
Ministry of Higher Education and Scientific Research
University of Saad Dahleb - BLIDA 1

Faculty of Sciences
Department of Informatics

Performance Evaluation of Networks On-chip Topologies

Report submitted for the fulfillment of the Master degree

Domain: MI

Affiliation: Informatics

Specialisation: Computer systems and networks

Adel-Salah Ould-Khaoua and Hichem Terranti

Supervisor: Prof. Mohamed Ould-Khaoua

Academic year: 2019/2020

Acknowledgment

We would like to greatly thank our supervisor: Prof. Mohamed Ould-Khaoua, for his invaluable

advice and guidance during the course of this project.

Our sincere thanks also go to the members of the jury for their interest in our project by agreeing

to examine our work and enrich it with their suggestions and recommendations.

Our gratitude is due to our instructors who taught us during our License and Master degrees.

Finally, we would like to thank everyone who participated either directly or indirectly in the

achievement of this work.

Abstract

The main objective of this project is to evaluate the performance of some well-known topologies

that have been proposed for Networks-on-Chip including the mesh and torus. Whereas existing

studies have focused on the graph-theoretical merits of such topologies, our study examines the

performance of networks-on-chip taking into account the constraints imposed by

implementation technology. The most relevant constraint for networks-on-chip is the wiring

density of the chip. To achieve our goal, we have developed a simulation model using the

discrete-event simulation technique. Extensive simulation experiments have been performed

and the collected results indicate that while the bidirectional torus has superior performance

when technological constraints are ignored due to its richer connectivity, its performance

degrades considerably compared to the mesh once technological constraints are considered. Our

results also indicate that the 2D topologies are more suitable for networks-on-chip than their 3D

counterparts as they are a better fit for practical implementations.

Résumé

L'objectif principal de ce projet est d'évaluer les performances de certaines topologies bien

connues pour les réseaux sur puce, y compris le mesh et le torus alors que les topologies existants

se sont concentrés sur les propriétés théoriques des graphes de telles topologies, notre étude

examine les performance des réseaux sur puce en tenant compte des contraintes imposées par

la technologie de mise en œuvre. La contrainte la plus importante pour les réseaux sur puce est

la densité de câblage de la puce. Pour atteindre notre objectif, nous avons développé un modèle

de simulation utilisant la technique de simulation par événements discrets. De nombreuses

expériences de simulation ont été réalisées et les résultats collectés ont indiqué que si le torus

bidirectionnel a des performances supérieures lorsque les contraintes technologiques sont

ignorées, ses performances se dégradent considérablement par rapport au mesh une fois les

contraintes technologiques incluses. Les résultats indiquent également que les topologies 2D

sont bien mieux adaptées aux réseaux sur puce que leurs homologues 3D car elles conviennent

mieux aux implémentations pratiques.

 ملخص

و meshالهدف الرئيسي من هذا المشروع هو تقييم أداء بعض الطوبولوجيا المعروفة للشبكات على الشريحة بما في ذلك

torus ،تفحص دراستنا أداء في حين ركزت الهياكل الحالية على مزايا الخصائص النظرية للرسم البياني لهذه الطوبولوجيا

الشريحة على كثافة الشبكات للرقاقة هي بالنسبة الصلة ذات القيود أكثر التنفيذ. تكنولوجيا تفرضها التي القيود مع مراعاة

الأسلاك الخاصة بها. لتحقيق هدفنا ، قمنا بتطوير نموذج محاكاة باستخدام تقنية محاكاة الحدث المنفصل. تم إجراء تجارب

يتمتع بأداء متفوق عند bidirectional torusجمعها إلى أنه في حين أن محاكاة واسعة النطاق ، وقد أشارت النتائج التي تم

بمجرد إدراج القيود التكنولوجية. تشير النتائج meshتجاهل القيود التكنولوجية ، فإن أداءه يتدهور إلى حد كبير مقارنة مع

لأنها مناسبة 3D من نظيراتها ثلاثية الأبعاد ةللشبكات على الشريحمناسبة بشكل أفضل D2أيضًا إلى أن الهياكل ثنائية الأبعاد

 بشكل أفضل للتطبيقات العملية.

