981).

[23]. Atmania H., La stratégie d'implantation des énergies renouvelables en Algérie cas de la photovoltaïque, Mémoire de magister en management, Université d'oran2 mohamed ben ahmed, (2014-2015).

[24]. European Commission., Consommation et économies d'énergie, Intelligent Energy Europe program, (juillet 2018).

[25]. Slamani B, Bougjelida M., Installation d'une colonne de pré-flash au niveau du topping de la raffinerie d'Alger, Mémoire de mis en situation professionnelle, Institut algérien de pétrole, (2017).

[26]. Manuel d'exploitation de l'unité 500 (unité d'hydrotraitement de naphta), (2014).

[27]. Manuel d'exploitation de l'unité 510 (d'isomérisation de naphta lége), (2014).

[28]. Manuel d'exploitation de l'unité 520 (unité CCR de reformage du naphta), (2014).

[29]. Chikhi H, Kebbabi A., Analyse énergétique de l'unité reforming catalytique de la raffinerie d'Alger, Mémoire de master, Université de blila, (2016-2017).

[**30**]. Bendaas O, Oukacha C., Optimisation des paramètres de fonctionnement du déethaniseur (C-701) et du débutaniseur (C-702) de la section de fractionnement du gaz à l'UTG de Guellala, Mémoire de master, (2016-2017).

[**31**]. N. REBAI., Initiation au simulateur HYSYS, Unité de formation et de recherche, Ecole de Boumerdès, IAP

[32]. Hamza Y., Simulation d'influence de la masse moléculaire et du coefficient de compressibilité du gaz naturel sur les performances d'un compresseur centrifuge, Mémoire de master, Université m'hamed bougara de boumerdes, (2017).

[**33**]. Feidt M., Thermodynamique et optimisation énergétique des systèmes et procédés, Technique et documentation, Paris (1996).

[34]. Le Goff P., Energétique Industrielle, Tome 1, Technique et Documentation Paris (1980).

[**35**]. Touil D., Belabed H F., Frances C., Belaadi S., Heat exchange modeling of a grate clinker cooler and entropy production analysis, International journal of Heat & Technology , vol 23, 1, (2005) 61- 68.

[36]. Szargut J., Morris D R., Steward F R., Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere, New york, (1988).

[37]. Kotas TJ., the Exergy Method of Thermal Plant Analysis, Butterworths, London, (1985).

[38]. Touil D., Four et Chaudière, cours master 1 genie chimique, (2017).

LISTE DES ANNEXES

Annexe 1

PFD de la section de stabilisation de la raffinerie d'Alger [28].

Annexe 2

A		-		MA	IEK	IAL BA	LA	INCE (M	OLAR	PERCER	(I)
Axens			Job Number		Unit	Туре	-			Pa	ige
IFP/ Group Technologies	Process licensing	L	08-3174		520	1MP				11	/15
Client : ALGIERS R	EFINERY ADAPTATION P	ROJEC	T (MS BLOC	K)				Date	By	Checkby	Ist
NAFTEC Spa	a							24/10/08	SME	ATE	0
Unit : CONTINUO	US CATALYTIC REGENE	RATION	REFORMIN	GU	UNIT (CCR)					+
Run case : Case 1 - NOP)					,					+
case i - rior								<u> </u>	+	+	+
								I			+
	L DC A DEODDED DD134	LDC 4	DE DBIMOE	E	LIOU			CADE	CTAD	FFED DO	
Flow rate unit : mol %	INLET	GAS	TO FUEL GAS	UFL GAS		UID FROM LPG ABS.		G ABS.	STAB, FEED BOT,		I. ETA
	INCLU I	una	10 FOLL OKS	UEL GAS		DROM			SHELL SIDE OUTLE		21.0
10	41		42			43			44		
H2	1.42		85.95				0.61	1 0.6		0.61	
P1 02	0.40	<u> </u>	5.15				.36		0.36		
P2 D3	1.20		3.69			1	18		1.18		
nP4	2.41		2.03				2.41		2.41		
P4	4.97		1.10				0.00	0 5		5.00	
nP5	4.60	<u> </u>	1.46		4.68			4.68			
P5	2.6/		0.09				57			2.57	
nP6	0.93		0.02				0.04			0.94	
sbP6	1.97		0.02				. 94			1.99	
mbP6	0.75		0.02				76			0.76	
5N6	0.28		0.02				28			0.28	
6N6											
BENZENE	0.94		0.01			(. 95			0.95	
nP7	1.50	0.01		1.51			1.51				
sbP7	4.16		0.03			4	1.20			4.20	
mbP7	2.99		0.03		3.02		3.0		3.02		
5N7	0.11					0.11			0.11		
6N7											
TOLUENE	20.55		0.08			20	.75			20.75	
nP8	0.26						.26			0.26	
sbP8	1.46					1	. 48			1.48	
mbP8	1.40					1	. 42			1.42	
5N8	0.04	L					0.04			0.04	
6N8											
A8	24.55		0.04			24	1.79			24.79	
100	0.09						0.09			0.09	
END	0.61						0.62			0.62	
ENQ	0.01				<u> </u>		1.01			0.01	
0140	10.74									10.07	
nP10	12,74	<u> </u>				12	2.87			12.87	
P10	0.01						01			0.01	
A10	0.01						1.01			5.72	
nP11	5.66						. 12			5.72	
		<u> </u>			I						
. /			1	MATER	IAL BA	LANCE (MO	DLAR	PERCEN	T)		
---	---------------------------	---------------------------------------	-----------------------	----------	-------------	-----------	------	-----------	-----------		
Axe	NS Technologies	Process licensing	Job Number 08-3174	Unit 520	Type 1MP	-		Pa 12/	ee /15		
Client :	ALGIERS RI	FINERY ADAPTATION PRO	JECT (MS BLOCK	0		Date	By	Checkby	Iss.		
	NAFTEC Spa	i i i i i i i i i i i i i i i i i i i				24/10/08	SME	ATE	0		
Unit : CONTINUOUS CATALYTIC REGENERATION REFORMING UNIT (CCR)											
Run case :	Case 1 - NOP										

