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Abstract

The growing precision of our experimental apparatus requires relevant advances in the accuracy of
our theoretical cross-section computation. Implying that we need to be able to calculate multi-leg
and/or multi-loop corrections to various amplitudes. The purpose of this thesis is to come to this
aim and to demonstrate the affinity of the Spinor Helicity Formalism in dealing with Next-to-leading
order (NLO) computations related to the QCD sector. We start by employing Helicity spinors
in writing scattering amplitudes resulting in expressions with a high potential for simplifications,
then introduce complex momenta to find a recursive method for building Helicity tree amplitudes
and at last we used Generalized Unitarity to connect amplitudes in an order by order manner.
The results were a generic one-loop formulation for Helicity amplitudes that is entirely determined
through cut-coefficients along with a procedure for the extraction of box and triangle coefficients
generalizable to the remaining ones. We found that cut-coefficients were built out of the product of
Helicity tree amplitudes which themselves are constructed using lower-point amplitudes recursively,
meaning that the NLO was ultimately linked to the kinematic 3-points of the theory and that even
higher orders will necessarily employ available lower order found amplitudes.

Keywords : High-energy physics, SM, QCD, Spinor Helicity Formalism, Helicity Amplitude,
Complex momenta, Recursion formulae, NLO, Generalized Unitarity, On-shell cut-coefficients Ex-
traction
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Introduction

The experimental paradigm followed for the Quantum Field Theory or QFT framework, is based
on collision events and implemented in labs through the usage of particle accelerators meaning
that from a theoretical perspective we are interested in cross-sections. The framework offers
a computational technology for each of its sub-theories in-term of Feynman diagrams. These
diagrams are used within a conventional procedural format called the “Trace method”. To sum it
up the method starts by drawing all possible tree diagrams contributing to a certain process and
then write their contributions using the Feynman rules. We obtain the cross-section by summing
over possible final states and averaging over initial ones which leads to the apparition of traces
(hence the name of the method), then square the final amplitude giving us what the theorists
termed the Leading Order (LO).

Seeking more precision required us to account for higher orders which ultimately would include
loop-corrections. The first problem encountered there was the divergences arising from loop in-
tegrals, which was dealt with both mathematically through regularization procedures and at the
phenomenological level employing renormalization schemes. But there was an even deeper problem
proper to the method itself, that is, the growing complexity of intermediate step expressions com-
pared to the simplicity of the final results. Meaning that even if the method works at some point
it wouldn’t be compatible with our computational capabilities putting us at standstill jokingly
termed, “NLO1 bottleneck”.

The past recent years have witnessed the silent undergoing of a revolution in Quantum Field
Theory, that affected our computational capabilities and opened the door for what was previously
considered a tedious task. The origin of this revolution starts from wanting more compact ways to
describe nature as a possible solution to deal with increasing intermediate complexity of expres-
sions. That motivation on its own leads us to exploit the indistinguishability of Chirality, Helicity
and Spin in the absence of mass2 giving rise to Helicity formalism [1] exposed in the introductory
work [2] done last year showing how this formalism offered an alternative way to compute LO
amplitudes while demonstrating an outstanding efficiency. The complexity problem manifested by
the Trace method was absent to the extent that one can conduct computations manually. The
question that is central to our theme is, what kind of affinity can Helicity method exhibit in dealing
with the NLO ?

In order to answer the previous question we start the first chapter of this work by an overview of
QCD and Helicity formalism followed by concepts related to (LO) Helicity amplitudes. The second
chapter will be marked by the introduction of complex momenta and probing their consequences
as an implementation of on-shell ideas to internal states. The third chapter will provide the last
piece to the puzzle coming from the Unitarity (both simple and generalized) constraint applied to
the S-matrix linking loop and tree contributions via cut rules leading to a one-loop formulation of
Helicity amplitudes in term of cut-coefficients. The fourth and final chapter will showcase all of
the ideas gathered from previous chapters at work in computing one of the loop-coefficients that

1Next-to Leading Order
2See Appendix A.
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is relevant to the gg −→ gg process.
We supplement this work with three appendices treating of : Spinors and their related formulae,

Group theoretic notions and at last Technologies used in the conduct of this project.
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Chapter 1

Overview of QCD and Helicity Formalism

The usage of Helicity basis within the framework of Quantum Field Theory have lead us to step
up the efficiency of our computational tools. While at first the usage was only constrained to high
energy limits where the values of kinematic variables are so great that the mass becomes negligible,
interesting additions supplied the formalism with a consistent way to embed mass. The application
to QCD sector and especially the pure gluon processes revealed symmetries that weren’t known by
conventional means. All of this clues and discoveries are the temptation behind wanting to employ
Helicity formalism more and more, to tackle problems which did put us at a standstill before.

1.1 Standard Model

The Standard Model has a respectable place in the realm of physics as the theory of fundamen-
tal constituents of the universe. The matter and its interactions are explained via a quantum
field paradigm of packaging and exchanging information. Multiplet of states transforming under
Poincare group are embedded in fields representative of what we call commonly, particles. The
fermions with a half-integer spin are responsible for structure and order in nature since they obey
the Pauli exclusion principle. The bosons with an integer spin are the carriers of information
between fermionic structures leading them to interact within the range of action of fundamental
forces. To put it bluntly, these bosons are our representation of how a fundamental force actually
operates.

The model was developed in stages throughout history with the help of many physicists from
both theoretic and experimental sides providing it with solid roots. One of the first motivations for
it was the explanation of the strong interaction, for which Chen Ning Yang and Robert Mills
did extend the concept of a gauge theory from abelian to non-abelian groups, in other words, a
generalization of Quantum Electrodynamics that we call a Yang-Mills theory. Later on Sheldon
Glashow [3] unified the electromagnetic and weak interactions which was supplemented by the
Higgs mechanism from Steven Weinberg [4] and Abdus Salam [5] making the modern form of
the Electroweak theory. The term “Standard Model” was used for the first time in 1975 compared
to when the physicists started getting interested in the previous problems around 1954.

At the experimental level the theory was providing us with ways to single out signals corre-
sponding to particles resulting from processes falling within the range of its predictions. The Large
Hadron Collider is the arena where a lot of things played out and the reliability of the theory was
tested to great extents. Passing these tests with a blatant success is one of the reasons this model
is still around. One of the most known methods to compute amplitudes for events taking place in
scattering experiments is the trace method based on the evaluation of tree Feynman diagrams. The
calculations of leading-order contributions were easily automated and implemented both numeri-
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cally and analytically, but taking the model further in its predictions requires us to access more
precision by computing next-to-leading order corrections, namely the evaluation of loop diagrams
correcting the previously known tree diagrams. This presented many challenges as most if not all
of these loops weren’t finite and thus couldn’t be linked to something observable, leading us to
adopt regularization procedures and renormalization schemes to deal with these infinities. Still
the NLO was a very daunting task and a novel method was more than needed.

In order to present one of the most efficient methods for tackling the problem of not only the
NLO but also to make LO calculations much easier, we will confine our discussion mainly with
the QCD sector and use it to illustrate how the combination of Helicity formalism, On-shell and
Unitarity methods along with ways to handle color, or the algebra part, combine to make our task
more easier and flawless.

1.1.1 Quantum Chromodynamics Lagrangian

The Quantum Chromodynamics theory define the interaction between quarks and gluons. It is a
special case of the Yang-Mills family with gauge symmetry group, SU(3). While our examples will
mainly involve this sector, it doesn’t affect the generality of the ideas we are advancing. In what
follows we will write the Lagrangian encoding all of the theory’s dynamics and then extract the
Feynman rules that will help us build process amplitudes which serve as a check against results
we obtain through the Helicity Formalism.

The Dirac Lagrangian1 coupled to the gluon field is given by,

L = −1

4

(
F a
µν

)2 − 1

2ξ

(
∂µA

a
µ

)2
+ (∂µc

a)
(
δac∂µ + gsf

abcAb
µ

)
cc + ψi (δiji✓✓∂ + gs��A

a −mδij)ψj . (1.1)

The gluon strength field F a
µν writes in-term of the gauge fields Aa

µ, coupling constant gs and
the structure constants fabc coming from the color algebra as,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . (1.2)

The ca and ca are the Faddeev-Popov [7] ghosts and anti-ghosts respectively. And at last ψi

and ψi are the Dirac fields for the quarks and anti-quarks.

1.1.2 Feynman rules

A Feynman diagram is an alternative way to write quantum amplitudes in the form of graphical
representations. The basic components making a diagram are lines and vertices. The lines can be
external when they have only one of their ends attached to a vertex or they could be internal in
which case both of their ends are attached to vertices and they are termed propagators. External
legs represent either incoming or outgoing particles depending on the direction of the time-flow
which conventionally is taken to be from left to right. The propagators represent intermediate
particles that won’t show in the measurement but nonetheless they are the hidden mechanism
behind the interaction represented by the diagram. The vertices are points of interaction where
more than two lines representing quantum fields meet. In order to compute cross-sections we need
to have the Feynman rules which are associations between a given graphical component and a
factor entering in the expression of the amplitude. These rules are generally extracted from the
Lagrangian of the theory. We’ll just list down the ones that will be relevant to us.

1Section 26.1, [6]
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• The Kinetic part of the Lagrangian provides us with the propagators2,

Lkin = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)2 − 1

2ξ

(
∂µA

a
µ

)2
+ ψi (i✓✓∂ −m)ψi − ca @ ca. (1.3)

Gluon propagator,

ν, b µ, a = −i
p2+iε

[
gµν − (1− ξ) pµpν

p2

]
δab.

(1.4)

Ghost propagator,

b a = i
p2+iε

δab.

(1.5)

Colored spinor propagator,

j i = i(✁p+m)
p2−m2+iε

δij .

(1.6)

The i, j refer to fundamental3 color indices. The delta’s force color conservation, “the color
that comes in is the same as the color that comes out”. We have to sum over color when these
appear as intermediate states.

• We read the factors of the external legs from the solutions4 of the Quantum fields,

ψi(x) =
∑

s

´
d3p
(2π)3

1√
2ωp

(
aspu

s
pe

−ipx + bs†p v
s
pe

+ipx
)

ψi(x) =
∑

s

´
d3p
(2π)3

1√
2ωp

(
bspv

s
pe

−ipx + as†p u
s
pe

ipx
) . (1.7)

In the case of quarks each external leg receives a spinor (u- or v-type) depending on the
orientation of the particle flow and whether it is incoming or outgoing (unbarred or barred) . The
conventional direction of the particle flow is –to the right– so that antiparticles flow in the opposite
direction and if arrow is entering toward the vertex of interaction then it is incoming while the
opposite situation would be outgoing.

= u(p)

= u(p)

= v(p)

= v(p)

(1.8)

Aa
µ(x) =

ˆ
d3p

(2π)3
1√
2ωp

∑

λ=±

(
ǫa,λµ (p)ap,je

−ipx + ǫa,λµ (p)∗a†p,je
+ipx

)
. (1.9)

2Section 25.4, [6]
3See Appendix B
4Sections 23 and 8.4.2 in [6]
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As for the gluons we only need to consider if the leg is incoming or outgoing.

= ε∗(p)

= ε(p)

(1.10)

• The Interaction part of the Lagrangian provides us with vertices,

Lint = −gfabc (∂µA
a
ν)A

b
µA

c
ν −

1

4
g2
(
f eabAa

µA
b
ν

) (
f ecdAc

µA
d
ν

)
+ gfabc (∂µc

a)Ab
µc

c + gAa
µψiγ

µT a
ijψj .

(1.11)
The three-gluon vertex is,

ν, b ρ, c

µ, a

=gfabc[gµν (k − p)ρ

+gνρ (p− q)µ

+gρµ (q − k)ν ]

.

(1.12)

Note that we use the convention [6] where all the momenta are incoming k + q + p = 0.
The ghost-antighost-gluon vertex,

cc ca

µ, b

= −gfabcpµ.

(1.13)

The quark-quark-gluon vertex,
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j i

µ, a

= igγµT a
ij .

(1.14)

And finally, the four-gluon vertex,

ρ, c σ, d

µ, a ν, b

=− ig2[fabef cde (gµρgνσ − gµσgνρ)

+facef bde (gµνgρσ − gµσgνρ)

+fadef bce (gµνgρσ − gµρgνσ)]

.

(1.15)

1.2 Helicity Formalism

In this section we lay the foundation upon which we’ll undertake future calculations. Both the
massless and the massive5 cases are treated thoroughly. The detail behind the possibility of this
formalism has been placed in Appendix A to keep the discussion lighter and the focus on relevant
results. It is very important that one understands the massless formalism before proceeding with
further reading as the massive case only builds on it and everything treated here could ultimately
be expressed using massless spinors.

1.2.1 Massless case

The notation introduced in the Appendix A allows us to write any massless 4-momentum6 in term
of its Helicity spinors as,

5We include mass for fermions only, but the method can be generalized to bosons by updating their polarization
vectors.

6In our calculations instead of giving different “labels”, Latin symbols to momenta involved in the problem we’ll
adopt a format pµi where the i reference which particle in the problem so that we can reduce the referencing just to
i which is just an integer when using our Helicity spinors.
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pµ =
1

2
[pσµp〉 = 1

2
〈pσµp] , (1.16)

and its corresponding bi-spinors7 or slashed matrices as, pαα̇ = p〉 [p and pα̇α = p] 〈p .
The Lorentz contraction of two 4-vectors writes using both anti-symmetric inner products,

p · q = 1

2
〈pq〉 [qp] , (1.17)

with 〈pq〉 = [qp]† for the case of real momenta.
A manipulation we can do with these Helicity spinors is using the fact that they are two-

dimensional to write one spinor in terms of two others,

p〉 = 〈pr〉
〈qr〉 q〉+

〈pq〉
〈rq〉 r〉 , (1.18)

after contraction with 〈s and some rearrangements we obtain the Shouten identity,

〈sp〉 〈qr〉+ 〈sq〉 〈rp〉+ 〈sr〉 〈pq〉 = 0. (1.19)

Momentum conservation generally writing as,
(∑

p
)
in
=
(∑

p
)
out
, (1.20)

becomes,
∑

incoming

i〉 [i =
∑

outgoing

i〉 [i . (1.21)

And if we take all momenta to be either “incoming” or “outgoing”, it simplifies to,
∑

i

i〉 [i = 0. (1.22)

And in term of anti-symmetric products we have,
∑

j

〈ij〉 [jk] = 0. (1.23)

By fixing the choice of whether we take external momenta all incoming or all outgoing, the
kinematic invariants of our problem take a very simple form,

sij = (pi + pj)
2 = ✓

✓✼
0

p2i +✓
✓✓✼
0

p2j + 2pi · pj, (1.24)

implying that,

sij = 〈ij〉 [ji] = |〈ij〉|2 = |[ij]|2 . (1.25)

In the case of 2 −→ 2 scattering, the s′ijs will take the various values of {s, t, u}8, satisfying
the condition s + t+ u = 0 which is another form of momentum conservation.

7See Appendix A.
8MandelStam variables, see [6].
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• Dirac spinors appear when we are dealing with fermions, although the information they
contain if we look at their components is just the square root of the contraction of the
momentum with the sigmas which surprisingly resembles how we extract bi-spinors. We
retrieve the full momentum via a product of two Dirac spinors in some fashion so that we
get rid of the square root reducing the physical dimension by half. The point of this is to say
that Dirac spinors can be very well handled by Helicity spinors. As the distinction between
particle and antiparticles is blurred by masslessness, external physical states can either be
left- or right-handed,

p〉 = PLu(p) = PLv(p)
p] = PRu(p) = PRv(p)

. (1.26)

With a correspondence list [8] of this sort,

p〉 = u−(p) = v+(p)
p] = u+(p) = v−(p)
〈p = u+(p) = v−(p)
[p = u−(p) = v+(p)

. (1.27)

The problem we immediately notice is that while Dirac spinors are four dimensional objects
the Helicity spinors are two dimensional, this leads us to look at an embedding which enables
meaningful contraction with the γ − matrix as it will appear regularly in calculations. To this
issue we propose,

p−〉 =
(
p〉
0

)
〈+p =

(
〈p 0

)

p+〉 =
(

0
p]

)
〈−p =

(
0 [p

) , (1.28)

where the sign in the superscript refers to the Helicity projection.
A way to check if this redefinition captures essential properties, we first point out that the

{p−〉 , p+〉} corresponding the unbarred spinors are related to the {〈−p , 〈+p} by conjugation and
multiplication by γ0 which is what we look for in Dirac spinors9. The second thing is that it
should reconstruct the momentum information correctly and match the position of the σ′s within
the γ-matrix,

p−〉 〈−p =

(
0 p〉 [p
0 0

)
; p+〉 〈+p =

(
0 0

p] 〈p 0

)
, (1.29)

where the Dirac matrix is given by,

γµ{αα̇} =

(
0 σµαα̇

σµ
α̇α 0

)
. (1.30)

We see that the spinor indices matches correctly.
We can readily see that sandwich 〈+qγµp−〉vanishes and the same goes for 〈−qγµp+〉, the reason

for this is the anti-diagonal form of γ. The product γµγν has a diagonal form making 〈+qγµγνp−〉
and 〈−qγµγνp+〉 different from zero. One can generalize this for product of odd-number and even-
number of γ′s,

〈+q {γµ...}odd p−〉 = 0 = 〈−q {γµ...}odd p+〉
〈+q {γµ...}even p−〉 6= 0 6= 〈−q {γµ...}even p+〉

. (1.31)

9See Appendix A.3
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About the case where the sandwich involves similar Helicity states we have the opposite situa-
tion where it vanishes for a product of even-number of γ′s, while in the case of an odd-number it
doesn’t,

〈+q {γµ...}odd p+〉 6= 0 6= 〈−p {γµ...}odd q−〉
〈+q {γµ...}even p+〉 = 0 = 〈−p {γµ...}even q−〉

. (1.32)

In our amplitude computation we’ll make use of the convention of all “incoming” momenta,
meaning that outgoing particles will have their Helicity flipped10,

p〉 :
{

u−(p) : incoming
v+(p) : outgoing −→ v−(p)

}
〈p :

{
ū+(p) : outgoing −→ ū−(p)

v̄−(p) : incoming

}

p] :

{
u+(p) : incoming

v−(p) : outgoing −→ v+(p)

}
[p :

{
ū−(p) : outgoing −→ ū+(p)

v̄+(p) : incoming

} . (1.33)

This convention associates negative Helicity (−) solely with angle-brackets and positive Helicity
(+) with square ones,

p〉 = u−(p) = v−(p)
p] = u+(p) = v+(p)
〈p = u−(p) = v−(p)
[p = u+(p) = v+(p)

, (1.34)

leading to,

p−〉 =
(
p〉
0

)
〈−p =

(
〈p 0

)

p+〉 =
(

0
p]

)
〈+p =

(
0 [p

) , (1.35)

and

〈−q {γµ...}odd p−〉 = 0 = 〈+q {γµ...}odd p+〉
〈−q {γµ...}odd p+〉 6= 0 6= 〈+p {γµ...}odd q−〉

. (1.36)

The contribution of a fermionic line with one vertex of interaction or more will always vanish
if the two external states have the same Helicities.