Contents

Acknowledgment 2

Abstract 3

Contents 6

List of abbreviations 9

List of symbols 10

List of figures 11

List of tables 13

Introduction 14

Chapter 1: Background on networks-on-chip 16

1.1 Network-on-Chip topologies 16

1.1.1 Direct and indirect topologies 17

1.1.2 Regular and irregular topologies 18

1.1.3 N-dimensional mesh 18

1.1.4 N-dimensional torus 20

1.1.5 Trees 22

1.1.6 Butterfly 23

1.2 Topological properties 23

1.2.1 Node degree 23

1.2.2 Diameter 24

1.2.3 Average distance 24

1.2.4 Bisection width 24

1.3 Switching 24

1.4 Routing 26

1.5 Conclusions 28

Chapter 2: Related research work and simulation modeling 29

2.1 Related research work 29

 2.1.1 2D Mesh vs 2D Torus 29

 2.1.2 2D Mesh vs Fat-tree vs Butterfly fat-tree 29

 2.1.3 2D Mesh vs Ring vs Spidergon 30

 2.1.4 2D Mesh vs Square-octagon 30

 2.1.5 2D mesh vs Honeycomb 31

 2.1.6 Summary 33

 2.2 Simulation modeling 35

 2.2.1 Justification of the method of study 35

 2.2.2 Types of simulation models 35

 2.2.3 System model 37

 2.2.4 Conclusions 39

Chapter 3: Implementation of the simulation model 40

3.1 Data structures 40

3.2 Simulation events 40

3.2.1 Initialisation 41

3.2.2 Main 42

3.2.3 Arrival 42

3.2.4 DecideRoute 43

3.2.5 StartTransmit 44

3.2.6 EndTransmit 45

3.3 Model validation 51

3.4 Conclusions 51

Chapter 4: Performance comparison of network-on-chip topologies 52

4.1 Assumptions 52

4.2 Simulation parameters 53

4.2.1 Traffic patterns 53

4.2.2 Message arrival rate 53

4.2.3 Network size 53

4.3 Performance metrics 53

4.3.1 Mean response time 53

4.3.2 Mean throughput 54

4.4 Batch means method for result collection 54

4.5 Confidence interval 54

4.6 Results and Discussions 55

4.6.1 Mesh vs unidirectional torus vs bidirectional torus: Unconstrained

implementation

4.6.2 Mesh vs unidirectional torus vs bidirectional torus: Constrained

implementation

4.6.3 2D vs 3D topologies: Unconstrained implementation 69

4.6.4 2D vs 3D topologies: Constrained implementation 76

4.7 Conclusions 83

Conclusions and future directions 84

References 86

55

65

List of abbreviations

BFT Butterfly-Fat-Tree

FT Fat-Tree

NoC Network-on-Chip

PE Processing Element

R Router

SoC Systems-On-Chip

SONoC Square Octagon Network-on-Chip

List of symbols

𝐵𝑚𝑒𝑠ℎ Channel bandwidth of the mesh topology

𝐵𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 Channel bandwidth of the unidirectional torus topology

𝐵𝑏𝑖𝑡𝑜𝑟𝑢𝑠 Channel bandwidth of the bidirectional torus topology

D Number of hops between the sender and destination nodes

k Number of nodes per dimension

L Message length

N Total number of nodes in the network

n Number of dimensions of a topology

p Probability of sending a message to the hotspot node

R Response time

�̅� Response time of one batch

s Standard deviation

𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 Time of arrival of the message in the sender node

𝑡𝑛𝑜𝑤 Current time in the simulation

𝑇ℎ Throughput

𝑊2𝐷 Bisection width of the 2d topologies

𝑊3𝐷 Bisection width of the 3d topologies

𝑊𝑚𝑒𝑠ℎ Bisection width of the mesh topology

𝑊𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 Bisection width of the unidirectional torus topology

𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 Bisection width of the bidirectional torus topology

�̅� Average of a sample

λ Arrival rate

List of figures

Figure 1.1 An example of a generic node architecture for NoCs. 16

Figure 1.2 An example of: (a) Direct and (b) Indirect topology. 17

Figure 1.3 An example of: (a) Regular and (b) Irregular topology. 18

Figure 1.4 An example of: (a) 1D Mesh, (b) 2D Mesh and (c) 3D Mesh. 19

Figure 1.5 An example of: (a) 1DTorus, (b) 2D Torus and (c) 3D Torus. 21

Figure 1.6 An example of folded torus. 21

Figure 1.7 An example of a tree topology. 22

Figure 1.8 An example of Fat tree topology. 22

Figure 1.9 An example of a Butterfly topology. 23

Figure 2.1 An example of: (a) Spidergon and (b) Ring Topologies. 30

Figure 2.2 An example of Square-Octagon Topology. 31

Figure 2.3 An example of Honeycomb mesh. 32

Figure 2.4 A node structure in the 2D mesh. 38

Figure 2.5 An example of a message route from source to destination using deterministic 39

 routing in 2D mesh.

Figure 4.1 Performance results for the 2D mesh vs unidirectional vs bidirectional torus

under unconstrained uniform traffic for 8x8 nodes (a) Response time, (b) Throughput.

Figure 4.2 Performance results for the 2D mesh vs unidirectional vs bidirectional torus

under unconstrained uniform traffic for 32x32 nodes (a) Response time, (b) Throughput.

Figure 4.3 Performance results for the 3D mesh vs unidirectional vs bidirectional torus

under unconstrained uniform traffic for 4x4x4 nodes (a) Response time, (b) Throughput.

Figure 4.4 Performance results for the 3D mesh vs unidirectional vs bidirectional torus

under unconstrained uniform traffic for 10x10x10 nodes (a) Response time, (b) Throughput.

Figure 4.5 Performance results for the 2D mesh vs unidirectional vs bidirectional torus

under unconstrained hotspot traffic for 8x8 nodes (a) Response time, (b) Throughput.

Figure 4.6 Performance results for the 2D mesh vs unidirectional vs bidirectional torus

under unconstrained hotspot traffic for 32x32 nodes (a) Response time, (b) Throughput.

56

57

58

59

61

62

81

82

Figure 4.7 Performance results for the 3D mesh vs unidirectional vs bidirectional torus

under unconstrained hotspot traffic for 4x4x4 nodes (a) Response time, (b) Throughput.

Figure 4.8 Performance results for the 3D mesh vs unidirectional vs bidirectional torus

under unconstrained hotspot traffic for 10x10x10 nodes (a) Response time, (b) Throughput.

Figure 4.9 Performance results for the 2D mesh vs unidirectional vs bidirectional torus

under constrained uniform traffic for 8x8 nodes (a) Response time, (b) Throughput.

Figure 4.10 Performance results for the 2D mesh vs unidirectional vs bidirectional torus

under constrained uniform traffic for 32x32 nodes (a) Response time, (b) Throughput.

Figure 4.11 Performance results for the 2D vs 3D mesh for network sizes 8x8 vs 4x4x4

nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.12 Performance results for the 2D vs 3D unidirectional torus for network sizes

8x8 vs 4x4x4 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.13 Performance results for the 2D vs 3D bidirectional torus for network sizes

8x8 vs 4x4x4 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.14 Performance results for the 2D vs 3D mesh for network sizes 32x32 vs

10x10x10 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.15 Performance results for the 2D vs 3D uni-torus for network sizes 32x32 vs

10x10x10 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput .

Figure 4.16 Performance results for the 2D vs 3D bi-torus for network sizes 32x32 vs

10x10x10 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.17 Performance results for the 2D vs 3D mesh for network sizes 8x8 vs 4x4x4

nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.18 Performance results for the 2D vs 3D unidirectional torus for network sizes

8x8 vs 4x4x4 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.19 Performance results for the 2D vs 3D bidirectional torus for network sizes

8x8 vs 4x4x4 nodes under constrained uniform traffic. (a) Response time, (b) Throughput .