Flow rate unit : mol%	STABILIZER FEED CHL. ABSORBER INLET	STAB. FEED BOT. SHELL SIDE INLET C	STABILIZER FEED	STABILIZER OVERHEADS
	45	46	47	48
H2	0.61	0.61	0.61	1,41
P1	0.36	0.36	0.36	1.50
P2	1.18	1.18	1.18	7.59
P3	2,41	2,41	2,41	18.51
nP4	5.00	5.00	5.00	34.42
P4	4.68	4.68	4.68	36.39
nP5	1.48	1.48	1.48	0.02
iP5	2.57	2.57	2.57	0.17
nP6	0.94	0.94	0.94	
sbP6	1.89	1.89	1.89	
mbP6	0.76	0.76	0.76	
5N6	0.28	0.28	0.28	
6N6				
BENZENE	0.95	0.95	0.95	
nP7	1.51	1.51	1.51	
sbP7	4.20	4.20	4.20	
mbP7	3.02	3.02	3.02	
5N7	0.11	0.11	0.11	
6N7				
TOLUENE	20.75	20.75	20.75	
nP8	0.26	0.26	0.26	
sbP8	1.48	1.48	1.48	
mbP8	1.42	1,42	1,42	
5N8	0.04	0.04	0.04	
6N8				
A8	24.79	24.79	24.79	
nP9	0.09	0.09	0.09	
iP9	0.62	0.62	0.62	
5N9	0.01	0.01	0.01	
6N9				
A9	12.87	12.87	12.87	
nP10				
iP10	0.01	0.01	0.01	
A10	5.72	5.72	5.72	
nP11				
iP11				

. /	•		1	MATER	IAL BA	LA	NCE (MO	LARI	PERCEN	(T)
Axens IFP / Group Technologies Process licensing		Job Number 08-3174	Unit 520	Type 1MP	-			Pag 13/	ge 15	
Client :	Tient : ALGIERS REFINERY ADAPTATION PROJECT (MS BLOCK) Date By Checkby Iss.							Iss.		
	NAFTEC Spa	a					24/10/08	SME	ATE	0
Unit :	nit : CONTINUOUS CATALYTIC REGENERATION REFORMING UNIT (CCR)									
Run case :	Case 1 - NOP	•								

Flow rate unit : mol %	STABILIZER TRIM	STABILIZER TRIM	STABILIZER OFF GAS	STABILIZER REFLUX
	49	50	51	52
H2	1.41	1,41	27.21	0.48
P1	1.50	1.50	11.30	1.15
P2	7.59	7.59	18.66	7.19
P3	18.51	18.51	16.76	18.57
nP4	34.42	34.42	10.83	35.27
iP4	36.39	36.39	15.21	37.15
nP5	0.02	0.02		0.02
iP5	0.17	0.17	0.03	0.18
nP6				
sbP6				
mbP6				
5N6				
6N6				
BENZENE				
nP7				
sbP7				
mbP7				
5N7				
6N7				
TOLUENE				
nP8				
sbP8				
mbP8				
5N8				
6N8				
A8				
nP9				
iP9				
5N9				
6N9				
A9				
nP10				
iP10				
A10				
nP11				
iP11				

Tableau donnant la composition de la charge [28].

Annexe 3

ons	Stream Name	14	Vapour Phase	Liquid Phase
	Vapour / Phase Fraction	0,0687	0,0687	0,9313
operties	Temperature [C]	186,0	186,0	186,0
Composition	Pressure [bar]	15,20	15,20	15,20
Oil & Gas Feed	Molar Flow [kgmole/h]	829,3	57,00	772,3
Petroleum Assay	Mass Flow [kg/h]	7,875e+004	3647	7,511e+004
User Variables	Std Ideal Liq Vol Flow [m3/h]	100,4	5,710	94,71
Notes	Molar Enthalpy [kJ/kgmole]	-4,203e+004	-6,768e+004	-4,014e+004
Cost Parameters	Molar Entropy [kJ/kgmole-C]	-382,8	-285,6	-389,9
Normalized Yields	Heat Flow [kJ/h]	-3,486e+007	-3,858e+006	-3,100e+007
	Liq Vol Flow @Std Cond [m3/h]	98,82	5,689	93,28
	Fluid Package	SRK		
	Utility Type			
				ОК