If we develop the object 〈−qγµp+〉 we get,

〈−qγµp+
〉
=
(
〈p 0

)( 0 σµ

σµ 0

)(
0
p]

)
= 〈qσµp] . (1.37)

Doing the same for 〈+pγµq−〉,

〈
+pγµq−

〉
=
(
0 [p

)( 0 σµ

σµ 0

)(
p〉
0

)
= [pσµq〉 . (1.38)

Via a simple demonstration we can show that the two previous results are equal, we summarize
everything in the following identity11,

10We need to keep in mind that the physical Helicity of outgoing particles is always the inverse of what we
compute.

11Notice that we didn’t flip any of the Helicities according to our convention we just pointed out the equivalence
between the two ways of writing since the internal mechanisms we did set, select the correct sigma matrix to do
the translation.
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〈−qγµp+
〉
= 〈qσµp] = [pσµq〉 =

〈
+pγµq−

〉
. (1.39)

In the case where we have a product of two of these, the result makes up for the first form of
the Fierz identity,

〈
+pγµq−

〉 〈−rγµs+
〉
= [pσµq〉 〈rσµs] = 2 〈rq〉 [ps] . (1.40)

By setting q = p and r = s, and recalling that pµ = 1
2
[pσµp〉 = 1

2
〈+pγµp−〉,

p · s = 1

2

〈
+pγµp−

〉 1
2

〈−sγµs+
〉
=

1

2
〈sp〉 [ps] , (1.41)

proving the consistency of the formalism12. Another form of the Fierz Identity is given below,

γµ
〈
+pγµq

−〉 = 2
{
q−
〉 〈

+p + p+
〉 〈−q

}
, (1.42)

which one can employ to have the representation of the slashed momentum,

✓✓k = γ · k =
1

2
γµ
〈
+kγµk

−〉 =⇒ ✓✓k =
[
k−
〉 〈

+k + k+
〉 〈−k

]
, (1.43)

so that,

〈p✓✓kq] = 〈pk〉 [kq] . (1.44)

• Polarization vectors arise in amplitudes when bosons appear on the external legs. Helicity
states for external bosons coincide with circular polarizations. These polarizations satisfy
the following physical conditions,

εµ(p) (ε
µ(p))∗ = −1

pµεµ(p) = 0
. (1.45)

Polarization vectors are objects with a space-time index and for a fixed momentum pµ =
(E, 0, 0, E) they write as,

εµ+ = 1√
2
(0, 1, i, 0) εµ− = 1√

2
(0, 1,−i, 0) . (1.46)

For these to accept a conversion, not only they have to fulfill the physical polarization conditions
being normalization ε∗ · ε = −1 and transversality p · ε = 0, but also ε · ε = 0.

In order to decompose polarizations we introduce another light-like momenta rµ, called the
reference momentum which is “arbitrary”13 except that it shouldn’t be aligned with pµ,

ε+µ (p; r) =
〈rγµp]√
2〈rp〉 ε−µ (p; r) =

[rγµp〉√
2[pr]

. (1.47)

The corresponding bi-spinors are,
[
ε−p (r)

]αα̇
=

√
2 p〉[r

[pr][
ε+p (r)

]αα̇
=

√
2 r〉[p
〈rp〉

. (1.48)

At this point we can use all the tools previously developed to handle polarizations through
their new form.

12Confirming what we previously did set in the “Momentum” section.
13It is convenient to choose the reference momentum as another momentum in the problem and best exploit its

arbitrariness to make simplifications.
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Since all indices are contracted within an amplitude, no vector or spinor can be found with a
free index. In order to prepare for upcoming computations in the next section we work out various
contractions that can appear,

ε+p (r) · ε+q (s) = 〈rs〉[qp]
〈rp〉〈sq〉

ε−p (r) · ε−q (s) = 〈pq〉[sr]
[pr][qs]

ε−p (r) · ε+q (s) = 〈ps〉[qr]
[pr]〈sq〉

, (1.49)

ε−p (r) · q = 1√
2

〈pq〉[qr]
[pr]

ε+p (r) · q = 1√
2

[pq]〈qr〉
〈rp〉

. (1.50)

✁ε
+
p (r) =

√
2

〈rp〉 [r〉 [p + p] 〈r ]
✁ε
−
p (r) =

√
2

[pr]
[p〉 [r + r] 〈p ]

(1.51)

1.2.2 Massive case

While the Helicity formalism requires masslessness in order to be of effect, there is a way to encode
the mass information using a technique called Light Cone Decomposition, or LCD [9]. In this, we
employ two massless 4-vectors in order to construct a massive one, our requirement is that this
massive14 4-vector’s norm should be equal to the mass squared. Under a generic form [10]leaving
the space-time indices implicit we’d have,

pI = αpi + βηI . (1.52)

Where the pI is the massive 4-vector, pi its associated massless 4-vector and ηI , the reference
vector which has to fulfill pi · ηI 6= 0 other than that, it is arbitrary. α and β are left for us to set
in order to embed the mass. In what follows we set both of these to α = 1 and β = m2

2pi·ηI as this
choice appear in many references [10][11][12].

pI = pi +
m2

2pi · ηI
ηI , (1.53)

Squaring up this quantity we obtain p2I = m2
I .

With the mass back, few of the simplifications we had won’t be of effect anymore. First, spin
states will not coincide with Helicity states anymore. Second, particles and antiparticles are now
distinguishable and instead of just 4 possible states, we have 8. At last, the dimensionality of the
spinors should revert back to four, since mass will mix between left- and right-handed states.

Starting from the Dirac equation [11],

(✁pI −mI)u±(pI) = 0. (1.54)

We seek solutions that account for both mass signs and use the reference momentum as the
axis along which the two spin states are taken. A nice format was proposed in [10],

u∓(pI) =
(✁pI+mI )|η±I 〉
〈∓i|η±I 〉 u±(pI) =

〈∓ηI |(✁pI+mI )

〈∓ηI |i±〉

v±(pI) =
(✁pI−mI )|η±I 〉
〈∓i|η±I 〉 v∓(pI) =

〈∓ηI |(✁pI−mI )

〈∓ηI |i±〉

. (1.55)

14The massive 4-vectors will be denoted using a capitalized index label.
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We can easily check that these solutions gets annihilated via the Dirac operator as the product
(✁pI −mI) (✁pI +mI) vanishes due to ✁p

2
I = p2I = m2

I .
If we explicit [12] the solutions by replacing pI with its expression involving its associated

momentum and reference momentum then substituting for their slashed versions we get,

|I+〉 =
( |i〉

m
[iηI ]

|ηI ]

)
= u−(pI)

[+I| =
(

m
〈ηI i〉 〈ηI | [i|

)
= u−(pI)

|I+] =
( m

〈iηI〉 |ηI〉
|i]

)
= u+(pI)

〈+I| =
(

〈i| m
[ηI i]

[ηI |
)
= u+(pI)

|I−〉 =
( |i〉

−m
[iηI ]

|ηI ]

)
= v+(pI)

[−I| =
(

−m
〈ηI i〉 〈ηI | [i|

)
= v+(pI)

|I−] =
( −m

〈iηI 〉 |ηI〉
|i]

)
= v−(pI)

〈−I| =
(

〈i| −m
[ηI i]

[ηI |
)
= v−(pI)

. (1.56)

The subscript ± is the mass sign corresponding to the two possible signs of mass associated
with particles and antiparticles. The two spin states are referred to in the notation as the angle-
/square-bracket decorations.

Now that we have our basic objects we need to workout their products. Unlike what we
had previously the massive products [11] count four kinds which are all related to massless anti-
symmetric products,

〈IJ〉 = 〈ij〉
[IJ ] = [ij]

〈IJ ] =
(

mI

siη
+ mJ

sjη

)
〈i✓ηj]

[IJ〉 =
(

mI

siη
+ mJ

sjη

)
[i✓ηj〉

, (1.57)

where we choose ηI = ηJ = η for simplicity.
We previously employed the spinors associated to a momentum in order to write it using a

spinor chain involving the γ − matrix, in this fashion, kµ = 1
2
[kγµk〉 where kµ is a massless 4-

vector. If our mass embedding is correct, we should be able to do the same and employing one of
the Fierz identities check if the norm amount the mass squared with the appropriate mass sign.
We start with, Kµ = 1

2
[±Kγ

µK±〉 and attempt to write it using only its massless constituents,

[±Kγ
µK±〉 =

1

2

{
±m

2
K

sηk
[ηγµη〉+ [kγµk〉

}
, (1.58)

with η being the reference vector and k the associated vector. Computing k2 implies the con-
traction of the previous formula with itself where the only term that survives is ±m2

sηk
[ηγµη〉 [kγµk〉

preceded with a factor of 2, leading to K2 = ±m2
K .

The fact that objects of this form [@γµ@〉 in the massive case reduce to an expression in term of
their massless counterparts, we can seek the most general form involving different massive spinors
which efficiently reduce to the previous known results. In doing that we find,

[±Pγ
µK±〉 =

(±mP ) (±mK)

〈ηPp〉 [kηK ]
[ηKγ

µηP 〉+ [pγµk〉 , (1.59)

with the same freedom in writing, [±PγµK±〉 = 〈±KγµP±] as we had in the massless case. The
first Fierz identity for the massive case is a bit more complicated due to the addition of reference
momenta. While this looks daunting we can induce a lot of simplification with a good choice of
reference,
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[±Pγ
µK±〉 〈±SγµR±] =

(±mP ) (±mK) (±mS) (±mR)

〈ηPp〉 [kηK ] 〈ηSs〉 [rηR]
〈ηSηP 〉 [ηKηR]

+
(±mP ) (±mK)

〈ηPp〉 [kηK ]
〈rηP 〉 [ηKs]

+
(±mS) (±mR)

〈ηSs〉 [rηR]
〈ηSk〉 [pηR]

+ 〈rk〉 [ps]

. (1.60)

The second form of the Fierz is a contraction with a γ −matrix,

γµ [±Pγ
µK±〉 =2

(±mP ) (±mK)

〈ηPp〉 [kηK ]
(ηP 〉 [ηK + ηK ] 〈ηP )

+2 (k〉 [p + p] 〈k )
. (1.61)

We so far worked using the convention that all momenta are taken to be incoming and that
lead us to readjust the polarizations for outgoing ones,

{
u−(pI) : incoming

v+(pI) : outgoing −→ v−(pI)

} {
ū+(pI) : outgoing −→ ū−(pI)

v̄−(pI) : incoming

}

{
u+(pI) : incoming

v−(pI) : outgoing −→ v+(pI)

} {
ū−(pI) : outgoing −→ ū+(pI)

v̄+(pI) : incoming

} . (1.62)

So that the list gets rewritten this way,

|I+〉 =
( |i〉

m
[iηI ]

|ηI ]

)
= u−(pI)

[+I| =
(

m
〈ηI i〉 〈ηI | [i|

)
= u+(pI)

|I+] =
( m

〈iηI〉 |ηI〉
|i]

)
= u+(pI)

〈+I| =
(

〈i| m
[ηI i]

[ηI |
)
= u−(pI)

|I−〉 =
( |i〉

−m
[iηI ]

|ηI ]

)
= v−(pI)

[−I| =
(

−m
〈ηI i〉 〈ηI | [i|

)
= v+(pI)

|I−] =
( −m

〈iηI 〉 |ηI〉
|i]

)
= v+(pI)

〈−I| =
(

〈i| −m
[ηI i]

[ηI |
)
= v−(pI)

. (1.63)

The very last consistency check we need to perform is recovering the closure formula15. The
relevance of this – while still obscure right now – is of capital importance to ensure that the
embedding doesn’t violate Unitarity and is compatible with the recursion-procedure16, as the sum
over polarizations should reconstruct the numerator of the the propagator correctly17,

∑

s=±
us(p)us(p) = ✁pI +m. (1.64)

Using the explicit forms of the u− spinors,
15See Appendix A.
16Subject of the next Chapter.
17Page 460, [6].
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∑

s=±
us(pI)us(pI) = |I+〉 [I+|+ |I+] 〈I+|

=

( |i〉
m

[iηI ]
|ηI ]

)(
m

〈ηI i〉 〈ηI | [i|
)

+

( m
〈iηI 〉 |ηI〉

|i]

)(
〈i| m

[ηI i]
[ηI |

)

=



{

m
〈ηI i〉 |i〉 〈ηI |+

m
〈iηI〉 |ηI〉 〈i|

} {
|i〉 [i|+ m2

〈iηI 〉[ηI i] |ηI〉 [ηI |
}

{
m2

[iηI ]〈ηI i〉 |ηI ] 〈ηI |+ |i] 〈i|
} {

m
[iηI ]

|ηI ] [i|+ m
[ηI i]

|i] [ηI |
}



. (1.65)

We can readily identify the anti–diagonal with ✁pI recalling that, pI = pi +
m2

2pi·ηI ηI . While the
diagonal part should be identified with mI18 written as,

m

(
1 0
0 1

)
= m

(
1

〈ηI i〉 |i〉 〈ηI |+
1

〈iηI〉 |ηI〉 〈i| 0

0 1
[iηI ]

|ηI ] [i|+ 1
[ηI i]

|i] [ηI |

)
. (1.66)

Implying two things,

1. 1
〈ηI i〉 |i〉 〈ηI |+

1
〈iηI 〉 |ηI〉 〈i| = 1.

2. 1
[iηI ]

|ηI ] [i|+ 1
[ηI i]

|i] [ηI | = 1.

Making sense of these two implications requires us to put them in a context and see if we can get
something meaningful. We choose to inject the 1 inside the anti-symmetric products likewise,

〈j1k〉 = 1
〈ηI i〉 〈ji〉 〈ηIk〉+

1
〈iηI〉 〈jηI〉 〈ik〉

[j1k] = 1
[iηI ]

[jηI ] [ik] +
1

[ηI i]
[jηI ] [ik]

. (1.67)

And this is without mistake the two version of the Shouten identity both for left- and right-
handed cases.

1.3 Helicity Amplitudes

Helicity amplitudes result from the translation of the expressions we get via Feynman rules19 in
term of Helicity spinors. The generic structure of a QCD amplitude is comprised of a color algebra
part and an kinematic part. From the next chapter and on, we’ll make use of a technique explained
in Appendix B to handle the color algebra, while in this chapter we deal with it in the conventional
way to make the need of an alternative evident. The kinematic part can contain momenta, Dirac
spinors and Polarization vectors. All of which accept a form involving Helicity spinors. In this
section, we’ll take as an object of study the LO contribution of gg −→ gg, pure gluon process
to emphasize properties behind the efficiency of calculation as we’ll be able to produce the cross-
section in just few steps.

18I is the 4x4 matrix made with two diagonal blocks of 2x2 identity matrices.
19See the first section of this chapter.
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Figure 1.1: All tree diagrams contributing to the LO with a clockwise ordering of labels.

iAtree
s (1, 2, 3, 4) = −ig2s

s
fabef cde

[
(ε1 · ε2) (p1 − p2)µ − 2 (ε1)µ (ε2 · p1) + 2 (ε2)µ (ε1 · p2)

]

× [(ε3 · ε4) (p3 − p4)
µ − 2 (ε3)

µ (ε4 · p3) + 2 (ε4)
µ (ε3 · p4)]

iAtree
t (1, 2, 3, 4) = −ig2s

t
fadef cbe

[
(ε1 · ε4) (p1 − p4)µ + 2 (ε4)µ (ε1 · p4)− 2 (ε1)µ (ε4 · p1)

]

× [(ε2 · ε3) (p3 − p2)
µ + 2 (ε2)

µ (ε3 · p2)− 2 (ε3)
µ (ε2 · p3)]

iAtree
u (1, 2, 3, 4) = −ig2s

u
facef dbe

[
(ε1 · ε3) (p1 − p3)µ + 2 (ε3)µ (ε1 · p3)− 2 (ε1)µ (ε3 · p1)

]

× [(ε2 · ε4) (p4 − p2)
µ + 2 (ε2)

µ (ε4 · p2)− 2 (ε4)
µ (ε2 · p4)]

iAtree
4−p(1, 2, 3, 4) = −ig2s{f bcefade ((ε1 · ε2) (ε3 · ε4)− (ε2 · ε4) (ε1 · ε3))

+f baef cde ((ε2 · ε3) (ε1 · ε4)− (ε2 · ε4) (ε1 · ε3))
+f bdef cae ((ε2 · ε3) (ε1 · ε4)− (ε1 · ε2) (ε3 · ε4))}

. (1.68)

1.3.1 Maximum Helicity Violating Amplitudes

We start by noticing something about these amplitudes, that is, every term contains at least one
contraction of two polarizations. If suppose we take all Helicities positive and recalling that,

ε+p (r) · ε+q (s) =
〈rs〉 [qp]
〈rp〉 〈sq〉 , (1.69)

which is the term that will at least appear once in every term. We can choose all reference
momenta to be same and the previous product vanishes in all previous amplitudes. And since two
amplitudes related by parity conjugation have the exact same contribution needless to say that
we’d have the same result if all Helicities were negative. Interestingly this holds for an arbitrary
number of legs and one can see that by considering the fact that the contributing bits to make
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these diagrams are 3-point vertex, 4-point vertex, adding to it the fact that the 3-point vertex
contributes with just one factor of momentum in each terms where the 4-point vertex provides
with none, we always have fewer vertices than external legs in a diagram, there would naturally
be at least one polarization contraction in each term guaranteeing the vanishing of the amplitude
for any number of legs.

If one of the Helicities is negative while all others are positive we’d have ε+p (r) · ε+q (s) and
ε−p (r) · ε+q (s) with,

ε−p (r) · ε+q (s) =
〈ps〉 [qr]
[pr] 〈sq〉 . (1.70)

If “reference momentum” for the positive Helicity is set to be the “momentum” of the negative
Helicity, the previous vanishes, and so for us to have every term vanish we set all reference momenta
except that of the negative20 Helicity polarization to equal its momentum. We can generalize21

this by saying that, amplitudes with all but one positive ( or all but one negative ) Helicity vanish
at tree level for any number of external legs greater than three22.

Starting from two Helicities that are negative while the rest is positive and on, we’d have terms
involving ε+p (r) · ε+q (s), ε−p (r) · ε+q (s) and ε−p (r) · ε−q (s). And by a simple reasoning one can tell that
there is no possible choice that makes all the terms vanish at the same time. Our conclusion is
that starting from having “all but two Helicities” situations the amplitudes won’t vanish, and they
make what we call “Maximum Helicity Violating” amplitudes, MHV ′s. Beyond this case we get
to what is called Next-to-Maximum Helicity Violating23, NMHV . We can think of it as spectrum
where at first we have the vanishing amplitudes that we spoke about as being “all” and “all but
one” situations. Then, MHV ′s being the first non-vanishing kind of amplitudes, “all but two” and
then different “orders” that for the sake of clarity are referred to in the literature as NMHV : “all
but three”, N2MHV : “all but four”, etc.

