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ABSTRACT

The goal of general-purpose audio tagging is to create systems capable of recognizing a
variety of sounds. Including musical instruments, vehicles, animals, sounds generated by some
sort of human activity etc. The motivation for research in the field of artificial sound
understanding can be found in potential applications such as security, healthcare (hearing
impairment), improvement in smart devices and various music related tasks. The main
contribution of this work entails conducting extensive studies and comparisons between audio
tagging systems using a huge dataset made of 11 073 audio recordings. In this thesis, we have
carried out two sets of experiments. First, we have examined Deep Convolutional neural
networks (CNN) and 3 of its variants (Convolutional Recurrent Neural Network (CRNN),
Gated Convolutional Recurrent Neural Network (GCRNN) and Gated Convolutional Neural
Networks (GCNN)) using Log-Mel Spectrogram features. We have supported our analysis and
discussion with numerous statistical tests to analyze and compare the effect of the above-
mentioned features and models on the tagging performance. Our experimental findings indicate
that our systems capture diverse set of sound events, with various confidences. Moreover,
Convolutional Recurrent Neural Network (CRNN) significantly outperforms the other models.
Second, motivated by the fact that the individual models produce diverse predictions, we have
investigated the effect of ensemble learning using a technique known as stacking. Our analysis
shows that stacking provides a proper amalgamation of the individual learners, resulting in
better handling the diverse nature of the events.

Keywords: Audio Tagging, Deep Learning, Machine leaning, Ensemble Learning,

Stacking, Feature Extraction, Statistical Tests.



RESUME

L’étiquetage audio est une technique qui permet de créer des systemes capables
d’identifier un ensemble de sons tel que : les sons des instruments musicaux, les sons générer
par une activité humaine et le son des véhicules etc. Ce qui a motiveé la présente recherche, ¢’est
sa potentielle application dans divers domaines tel que la sécurité, la santé ainsi que
I'amélioration des appareils intelligents. La principale contribution de ce travail consiste a
mener une étude approfondie qui consiste a analyser et comparer les performances de plusieurs
systémes d’étiquetage audio en utilisant une base de données volumineuse constituée de 11 473
enregistrements audio. Dans ce travail, nous avons effectué deux séries d'expériences: dans un
premier temps, nous avons comparé les performances de nos systemes selon les caractéristiques
du log-mel spectrogramme en examinant le réseau de neurones convolutifs (CNN) et trois de
ses variants : le réseau de neurones convolutifs récurrents (CRNN), le réseau de neurones
convolutifs récurrents a portes (GCRNN) et le réseau de neurones convolutifs a portes
(GCNN). Nous avons appuyé notre analyse dans ce document par des tests statistiques afin
d’interpréter et de comparer les résultats obtenus. Cela nous a permis de démontrer que nos
systeémes capturent plusieurs types d’évenements sonores. De plus, la performance du réseau
de neurones convolutifs récurrents (CRNN) a surpassé les autres. Deuxiemement, motivé par
le fait que les modéles individuels produisent des prédictions diverses. Nous avons étudié I'effet
de l'apprentissage ensembliste en invogquant une technique connue sous le nom de «stackings.
Notre analyse démontre que cette méthode a une capacité de généralisation considérablement
meilleure que les classifieurs uniques. Plus important encore, cette derniere a fourni une fusion
appropriée de leurs diverses prédictions, ce qui a permis de mieux gérer la diversité des
évenements.

Mot clés : Etiquetage Audio, Apprentissage Profond, Apprentissage automatique,

Apprentissage Ensembliste, Extraction des Caractéristiques, Testes Statistique.
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INTRODUCTION

INTRODUCTION

1. Context and problem statement

Nowadays, machines are able to efficiently handle a wide variety of multimedia content
including images, audios, videos etc. As the amount of data is constantly increasing, the analysis
and the recognition of certain patterns out of it has become of paramount importance. Sound
analysis [1] is a subfield concerned about execution of such tasks for audio signals such as
speech, music, acoustic events etc.

We can classify sound analysis tasks into 3 categories: Acoustic Scene Classification,
Audio Tagging and Event Detection. In scene classification, the goal is to categorize an audio
recording into one of a set of (predefined) categories; for instance: home, street, and office.
Similarly, audio tagging assigns a given audio recording with one or several pre-defined tags.
The motivation behind audio tagging systems is to foster research towards more general
machine listening systems capable of recognizing and discerning a wide range of acoustic
events and audio scenes. Furthermore, there is a large amount of user-generated audio content
that is available on the web, which can be a resource of great potential for sound recognition
related research. Audio tagging has many applications such as audio information retrieval [2],
audio classification [3], acoustic scene recognition [4], industry sound [5] and music tagging
[6]. Finally, event detection locates in time the occurrences of a specific type of sound or
sounds, either by finding each instance when the sound(s) happen or by finding all the temporal
positions when the sound(s) are active. Here, the term sound event refers to a specific sound
produced by a distinct physical sound source, such as a car passing by, a bird signing, or a
doorbell. By contrast, the term of sound scene refers to the entirety of sound that is formed
when sounds from various sources, typically from real scenarios, combine to form a mixture.

The process of Audio Tagging consists of two main stages (Figure 1): Feature
Engineering and Machine Learning. First, the main role of sound pre-processing step is to
enhance certain characteristics of the incoming audio file in order to optimize audio analysis
performance in the later phases of the analysis system. Then, feature extraction is applied on
the resulting preprocessed data; here, we divide the audio signal into equal frames in order to
perform feature extraction and obtain a feature vector per frame. Each vector of data is
associated to its corresponding event label. The most common types of features used in the
literature include: Mel-frequency cepstral coefficients [7], Log Mel band Energy [8] and
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spectral centroid. Next, the classification model takes the feature vector of each frame and
outputs the event presence predictions for each sound event class. It worth underscoring a
classifier or learner enables us to predict the events labels, known as class labels, present in a
sound recording. Many classification algorithms have been introduced in the literature, such as
Deep Neural Networks [9], Gaussian Mixture Models (GMMs) [10], and Support Vector
Machine [11].

W * [ Preprocessing ] [ Feature Extraction J

Audio data

Classification Model

Class labels
Figure 1: The mechanism of audio tagging system.

2. Contributions

With the increasing attention geared towards multimedia content, the research community
has recently become more motivated to perform extensive studies and comparisons between
sound analysis systems. The design and evaluation of such systems is actually a more
complicated task, and should be conducted properly in order to ensure significance of results
(i.e. avoid deriving conclusions affected by chance). To date, the problem of Audio Tagging
has been addressed by the research community using various methodologies. Most of them have
focused on extracting relevant features and finding suitable classifiers to improve the overall
performance. Nevertheless, only a few attempts have reviewed and studied the proper manner
required for the design and analysis of Audio Tagging systems [12] [13] [14]. Furthermore,
several seminar papers have been published recently; most of them have invoked recent and
hybrid deep learning architecture, for instance: Convolutional Recurrent Neural Network
and Gated Convolutional Recurrent Neural Network [15]. Therefore, an adequate review of
the newly proposed techniques has become necessary. Additionally, extensive comparisons
among these methods should be conducted in order to acquire the best practices for addressing

the Audio Tagging task. In what follows, we summarize our main contributions:
1. We have carried out extensive experiments on the FSDKaggle2018 dataset [16]. This
dataset presents several challenges. It contains user-generated audio clips retrieved from
Freesound [17], which are very diverse in terms of acoustic content, recording

techniques, clip duration, etc. Furthermore, these audio clips could feature incomplete
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and inconsistent user-provided metadata. Some audio clips were manually labeled,
while a smaller set of clips were automatically categorized on the basis of their user-
provided metadata. Therefore, the dataset is unbalanced and contains a large fraction of
reliable annotations that can be trusted. It also contains an amount of non-verified
annotations that could include a small amount of label noise.

2. To cope with the above challenges, we have designed our Audio Tagging systems using
well-known deep neural network architectures, which have been successfully used in
audio-related tasks [15] [3]. Specifically, we have studied Convolutional Neural
Networks (CNN), Convolutional Recurrent Neural Network (CRNN), Gated
Convolutional Recurrent Neural Network (GCRNN) and Gated Convolutional Neural
Networks (GCNN). In addition, we have supported our analysis and discussion with
numerous statistical tests.

3. We have invoked Stacking ensemble learning technique by taking the noisy label into
account. The aim of Stacking is to combine the prediction result from different models
in order to improve the accuracy and robustness of the system. Furthermore, to address
the effect of the non-verified examples on the performance of the system, we have used
a combination re-weight strategy along with stacking to handle the potential noisy label
of the non-verified annotations in the dataset.

4. We have reviewed recent Audio Tagging schemes and discussed the major steps
involved in the proper design and evaluation of such systems.

3. Thesis structure

This thesis consists of two primary parts. The first part covers the state-of-the-art
notions that are necessary for understanding the ideas developed in this thesis. Chapter 1 is
also divided into two parts; the first one gives an overview of acoustic features used to represent
audio signals. Specifically, we present the different feature extraction techniques that are
frequently used in literature as for the second part of this chapter we review some relevant
classification concepts, providing a brief description of the supervised classifiers, evaluation
metrics and statistical tests invoked in this work. In Chapter 2, we describe the architecture of
some basic and hybrid deep learners. The second half of this thesis describes the methodology
that we have followed for comparing Audio Tagging systems. We provide in Chapter 3
detailed description of the experimental setup, including preprocessing, feature extraction and
parameters setting. In Chapter 4, we present the obtained results through performance tables
and plots. Finally, we conclude by summarizing the contributions of this thesis, the lines of

limitations and future work.



PART |I: FUNDAMENTALS OF AUDIO
TAGGING

In this part we explain the notions that are necessary for understanding the ideas
developed in this thesis. It is composed of two chapters. Chapter 1 is divided into two main
parts the first one gives an overview of acoustic features used to represent audio signals.
Specifically, we describe data required for the development of Audio Tagging systems and
highlight the importance of feature engineering to transform the signal into a suitable
representation. Furthermore, we present the different feature extraction techniques that are
frequently used in literature as for the second part of this chapter we review some relevant
concepts of classification providing a brief description of the fundamentals of classification,
feature selection techniques, evaluation metrics and statistical tests invoked in this work. In
Chapter 2, we present the main deep neural network used in our work. In addition, we provide
a brief description of a data augmentation technique and ensemble method. Moreover, we
discuss some empirical and theoretical findings on the differences of the architectures presented

in this chapter. Finally, we have discussed the challenges related to Audio Tagging research.
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CHAPTER 1: GENERALITIES ON AUDIO
TAGGING

1.1  Introduction

Audio Tagging is about predicting the types of sound events occurring in audio clips. It
is comprised of two main stages: (1) Feature Engineering, (2) Machine Learning. Feature
engineering consists of transforming the signal into a representation which maximizes the sound
recognition performance of the analysis system. The acoustic features provide a numerical
representation of the signal content relevant for machine learning, characterizing the signal with
values which have connection to its physical properties, for example, signal energy, its
distribution in frequency, and change over time. On the other hand, machine learning is an
application of artificial intelligence that provides systems the ability to automatically learn and
improve from data. The result of the learning process is known as machine learning model. This
latter takes as an input a set of features extracted from a sound event and assigns a label to it.

This chapter is divided into two primary parts: In the first part, we begin by introducing
the process of sound acquisition in Section 1.2. Then, in Section 1.3, we highlight the
importance of feature engineering, we briefly discuss time and frequency representations and
explain the different feature extraction techniques widely employed in the literature and some
preprocessing techniques. Finally, in Section 1.4 we shortly describe some existing datasets for
sound analysis. In the second half of this chapter, we first provide a short introduction to the
relevant concepts of classification in Section 1.5. Then, in Section 1.6 we present model
evaluation techniques. In Sections 1.7 and 1.8 we explain feature selection and statistical tests.
Finally, in Sections 1.9 and 1.10, we conclude this chapter by reviewing related work on Audio

Tagging research and summarizing the main concepts that we have learned.

PART |: FEATURE ENGINEERING

1.2 Sound Acquisition

Data acquisition is an important stage of developing an Audio Tagging system, as its
performance highly depends on the data in the process [1]. Essentially, the aim is to collect as
realistic as possible acoustic signals in conditions which are as close as possible to the intended

target application. The metadata should include a ground truth information which is often
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manually annotated during the data collection; metadata can be defined as “data about data™. In
the case of audio, it usually refers to textual information that is used to describe and to index an
audio file or a segment.

Collected data should also have sufficient number of representative examples of all sound
classes for increasing the generalization ability of the acoustic models. The audio must
represent the modeled phenomena such that the models learned from it will represent the
variability in the acoustic properties expected in the application. The presence of all categories
relevant to the Audio Tagging task (Figurel.1) will provide the required coverage, making a
dataset suitable for the given task. These are the main properties that a well-built dataset should
have:

» Coverage: The dataset should contain as many different categories as are relevant to
the task.

« Variability: For each category, there should be examples with variable conditions of
generation, recording, etc.

* Size: For each category, there should be sufficiently many examples. Otherwise, the

training of a system results in a weak model.

ERENE R

[ Audio Tagging

[ Applause ] [ Keyboard ] [Bass drum]

Figure 1.1: System input and output characteristics for Audio Tagging [1].

1.3  Time and frequency representation

1.3.1 Frequency

Frequency is the measurement of the number of times that a repeated event occurs per
unit of time. The frequency of wave-like patterns including sound expresses the number of
cycles of the repetitive waveform per second. For humans, hearing is limited to frequencies
between about 20 Hz and 20 000 Hz [18].

1.3.2 Fourier transform
Signal is defined as any physical quantity that varies with time. It conveys information in

its patterns of variation. The manipulation of this information involves the acquisition, storage,
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transmission, and transformation. In order to find the different frequencies that are present in
a signal we apply the Fourier transform [19].

The Fourier analysis is the main mathematical tool which allows the passage from the
temporal representation that shows the way the overall sound amplitude changes over time
to the frequency representation that shows how much of the signal lies within each given
frequency band over a range of frequencies. It is used to decompose a signal into sinusoidal
elements. Each sinusoid represents a frequency, which makes it possible to obtain information
on the frequency distribution rather than a temporal distribution. The resulting sinusoids of
Fourier Transform on a signal represented as a function of time is a complex value, whose
imaginary part represents the phase off-set of the pure sinusoid and its absolute value represents
value of the corresponding frequency component.

The exact form of the Fourier transform used to determine the spectrum from the discrete
time signals is known as the Discrete Fourier Transform (DFT).

The mathematical equation of the DFT is:

N-1
. .knl-
x<ki)=E x(n)e MW, (1.1)
n=0

where K is a set of possible frequencies and N the total number of samples in a given sound
signal, furthermore, K; € K denotes the i*" frequency and n; € N represents the it* sample
of the signal. We define x(k;) as the amount of the i*" frequency in the signal and x(n;) as the
amplitude of the signal at the i*"* sample.

Here are two plots that show the effect of the FFT function applied to a simple raw audio

waveform, it shows the frequency domain representation of a time domain signal (Figure 1.2).
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:% o E‘ 2000000
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Time [s] frequency
(a) Raw audio waveform (b) Frequency domain representation

Figure 1.2: Frequency representation of a raw audio waveform.
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It is worth mentioning that the DFT algorithm has a complexity of 0(N?), whereas, the
Fast Fourier Transform (FFT) implementation has a quasi-logarithmic complexity
O(N log, N) [19]. The savings in terms of computation are enormous, it is for this reason that

FFT is commonly used in practice.