itions		Mole Fractions	Vapour Phase	Liquid Phase	
	H2	0,0060	0.0669	0,0015	
erties	P1	0,0042	0.0353	0,0019	
nposition	P2	0,0145	0.0825	0.0095	
& Gas Feed	OL2	0,0000	0,0000	0.0000	
K Value	P3	0,0283	0,1123	0,0221	
	O3	0,0000	0.0000	0.0000	
tes	IP4	0,0542	0,1554	0,0467	
t Parameters	NP4	0,0580	0,1467	0.0514	
malized Yields	P4	0,0000	0,0000	0,0000	
	04	0,0000	0,0000	0,0000	
	IP5	0,0251	0,0447	0,0237	
	NP5	0,0144	0,0236	0,0138	
	P5	0,0000	0,0000	0,0000	
	O5	0,0000	0,0000	0,0000	
	5N5	0,0000	0,0000	0,0000	
	22DMC4	0,0000	0,0000	0,0000	
	23DMC4	0,0000	0,0000	0,0000	
	MBP6	0,0000	0,0000	0,0000	
	2MC5	0,0000	0,0000	0,0000	
	3MC5	0,0000	0,0000	0,0000	
	SBP6	0,0186	0,0216	0.0184	
	NP6	0.0093	0.0095	0,0092	
	O6	0,0000	0,0000	0,0000	
	5N6	0.0028	0,0026	0,0029	
	A6	0,0094	0,0079	0.0095	
	6N6	0,0000	0,0000	0,0000	
	22DMC5	0,0000	0,0000	0,0000	
	23DMC5	0.0000	0.0000	0.0000	