To sum up all we have to compute for the pure gluon scattering are theMHV amplitudes. The
diagrams will have contributions with the exception of the 4-point diagram since we can always
find a choice of reference momenta to make it vanish.

1.3.2 Crossing symmetry

An interesting symmetry that originates from our deliberate choice of labeling the external legs,
enables us to link the different amplitude expressions by moving the labels around. The s, t and
u channels can now be related via what we call “crossing symmetry”,

1. s↔ t, colors : b ↔ d, polarizations :2 ↔ 4.

2. s↔ u, colors : b↔ c, polarizations : 2 ↔ 3.

3. t↔ u, colors : d↔ c, polarizations: 3 ↔ 4.

With the Mandelstam variables written explicitly as follows,
20There is no need to choose a reference momentum for the negative polarization since its term vanishes just

because of our choice regarding the positive polarization
21Section 27.2, [6].
22The 3-point amplitude with all but one configuration doesn’t vanish in the case of complex momenta, refer to

the next chapter.
23Another note I want to add is that these situations cannot arise except if a certain number of external legs is

available. An example, would be suppose we are looking for the NMHV in a four-leg process well there is no way
to get it because that would be just the trivially vanishing “all but one” situation.
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s = (p1 + p2)
2

t = (p1 + p4)
2

u = (p1 + p3)
2
. (1.71)

Such property reduces the workload as we only have to compute fewer amplitudes and then
generate the remaining ones by moving the labels around.

1.3.3 Application

Now to the different MHV s, we can have: {(−−++) , (−+−+) , (−++−)} and their parity
conjugate which as we said before provide the same contribution.

We’ll first work Atree
gg−→gg (1

−, 2−, 3+, 4+) where,

Atree
gg−→gg (1, 2, 3, 4) = Atree

s (1, 2, 3, 4) +Atree
t (1, 2, 3, 4) +Atree

u (1, 2, 3, 4). (1.72)

We choose our reference momenta to be r1 = r2 = p4 and r3 = r4 = p1. This choice kills all
contractions except ε−2 · ε+3 .

The s− channel diagram, has only one surviving term,

iAtree
s (1−, 2−, 3+, 4+) = i

4g2s
s
fabef cde

[(
ε−1 · p2

) (
ε+4 · p3

) (
ε−2 · ε+3

)]
,

and using the previous relations,

ε−1 (4) · p2 = 1√
2

〈12〉[24]
[14]

ε+4 (1) · p3 = 1√
2

[43]〈31〉
〈14〉

ε−2 (4) · ε+3 (1) = 〈21〉[34]
[24]〈13〉

,

with s = 〈12〉 [21].
We plug these into the amplitude,

Atree
s (1−, 2−, 3+, 4+) = 2g2sf

abef cde 〈21〉 [34]2
[21] [14] 〈14〉 . (1.73)

To write everything in-term of 〈...〉 we use∑j 〈ij〉 [jk] = 0 for 2 −→ 2 scattering with i, j, k all
different,

〈21〉 [14] = −〈23〉 [34] =⇒ [34]

[14]
= −〈21〉

〈23〉 .

For the second ratio which has no leg common we use s12 = s34 with sij = (pi + pj)
2 = 〈ij〉 [ji]

giving us,

〈12〉 [21] = 〈34〉 [43] =⇒ [34]

[21]
= −〈12〉

〈34〉 .

Plugging both identities we get,

Atree
s (1−, 2−, 3+, 4+) = −2g2sf

abef cde 〈12〉4
〈12〉 〈23〉 〈34〉 〈41〉 . (1.74)
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We turn to the t − channel with our choice of momenta we only look for ε−2 · ε+3 pairs since
they are the only ones to survive, but notice that the whole first factor vanishes making everything
vanish with it,

Atree
t (1−, 2−, 3+, 4+) = 0. (1.75)

The u − channel is related to the s− channel by 2 ↔ 3 and b ↔ c and we can affirm that it
doesn’t vanish,

Atree
u (1−, 2−, 3+, 4+) =

4g2s
u
facef bde

[(
ε+3 · ε−2

) (
p3 · ε−1

) (
p2 · ε+4

)]
, (1.76)

with,

ε+3 (1) · ε−2 (4) = 〈21〉[34]
[24]〈13〉

p3 · ε−1 (4) = 1√
2

〈13〉[34]
[14]

p2 · ε+4 (1) = 1√
2

[42]〈21〉
〈14〉

,

and u = 〈13〉 [31],

Atree
u (1−, 2−, 3+, 4+) = −2g2sf

acef bde

[
〈21〉2 [34]2

[14] 〈14〉 〈13〉 [31]

]
,

using 〈24〉 [34] = −〈21〉 [31] and [34]
[14]

= − 〈21〉
〈23〉 ,

Atree
u (1−, 2−, 3+, 4+) = −2g2sf

acef bde 〈21〉4
〈14〉 〈42〉 〈23〉 〈31〉 . (1.77)

With this we accounted for all contributions to the matrix element for (−−++) polarization
signature,

Atree
gg−→gg

(
1−, 2−, 3+, 4+

)
= −2g2s

[
fabef cde 〈12〉4

〈12〉 〈23〉 〈34〉 〈41〉 + facef bde 〈21〉4
〈14〉 〈42〉 〈23〉 〈31〉

]
.

(1.78)
To get the cross-section we have to perform color sums and square the matrix elements.
We start by squaring,

∑

colors

[
Atree

gg−→gg

(
1−, 2−, 3+, 4+

)]2
=
[
Atree

s (1−, 2−, 3+, 4+) +Atree
u (1−, 2−, 3+, 4+)

]2

=
[
Atree

s (1−, 2−, 3+, 4+)
]2

+
[
Atree

u (1−, 2−, 3+, 4+)
]2

+2
[
Atree

s (1−, 2−, 3+, 4+)Atree
u (1−, 2−, 3+, 4+)

]
.

We see that we have to square amplitudes independently and do the product of them. Focusing
again with only the spin part,

[
〈12〉4

〈12〉〈23〉〈34〉〈41〉

]2
= s2

t2[
〈21〉4

〈14〉〈42〉〈23〉〈31〉

]2
= s4

t2u2

〈12〉4
〈12〉〈23〉〈34〉〈41〉

〈21〉4
〈14〉〈42〉〈23〉〈31〉 =

s3

t2u

, (1.79)
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∑

colors

[
Atree

gg−→gg

(
1−, 2−, 3+, 4+

)]2
=4g4s [

(
fabef cde

)2 s2
t2

+
(
facef bde

)2 s4

t2u2
+ 2

(
fabef cde

) (
facgf bdg

) s3
t2u

]

. (1.80)

The color part here is given24 by,
(
fabef cde

)2
= N2 (N2 − 1)(

fabef cde
) (
facgf bdg

)
= 1

2
N2 (N2 − 1)

, (1.81)

leading to,

∑

colors

[
Atree

gg−→gg

(
1−, 2−, 3+, 4+

)]2
=4g4sN

2
(
N2 − 1

){s2
t2

+
s4

t2u2
+

s3

t2u

}

=4g4sN
2
(
N2 − 1

){s2
t2

+
s4

t2u2
+
s2(−t− u)

t2u

}
.

=4g4sN
2
(
N2 − 1

){ s4

t2u2
− s2

tu

}

What is remaining for us to compute is {(−+−+) , (−++−)} which both are related to
(−−++) through crossing symmetry,

1. (−−++) −→ (−+−+) via s↔ u.

2. (−−++) −→ (−++−) via s↔ t.

Which is enough for us to know the full cross-section, and it makes sense that we have only these,
any other contribution would require another permutation but the result we got previously is
manifestly symmetric under t ↔ u which means we cannot draw further information from what
we computed previously and that we have enough to define our problem entirely.

Of course we need to not forget multiplying by 2 for each polarization in our sum to account
for configurations that are related to the ones we have by parity conjugation,

∑

colors,polarizations

∣∣Atree
gg−→gg

∣∣2 = 2





∑

colors

[
Atree

gg−→gg

(
1−, 2−, 3+, 4+

)]2

+
∑

colors

[
Atree

gg−→gg

(
1−, 2+, 3−, 4+

)]2

+
∑

colors

[
Atree

gg−→gg

(
1−, 2+, 3+, 4−

)]2





, (1.82)

∑

colors,polarizations

∣∣Atree
gg−→gg

∣∣2 =4g4sN
2
(
N2 − 1

)
[2

(
s4

t2u2
− s2

tu

)

+ 2

(
u4

t2s2
− u2

ts

)
+ 2

(
t4

s2u2
− t2

su

)
]

, (1.83)

which after some work gives us,
24Section 27.3, [6].
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∑

colors,polarizations

∣∣Atree
gg−→gg

∣∣2 = 4g4sN
2
(
N2 − 1

) (s2 + t2 + u2) (s4 + t4 + u4)

s2t2u2
. (1.84)

At last we average over initial states, that is to divide by 4∗ (N2 − 1)
2 taking into account spin

and color,

1

4 ∗ (N2 − 1)2

∑

colors,polarizations

∣∣Atree
gg−→gg

∣∣2 = N2

(N2 − 1)
g4s
(s2 + t2 + u2) (s4 + t4 + u4)

s2t2u2
, (1.85)

then we set N = 3,

1

256

∑

colors,polarizations

∣∣Atree
gg−→gg

∣∣2 =9

8
g4s

(s2 + t2 + u2) (s4 + t4 + u4)

s2t2u2

=
9

2
g4s

[
1

4

(s2 + t2 + u2) (s4 + t4 + u4)

s2t2u2

], (1.86)

and this result agrees with the known cross-section25,

1

256

∑

colors,polarizations

∣∣Atree
gg−→gg

∣∣2 = 9

2
g4s

(
3− su

t2
− ut

s2
− st

u2

)
. (1.87)

25Eq (27.74), [6]
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Chapter 2

On-shell method and Recursion Formulae

The power of any formalism comes from its independence with regard to external inputs. In the
previous chapter we showcased the possibility to translate QCD amplitudes into Helicity ones,
along with the employment of symmetry and analytical properties to reduce the workload to just
few manageable computations. For the formalism to achieve independence, it needs to construct
the amplitude expressions in a way that isn’t based on Feynman diagrams. Fortunately, the
introduction of complex momenta combined with on-shell method ideas will probe some structures
and rules that will make for a convenient alternative to the traditional ways of extracting LO
contributions.

2.1 Kinematic 3-points

So far we only applied Helicity formalism to external states, and we want to generalize its use
to internal states too, but that will require p2 = m2 (massive case) or p2 = 0 (massless case) on
internal lines which isn’t generally the case. To handle this problem we introduce the usage of
complex momenta. Then, we discuss the consequences on lower-point amplitudes and how this
give us a way to write them entirely using complex-spinors.

2.1.1 GGG-vertex

As we’ve seen before, after writing down the amplitudes and squaring, we get functions of kinematic
invariants sij . And if we take a look at the pure gluon 3-point kinematic for real momenta we find
that [13],

1

2

3
Figure 2.1: Pure gluon 3-vertex.
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pµ1 + pµ2 + pµ3 = 0
p21 = p22 = p23 = 0

. (2.1)

Through a simple analysis we notice that invariants vanish altogether s12 = (p1+p2)
2 = p23 = 0,

so that 3-point amplitudes generally vanish. If the momenta are real, then 〈ij〉 = [ij] = 0
since they are related by conjugation and the solutions to the previous equation are parallel 4-
vectors. If we have complex momenta, then 〈ij〉 and [ij] aren’t related anymore, but we’d still
have sij = 〈ij〉 [ji] = 0. If we think about it then it has to be that some of the Helicity products
are non zero while sij = 0. Giving us two possible chiraly conjugate solutions,

1. All [ij] = 0 while 〈ij〉 6= 0=⇒ pα̇1 ∝ pα̇2 ∝ pα̇3 .

2. The inverse.

The thing here is that we can’t expect the amplitude to be a continuous function of the invariants,
the solutions we have for the amplitude to be non-vanishing are discrete. The kinematical region
defined by a 3-point amplitudes in the case of complex momenta is made of two points related
by parity conjugation. We also notice (1.) and (2.) cannot be at the same time so each solution
excludes the other.

Now to find the solutions, we’ll use little-group1 scaling as it is the only constraint we dispose
at this time on pure gluonic amplitudes. The rule to follow is that when counting the number of
occurrences of some label with a certain helicity we need to find that for negative helicities there
must be a factor of two and for a positive one there must be a factor of minus two2.

For the case of (+ + +),

AGGG

(
1a+, 2b+, 3c+

)
= Cabc

[
[12] [23] [31] or

1

〈12〉 〈23〉 〈31〉

]
. (2.2)

The second proposition diverges in the real limit. Thus we naturally select the first proposi-
tion. Now by doing dimensional analysis we find that while the amplitude has mass dimension 1,
[12] [23] [31] has mass dimension 3 and the structure constants should be dimensionless, so that
the only solution out is Cabc = 0.

For theMHV situation, the allowed forms by little group scaling are either of this form 〈...〉〈...〉〈...〉
〈...〉4

or 〈...〉4
〈...〉〈...〉〈...〉 and the same for right-handed brackets, where in the limit of real momenta the first

case diverges faster than it vanishes, so that we turn to the second form [6],

AGGG

(
1a+, 2b+, 3c−

)
= Cabc [12]3

[23][31]

AGGG

(
1a−, 2b−, 3c+

)
= Cabc 〈12〉3

〈23〉〈31〉
, (2.3)

which has the correct physical dimension3.When we put things into context then we require
amplitudes to be symmetric under the interchange of two particles since we are dealing with bosons,
taking into consideration the anti-symmetric nature of the Helicity products we require Cabc(and
Cabc

) to be anti-symmetric too to compensate for the sign. Also it is important to outline again
that when A3−point is non-vanishing, A3−point is (vanishing), and vice versa. The values of the color
factors4Cabc and Cabc

are the same and equal to igs
√
2fabc.

1See Appendix B.
2Pg. 540-541, [6].
3The previous equation went through a simplification as originally it looked like 〈12〉4

〈12〉〈23〉〈31〉 . The remark about
this form is that the legs with the “majoritarian” polarization are written in the numerator and the labels follow on
cyclically (clockwise, see the diagram).

4These factors are dealt with in Appendix B, so we’ll drop them for now and get back to them when needed.
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2.1.2 GQQ-vertex

In order to construct processes involving quarks whether as external states or propagating internally
we need to consider the vertex coupling them to a gluon,

1, a

2, i3, j

Figure 2.2: The Gluon-Quark-Quark 3-vertex.

AGQQ (1a, 2i, 3j) = Ca
ij

i√
2
εµ(1)f(2)γµf(3), (2.4)

with Ca
ij =

√
2gT a

ij and f being either a u- or v-spinor.
This diagram unlike what we saw previously is directed and its orientation changes its inter-

pretation. The form of the amplitude changes accordingly leading to various expressions for the
same vertex. If we list all the possible ways we can orient it, we notice that due to time flowing
from left to right, a horizontal mirror operation will not affect our interpretation. Leading to a set
of four basic forms illustrated below.

(a) Vertical orientation

(b) Horizontal orientation

Figure 2.3: Different orientations of the GQQ-vertex
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In the sub-figure (a), the interaction point being neither to the left or the right both fermionic
legs flow to either of these directions uniformly. If the flow goes to the right, then we are speaking
about incoming and outgoing particles [6]. While the opposite direction is for antiparticles. The
sub-figure (b) contains two diagrams where at first the interaction is to the left with respect to the
fermionic legs and then we have the opposite situation. When the fermionic legs are to the right,
the incoming is an antiparticle and the outgoing is a particle and the inverse happen when they
are to the left.

To write the partial amplitudes5 associated to each possible vertex we just have to add external
states corresponding to each leg according to the prescription given in [10] so that we have,

1

2

3

ÃGQQ(1
λ, 2−q , 3

−
q ) =

i√
2

〈
+2✁ε

λ(1)3−
〉

ÃGQQ(1
λ, 2−q , 3

+
q ) =

i√
2

〈
+2✁ε

λ(1)3−
] . (2.5)

The rest of possible diagrams could be obtained in a similar manner. Likewise for the other
possible polarization configurations which are just chiraly conjugate to these. Developing the
previous expressions in term of massless components will not reveal anything interesting beyond
this point. Although there is an interesting case to consider for this vertex, that is the massless
limit where the possible amplitudes reduce to only two chiraly conjugate formulae given below,

ÃGQQ(1
λ, 2+, 3−) = i√

2

〈
3✁ε

λ(1)2
]

ÃGQQ(1
λ, 2−, 3+) = i√

2

[
3✁ε

λ(1)2
〉 . (2.6)

2.2 Recursion formula

The evocation of complex numbers in general bring with them the idea of computing integrals
using residues. In our study of complex momenta there is yet another way to exploit them via
a certain transformation or shifts described for the massless particles in the reference [14] which
later on got generalized to massive ones in [15]. These shifts will provide us with a rule capable
of combining Kinematic 3-points from the previous section into QCD diagrams with the correct
amplitude expression. In what follows we will only derive the rule for the massless case knowing
that the generalization only requires few additions and is given in [16].

5Meaning amplitudes stripped from the color factor. (See Appendix B)
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2.2.1 BCFW-shifts

1

i
a− 1 a j

bb + 1

n

p(z)

...

... ...

...

...

...

...

Figure 2.4: Illustration of the mechanism behind the recursion procedure.

The procedure starts by shifting two spinors of the gluons i and j,

[[→ i] = [i + z [j
[j →]〉 = j〉 − z i〉 , (2.7)

where z is some complex number. The momenta bi-spinors get affected by the shifts,

p[→i] = i〉 [[→ i]
p[j→] = [j →]〉 [j . (2.8)

This procedure respects masslessness p2[→i] = p2[j→] = 0 and overall momentum conservation
meaning that, p[→i] + p[j→] = pi + pj.

With these shifts, we can think of the amplitude Atree as a function of z where the physical
amplitude is given by Atree[0] = Atree[z]|z=0. If this function is well behaved at infinity then we can
relate its behavior at z = 0 with its residues at finite values of z (singularities). If Atree[z] −→ 0
at z −→ ∞ then we have [13, 6],

0 =

ffi

C

dz

2πi

1

z
Atree[z] = Atree[0] +

∑

k

Res

{Atree[z]

z

}∣∣∣∣
z=zk

, (2.9)

where C is the circle at infinity, and the zk are the locations of the factorization singularities
in the z − plane. To know the origin of the poles we start by drawing a picture that leads to the
emergence of the complex parameter. We had a momentum proportional to z being subtracted
and added to two external lines, thus tracing z over the diagram it comes in from i and out through
j, implying that only a “propagator” along this line can contribute with poles.