1.3.3 Audio Processing

In order to develop a robust and appropriate signal representation, audio is prepared and
processed for machine learning algorithms in the audio processing phase of the overall system
design. This phase consists of two main stages preprocessing, and acoustic feature

extraction.
A Preprocessing

Pre-processing is applied to the audio signal before acoustic feature extraction if needed.
The main role of this stage is to enhance certain characteristics of the incoming signal in order
to optimize audio analysis performance in the later phases of the analysis system. This is
achieved by diminishing the effects of noise [20], emphasizing the target sounds in the signal
[1] or segmenting the original audio signal into audio and silent events to be used in feature
extraction [20].
Silence removal

Silence removal is used to eliminate the silent portion of the audio signal x. The process
of Silence removal consists of dividing an input signal into small segments (frames) and
thresholding the root mean square (RMS) energy of those frames. The total length of each
individual segment is equal to product of time duration and sampling frequency of segment
(Fs).

Segrnentlength = Segmentqyration * Fs (1.2)

The RMS value of each segment is calculated and compared with threshold value R,y.

RMS value of each individual segment can be calculated from equation (1.3)

RMSgegment = Jmean(segment?) (1.3)

If RMSgegment O individual segment is less than Ry, then the segment is removed. The

function of silence removal block is given in equation (1.4).

RMSgeoment < R , silent segment (1.4)
RMSgegment > Ren ,non silent segment

=]
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Figure 1.3 shows the silence removal process on an audio file, which is 13s in length. The

non-silent sections that are extracted encased in a black rectangle.
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Figure 1.3: Silence removal process.

B Feature extraction

Feature extraction is an important signal processing task. It refers to the process of
computing a numerical representation of the acoustical signal. The representation can be used
to characterize the audio segment with values which have connection to its physical properties;
for example, signal energy, its distribution in frequency, and change over time t. The role
of feature extraction is to transform the signal into a representation which maximizes the sound
recognition performance of the analysis system. It also requires less amount of memory and

computational power than direct use of audio signal in the analysis [1].

The process of feature extraction is similar for many types of acoustic features used in
analysis. It consists of frame blocking, windowing, spectrum calculation, and other computation
depending on which type of feature extraction is being used. Figure 1.4 depicts the processing

pipeline for feature extraction.

Traditional methods for spectral evaluation are reliable in the case of a stationary signal
(i.e. a signal whose statistical characteristics are invariant with respect to time). However,
audio signals are most of the time non-stationary throughout the whole audio recording, but
stationary within short time frames [1]. For this reason, we use frame blocking and windowing

to be able to use the audio signal and interpret its characteristics in a proper manner.
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Figure 1.4: The processing pipeline of feature extraction [1].
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Frame blocking consists of decomposing the audio signal into a series of overlapping
frames. These frames have to be short enough so that it can reasonably be assumed to be
stationary [1]. The selection of frame length is dependent on the machine hearing task at hand
it usually varies between 20 and 60 ms [1].

Windowing is often applied after framing [1] in order to avoid the discontinuities at the
borders of the frame which would cause distortions in the spectrum (corrupt the frequency
spectrum estimation). The windowing process consists of multiplying each frame with a
window function; hence, attenuating the signal near the edges and emphasizing the central
portion. Hamming, Hann and Blackman functions are often used for windowing [21].

Hamming window (raised cosine window): the role of the hamming window is to
minimize the spectral distortion by using the window to taper the signal to zero at the beginning

and end of each frame, it is defined as:

0.54 — 0.46 cos (2 )0<ml<M (1.4)

0, othrwise

w(m;) = {

10
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where M is the total number of samples in each frame and m; the i*" sample of the frame. The
resulting value w(m;) represents the windowed value.

The Figure below shows the shape of this function:

Hamming window

1.0

0.8

0.6 4

Amplitude

0.4 4

0.2

T T T T T T
o 10 20 30 40 50

Sample

Figure 1.5: Hamming window [22].

Acoustic features can be divided into 3 main categories: temporal features, spectral
features and perceptual features (prosodic features). In what follows, we describe some well-

known features from each category.
SPECTRAL FEATURES

LoG-MEL SPECTROGRAM represents an acoustic time-frequency representation of a sound. In
the calculation of Log-Mel Spectrogram, firstly Fast Fourier Transform is calculated over pre-

processed audio signal.

The filter bank is used to map its spectral amplitude to the Mel-scale of the perceptual
excitation, and the mel filter bank converts the spectrum to the mel spectrum. Mel-scale is based
on the perception of human hearing frequencies [23]. Thus, the Mel-scale is used to measure

the tone of a subjective frequency or pitch.

The filter bank energy is obtained after mel filtering. Finally, the logarithmic conversion
of the mel energy is calculated and then the Log Mel Spectrum is generated from the filter bank.

The flow of Log-Mel spectrogram extraction is shown in Figure 1.6.

11
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Frame blocking and windowing
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Figure 1.6: Flow of Log-Mel Spectrogram extraction.

MEL-SCALE as shown in Figure 1.7 is the psycho acoustic representation of frequency in linear
scale processing. Stevens, Volkmann, and Newman in 1937 proposed a unit of pitch called
"Mel’ [24] [25]. "Mel’ is defined as the perceptual scale of pitches judged by listeners to be
equal distance from each other. During the series of experiments, it was observed that when the
frequency of the signal is less than 1000Hz, human auditory system perceives signals on a linear
scale and for the frequency, over 1000Hz it was recognized on a logarithmic scale. The essence
of Mel-scale is to bring this feature into perspective.

Converting frequency domain to mels domain is done using formula:

frequency)
700

frequency = 700(10™e1/2595 — 1)

mel = 2595 log (1 +
(1.5)

,
2500 -

201 =

15601

lel Irequency

100

Y

0 1 2 3 4 5 4
Frequency (kHz)

Figure 1.7: Kilo Hertz vs Mel-scale [22].
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MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC) is a type of cepstral representation
of audio signals [26]. The steps involved for their extraction are similar to the Log-Mel
Spectrograms steps but with an additional step that consists of computing the Discrete Cosine
Transform (DCT).

DCT is a mathematical technique applied to the Log-Mel Spectrogram resulting in Mel
Frequency Cepstral Coefficients. The operation of DCT is similar to DFT, and the critical

difference is unlike DFT, DCT consists of only cosine terms which are real.

PERCEPTUAL FEATURES

Prosodic features, or perceptual frequency features, indicate information with semantic
meaning in the context of human listeners. Therefore, they are organized according to
semantically meaningful aspects of sounds including pitch, fundamental frequency, loudness,
intensity and sharpness.

e Loudness is a psychoacoustic property of the sound. It represents our human perception
of how loud or soft sounds of various intensities are. The loudness of a sound is
subjective, it varies from person to person and is measured by sone and phon units [27].

e Pitchisaperceptual property of sounds that allows their ordering on a frequency-related
scale. More commonly, pitch is the quality that makes it possible to judge sounds as
«higher» and «lower» in the sense associated with sound recording.

e Sharpness can be interpreted as a spectral centroid based on psychoacoustic principle.
It is commonly estimated as a weighted centroid of specific loudness [28].

TEMPORAL FEATURES

Temporal features are directly extracted from the audio raw data without any
transformation. Such features normally suggest a simple tactic to investigate audio signals.
Although, it is generally necessary to combine them with spectral features. Representative
instances of temporal features are: zero-crossing rate, amplitude-based features, and power-
based features [27].
OTHER APPROACHES

Alternative cepstral decompositions can be obtained similarly to MFCC from other
frequency-domain representations. This had led to the introduction of features such as the
Linear Prediction Cepstral Coefficients (LPCC) based on LPC coefficients [29], the
Gammatone Feature Cepstral Coefficients (GFCC) [30] or Constant-Q Cepstral Coefficients
(CQCC) [31]. None of these features are as popular as the MFCC but GFCC. For example, have

been applied to sound scene analysis [32].

13
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1.4 Datasets

Recently, general-purpose sound event recognizers have gained attention [33]. In this
case, a wide range of sound events are considered, not tied to a specific domain. However,
the majority of available datasets are domain specific and are usually small in size [33]. In
addition, the existing general-purpose datasets often contain many unlabeled data sounds,
which can make the learning process a challenging task.

Various data resources have been gathered for the sound analysis task; some of these

are provided in Table 1.1.

Table 1.1: Various audio analysis datasets.

Dataset name Classes Examples il Dataget Ref
length duration
CHIME-HOME 7 (balanced) 6137 4s ~6.82h [34]
% GTZAN (2002) 10 (balanced) 1000 30s 8.33h [35]
(5]
o
o ESC-50 50 (balanced) 2000 5s 2.78h [36]
‘T
£ TUT AcousTIC
8 SCENES 2016 15 (balanced) 1560 30s 13h [37]
URBANSOUND8K 10 (balanced) 8732 <4s 8.75h [38]
o FSDKAGGLE2018 41 11073 < 30s 18h [16]
Z (unbalanced) -
—
a 525
— AUDIO SET 2017 ~2.1M 10s ~5833h [33]
< (unbalanced)
5
O FSDKAGGLE2019 80 29266 < 30s ~103.4h [39]

(unbalanced)

PART Il: MACHINE LEARNING FOR AUDIO TAGGING

15 Fundamentals of classification

Classification belongs to the category of Supervised Learning, where the input data is
labeled. It is the process of predicting the class labels of a given data point (also called sample
or instance ), the data point is characterized by a feature vector xeX and by its class label yeY
[40].The classification algorithms take in a set of m data samples of input-output association
T{(x1, v1), (2, V2), v e , (m, Ym)}, Where x; X and y;eY, and learns a mapping function f

from a feature vector xeX ,some parameters t and produces an output y.

14
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y=f(x1) (1.6)

Furthermore, in Supervised Learning we can distinguish single-label classification and

multi-label classification.

Input

Single-label classification when the classifier learns from a set of samples that are
associated with a single label. It can be further divided into two categories based on the

number of classes in a set of labels: binary and multi-class classification.

Multi-label classification is different from the traditional single label classification. It
refers to a task of associating each learning example with multiple labels the output is
a vector of N labels. The multi label classifier associates an instance with one of
2N possible output vectors. A common approach to multi label classification is to
preform problem transformation, whereby a multi label problem is transformed into
one or more single label (i.e. binary or multi-class) problems and the single label
predictions of the single-label classifiers are transformed into multi label predictions.
Although this method is easy to implement, it can be computationally inefficient when
the number of classes is large [41]. Instead of this approach several studies [21], [42]
has explored deep learning method (more details can be found in Chapter 2) to address
the multi -label classification problem. Both methods are illustrated in Figure 1.8.
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Figure 1.8: System input and output characteristics for single-label and multi-label Audio Tagging systems [28].

Usually a classifier is seen as a two-step algorithm: training stage and testing stage. The

first stage whereby the model learns a hypothesis from the training data. Learning is the process

of optimizing the loss function that calculates the difference between the actual and the

15
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predicted outputs. The model is updated according to a learning algorithm so that the loss value
IS minimized and to increase the generalization ability of the model (i.e. the ability to act
properly on unseen samples). The widely used optimization approach for supervised learning,
namely gradient descent (more detail in Section 2.3.2). In the second stage, the resulting model
is used to predict the class label of unseen examples drawn from the testing set. Numerous
learning models have been introduced by the machine learning community, such as Neural
Networks [21], Adaboost [43] and Support Vector Machine [9].

Audio tagging aims to assign one or a set of tags to a clip. In machine learning
terminology tagging would be equivalent to multi-label classification [29]. However, in the
scope of this thesis we will focus on building a single-tag Audio Tagging system, and hence it
is considered to be multi-class classification problem. We will focus on neural networks with
deep architecture due to their effectiveness when dealing with the Audio Tagging problem.
Chapter 2 provides an extended treatment on some widely used deep neural networks
architectures.

It is widely acknowledged when a model fits the training data perfectly, it usually leads
to poor generalization ability [44]. This problem is known as overfitting. To cope with this
shortcoming, data augmentation is applied with deep neural network architectures [28]. Mix-
up technique has been extensively invoked for building sound analysis systems, particularly
Audio Tagging [45], [46], [47]. More details can be found in Section 2.10.

We measure the quality of the predictions in multiple ways with the most common
being the error rate (i.e. the ratio between the number of misclassified samples to the total
number of samples). Model evaluation provides metrics for measuring the performance of
learners. In addition, several authors have introduced statistical tests for performance
comparison such as “Friedman Test”, “Nemenyi Test” and “Wilcoxon signed Rank Test” [48].

When applying a learning algorithm there is no assurance that the chosen parameters ¢
yields the best performance [44]. In addition, there is no learning algorithm that produces
the most accurate classifier on a given problem [44]. The rational approach is to try many
learners and select the one with the best performance on a different sample set.

Ensemble learning adopts an alternative strategy to address Model Selection by
amalgamating multiple learners [49]. The combination can also reduce overfitting, while
providing sufficient expressive power to learn complex hypothesis [49]. We use in our
experiments a popular technique called stacking (more details are given in Section 2.11).
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1.6 Evaluation and comparison

1.6.1 Cross Validation

Cross validation is a resampling technique used to estimate the test error of models with
limited data points [44]. It is commonly used in machine learning to compare and select a model
based on the model evaluation scores. Several resampling techniques have been used such as
k-fold cross validation and leave one out [50].

k-fold cross validation refers to the task of taking the available data and partitioning it
randomly into k subsets or folds, of approximately equal size. Then, the k-1 of the folds are
used to train a set of models that are then evaluated on the remaining fold. This Procedure is

repeated for all the K times. Figure 1.9 illustrates a 4-cross validation technique.

Development
[ Train Test ]
Cross _ [ Test ]
validation
4 folds [ Test ]
' [ Test ]

Figure 1.9: 4-fold cross validation [37].
The performance scores from the K-fold cross validation are then averaged. The choice

of k is generally preferred to be 5 or 10, but there is no formal rule and it could take any value.
The satisfaction of the data is recommended; this means that each fold has to have a good
representation of the entire dataset. Thus, ensuring that the data partitioning is balanced, with
all the classes present in all the folds, with approximately the same amount of data for each
class [28].

1.6.2 Evaluation Metrics

There exists numerous perfomance metrics in the machine learning literature [51]. The
choice of the right metrics in one of the curcial steps in defining the solution to the problem.
Furthermore, when dealing with a single-tag Audio Tagging task which is considered to be a
multi-class classification problem. The evaluation involves measuring the performance of the
proposed methods based on the accumulated values of the intermediate statistics, denoted by
TP, TN, FP, and FN the sums of the true positives, true negatives, false positives, and false
negatives accumulated throughout the test data, resulting in overall metrics calculated

accordingly as instance-based or class-based. In instance based (i.e. micro-averaging),
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intermediate statistics are accumulated over the entire data. Overall performance is calculated
based on these, resulting in metrics with values that are most strongly affected by the
performance on the most common classes in the considered problem. Whereas, in class-based
(i.e. macro-averaging), intermediate statistics are accumulated separately for each category
(scene or event class). Overall performance is then calculated as the average of class-wise
performance, resulting in values that emphasize the system behavior on the smaller classes in

the considered problem [28].

A Confusion matrix
Confusion matrix (Figure 1.10) is a performance measurement for machine learning
classification. It is a matrix of n x n where n represents the number of classes. The row
dimension contains the actual values, whereas, the column dimension consists of the predicted
label. This Figure provides a representation of the confusion matrix with n = 2.
e True Positives (TP) are the cases where the actual class of the data point is 1 and the
predicted also 1 (Positive).
e True Negatives (TN) are the cases where the actual class of the data point is 0, while
the predicted is 0 (Negative).
e False Positive (FP) are the cases where the actual class of the data point is 0, while the
predicted is 1 (Positive).
e False Negative (FN) are the cases where the actual class of the data point is 1, while
the predicted is 0 (Negative).
The metrics that can be computed from the Confusion matrix includes precision, recall, F1-

score, the mean average precision and the classification accuracy.