Inditions 220MCS 0.000 0.000 Staff Fed Toleum Asay 20MCS 0.000 0.000 Staff Fed Toleum Asay 0.000 0.000 0.000 Staff Fed Toleum Asay 3MC6 0.000 0.000 Staff Fed Toleum Asay 0.001 0.000 0.000 Staff Fed Staff Fed Toleum Asay 0.001 0.000 0.000 O7 0.0000 0.0000 0.000 O7 0.0000 0.0000 0.000 Staff Fed Staff 0.0011 0.0006 0.000 Staff Fed Staff 0.0027 0.115 0.211 Staff Fed Staff 0.0000 0.0000 0.0000 Staff Fed Staff 0.0013 0.0070 0.0145 Staff Fed Staff 0.0000 0.0000 0.0000 NP8 0.0002 0.0	/orksheet		Mole Fractions	Vapour Phase	Liquid Phase	
240MCS 0.0000 0.0000 0x Gas 0.0000 0.0000 1x Gas 0.0000 0.0000 0x Gas <	nditions	23DMC5	0.0000	0.0000	0.0000	
MBP7 0.0297 0.0214 0.033 MBS Gas Fed terloam XSAP 2MC6 0.0000 0.0000 MC6 0.0000 0.0000 0.0000 MC6 0.0000 0.0000 0.0000 SMC6 0.0000 0.0000 0.0000 SMC6 0.0000 0.0000 0.0000 SMC7 0.0130 0.0421 0.0000 SMP7 0.0150 0.0097 0.0153 SMP7 0.0150 0.0000 0.0000 DCP 0.0000 0.0000 0.0000 DCP 0.0000 0.0000 0.0000 SMP7 0.011 0.0008 0.0011 A7 0.0011 0.0000 0.0000 SMP8 0.0125 0.001 0.0001 SMP8 0.0026 0.0011 0.0028 SMR4 0.0000 0.0000 0.0000 NP8 0.0000 0.0000 0.0000 NR8 0.0000 0.0000 0.0000	roperties	24DMC5	0.0000	0.0000	0.0000	
M & Gas Reed Walker Value 2WG6 0.0000 0.0000 Value Value 3WG6 0.0000 0.0000 3KC5 0.0000 0.0000 SE7 0.0131 0.0421 Ornalized Yelds 07 0.0000 0.0000 DMCP 0.0000 0.0000 0.0000 DMCP 0.0000 0.0000 0.0000 SN7 0.0011 0.0000 0.0000 SN7 0.0011 0.0000 0.0000 SNP 0.0000 0.0000 0.0000 SNP 0.0000 0.0000 0.0000 MBPB 0.0139 0.0007 0.0151 SNP 0.0000 0.0000 0.0000 SNP	omposition	MBP7	0,0297	0,0214	0,0303	
M66 0000 0000 0000 Jac Valide Jac Valide Vores 066 0000 0000 0000 Vores 077 00150 0000 0000 DACP 00000 00000 00000 SAV 00001 00000 00000 SAV 00001 00000 00000 SAV 00001 00000 00000 SAV 00000 00000 00000 SAV 00004 00000 00000 NP8 00026 00001 00001 NP8 00002 00000 00000 NP8 00002 00000 00000	Jil & Gas Feed	2MC6	0.0000	0.0000	0.0000	
3EG 0.000 0.0000 SBP7 0.0013 0.0021 Normalized Yiels NP7 0.0150 0.0000 Normalized Yiels NP7 0.0150 0.0000 Normalized Yiels NP7 0.0000 0.0000 Normalized Yiels NP8 0.0000 0.0000 Normalized Yiels NP8 0.0000 0.0000 SN7 0.0011 0.0000 0.0000 SN8 0.0025 0.0011 0.0028 SBP8 0.0026 0.0011 0.0000 NP8 0.00026 0.0001 0.0000 NP8 0.00026 0.0000 0.0000 NP8 0.00026 0.0000 0.0000 NP8 0.00026 0.0000 0.0	Petroleum Assay	3MC6	0.0000	0,0000	0,0000	
SP7 0.0413 0.0310 0.0421 Core Branneter NP7 0.0150 0.0000 0.0000 O7 0.0000 0.0000 0.0000 0.0000 DMCP 0.0000 0.0000 0.0000 0.0000 SN7 0.0001 0.0008 0.0011 A7 0.0000 0.0000 0.0000 BV7 0.0001 0.0000 0.0000 BV7 0.0011 0.0008 0.0011 A7 0.0000 0.0000 0.0000 BV7 0.0000 0.0000 0.0000 BV7 0.0000 0.0000 0.0000 BV7 0.0000 0.0000 0.0000 BV8 0.0119 0.0000 0.0000 SP8 0.0026 0.0011 0.0004 CVLN 0.0000 0.0000 0.0000 NP8 0.0000 0.0000 0.0000 M-VILINE 0.0000 0.0000 0.0000 NP9 0.00061	lcer Variablec	3EC5	0,0000	0,0000	0,0000	
NP7 0.0150 0.0097 0.0133 O7 0.0000 0.0000 0.0000 DMCP 0.0000 0.0000 0.0000 SV7 0.0001 0.0000 0.0000 SV7 0.0011 0.0008 0.0011 A7 0.0001 0.0000 0.0000 BVB8 0.0139 0.0077 0.0145 SBP8 0.0139 0.0000 0.0000 O8 0.0000 0.0000 0.0000 SP8 0.0025 0.0011 0.0028 SNR 0.0000 0.0000 0.0000 C-WILENE 0.0000 0.0000 0.0000 C-WILENE 0.0000 0.0000 0.0000 P-XILLENE 0.0000 0.0000 0.0000 P-XILLENE 0.0000 0.0000 0.0000 M8 0.0000 0.0000 0.0000 P-XILLENE 0.0000 0.0000 0.0000 M8 0.0000 0.0000 0.0000	Notes	SBP7	0.0413	0,0310	0,0421	
Normalized Yields 07 0.0000 0.0000 DMCP 0.0000 0.0000 SN7 0.0011 0.000 A7 0.00237 0.1016 Normalized Yields 0.0000 0.0000 SN7 0.0011 0.0000 A7 0.0020 0.0000 MBP8 0.0139 0.007 0.0145 SBP8 0.0145 0.0070 0.0151 08 0.0000 0.0000 0.0000 NP8 0.0026 0.0011 0.0028 SN8 0.0004 0.0000 0.0000 VXLINE 0.0000 0.0000 0.0000 M-VILINE 0.0000 0.0000 0.0000 A8 0.2433 0.0735 0.2559 6N8 0.0000 0.0000 0.0000 NP9 0.0061 0.0001 0.0001 NP9 0.0062 0.0002 0.0001 SN8 0.0002 0.0000 0.0001 N=VILINE<	Cost Parameters	NP7	0.0150	0.0097	0.0153	
DMCP 0.0000 0.0000 ECP 0.0000 0.0000 SN7 0.0011 0.0008 0.0011 A7 0.0000 0.0000 0.0000 MFR 0.0000 0.0000 0.0000 MFR 0.0139 0.0067 0.0145 SBP8 0.0139 0.0000 0.0000 NFB 0.0002 0.0000 0.0000 NFB 0.0002 0.0000 0.0000 NFB 0.0002 0.0000 0.0000 NFB 0.0002 0.0000 0.0000 NFB 0.0000 0.0000 0.0000 NFB 0.0000 0.0000 0.0000 NFB 0.0000 0.0000 0.0000 VMLENE 0.0000 0.0000 0.0000 A8 0.2433 0.0735 0.2559 MNB 0.0000 0.0000 0.0000 NP9 0.00061 0.0000 0.0001 SNB 0.00061 0.000	Normalized Yields	07	0,0000	0,0000	0,0000	