Suppose that this propagator has momentum P̂ (z), the pole is at P̂ 2(z) = 0 which puts this line
on-shell. This procedure splits the diagram into two on-shell sub-diagrams related by a propagator
with complex momentum, giving us a pole when we put it on-shell. Each pole we might have
splits the diagram into two, so basically we can apply this procedure again and again on the subs-
diagrams until we end up with indivisible blocks. Reverting the process we can recursively build
tree-level amplitudes.
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Now let’s see how this is done mathematically, we choose P̂ to be going from right to left so
that {a...b} are on the right as shown in the previous figure. Momentum conservation at the vertex
on the right considering all momenta incoming with P̂ outgoing leads to

(
−P̂ (z)

)
+
∑b

k=a pk = 0

recalling that j is on that side we get,

P̂ (z) =
b∑

k=a

k〉 [k − z i〉 [j . (2.10)

The pole is at P̂ 2(za,b) = 0,

0 =

(
b∑

k=a

k〉 [k − za,b i〉 [j
)2

=

(
b∑

k=a

pk

)2

− za,b

b∑

k=a

〈ik〉 [kj] (2.11)

=⇒ za,b =

(∑b
k=a pk

)2

∑b
k=a 〈ik〉 [kj]

, (2.12)

implying that we’ll get a za,b for each partition of the diagram by a, b.
Now if we apply Atree[0] = −∑k Res

{
Atree[z]

z

}∣∣∣
z=zk

where we have one pole at za,b,

Atree[0] =− 1

za,b
Res




Atree

left [z]
1

(∑b
k=a pk

)2
− z

∑b
k=a 〈ik〉 [kj]

Atree
right [z]





∣∣∣∣∣∣∣
z−→za,b

=Atree
left [za,b]

1
(∑b

k=a pk

)2Atree
right [za,b] .

(2.13)

The generalization leads to the “BCFW [14] recursion formula”,

Atree (1, ...n) =
∑

a<b,h

Atree
left

(
1, ...a− 1, P̂ h, b+ 1, ...n

)
[za,b]

1
(∑b

k=a pk

)2Atree
right

(
−P̂−h, a, ...b

)
[za,b] .

(2.14)
The presence of [za,b] implies that the evaluation should be done with the shift that gave us

this pole, namely
{

[[→ i] = [i + z [j [j →]〉 = j〉 − z i〉
}
. The Helicity must be summed over6,

and the convention of incoming momenta forces h flip from the left to the right.
The only requirement for the BCFW-recursion formula to work is to have a well behaved

z −→ ∞ limit, which is generally true except for some choices of shifts. There are some general
rules7 for 2 −→ 2 scatterings, the Helicity combinations (i, j) = (+,+) , (−,−) or (−,+) are good,
while (+,−) is bad.
2.2.2 Parke-Taylor Formula

The combination of Kinematic 3-points and BCFW-recursion formula realizes the independence
of the Helicity formalism and produces a generative power that surpasses conventional methods

6This sum encodes the closure formula over polarizations that will produce the numerator of the propagator.
One of the reasons that this rule generalizes to massive quarks too.

7Section 27.6, [6].
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leading to the discovery of previously unknown patterns. One of these patterns is about MHV s
of pure n-gluon processes which writes as follow [17, 6],

Atree
MHV

(
1+, ..., k−...l−, ...n+

)
=

〈kl〉4
〈12〉 ... 〈n1〉 . (2.15)

We call it the Parke-Taylor formula [18].It provides us with a simple analytic expression that
we can use to express the amplitude of any high-multiplicity pure gluon diagram.

(−)

(−)

(+)

(−)

(+)

(+)

(a) The first MHV diagram

(−)

(−) (+)

(+)

(−)

(+)

(+)

(b) The second MHV diagram

Figure 2.5: Composing MHV amplitudes for gluons.

The proof of this formula will not be given here as there is enough literature about it. Although
we illustrate in the figure the first steps of the recursion which clearly show that we can use BCFW-
recursion in order to derive the formula.

2.3 Application

In the following section we show how to perform BCFW-recursion employing the two packages8

S@M and SpinorsExtras under Mathematica. The discussion about loading these has been differed
to the Appendix C along with a list of the functions we employed throughout this document.

8Refer to Appendix C for further information.
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2.3.1 Massless case

As a first application we intend to construct the s-channel contribution of a pure gluon process
with external helicity configuration (−,−,+,+) and a momentum labeling illustrated below.

1

2 3

4

Figure 2.6: S-channel diagram for the gg → gg with (−,−,+,+) polarization.

This diagram factorizes to two GGG-vertices, so we start by defining their expression.

In[1]:= GGG[{a_,+1},{b_,+1},{c_,-1}]:=Spbb[a,b]^3/(Spbb[b,c]*Spbb[c,a])
GGG[{a_,-1},{b_,-1},{c_,+1}]:=Spaa[a,b]^3/(Spaa[b,c]*Spaa[c,a])

The next step is a straight forward one since we have to declare the objects that represent the
momenta of our problem. S@M interprets integer labels as Helicity spinors even without declaring
them leaving the necessity to only declare the label for the transfer momentum. In fact we need
two labels, because symbols in S@M are treated contextually and thus could be treated as vectors
or spinors leading to a confusion whether −P is to be interpreted as −P (as a vector) or ±iP (as
a spinor). So we just add another label and then replace when the context is clear.

In[2]:= DeclareSpinor[P,mP]

{P,mP} added to the list of spinors

We solve to find the value of the shift parameter z that puts the propagator on-shell.

In[3]:= OnShellCond=Solve[ShiftBA[1,4,z][s[1,2]]== 0,z] //ExpandSToSpinors //
SpOpen // Flatten

Out[3]= {z→-
[2|1]
[4|2]

}

Then, we construct the amplitude according to the formula given in the previous section and
apply the substitution mP −→ +iP as things would turn out the same if instead we applied
mP −→ −iP because we’d have a factor of (±i)2 = −1.

In[4]:= AmplitudeExpression= GGG[{1,-1},{2,-1},{P,+1}]*(1/s12)*
GGG[{3,+1},{4,+1},{mP,-1}]/.mP→→→+I P

Out[4]=
〈1|2〉3 [4|3]3

s12 〈P|1〉 〈P|2〉 [3|P] [4|P]
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Since the transfer momentum is an object that is only clearly defined within a spinor chain, we
transform the expression so that we find it that way,

In[5]:= AmplitudeExpressionStep1 =SpClose[AmplitudeExpression,P]

Out[5]=
〈1|2〉3 [4|3]3

s12 〈1|P|3] 〈2|P|4]

And perform the shift on the expression while substituting for the value of P in term of external
momenta and z for the value that we previously computed.

In[6]:= AmplitudeExpressionStep2 =ShiftBA[1,4,z][AmplitudeExpressionStep1
/.P→→→ Sm[3]+Sm[4]]/.OnShellCond

Out[6]=
〈1|2〉3 [4|3]2

s12 〈1|4〉 〈2|3|4]

At last we perform a series of manipulation in order to obtain an expression that is solely in
terms of angle-brackets.

In[7]:= AmplitudeExpressionStep3=AmplitudeExpressionStep2 /.s12→→→s[1,2]//
ExpandSToSpinors // SpOpen // Simplify

Out[7]= -
〈1|2〉2 [4|3]

〈1|4〉 〈2|3〉 [2|1]

In[8]:= AmplitudeSChannel=AmplitudeExpressionStep3/.Spbb[4,3]→→→
(Spaa[1,2]*Spbb[2,1]/Spaa[3,4])

Out[8]= -
〈1|2〉3

〈1|4〉 〈2|3〉 〈3|4〉

Now to check that our result is correct we need to compare if the expression we obtained
through BCFW-shifts yields the same numerical results as the expression we obtain from the
standard Feynman-diagram procedure.

We start by generating massless external momenta that satisfy the constraint p1+p2+p3+p4 = 0
using the command,

In[9]:= GenMomenta[{1,2,3,4}]

Momenta for the spinors 1, 2, 3, 4 generated.

Then we declare four new spinors to use them in the construction of the expression of s-channel
found in9with the same choice of reference momenta.

In[10]:= DeclareSpinor[a,b,c,d]

{a,b,c,d} added to the list of spinors

9Section 27.3, [6].
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In[11]:= Amplitude[a_,b_,c_,d_] =-2*(1/s[a,b])(ExpandPolVec[MP[PolVec[a,+1],b]]*
ExpandPolVec[MP[PolVec[d,-1],c]]*
ExpandPolVec[MP[PolVec[b,+1],PolVec[c,-1]]])/.{SpRef[a]→→→ d,SpRef[b]→→→ d,
SpRef[c]→→→ a,SpRef[d]→→→ a}

Out[11]= -
〈a|b〉 〈a|b|d] 〈a|c|d] [d|c]
sab 〈a|c〉 〈a|d 〉 [d|a] [d|b]

We finally find,

In[12]:= Amplitude[1,2,3,4]//N

Out[12]= 19.1846 +3.39786 i

In[13]:= AmplitudeSChannel//N

Out[13]= 19.1846 +3.39786 i

Both expressions give the same result although issued from completely different methods, im-
plying that BCFW-shifts pass the test when it comes to pure gluonic processes.

2.3.2 Massive case

In this part we’ll compute the t-channel amplitude for the qq −→ qq process with polarization
configuration (−,+,+,−).

1

2 3

4

Figure 2.7: T-channel diagram for the qq → qq with (−,+,+,−) polarization.

This diagram is composed of two GQQ-vertices to which we define the expression for relevant
helicity configurations as follow,

In[14]:= GQQMassive[{a_,+1},{b_,-1},{c_,-1}]:=
I√
2

*

Spaa[SpM[b,+1],PolVec[a,-1],SpM[c,+1]]

GQQMassive[{a_,-1},{b_,-1},{c_,-1}]:=
I√
2

*
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Spaa[SpM[b,+1],PolVec[a,+1],SpM[c,+1]]

GQQMassive[{a_,+1},{b_,+1},{c_,+1}]:=
I√
2

*

Spbb[SpM[b,+1],PolVec[a,-1],SpM[c,+1]]

GQQMassive[{a_,-1},{b_,+1},{c_,+1}]:=
I√
2

*

Spbb[SpM[b,+1],PolVec[a,+1],SpM[c,+1]]

We declare the transfer momentum and the massive external momenta.

In[15]:= DeclareSpinor[P,mP]

{P,mP} added to the list of spinors

In[16]:= DeclareLVector[p1,p2,p3,p4]

{p1,p2,p3,p4} added to the list of Lorentz vectors

We specify the masses.

In[17]:= MP[p1,p1]^=MP[p2,p2]^=MP[p3,p3]^=MP[p4,p4]^=m^2;
$Assumptions=m>0;

We write the two expressions contributing to the formula as terms of the sum over internal
helicities within a table.

In[18]:= AmplitudeTable= Table[GQQMassive[{P,+l},{p3,+1},{p2,+1}] *
1

s14
*

GQQMassive[{mP,-l},{p4,-1},{p1,-1}],{l,{-1,+1}}]

Out[18]= {
〈+p1|ǫ-(mP)|+p4 〉 [+p3|ǫ+(P)|+p2]

2 s14
,
〈+p1|ǫ+(mP)| +p4 〉 [+p3|ǫ-(P)|+p2]

2 s14
}

Then we apply the LCD on the final state while expanding for the explicit expression of the
polarizations.

In[19]:= AmplitudeLCDFinal=LightConeDecompose[AmplitudeTable,p3|p4]//
ExpandPolVec

We replace mP for its possible values in the context of a spinor or a vector using appropriate
functions.

In[20]:= ReplaceLVector[AmplitudeLCDFinal,mP→→→-P];
AmplitudePOnly=ReplaceSpinor[%,mP→ ±→ ±→ ±I P]

Then we explicit the reference vectors for the momenta we intend to shift.

In[21]:= AmplitudeExplicitRef=ExplicitRef[AmplitudePOnly,p2|p1]/.
{SpRef[p1]→→→SpAssoc[p2,p1],SpRef[p2]→→→SpAssoc[p1,p2]}

At this point we require the value of z that puts the propagator on-shell.
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In[22]:= ShiftBA[p1,p2,z][MP2[p2+p3]==0]
OnShellCond=Solve[%,z]//Flatten

Out[22]= 2 m2+2 (MP[p2,p3]+
1
2

z 〈p1p2|p3|p2p1])==0

Out[23]= {z→-
2 (m2+MP[p2,p3])
〈p1p2|p3|p2 p1]

}

Then we shift the amplitudes via,

In[24]:= AmplitudeShifted=AmplitudeExplicitRef//ShiftBA[p1,p2,z]/.OnShellCond

and apply LCD on the remaining massive vectors along with some remapping of the associate
vectors.

In[25]:= AmplitudeShifted//LightConeDecompose//Refine;
AmplitudeLCDAll=%/.{SpAssoc[p1,SpAssoc[p2,p1]]→→→SpAssoc[p1,p2],
SpAssoc[p2,SpAssoc[p1,p2]]→→→SpAssoc[p2,p1]}

The final form of the amplitude is obtained by simplifying the reference momenta to find the
most compact form.

In[26]:= FinalAmplitude=RefSimplify[#,SpRef[P|mP]]&/@AmplitudeLCDAll/.
s14→→→s[p1,p4]//Total//Simplify

Out[26]=

m2 ( 〈p4♭| p1p2〉 [p2p1|p3♭]
〈p1p2| p2p1〉[p2p1|p1p2] -

〈p1p2 |qp3〉 [qp4|p2
p1]

〈p3♭|qp3〉[qp4|p4♭]
)

sp1p4

Now to the numerical check, we need to set the mass along with generating the momenta

In[27]:= N[m]=.5

In[28]:= Module[
{
v1=RandomReal[{-100,100},3],
v2=RandomReal[{-100,100},3],
v1Sq,v2Sq,
eQ
}
,

{v1Sq,v2Sq}=Total[#2]&/@{v1,v2};

v2=

√
v1Sq
v2Sq

v2;

{eQ,eQ}=
√
v1Sq+N[#]2&/@{m,m};

DeclareLVectorMomentum[p1,Flatten[{eQ,v1}]];
DeclareLVectorMomentum[p2,Flatten[{eQ,-v1}]];
DeclareLVectorMomentum[p3,Flatten[{-eQ,-v2}]];
DeclareLVectorMomentum[p4,Flatten[{-eQ,+v2}]];
]
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Then we set the values of the reference and associate vectors.

In[29]:= DeclareSpinorMomentum/@SpRef/@{p3,p4};

In[30]:= DeclareSpinorMomentum/@{SpAssoc[p1,p2],SpAssoc[p2,p1],
SpAssoc[p3],SpAssoc[p4]};

Next we write the expression of the amplitude as given from the Feynman-rules.

In[31]:= GammaVec={Gamma0,Gamma1, Gamma2, Gamma3};

In[32]:=
1
s14

MP[
I√
2

Spbb[SpM[p3,1],#,SpM[p2,1]]&/@GammaVec,

I√
2

Spaa[SpM[p4,1],#,SpM[p1,1]]&/@GammaVec];

LightConeDecompose[%,{p2→→→p1,p1→→→p2,p3,p4}]//Refine;
StandardAmplitude=%/.s14→→→s[p1,p4]

At last we evaluate both expressions,

In[33]:= FinalAmplitude//N
StandardAmplitude//N

Out[33]= -9.65801*10^-6+8.92161*10^-6 i

Out[34]= -9.65801*10^-6+8.92161*10^-6 i

And again we see that both results agree.
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Chapter 3

Unitarity method and Cut coefficients

The real test to any amplitude computation method happens during its encounter with loop-
amplitudes, or NLO contributions. The previous chapters were marked by a success to obtain tree
amplitudes in a very elegant and compact manner. And in order to tackle the test, our formalism
will employ a consequence coming from the notion of Unitarity ; a notion that is proper to the
QFT paradigm as a whole. This chapter is the core of this thesis and within its boundaries we
will attempt to unravel a technical synergy stemming from the compatibility of the previously
developed method with Generalized Unitarity, in order to develop a one-loop formulation that
employs information coming from tree-level expressions. Thus, putting to use the solutions offered
by the formalism we built throughout the previous chapters.

3.1 Cutkosky rules

The imposition of Unitarity constraint in the simple straight forward sense seems to reveal a very
interesting relation between LO and NLO contributions. This link will be of extreme importance
as it will help us tackle loop-amplitudes in an indirect way.

Let’s start by putting that condition under mathematical terms,

S†S = 1, (3.1)

with S = 1+ iT , where the first term is the trivial-part which only survives if for the sandwich
〈f |S| i〉, |i〉 = |f〉 meaning that nothing happens, and the second term which is the non-trivial
one, also called the Transfer-matrix contributes for |i〉 6= |f〉, namely when something actually
happened (interactions).

Unitarity of the S-matrix tells us that,

i
(
T † − T

)
= T †T . (3.2)

A strange equality between a difference and a product, which can only be explained if the left-
hand side is interpreted as a loop amplitude and the right-hand one as a product of two conjugate
tree amplitudes.This must hold order-by-order in perturbation theory, meaning that it relates LOs
to NLOs. Another read leads us to say that imaginary parts of loop amplitudes are determined
by tree-level amplitudes,

2Im[T ] = T †T . (3.3)
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To draw further conclusions we go back to discussing Feynman propagators and more precisely
evaluating the imaginary part1 of a propagator,

Im
1

p2 −m2 + iε
=

1

2i

[
1

p2 −m2 + iε
− 1

p2 −m2 − iε

]
=

−ε
(p2 −m2)2 + ε2

. (3.4)

This vanishes as ε −→ 0, except near p2 = m2(at the pole). If we integrate over p2 we get,
ˆ ∞

0

dp2
[ −ε
(p2 −m2)2 + ε2

]
= −π. (3.5)

So that we have Im 1
p2−m2+iε

= −πδ(p2 − m2), saying that “the propagator is real except for
when the particle goes on-shell”, meaning we have imaginary parts arising and if this propagator
is a part of a loop, then the imaginary parts of loop amplitudes come from intermediate particles
going on-shell. Thus, we can put this conclusion in a procedural format by what is known as the
“Cutting rules” formulated first by Cutkosky [19]:

1. Cut through the diagram in any way that can put all of the cut propagators on-shell without
violating momentum conservation.

2. For each cut, replace 1
p2−m2+iε

−→ −2iπδ (p2 −m2) θ (p0).

3. Sum over all cuts (shown in the example treated in pg. 457, [6]).

4. The result is the discontinuity of the diagram, where Disc [T ] = 2Im [T ].

The discontinuity of a diagram refers to the amplitude difference for when the energies are given
small positive and small negative imaginary parts2. Put more formally as,

Disc
[
T (p0)

]
= T (p0 + iε)− T (p0 − iε) = 2Im

[
T (p0)

]
.