Figure 4.20 Performance results for the 2D vs 3D mesh for network sizes 32x32 vs

10x10x10 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.21 Performance results for the 2D vs 3D unidirectional torus for network sizes

32x32 vs 10x10x10 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

Figure 4.22 Performance results for the 2D vs 3D bidirectional torus for network sizes

32x32 vs 10x10x10 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

63

64

67

68

70

71

72

73

74

75

77

78

79

80

List of tables

Table 1.1 Comparison of the topological properties of the mesh, unidirectional 24

 and bidirectional torus.

Table 1.2 Comparison of the switching techniques. 26

Table 2.1 Summary of related work. 32

Table 2.2 Comparison between models. 37

Table 4.1 Results for the confidence interval for the 8x8 2D mesh. 55

Table 4.2 The ratio of the channel width for 3D topologies to that of 2D topologies. 76

14

Introduction

Much research and development have been aimed at increasing processing power by

incorporating concurrent computations such as parallel processing. This has largely been aided

by Moore’s law which has been the driving force behind improvements in integrated chip

technology for the past five decades. Although the exponential trend is expected to slow down

considerably within the next few years, it is still currently in force [1]. VLSI technology has

matured to such a point that it has enabled a paradigm shift that allowed the introduction of

entire systems consisting of a large number of processing elements of different computation

capabilities (CPUs, GPUs, DSPs, etc.) to be integrated on a single chip. These are often referred

to as Systems-on-Chip (SoCs) [1].

SoCs have been widely recognized as a possible and cost-effective means for achieving

performance beyond that achievable from a single processor [1]. In such systems, concurrent

tasks inherent in applications are distributed over a group of processing elements to run

simultaneously. These processing elements are connected by an interconnection network, and

exchange information in their activities to solve a common problem. In order to permit

processing elements to focus on computation and allow the overlap of computation and

communication, each processing element is associated with a routing element that is responsible

for handling message communication. The assembly of the processing and routing elements is

called a node [2].

The performance of SoCs can be affected by considerations of different levels, ranging from the

way application processes are distributed among the various processing elements, to the

efficiency of the underlying interconnection network. The latter has been the focus of much

recent research activities as any interaction between the processing elements highly depends on

the efficiency of the underlying network, often referred to as a Network-on-Chip (NoC).

The performance of NoCs is usually measured in terms of response time and throughput. The first

metric represents the speed of the network, and is the time taken for a message to cross the

network. Throughput, on the other hand, is the number of delivered messages in the network

per unit of time, and represents the load handling capacity of the network. Ideally, an NoC should

provide low response times and high throughput. However, there are many factors that can

affect NoC performance of which the most important are, topology, switching, routing and

implementation constraints [2].

The manner in which nodes are connected via communication links in an NoC is referred to as a

topology. Widely used topologies for NoCs include the mesh, torus and fat-tree topologies [1].

The properties of NoC topologies have been extensively researched over the past few decades.

Most of these studies have focused on the graph-theoretical properties of the NoC topologies

and have ignored the constraint imposed by implementation technology. For NoCs where the

15

whole system is implemented on a single chip, the most relevant constraint is the wiring density

used by a given topology. Wiring density describes the number of wires required by the topology.

This wiring density is usually fixed and limited by the implementation technology. Dally [3] has

introduced the bisection width as a means for quantifying the wiring density requirement of a

given topology when laid out on a 2D VLSI chip. The bisection width is the number of wires that

cross the center of the chip. Assuming a fixed wiring density, a topology with more links crossing

the center ends up with less wires per link, and as a consequence, lower channel width

(bandwidth) for each link.

The purpose of our project is to revisit the relative performance merit of well-known topologies

for NoCs including the mesh and the torus when implementation constraints are taken into

account. In order to achieve this, a software simulator has been developed for the well-known

topologies notably the mesh and the torus using the discrete–event simulation technique. The

simulation models are then used to carry out an extensive comparison among such topologies

for both unconstrained implementations as well as constrained implementations.

Outline of the report
Chapter 1 provides a technical background on NoCs and the important factors that affect their

performance, including topology, switching and routing.

Chapter 2 provides an overview on the existing the related research work which has compared

the performance of various NoC topologies along with a critical summary of these studies and

also gives justification for adopting the simulation approach in order to conduct our study, then

presents the system model that has been used for developing the simulator.

Chapter 3 describes the simulation model (in pseudocode) using the discrete-event simulation

technique.

Chapter 4 uses the simulation model in order to conduct extensive comparison between the well-

known NoC topologies under various operating conditions and discusses the obtained

performance results.

Chapter 1: Background on networks-on-chip

16

Chapter 1: Background on networks-on-chip

The performance of NoCs can be affected by several factors including topology, switching and

routing [2]. This chapter provides an overview of these factors. Our aim is to provide the

necessary technical background required for understanding the subsequent chapters in this

project report.

1.1 Network-on-Chip topologies
A topology of an NoC is typically modeled as a graph G=(V, E), where V, the set of vertices,

represent the nodes, which contain the processing and routing elements, and E, the set of edges,

represent the communication links interconnecting the nodes.

The topology depicts how nodes are connected with each other via communication links. A

topology can be "logical" and/or "physical". The logical topology illustrates how data flows among

the nodes within the network whereas the physical topology indicates the placement of the

various nodes on the chip area.

Existing topologies for NoCs can be classified into direct or indirect, and can also be classified as

regular and irregular [1]. The choice of a given topology for an SoC often depends on the

application’s communication requirements.

A typical node is composed of a processing element that can include CPUs, GPUs, DSPs, etc., local

memory, and a router with input and output links. A generic node architecture is depicted in

Figure 1.1, and will be used in the subsequent sections in this work.

Figure 1.1 An example of a generic node architecture for NoCs.

Chapter 1: Background on networks-on-chip

17

1.1.1 Direct and indirect topologies
In direct topologies, each node is directly connected to a subset of other nodes in the network.

Nodes in a direct topology contain both processing and routing elements. This class of topologies

is known for its high scalability [2]. Examples of well-known direct topologies include meshes,

tori, spidergon and trees [3].