ECP 0.0000 0.0000 SN7 0.0011 0.008 0.0011 A7 0.2037 0.1016 0.2112 6N7 0.0000 0.0000 0.0000 MBP8 0.0139 0.0067 0.0145 SBP8 0.0145 0.0000 0.0000 NP8 0.0026 0.0011 0.0000 NP8 0.0026 0.0011 0.0000 NP8 0.0026 0.0011 0.0004 SN8 0.0004 0.0000 0.0000 C-XVLENE 0.0000 0.0000 0.0000 M-XVLINE 0.0000 0.0000 0.0000 P-XVLENE 0.0000 0.0000 0.0000 PAVLENE 0.0000 0.0000 0.0000 PS 0.0001 0.0000 0.0000 PS 0.0001 0.0000 0.0000 PS 0.0002 0.0000 0.0000 PS 0.0005 0.0000 0.0000 FM-WILINE		DMCP	0,0000	0,0000	0,0000	
SN7 0.0011 0.0008 0.0011 A7 0.2037 0.0156 0.2112 6N7 0.0000 0.0000 0.0000 MP8 0.0139 0.0067 0.0145 SBP8 0.0145 0.0000 0.0000 NP8 0.0026 0.0011 0.0004 SN8 0.0004 0.0001 0.0004 ETHVIEEN 0.0000 0.0000 0.0000 O-XVIENE 0.0000 0.0000 0.0000 M-XVIENE 0.0000 0.0000 0.0000 P-XVIENE 0.0000 0.0000 0.0000 P-3 0.0000 0.0000 0.0000 P-3 0.0000 0.0000 0.0000 SN8 0.0000 0.0000 0.0000 P-3 0.0000 0.0000 0.0000 SN8 0.0000 0.0000 0.0000 SN8 0.0000 0.0000 0.0000 P-3 0.0000 0.0000 0.0000		ECP	0.0000	0,0000	0,0000	
A7 0.2037 0.1016 0.2112 6N7 0.0000 0.0000 0.0000 MBP8 0.0139 0.0067 0.0145 SBP8 0.0145 0.0000 0.0000 NP8 0.0000 0.0000 0.0000 NP8 0.0004 0.0001 0.0004 SNR 0.0000 0.0000 0.0000 C-XVLENE 0.0000 0.0000 0.0000 M-XVLINE 0.0000 0.0000 0.0000 P-XVLENE 0.0000 0.0000 0.0000 PAVLENE 0.0001 0.0000 0.0000 PAVLENE 0.0001 0.0000 0.0000 SNB 0.0001 0.0000 0.0000		5N7	0.0011	0,0008	0,0011	
6N7 0.0000 0.0000 MBP8 0.0139 0.0067 0.0145 SBP8 0.0145 0.0070 0.0151 O8 0.0000 0.0000 0.0000 NP8 0.0026 0.0011 0.0004 ETHV18EN 0.0000 0.0000 0.0000 O-VVENE 0.0000 0.0000 0.0000 M-VVENE 0.0000 0.0000 0.0000 AS 0.0233 0.0735 0.2559 AS 0.0000 0.0000 1.0000 IP9 0.0001 0.0004 1.0000 Total 1.0000 0.0001 0.0001		A7	0,2037	0,1016	0,2112	
MBP8 0.0139 0.0067 0.0145 SBP8 0.0145 0.0000 0.0000 OB 0.0000 0.0000 0.0000 NP8 0.0026 0.0011 0.0008 SN8 0.0000 0.0000 0.0000 C-X-VLEN 0.0000 0.0000 0.0000 M-XVLINE 0.0000 0.0000 0.0000 P-X-VLENE 0.0000 0.0000 0.0000 P-XVLINE 0.0000 0.0000 0.0000 P-XVLINE 0.0000 0.0000 0.0000 P/S 0.0001 0.0000 0.0000 P/S 0.0001 0.0000 0.0000 SNB 0.0002 0.0000 0.0001 INP9 0.0001 0.0001 0.0001 SNB 0.0001 0.0000 0.0001		6N7	0.0000	0,0000	0,0000	
SBP8 0.0145 0.0070 0.0151 O8 0.0000 0.0000 0.0000 NP8 0.0026 0.0011 0.0028 SN8 0.0004 0.001 0.0004 ETH/LIEN 0.0000 0.0000 0.0000 O-XVLNE 0.0000 0.0000 0.0000 M-XVLINE 0.0000 0.0000 0.0000 P-XVLNE 0.0000 0.0000 0.0000 A8 0.0263 0.0735 0.2559 6NS 0.0000 0.0000 1.0000 NP9 0.00061 0.0000 1.0000 SN8 0.0002 0.0001 1.0000		MBP8	0.0139	0,0067	0,0145	
08 0.0000 0.0000 NPB 0.0026 0.0011 0.0004 SNB 0.0004 0.0001 0.0004 ETHVLEN 0.0000 0.0000 0.0000 O-XVENE 0.0000 0.0000 0.0000 M-XVENE 0.0000 0.0000 0.0000 P-XVENE 0.0001 0.0000 0.0000 P-S 0.0001 0.0000 0.0001 SNB 0.0001 0.0000 0.0001		SBP8	0.0145	0,0070	0,0151	
NPB 0.0026 0.0011 0.0028 SN8 0.0004 0.0001 0.0004 ETHVLBEN 0.0000 0.0000 0.0000 O-XVLENE 0.0000 0.0000 0.0000 M-XVLINE 0.0000 0.0000 0.0000 P-XVLENE 0.0000 0.0000 0.0000 A8 0.2433 0.0735 0.2559 6N8 0.0000 0.0000 0.0000 NP9 0.0061 0.0028 0.0009 SN9 0.0001 0.0000 0.0001 Total 1.00000 0.0001 0.0001		08	0,0000	0,0000	0,0000	
5N8 0.0004 0.0001 0.0004 ETHVLEEN 0.0000 0.0000 0.0000 O-XVLENE 0.0000 0.0000 0.0000 M-XVLENE 0.0000 0.0000 0.0000 P-XVLENE 0.0000 0.0000 0.0000 A8 0.2433 0.0735 0.2539 6N8 0.0000 0.0000 0.0000 IP9 0.0001 0.0004 0.0001 SN9 0.0001 0.0000 0.0001 Total 1,00000 0.0001 0.0001		NP8	0.0026	0.0011	0,0028	
ETH/LIEEN 0.0000 0.0000 O-XYLENE 0.0000 0.0000 M-YVLINE 0.0000 0.0000 P-XYLENE 0.0000 0.0000 A8 0.2433 0.0735 0.2559 6N8 0.0000 0.0000 0.0000 IP9 0.0061 0.0002 0.0004 NP9 0.0068 0.0009 0.0001 SN9 0.0001 0.0001 Total 1.00000 0.0001		5N8	0.0004	0.0001	0,0004	
O-XYLENE 0.0000 0.0000 M-XYLENE 0.0000 0.0000 P-XYLENE 0.0000 0.0000 A8 0.2433 0.0735 0.2559 6N8 0.0000 0.0000 0.0000 IP9 0.0001 0.0008 0.0004 NP9 0.0001 0.0009 5N9 0.0001 Total 1.00000 0.0001 0.0001		ETHYLBEN	0,0000	0,0000	0,0000	
M-XVLINE 0.0000 0.0000 P-XVLENE 0.0000 0.0000 A8 0.2433 0.0735 0.2559 6N8 0.0000 0.0000 0.0000 IP9 0.0001 0.0000 0.0000 NP9 0.0002 0.0009 5N9 Total 1.00000 0.0001 0.0001		O-XYLENE	0,0000	0,0000	0,0000	
P-XVLENE 0.0000 0.0000 A8 0.2433 0.0735 0.2559 6N8 0.0000 0.0000 0.0000 IP9 0.0061 0.0018 0.0064 NP9 0.0000 0.0000 0.0001 5N9 0.0001 0.0000 0.0001		M-XYLENE	0.0000	0,0000	0,0000	
A8 0.2433 0.0735 0.2559 6N8 0.0000 0.0000 0.0000 JP9 0.0061 0.0018 0.0064 NP9 0.0001 0.0000 0.0001 SN9 0.0001 0.0000 0.0001		P-XYLENE	0,0000	0,0000	0,0000	
6NS 0.0000 0.0000 JP9 0.0061 0.0018 0.0064 NP9 0.0008 0.0002 0.0009 SN9 0.0001 0.0000 0.0001		A8	0.2433	0,0735	0,2559	
IP9 0.0051 0.0018 0.0064 NP9 0.0008 0.0002 0.0009 SN9 0.0001 0.0000 0.0001		6N8	0.0000	0,0000	0,0000	
NP9 0.0008 0.0002 0.0009 SN9 0.0001 0.0000 0.0001 Total 1.00000 0.0001		IP9	0.0061	0.0018	0,0064	
L5N9 0.0001 0.0000 0.0001		NP9	0.0008	0,0002	0,0009	
Total 1,00000		5N9	0.0001	0.0000	0.0001	
		Total	1,00000			