Actual value
1 0

o
_: 1 True False
> Positive Positive
=
=
‘2
=
[-F)
E 0 False True

Negative Negative

Total P N

Figure 1.10: Confusion matrix [52].
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B Accuracy

Accuracy is the ratio between the number of correct predictions made by the model and
the total number of examples. Accuracy can be computed using the previous metrics (TP, TN,

FP, FN) as follows:

TP +TN (17)
TP + TN + FP + FN

Accuracy =

C Precision and Recall

Precision is the Fraction of predicted positives which are actually positive. Recall is the

fraction of actual positives which are correctly predicted:

. TP (1.8)
Precision = m
TP (1.9)
Recall = TP+—F]V

D F1-score

F1-score is the average between precision and recall. It measures how many examples the
model classifies correctly. The greater the F1-score is, the better the performance of the model.
It is given by the equation below.

Precision X Recall (1.10)
Precision + Recall

F1=2X

E The mean average precision (MAP)

Map is based on larger set of measurements. It is typically more stable (less noisy) than
point measures such as F1-score. MAP is the mean of all the average precision across all the
class labels.

(1.11)
MAP@x = %zgzl ymin {2} ppy.

=1
where N is the number of data samples, K is the number of classes, whereas we are calculating
the mean average precision at the top x of labels. P (i) is the precision at a cutoff i.
F Averaging single-label scores

When multiple class labels are to be retrieved, averaging the evaluation measures can
give a view on the general results. It can be obtained through two averaging operations depicted

in the equations below.
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Let k be the number of possible class labels and B(tp, tn, fp, fn) represent some specific
binary evaluation measure B € {Accuracy, Precision, Recall, F1 — score} that is
calculated based on the number of the true positives (tp;), true negatives (tn;), false positives
(fp:), and false negatives (fn;) after a binary evaluation for a label i.

Macro-averaging measure

k
1
Bmacro = Ez B(tp;, fpi, tny, fn;) (1.12)
i=1
Micro-averaging measure
k k k k
Bricro = BOY ti, ) fpi, ) tni, Y ) (113)
i=1 i=1 i=1 i=1

1.7 Feature Selection

Feature Selection is the process of determining what inputs should be presented to a
classification algorithm. It aims to reduce the number of features by eliminating the redundant
and irrelevant features from the feature set [53]. In addition, shrinking the feature set improves
the generalization ability of the system and reduces the potential presence of overfitting [54].
There exist three main feature selection paradigms: filters, which select features based upon a
statistical measure of correlation; wrappers, which select features based upon the performance
of classification algorithms; and embedded methods, a wide group of algorithms which select
features as part of the classification process [53]. In the scope of this thesis, we have focused
on the embedded methods, we selected Neural Network models that contain built-in feature
selection. Meaning that the model will only include features that help maximize the
generalization ability of the system. In these cases, the model can pick and choose which
representation of the data is best by integrating feature selection in network engineering. In
Convolutional Neural Networks, features are dynamically selected by tuning the weights
associated with the kernels (filters) [55]. In the Gated Convolutional Neural Network, the
gating mechanism allows the model to select which features are relevant for predicting the
class label [56].

1.8  Statistical Tests
Recently, the machine learning community has become increasingly aware of the need
for statistical validation of the published results [57]. Various researchers adopt different

statistical and common-sense techniques to decide whether the differences between the
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algorithms are real or random. In this section we shall examine several statistical tests used in

our thesis.

1.8.1 Friedman Test

The Friedman test is a non-parametric statistical test used to test for differences between
several algorithms over the class labels (i.e. Sound events or tag). It first ranks the techniques
for each class label separately according to the chosen evaluation metric (i.e. accuracy, F1-

score). The best performing technique gets the rank 1, the second best gets rank 2, etc. In case

of ties, average ranks are assigned. Let rl.j be the rank attributed the jt* system on the i" class
label; and let R; = %Z?Llrij denote the average rank of system je{1, ..., t} over N class labels.

Under the null hypothesis, it is assumed that all algorithms are equivalent and so their ranks
their average rank should be equal. The Friedman statistic is distributed according X2 with t —

1 degree of freedom for sufficiently large N and t (usually N > 10 and t > 5). It is given by:

¥z = 12N ZRZ t(t+1)>2
Foe+1) ' 4 (1.14)

In their study Iman and Davenport reported that X2 is conservative and derived a new
statistic F which is distributed to the F-distribution with (¢ — 1) and (t — 1)(N — 1) degrees
of freedom.

ro- (N — DX?
FTN@E—-1)—x2° (1.15)

If the null-hypothesis is rejected, we can proceed with a post-hoc test such as the Nemenyi
test or the Bonferroni-Dunn test in order to precisely identify the differences between the
algorithms.

1.8.2  Friedman Aligned test

The Friedman Aligned Test is a modified version of the Friedman test [57]. The Friedman
test offers intra-set comparability only, however, in some cases comparability among class
labels is required. The Friedman Aligned test employs the method of aligned ranks, where a
value of location is computed as the average performance achieved by all algorithms in each
class label. Then, it calculates the performance obtained by an algorithm and the value of
location. This step is repeated for algorithms and class labels. The resulting differences are
called aligned observations, which are then ranked from 1 to kn relative to each other. The

ranks assigned to the aligned observations are called aligned ranks. The Friedman Aligned
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Ranks test statistic T is compared for significance with a chi-square distribution for t — 1

degrees of freedom.

(t — D[X5o, RZ — (tn?/4)(tn + 1)?] (1.16)
{[tn(tn + D2tn + 1)]/6} — (/) T1oRZ’

where R, is equal to the rank total of the it class label and I?j is the rank total of the

jt"algorithm. If the null-hypothesis is rejected, we can proceed with a post-hoc test such as the

Nemenyi test or the Bonferroni-Dunn test.

1.8.3 Quade test

The Quade test offers an improvement for some specific cases where the data samples are
more difficult or the differences registered between various algorithms over the data samples is
larger [57]. The Quade test conducts a weighted ranking analysis over the class labels. The
procedures start by finding the ranks rl.j in the same way as the Friedman test does. The next
step requires the original values of performance of the classifiers x;;. Ranks are assigned to the
class labels according to the size of the sample range in each class label. The Quade statistic is
then calculated, which is distributed according to the F-distribution witht — 1 and (t — 1)(n —
1) degrees of freedom. If the null-hypothesis is rejected, we can proceed with a post-hoc test.

A detailed description of the mathematical process of the Quade test can be found in [57].

1.8.4 Nemenyi test

Nemenyi test is a post-hoc test invoked when the Friedman test rejects its null hypothesis
and it is used when all methods are compared to each other. The performance of two classifiers
is significantly different if the corresponding average ranks differ by at least the critical
difference (CD).

t(t+1)

(1.17)
6N

CD =q,

where critical values g, are based on the Studentized range statistic divided by /2.

1.8.5 The Bonferroni-Dunn test

The Bonferroni-Dunn test is a post-hoc test, invoked after the Friedman test. It is used
when we are interested in comparing one technigque against the other alternatives. It adjusts the
significance level « in a single step by dividing the value of « by the number of comparisons

performed t — 1. The alternative way to compute the same test is to compute the CD (i.e.
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Critical Differences) using the same equation as for the Nemenyi test, however using the critical

values for o</ (t — 1).

1.8.6 Wilcoxon signed-ranks test

Wilcoxon signed-ranks test is a non-parametric test and is considered the best strategy to
compare two algorithms over multiple domains [57]. The formulation of this test is the
following. We designate by d; the difference between the performance scores of two techniques
on N datasets. i € {1, ..., N}. We first rank these differences according to their absolute values;
in case of ties average ranks are attributed. Then, we compute the sum of ranks for the positive
and the negative differences, which are denoted as R and R, respectively. Their formal

definitions are given by:

Rt = Z rank(d;) + % Z rank(d;)

di<0 di=0 (1 18)
1
R~ = z rank (d;) + > z rank (d;).
d;<0 d;=0

Notice that the ranks of d;=0 are split evenly between R* and R~. Finally, the statistics
T,, is computed as T,, = min(R*, R™). For small N, the critical value for T, can be found in
any textbook on general statistics [48], whereas for larger N, the statistics:
T, — 2NN +1)

7= = (1.19)
\/ﬂN(N +1)(2N + 1)

1.9 Related work

Table 1.2 presents some literature works related to approaches that employ machine
learning and deep learning methods along with various input representations for Audio
Tagging. The list expedites a general overview of the different classifiers and features
pertaining to their characteristics. It also consists of the latest matters surrounding the
development of Audio Tagging systems. These studies analyze the behavior of different
learning methods to extract high-level representations of input features. For instance, In [58],
the audio clip is treated as an image. Unlike the object in the image, in audio clips from real
life, some events, such as “Bark” may last a few minutes, while other events, such as “gunshot,”

may only last for hundreds of milliseconds. This characteristic of sound events increases the

difficulty of Audio Tagging based on CNN. To better use CNN to extract high-level
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representations, Convolutional Recurrent Neural networks have been suggested to amalgamate
convolutional and recurrent layers such as LSTMs [59] and GRUs [60] in a single deep learning
architecture in order to emphasize the benefits of both. In addition, attention mechanisms [56]
[61] [62] has been proposed in CNN such as the GLU. The benefits of such mechanisms have
been shown across a range of tasks, from Audio Tagging [63], to language modeling [56], which

shows that the attention method can alleviate the overfitting problem.

Furthermore, Ensemble learning which consists of building a classification model by
integrating multiple classifiers. The combination of different models can improve the accuracy
and robustness for the classification [49] using the complementary prediction result from
different models. However, the ensemble learning such as Stacking [64] has been under-
explored for Audio Tagging. Most of the previous methods simply compute the average of the
predictions [65].

Table 1.2: Various audio analysis classification approaches.

Reference Type of classifier Feature representation Performance
Hidden Markov Models
[66] MFCC Accuracy=30.1%
(HMM)
Gaussian Mixture Models
[67] MFCC F-score=13.08%
(GMM)
Short time Fourier
[68] Deep Neural Networks (DNN) transform, Log-Mel energy, EER'=0.1785%
MFCC
Convolutional Recurrent Neural
[69] Log-Mel Spectrogram F-score=69.1%
Network (CRNN)
Convolutional Gated Recurrent .
[63] Mel-Filter Banks (MFB) EER'=0.11%

Neural Network (CGRNN)

1.10 Conclusion

In this Chapter, we have provided an outline of the basic concepts of sound representation
that are essential to understand the ideas treated in this work. We have reviewed some important
concepts of classification in general. Many classification paradigms have been applied for
developing audio tagging systems. Most importantly, deep learning-based systems have
attracted a wide spread attention from the research community due to their effectiveness.
Therefore, in the next chapter, we will give an overview of some deep learning notions,

including several well-known deep architectures.

EER: Event Error Rate.
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CHAPTER 2: DEEP LEARNING FOR AUDIO
TAGGING

2.1 Introduction

In the previous chapter we have discussed the notions of sound acquisition and
representation required to prepare the audio signals for machine learning and deep learning
approaches. In addition to some concepts of machine learning. Deep learning is a modern
machine learning method, known for its ability to express highly non-linear relationships
between the input and the output [70]. Deep learning techniques are now the state of the art in
many audio applications [21] due to their capacity to learn the mapping between the target
labels and a lower level representation such as the magnitude spectrogram or even the raw audio
signals. Moreover, Deep Neural Network is among the recently proposed deep learning
techniques in context of sound analysis. These models require their own kind of engineering
effort in order to find the appropriate architecture for the target task; for instance, tuning the
hyper-parameters, choosing the right training algorithm and regularization techniques. Deep
learning models benefits from larger datasets, in order to expose the models to a larger and
varied training samples. Data augmentation includes a set of techniques that enhance the size
and quality of the dataset such as mixup.

2.2 Artificial Neural Networks

Artificial neural networks (ANNSs), also known simply as neural networks (NNs), are
considered to be a machine learning method that is based on the inner workings of the human
brain [21]. The objective of NNs is no different from other models, (i.e. to approximate a
function). NNs are composed of stacks of inter-connected artificial neuron blocks (also called
layers) that aim to find a mapping between the input and the target output. Each network has a
set of hyper-parameters that determine the network architecture (number of neurons in each
layer, number of layers etc.) and a network training procedure (optimization method
parameters, regularization parameters etc.). The most common components of NNs are

presented in the following subsections.
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2.2.1 Neuron

A neuron is the basic unit of a NN. Each neuron receives inputs through its incoming
weighted connections from other neurons and possibly itself. For each connection the input is
received as the transmitted signal multiplied by the connection weight w. The sum of the
weighted received signals and a bias term b is computed, then passed through an activation

function F and finally output through an outgoing weighted connection (Figure 2.1).

w3 b

bias @

Figure 2.1: A simple model of a neuron [71].

2.2.2 Layer

Neurons in the network are grouped into layers. There is one input layer, a variable
number of hidden layers, and one output layer. NNs that include more than one hidden layer
are often grouped under the name deep learning. Each layer receives inputs from the proceeding
layer (possibly itself) and delivers outputs to the following. The input layer is composed of D
nodes, where D is the dimensionality of the input data. Each node reads one of the components
of an input vector x; € X and outputs it to the following layers neurons. Hidden layers are
between the input and output layer that perform intermediate computations of the network. The
output layer in classification tasks typically consists of a neuron for each class. For a given
output neuron k, its computed value is usually interpreted after normalization in the range [0,
1]. The incoming connections for the neurons in one layer form a matrix W. Together with a
bias vectors b, the weight matrices for all layers W represent the parameters 6 of the model
(Figure 2.1).

2.2.3 Activation function

The activation function scales the activation of a neuron into an output signal. The most

commonly used in NNs are:
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2.3

2.3.1

Sigmoid function scales the input value between 0 and 1, as we know that probability
lies between 0 and 1. This is why it is used for predicting the probability of the output.

It can be defined as follows.

1

2.2
1+ e* (22)

o(x) =

Rectified linear unit (ReLu) is a thresholding function that returns the same input x

as long as it is greater than zero otherwise it returns zero.

ReLU = max (0, x) (2.3)

SoftMax makes it possible for the network to output among all the possible classes, the
class with the highest probability. It is also used to normalize the outputs of multiclass
classification tasks.

Given a vector X of inputs to the output layer where j indexes the output units

j =1,23,..,m, itis defined for each of its components x; as:

e’ (2.4)

softmax(xj) = S,

where x is a vector of inputs to the output layer, j indexes the output units.

Tanh function (tanh) is a hyperbolic tangent function outputs the value in the range
[—1,1]. This function shows derivatives that can reach higher values than the sigmoid

derivatives and is expressed as follows.

1—e™2* 2.5
FO0) = o -

Training Algorithms

Back propagation algorithm

The main idea behind Back propagation (BP) is to adjust the networks weights so that

the output values for the training data are as close as possible to the desired target output. BP is

a method used to compute the gradients that will be used for the update of each neuron’s

weights. Furthermore, BP can be split into two fundamental steps.
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e [Forward pass: an input is applied to the first layer and propagated through the network

so that all the weights are computed.

e Backward pass: based on the desired target output, derivative of the cost function is
back-propagated from the last layer to the first.

The mathematical description of the backpropagation algorithm can be found in [72].

2.3.2 Gradient Descent (GD)

GD is the most common optimization algorithm in machine learning and deep learning
[73]. It is used to update the parameters of a function such that it minimizes the difference
between the function output and the desired output. It is achieved by updating the parameters
in the opposite direction of the gradient of the hypothesis function J(8). The size of the step it
takes for each iteration to reach the local minimum is determined by the learning rate «, and
06](0) as the gradient of the hypothesis function. GD has three variants that differ based on

the amount of data utilized to compute the gradient of the hypothesis function.

Stochastic Gradient Descent (SGD) uses a single training dataset at a time (one row

after another) and then iteration adjustment of weights for each row.