On the other hand, nodes in indirect topologies separate the processing elements and routing

elements (which are referred to as switches [4]). For processing elements to communicate with

each other they must pass through the switches. Each processing element has a network adapter

which allows it to connect to a switch. A switch has a set of ports, each having an input and output

link. Ports are used to connect with processing elements or other switches. The interconnections

of these switches define the various topologies. Indirect topologies are useful when specific

patterns are required for specific applications, for example image/video processing. Examples of

well-known indirect topologies include butterflies, deBruin, and Clos networks [2]. Figure 1.2(a)

and Figure 1.2(b) depict an example of a direct and indirect topology respectively.

Figure 1.2 An example of: (a) Direct and (b) Indirect topology [1].

(a)

(b)

Chapter 1: Background on networks-on-chip

18

1.1.2 Regular and irregular topologies

Each node in regular NoC topologies has a comparable number of neighboring nodes. They are

simple to implement since they are not designed for any specific application. This also comes

with a drawback which is that these topologies are not optimized for specific applications [5]. On

the other hand, nodes in irregular topologies have highly varying number of neighbors. This can

allow them to be dedicated for specific applications, but are more difficult to implement in

practice.

Figure 1.3 An example of: (a) Regular and (b) Irregular topology [1].

Figure 1.3(a) and Figure 1.3(b) depict an example of a regular and irregular topology respectively.

What follows is a brief description of well-known topologies used in NoCs.

1.1.3 N-dimensional mesh
The n-dimensional mesh is one of the most widely used topologies. It is strictly orthogonal [6]; a

topology is orthogonal if and only if nodes can be arranged in an orthogonal n-dimensional space,

and every link can be arranged in such a way that it produces a displacement in a single

dimension. Strictly orthogonal means that every node has at least one link per dimension. The

advantage of holding this property is the ease of implementing routing algorithms which makes

this topology one of the easiest to implement [6]. Below are the figures of the 1D mesh, 2D mesh

and 3D mesh. However, the mesh does suffer from some drawbacks including its large network

diameter (i.e. the longest distance between two nodes) and the accumulation of traffic towards

the center because the mesh topology is asymmetric. Figure 1.4(a), 1.4(b) and 1.4(c) depict the

1D, 2D and 3D mesh respectively.

Chapter 1: Background on networks-on-chip

19

Figure 1.4 An example of: (a) 1D Mesh, (b) 2D Mesh and (c) 3D Mesh [1].

(a)

(b)

(c)

Chapter 1: Background on networks-on-chip

20

1.1.4 N-dimensional torus

The torus is another strictly orthogonal topology that is similar to the mesh. However, the ends

of the rows and columns are connected with each other. The links can be unidirectional or

bidirectional. This is a workaround for one of the shortcomings of the mesh which is its large

diameter and its unbalanced traffic. Thus, it provides advantages over the mesh as it has a lower

diameter that reduces latency and makes the topology symmetric which reduces traffic pressure

in the center. Such benefits however come at the cost of increased wiring density and the need

for more complex routing algorithms due to its long wraparound links [7]. Figures 1.5(a), 1.5(b)

and 1.5(c) show the 1D, 2D and 3D torus.

(a)

(b)

Chapter 1: Background on networks-on-chip

21

Figure 1.5 An example of: (a) 1DTorus, (b) 2D Torus and (c) 3D Torus [1].

Folded torus: This is a proposed variation of the torus to remedy the problem of its long wrap-

around links. In this variation, the links are folded in order to create the same physical length for

all links between nodes and this is very useful for practical implementations. However, this comes

at the expense of requiring a larger surface area on the chip and an increased amount of links

crossing the center of the chip [8]. Figure 1.6 shows the folded torus.

Figure 1.6 An example of folded torus [1].

(c)

Chapter 1: Background on networks-on-chip

22

1.1.5 Trees
Many topologies are structured around trees. A tree [9] is composed of a root node connected to

a disjoint set of descendants. A node without descendants is called a leaf node. An interesting

property of trees is that every node except the root has only one parent, this means that trees

do not allow for cycles, making it easier to avoid detrimental issues such as deadlocks. However,

one of the main drawbacks of trees is that the root node and its closest descendants can form a

bottleneck as most of the traffic tends to accumulate there. Figure 1.7 depicts an example of a

tree.

Figure 1.7 An example of a tree topology [1].

Fat-tree: is one of the common tree topologies adopted in NoC architectures [10]. It attempts to

work around the core issue of bottleneck near the root by using gradually higher bandwidth as

the links get closer to the root node, with the highest bandwidth links starting directly from the

root node. As seen in the figure below, the links represented with a larger number of arrows

represent higher bandwidth. Figure 1.8 illustrates an example of the fat-tree.

Figure 1.8 An example of a fat tree topology [1].

Chapter 1: Background on networks-on-chip

23

1.1.6 Butterfly
The butterfly [11] is an example of an indirect topology. It has a simple recursive structure that

takes full advantage of its high number of routes and reduced network latency overhead which

produces overall good performance. The links can be either uni or bidirectional and generally

consist of input and output ports and router stages that contain routers. Each packet that arrives

to the input of a router is directed (routed) to the proper output. Figure 1.9 shows an example of

the butterfly.

Figure 1.9 An example of a butterfly with 4 input ports, 4 output ports and 2 router stages each
contains 2 routers [1].

1.2 Topological properties
In this work, we will focus on direct and regular topologies because they have been widely used

for NoCs compared to the other classes of topologies. Direct regular topologies have various

important characteristics such as degree, diameter, average distance and bisection width. Such

characteristics are often used to analyse the difference in performance among competing

topologies in comparative evaluation studies [12].

1.2.1 Node degree
It is the maximum number of neighboring nodes that are connected to a given node. A network

is only called regular if all nodes have the same fixed degree; otherwise, it is irregular.

The node degree can be constant or varies as the network scales up. Higher node degree reduces

the average distance whilst a smaller node degree reduces hardware implementation costs. This

creates a constraint on node degree when it comes to implementing NoC topologies [12, 13].

Chapter 1: Background on networks-on-chip

24

1.2.2 Diameter
The diameter of a network is the maximum shortest path between any two nodes [12, 13]. If

there is no direct connection between two nodes, a message has to travel through intermediate

nodes which introduces hop delay. Since the message delay is proportional to the number of

hops, the length of the maximum shortest path becomes an important factor in determining

network performance. A small network diameter can provide predictable routing paths and

traffic flow and thus low latency.