		Mole Fractions	Vapour Phase	Liquid Phase	
onditions	5N9	0.0001	0.0000	0.0001	
roperties	A9	0.1263	0.0288	0.1335	
omposition	6N9	0.0000	0.0000	0.0000	
Dil & Gas Feed	IP10	0,0001	0,0000	0,0001	
etroleum Assay	NP10	0.0000	0,0000	0.0000	
value Isor Variables	5N10	0,0000	0,0000	0.0000	
loter	A10	0,0562	0,0072	0,0598	
Cost Parameters	6N10	0.0000	0,0000	0.0000	
ormalized Yields	IP11	0,0000	0,0000	0.0000	
	NP11	0,0000	0,0000	0,0000	
	5N11	0,0000	0,0000	0.0000	
	A11	0.0000	0,0000	0.0000	
	6N11	0,0000	0,0000	0,0000	
	P12	0,0000	0,0000	0,0000	
	N12	0.0000	0,0000	0.0000	
	A12	0,0000	0,0000	0.0000	
	P13	0,0000	0,0000	0,0000	
	N13	0.0000	0,0000	0.0000	
	A13	0,0000	0,0000	0.0000	
	P14	0,0000	0,0000	0,0000	
	N14	0.0000	0,0000	0.0000	
	A14	0,0000	0,0000	0,0000	
	Coke	0,0000	0,0000	0,0000	
	H2O	0.0000	0,0000	0.0000	
	H2S	0,0000	0,0000	0.0000	
	TH4	0,0000	0,0000	0,0000	
	TH5	0,0000	0,0000	0.0000	
	TH6	0.0000	0.0000	0.0000	