3.2 One-Loop formulation of Helicity amplitudes

We previously studied the simple form of Unitarity which only speaks about the S − matrix,
S = 1+ iT being unitary leading us to a procedure determining imaginary parts of loops deduced
from the following relation,

Disc (T ) = T †T . (3.6)

The previous equation holds order by order in the perturbation theory, where suppose T (L)
n is

the L-loop n-gluons amplitude then,

T4 = g2T (0)
4 + g4T (1)

4 + g6T (2)
4 + ...

T5 = g3T (0)
5 + g5T (1)

5 + g7T (2)
5 + ...

. (3.7)

The different terms of these developments can combine to provide imaginary parts of the
higher-loop amplitudes through the application of Cut-rules,

1page 456, [6]
2Pg. 459, [6].
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Disc
(
T (0)
4

)
= 0

Disc
(
T (1)
4

)
= T (0)†

4 T (0)
4

Disc
(
T (2)
4

)
= T (0)†

4 T (1)
4 + T (1)†

4 T (0)
4 + T (0)†

5 T (0)
5

. (3.8)

Tree amplitudes have no branch cuts. The discontinuities of one loop amplitudes are given by
the product3 of tree amplitudes with the intermediate states always consisting of particles that are
re-scattering, “two-particle cuts”. The two-loops involve beside two-particle cuts three particle-cuts
given by higher multiplicity amplitudes, etc.

To understand the whole Unitarity method bundle we need to put in perspective all the ideas
we accumulated so far:

1. The previous relations are derived assuming real momenta for both external and internal
lines. Trying to solve on-shell conditions for complex loop momenta leads us to “Generalized
Unitarity”.

2. Since in our case Unitarity is applied perturbatively we can use the properties of perturbation
theory that is Feynman diagram expansion leading us to represent loop amplitudes as a
linear combination of a basic set of Feynman integrals, called “master integrals”, multiplied
by coefficient functions.

The Unitarity method combines (1) and (2), namely that the information we get from (1) can be
compared with (2) to yield the coefficients. If all possible integral coefficients are determined ,
then the amplitude itself is completely determined.

The method we outline here starts by dividing the loop contribution that is dimensionally
regularized into its cut parts which are consequences of Unitarity plus rational parts which comes
in to complete4 the full answer,

A1−loop
n = Cn +Rn. (3.9)

The cut parts are given through the extension of Unitarity to the case of complex loop momenta
and solving for the conditions that makes these on-shell. This extension has the consequence of
raising the number of cuts available to perform on a loop. Since we are in four dimensions ǫ = 0,
meaning that the loop momentum l has four unknown components requiring us four equations to
be exactly solvable, we can make up to “four” cuts in total where each cut imposes a constraint
of the form (l −K)2 = 0 where K is a momenta cluster, namely some combination of external
momenta in this fashion K =

∑
p.

The solutions in this case are discrete and we cannot have in this situation a fifth cut because
we’d end up with more equations than unknowns which is too constrained and this is partly the
reason why at this level we won’t see pentagonal (5-point) integrals. For the case where we perform
3, 2 or 1 cut(s), we end up with less equations than unknowns and thus we’d have parameterized
solutions with one or more complex variables.

Performing a certain number of cuts on a loop diagram would require an equal number of
propagators available to conduct the cuts, implying that each – quadruple, triple, ... –cuts would
yield an information about the diagram with a – box, triangle, ...–like loop. If we have a close
look at the contribution of these loops at the amplitude level we see that we can isolate each time
an – 4,3, ...–point integral arising from that loop. Adding to this the fact [13] that we can’t have

3There is an implicit discrete sum over the helicities which lie between the two T matrices and there is a
continuous integral over intermediate phase states.

4The cuts give us only imaginary parts.
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quintuple cuts meaning that pentagon-like loop information cannot be captured in four dimensions
but luckily there is a systematic way to reduce pentagon and higher order loop integrals in terms of
– box, triangle, ... –integrals making them somehow a good basis of decomposition to our problem.

This was the point that (2) was trying to make; leading us to,

Cn =
∑

i

diIi
4−point +

∑

i

ciIi
3−point +

∑

i

biIi
2−point +

∑

i

aiIi
1−point, (3.10)

with,

Ii
m−point = µ2ǫ

ˆ
d4−2ǫl

(2π)4−2ǫ

1∏m
n=1 l

2
n

, (3.11)

and the coefficients {di, ci, bi, ai} are independent of the loop momentum and only function of
kinematic invariants. These coefficients are read off diagrams represented below.

(a) Box diagrams

(b) Triangle diagrams

(c) Bubble diagram (d) Tadpole dia-
gram

Figure 3.1: Loop diagram basis
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3.2.1 Conventions

The loop amplitude we are describing can have n-external legs which can be distributed in sets all
around the loop. These sets are located at the points of the integrals thus a box integral can have
4-sets, a triangle can have 3, etc. We name these sets “clusters” and are the same K ′s that arise
in the cut constraints.

It is clear that we can have as much clusters as there are “points” in the integral and the fact that
they are just combinations of external momenta, we can have many arrangements of these using the
momenta of the problem. The cluster can be massless if it contains just one momentum or massive
if it is a sum of two or more momenta. Each arrangement gives us a different contribution which
is the information stocked in the the kinematic coefficients di, ci, ... so that each i corresponds
to a possible partition of external momenta into 4,3, ... sets. We will refer to these clusters
by a set {K1, K2, ...} and take loop momentum to be flowing counter-clockwise as a convention.
While we might have a number of propagators in the loop only the loop momentum is needed
to characterize them all, making it the only variable we are integrating on. The propagator’s
momenta are functions of the loop momentum and the clusters of external momenta.

Loop

K1

K2 K3

K4
l1

l2

l3

l4

3.3 Cut coefficients and Rational terms

The determination of the cut coefficients starts with the process of solving cut conditions in order
to have an expression for the loop momenta appearing in the tree amplitudes combining to yield
the coefficients themselves. Solving such system of equations is quite tedious and goes far beyond
the scope of this thesis. I will use results from previously done calculations in other research papers
[20, 21], while making sure to translate them into our convention correctly. Even though there is
a total of four coefficients to extract we’ll interest ourselves with only two, box and triangle. The
reason for this, is that the extraction of the remaining coefficients reuses ideas that are introduced
to solve the first two cases.
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3.3.1 Box coefficients

Extracting the coefficient corresponding to some box diagram with a specific partition of the
clusters starts with solving the on-shell conditions and the determination of the loop momentum.
The generic diagram representing a quadruple cut looks like,

Figure 3.2: Generic quadruple-cut diagram.

Sticking with our convention of labeling momenta clockwise, we start from the bottom-left for
the clusters and from bottom for the cut loop momenta (propagators on which we did draw the
cuts). Recalling that we chose the loop momentum to flow counter-clockwise meaning that cut
loop momenta will be directed likewise. We explicit their form in term of the loop momentum and
clusters we have,

l1 = l
l2 = l1 −K1 = l −K1

l3 = l2 −K2 = l −K1 −K2

l4 = l3 −K3 = l1 +K4 = l +K4

, (3.12)

with K1 + K2 + K3 +K4 = 0. The quadruple cut (massless) conditions write as l2i = 0 with
i = {1, 2, 3, 4}. The explicit system of equations in term of the massless loop momentum is,

l2 = 0

(l −K1)
2 = 0

(l −K1 −K2)
2 = 0

(l +K4)
2 = 0

. (3.13)

As it has been reported in the papers [21, 22], we have two possible solutions. These can be
obtained by choosing a parametrization of the loop momentum in term of massless momenta,

lµ =
4∑

i=1

Aiα
µ
i . (3.14)

Although different parametrizations, {Ai, α
µ
i } have been given in each paper, they are iden-

tical and yield the same numerical results. For the purpose of this document we’ll employ the
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parametrization which uses
{
Kµ

1 , K
µ
2 , K

µ
4 , ǫµνρλK

ν
1K

ρ
2K

λ
4

}
as its αi’s , the coefficients Ai along

with the full solutions which are given in [20] and simplified in a rather useful manner in another
paper [21]. By taking the first cluster to be massless, that is, containing one leg only leading to
K2

1 = 0 the two solutions for the on-shell conditions are given as,
(
l
(±)
1

)µ
=

〈±1|✚K2✚K3✚K4γµ|1±〉
2〈±1|✚K2✚K4|1±〉(

l
(±)
2

)µ
= −〈±1|γµ✚K2✚K3✚K4|1±〉

2〈±1|✚K2✚K4|1±〉(
l
(±)
3

)µ
=

〈±1|✚K2γµ✚K3✚K4|1±〉
2〈±1|✚K2✚K4|1±〉(

l
(±)
4

)µ
= −〈±1|✚K2✚K3γµ✚K4|1±〉

2〈±1|✚K2✚K4|1±〉

. (3.15)

To further check the validity of these solutions we need to make sure that they are massless
and enable us to extract cluster information following from momentum conservation.

Since all loop momenta are built from
(
l
(±)
1

)µ
it is only sufficient to check this one for mass-

lessness,

(
l
(±)
1

)µ (
l
(±)
1

)
µ
∝

〈∓K4|γµ|1±
〉 〈∓K4|γµ|1±

〉
∝✟✟✟✯

0
〈11〉. (3.16)

Recall that,

l2 − l3 = K2

l3 − l4 = K3

l4 − l1 = K4

. (3.17)

Checking the first equation we get,

(
l
(±)
2 − l

(±)
3

)µ
= −〈±1| {✚✚K2, γ

µ}✚✚K3✚✚K4|1±〉
2 〈±1|✚✚K2✚✚K4|1±〉

= −Kµ
2

〈±1|✚✚K3✚✚K4|1±〉
〈±1|✚✚K2✚✚K4|1±〉

,

where we applied {γµ, γν} = 2gµν and then fraction reduces to−1 by usingK3 = −k1−K2−K4,
confirming the relations and checking effectively that our solutions are consistent.

The coefficient of any box topology is given as the superposition of the two coefficients evaluated
from each solution di = 1

2

∑
σ=± d

σ
i ,

dσi = Atree
1 Atree

2 Atree
3 Atree

4 |li−→lσi
, (3.18)

with Atree
i =Atree (−li, {Ki} , li+1) and {Ki} refer to the list of external momenta forming the

cluster Ki.

3.3.2 Triangle Coefficient

At this point of calculation we’ll run into our first complication as it is clear that a triple cut will
not allow us to fully determine the loop momentum. There will be a remaining degree of freedom
having the interesting consequence of making the triangle coefficients that we read directly from
the triangle topology not pure, that is receiving box contributions. All this is due to that unfixed
parameter in the loop momentum. Unlike what we had before where the quadruple-cut provided
information that is purely box-coefficient related, the triple-cut contains a mixture of information
between box contributions and triangle ones.

41



Figure 3.3: Generic triple-cut diagram.

The cut conditions used
{
l(t)2 = 0, (l(t)−K1)

2 = 0, (l(t) +K2)
2 = 0

}
to obtain lµ(t) where t

is a complex parameter are solved to give us [13],

lµ(t) = K̃µ
1 + K̃µ

3 +
t

2

〈
+K̃1|γµ|K̃3

−
〉
+

1

2t

〈
+K̃3|γµ|K̃1

−
〉
, (3.19)

with,

K̃µ
1 = γα

γKµ
1 +S1K

µ
3

γ2−S1S3

K̃µ
3 = −γα′ γKµ

3 +S3K
µ
1

γ2−S1S3

, (3.20)

and,

α = S3(S1−γ)
S1S3−γ2

α′ = S1(S3−γ)
S1S3−γ2

γ = γ± = −K1 ·K3 ±
√
∆

∆ = (K1 ·K3)
2 −K2

1K
2
3

, (3.21)

where S1 = K2
1 and S3 = K2

3 . Keeping in mind that we have to sum over two solutions
corresponding to γ± in order to determine the coefficients. We write the “uncleaned” triangle
coefficients as c̃i = 1/2

∑
σ=± c̃

σ
i with,

c̃σi = Atree
1 Atree

2 Atree
3 |li=lσi (t)

. (3.22)

The box contribution comes in for some finite values of t, namely regions where the topology
looks like a box one. We of course are only interested in the triangle information requiring us to
cleanse the triple-cut from box information first. Doing that requires us to know the values of the
parameter for which the unneeded information steps in.
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Figure 3.4: Illustration of “pinching” process.

To paint a picture about the cleansing process, we imagine ourselves “pinching” one point of
the triangle until it splits in two making its structure look like a box. The “pinching” will expose
a new loop propagator and impose a fourth-condition, a condition for which the new propagator
vanishes or more appropriately goes on-shell. This condition will fix t = t0 , a finite value for which
the propagator blows up making that value a pole. Finding all the poles amount to finding all the
values for which we have a box contribution. This can be put mathematically in a rather elegant
manner that was first introduced by Forde [23],

Atree
1 (t)Atree

2 (t)Atree
3 (t) =

[
InftAtree

1 Atree
2 Atree

3

]
(t) +

∑

{k}

[
Rest=tkAtree

1 Atree
2 Atree

3

t− tk

]
. (3.23)

The second term here account for all the box contributions as residues for finite tk that put the
pinched-out propagator on-shell. The first term is a contribution at infinity formally defined as,

limt−→∞
([
InftAtree

1 Atree
2 Atree

3

]
(t)−Atree

1 (t)Atree
2 (t)Atree

3 (t)
)
= 0. (3.24)

The pole structure, or polology5 of the “uncleaned” triangle coefficient is composed of both
finite and infinite singularities with the finite ones giving those box impurities. The contributions
at infinity are free from finite singularities and can be written as a power series,

[
InftAtree

1 Atree
2 Atree

3

]
(t) =

m∑

n=0

ent
n, (3.25)

with m being taken to be 3 for renormalizable theories, justified by the fact that there can be
at most 3 momenta in the numerator of triangle integrals [13].

Subtracting the residues corresponding the box contributions from the “uncleaned” triangle
coefficient, tells us that the pure triangle contributions come from [Inft], namely terms at infinity.
Recalling that the coefficients we are trying to compute are parameter-independent requiring us
to sum over any free continuous index we obtain it by integrating over t after properly cleansing
the integrand leading us to,

5It is a constructed term(p.471, [6]) that refers to the study of the pole structure of complex functions.
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cσi = i (−2πi)3
ˆ

dt

(2π)4
Jt
([
InftAtree

1 Atree
2 Atree

3

]
(t)
)
|li=lσi (t)

, (3.26)

where the Jt is the Jacobian of the transformation from an integral over d4l to one over the
remaining parameter dt.

Using the polynomial form the integrand we find ourselves in need to construct a table of
integrals for i (−2πi)3

´
dt

(2π)4
Jtt

n, which gives 1 for n = 0 and vanishes for the n > 0 [22]. The
previous confirms the independence from the parameter leading us to write at last,

cσi = −
([
InftAtree

1 Atree
2 Atree

3

]
(t)
)
|t=0. (3.27)

The last formula tells us that all that is missing to have the answer is to find the poles and
subtract their residues and then put t = 0 to remove the dependence on it.

3.3.3 Bubble and Tadpole Coefficients

In addition to the previous coefficients, the full 1-loop answer requires coefficients from two lower-
point topologies depicted below.

(a) (b)

Figure 3.5: A bubble and tadpole topology.

We again recognize the same problem that we had with the triangle topology, where the triple-
cut didn’t impose enough constraints to exactly determine the loop momentum. Moreover the
appearance of contributions from higher-point topologies at some specific regions lead us to consider
a cleaning procedure to extract the information of interest.
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(a) (b)

Figure 3.6: Double and One-cut

The same dilemma is to be encountered here where a double or a one-cut provide us with clearly
not enough constraints to solve the cut conditions leading us to have more than one free parameter.
In addition we get to have contributions from triangle and box coefficients mixed within at some
specific values of the parameters. The good thing here is that it won’t require us more than what
we already exposed to have our coefficients, it will only require more work.

3.3.4 Rational terms

Cuts will not capture all the information relevant to the one-loop problem and this was indicated
when we first mentioned “simple” Unitarity and worked out that the application of the cut rules
only provide us with the imaginary part of the amplitude. The rational terms are the parts of the
amplitude that aren’t captured by the cut procedure,

Rn = A1−loop
n |Ii

m−point−→0. (3.28)

There are so far many methods to get these terms and the common point between all of these
methods is that they require us to know all the cut coefficients. Most of these methods [24, 25]
have been implemented both numerically and analytically.
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Chapter 4

One-Loop Helicity amplitude Application

Now that we have a one-loop formulation for Helicity amplitudes, it is of interest to showcase the
extraction process of Kinematic (cut) coefficients for a given one-loop topology. In the previous
chapter we were able to find the exact analytical solutions for the box-coefficients. The triangle-
coefficients presented some complications where they had to be distilled from box-contributions
before obtaining the pure triangle ones and the same complications are encountered at lower-point
topologies where we follow the same procedure to resolve. That procedure emphasizes the fact that
all coefficients relate to the highest-point one. In this chapter, we’ll compute the box-coefficients
related to pure gluon box-diagram correcting the LO for the gg −→ gg process.

4.1 Box-Loop corrections to gg −→ gg

Among the numerous one-loop diagrams contributing at the next-to-leading order we only have
two that correspond to a 4-point topology.

(a) pure gluonic diagram (b) diagram with quarks circulating in the
loop

Figure 4.1: One-loop diagrams with a box-shape loop.

Both of these are involved in the complete determination of the di1 coefficients since they are the
1Refer to chapter 4 subsection 3.1.
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only diagrams providing four propagators to cut. In order to illustrate the procedure of extraction
we choose to work with the diagram in sub-fig (a) of Fig 4.1. We start with a computer-assisted
derivation of the analytical expressions using Mathematica/S@M and then perform a check against
a numerical algorithm presented in [11].

4.2 Pure-gluon box-coefficient

This section will deal with the extraction of the box-coefficient related to the previously selected
diagram with external polarization (+ +−−). And since the interest is mainly directed towards
treating the kinematic part of the amplitude we separate the color from the rest of the expression
as it can be handled with similar tools presented in Appendix B2.

To conduct our task, we’ll make use of a formula given in the previous chapter that tells us,
box-coefficients are obtained by cutting through each propagator in a way that puts it on-shell
and then do the product of the resulting tree-amplitudes likewise,

di =
1

2

∑

σ=1,2

(
Atree

1 Atree
2 Atree

3 Atree
4 |

li−→l
(σ)
i

)
. (4.1)

(+)

(+) (−)

(−)
1

2 3

4

−l1 l1

−l4

l4

−l3

−l2

l2

l3

Figure 4.2: Quadruple-cut performed on the box-shape loop diagram.

In this diagram3 the clusters are massless implying that we have only one possibility for the
arrangement of momenta leading us to have just one coefficient to compute in this case. Another
effect of this is that the tree amplitudes at each corner are just GGG-vertices. Making the generic
form of the coefficient contribution looking like,

2See also [26], pg. 11-12.
3The directed circle indicates the loop momentum flow.