1.2.3 Average distance
The average distance provides an indication of the average number of hops that exist between

any given pair of nodes in the topology. This also gives an indication on the delay that a packet

experiences when the traffic is uniformly distributed (i.e. a message is equally likely to be

destined to any other node in the network).

1.2.4 Bisection width

Bisection width is an important characteristic that reflects the number of links that cross the

center of the topology when it is laid out on a plane. A large bisection width is preferable, because

it provides more paths between the two halves of the network and thus improves overall

performance. Table 1.1 depicts a comparison of the mesh, unidirectional and bidirectional torus

based on several graph-theoretic properties.

Table 1.1 Comparison of the topological properties of the mesh, unidirectional and bidirectional

torus with 𝑁 = 𝑘𝑛 nodes where k is the number of nodes per dimensions and n is the number of

dimensions (please see [2] for more details).

1.3 Switching
Switching determines how packets are transferred between different routing elements and how

they are buffered. Data can be divided into several categories depending on size [1]:

• Messages: Group of packets that makes the entire data.

• Packets: Group of sequential flits with the same destination.

• Flow Control Units (flits): unit of synchronization between routers.

• Phits (physical units): unit of data transferred through the physical link in a given cycle.

Network Degree Diameter Average distance Bisection width

n-dimensional mesh 2n n(k-1) 𝑛

3
(𝑘 −

1

𝑘
) 2√𝑁𝑘

𝑛
2

−1

n-dimensional
bidirectional torus

2n
𝑛

𝑘 − 1

2
 𝑛

𝑘 − 1

4

4𝑁

𝑘

n-dimensional
unidirectional torus

n 𝑛(𝑘 − 1)
𝑛

𝑘 − 1

2

2𝑁

𝑘

Chapter 1: Background on networks-on-chip

25

Listed below are brief descriptions of the more common switching techniques.

Circuit switching:
In circuit switching [14], a physical link is established between source and destination prior to

data transmission. The routing header is injected into the network. The header contains the

destination address and is called the routing probe. The routing probe progresses through the

network to the destination reserving physical links as it is transmitted through the routers. Once

it arrives at the destination, the connection is fully established and an acknowledgement is sent

back to the source. The full bandwidth supported by the links is now available for data

transmission.

Circuit switching is most advantageous when messages are large in size and with large time
periods in between consecutive message arrivals at routers. However, a major downside of this
technique is that the entire physical path is blocked during transmission which can block other
messages.

Packet switching:
In packet switching, a message is split into packets. The first few bytes of a packet contain routing
and control information and is called the packet header. Each packet is individually routed from
the source to the destination. A packet is stored in a buffer in each intermediate node before
being transmitted to the next node. This is the reason this technique is also called Store-and-
Forward [15].

In contrast to circuit switching, this technique is at its most advantageous when messages are
short and frequent. Also contrary to circuit switching, links are fully utilized as multiple packets
belonging to different messages can be in the network simultaneously and no physical links are
blocked. However, the buffering and packet assembly/de-assembly can lead to overhead and a
reduction in overall throughput.

Virtual cut-through:
Packet switching assumes that a packet must be received and buffered at a node in its entirety
before any decisions can be made on where to forward it [16]. Given that the first few bytes of a
packet contain routing information, virtual cut-through allows a packet to be forwarded to the
next node whilst it has not even been fully received at the current node. The message can be
effectively pipelined to its destination in low and moderate traffic loads.

Assuming there is no blocking the latency experienced by the header at each node is the routing
latency through the node and propagation delay along the physical channels. If the header is
blocked on a busy output channel, the entire message is buffered in that node. Under high
network loads, virtual cut-through behaves increasingly similar to packet switching.

Chapter 1: Background on networks-on-chip

26

Wormhole:
The need to buffer entire packets can make it expensive and difficult to create fast and small
routing elements. Similar to virtual cut-through, in wormhole switching [17] messages are also
pipelined across the network. However, the major difference compared to the above-mentioned
techniques is the largely reduced buffer size requirement at the nodes. A packet is broken into
flits. The flit is the unit of message flow control, and input and output buffers at a node are
typically large enough to store a few flits. The message is pipelined through the network at the
flit level whilst the message is typically too large to store in a node.

At any given time, a message can be occupying several different nodes at once. The primary
difference between this and virtual cut-through is that, in the former, the unit of message flow
control is a single flit and, as a consequence, smaller buffers can be used. Just a few flits need to
be buffered at a node. The major drawback of this technique is the fact that a single message can
be spread out across multiple nodes and thus occupying multiple buffers which may lead to
blocking and deadlock problems [2].

Table 1.2 Comparison of the switching techniques.

1.4 Routing
Routing algorithms determine the path followed by each message or packet between source and

destination [18]. Properties that are desirable from routing algorithms include:

• Connectivity: Ability for a packet to be sent from any source to any destination.

• Adaptivity: Ability to find alternative paths in case of faulty components or congestion.

• Guaranteed to be deadlock and livelock free: These issues can prove detrimental to a

network and thus routing algorithms must be guaranteed to be free of these.

Routing can be categorized into three classes: Deterministic, adaptive and stochastic [6, 20, 21].

Switching Performance
properties

Design
complexity

Buffering Cost Adaptability
to traffic

Circuit
switching

Good under light
traffic

Low 1 flit Low None

Packet
switching

Good under
moderate/heavy
traffic

Low Packet High High

Virtual cut-
through

Good under
light/moderate/heavy
traffic

High Packet High High

Wormhole Good under light
traffic

Low A few flits Low Low

Chapter 1: Background on networks-on-chip

27

Deterministic routing:
This creates a path as a function of the destination address. This means that between any two

nodes the path created will always be the same regardless of the state of the network. The main

advantage of this type of routing is the simplicity of the design of routing elements which creates

a low latency when traffic is low. The drawback however, is lower flexibility in dealing with

changing traffic conditions.

Adaptive routing:
Adaptive routing takes into consideration the state of the network before making any routing

decisions. This leads to increased flexibility at the cost of more difficult implementation due to

higher routing complexity.

Stochastic routing:
Routing decisions are made without knowledge on the state of the network. Whilst at first this

might sound similar to deterministic routing which also does not take the state of the network

into account, the main difference is that deterministic routing always takes the same choices.