Figures représentants les paramètres opératoires et les compositions de la colonne C001 par HYSYS

Appendix A 249

N	o. Su	bstance	State	Relative molecular mass	Standard enthalpy of devaluation, $\frac{\tilde{h}_{d}^{0}}{kJ/kmol}$	Standard chemical exergy, $\hat{\varepsilon}^0$ kJ/kmol
1		2	3	4	5	6
1	CH ₄	methane	g	16.042	802 320	836 510
2	C_2H_6	ethane	g	30.068	1 428 780	1 504 360
3	C ₃ H ₈	propane	g	44.094	2 045 380	2 163 190
4	C_4H_{10}	butane	g	58.120	2 658 830	2 818 930
5	$C_{5}H_{12}$	pentane	g	72.146	3 274 290	3 477 050
			ĩ	72.146	3 247 240	3 475 590
6	$C_{6}H_{14}$	hexane	g	86.172	3 889 280	4 134 590
			ĩ	86.172	3 857 630	4 130 570
7	C7H16	heptane	1	100.198	4 467 820	4 786 300
8	C8H18	octane	1	114.224	5 078 000	5 440 030
9	C ₉ H ₂₀	nonane	1	128.250	5 688 230	6 093 550
10	C10H22	decane	1	142.276	6 298 410	6 749 750
11	C11H24	undecane	1	156.302	6 908 600	7 404 520
12	C12H26	dodecane	1	170.328	7 518 820	8 059 340
13	C13H28	tridecane	. 1	184.354	8 129 010	8 714 200
14	C14H30	tetradecane	1	198.380	8 739 190	9 368 970
15	C15H32	pentadecane	1	212.406	9 349 370	10 023 870
16	C16H34	hexadecane	1	226.432	9 959 640	10 678 810
17	C.H.	cyclopropane	σ	42 078	1 960 640	2 052 490
18	C.H.	cyclobutane	ø	56 104	2 569 770	2 707 730
19	C ₄ H ₈	cyclobexane	g	84.156	3 691 380	3 928 100
17	061112	cyclonexane	1	84156	3 658 260	3 922 990
20	C.H.	methylcyclo-hexane	σ	98 182	4 295 490	4 573 030
20	071114	methyleyere nexane	1	98 182	4 260 070	4 566 080
21	C.H.	ethylcyclo-hexane	ø	112,208	4 914 260	5 246 900
-1	081116	ethyleyete nexane	ĩ	112 208	4 873 770	5 2240 200
22	C.H.	propylcyclo-hexane	1	126 234	5 483 330	5 878 430
23	C H	butylcyclo-hexane	î	140 260	6 094 260	6 534 510
24	C101120	dityleyere nexale		29.052	1 222 070	1 266 610
24	C ₂ H ₄	ethylene	g	28.052	1 323 8/0	1 366 610
25	C ₃ H ₆	propene	g	42.078	1 927 730	2 010 840
20	C ₄ H ₈	1-butene	g	30.104	2 542 940	2 668 920
21	C ₆ H ₁₂	I-hexene	g	84.150	3 772 890	3 984 330
20	0.11	and the second	1	84.156	3 742 240	3 981 650
28	C ₇ H ₁₄	1-heptene	g	98.182	4 387 970	4 641 570
			1	98.182	4 338 490	4 620 680
29	C_2H_2	acetylene	g	26.036	1 256 460	1 269 310
30	C_3H_4	propyne	g	40.062	1 850 860	1 904 070
31	C_4H_6	1-butyne	g	54.088	2 466 360	2 561 190
32	C6H10	1-hexyne	g	82.140	3 696 320	3 876 600
33	C7H12	1-heptyne	g	96.166	4 311 440	4 534 300
34	C ₆ H ₆	benzene	g	78.108	3 171 630	3 310 540
			1	78.108	3 137 670	3 305 350

Table A.4 Standard enthalpy of devaluation and standard chemical exergy of organic substances. Reproduced from Ref [3.3], by permission. ($T^0 = 298.15$ K, $P^0 = 1.01325$ bar.)

250 Appendix A

Table A.4-continued

No.	Substance	e	State	Relative molecular mass	Standard enthalpy of devaluation, $\frac{\tilde{h}_{d}^{0}}{k I/k mol}$	Standard chemical exergy, $\tilde{\epsilon}^0$ kI/kmol
1	2		3	4	5	6
35	C ₂ H _o	toluene			0.000 110	2.052.550
	/8	toluene	g	92.134	3 774 440	3 952 550
36	C_8H_{10}	ethylbenzene	1	92.134	3 730 420	1 610 250
	0 10	stary roomzene	g	106.160	4 369 960	4 599 370
37	$C_{9}H_{12}$	propylbenzene	1	120.100	4 947 700	5 262 930
38	C10H14	butylbenzene	1	134 212	5 567 730	5 908 120
39	C16H26	decylbenzene	i	218 368	9 198 310	9 730 670
40	C.H.	nanhthalene		100.000	1 094 220	5 264 190
41	CioHia	1245-tetra-methylbenzene	S	126.104	5 532 080	5 896 060
42	$C_{11}H_{10}$	2-methylnanbthalene	5	142 100	5 574 930	5 892 920
43	C11H16	Dentamethylbenzene	5	142.190	6 131 610	6 534 420
44	C12H18	hexamethylbenzene	5	162 264	6 739 110	7 191 670
45	$C_{14}H_{10}$	anthracene	s	178 220	6 850 940	7 229 600
46	C14H10	phenanthrene	s	178.220	6 835 870	7 213 270
47	C14H14	1,1-diphenylethane	S	182.252	7 250 910	7 682 020
48	C18H38	octadecane	S	254.484	11 116 710	11 981 110
49	C19H16	triphenylmethane	s	244.318	9 579 730	10 127 620
50	C24H18	1,3,5-triphenylbenzene	S	246.384	11 850 110	12 510 990
51	C25H20	tetraphenylmethane	S	320.410	12 544 110	13 254 570
52	CH ₂ O	formaldehvde	g	30.026	519 870	541 650
53	CH ₂ O ₂	formic acid	g	46.026	259 080	303 580
	2 - 2		ĭ	46.026	212 980	294 040
54	C ₂ H ₆ O	ethanol	g	46.068	1 278 230	1 370 800
	2 0		Ĩ	46.068	1 235 940	1 364 560
55	C ₂ H ₆ O	dimethylether	g	46.068	1 328 140	1 426 440
56	C ₂ H ₄ O	acetaldehyde	g	44.052	1 105 520	1 167 860
57	C ₂ H ₄ O	ethylene oxide	g	44.052	1 220 530	1 288 990
58	$C_2H_6O_2$	ethylene glycol	1	62.068	1 058 630	1 214 210
59	$C_2H_4O_2$	acetic acid	g	60.052	834 140	923 570
			1	60.052	786 610	912 640
60	C ₃ H ₈ O	propan-2-ol	1	60.094	1 830 590	2 007 820
61	C ₃ H ₆ O	acetone	g	58.078	1 690 880	1 798 440
		Interal	1	38.078	1 059 600	1 795 380
62	C ₄ H ₈ O	butanoi	1	72.104	2 290 400	2 4/2 470
63	C ₄ H ₈ O	butan-2-one	1	68 072	2 204 050	2 441 780
64	C_4H_4O	Iuran	8	68.072	2 024 300	2 123 420
	CILO	huturic acid	1	88 104	2 018 750	2 122 750
65	$C_4H_8O_2$	ethyl acetate	i	88 104	2 073 550	2 224 950
66	$C_4H_8O_2$	pentan-1-0	i	88 146	3 060 720	3 3 25 5 20
67	C ₅ H ₁₂ O	2-methylbutan-2-ol	i	88 146	3 017 220	3 323 330
68	C ₅ H ₁₂ O	cyclopentanol	i	86 130	2 878 680	3 121 220
69	CHO	furfuryl alcohol	1	98 098	2 418 550	2 604 520
70	$C_5 \Pi_6 O_2$	hexan-1-ol	1	102,172	3 668 890	3 977 170
/1	C611140	novan 1 or		102.172	5 000 070	5511110