Batch Gradient Descent (BGD) uses the entire dataset rows for training at the same time
and then makes adjustments to the weights.

Mini-Batch Gradient Descent is a hybrid of BGD and SGD, uses more than one training
example at a time.
2.4 Network regularization

There are several techniques proposed to address issues typically encountered in Machine
Learning such as overfitting [44] and vanishing (or exploding) gradients [74]. These techniques

are grouped under regularization techniques. Below we explained two of the techniques

specifically designed for Neural Networks.
2.4.1 Dropout

The term “dropout” refers to dropping units (hidden and visible) in a neural network.

Dropping a unit out means temporarily removing it from the network, along with all its
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incoming and outgoing connections. The Dropout algorithm temporarily removes randomly
selected neurons by setting the selected neuron weight to zero with a certain probability.
Therefore, these neurons do not have any effect on the output of the network. Dropout has been
shown to address two problems, it prevents overfitting and provides a way of efficiently

approximately combining exponentially many different Neural Network architecture [21].
2.4.2 Batch Normalization (BN)

Due to the vanishing (or exploding) gradients problem (Explained in section 2.7), the
distribution of the activations for each layer becomes very diverse for deeper Neural Networks,
which slows down the learning as each layer is updated with the same learning rate. Batch
normalization is used as an intermediate layer that will take care of the normalization of the
hidden units activations at each layer to zero mean and unit standard deviation [75]. It has been
introduced to reduce the co-variance shift in the network, and to accelerate the training of neural
networks rather than to properly regularize the model by counteracting overfitting. However,

in [76] the authors argue that BN provides similar regularization benefits as dropout.
2.5  Hyper-parameters of the Network

The neural network training is dependent on numerous hyper-parameters which are
capable of determining the capacity and the complexity of the model. The hyper-parameters

employed in the scope of this study are as follows:

Learning rate (o) is the scalar that determines the amount of change in the gradient
towards the proper direction. Higher values of a leads to overshooting the optimal
solution in the hypothesis function, while lower values of a leads to too many iterations
to towards the best value. There is no consensus on the ideal value of the learning rate
[21]. Thus, it should be selected by examining the performance of the model by varying
it.

Number of hidden layers determines the depth of the network. The higher the value is,
the deeper the network.

Number of units in each layer can be different for each layer. These values determine

the number of weights in total.
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Batch size is the number of samples processed before the weights of the model are
updated.

Number of epochs is a hyper-parameter that defines the number of times that the dataset
is passed forward and backward through the neural network. The BP algorithm decreases

the training error with the increasing number of epochs.
2.6 Convolutional Neural Network

CNNs are hierarchical NNs that have been designed initially for image classification. A
typical CNN is characterized by the repetition of convolution layers, an activation function,
followed by the pooling layers which are partially connected. Due to these layers CNN can
achieve a complete overview of the input with a good invariance to patterns shifts. The network
usually ends with a fully connected layer with a SoftMax output. However, several studies [77]
have proposed an alternative to the fully connected layer since the latter is prone to overfitting,
namely The Global Average Pooling. The actual difference, when compared to other types of
neural networks, lies in the introduction of a combination of convolution and pooling
operations. Moreover, CNNs use a modified version of the back-propagation algorithm to
ensure the shared weight constraint. The sample architecture of the convolutional neural

networks is shown in the figure below.

‘ o o output
Feature Featuye | 4 .
Maps Maps\ | ¢
Convolution i
v+u i Convolution Convolution o
+ + + |
Activation Activation Activation Fully
Connected
Neural
Network

Figure 2.2: A simple architecture of CNN [78].

2.6.1 The convolution layer

The convolution layer introduces a special way of receiving the input. Instead of being
connected to all the inputs coming from the previous layer, it takes a small portion of the input
space (i.e. The receptive field), the weights of this portion create a convolutional kernel (filter).

It consists of sliding the filter over the input space by a certain stride value and apply the dot
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product between the filter and a portion of the input matrix, resulting in a convolved feature
matrix or the feature map. This mathematical operation is called convolution, which will
vastly reduce the number of the parameter and helps the model learn the relevant features only.

The operation is shown in Figure 2.3.

— K .
Convolution
v

aw+h bw+e cw+d

+ + +
ey+f. fytg gv+h
et fire gv+h Result of

+ + + .
iy+j jytk Ky+i convolution
it jw+k kw+
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Figure 2.3: Convolution in CNN [79].

2.6.2 The Activation layer

The activation layer applies an activation function over each feature map returned from
the convolution layer, to create a nonlinear relationship between the inputs and the outputs. The
most commonly used one is the Rectified Linear Units activation function (ReLu) [80]
(Section 2.2.3).

2.6.3 The Pooling layer

The main idea behind the pooling layer is down-sampling in order to reduce the
computational load by progressively reducing the spatial size of the representation. Max-
pooling is one of the most common types of pooling. It takes small rectangular blocks from the
feature map and subsamples it to produce a single maximum output from the block then slides
to the next block with a specific stride value. The most commonly used size of max pooling is

2x2 [81]. An illustration of this operation is depicted in Figure 2.4.
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Figure 2.4: Max Pooling [20].

2.6.4 Fully Connected layer

The neurons in a fully connected layer are arranged in a way that each node is directly
connected to every node in both the previous and in the next layer as shown in Figure 2.2 The
hidden layers of the network which is composed of a stacked layer of convolution and pooling
output the feature maps, which are fed to the Dense layers. The Fully connected dense layers
flattens the feature matrix into a one-dimensional vector, the vector is then fed to the final dense

layer with SoftMax activation function (Section 2.2.3) to output a vector of probabilities € [0,1].

2.6.5 The Global Average Pooling layer (GAP)

The idea is to generate one feature map for each corresponding category of the
classification task. GAP has no parameter to optimize thus the overfitting problem is avoided.
The global average pooling mechanism computes the mean value for each feature map and
supplies it to the final dense layer with a SoftMax activation function. The SoftMax function
takes each value and converts it to a probability (with the probability of all values summing to
1.0). However, in [82] the authors have used a fully connected layer along with the GAP layer.
The GAP computes the mean value for each feature map and supplies the result to the input of
each unit in a single fully connected layer.

2.7 Recurrent Neural Networks

Recurrent Neural Networks (RNNSs) are a type of neural networks that are beneficial to
use with sequential data [83]. The structure of RNN is similar to that of the standard neural
network, with a distinction that RNNs allow their neurons to share their outputs with pervious
layer neurons, creating a feedback cycle. This indicates that an RNN may sustain the temporal
activations even in the absence of input [84]. Therefore, RNNs are dynamical systems with a
dynamical memory over time that can compute sequences of different lengths. However, the
complexity of RNN structure makes it hard to train properly due to the vanishing gradient and
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exploding gradient problems. RNNs uses a straightforward extension of the backpropagation
algorithm, denoted Back Propagation Through Time (BPPTT) [85]. There are various
variations of RNNs, we note among them Long Short-Term Memories (LSTMs) and Gated
Recurrent Units (GRUSs). An example of the RNN architecture is illustrated in Figure 2.5.
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Figure 2.5: Left: Visual illustration of the RNN recurrence relation, Right: The RNN states are recurrently unfolded
over the sequence t-1, t, t+1 [86].

2.7.1 Recurrent layer

The recurrence relationship defines how the state evolves step by step over the sequence
via a feedback loop over previous states. The recurrent layer applies the same function f over

a sequence recurrently. The recurrence relation given by:
St = f(St—llxt)l (26)

where f is a differentiable function, S; is a vector of values called the internal network state at
a step t of both the current input as well as the previous state, X, input at step t, and S;_; is the

network's summary of all of the previous inputs.

The recurrent layer through the backpropagation algorithm updates a set of three
parameters (weights), namely U, W and V. The vector U transforms the input X; into the
state S;, W transforms the previous state S;_, into the current state S; and V maps the newly
computed internal state S;_, to the output Y;. They apply a linear transformation over their

respective input. The internal state and the output of the network can be defined as follows:
St = f(WS_1, UXy), (2.7)

v = VS, (2.8)
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where f is the non-linear activation function such as tanh, sigmoid, or ReLU and X, denotes
the input vectors ( x4, ..., x;). The state S, represents a sequence of state vectors (sq, ...,S;).
Finally, the output Y; is a sequence of probability vectors (y,,..,. y;) of the next input in the
sequence. Through this recurrence relation, each state is dependent on all of the previous
computations, which allows RNN to have memory over time and to compute sequences of

different lengths.

2.7.2 The exploding and vanishing problem

In theory, RNNs can remember information for arbitrarily a long period of time.
However, in practice, they are limited to looking back only a few steps [86]. This issue is known
as vanishing and exploding gradients problem. These problems arise during the training of a
deep network when the gradients are being propagated back in time all the way to the initial
layer. The gradients coming from the deeper layers have to go through continuous matrix
multiplications because of the chain rule, and as they approach the earlier layers, if they have
small values ( less than 1), they shrink exponentially until they vanish and make it impossible
for the model to learn , this refers to the vanishing gradient problem. On the other hand, if they
have large values (more than 1) they get larger and eventually blow up and crash the model,
this refers to the exploding gradient problem. To cope with these shortcomings, Gated
Recurrent Layer Methods such as Gated Recurrent Units (GRU) and Long-Short Term Memory
Networks (LSTM) [59], have been introduced.

2.7.3 Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber have studied the problems of vanishing and exploding
gradients extensively and have proposed a solution called Long Short-Term Memory network
[59]. LSTMs can handle long-term dependencies due to a specially crafted memory. It contains
special units called memory blocks in the recurrent hidden layer. The memory blocks contain
memory cells with self-connection which stores the temporal state of the network; in addition
to a special multiplicative unit called Gates to control the flow of information. Each memory
block contains an input gate, output gate and a forget gate. The input gate controls the flow of
input activations into the memory cell. The output gate controls the output flow of cell
activations into the rest of the network. Finally, the forget gate scales the internal state of the
cell before adding it as input to the cell through the self-recurrent connection of the cell;
Therefore, adaptively forgetting or resetting the cell memory. The forget gate addresses a
weakness of LSTM models preventing them from processing continuous input streams that are

not segmented into subsequences [87].
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2.74 Gated Recurrent Unit (GRU)

GRU is a type of recurrent method that was introduced as an improvement over LSTM
[60]. The idea behind GRU and LSTM is very similar, which is to allow the relevant
information from the previous timesteps to be stored in the cell state, and to control the cell
state through the gates that learns which information is relevant for the given task. The main
difference is that GRUs combine the forget and the external input gates of LSTM in a single
gate called the update gate; hence, has less parameters compared to LSTM. In addition to the
update gate, GRU has an additional cell called the reset gate. Both gates are composed of
weights and an activation function. Each cell includes a cell state, which consists of the
accumulated information from the previous timesteps. During training, the gate weights learnt
by which proportions to combine the cell state and the input for the current timestep to produce
the gated unit output for the current timestep. The reset gate adjusts the incorporation of new
input with the previous memory and the update gate controls how much to preserve of the
previous memory. Furthermore, an enhanced version has been introduced, namely bi-
directional GRU [88] allows to process the sequence input in two directions including forward

and backward ways, which can increase the model capacity and flexibility [60].
2.8 Convolutional Recurrent Neural Network

Another increasingly common hybrid architecture is to follow one or more convolutional
layers by recurrent layers. This approach is alternately known as Convolutional Recurrent
Neural Networks (CRNN). Combining convolutional and recurrent layers in a single deep
learning architecture integrates the strength of both CNNs and RNNs, which has shown
excellent performance in sound analysis applications [69] [17], while overcoming their
individual weaknesses.

Convolutional neural networks are able to extract higher level features that are invariant
to local spectral and temporal shifts. Furthermore, convolutional layers can be used to learn
filters (i.e. weight kernels) that are shared among the input and shifted in both time and
frequency. However, the temporal context that can be modeled using convolutional layers is
limited [1]. Recurrent layers, with a gated structure such as GRUs and LSTMs can be used to
extract long term temporal information among the consecutive time frames by utilizing
information from the earlier time frames as a feedback for the calculation of the higher-level
representation for the current frame.

In order to find the optimal hyper-parameters for the deep neural networks, a grid search

is performed including the combinations of some of the hyper-parameters such as the number
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of layers, number of units in each layer etc. Figure 2.6 depicts the effect of the number of
network parameters on the performance of RNN, CNN and CRNN when tested on TUT-SED
synthetic 2016 dataset [69]. For the same number of parameters, CRNN shows a better
performance than CNN and RNN methods in most cases. This observation confirms that
combining the CNNs and RNNSs into CRNN classifier is a more efficient and powerful way of
utilizing the network parameters compared to CNN and RNN. The effect of sequence length,
(i.e. the number of frames per input example) has been investigated by Cakir et al. [69]. Their
results indicate that CRNNs can model the whole event in a single sequence, which results in
improving the performance. In addition, the longest temporal context that RNN can model is
not sufficient to model the events as a whole in a single sequence. This can be explained with
the role of the convolutional layer in CRNN architecture. Convolutional layers learn filters that
are invariant to short term temporal variations and they effectively pre-process the features to

be used in longer temporal context in the following recurrent layers.
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Figure 2.6: Number of parameters vs F1-score for CNN, RNN and CRNN [69].

29 Gated Convolutional Neural Network and Gated Convolutional Recurrent Neural
Network

Gated Convolutional Neural Network (GCNN) and Gated Convolutional Recurrent
Neural Network (GCRNN) are variants of CNN and CRNN, respectively. The difference is that
each convolutional layer is replaced with a Gated Convolutional layer. Gating mechanism has
been shown to be essential for Recurrent Neural Networks to reach state-of-the-art performance
[21]. This mechanism has shown to produce better results for several task such as audio

classification [89], language modeling [56].

2.9.1 Gated Linear Units
The Gated Linear Unit (GLU) [22] is used as an activation function to replace the
Rectified linear activation function (ReLu) in CRNN and CNN. The structure of GLU is shown
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in Figure 2.7 GLU can reduce the gradient vanishing problem for deep networks [22] by
providing a linear path for the gradients propagation while keeping nonlinear capacities through
the sigmoid operation. Similar to the gating mechanisms in Long-Short Memories (LSTM) or
Gated Recurrent Units, GLU can control the amount of information of a time-frequency

representation unit flow to the next layer. GLU are defined as:
Y=WxxX+b)OsV*X+c), (2.9)

where § denotes the sigmoid function, the symbol © is the element-wise product and = is the
convolution operator. W and V are convolutional filters, b and c are biases. X denotes the input
tensor in the first layer or the feature maps in the interval layers in the model. The value of
sigmoid function ranges from 0 or 1, so if a GLU gate value is close to 1, then the time-
frequency unit is attended. Whereas, if a GLU gate value is near 0, then the corresponding time-

frequency unit is ignored. Thus, the network learns sound events and ignore the unrelated

sounds.
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Figure 2.7: GRU structure [15].
2.10 Mixup

Data Augmentation encompasses a suite of techniques that enhance the size and quality
of the training datasets [32]. It is widely used along with Deep Learning models in order to
address the overfitting problem [30]. Numerous data augmentation techniques have been
introduced in the literature such as: Mixup, Time Stretching, and Pitch Shifting [90]. In our
study, we have chosen Mixup approach due to its simplicity and its significant improvements

of audio classification systems [33].

Mixup is a method that randomly mixes a pair of inputs and their associated target values
[91]. Consider a pair of inputs, x;and x,, and its corresponding binary label, y; and y,. To mix

these, a parameter, o € [0, 1] is used as a mix ratio.
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x=oax; +(1—a)x, (2.10)

y=ay; + (1 -y, (2.11)
The outputs X, y are then used as the training examples.