Stochastic routing may use a different manner (randomly or cyclic) to make its choices which is

independent of the state of the network.

More on routing:
Routing algorithms can also be minimal or non-minimal [21]. Minimal algorithms always choose

the shortest path between any two nodes. This leads to reduced latency however avoiding

deadlock can prove to be a challenge.

Non-minimal routing allows a message to move away from its destination. One of the reasons

for this could be to avoid creation of cycles and deadlocked configurations however the major

downside is the threat of livelock.

Another technique associated with routing calculation is the distinction between source routing

and distributed routing [1].

• Source: The source node calculates the proper path and stores it in the packet header, since

the header must be forwarded through the network to reach the destination. The

intermediate nodes do not make any routing judgments thus allowing for simpler routing

elements.

• Distributed: The packet header only contains the destination address which makes the

routing path determined by each node on its way to the destination. Distributed routing can

be adaptive to network changes.

Deadlock and livelock [2] are fundamental problems that can appear in networks and

consequently routing algorithms must be able to effectively deal with them.

In a typical NoC, buffers are used to store packets or fragments of packets. Since buffers offer a
limited size a situation can occur where packets cannot progress to their destination because the

Chapter 1: Background on networks-on-chip

28

buffers, they need to go through are fully occupied. Meanwhile those buffers are occupied by
packets which cannot progress either since the buffers they are requesting are also occupied.
Packets in a deadlocked configuration end up being permanently blocked. This is why avoiding
deadlocks is extremely important for a routing algorithm otherwise packets would end up never
reaching their destination. A simple solution for deadlock is to use deterministic routing [2] or
drop packets similar to what is done currently in the internet.

Livelock occurs when packets continue to move through the network and spin around its

destination without ever reaching it. Usually appears when non-minimal routing algorithms are

used. A simple solution to avoid livelock is to use minimal routing (such as deterministic) or

dropping packets.

1.5 Conclusions
This chapter has presented the most critical factors that affect the performance of NoCs. These

include topology, switching and routing. We have presented the topological properties of NoCs

and described some well-known topologies including the mesh and torus. We have also described

several switching techniques including packet switching, circuit switching, virtual cut-through and

wormhole switching. After that we described the routing techniques commonly used in NoCs

including deterministic and adaptive routing.

The next chapter will present the related research work on the performance evaluation of some

well-known NoC topologies which have been reported in the literature.

Chapter 2: Related research work and simulation modeling

29

Chapter 2: Related research work and simulation

modeling

2.1 Related research work

This section surveys a number of existing comparative studies that have been carried out on

various topologies for NoCs either using analytical modeling or simulation. Our aim is to provide

an updated review of the research carried out in this area.

2.1.1 2D Mesh vs. 2D Torus
The simplicity and popularity of the 2D mesh and 2D torus has made them a common choice for

comparisons. In [22], the metrics used to determine the overall performance of the 2D mesh and

2D torus are throughput, latency, and power consumption. The study used as parameters the

hop count, bisection width and wire length for interconnections which in turn are decisive factors

for determining power consumption/dissipation. The comparison has been performed

analytically using the basic concepts of graph theory and the results have been validated through

the simulation of the two topologies. The performance results reported in [22] indicate that as

the network size increases, the performance of the 2D mesh worsens considerably compared to

the 2D torus. However, it can be noted that the area and power requirements are higher in the

torus due to the increase in wire length in practical implementations.

In [23], a different analysis of the two topologies has been carried out using software simulation.

The metrics used in this evaluation were latency, power consumption and power-throughput

ratio. The evaluation was performed using deterministic, partially adaptive, and fully adaptive

routing whilst the traffic was modeled using uniform and hotspot distributions. Similar to the

analytical comparison of [22], the simulation results have shown that the torus has reduced

latency compared to the mesh, whilst exhibiting higher power consumption.

2.1.2 2D Mesh vs. Fat-tree vs. Butterfly fat-tree
In the work of [24], three area-efficient topologies have been compared, and these were the 2D

mesh, fat-tree (FT) and butterfly fat-tree (BFT). The OPNET simulator was used which provides a

convenient environment for hierarchical modeling of networks. It was assumed that the

networks use wormhole and virtual cut-through switching.

The metrics examined in this evaluation were latency and throughput. A finite buffer size was

assumed and a uniform traffic pattern with different injection rates was used to obtain different

communication scenarios. The results have revealed that FT exhibits the lowest latency and the

highest throughput. This is due to its higher bandwidth links near the root. Even though BFT has

lower throughput and higher latency, the lower number of routing elements and links lead to a

Chapter 2: Related research work and simulation modeling

30

lower area overhead and energy dissipation. The results have also indicated that virtual cut-

through outperforms wormhole in all three topologies. The main conclusion from this analysis is

that using FT in tandem with virtual cut-through could be an effective solution for NoC design.

2.1.3 2D Mesh vs. Torus vs. Spidergon
Whilst most existing comparisons have been conducted on regular topologies, one of the first
studies involving irregular topologies such as the spidergon [25] against the 1D torus and 2D mesh
[26]. The simulation modeling of the NoC architectures was performed using the OMNeT++
simulation framework. Figure 2.1 shows an example of the spidergon and 1D torus.

Figure 2.1 An example of: (a) Spidergon and (b) Ring Topologies

Packet inter-arrivals at a given node follow a Poisson distribution. Packets are of fixed length. The
evaluation assumed limited buffer sizes and wormhole switching was used in all three topologies.
The metrics considered were NoC throughput and latency. The topologies taken into
consideration were put to the test under uniform workloads.

Results were collected for three traffic scenarios: single hotspot, double hotspot and uniform.
The single hotspot scenario has one node acting as the destination node for all messages. The
double hotspot has two nodes act as destinations whilst the uniform has all nodes have an equal
probability of being the destination.

The conclusion drawn from the results of the three traffic scenarios is that the spidergon, given
its ease of implementation could be an attractive solution as it delivers performance results and
scalability comparable to that of more complex solutions.