47



d = Ãtree
GGG|1 (−l1, 1, l2) Ãtree

GGG|2 (−l2, 2, l3) Ãtree
GGG|3 (−l3, 3, l4) Ãtree

GGG|4 (−l4, 4, l1) .
We can readily see that the spinor associated with each momentum appears an even number

of times in the amplitude4. If one of momenta is inverted, for example if we have −p instead of
p then the corresponding spinors either angled (or square) are related by a phase ±i. In the case
where we have an occurrence that is equal to 4 or one of its powers then all the phases produced
factor up to unity, which is what we have in our generic expression, thus we can remove the (−)
from the labels and write it in a direct manner,

d = Ãtree
GGG|1 (l1, 1, l2) Ãtree

GGG|2 (l2, 2, l3) Ãtree
GGG|3 (l3, 3, l4) Ãtree

GGG|4 (l4, 4, l1) . (4.2)

Recalling the expressions of 3− point color-stripped amplitudes,

Ãtree
GGG (1+, 2+, 3−) = [12]3

[23][31]

Ã
tree

GGG (1−, 2−, 3+) = 〈12〉3
〈23〉〈31〉

. (4.3)

The final coefficient is obtained by summing over possible internal Helicity configurations and
averaging the result obtained from both loop momentum solutions,

(
l
(1)
1

)αα̇
= [23]〈34〉

[24]〈41〉 |4〉 [1|(
l
(2)
1

)αα̇
= 〈23〉[34]

〈24〉[41] |1〉 [4|
. (4.4)

4.2.1 Color-stripped coefficient

We start this part by defining the basic amplitudes we’ll be using along with declaring the spinor
variables of our problem as follows,

In[35]:= GGG[{a_,+1},{b_,+1},{c_,-1}]:=
Spbb[a,b]^3/(Spbb[b,c]*Spbb[c,a])
GGG[{a_,-1},{b_,-1},{c_,+1}]:=
Spaa[a,b]^3/(Spaa[b,c]*Spaa[c,a])

In[36]:= DeclareSpinor[l1,l2,l3,l4]

{l1,l2,l3,l4} added to the list of spinors

There are in total six possible internal Helicity configurations. This count is obtained by
considering the constraint that Helicity should be the opposite on the different side of the same
propagator cut5, meaning that we have either (+−) or (−+) along the same propagator and we
have 4 propagators implying that we should have C2

4 = 6 possible configurations. We’ll adopt
a compact way to refer6 to each configuration based on the kind of contributing GGG-vertices
(either A or A).

• The first internal configuration, AAAA.

4Mainly because the form of the amplitude is dictated by little group scaling.
5Consequence of on-shell methods presented in chapter 2.
6The referencing follows a clockwise ordering starting from the bottom left corner.
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(+)

(+)

(−)

(−)

(+)

(−)

(−) (+)

(+)

(−)

(+)(−)

Figure 4.3: AAAA

We start by putting down the corresponding product of amplitudes,

In[37]:= AaAa=GGG[{1,+1},{l2,+1},{l1,-1}]*
GGG[{l3,-1},{l2,-1},{2,+1}]*
GGG[{l4,+1},{l3,+1},{3,-1}]*
GGG[{l4,-1},{4,-1},{l1,+1}] //
SpClose

Out[37]=
〈4|l4|l3|l2|1]3

〈2|l3|3] 〈4|l1|1] 〈2|l2|l1|l4|3]

and then write l2, l3 and l4 in term of l1.

In[38]:= xAaAa=AaAa/.{l2→→→l1-Sm[1],
l3→→→l1-Sm[1]-Sm[2],
l4→→→ l1+Sm[4]}

Out[38]= -
(-〈4|l1|1|l1|1]-〈4|l1|2|l1|1]) 3

(〈2|l1|3]-〈2|1|3]) 〈4|l1|1] 〈2|1|l1|4|3]

At last we substitute for the solutions of the loop momenta, starting with l(1)1

In[39]:= dAaAa=xAaAa/.l1 →→→ [2|3]〈〈〈3|4〉〉〉
[2|4]〈〈〈4|1〉〉〉SmBA[4,1]

to obtain,

〈34〉4 〈1|2|4]3 [32]4 [41]2

〈14〉2 〈1|4|3] 〈2|1|4] [42]4
(
−〈2|1|3] + 〈12〉〈34〉[32][43]

〈14〉[42]

) (4.5)

while the second solution l(2)1 annihilate the expression,
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In[40]:= Numerator[xAaAa]/.l1 →→→ 〈〈〈2|3 〉〉〉[3|4]
〈〈〈2|4〉〉〉[4|1] SmBA[1,4]

Out[40]= 0

Here we used the Numerator[...] function to isolate the numerator, since Mathematica
doesn’t understand that the amplitudes composing our expression are made so that they vanish
faster than they diverge and interprets them as just divergent.

• The second internal configuration, AAAA.

(+)

(+) (−)

(−)

(+)

(−)

(−) (+)

(−)

(+)

(−) (+)

Figure 4.4: AAAA

The input for the corresponding contribution writes like,

In[41]:= AaaA=GGG[{1,+1},{l2,+1},{l1,-1}]*
GGG[{l3,-1},{l2,-1},{2,+1}]*
GGG[{3,-1},{l4,-1},{l3,+1}]*
GGG[{l1,+1},{l4,+1},{4,-1}] //
SpClose

Out[41]=
〈l3|l2|1]3 〈3|l4|l1]3

〈l3|2〉 〈l3|3〉 〈l3|l4|4] 〈2|l2|l1] [1|l1] [4|l1]

We notice that the loop momenta appears at the extremities of the spinor chains which prevents
us from proceeding further. If we attempt to substitute every loop momentum in term of l1we
obtain an error as these objects are only defined as slashed matrices that could only exist within
a chain and not at the ends of it. A work around is to multiply by 〈3|l1〉3 [l3|1]3and divide by it
so that it amounts to unity. The effect of this trick is to remove the loop spinors from extremities
by surrounding them with external momenta spinors allowing us perform the substitution.
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In[42]:= Numerator[AaaA]Spbb[l3,1]^3*
Spaa[3,l1]^3 //SpClose;
xAaaANum=%/.{l2→→→l1-Sm[1],
l3→→→l1-Sm[1]-Sm[2],
l4→→→ l1+Sm[4]}

Out[42]= 〈3|l1|4|3〉3 [1|2|l1|1]3

In[43]:= xAaaANum/.l1 →→→ 〈〈〈2|3〉〉〉[3|4]
〈〈〈2|4〉〉〉[4|1]SmBA[1,4]

Out[43]= 0

In[44]:= xAaaANum/.l1 →→→ [2|3]〈〈〈3|4〉〉〉
[2|4]〈〈〈4|1〉〉〉SmBA[4,1]

Out[44]= 0

The freedom to choose the anti-symmetric product to complete the chain provides us with a
control over the vanishing of the contribution.

• The third (AAAA), fourth (AAAA(1)) and fifth (AAAA(2)) internal signatures present
the same situation as the second one and in the same way they will not contribute.

The code implementing calculations for all of the three diagrams discussed in the previous para-
graph is given below.

(+)

(+) (−)

(−)

(+)

(−)

(−) (+)

(−)

(+)

(−) (+)

Figure 4.5: AAAA

In[45]:= aAAa =GGG[{l2,-1},{l1,-1},{1,+1}]*
GGG[{l2,+1},{2,+1},{l3,-1}]*
GGG[{l4,+1},{l3,+1},{3,-1}]*
GGG[{l4,-1},{4,-1},{l1,+1}] //
SpClose
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Out[45]=
〈l1|l2|2]3 〈4|l4|l3]3

〈l1|1〉 〈l1|4〉 〈l1|l4|3] 〈1|l2|l3] [2|l3] [3|l3]

In[46]:= Numerator[aAAa]Spaa[l3,1]^3*
Spbb[3,l1]^3 //SpClose;
xaAAaNum=%/.{l2→→→l1-Sm[1],
l3→→→l1-Sm[1]-Sm[2],
l4→→→ l1+Sm[4]}

Out[46]= -〈1|2|l1|4〉3 [3|l1|1|2]3

In[47]:= xaAAaNum/.l1 →→→ 〈〈〈2|3〉〉〉[3|4]
〈〈〈2|4〉〉〉[4|1]SmBA[1,4]

Out[47]= 0

In[48]:= xaAAaNum/.l1 →→→ [2|3]〈〈〈3|4〉〉〉
[2|4]〈〈〈4|1〉〉〉SmBA[4,1]

Out[48]= 0

(+)

(+) (−)

(−)

(+)

(−)

(−)(+)

(−)

(+)

(−) (+)

Figure 4.6: AAAA(1)

In[49]:= AAaa1 =GGG[{1,+1},{l2,+1},{l1,-1}]*
GGG[{2,+1},{l3,+1},{l2,-1}]*
GGG[{l3,-1},{3,-1},{l4,+1}]*
GGG[{l4,-1},{4,-1},{l1,+1}] //
SpClose

Out[49]=
〈l4|4〉3 〈3|l3|2]3 [1|l2]3

〈l4|3〉 〈l4|l1|l2] 〈l4|l3|l2] 〈4|l1|1] [2|l2]
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In[50]:= Numerator[AAaa1]Spaa[l2,4]^3*
Spbb[4,l4]^3 //SpClose;
xAAaa1Num=%/.{l2→→→l1-Sm[1],
l3→→→l1-Sm[1]-Sm[2],
l4→→→ l1+Sm[4]}

Out[50]= (〈3|l1|2]-〈3|1|2])3 〈4|l1|4|l1|1]3

In[51]:= xAAaa1Num/.l1 →→→ 〈〈〈2|3〉〉〉[3|4]
〈〈〈2|4〉〉〉[4|1]SmBA[1,4]

Out[51]= 0

In[52]:= xAAaa1Num/.l1 →→→ [2|3]〈〈〈3|4〉〉〉
[2|4]〈〈〈4|1〉〉〉SmBA[4,1]

Out[52]= 0

(+)

(+) (−)

(−)

(+)

(−)

(−) (+)

(−)

(+)

(−)(+)

Figure 4.7: AAAA(2)

In[53]:= AAaa2=GGG[{l1,+1},{1,+1},{l2,-1}]*
GGG[{l2,+1},{2,+1},{l3,-1}]*
GGG[{3,-1},{l4,-1},{l3,+1}]*
GGG[{4,-1},{l1,-1},{l4,+1}] //
SpClose

Out[53]=
〈l4|3〉3 〈4|l1|1]3 [2|l2]3

〈l4|4〉 〈l4|l1|l2] 〈l4|l3|l2] 〈3|l3|2] [1|l2]

In[54]:= Numerator[AAaa2]Spaa[l2,4]^3*
Spbb[4,l4]^3//SpClose;
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xAAaa2Num=%/.{l2→→→l1-Sm[1],
l3→→→l1-Sm[1]-Sm[2],
l4→→→ l1+Sm[4]}

Out[54]= 〈4|l1|1]3 (〈3|l1|4|l1|2]-〈3|l1|4|1|2])3

In[55]:= xAAaa2Num /.l1 →→→ 〈〈〈2|3〉〉〉[3|4]
〈〈〈2|4〉〉〉[4|1]SmBA[1,4]

Out[55]= 0

In[56]:= xAAaa2Num /.l1 →→→ [2|3]〈〈〈3|4〉〉〉
[2|4]〈〈〈4|1〉〉〉SmBA[4,1]

Out[56]= 0

• The sixth internal signature, AAAA.
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(+) (−)

(−)

(−)

(+)

(−) (+)

(−)

(+)
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Figure 4.8: AAAA

The last contribution gets implemented as follow,

In[57]:= aAaA=GGG[{l2,-1},{l1,-1},{1,+1}]*
GGG[{l2,+1},{2,+1},{l3,-1}]*
GGG[{3,-1},{l4,-1},{l3,+1}]*
GGG[{l1,+1},{l4,+1},{4,-1}] //
SpClose

Out[57]=
〈3|l4|l1|l2|2]3

〈1|l1|4] 〈3|l3|2] 〈1|l2|l3|l4|4]
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In[58]:= xaAaA=aAaA/.{l2→→→l1-Sm[1],
l3→→→l1-Sm[1]-Sm[2],
l4→→→ l1+Sm[4]}

So that we get the opposite situation with respect to the first signature. The expression vanishes
for l(1)1 ,

In[59]:= Numerator[xaAaA]/.l1 →→→ [2|3]〈〈〈3|4〉〉〉
[2|4]〈〈〈4|1〉〉〉SmBA[4,1]

Out[59]= 0

while for l(2)1 ,

In[60]:= daAaA=xaAaA /.l1 →→→ 〈〈〈2|3 〉〉〉[3|4]
〈〈〈2|4〉〉〉[4|1] SmBA[1,4]

we obtain,

〈3|4|1]3 〈4|1|2]3

〈14〉2 〈4|2|1] [41]2
(
−〈3|1|2] + 〈23〉〈34〉[21][43]

〈24〉[41]

) . (4.6)

As a final result we give the box-coefficient to be,

dgluon−box−loop =
1

2
[

〈34〉4 〈1|2|4]3 [32]4 [41]2

〈14〉2 〈1|4|3] 〈2|1|4] [42]4
(
−〈2|1|3] + 〈12〉〈34〉[32][43]

〈14〉[42]

)

+
〈3|4|1]3 〈4|1|2]3

〈14〉2 〈4|2|1] [41]2
(
−〈3|1|2] + 〈23〉〈34〉[21][43]

〈24〉[41]

) ]
. (4.7)

4.2.2 Numerical check

Now that we have our analytical expression we start to implement the numerical verification.
We first generate massless external momenta so that their sum equals zero7.

In[61]:= SeedRandom[1111]
GenMomenta[{1,2,3,4}]

Momenta for the spinors 1, 2, 3, 4 generated.

Then solve the system of cut-conditions for the components of the loop momentum so that we
obtain two solutions.

In[62]:= DeclareLVectorMomentum[L,{L0,L1,L2,L3}]

Four Momentum L set to {L0,L1,L2,L3}.

In[63]:= ll1=L
ll2 = L-Sp[1]
ll3 = ll2-Sp[2]
ll4 = ll3-Sp[3]

7All taken to be incoming.
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In[64]:= solutions=Solve[{
MP2[ll1]==0,
MP2[ll2]== 0,
MP2[ll3]== 0,
MP2[ll4]==0
}//N,{L0,L1,L2,L3}]

Out[64]= {{L0→2.22727 -3.30852 i,L1→1.78302 -4.97181 i,L2→-2.20165+1.34759
i,L3→3.73505 +1.19483 i},{L0→2.22727 +3.30852 i,L1→1.78302 +4.97181
i,L2→-2.20165-1.34759 i,L3→3.73505 -1.19483 i}}

We start by constructing the loop spinors given by the first solution and extract the value of
the coefficient for the first signature as it is the only one contributing at this level.

In[65]:= DeclareSpinorMomentum[p1l1,
Num4V[ll1]/.solutions[[1]] ]
DeclareSpinorMomentum[m1l1,
-Num4V[ll1]/.solutions[[1]] ]

(...)

In[66]:= d1 = (GGG[{1,+1},{p1l2,+1},{m1l1,-1}]*
GGG[{p1l3,-1},{m1l2,-1},{2,+1}]*
GGG[{p1l4,+1},{m1l3,+1},{3,-1}]*
GGG[{m1l4,-1},{4,-1},{p1l1,+1}] )// N

Out[66]= -44.3725+383.834 i

with (...) meaning that the command was truncated for readability.
The second solution gets contributions from the sixth signature as follows,

In[67]:= DeclareSpinorMomentum[p2l1,
Num4V[ll1]/.solutions[[2]] ]
DeclareSpinorMomentum[m2l1,
-Num4V[ll1]/.solutions[[2]] ]
(...)

In[68]:= d2=(GGG[{p2l2,-1},{m2l1,-1},{1,+1}]*
GGG[{m2l2,+1},{2,+1},{p2l3,-1}]*
GGG[{3,-1},{p2l4,-1},{m2l3,+1}]*
GGG[{p2l1,+1},{m2l4,+1},{4,-1}] )//N

Out[68]= -44.3725+383.834 i

Summing both contributions and comparing them to the result given from the previously
computed analytical expressions we get,

In[69]:= d=dAaAa+daAaA

In[70]:= d1+d2

Out[70]= -88.7451+767.667 i
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In[71]:= d//N

Out[71]= -88.7451+767.667 i

4.3 Discussion

In this chapter we aimed at illustrating the procedure of box-coefficient extraction for a process
that we already showed interest in previously, namely gg → gg. The calculations were for a
specific external polarization but we can easily work all possible ones as the ingredient we’ll use
for computation will always be the GGG-vertices.

Once the external polarizations fixed, the remaining was the internal ones since the cuts gave
us four sub-diagrams and the propagators going on-shell will have to carry polarizations too. The
same propagator will be shared between two sub-diagrams and according to a result from chapter
3, depending on the loop momentum flow if the loop momentum is incoming with a specific
polarization on some sub-diagram, it will be outgoing and the polarization flips in the second
sub-diagram. This constrains the possible configurations we can have reducing the possibilities by
a fair number (only six in our case).

We further noticed that since we have four sub-diagrams and loop momenta will participate
with two legs out of three in the GGG-vertex, meaning that half of total number will have outgoing
loop momenta (4 out of 8) then we simplified it using the fact that (±i)4 = 1, to say that we’d
have the same result if we consider everything incoming and drop the minuses from the labels.
This remark applies for any pure gluonic structure with a box-shape loop. The reason behind this
is due to the form of amplitudes being totally constrained by Little-group scaling so that each
label with a certain polarization must count two factors that doesn’t get simplified which makes
the previous count valid in all cases.

The process of calculation consisted of writing the correct product of GGG-vertices, then
transform the expression into its close form where everything was gathered in compact spinor
chains ( or just one big spinor chain if possible ). We substitute three of the loop momenta in term
of a remaining fourth one and then evaluate for its solutions satisfying the four cut-constraints.
The previous was repeated for all six possibilities and we encountered two situations :

1. loop momenta appearing within the spinor chain, e.g. 〈k...li...s] with k and s being external
momenta.

2. loop momenta appearing at the ends of the spinor chain, e.g. 〈li...lk].

The problem was how to deal with (2) since following the steps we announced earlier will just end
up in an error (max iteration limit). That error stems from the fact that the relations between the
various loop momenta are written as 4-vectors which could at best be translated into bi-spinors.
The bi-spinors have both left- and right-handed indices meaning that if we want to obtain the
spinor form, we need to contract one of the indices in the following fashion li〉 [li −→ li〉 [lik] with
k being another label in our problem. To see the origin of the iteration problem let’s suppose
that the considered bi-spinor had an expression which we will just symbolically represent, one of
its spinors would look like li〉 = (...) 1

[lik]
and it is written in term of the other spinor meaning

that Mathematica will engage in an infinite loop trying to write each spinor in term of its chiral
conjugate without succeeding to define any of them and trigger a max iteration limit error.