2.11 Ensemble Methods

2.11.6 Stacked generalization

Stacked generalization (stacking) is a general method which uses a high-level model to
combine lower-level models to achieve greater predictive accuracy [92] (see Figure 2.8),it first
creates T level-1 classifiers, Cy, ....,Cy , based on a cross-validation partition of the training
data. To do so, the entire training dataset is divided into B blocks, and each model-1 classifier
is first trained on a different set of B-1 blocks of the training data. Each classifier is then
evaluated on the B* block (i.e. not seen during training). The outputs of these classifiers on
their pseudo-training blocks constitute the training features for the level-2 (meta) classifier,
which effectively serves as the combination rule for the level-1 classifiers. Note that the meta-
classifier is not trained on the original feature space, but rather on the predictions of level-1

classifiers.
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Figure 2.8: The stacking mechanism.

2.12 Summary of empirical and theoretical findings on CNN, CRNN, GCNN and
GCRNN

Empirical studies have shown that different deep architectural designs such as CNN,
CRNN, GCNN and GCRNN often have an advantage over shallow architectures when dealing
with complex learning problems [1] [55] [21].

In recent studies, the focus of research shifted from parameter optimization and

connections readjustment towards the improvement of the architectural design of the deep CNN
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networks [55]. This shift resulted in many new architectural designs such as CRNN. Cakir et
al. have evaluated CRNN on three datasets of real-life sound recordings (i.e. TUT Sound Events
Synthetic 2016, TUT-SED 2009 and TUT-SED 2016) and compared its performance to CNN
and RNN. Their results show an improvement in performance of CRNN method over CNN and
RNN [8]. The performance of CRNN indicates an architectural advantage compared to the rest.
It gathers the capabilities of both CNN and RNN in one classifier. However, their proposed
CRNN strongly depends on the amount of available annotated data. Specifically, when the
performance of CRNN for TUT-SED 2016 (78 minutes) is compared to the performance on
TUT-SED 2009 (1133 minutes) and TUT-SED Synthetic 2016 (566 minutes), there is a clear
performance drop both in the absolute performance and in the relative improvement with
respect to other methods. Dependency on large amounts of data is a common limitation of

current deep learning methods. Similar findings have been reported in [93].

Recently, attention-based neural networks have been applied to a wide variety of tasks,
such as speech recognition [94] [95], visual object classification [96]. The term attention means
to focus on specific parts of the input. Xu et al. have proposed an attention based neural network
for audio tagging that can automatically select the important frames for the targets, while
ignoring the unrelated parts (e.g. the background noise segments) [63]. They have compared
the proposed method with two state-of-the-art systems that used CNN as a classifier, Lidy-CNN
[97] and Cakir-CNN [14]. The results indicate that the attention-based method reduces the
Event Error Rate from 0.13 to 0.11 on average. In addition, the gated network performs better
in detecting the long-term patterns of the “child speech” which occur frequently in the whole
dataset. Similar results have been reported by Xu et al. [3]. In their study, they have applied the
learnable Gated Linear Unit (GLU) to replace the ReLU activation after each layer of the
Convolutional Recurrent Neural Network for audio tagging and weakly supervised sound event
detection. The audio tagging results show that the gated CRNN gains effective improvement
with a F1-score of 54.2 compared the DCASE2017 baseline [98] with F1-score of 18.2.

2.13 Challenges

2.13.1 Intra-class variability

Sound event classes for Sound analysis tasks are often defined broadly such as phone
ringing, doorbell etc. This presents a challenge for sound analysis methods in the form of intra-
class variability. For instance, doorbell class can be used to represent all types of doorbells,
whose acoustic characteristics can vary significantly among the examples of this class.

Therefore, in order to claim that a sound analysis system can robustly detect doorbells, it should
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be able to do so on a wide variety of doorbells. This requires the sound analysis method to be
able to detect or extract the acoustic features that are found in common among different
examples of the same class [22].
2.13.2 Noisy labels

Although the dataset is labeled only a portion of it is verified and the rest is not guaranteed
to have the true labels. This problem can be formulated as a form of label noise. These
mislabeled instances are considered to be outliers which are generally the result of four potential
sources. Firstly, the information which is provided to the expert may be insufficient to perform
reliable labelling. Secondly, since collecting reliable labels is time consuming and costly task,
there is increasing interest in using less reliable labels provided by non-expert such as using
automated classification methods. Thirdly, when the labeling task is subjective, the problem of
inter-expert variability might occur. Inter-expert variability is defined broadly as the presence
of important variability in the labeling by several experts. Eventually, label noise can also
simply come from data encoding or communication. Furthermore, these noisy labels may lead
to lower classification problem and slower optimization, thus they should be taken into account
in learning problems [99] [66].
2.14 Conclusion

Throughout this chapter, we have reviewed some important concepts of deep learning
methods. First, we have presented the deep neural networks architectures used in our work. We
have also presented Mixup, a data augmentation technique and Stacking ensemble learning
approach, highlighting the importance of these techniques in order to obtain a reliable robust
Audio Tagging system. Furthermore, we have summarized some empirical and theoretical
findings on the differences of the architectures presented in this chapter. Finally, we have

discussed the challenges related to Audio Tagging research.
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In this part we describe the methodology that we have followed for evaluating and
comparing different deep learning approaches. It is composed of two chapters. In the first
chapter we present the experimental setup defined to evaluate the performance of our Audio
Tagging system, whereas in the second chapter, we discuss the results of our experiments.
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CHAPTER 3: DESIGN AND ANALYSIS OF

AUDIO TAGGING: EXPERIMENTAL SETUP

3.1 Introduction

This chapter presents the experimental setup used to conduct our experiments. First, in
Section 3.2 we present our dataset. Next, in Section 3.3, we present the tools that we have used
to conduct our experiments. Then, in Section 3.4 we present the setup for the proper steps for

design of experiments in context of sound analysis.
3.2  Dataset

We have conducted series of experiments on Freesound Dataset Kaggle 2018
(FSDKaggle2018). consisting of audio samples from Freesound annotated using a vocabulary
of 41 labels from Google’s AudioSet Ontology [33]:

o Tearing

o Saxophone o Violin, fiddle
e Bus
e Oboe e Double bass
e Shatter
e Flute e Cello
« Gunshot, gunfire o Clarinet e Chime
o Fireworks i i
» Acoustic guitar o Cough
e Writing i
o Tambourine o Laughter
o Computer keyboard i
o Glockenspiel e Applause
e Scissors . i
_ e Gong o Finger snapping
e Microwave oven
e Snare drum o Fart
o Keys janglin
ys jangling « Bassdrum « Burping, eructation
o Drawer open or close ;
) e Hi-hat o Cowbell
e Squea « Electric piano e Bark
e Knock i
e Harmonica e Meow
» Telephone « Trumpet

FSDKaggle2018 is a reduced subset of FSD [17], which is a large-scale, general-purpose
open audio dataset that is currently under development. It is composed of audio content
collected from Freesound [100] (i.e. Freesound is a sound sharing site developed and
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maintained by the Music Technology Group in Barcelona). It contains a total of 11 073 files
provided as uncompressed waveforms with 16-bit bit depth and 44.1 kHz sample rate.

The ground truth data provided in this dataset has been obtained after a data labeling
process which resulted into two types of annotations:

Manually-verified annotations represent the part of the dataset that was manually
verified by human annotators that manually assessed the presence/absence of an automatically
assigned sound category. In most cases, there is no additional acoustic material other than the
labeled category. In few cases, there may be some additional sound events, but these additional
events will be out-of-domain (i.e. they do not belong to any of the 41 AudioSet categories of
FSDKaggle2018).

Non-manually verified annotations are mainly composed of un-rated candidate
annotations, and complemented with a small amount of rated annotations. These annotations
are most probably not accurate. Some of the audio clips annotated as non-verified could present
several sound sources (even though only one label is provided as ground truth). These additional
sources are typically out-of-domain, but in few cases, they could be within the domain. Figure
3.1 shows the distribution of manually-verified and non-verified annotations per category in the
training set.

FSDKaggle2018 dataset was split into two sets a train set and a test set: The train set is
meant to be for system development and includes 9473 audio clips unequally distributed among
41 categories. The minimum number of audio clips per category in the train set is 94, and the
maximum is 300. The total duration of the train set is almost 18h. Out of the 9473 clips from
the train set, 3710 have manually-verified annotations and 5763 have non-verified annotations.
Figure 3.1 shows the distribution of manually-verified and non-verified annotations per
category in the train set. The test set is composed of 1600 clips with manually-verified
annotations and with a similar category distribution to that of the manually-verified portion of
the train set. The minimum number of manually-verified audio clips per category in the test set
is 25, and the maximum is 110. These annotations are complemented with 7800 non annotated

clips which are also included in the test set but that will not be used for evaluating our systems.

43



CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

manually_verified

250

200

150

100

50

Bus
Gong

Oboe
Violin_or fiddle

Meow
Telephone
or_close
Cough
Bark
Knock
Writing
Flute
Shatter
Hi-hat

Fart

Cello
Saxophone
Clarinet
Tearing

Gunshot_or_gunfire
Trumpet

Scissors

Chime
Computer_keyboard
Harmonica

Cowbell

Fireworks
Bass_drum
Applause

Laughter

Squeak

Tambourine

Glockenspiel
Keys_jangling
Electric_piano
pen
or_eructation
Snare_drum
Double_bass

Acoustic_guitar

Finger_snapping
Microwave oven

Drawer o
Burping

label

Figure 3.1: Distribution of manually-verified and non-verified annotations per category in the train set.

3.3 Tools

We have carried our experiments using Python which is an object-oriented open source
programming language [101]. First, we have performed feature engineering using Spyder which
is a scientific environment based on Python [102]. We have displayed our features using
Librosa 0.7.2 which is a Python package for signal processing [103]. Moreover, the deep
learning process was performed using a set of Python packages such as Tensorflow and Keras
which are high-level APIs for building and training deep learning models. Other libraries that
were invoked include Numpy, Seaborn and Pandas, etc [78] [79].

We have trained our models using Google Colaboratory which is a free Cloud service.
it consists of executable Python notebooks stored within Google Drive and connected to a Cloud
based runtime to perform the execution of the Python code on Nvidia Tesla K80 GPU. Figure

3.2 shows a screenshot of Colab notebook.

c‘- M stacking.ipynb ¥t

Bl commentaire % Partager £
Fichier Modifier Affichage Insérer Exécution Outils Aide

RAM 1
+ Code + Texte Disque W1 7 # Modificatio

Figure 3.2: Screenshot of Colab notebook.
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3.4  Design and analysis of Audio Tagging systems

We aim at building different Single-tag Audio Tagging systems that are able to
recognize an increased number of sound events of very diverse nature (including musical
instruments, human sounds, domestic sounds, animals, etc.). Furthermore, we use data with
annotations of varying reliability (i.e. Manually-verified annotations and Non-manually
verified annotations). Specifically, we illustrate the principles of designing machine learning
experiments for building Audio Tagging systems. To this end, we have carried out two sets of
experiments.

First, we have examined Log-Mel Spectrogram feature extraction technique using two
different sets of parameters along with four deep learning architectures (VGG13, GCNN,
CRNN and GCRNN), while varying their parameters. Giving eight models in total, these
models involve the use of preprocessing techniques and data augmentation in order to improve
their performance and reduce overfitting. We have utilized the F1-score along with Accuracy
and MAP@3 metrics to perform the evaluation of our systems.

Second, we have investigated the effect of combining, the predictions of the previously
trained models. In order to consolidate their strengths, to achieve this, we used a popular
technique called stacking. Figure 3.3 and Figure 3.9 shows the General schema for the first and

second case study respectively.
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Figure 3.3: General schemas that highlight the primary steps for conducting the first case study.
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3.4.1 Cross validation

We have performed a stratified 5-cross validation to split the training set into non-
overlapping training and validation sets. We have used the training set for learning the models,
whereas the validation set was employed for model selection. We have shuffled our data to
generate different combinations in order to ensure that across each fold, there was a similar
number of manually verified examples and the events are approximately equally represented.
Cross validation leads to a considerable computation time increment, but it is a very common
procedure used during model selection stage. We test the best model, (i.e. the result of model
selection), on the provided test set. We have performed 5-fold cross validation using Scikit-

learn library.
3.4.2 Feature Engineering
A Preprocessing

After visualizing our raw data (waveform) we have noticed that some of them contained
long sequences of silence. In order to remove them, we have started by segmenting our input
audio files into small frames and by calculating their Root Mean Square (RMS) energy. The
segments that were lower than the fixed threshold was judged to be unimportant and, hence,
removed. However, the rest of the segments were kept to be used as inputs to our neural
networks. Figure 3.4 depicts silence removal for one sound taken from our dataset. The
extracted non-silent sections are encased in a black rectangle.
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Figure 3.4: The silence removal process applied on the file “071e836c.wav”.

B Feature extraction

We have implemented two configurations for the frequency domain features Log-Mel
Spectrograms. Figure 3.5 presents the feature extraction process that we have followed in our

work.
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Figure 3.5: The process of feature extraction.

Table 3.1 summarizes the parameters used for extracting the Log-Mel Spectrogram features.

Table 3.1: Log-Mel Spectrogram setup.

32 000 Hz 32 000 Hz

1024 512
512 256
64 64
Hamming Hamming

Figures 3.6 and 3.7 depict the Log Mel-Spectrogram features for configuration A and B
respectively of one preprocessed sound taken from our dataset.

Spectrogram
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Figure 3.6: The Log-Mel Spectrogram (Configuration A) of “fff81f55_0.wav”.
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Figure 3.7: The Log-Mel Spectrogram (Configuration B) of “fff81f55_0.wav”.

To address the problem of variable length sequence (or variable length inputs), which
requires for our data to be transformed such that each sequence has the same length. We have
decided to split each feature vector into chunks of a fixed size (128 x 64 where the first axis is
the temporal dimension). This corresponds to 2 seconds chunks and 1 second chunks for
configurations A and B, respectively. When the length of the feature vector was greater than
the chunk size, an additional chunk was added to include the remainder of the audio file;

whereas, when it was lower, the feature vector was padded.

3.4.3 Data Augmentation
Due to the limited size of our dataset and to improve the classification accuracy further,

we explore the use of mixup data augmentation method with an alpha value set to 1.0.

3.4.4 Classification approaches

A two-stage classification method which consists of a training and a testing stage for
Audio Tagging is illustrated in Figure 3.8. It is performed based on audio segments with a single
class annotated throughout. The 41 annotations are encoded into target outputs which are used
in the training stage with audio signals. In this case the classes are mutually exclusive, this
condition is included into the neural network architecture by using an output layer with softmax
activation function, which normalizes the output frame-level class probabilities to sum up to
one. These probabilities are used to get the overall classification output by summing up class-
wise, the frame-level class presence probabilities. Finally, the label with the highest combined
probability is assigned. In our case, the predictions for chunks from the original audio files were

merged using geometric mean to produce clip level predictions. This process was repeated for
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the best four epochs selected according to (Map@3) metric resulting into four prediction
probabilities for each audio clip. Then, these probabilities were merged using arithmetic
mean to produce the final prediction for each audio clip.
Arithmetic and Geometric mean

Calculating the average of a variable or a list of numbers is a common operation in
machine learning. The average (mean) is a single number that represents the most common
value for a list of numbers. More technically, it is the value that has the highest probability from
the probability distribution that describes all possible values that a variable may have.
Arithmetic mean

The arithmetic mean () is calculated as the sum of the data values divided by the total

number of values, referred to as N.