Tableau donnant les exergies standards en kJ/kmol [36], [37].

Annexe 5

```
for flux=1:1:17
x=input('donnez la valeur de x=')
cp=input('donnez la valeur de cp=')
T=input('donnez la valeur de T=')
To=input('donnez la valeur de To=')
P=input('donnez la valeur de P=')
Po=input('donnez la valeur de Po=')
R=input('donnez la valeur de R=')
exo=input('donnez la valeur de exo=')
wl=input('donnez la valeur de wl=')
wg=input('donnez la valeur de wg=')
n=input('donnez la valeur de n=')
Nature=input('donnez la valeur de Nature=')
if Nature ==1
s=(x.*(cp.*(T-To)-To.*cp.* log(T/To)+R.*To.*log(P/Po)));
exph= sum(s);
s=(x.*(exo+R.*To.*log(x)));
exch= sum(s);
extot1= sum(exph+exch)
elseif Nature==2
s=(x.*(cp.*(T-To)-To.*cp.*log(T/To)));
exph= sum(s);
s = (x.*(exo+R.*To.*log(x)))
exch= sum(s)
extot= sum(exph+exch)
else Nature==3
s=((wl.*exl)+(wg.*exg))
exgl= sum(s);
end
end
I=input('donnez la valeur de l=')
Tair=input('donnez la valeur de Tair=')
Tk=T0+(16.38*1*(Tair-T0)+44371)/(1.09*(1+15.45*1))
Exent=input('donnez la valeur de Exent=')
Exsor=input('donnez la valeur de Exsor=')
me=input('donnez la valeur de me=')
ms=input('donnez la valeur de ms=')
T=input('donnez la valeur de T=')
To=input('donnez la valeur de To=')
Q=input('donnez la valeur de Q=')
W=input('donnez la valeur de W=')
s=((me.*Exent)-(ms.*Exsor))+Q.*(1-To/T)+W
Exp= sum(s)
```

Programme de Matlab

Annexe 6					
Domaine de variation des paramètres opératoires	$\mathbf{E}\mathbf{x}_{\mathbf{p}}\left(\mathbf{kW}\right)$				
Taux	de reflux				
1	2.8593 10 ⁵				
2	2.8593 10 ⁵				
3	$2.8593 \ 10^5$				
4	$2.8593 \ 10^5$				
5	$2.8593 \ 10^5$				
Température d	'alimentation (°C)				
140	1.8115 105				
150	2.0674 105				
160	2.2803 105				
170	2.5356 10 ⁵				
180	2.7940 105				
190	3.0296 10 ⁵				
200	3.2485 103				
Pression d'al	imentation (bar)				
10	2.9778 105				
12	2.9383 10 ⁵				
14	2.9186 10 ⁵				
16	2.898810				
18	2.8791 105				
20	2.8593 10 ³				
Q	(KW)				
1000	2.8233 10°				
5000	2.8427 10				
	2.8001 10				
7000	2.8773 10				
9000 Easter	2.8949 10				
Facter	1r d'air λ 2 8 c04 105				
I	2.8500 105				
1.1	2.8599 10				
1.2	2.8595 10				
1.5	2.8591 10 2.8587 10 ⁵				
1.4	$2.8587 10^{5}$				
1.5	2.6363 10				
1(2 8507110 ⁵				
5	2.8597110				
10	2.8590510				
15	2.8595510				
25	2.8595410				
	(°C)				
1 ai	r(C) 2.85020 10 ⁵				
5	2.63729 10				
25	2.85931 10				
25	2.03734 10				
55	2.03330 10				
75	2.03742 10				
100	2.85953 105				
120	2,85958,105				
140	2.05750 10				

Tableau représentant la sensibilité de la perte exergétique aux conditions opératoires.