The work around I found was to force the loop momenta to appear within the chain through
multiplication by 1. We can choose the ratio of anti-symmetric products in an arbitrary manner
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since that multiplication will not mess up the count imposed by Little-group scaling. The free-
dom of choice leads us to annihilate all diagrams that presented this pathology leaving us with
contributions from (1) only.

The final expression for the box-coefficient linked to a pure-gluon topology was built out of
two contributions which shows the degree of simplifications induced by on-shell methods at level of
intermediate calculations. This encourages for an algorithmic implementation once possible arising
errors have been spotted and understood as to their nature and dealt with through contingent
treatment (as illustrated by previous paragraphs).

Another error one can find especially for vanishing terms is that they are read to be divergent
by Mathematica while in fact the expressions are made so that they vanish faster than they diverge.
One way to explain it is that, when presented with a fraction Mathematica checks the denominator
first and deliberates afterward on the status of the expression. A work around here would be to
check the numerator first if it gives zero then the whole term is vanishing while if it is not, then
we supplement with the denominator and save the whole expression as contributing.

We concluded our application with a numerical check where we solved for the cut-conditions
numerically and verified if the obtained analytical expressions agree with the numerical results.
Fortunately, the result was positive confirming the analytical solutions we employed for the massless
cut-conditions. This confirmation is an important step, as we can consider the massless regime to
be entirely spanned by these solutions in the case box-loops.
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Conclusion

Throughout this thesis we formulated the answer as to the affinity of the Helicity method with
NLO corrections starting from an insight that operated mainly at LO level, namely that in the
absence of mass our amplitudes might be written entirely using Helicity spinors. These Helic-
ity amplitudes have the advantage of reducing the workload by taking away the complexity of
intermediate calculations.

In chapter 1, we started by giving an overview of the QCD sector of the Standard Model
along with a list of its Feynman Rules. Then, we explored Helicity formalism in its massless
case where we translated all quantities (arising in amplitudes) in term of Helicity spinors, starting
from real 4-momenta down to external states (both bosonic and fermionic). The inconveniences
we faced at this point were the varying conventions and notations between all the references we
consulted, plus some notational inconsistencies when it comes to handling Dirac spinors. After
ample reflection, the deliberation went in favor of adopting the convention given in Schwartz [6]
then supplement it with the additions when needed. For the Dirac spinors we chose an embedding
that respects their 4-dimensionallity and gives the correct contractions when put them with the
Dirac matrix. The next step involved the inclusion of mass, where we first constructed massive
4-momenta and then worked on fermionic external states employing the Light Cone Decomposition
procedure which was further tested to restore all properties linked to massive Dirac spinors. We
again showed the relevance of adopting the previous embedding for the Dirac spinors and were able
to generalize many of the identities found in the massless case to the massive one. QCD being a
theory of massive spin one-half fermions interacting with massless spin one bosons, meaning that
with much of what was presented earlier every quantity appearing in a QCD amplitude could be
written only using Helicity spinors leading us to the notion of a Helicity amplitude. We concluded
this chapter with the study of concepts like Maximum Helicity Violating amplitudes and crossing
symmetries through an example. The application consisted in computing the cross-section of the
gg −→ gg process usually involving over 1000 terms in just few steps manually to show the powerful
simplifications we have access to using the Helicity formalism.

Chapter 2 was marked by the introduction of Complex Momenta with the intention of using
Helicity formalism on internal states by forcing them to be on-shell. Since unphysical states won’t
even appear in the final result meaning that they get simplified somewhere in the intermediate
steps. An advantage of on-shell methods is that these states are automatically excluded from
the get-go as they are always off-shell. The first important result we obtained from the usage
of complex momenta was the amplitude expression of most relevant Kinematic 3-points (GGG &
GQQ vertices). The second was a recursion rule enabling us to combine the 3-vertices in order to
construct tree amplitudes. To put everything at work we implemented the usage of the recursion
rules in two cases showing that we can construct tree-level amplitudes from basic Kinematic 3-
points, a powerful alternative to Feynman-diagram based method. The implementation went
smoothly as both S@M and SpinorsExtras have a function reproducing the BCFW-shifts on spinor
expression for both massless and massive spinors. The massive case presented an increase in the
workload of no significant difficulty as we had the RefSimplify[...] command finding the simplest
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and most compact form for our expression containing reference momenta.
Chapter 3 represented the core of our work where we showed how the concept of Unitarity could

link the NLO to LO via Cutkosky cut-rules then we fused it with on-shell ideas by solving the cut
conditions for massless complex momenta leading us to the notion of Generalized Unitarity. Fur-
ther additions came from perturbation theory where we noticed that any one-loop amplitude could
be decomposed or at least reduced along a basis of Master integrals with associated coefficients
obtained through cuts on loop propagators putting them on-shell. The one-loop formulation for
Helicity amplitudes was based on determining these cut-coefficients being the product of tree am-
plitudes resulting from the cuts performed on a loop-topology. We first treated the box coefficients
as they presented no difficulty since the system of massless cut conditions had exact solutions. The
issues in the triangle case originated from the remaining degree of freedom in solving the condi-
tions for the loop momentum. Finite singularities were present in the coefficients and identified as
box-contributions (regions where the topology looked like a box one). We had to get rid of them
by first finding the values at which they arise. The search for such poles was done by exposing a
propagator (illustrated as “pinching”) in order to generate a fourth condition to make use of our
ability to exactly solve the box-case.

In the last chapter, we presented a detailed procedure for the extraction of box-coefficients
relevant to the NLO correction for the gg −→ gg process along with a detailed discussion about
the various issues we encountered in our usage of the S@M package and how we made sense of
them up to the final result.

All of the chapters were built around the simple logic of providing one asset at a time while
making sense of its range of application and shortcomings. What we found at the end was that the
determination of the coefficient defining the NLO problem was ultimately linked to the fundamental
Kinematic 3-points written in term of Helicity spinors, meaning that all the calculations we do will
be of use in determining the next ones.
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Perspectives

Through this modest research work, we were able to gauge how large were our steps in covering
the ground spanned by our topic so to suggest further directions of inquiry.

• Complete the massive case by treating bosonic external states (polarizations), then apply
the Helicity formalism to the Electroweak sector.

• Study of remaining loop-topologies, their pole structure along with the extraction of their
corresponding coefficients and the rational terms.

• Develop a package that combines both the philosophy of FeynCalc/FeynArt and the capa-
bilities of S@M/SpinorsExtras.
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Appendix A

Massive and massless Spinors

A.1 Dirac spinors

All of the relations that are given in this first section were taken from Schwartz book on QFT[6],
while the rest has been derived.

Dirac equation,

(✁p−m) u(p) = 0. (A.1)

Dirac spinors,

us(p) =

( √
p · σξs√
p · σξs

)

vs(p) =

( √
p · σηs

−√
p · σηs

) ., (A.2)

with ξ1 = η1 =

(
1
0

)
and ξ2 = η2 =

(
0
1

)
. Their barred counter-parts are obtained through

the prescription ψ = ψ†γ0.
Normalization,

us(p)us′(p) = 2mδss′

vs(p)vs′(p) = −2mδss′
. (A.3)

Closure,
∑2

s=1 us(p)us(p) = ✁p+m∑2
s=1 vs(p)vs(p) = ✁p−m

. (A.4)

A.1.1 Diracology

Dirac matrix,

γµ =

(
σµ

σµ

)
, (A.5)

with σµ = {1,−→σ } and σµ = {1,−−→σ }.
The fundamental anti-commutation relation,

{γµ, γν} = 2gµν, (A.6)
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from which we can derive that γµγµ = 4.
The trace of an odd product of gamma′s vanishes,

Tr (odd#γ′s) = 0. (A.7)

The gamma− 5 matrix,

γ5 = iγ0γ1γ2γ5, (A.8)

with (γ5)
2
= 1 and {γ5, γµ} = 0.

Its trace gives us,

Tr
(
γ5
)
= 0.

The product of a gamma−matrix with a 4-vector object gives us its slashed version,

γµpµ = ✁p. (A.9)

The product of two slashed objects is given by this identity,

{✚a, ✁✁b} = 2a · b, (A.10)

which in the case where aµ = pµ and bµ = pµ, we get ✁p✁p = p2.
The traces involving the slashed objects reduce to traces over gamma−matrices with momen-

tum factors, meaning that an odd product of slashed momenta will vanish (see above) leaving us
only with even products,

Tr (✚a✁✁b) = 4a · b
Tr (✚a✁✁b✁c✁✁d) = 4 [(a · b) (c · d)− (a · c) (b · d) + (a · d) (b · c)] . (A.11)

A.2 Chirality, Helicity and Spin

Often misunderstood, Chirality in our context isn’t related to the notion of mirror image. It refers
to a theory being one that is not symmetric under the interchange of the (A,B) representations
with the (B,A) representations where A 6= B and the (, ) are Lorentz representations labeled with
a combination of two integers or half-integers. Recalling that the Dirac spinor is a doublet of
two Weyl spinors, one is left-handed and the other is right-handed, the handedness of a spinor is
referred to as, “Chirality”,

γ5 = iγ0γ1γ2γ3

γ5 =

(
−1 0
0 1

)
, (A.12)

where the left- and right-handed spinors are eigenstates of γ5 with eigenvalues ∓1.
The projectors are built as follows,

PR = 1+γ5

2
PL = 1−γ5

2

PR

(
ψL

ψR

)
=

(
ψL

0

)
; PR

(
ψL

ψR

)
=

(
0
ψR

)
. (A.13)

To go further and link this concept with the next one that is Helicity, we write the Dirac
equation,
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(
−m iσµ∂µ
iσµ∂µ −m

)(
ψL

ψR

)
= 0. (A.14)

In Fourier space,

−iσµ∂µψR = σµpµψR = (E −−→σ · −→p )ψR = mψL

−iσµ∂µψL = σµpµψL = (E +−→σ · −→p )ψL = mψR
. (A.15)

We see that the mass mixes left- and right-handed states. Dropping the mass term by setting
m = 0, with E = |−→p |,

(|−→p | − −→σ · −→p )ψR = 0 =⇒
−→σ · −→p
|−→p | ψR = +ψR. (A.16)

This makes left- and right-handed states eigen-vectors of the operator h =
−→σ ·−→p
|−→p | with eigen-

values ∓1 respectively, just as with the γ5. The h projects the spin on the momentum direction,
we call it, “Helicity”.

The independent solutions to the free equations of motion for massless particles for any spin
are the Helicity eigenstates.

For “any” spin we’ll always find

−→
S · −→p Ψs = ±s |−→p |Ψs (A.17)

where the
−→
S are the rotation generators in the Lorentz group for spin s. To summarize, in the

free massless case, spin eigenstates are also Helicity eigenstates and Chirality eigenstates.

A.3 Helicity spinors

Knowing that momenta transform more naturally in
(
1
2
, 1
2

)
representation of the Lorentz group,

which involves both left- and right- handed representations implying that there is a decomposition
we can apply on 4-vectors in general to obtain them in a more fundamental format1. Following
from what was previously advanced, any four vector object can be converted into a bi-spinor. This
conversion takes up the components of the vector and puts them in a compact format that is a
2x2 matrix, which also is made up of four elements. The integrity of the information isn’t affected
since we moved it from a container to another with the same capacity. A bi-spinor is an object
with hybrid double spinor indices, where one is right-handed (dotted) and another is left-handed
(undotted). Taking a four-vector pµ we can find its bi-spinor representation through contraction
with a sigma matrix,

pαα̇ = σµαα̇pµ
pα̇α = σµ

α̇αpµ
. (A.18)

Explicitly the bi-spinors are,
1In what follows I will use the same symbol for objects representing the same quantity, that is, the 4-vector,

Weyl spinor and the bi-spinor representing the same quantity will have the same Latin symbol, while our way of
telling them apart would focus on the index accompanying it. The 4-vectors will have mid-Greek letters {µ, ν, ξ, ..},
while the left-handed Weyl spinor would get “undotted” early-Greek letters {α, β, γ, ...} and the right-handed ones
would get “dotted” early-Greek letters. As for the bi-spinor since they are hybrid of the outer-product (at least
in our case) between a left- and right-handed Weyl spinor then we’ll keep on using the same conventions for Weyl
spinors individually.
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pαα̇ =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)

pα̇α =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

) . (A.19)

The sigma objects are what encodes the information in this new format and it can retrieve them
back to their original form. These are defined with spinor indices left implicit as σµ = (1,−→σ ) and
σµ = (1,−−→σ ) where −→σ are the Pauli matrices2. To get back the original 4-vectors from bi-spinor
we use,

pµ = 1
2
σµαα̇pα̇α

pµ = 1
2
σµ
α̇αp

αα̇ . (A.20)

The norm of pµ writes p2 = det(pαα̇) = det(pα̇α), keeping in mind that we are using the west-
coast convention Minkowski metric3. In the case, of a light-like four-vector p2 = 0 ⇒ det(pαα̇) = 0,
the bi-spinor can be written as an outer product of two commuting spinors, which are called,
Twistors [27]or Helicity spinors,

pαα̇ = pαpα̇. (A.21)

This consequence allows us to inject whatever information is contained in the bi-spinor into
Helicity spinors enabling us to make use of their mechanisms.

To prove that this decomposition holds we set,

pα =

(
a1
a2

)

pα̇ =
(
b1 b2

)

pαpα̇ =

(
a1
a2

)(
b1 b2

)
=

(
a1b1 a1b2
a2b1 a2b2

) . (A.22)

We can check that det(pαpα̇) = a1b1a2b2 − a1b2a2b1 = 0. And by identifying the explicit form
of pαα̇ with the previous equation and solve for {a1, a2, b1, b2} to get,

pα = z√
p0−p3

(
p0 − p3

−p1 − ip2

)

pα̇ = z−1√
p0−p3

(
p0 − p3 −p1 + ip2

) . (A.23)

First we notice that in the case of massless real momenta, pα =
(
pα̇
)†implying that all the

relevant information is held in just one of the Helicity spinors while for massless complex momenta
pα and pα̇ are different. Second, the z can be arbitrary since what matter is their product which
makes it vanish from the final form, we will later see that this freedom is the origin of an important
constraint on the amplitudes at all orders4.

Working with these objects requires us to know the ways in which we can construct meaningful
quantities using them along with techniques to manipulate them. Since our method incites us to
search for invariants and express everything in term of them, we will start by writing down the
left- and right-handed Lorentz invariants,

2Explicitly, σµ =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i

i 0

)
,

(
1 0
0 −1

)}

3Space-time signature (+,−,−,−)is used in all our formulas in this document.
4The form of scaling transformation that z embodies is identified with, Little group scaling.
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ǫαβpαqβ
ǫα̇β̇pα̇qβ̇

. (A.24)

The ǫ is the totally anti-symmetric 2x2 object with either two left- or right-handed indices,
called Levi-Civita symbol. This object works much like the metric tensor g in space-time, that is,
we use it to raise or lower spinor indices,

ǫαβ = −ǫαβ = ǫα̇β̇ = −ǫα̇β̇ =

(
0 +1
−1 0

)
. (A.25)

Here, the index ordering is important since ǫ is an anti-symmetric object, meaning ǫαβ = −ǫβα.
There is one other object we can construct, which is the metric with one index up and one

down that we use to change the index without affecting its position,

ǫαβǫ
βγ = δγα. (A.26)

Keeping in mind that the σ′s and ǫ are linked via the following formulas,

σµαα̇ = ǫαβǫα̇β̇σµ

β̇β
σµ
α̇α = ǫαβǫα̇β̇σ

ββ̇
µ

σµαα̇σββ̇
µ = 2ǫαβǫα̇β̇ σµ

α̇ασµβ̇β = 2ǫαβǫα̇β̇
ǫαβǫα̇β̇σ

µαα̇σνββ̇ = 2gµν σµαα̇σµβ̇β = 2δαβ δ
α̇
β̇

. (A.27)

In term of these Helicity spinors, we write the “anti-symmetric inner products” as,

〈pq〉 = ǫαβpαqβ = pαq
α

[pq] = ǫα̇β̇p
α̇qβ̇ = pα̇qα̇

. (A.28)

Under this form the angle-brackets refer to left-handed objects while the square-brackets to
the right-handed ones, moreover the index format is important. We have linked 〈AB〉 −→ AαB

α

and [AB] −→ Aα̇Bα̇ while any change of the form AαBα −→ AαB
α, would produce a minus (−)

sign with the same happening to the right-handed case. The origin of the minus sign cannot come
from anywhere except the ǫ (anti-symmetry). We summarize our words in the following formulas,

〈pq〉 = −〈qp〉
[pq] = − [qp]

, (A.29)

with a direct result from the previous being that,

〈pp〉 = [pp] = 0. (A.30)

The mixed product 〈] and [〉 vanishes identically because of the perpendicularity of the projec-
tors PLPR = PRPL = 0.

We extend the new notation5 for a usage that is independent of the explicit representation of
the Helicity spinors in this fashion,

p〉 = pα 〈p = pα
p] = pα̇ [p = pα̇

. (A.31)

5Something to keep in mind is that his correspondence between the notation and the spinors is mainly dependent
on how you define the anti-symmetric inner products.
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Appendix B

Group theoretic technology

B.1 Little-Group

Poincare group, or the isometry group of Minkowski space, is the construction that account for
two fundamental observation about our universe : (1) no place in space-time seems any different
from any other place (Translation Invariance) and (2) physics should look the same whether we
look to the left or to the right or observe from a moving object (Lorentz Invariance). Any physical
theory that we build ought to respect these two symmetries, meaning that particles transform
under irreducible unitary representations of the Poincare group [6]. Unfortunately the study of
such group brings a complication being that unitary irreducible representation of the Poincare
group are all dimensionally infinite1.

The representation of the full Poincare group is induced by a representation of the sub-group
of Poincare that holds a certain momentum fixed, called the Little-group. It has finite dimensional
representations. In the massive case, the little-group, holding a certain massive 4-vector fixed is
just the group of 3D rotations, SO(3), with finite irreducible representations of spin J with 2J +1
degrees of freedom. While in the massless case, the group that holds a massless 4-vector fixed is
the isometry group of the 2D Euclidean plane, ISO(2), with finite irreducible representations of
spin J with two degrees of freedom for each J .

A situation that illustrates the utility of the Little-group is the determination of solutions that
satisfy a certain equation of motion e.g. Dirac solutions, for a specific momentum then generalize
them to an arbitrary direction via a Lorentz transformation.

In term of Helicity spinors, the entire set of transformations that preserve the momentum p〉 [p
are rescalings,

p〉 −→ z p〉
[p −→ z−1 [p

, (B.1)

implying that the little group transformations must be rescalings of that form.
Each momentum has its associated little-group transformation preserving it. For real momenta,

we require z to be a complex phase, but for general momenta z can be any nonzero complex number.
When it comes to polarizations, each gluon with momentum p will have its polarization scaling

under the little group associated with p as,

ε−p (r) −→ z2ε−p (r)
ε+p (r) −→ z−2ε+p (r)

. (B.2)

1One reason particles are naturally described by fields.
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Since the reference momentum will be chosen to be another momentum in the problem, the
scaling of the amplitude is entirely determined by the external polarizations which constraint the
form of the amplitude at all orders enabling us sometimes to guess its form without computing it
especially when the number of allowed forms is small2.