(a) (b)

Chapter 2: Related research work and simulation modeling

31

2.1.4 2D Mesh vs. Square-octagon
In the study of [27], the square-octagon was introduced and compared against the 2D mesh.

Figure 2.2 An example of the Square-Octagon

Figure 2.2 shows a basic module of the square-octagon (SONoC) with 16 nodes which are

connected using 24 bidirectional links. SONoC is built by using 4 squares and one octagon to

connect them using diagonal links in between. Each square is considered a cluster, and each

cluster contains four nodes.

The performance comparison between the SONoC and 2D mesh was carried out by using the

OPNET simulator software. The considered metrics were throughput and latency. The topologies

were tested under different traffic patterns such as uniform and hotspot. The considered

parameters were the degree of the network, diameter, average hop count, path diversity,

number of links and bisection width.

The comparison shows that the SONoC displays better results than the mesh for different

network sizes as SONoC performs better as the network size increases. Final results show that

the SONoC outperforms the 2D mesh in terms of latency and throughput due to the octagon

clusters that provide diagonal links which affect the diameter of the topology as well as the

degree which provides rich path diversity.

2.1.5 2D mesh vs. Honeycomb
The authors in [28] have introduced the honeycomb as an alternative to the mesh and torus. Also

known as honeycomb mesh, it is composed of a number of hexagons as indicated in Figure 2.3.

The comparison was carried out against the 2D mesh.

The simulation was performed by using a simulator called Orion 2. The used metrics are power

consumption, area cost in addition to latency. The considered parameters are the network

Chapter 2: Related research work and simulation modeling

32

diameter and the node degree.

The results show that the honeycomb has better overall performance than that of the mesh; the

honeycomb has a lower network cost, consumes less power and saves more area than the mesh.

It was also found that the communication delay is reduced compared to the mesh which makes

the honeycomb a preferable choice for NoC architectures.

Figure 2.3 An example of the honeycomb mesh.

Table 2.1 provides a summary of the existing works mentioned above.

Table 2.1: Summary of related work

Authors Topologies Metrics Parameters Findings

V. Sanju,
Niranjan
Chiplunkar,
M. Khalid,
Sujata Josh
and J. S.
Nirmala
(2013)

2D mesh vs

2D torus

Throughput, latency,
and power
consumption

Maximum hop
count, average
hop count,
number of wires
and wire length

As the size of the mesh
increases, the maximum hop
count and the average hop
count increases, which leads
to worse performance. In
torus’ case the performance
does not worsen but the
increase in wire length and
quantity lead to higher
power consumption

M. Mirza
Aghatabar,
S.Koohi, S.

2D mesh vs

2D torus

Latency, Power
consumption and

Routing
algorithms,
traffic model

The torus has better latency
than the mesh at cost of
higher power consumption.
For latency the torus is the

Chapter 2: Related research work and simulation modeling

33

Hessabi and
M. Pedram
(2007)

Power/Throughput
ratio

and number of
virtual channels

better option and for power
consumption the mesh is a
superior choice

Wu Ning, Ge
Fen and
Wang Qi
(2007)

2D mesh vs

fat-tree vs
butterfly fat-

tree

Throughput, latency

Wormhole and
virtual cut-
through
switching
techniques

Fat-tree shows the best
results with the lowest
latency and highest
throughput out of the three
topologies.

Luciano
Bononi and
Nicola
Concer

2D mesh vs

ring vs
spidergon

Throughput, latency

Wormhole

Out of the three topologies,
spidergon has displayed best
results, and as an irregular
topology, spidergon appear
to have trade-off solution for
getting same performance
as the complex architectures

Meaad

Fadhel Ali
Qasem and

Huaxi Gu
(2014)

2D mesh vs

square
octagon

Throughput and
end-to-end delay

Degree,

diameter,
average hop

count and path
diversity

The square-octagon has
higher throughput and lower

end-to-end delay than the
2D mesh

Alexander
Yin, Nan

Chen, Pasi
Liljeberg

and Hannu
Tenhunen

(2011)

2D mesh vs
honeycomb

Power consumption,
area cost and

communication
delay

Degree and
diameter

As an alternative

implementation of NoC
based systems, the

honeycomb displayed better
performance than the 2D
mesh. It exhibited lower

communication delay, less
power consumption and
almost half the area cost

2.1.6 Summary
In this section we have reviewed some research studies that have compared the performance of

some well-known topologies for NoCs. These comparisons include mesh versus torus, mesh

versus fat-tree and butterfly fat-tree and mesh versus ring versus Spidergon. However, these

Chapter 2: Related research work and simulation modeling

34

comparisons have based on the topological properties but have not taken into account the

constraints imposed by implementation technology such as the wiring density. This constraint

can severely limit the bandwidth of channels in a given topology which may greatly impact

network performance including message delay and throughput.

The aim of our study is to convincingly show that implementation constraints have to be taken

into account when comparing the relative merit of NoC topologies as they may greatly impact

the outcome of any comparative study.

The next section presents the different types of simulations and discusses in detail the discrete-

event simulation technique which has been adopted in our study.

Chapter 2: Related research work and simulation modeling

35

2.2 Simulation modeling

This section starts off with a justification as to why simulation has been adopted in our study,

followed by a presentation of various simulation techniques. We then discuss the discrete-event

simulation technique in detail. After that we present the system model that we used in our

simulation.

2.2.1 Justification of the method of study
In order to perform the performance comparison between the competing topologies, software

simulation has been selected. Simulation was chosen over the analytical approach because the

analytical models often resort to simplifying assumptions and ignore many system details which

results in reduced prediction accuracy [29]. Moreover, some studies [22] have analyzed the static

properties of NoC topologies using for instance graph theory. However, such studies do not

consider time dependent behavior of the system which may not be captured by the static

analysis. Furthermore, it is a complex undertaking to capture analytically the dependencies

between system parameters when determining system performance. A real-life implementation

of the system is not an option in our case due to lack of funding and computing resources.