1 N
i=1

The arithmetic mean can be calculated using the mean NumPy function.
Geometric mean
The geometric mean of a series of positive numbers x;, x5 ..., ..., ..., X, IS defined as

the nt" root of its product:

1
(Hxi> =1x1X3 Xy . (3.2

i=1
The geometric mean can be calculated using the gmean SciPy function.
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Figure 3.8: The training and testing phase of an Audio Tagging system.
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A. Neural network architectures

We have built four neural network architectures VGG13, CRNN, GCNN and GCRNN.
The first one is a standard CNN that was inspired by the VGG13 network proposed in [106].
Each convolutional block consists of two convolutional layers followed by a max pooling layer
that halves each spatial dimension. After each convolution, which uses the rectifier (ReLU)
activation function, batch normalization is applied as a form of regularization. After the
convolutional blocks, each feature map is averaged to a scalar value. Finally, a softmax layer is

used to generate the predictions.

The CRNN architecture is an extension of VGG13. Instead of averaging across both
spatial dimensions after the convolutions, only the frequency dimension is averaged initially.
A bidirectional recurrent layer is then applied to output a feature vector for each time step.
Finally, these feature vectors are averaged. By using a recurrent layer, the temporal dynamics

of the input can be learned.

The two remaining architectures are GCNN and GCRNN. GCNN is a variant of VGG13;
whereas, GCRNN is a variant of CRNN. The difference is that each convolutional layer is
replaced with a gated convolutional layer. Note that these architectures were inspired from
papers [79, 80, 81].

Table 3.2 describes the neural network architectures used in the first case study;
convolutional blocks parameters are encapsulated by square brackets. The first two parameters
in each line are the kernel size and the number of filters. ‘BN’ refers to batch normalization.
‘GLU” and ‘Bi-GRU’ refer to Gated Linear Units and Bidirectional Gated Recurrent Units,

respectively.
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Table 3.2: Description of the neural network architectures.

Feature size VGG13 CRNN GCNN GCRNN
128 x 64 Log-Mel Spectrogram
64 x 32 3% 3,64, BN, ReLU] 3% 3,64, BN,ReLU [3 X 3,64, BN,GLU [3 X 3,64, BN, GLU]
3 % 3,64, BN,ReLU 3 % 3,64, BN,ReLU 3% 3,64, BN,GLU 3% 3,64, BN,GLU
2x2 Max Pooling
39 x 16 3% 3,128, BN,ReLU] 3% 3,128, BN,ReLU 3% 3,128, BN,GLU 3% 3,128, BN,GLU
3% 3,128, BN,ReLU| 3% 3,128, BN,ReLU| 3% 3,128, BN, GLU. 13 x 3,128, BN, GLU.
2x2 Max Pooling
16 x 8 [3 % 3,256, BN,ReLU] 3% 3,256, BN,ReLU] [3 % 3,256, BN,GLU ] [3 % 3,256, BN,GLU ]
[3 %X 3,256, BN,ReLU] 3% 3,256, BN,ReLU| 3 % 3,256, BN,GLU| [3 % 3,256, BN,GLU|
2x2 Max Pooling
8 x4 [3 %X 3,512, BN,ReLU] 3% 3,512, BN,ReLU] [3 % 3,512, BN,GLU] [3 x 3,512, BN,GLU |
3% 3,512, BN,ReLU] 3% 3,512, BN,ReLU| 3% 3,512, BN,GLU| [3x 3,512, BN,GLU|
2x2 Max Pooling
4% 3x 3,512, BN,ReLU 3% 3,512, BN,ReLU 3x 3,512, BN,GLU 3x 3,512, BN,GLU
3% 3,512, BN,ReLU 3% 3,512, BN,ReLU 3x 3,512, BN,GLU 3% 3,512, BN,GLU

Bi-GRU, 512, ReLLU

Global Average Pooling

Bi-GRU, 512, ReLLU

Softmax (41 Classes)




CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

B. Ensemble learning

In order to build an ensemble model, we have followed Stacking paradigm. Recall that
the Stacking model is composed of two levels. Level 1 consists of deep learning models
trained using two Log-Mel Spectrogram features. Level 2 is a shallow-architecture classifier
using the meta-features obtained from level 1. These meta-features are obtained by running the
previous classifiers (Section A) for each out-of-fold training data to predict the probabilities
for each sample in the validating set by using the whole training dataset. For each classifier, the
probabilities for 41 classes are be used as the meta-features, which are concatenated to generate
the new training dataset, and used as the input for level 2.

For the ensemble learning in level 2, we employ the linear regression algorithm. Inspired
by [107], we weigh each training sample. The sample weight of a manually verified sample
is set to 1.0, while the weight of a non-manually verified sample is set as a constant value
0.65. In this way, manually verified samples are preferred. Figure 3.9 shows the conceptual

architecture of the stacking ensemble used for the second case study.
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Training data Validation data| | Testing Training data Validation data | | Testing T
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Prediction output from Validation data + actual target values for both Prediction output from Testing data + actual target values for both
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Figure 3.9: Exhibits a general schema that highlight the primary steps for conducting the second case study.
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3.4.5 Evaluation Procedures

The main goal of our work is to compare the performances of several Audio Tagging
systems, while varying the learning paradigms and their parameters. We have tested the
performance of each system using the following evaluation procedure. After generating the out
of fold predictions for both the training and testing set using 5-fold cross validation. Only
predictions that correspond to manually verified samples from each fold were used to perform
class-wise evaluation using the mean average precision (MAP@3), F1-score and averaging the
former evaluation metrics using macro\micro averaging. We also used accuracy to evaluate
the overall performance of the two main case studies. Most importantly, we have based our

discussions and conclusions on strong statistical tests.
3.5  Conclusion

In this chapter, we have described the setup used to conduct our experimental enquiries,
starting from cross validation to classification step. We have presented two general schemes
(i.e. 4 individual learners and an ensemble learning approach “Stacking”) that highlight the key
steps for carrying out our first and second set of experiments. In the following chapter, we will
present the results of these experiments and analyze them in order to derive guidelines for

building audio tagging systems based on numerous statistical comparisons.
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CHAPTER 4: DESIGN AND ANALYSIS OF
AUDIO TAGGING: RESULTS AND DISCUSSION

4.1 Introduction

This chapter discusses the experimental results that we have obtained during our
experiments. In Sections 4.2 and 4.3 we analyze and discuss the results of the first and second
set of our experiments. In Section 4.2.3 we talk about the training time of our experimental

studies.
4.2 First Set of Experiment: The individual models

We have conducted extensive experimental comparison among Audio Tagging methods
using various deep learning architectures based on data with annotations of varying reliability.
Specifically, we have thoroughly examined Log-Mel Spectrogram features using two different
configurations. Most importantly, we have investigated four deep learning architectures
VGG13, GCNN, CRNN and GCRNN giving eight Audio Tagging systems in total. Table 4.1
describes these models. For additional information on these architectures and their parameters,
please refer to Sections 3.4.4. For evaluation, we have used the F1-score along with MAP@3

metrics. Furthermore, we have based our discussions and conclusions on various statistical

tests.
Table 4.1: Summary of the first set of experiment models.
Abbreviation Classification Model Feature Set
VGG13, ) Log-Mel Spectrogram of Configuration A
Convolutional Neural Network ) )
VGG13g Log-Mel Spectrogram of Configuration B
CRNN, ] Log-Mel Spectrogram of Configuration A
Convolutional Recurrent Neural Network ) )
CRNNg Log-Mel Spectrogram of Configuration B
GCNN, ) Log-Mel Spectrogram of Configuration A
Gated Convolutional Neural Network ) )
GCNNg Log-Mel Spectrogram of Configuration B
GCRNN, . Log-Mel Spectrogram of Configuration A
Gated Convolutional Recurrent Neural Network i )
GCRNNg Log-Mel Spectrogram of Configuration B

Table 4.2 gives the F1-score of the eight individual models. The first column represents
the tag, whereas, the rest of the columns designate the systems that are tested in our experiment.
The last two rows specify the macro and micro average of each system over all classes,

respectively. Table 4.3 shows the average MAP@3 over all events.
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Table 4.2: F1-score (%) results of the eight individual models.

85.13 85.06 85.23 85.59 85.74 84.29 86.83 85.32
96.69 95.82 95.56 97.28 95.27 96.69 96.99 96.72
93.83 93.21 93.25 85.43 93.36 90.35 94.77 88.53
96.56 96.93 96.20 94.17 96.57 94.90 96.60 95.60
98.14 98.16 96.36 99.06 97.24 97.52 96.93 99.08
86.05 78.55 84.26 77.78 84.85 74.32 84.69 81.28
92.57 91.09 92.60 90.72 90.55 91.86 92.21 89.53
80.36 71.42 79.71 71.86 81.77 74.08 79.64 71.39
93.35 93.97 95.42 93.11 91.14 92.12 92.89 94.46
82.85 87.20 85.86 89.79 83.09 86.78 88.54 89.58
88.75 93.27 89.63 90.88 90.20 92.49 89.52 92.15
92.04 93.44 92.90 91.64 94.44 92.09 92.68 92.66
93.34 92.23 92.45 92.15 92.56 93.63 92.92 92.08
80.01 80.38 82.19 79.26 85.27 82.04 83.93 77.78
92.66 93.64 93.07 92.60 96.27 93.22 94.05 93.94
86.39 85.15 86.09 85.73 86.75 86.58 86.83 87.77
95.77 91.49 94.06 92.72 95.54 90.79 93.22 94.33
68.33 61.07 66.22 63.44 69.21 61.69 65.46 65.69
96.56 96.08 95.85 96.52 94.98 96.59 94.59 98.00
81.75 69.87 82.94 70.12 83.45 68.20 79.13 67.13
85.46 87.04 85.25 88.11 86.29 87.68 87.67 89.06
85.60 81.94 84.70 81.73 82.99 84.11 84.05 82.89
90.20 91.96 91.41 91.68 88.41 89.71 88.67 89.75
89.92 91.32 88.94 89.72 89.40 91.55 87.85 91.78
85.55 79.00 79.50 76.26 82.00 80.63 77.54 77.25
87.99 88.41 85.63 90.37 86.43 89.52 87.44 87.10
88.39 91.71 87.84 88.36 87.89 91.17 87.99 89.77
9341 91.99 91.38 89.62 92.75 91.66 90.91 88.98
88.17 87.82 85.22 86.07 84.32 84.70 84.07 85.71
97.89 96.23 98.11 96.04 97.38 96.68 96.28 97.19
95.43 96.06 96.18 96.14 94.81 95.59 94.97 96.33
67.62 65.01 67.59 69.06 65.94 66.07 63.00 69.08
89.67 87.89 87.34 80.60 91.85 83.10 85.42 81.53
92.50 90.86 89.84 88.85 90.67 92.31 91.45 88.53
40.10 41.44 45.30 38.39 46.60 42.07 44.19 40.00
91.28 89.96 90.23 90.96 90.21 90.12 90.65 89.19
70.75 67.73 70.09 70.44 70.40 66.85 69.98 69.84
76.42 79.94 79.20 78.90 78.25 80.65 79.38 81.70
92.34 92.21 92.90 91.88 91.68 93.79 91.75 91.23
95.90 95.74 96.15 95.71 94.99 95.98 96.27 94.89
82.19 85.00 81.78 83.22 82.59 85.34 78.93 85.58
87.02 86.03 86.69 85.41 86.93 85.84 86.36 85.86
88.53 87.89 88.45 87.40 88.30 87.82 88.13 87.78
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Table 4.3: Overall MAP@3 results (%) of the eight individual models.

CrRNN, CRNNg VGG13, VGG13; GCRNN, GCRNN; GeNN,  GCNNg

Macro Average 90.73 90.51 90.40 89.75 90.64 90.27 90.38 90.22

Micro Average 92.83 91.66 91.67 91.01 91.64 91.50 91.55 91.44

The previous results indicate that CRNN, achieves the best scores, whereas, VGG13g
produces the lowest ones. Most importantly, incorporating the recurrent layer (i.e. GRU), has
demonstrated a positive impact for assigning sound tags. This improvement is due to combining
the strengths of both CNN and RNN, which is well-known for better modeling long temporal
sequences [21]. However, our initial analysis does not reveal considerable differences. In
addition, according to numerous papers on Statistical Machine Learning, when the results on
different categories of data are not comparable, their averages are meaningless [108]. To cope
with this shortcoming, appropriate statistical tests should be conducted thoroughly [57]. To this
end, we have statistically compared the performances of these techniques using 3 tests:
Friedman test, Friedman Aligned test and Quade test. Under the null hypothesis, we have
assumed that all systems are equivalents and the observed differences are merely due to chance.

Table 4.4 summarizes the obtained statistics.

Table 4.4: Summary of the test statistics.

Audio Tagging System Friedman Ranking Friedman Aligned Ranking Quade Ranking

CRNN, 3.70 134.16 3.56
CRNNg 4.58 169.24 4.58
VGG13, 4.41 149.95 4.38
VGG13, 5.15 199.61 5.41
GCRNN, 441 155.34 3.81
GCRNNg 4.52 173.77 4.73
GCNN, 4.56 160.90 4.68
GCNNg 4.66 173.02 4.84
Test Statistic 7.63 37.50 3.45
Degrees of Freedom 7 7 7 and 280
p-value 0.36 3.8x107°¢ 1.5x1073

The results shown in the above table indicate that Friedman Aligned and Quade tests
reject the null hypothesis with a very high level of significance (p-value,, = 3.8x107%and p-
ValueQ=1.5X10'3), which confirms the existence of at least one pair of systems with

significantly different performances. However, the Friedman test fails to reject this hypothesis.
This behavior is expected since this latter test considers that all tags are equal in terms of

importance, while the Friedman Aligned and Quade tests take into account the fact that some
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events are more difficult than others, and compute the ranks of each technique across all class
labels [57].

The above results also indicate that Configuration A of the feature extraction technique
shows slightly better performance than Configuration B. Furthermore, the MAP@3 scores
given in table 4.3 confirms this claim. In order to further investigate this observation, we have
followed up these tests with multiple Wilcoxon signed-ranks tests, provided in the following

subsection.

4.2.1 Case Study A: impact of feature extraction

This section is devoted to investigating the influence of the parameters used for extracting
Log-Mel features on the performance of the deep learning models. To this end, we have carried
out pairwise comparisons between CRNN, and CRNNg, VGG13, and VGG13g, GCRNN, and
GCRNNg, GCNN, and GCNNg. Due to its robustness, we have considered using the Wilcoxon
signed-ranks test. A summary of this test statistics is shown in Table 4.5. We report in each
entry of this table the number of Win/Tie/Loss, on which there is a statistically significant
win/loss of the systems trained using Configuration A over Configuration B features. An entry

is bold if the number of wins/losses is significant using the Wilcoxon signed-ranks test.

Table 4.5: Summary of the Wilcoxon signed-ranks statistics.

Deep neural networks architectures

VGG13 CRNN GCNN GCRNN
WIT/L 25/0/16 24/0/17 23/0/18 19/0/22
p-value 0.05 0.18 0.63 0.46

Decision | VGG13, wins  Could not reject the  Could not reject the  Could not reject the
over VGG13g null hypothesis null hypothesis null hypothesis

We observe in Table 4.5 that, overall, Configuration A wins in most cases. Most
importantly, the results indicate that VGG13, is significantly better than VGG13zwith p-value
< 0.05. However, data are not sufficient to reach the same conclusion regarding CRNN, GCRNN,
and GCNN as depicted in Table 4.5.