Any amplitude involving polarizations must satisfy [17],

A (..., {i〉 , i] , hi} , ...) = z−2hiA (..., { i〉 , i] , hi} , ...) , (B.3)

where hi is the helicity of the i-th particle.

B.2 Handling Color

In writing the amplitude for a QCD process from Feynman rules we notice that, working while car-
rying along the algebra elements like, structure constants and generators arising from the vertices
is just cumbersome. Most of the treatments that happen at first is on the spin part which doesn’t
affect the color part. Leading us at this point to decompose the amplitude into group-theoretical
factors and functions of kinematical variables, we will term partial amplitude.

This division isn’t superficial as it turns out that the bits we are separating have some interesting
algebraic properties and exhibit interesting symmetries especially for pure gluonic processes 3.
Another benefit of this factorization is seen when it comes to the automation and writing efficient
algorithm that work by exploiting our insights.

QCD is based on the gauge-group SU(3), while in common practice we use the generalization of
it, that is SU(N) and substitute for N=3 at the end. This way of doing things means that the tricks
and simplifications we use aren’t just specific to QCD only, but general to any gauge theory based
on SU(N). The physics described in our context involves gluons and quarks. The gluons carry
an adjoint color index while the quarks and anti-quarks carry fundamental and anti-fundamental
indices. All of the algebra involving these is already described in 4 along with the normalization
we’ll use for the generators.

Although doing group-theoretic calculus might look somewhat daunting at first due to its heavy
reliance of indices and how to manage them, a graphical technology called Birdtracks is presented
in [28][26] making the work much more intuitive. For the purposes of the next section we shall
provide with two graphical identities [29] that will come in very handy.

2See chapter 2, about GGG-vertex.
3Section 27.4, [6].
4Section 25.1 and 27.2.1, [6].
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= −

= − 1
N

Figure B.1: Simplifying identities for SU(N)

The curly lines represent adjoint indices while oriented lines fundamental ones. The 3-vertex of
curly lines represent structure constants and the vertex with one curly line and two oriented solid
ones represent the generators of the algebra. As a conclusion before starting to put this interesting
idea to practice, through this separation we somehow managed to add more meaning to diagrams
representing a process as they are also representative of algebra structure and color interaction
manageable via an elegant diagrammatic formalism thus elevating them above the status of just
mnemonic graphics.

B.3 Color ordering

A generic Feynman diagram in QCD is composed by mainly three constituents, a pure gluon 3-
vertex, a gluon-quark-quark 3-vertex and a pure gluon 4-vertex. Each of these vertices contribute
with a color factor.

The identification of possible color structures that can be found along with rules for the con-
struction of kinematic coefficients associated with each color structure is the objective of this
section.

While we know that the possible color factor arising from each of the previously mentioned
vertex are fabc(structure constants), T a

ij(generators) and fabef cde, we can expose the underlying
structure by applying,

fabc = −2iT r
{[
T a, T b

]
T c
}
. (B.4)

That is represented by the first graphical identity in the previous section. At this point the
generic color pattern we get looks roughly like,

Tr {...T a...} Tr {...T a...} Tr {...} (...)ij . (B.5)

where ... refers some string of T a’s. The traces comes from pure gluon vertices and the gen-
erators from the gluon-quark-quark vertex. Contractions of adjoint indices that appear can be
reduced using a Fierz rearrangement,

(T a)ij (T
a)kl =

1

2

(
δilδkj −

1

N
δijδij

)
, (B.6)

represented in the second graphical identity.
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These actions can all be carried away diagrammatically starting from the Feynman diagram
then systematically apply the previous identities. The end product in the case of a pure gluon
situation fully worked in section 27.4 of [6], is that any tree diagram of n-gluon reduces to a sum
over single trace terms,

Atree(1, ...n) = −2
(√

2igs

)n−2 ∑

σ∈Sn/Zn

Tr {σ(1)...σ(n)} Ãtree(σ(1)...σ(n)), (B.7)

where Ãtree(1, ...n) is known as the “color-ordered partial amplitude”. The determination of the
partial amplitude is enough to construct the full amplitude. The Feynman rules here are slightly
changed as each 3-vertex has been stripped from the factor

√
2igsf

abc.
For the case involving quarks we strip the factor

√
2gsT

a
ij from the gluon-quark-quark vertex.

And the generic form of the tree amplitude for a process with two external quarks only and
(n-2)-gluons is given in [29]with a slight adjustment to our normalization as,

Atree(1, ...n) =
1

2

(√
2gs

)n−2 ∑

σ∈Sn−2

(T aσ(3)...T aσ(n))i1j2 Ã
tree(1q, 2q, σ(3)...σ(n)). (B.8)

This method of treating the color part diagrammatically generalizes even to loop-diagrams
[30].
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Appendix C

Packages and Tools

C.1 S@M/SpinorsExtras

In order to handle the computation of spinor objects that arise throughout the parts of this
manuscript both analytically and numerically, we used a combination of two packages that run
under Mathematica [31] on top of each other. The first package is S@M [32], which allows the
usage of complex spinor-algebra and implements a formalism that is essentially massless along with
a possibility to perform BCFW-shift making it very suitable for on-shell techniques. The second
package is SpinorsExtras [33] and it runs as an extension of S@M and builds on its functionalities.
It adds the possibility to use massive spinors along with the introduction of polarizations and an
update of the BCFW-shifts to apply on massive spinors.

The underlying mathematical structure behind these packages is exposed in two published
papers [11, 12]. I should point out that the conventions of this manuscript slightly differ from
the ones used to make these tools, so appropriate accommodations1 have been performed in order
to maintain consistency throughout the work. As for the installation one has to refer to the
documentation and follow the steps. To load S@M we start by indicating the path to where we
installed it and then use the Get[...] command.

In[72]:=

$SpinorsPath="C:\\Users\\Name\\Documents\\Spinors-1.0"
Get[ToFileName[{$SpinorsPath},"Spinors.m"]]

Out[72]=

C:\Users\Wise\Documents\Spinors-1.0

------- SPINORS @ MATHEMATICA (S@M) -------

Version: S@M 1.0 (3-APR-2007)

Authors:

1There is a swap between dotted and undotted objects, basically what they refer to as dotted is undotted in our
side, which if we think about it could only happen if we swap between right-handedness and left-handedness.
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Daniel Maitre (SLAC),
Pierpaolo Mastrolia (University of Zurich)

A list of all functions provided by the package
is stored in the variable

$SpinorsFunctions

If you get this output, it means that you successfully loaded the package.
SpinorsExtras requires S@M to be already loaded in order to function as it uses most of its

functionalities and adapts them for the massive case along with some new additions that we will
expose in the latter subsections. Once installed and S@M loaded we only have to evaluate,

In[73]:=

Needs["SpinorsExtras‘"]

------- SpinorsExtras -------

Version: 1.0.2 (2014.06.18)
Author: Jakub Kuczmarski (University of Warsaw)
Documentation: Documentation Center Online version

To have this output confirming that we indeed have access to the assets of the package.
Among the plethora of functionalities offered to us we choose to list down the most useful

set from both packages to conduct most of the calculations. We separate the functionalities into
those that are specific to each package keeping in mind that the architecture of the computational
framework is pyramidal, meaning that higher-level packages (SpinorsExtras) build on lower-level
ones (S@M) so that the access to functionalities is uni-directional meaning that only higher-level
packages have access to lower-level functions and never the opposite.

C.1.1 Mathematica/S@M

The first three important commands are,

In[74]:= DeclareSpinor[a,b,c]

In[75]:= DeclareLVector[p,q,s]

In[76]:= SmBA[b,a]

DeclareSpinor grants the status of complex-spinors to the symbols we pass as arguments
to it. Spinor objects are the smallest containers of information we can declare and are set to
obey Weyl equation along with basic spinor properties making them eligible to be used in the
construction of spinor chains and slashed matrices.
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DeclareLVector grants the status of a Lorentz vector to the symbols we pass as arguments to
it. Lorentz vectors are the biggest containers of information we can declare but they are massless
and the meaningful information is reducible to spinor objects. Thus if we already declared a spinor
object then all what can be construct using a spinor namely, the Lorentz Vector and Slashed Matrix
is already understood using the same spinor symbol.

SmBA returns a slashed matrix object made of two different spinors (or the same one) passed
as arguments. It is useful to note that the B refers to the box-bracket and the A to the angled-
bracket.

The second set of commands is used in order to clarify how to interpret the symbol in the code
when ambiguity arises.

In[77]:= Sp[a]

Sp forces the program to treat the symbol as a spinor object. Integers are built-in spinor
objects and can be used without declaration.

In[78]:= Sm[a]

Sm forces the program to treat the symbol as a slashed matrix.
The Minkowski product and the norm of the Lorentz vectors are handled with the functions

MP and MP2 respectively.

In[79]:= MP[p,q]

In[80]:= MP2[p]

Now to the functionalities, we start by how to write various spinor products.

In[81]:= Spaa[a,b]

Out[81]= 〈〈〈a|b〉〉〉

The function Spaa can take two spinor-objects as an argument to return their anti-symmetric
angled product. In case we have more than two arguments, the ones in-between are interpreted as
slashed-matrices.

In[82]:= Spaa[a,c,d,b]

Out[82]= 〈〈〈a|c|d|b〉〉〉

The other types of products and spinor chains are given by its sister functions Spab, Spba and
Spbb, where the a and b denote the position of the angle and box brackets.

Kinematic invariants are introduced using,

In[83]:= s[i,j]

Out[83]= sij
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The conversion of a spinor product in term of Kinematic invariants and vice versa is imple-
mented simply by double-slashing2 your expression followed by either ExpandSToSpinors or
ConvertSpinorsToS.

When the expression contains a lot of spinor products and we want to have a compact form in
term of spinor chains we use,

In[84]:= SpClose[〈〈〈1|2〉〉〉 [2|3]]

Out[84]= 〈〈〈1|2|3]

when SpOpen does the inverse.
The Shouten identity is implemented following three algorithm of search-and-replace depending

on how many argument you supply it with,

In[85]:= Shouten[expression,i,j,k,l]

With four arguments it will search in expression for occurrences of the products 〈ij〉 〈kl〉 or
[ij] [kl] and replace it using the other terms that appear in the identity.

In[86]:= Shouten[expression,i,j,k]

With just three it will search in expression for occurrences of the products 〈ij〉 or [ij] and tries
to use the identity to combine it with the spinor k.

In[87]:= Shouten[expression,l]

This will search for structure like this 〈lu〉
〈ls〉〈lt〉 and [lu]

[ls][lt]
and uses Shouten to split them into

partial fractions.
There are two variants to this function that act selectively on either angled-brackets or box-

brackets which are AShouten and BShouten.
Our last and most important function is ShiftBA which allows us to perform a shift on a given

expression with an induced complex parameter z.

In[88]:= ShiftBA[b,a,z][expression]

Another mention is that the package puts at our disposal the γ −matrices and the projection
operators via the the predefined variables Gamma0 , Gamma1 , Gamma2 , Gamma3 , Pro-
jPlus and ProjMinus which are also treated as slashed-objects and can appear within spinor
chains.

The numerical aspect relies on many functions that we will not mention here except one that
generates massless momenta that add up to zero which is very convenient since we chose to take
all momenta to be incoming.

In[89]:= GenMomenta[{1,2,3,4}]

Out[89]= Momenta for the spinors 1, 2, 3, 4 generated.
2expression // function
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C.1.2 Mathematica/S@M/SpinorsExtras

The introduction of the massive spinors using the LCD method brings with it a multiplicity in the
semantics of a Lorentz vector beyond what we had previously. We now have a reference and an
associate vector along with the actual massive vector.

In[90]:= SpRef[k]

Out[90]= qk

In[91]:= SpAssoc[p,q]

SpRef labels the reference spinor for the Lorentz vector given as an argument and SpAssoc
labels the associate vector of the massive momentum p undergoing LCD with reference vector q.

In[92]:= SpM[p,±±±1]

SpM labels a u- or v-spinor for massive momentum p where the sign given as a second argument
decides about its mass sign. Keeping in mind that in order to use the previous functions, one needs
to declare the vectors beforehand using DeclareLVector .

The second new object introduced in this package allows us to handle polarizations in a very
clean manner while the implementation goes as far as to be of use even for massive polarization
vectors we’ll only bound ourselves with massless ones having two possible signs.

In[93]:= PolVec[k,±±±1]

As to the functionalities, we start by LightConeDecompose which perform LCD on the
expression we feed it as a first argument, more control over the procedure is possible through a
second argument where we tell it what to decompose exactly.

In[94]:= LightConeDecompose[expr]

Polarization can be expanded in term of their reference spinors using ExpandPolVec that we
append to an expression containing polarization vectors by double-slashing it.

The shift suitable for massive spinors as described in [16] are implemented in the new updated
function ShiftBA that we use as before we just feed it two massive vectors instead of massless
spinors.

In[95]:= ShiftBA[p1,p2,z][expression]

To deal with expressions growing in the length due to reference spinors arising from both
polarization and massive spinors the function RefSimplify helps us find the most compact form
of the expression we feed it and can exhibit more complex behaviors suiting our needs since as
most functions in this package, it has been coded in a flexible manner. It accepts more than one
possible set of arguments and produces different behaviors as broad or as precise as we want it.

In[96]:= RefSimplify[expr]

We close this listing of functionalities with a replacement utility.

In[97]:= ReplaceLVector[expr,x→→→y]

In[98]:= ReplaceSpinor[expr,x→→→y]
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C.2 Axo/JaxoDraw and Dia

In this section we’ll briefly introduce the two technologies we used in creating the figures and
diagrams present in this document. I will start by speaking about the program that is external to
LATEX and then turn to the one which actually has a TEX package.

Dia [34] is a multi-purpose diagramming tool with an easy to use interface. It comes with many
packages for various types of diagrams and graphical components. This program was used in order
to produce cut-diagrams using its fairly intuitive GUI3 and then export the result in the .eps format
to include it using \includegraphics. Unfortunately this tool can’t produce Feynman diagrams
and to that end we employed JaxoDraw [35] in conjunction with the TEX package AxoDraw [36].
The workflow is trickier, and for everything to work there are some important things we need to
put in place.

JaxoDraw is a Java program that is platform independent and a tool for drawing Feynman
diagram in click-and-drag fashion. The generated graphs can be exported in many formats while
what interests us is the LATEX format. After drawing your diagram and inserting equations you
export into LATEX and open the exported file to copy the code that corresponds to your diagram
which would look like something like this after we change the \begin{center}...\end{center}
into \begin{equation}...\end{equation},

\ begin{ equat ion }
\ f c o l o rbox{white }{white }{
\ begin{ p i c tu r e }(162 ,178) (15 ,−63)
\SetWidth {1 .0}
\ SetColor {Black}
\Gluon (96 , 82 ) (96 , 18 ){7 . 5}{5}
\Gluon (96 ,18)(48 , −30){7.5}{5}
\Gluon (96 ,18)(144 , −30){7.5}{5}
\Text (32 ,−46)[ lb ] {\ Black{$\nu , b$}}
\Text (160 ,−46)[ lb ] {\ Black{$\rho , c$ }}
\Text ( 96 , 9 8 ) [ lb ] {\ Black{$\mu, a$}}
\Text ( 160 , 1 8 ) [ lb ] {\ Black{$\begin { a l i gn eda t}{1}= & gf^{abc}
[ g^{\mu\nu}\ l e f t (k−p\ r i gh t )^{\ rho }\\
+ & g^{\nu\ rho}\ l e f t (p−q\ r i gh t )^{\mu}\\
+ & g^{\rho\mu}\ l e f t (q−k\ r i gh t )^{\nu } ]
\end{ a l i gn eda t } $}}
\end{ p i c tu r e }
}
\end{ equat ion }

and we insert the previous code where we want our diagram to be.
The requirements for the compilation are to have the following preambles along with the axo-

draw4j.sty file in your main folder,

\ usepackage {axodraw4j}
\usepackage { p s t r i c k s }
\usepackage { co l o r }

and compile the file using latex>dvips>ps2pdf instead of pdflatex because the package isn’t
compatible with it.

3Graphical User Interface
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l a t e x f i l ename . tex
dvips f i l ename . dvi
ps2pdf f i l ename . ps

If one has bibliography the usual workflow would go like,

pd f l a t ex f i l ename . tex
b ibtex f i l ename . aux
pd f l a t ex f i l ename . tex
pd f l a t ex f i l ename . tex

using axodraw requires that you change pdflatex to latex>... as shown earlier.

C.3 CellToTex/mmaCells

This last section of the Appendix is devoted to typesetting Mathematica code in a very faithful way.
CellToTex [37] is a Mathematica package that provides us with a set of functions converting the cells
appearing in the Mathematica notebooks to a specific TEX code compatible with the mmaCells [38]
package. To use this combination one has to include in the preamble \usepackage{mmacells}
and put the mmacells.sty file4 in the main folder.

Once the CellToTex package installed, we load it using Needs command and from there
we have two ways of converting cells. The first converts one cell at a time using the following
instructions,

Needs@"CellsToTeX ‘"
t e s tC e l l = Ce l l [ BoxData [ MakeBoxes [ . . . put your c e l l code here . . . ] ] , " Input " ] ;
CellToTeX [ t e s tC e l l ]

The second options converts a whole notebook and to do that we first create a notebook object
corresponding to the file we want to convert and then pass it through a small algorithm5 that
convert each input and output,

nbObj = NotebookOpen [ " . . . path to the notebook . nb . . . " ]
SetOptions [ CellToTeX , "CurrentCel l Index " −> Automatic ] ;
ExportStr ing [ NotebookGet [ nbObj ] / . c e l l : Ce l l [_, __] :> Ce l l [ CellToTeX [ c e l l ] ,

" F ina l " ] , "TeX" ," FullDocument" −> False ,
"Convers ionRules" −> {"Fina l " −> Iden t i t y } ]

As an illustration of usage we give the following,

In[99]:= testCell=Cell[BoxData[MakeBoxes[
Subscript[x,1]==(-b±±±Sqrt[b^2-4 a c])/(2 a)]],
"Input"];
testCell//CellPrint
CellToTeX[testCell]

In[100]:= x1==
-b±±±

√
b2-4 a c
2 a

Out[100]= \begin{mmaCell}{Input}
\mmaSub{x}{1}==\mmaFrac{-b\(\pmb{\pm}\)\mmaSqrt
{\mmaSup{b}{2}-4a c}}{2 a}\end{mmaCell}

4Obtainable through a light search in internet using the keyword, mmacells.
5https://tex.stackexchange.com/questions/84748/fanciest-way-to-include-mathematica-code-in-latex
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