Figures 4.2 and 4.3 show the confusion matrices of CRNN, and CRNNg, respectively,
computed on the test set. The matrices indicate appreciable diagonals, meaning that many
classes are correctly classified. However, we observe that some classes are easier to classify
while the others are not; for instance, in case of Squeak, Scissors and Fireworks, all Audio

Tagging systems exhibit low generalization ability (Table 4.2). We believe this behavior occurs
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due to two main reasons: (1) Some of the mostly misclassified classes are difficult to distinguish
even for human beings; for example, Fireworks are sometimes predicted as Gunshots or Tearing
sounds (line 18 of CRNN, confusion matrix). (2) Some of these events are rare and were mostly
not manually verified; for instance, Scissors and Telephone events are rare; 78.90% of Squeak
sound data are not manually verified. In addition, we observe that for some events such as
“Computer Keyboard” and “Knock”, systems that were trained using Configuration B features
outperform those trained using Configuration A features, as indicated in Table 4.2. Figure 4.1

shows two representations of a sound file of the event “Computer Keyboard”.
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Figure 4.1: Two representations of a “Computer Keyboard” sound file.

The event “Computer Keyboard” belongs to the category of impulsive signals. It is worth
underscoring that systems built using smaller windows work significantly better on impulsive
signals [109]. Recall that Configuration B uses a smaller window for extracting features,
whereas, Configuration A uses a larger one, please refer to Section 3.4.2. This fact justifies
previous observation concerning the outperformance of Configuration B over Configuration A

-based systems in case of impulsive events.
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Figure 4.2: CrNN, confusion matrix.
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4.2.2 Case Study B: Impact of the gating mechanism

We aim at studying the impact of the gating mechanism on the performance of our Audio
Tagging systems. To this end, we have carried out pairwise comparisons between GCNN, and
VGG13,, GCNNg and VGG13g, GCRNN, and CRNN,, GCRNNg and CrRNNg. Similarly, to the
previous experiment, we have considered using the Wilcoxon signed-ranks test. A summary of
this test statistics is shown in Table 4.6. Similarly, we report in each entry of this table the
number of win/Tie/loss of the models which use the gating mechanism over the non-gating-

based systems. An entry is bold if the number of wins/losses is significant using the Wilcoxon

test.
Table 4.6: Summary of Wilcoxon.
GCNN, against GCNNgagainst GCRNN, against GCRNNg against
VGG13, VGG13g CRNN, CRNNg
WIT/L 18/0/23 24/0/17 16/0/25 22/0/19
p-value 0.29 0.06 0.29 0.84

Decision Could not rejectthe GCNNgwins over  Could not reject the  Could not reject the
null hypothesis VGG13, null hypothesis null hypothesis

The results shown in Table 4.6 indicate that Gcnng exhibits significantly better
performance compared to VGG13gwith p-value <0.06. However, introducing the gating
mechanism does not demonstrate any improvement on the remaining models. More
specifically, the gating-based systems lose in most cases, which is not expected since these
approaches are complex but generally very effective and accurate [3] [15]. Many reasons may
cause this behavior. It can be related to the hyperparameters used for training such as the batch
size, the learning rate, the number of epochs, etc. In addition, the introduction of the mixup step
can make the learning more challenging, as reported by many studies [110] [111]. To further
investigate this issue, we have trained GCNNy for another extra 20 epochs, without varying the
other hyperparameters. We report in Figure 4.4 both the training and validation losses during

the learning process, and in Figure 4.5 the changes in the average accuracy.
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Figure 4.5: Training and validation loss during the learning process of GCNN,.

The analysis of the results illustrated in Figures 4.4 and 4.5 is summarized as follows:
Figure 4.4 indicates that the training loss is higher than the validation loss, contrary to intuition.
The main reason for this behavior is that the loss function for validation does not use either
regularization nor augmentation, whereas the training process uses more data, resulting in

higher average loss values. Similar results have been reported in [112].
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As depicted in the zoom of the accuracy plot (Figure 4.5), the performance exhibits an
improvement as the number of epochs increases. We observe a rise of 2% between epoch 20
and epoch 40. This latter finding coincides with our initial intuition regarding the parameters
setting for the gating models. We can conclude that gating-based systems need to be trained for
longer runs.

CONFUSION MATRIX

Figures 4.6 and 4.7 show the confusion matrices of GCRNN, and GCRNNg, respectively,
computed on the test set. The obtained results (Table 4.2 and Figures 4.6, 4.7) reveal that, for
some of the audio classes such as “Applause” “Bass drum” and “Burping”, the gating-based
and non-gating-based systems perform similarly. Interestingly, for some rare events such as
“Fireworks”, “Scissors” and “Telephone”, the generalization ability of the gating-based
systems is higher. Therefore, introducing the gating mechanism can improve the overall
performance in case of rare or non-manually verified events. Similar results have been reported
in [3] [21].

4.2.3 Systems complexity
Table 4.7 gives the trainable parameters and training time of the 4 neural network

architectures.

Table 4.7: Number of trainable parameters and training time for each system.

VGG13 GCNN CRNN GCRNN
Trainable parameters 9430 761 18 834 601 12 600 553 22 004 393
Training time 20h38 33h 25h 37h50

VGG13 models yield the lowest training time since they have the least number of
parameters. The second-best result is attributed to CRNN systems, whereas, the gating-based
systems achieve the worst results in terms of the training time and the architecture complexity.
Although CRNN does not provide the best training time, it succeeds at capturing most events
present in our dataset, requiring bearable training time. It is worth underscoring that these
results represent the time required for building our models, while the prediction time is

instantaneous for all systems.
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Figure 4.1: GCRNNg confusion matrix.
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4.2.4 Summary of the first of experiment
From the above results we can derive several lessons:

e Some audio events are easier to classify while others are not.

o The introduction of the gating mechanism can improve the overall performance in
case of rare or non-manually verified events. In addition, such mechanism works

better when the model is trained for longer runs, i.e. higher number of epochs.

e The systems that were trained using a smaller window for extracting features can

detect better impulsive events.

However, it is hard to make a firm generalization on the acoustic characteristics of these
events that can explain the above observations. In addition, some systems capture sound events
that are impulsive, rare, or even non-manually verified, with various confidences. Specifically,
the individual models provide sufficiently diverse predictions of the events present in the
dataset. Therefore, a proper combination of these models would improve substantially the
generalization ability. Ensemble learning combines the strengths of each model by merging
their predictions [49]. Numerous studies have demonstrated that amalgamating several learners
could improve the generalization ability [45] [113]. An ensemble made of our eight systems
would learn: (1) impulsive events; (2) events that are rare or non-manually verified. In the next
set of experiments, we further investigate the use of a well-known ensemble learning technique

“Stacking”.

4.3  Second Set of Experiment: Ensemble of models

In this section, we have investigated the effect of combining the predictions of the
previously trained models. In order to achieve this, we have employed a popular technique
called stacking. The resulting system is made of our eight models. Table 4.8 summarizes the
obtained performance results. The last row specifies the averaged rank obtained by the
Friedman test of each method. Note that we also include the performance of each individual

model in order to highlight the improvement provided by Stacking these learners.
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Table 4.8: F1-score (%) results of the eight individual models vs STACKEDg model.

85.13 85.06 85.23 85.59 85.74 84.29 86.83 85.32 87 .50
96.69 95.82 95.56 97.28 95.27 96.69 96.99 96.72 98 .46
93.83 93.21 93.25 85.43 93.36 90.35 94.77 88.53 98 .18
96.56 96.93 96.20 94.17 96.57 94.90 96.60 95.60 98 .25
98.14 98.16 96.36 99.06 97.24 97.52 96.93 99.08 100 .0
86.05 78.55 84.26 77.78 84.85 74.32 84.69 81.28 89 .36
92.57 91.09 92.60 90.72 90.55 91.86 92.21 89.53 96 .15
80.36 71.42 79.71 71.86 81.77 74.08 79.64 71.39 76 .06
93.35 93.97 95.42 93.11 91.14 92.12 92.89 94.46 100.0
82.85 87.20 85.86 89.79 83.09 86.78 88.54 89.58 88 .46
88.75 93.27 89.63 90.88 90.20 92.49 89.52 92.15 91 .80
92.04 93.44 92.90 91.64 94.44 92.09 92.68 92.66 93 .98
93.34 92.23 92.45 92.15 92.56 93.63 92.92 92.08 96 .39
80.01 80.38 82.19 79.26 85.27 82.04 83.93 77.78 82.76
92.66 93.64 93.07 92.60 96.27 93.22 94.05 93.94 93.75
86.39 85.15 86.09 85.73 86.75 86.58 86.83 87.77 93.33
95.77 91.49 94.06 92.72 95.54 90.79 93.22 94.33 96 .97
68.33 61.07 66.22 63.44 69.21 61.69 65.46 65.69 66 .67
96.56 96.08 95.85 96.52 94.98 96.59 94.59 98.00 98 .15
81.75 69.87 82.94 70.12 83.45 68.20 79.13 67.13 72 .34
85.46 87.04 85.25 88.11 86.29 87.68 87.67 89.06 90 .91
85.60 81.94 84.70 81.73 82.99 84.11 84.05 82.89 88 .06
90.20 91.96 91.41 91.68 88.41 89.71 88.67 89.75 93.75
89.92 91.32 88.94 89.72 89.40 91.55 87.85 91.78 93 .51
85.55 79.00 79.50 76.26 82.00 80.63 77.54 77.25 80 .00
87.99 88.41 85.63 90.37 86.43 89.52 87.44 87.10 87 .67
88.39 91.71 87.84 88.36 87.89 91.17 87.99 89.77 89 .47
9341 91.99 91.38 89.62 92.75 91.66 90.91 88.98 91 .53
88.17 87.82 85.22 86.07 84.32 84.70 84.07 85.71 87.10
97.89 96.23 98.11 96.04 97.38 96.68 96.28 97.19 97 .56
95.43 96.06 96.18 96.14 94.81 95.59 94.97 96.33 99 .10
67.62 65.01 67.59 69.06 65.94 66.07 63.00 69.08 77.55
89.67 87.89 87.34 80.60 91.85 83.10 85.42 81.53 90 .91
92.50 90.86 89.84 88.85 90.67 92.31 91.45 88.53 97 .14
40.10 41.44 45.30 38.39 46.60 42.07 44.19 40.00 50 .00
91.28 89.96 90.23 90.96 90.21 90.12 90.65 89.19 93 .83
70.75 67.73 70.09 70.44 70.40 66.85 69.98 69.84 72.73
76.42 79.94 79.20 78.90 78.25 80.65 79.38 81.70 82 .98
92.34 92.21 92.90 91.88 91.68 93.79 91.75 91.23 94 .74
95.90 95.74 96.15 95.71 94.99 95.98 96.27 94.89 97 .30
82.19 85.00 81.78 83.22 82.59 85.34 78.93 85.58 84 .75
87.02 86.03 86.69 85.41 86.93 85.84 86.36 85.86 89 .25
88.53 87.89 88.45 87.40 88.30 87.82 88.13 87.78 90 .88
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The results given in Table 4.8 indicate that Stackepg outperforms the other methods in
most cases. In order to confirm the significance of the observed differences, we have compared
the performances of these techniques using the average ranks over the 41 events. Following
Demasar’s recommendations [48], we have first conducted a Friedman test to statistically
compare the performance of these systems, assuming that all systems perform similarly. this
test rejects this hypothesis with X2 = 58.92 > X?(8) = 47.97 fora = 1.0 1.0 x 1077 (X2
is distributed according to the X2distribution with 9 — 1 = 8 degrees of freedom), and therefore
confirms the existence of at least one pair of techniques with significantly different
performances.

Second, because we are only interested in comparing stackepgwith the other alternatives,
we proceeded with a Bonferroni Dunn test while considering STACKEDy as the control system.
Figure 4.8 shows the results of the Bonferroni-Dunn test at a 0.1% significance level with the
critical value gg 901 = 3.83 and the critical difference CD = 2.32. On the horizontal axis, we
represent the average ranks of each method (given in Table 4.8), and we mark using a thick line
the interval of one CD to the left and to the right of the average rank of StackepgAny system
with a rank outside this area is significantly different from the control system.

The analysis of Bonferroni-Dunn test results illustrated by Figure 4.8 indicates that
STACcKEDg has the lowest rank and all the other techniques fall outside the marked interval.
Therefore, we can conclude that Stackepg significantly outperforms the individual models,

which is consistent with our initial observations.

7 6 5 4 3 2 1 0 -1
] Il - 1 ] 1 sl 1 1 1
T T T y y y T y T
\_GCRNN A
STACKEDg
VGG13g !
VGG134 [CRNN 4
GCNNg
~| | lGCRNNgG
CR-NNE
GCNN

Figure 4.8: Comparison of the Stackedg model with the other stacked models with the Bonferroni Dunn test.

4.3.1 Case Study A: STACKEDg System
In order to get a better insight on the effect of Stacking on each kind of the sound events,

we depict in Figure 4.9 the confusion matrix of Stackepg estimated on the test set.
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Figure 4.1: StAackepg confusion matrix.
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Based on our comparative analysis of the confusion matrices of STACKEDg(Figure 4.8),

along with CRNN, (Figure 4.2), CRNNg (Figure 4.3), we can derive the following findings:

1.

In case of many rare events such as “Scissors” and “Bus”, the stacking considerably
improves the performance of the individual learners. For instance, the Fl-score of
scissors has increased by at least 8.5% (please refer to Table 4.8).

In the case of the non-manually verified data such as “Snare drum” (80% of the samples
are non-manually verified), the stacking model boosts the score of the best model by
5%. Moreover, the number of false negatives has decreased drastically. For instance,
we observed in Figure 4.2 and Figure 4.9. “Snare_drum” has been misclassified with
“Violin”,” Hi_hat”, “Gong” and “Cowbell. Stacking has shown remarkable decrease in
the number of false negatives.

The stacked ensemble provides better tagging scores of the impulsive events than
CRNN, and CrRNNg. Specifically, the classification rates of some impulsive sounds like
“Gunshots”, “Computer Keyboard” and “Finger snapping” have known a remarkable
rise, please refer to Figures 4.3, 4.4 and Table 4.8.

Based on these insights, we conclude that stacking provides an appropriate combination

of systems: (1) trained on Configuration A and B features; (2) built using numerous deep neural

network architectures; which elevates the generalization ability of the individual models.

4,.3.2 Case Study B: Impact of the size of the stacked model

This section is devoted to investigating how the size of the stacked ensemble influences

the performance. We have carried out the following experiment. We have trained 4 stacked

models; each model is composed of 4 base learners. A summary of these stacked models is

given in Table 4.9. We have measured the F1-score of these systems on the test set. The results

are provided in Table 4.10. We also report the F1-score of the STACKEDg model as the control

system.
Table 4.9: The base learners of the 4 stacked models.
Base models
Config, VGG134, CRNN4, GCNN,, GCRNNy
Config, VGG13g5, CRNNg, GCNNg, GCRNNg
Mix,,, VGG13,4, CRNN,, VGG13R, CRNNg
Mixg GCNN4, GCRNN,, GCNNg, GCRNNp
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Table 4.10: F1-score (%) results of all the stacked models.

86.42 86.75 87.50 88.89 87 .50
96.97 98.46 96.97 96.97 08 .46
96.43 98.18 98.18 96.43 08 .18
96.55 98.25 94.92 98.25 98 .25
98.46 98.41 100.00 98.46 100 .00
89.36 82.61 89.36 89.36 89 .36
93.20 92.31 95.24 95.15 96 .15
81.82 69.57 78.26 76.06 76 .06
99.12 97.39 98.25 99.12 100 .00
88.00 92.31 92.31 90.20 88 .46
90.32 94.92 91.80 91.80 91 .80
96.30 93.98 95.12 96.30 93 .98
93.98 93.83 95.12 95.24 96 .39
89.66 76.36 82.76 89.29 82 .76
95.38 95.38 95.38 93.75 93 .75
88.14 91.80 93.10 93.33 93 .33
96.97 96.97 96.97 96.97 96 .97
71.43 60.38 67.86 65.45 66 67
98.18 98.18 98.15 97.25 98 .15
84.62 65.31 75.00 75.00 72 34
88.31 90.91 90.91 90.91 90 .91
84.38 87.02 88.37 87.02 88 .06
93.75 93.94 93.75 92.31 93 .75
93.67 92.11 93.51 93.67 93 51
81.48 77.78 81.48 80.77 80 .00
88.00 87.67 90.41 88.00 87 .67
89.47 92.31 92.31 88.00 89 47
91.53 89.66 93.10 91.53 91 53
91.53 87.10 88.52 90.00 87 .10
97.56 97.62 97.56 97.56 97 56
97.74 97.72 97.74 98.64 99 .10
75.00 7451 77.55 7451 77 55
92.86 89.29 92.86 92.86 90 .91
95.77 94.12 97.14 97.14 97 .14
50.00 44.07 52.63 51.72 50 .00
92.50 93.83 93.83 92.50 93 .83
69.70 73.24 76.47 71.64 72 73
81.72 82.22 83.87 84.44 82 .98
94.74 96.00 94.74 94.74 94 74
97.30 96.83 97.74 97.30 97 30
81.97 88.14 86.67 83.33 84 .75
89.27 87.99 89.84 89.31 89 .25
90.63 89.69 91.25 90.81 90 .88
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In order to study these results and reveal significant differences, we have carried out
statistical tests. We have first conducted the Friedman test, while assuming that the observed
differences are due to random behavior. This test rejects our hypothesis with a = 0.02, which
indicates an existence of at least one pairwise significant difference. For further analysis of
these results, we have compared these scores in a pairwise manner based on the Wilcoxon test
in Table 4.11. The first row of each entry specifies the number of Win/Tie/Loss of the technique
in the column over the technique in the row; whereas, the second row shows the p-values for
the Wilcoxon test. If the entry is bold, this means that the number of wins/losses over 41 is
statistically significant using the Wilcoxon test.

Table 4.11: Pairwise comparisons of F1-score results based on Wilcoxon signed-ranks test.

Config, Config, Mixg Mix,,,
WI/T/L 14/0/27 15/0/26 15/1/25 21/1/19
STACKEDg

p-value 0.24 0.02 0.65 0.08

W/T/L 17/3/21 15/15/11 21/10/10
Config,

p-value 0.41 0.32 0.05

W/T/L 23/5/13 26/7/8
Config,

p-value 0.03 0.0006

WI/T/L 20/10/11

MiXG
p-value 0.04

We can sum-up the analysis of the previous results as follows:

(1) Overall, Mix,, yields a remarkable performance. Most importantly, it significantly
outperforms the STACKEDg model by a p-value= 0.08. A possible explanation of this
behavior might be related to the correlation among the individual members of the
STACKEDg model. It is widely acknowledged that an ensemble made of correlated, or
non-diverse, members leads to lower generalization power [114]. We believe that the
STACKEDg ensemble is composed of highly correlated members, which justifies the
obtained results. A further investigation and experimentation is required to solidify

our conclusion. These results suggest an appealing future work direction.

(2) Configgexhibits very poor performance, which is expected since, according to our

previous findings (case study A from the first set of experiments), Configuration B-
based systems have delivered better results on impulsive events, but have exhibited

an overall weaker performance than the other counterparts. Note that our dataset is

72



CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

not domain specific. It is composed of events that some of them are impulsive,
whereas, some are not. Therefore, configuration B may not generalize well which
justifies the reported weak performance. This fact justifies the reported low

performance, which is consistent with our previous findings.

(3) The Gating-based systems are significantly worse than the non-gating-based systems,
which is consistent with our previous findings. As highlighted in case study B (first
set of experiments), we have trained the gating-based models for 20 epochs only.
Our experimental investigation Case study B (first set of experiments) has shown

that such systems should been trained for longer runs.

Based on these observations, we can conclude that the size of the ensemble can
significantly influence the power of Stacking. Specifically, our analysis indicates that a smaller
ensemble can yield better results. Note that several experimental and theoretical studies have
shown that large ensembles do not always guarantee better predictive performance [115] [116]
[117] This fact coincides with our previous conclusions. Furthermore, stacking the gating-based
systems causes a drop in the predictive scores, which is expected since our individual models
have not been well trained, please refer to Case study A (first set of experiments) for additional

justification.
4.4  Conclusion and summary of experimental findings

From these experiments, we can derive 4 lessons:

1. Integrating gated recurrent units within CNN can induce better systems for Audio
Tagging.

2. Introducing (i) the gating mechanism and (ii) the feature extraction configurations yield
models which produce diverse and complementary predictions.

3. Stacking demonstrates a remarkable improvement of the individual learners'
performances. Most importantly, it provides a proper fusion of their predictions, which
leads to better handling of events, including rare and impulsive cases.

4. Combining a larger number of models can entail a deterioration in the overall
performance. An ensemble made of VGG13,, CRNN,, VGG13gand CrNNgYyields

significantly better scores than STACKEDg.
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CONCLUSION

The primary goal of this thesis was to conduct an empirical analysis and comparisons
among Single-tag Audio Tagging systems that are able to recognize an increased number
of sound events of very diverse nature. To this end, we have carried out two sets of
experiments on FSDKaggle2018 dataset. Our main contribution is three folds: (1) We
describe the major steps involved in the design and analysis of several Audio Tagging
systems. (2) We present extensive experimental comparisons founded on strong statistical
tests. (3) We test the impact of stacking 8 deep learning models on the overall performance.
A detailed description of our work is provided below. First, we have investigated four deep
learning architectures (VGG13, GCNN, CRNN and GCRNN). In addition, we have trained these
models on Log-Mel Spectrogram features using two different configurations for extraction.

From this experimental study, we can derive the following conclusions:

1. The integration of gated recurrent units within CNN (i.e. CRNN) can induce better

systems for Audio Tagging.

2. The gating mechanism works better when the model is trained for longer runs, i.e.
higher number of epochs.

3. The mechanism for extracting the feature sets plays an important role for designing
Audio Tagging systems. Models trained on features extracted using a smaller window
are better at capturing impulsive events, but show an overall weak performance. In
addition, the confusion matrices indicate that the mechanism for extracting features
induce models which produce diverse yet complementary predictions.

Second, motivated by the fact that the individual models produce diverse predictions,
we have considered ensembling the predictions of all the trained models through stacking.

Based on our analysis, we can conclude that:

1. Stacking demonstrates a remarkable improvement of the individual learners'
performances. Most importantly, it provides a proper fusion of their diverse predictions,
which better captures events, including rare and impulsive cases.

2. Combining a larger number of models can entail a deterioration in the overall
performance. An ensemble made of VGG13,, CRNN,, VGG13z and CRNNg Yyields

significantly better scores than STACKED;.
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Limits and Future work

In the previous section, we have summarized our main contributions. However, it is of
paramount importance to specify the limitations of our work and highlight potential future
work directions. The success of the ensembling method relies mainly on the fusion of the
individual learners predictions. However, in our experiments we have only considered the
stacking mechanism. An appealing work direction would be to thoroughly investigate other
fusion methods such as Grading [118], Adaptive fusion and co-operative training [119],
Mathematical programming [49], and even ensemble pruning techniques [120]. Similarly, the
hyperparameters used for training the deep learning models considerably affect the
generalization ability. For instance, in the first set of experiments, we have found that
training the gating-based models for longer runs improves the performance. Due to the lack
of a dedicated computational platform, we have trained our models for 20 epochs only. A
natural extension of this work would be to investigate tuning several hyperparameters like:
the number of epochs, the batch size, the learning rate, and exploring other data augmentation
techniques. The majority of the available sound datasets are made of a large amount of
labeled and unlabeled data. To cope with this matter, it would be interesting to investigate
semi-supervised approaches such as pseudo-labeling [121], which offers an elegant
mathematical model that serves this purpose very well.

During this project, we have encountered many struggles. The training of the learning
models took a very long time due to the lack of dedicated computational platforms. In addition,
when performing model selection, storing the trained classifiers caused a considerable increase
in the usage of memory space.

This field of research is interesting as it contributes directly to the development of smart
cities. We have acquired knowledge and many skills throughout the past 8 months, such as:
fundamentals of Machine Learning and key steps for conducting proper Machine Learning
experiments. We have also learned the analysis of the experimental findings based on statistical
tests. Moreover, we have mastered Python and have discovered “Google Collaboratory”

platform that we will continue using for future machine learning projects.
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APPENDIX A: DEMONSTRATION

A.1 Introduction

In this section, we present the web application we developed for our Audio tagging
systems. First, in Section A.1 we present the tools that we have used for development. Next, in
Section A.2 we describe all the possible interaction with the application.

A.2 Development tools

Hardware device/ Environmental setup

In order to create this website, we have used the following resources:

The application was developed on a desktop running on Windows 10 operating system, with

Intel Core i4 and 4 Gb RAM.
Table A.1: Development tools.

Tools Description /functionality

FLASK Flask is a micro-framework designed to create a web application in a
short time. We have used flask for the backend development of this
application. It only implements the core functionality giving developers
the flexibility to add the feature as required during the implementation.

HTML Hypertext Markup Language is the standard markup language for
documents designed to be displayed in a web browser.

CSS Cascading Style Sheet is a style language that separates the style of a
web document from its content. It is used to customize the layout and
control the appearance of web pages written by markup languages.

BOOTSTRAP  Bootstrap is a popular front-end development framework that includes
HTML, CSS and JS components. We have used bootstrap to facilitate
the design of our webpages.

PYTHON Python is an object-oriented open source programming language. We
used python as the main programming language for this project.

JQUERY Jquery is a lightweight JavaScript library used for enabling the
interactivity of the web pages.

TENSORFLOW TensorFlow is an open-source software library for high performance
numerical computation. It is a Machine Learning tool mainly designed
to process neural network models.

KERAS Keras is a high-level neural network API, Keras is written in pure Python
and based on Tensorflow.
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A.3 Developed system

In the pipeline of designing Audio Tagging systems, creating the model is the hardest,
but it is not the end. In order to benefit from the created models, we deployed the pretrained
models online to be accessed by internet users using Flask micro web framework, Python,
HTML (HyperText Markup Language), CSS (Cascading Style Sheet), and JavaScript. Simple
web pages are built where the user can access the application and upload an audio clip to the
server. Based on the deployed models, the audio clip is classified and its class label is returned
back to the user with additional information on the process. The following sections demonstrate
several parts of the application:
Home

The home page (Figure A.1) is the main page where the user can navigate to different

parts of the application. it consists of three main parts:

e Header which is on the top of the page. It consists of five tabs (About, Technology, Use
Cases, Blogs and Contact page) and a logo. When the user clicks on one of these tabs
the corresponding page is displayed.

e The work area which is located below the navigation bar is where the primary
interaction with the app occurs. It includes a list of our systems (VGG13,, VGG13g,
CRNNy4, CRNNg, GCNN,, GCNNg, GCRNN,, GCRNNg and the five stacked models). In
order to access the aforementioned systems hover and click on their corresponding card.

e Footer located below the work area. Here, we can find “Contact” links in the bottom

center of the footer (email, phone etc.) as well as our social media accounts.

The rest of the web pages follow the same template as the home page depicted in the Figure

below.
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THE PROPOSED SYSTEMS
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Figure A.1: The home page.
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The System web Page

When the user chooses an audio tagging system, the page shown in Figure A.2 pops up
on the screen. The Audio tagging module consists of an audio player which contains the general
information of the audio file (current time/end time, name of the audio file and the pause /play
button) that helps users control the audio player. Note that we have dedicated a separate web
page for each individual model (VGG13,, VGG13g, CRNN,, CRNNg, GCNNy, GCNNp, GCRNN,,

GCRNNg). Note that the Stacked models (STACKEDg, Config,, Config,, Mixg and Mix,,) are

given in a separate page (Figure A.2) in order to observe the differences in between the stacked

models and their base learner. The process of prediction is as follows:

1. First, the user chooses the audio file to upload from the internal storage (computer) to
the web server by clicking on the upload button. Note that our web application only
deals with (.wav) audio files and any other extension is not supported. Figure A.3

depicts the upload process.

HOMI ARCUT TECHNGIOGY

Figure A.2: The system page before any prediction process.
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Figure A.3: The upload process.

2. Second, once the audio file is selected, the user can click on the predict button (below
the audio player). This process goes through the following steps: first the Feature
Engineering process (pre-processing, acoustic feature extraction), followed by the
classification process. When the prediction process is done the results are shown at the
bottom of the web page.

3. Third, the result section for the individual models contains a list of the 3 best predictions
tags ordered from the most probable to the least. Note that true tags are displayed in
green. Additional information are provided when the user chooses the” More details”
options. This latter includes details on the feature engineering step. Moreover, the
user can play the audio file and its preprocessed version, view time representation of
the audio files and the Spectrogram resulted from the feature extraction step. As for
the stacked models page, the result section contains an additional table displaying the

predictions for the four 4 stacked models and their base models as shown in Figure A.5.
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Figure A.4: The results page.
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Additional web pages

The about page (Figure A.5) contains the general description of audio tagging, an overview of
the applications characteristics and advantages.

Use cases page (Figure A.6) shows a brief description of a wide range of applications related
to Audio Tagging.

Blogs (Figure A.7) includes some interesting blogs and articles related to audio tagging and
many other sound analysis tasks.

Technology (Figure A.8) provides a brief description on the main concepts used to build a

system capable of recognizing wide variety real-world sounds.
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WHAT IS AUDIO TAGGING?

It is an embedded software platform that provides a simple AP! to
assign a tag to a given avdio clip from a wide range of predefined

audio events.

End-user delight

Offer a gold standard in performance and drive the adoption and

usage of new sound-based features and services.

1. Accurate: Our models are trained using General-Purpose dataset for
machine learning, it contains 11073 sound events from various domains,

1 label types

2. Specialist: At the heart of ystems is an optimised deep neural
networks, designed to model the acoustic and temporal features of

sounds events.

3. Responsive: Our software is fast and accurate, recognizing sounds

immediately after they occur

EMBRACE THE POWER OF
AUDIO TAGGING

Our software enables to embed contextual awareness, through the
sense of hearing, onto their devices to satisfy a range of values such as
health and wellbeing, safety and security, entertainment and

communication.

1Alarm: Grab the attention of the user. Notifications will help consumers
to make decisions about reacting to a developing situation.
2inform:Provide useful information in UX feeds (vision of voice-based)
enabling consumers to make informed decisions based on the insight
sounds provide.

3.Advise:Nudge consumers into taking action based on the sounds

recognised

1-677-124-44227

° - Audio Tagging Stay With me

o: 0000 -

AudicTaggingteam@gmail.com

Figure A.5: The about page.
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OUR SPECIALISED DEEP
NEURAL NETWORK FOR SOUND
TAGGING

Our drive to give machines a sense of hearing has led to the creation

and ongoing evolution of world-leading sound recognition technology.

Intelligent audio tagging requires a deep knowledge of the ideophonic
features of sounds. It is the only way to teach machines how to hear.
Weve built our own highly-optimised and dedicated deep neural
network that accurately models sounds based on their ideophonic

features.

DATA COLLECTION

It's the foundation To teach our technology to recognise sounds, we
have to expose it to high quality, real-world data. Quantity matters, but

it is also about relevance and diversity.

The audio events and acoustic scenes are either recored in a
dedicated Sound Labs such as AudioSet, through anetwork of volunteers,

or via a dedicated data collection team. Read about our data

collection process in WIRED.

OUR SCALABLE TECHNOLOGY
PLATFORM

We developed a proof-of-concept system that can solve the Audio
Tagging problem. Which will serves as a baseline for future sound:

based features and services.

Because our is dedicated to sound tagging, it is extremely compact,
which makes it perfect for a wide range of products from smart

speakers to hearables.
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AudioTaggingteam@gmail.com

° Audio Tagging Stay With me

Figure A.6: The use case page.
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Figure A.1 : The blogs page.
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