Simulation has been used to conduct our study as it provides a good trade-off between

implementation cost and accuracy of prediction. Various NoC simulation environments exist

(including OPNET [24, 27], OMNeT++ [25], Orion 2 [28]). However, these simulators are either

proprietary, or not widely used by the research community on NoCs. This has made resources on

how to operate these simulators scarce. Moreover, these simulators often contain unnecessary

details which are irrelevant to our present study. Besides, adapting existing simulators for the

purpose of our comparisons may prove time consuming and a challenging task. Consequently, it

has been decided to develop our own simulator from the ground up using the discrete event

simulation technique [30].

In what follows, we will briefly review the different types of simulations. Then we will present

the system model of a node in an NoC.

2.2.2 Types of simulation models
Simulations are useful because they allow prediction of how systems operate without having to

implement them in the real world. They also allow prediction of various possible failures in the

system design due to the impact of different modifications to the system.

Monte-carlo simulation:
Monte-Carlo models probabilistic phenomenon that do not change over time [31]. This type of

simulation is inherently static (i.e. it is assumed that time is fixed). It utilizes statistical tools to

mathematically model a real-life system or process and then estimates the probability of

obtaining a successful outcome. It entails using random numbers as a tool to compute a function

Chapter 2: Related research work and simulation modeling

36

that is not random. Possible applications of this technique include the simulation of random and

stochastic processes (such as traffic flow) and evaluation of integrals. However, this technique is

not suitable for our research study as it cannot model the system behavior over time.

Trace-driven simulation:
This type refers to system simulations performed by looking at traces of program execution or

system component access with the purpose of predicting performance. Trace-driven simulation

[33] uses time-ordered records of events on real systems as an input. It usually has two

components: one that executes actions and stores the results and another which reads the log

files of traces and inserts them into new scenarios. Possible applications include scheduling,

caches and analysis of solid-state disks.

Discrete event simulation:
Discrete event simulation is a technique which can be used on systems that can be represented

by a queuing model. The purpose of discrete event simulation is to analyse the behavior of the

system over time. The system is characterized by a group of state variables and by operators that

manipulate these variables [30, 32].

In discrete event simulation the system is only studied when a change in state occurs. This is

usually a result of an event taking place. The simulator examines the system at discrete time

intervals, processes any events that might have occurred and changes the state variables

accordingly. New events are then generated as a result of transitioning to the new state.

The events are stored in a queue known as the event list where each item in the queue contains

the time of the event, the type of the event and the location where it occurs. The events in the

queue are sorted in order of when they occur, with sooner events having a higher priority in the

queue. There are generally two types of events: primary events, events that do not depend on

any event other than time, and conditional events which are triggered as a result of other events.

Each event refers to a procedure which is executed when that event is processed. Table 3.1 shows

a comparison between the different classes of software simulation.

Chapter 2: Related research work and simulation modeling

37

Table 2.2: Comparison between simulation models

 Monte-Carlo
simulation

Discrete-event
simulation

Trace-driven
simulation

Advantages

Disadvantages

Using MC simulation
is straightforward.

Allows study and
experimentation with a
complex system.

Less randomness -
deterministic input
reduces output
randomness.

Provides approximate
solutions to many
mathematical
problems.

Enables the feasibility
testing of any hypothesis
about how or why
certain phenomena
occur.

Detailed tradeoffs -
possible to evaluate
small changes in
model.

Provides statistical
sampling for
numerical
experiments using a
computer.

Evaluates the different
circumstances of
simulation by changing
the inputs and observing
the resultant outputs.

Easy validation

The results are only
an approximation of
the true value.

 Complexity -
requires detailed
simulation of system

Simulation results can
show large variance.

 High level of detail -
simulations can be
costly.

A single sample
cannot be used is
simulation; many
samples are required
to obtain results.

 Hard to evaluate
changes in workload
characteristics -
need another trace.

2.2.3 System model
For the purpose of our study, the NoCs are modeled as a set of nodes connected with links. Each

node is given a designated address which consists of n components, with n being the number of

dimensions in the topology. In each dimension, there are k nodes, and therefore the network size

is N=kn. For example, in the case of a 2D topology the address for any given node is designated

as (x,y) with 0≤x,y<k . In a 3D topology the address for any given node is (x,y,z) with 0≤x,y,z<k.

For the sake of brevity, we will describe the node structure for the 2D mesh only. This is because

the description also applies to the node structure in the other topologies (such as the torus) and

higher dimensions with only minor modifications.

Chapter 2: Related research work and simulation modeling

38

Node model:
In the 2D mesh, each node contains a processing element (PE), and a routing element. The node

consists of five input buffer queues and five output links connected by a crossbar switch. The role

of the crossbar switch is to connect every input to every possible output. There is a dedicated

buffer queue for messages that arrive from the PE, and two dedicated buffers per dimension, so

in this case two buffers for the x dimension and two for the y dimension (one per direction). The

outputs depict the direction in which the messages can travel, the messages can travel either

forward, or in reverse in any given direction. When a message arrives at its destination,

transmission to the local PE for consumption is also considered as an output. The basic structure

of a node can be seen in Figure 2.4

Switching and routing:
The nodes use packet switching with input buffer queues of large capacity. This is realistic due to

Moore's Law [34], where limited memory is no longer a significant issue. In this technique

messages are fully buffered at each hop. Upon arrival at a node, the message header is read and

a routing decision is made to which output buffer the message is retransmitted through.

The nodes use deterministic routing to send messages to one another. Deterministic routing in

the 2D mesh works as follows: a message only moves along the x-axis until it reaches a node with

the same x value as the destination node. It then starts moving along the y-axis until it finally

arrives at a node with the same y value as that of the destination node. For example, Figure 2.5

illustrates how a message at source (0,0) destined to the node (2,2) would first keep going along

Figure 2.4 A node structure in the 2D mesh.

Chapter 2: Related research work and simulation modeling

39

the x-axis until it reaches (2,0). It then goes along the y-axis until it reaches the destination node

(2,2).

The main advantage of using deterministic routing is its ease of implementation compared to

adaptive routing [19], and more importantly it avoids the issue of deadlock during message

routing.

Figure 2.5 An example of a message route from source to destination using deterministic

routing in the 2D mesh.

2.2.4 Conclusions
We have in this chapter presented the argument for choosing simulation as a tool to conduct our

study. After that we have reviewed the different types of simulations including Monte-Carlo,

trace-driven and discrete-event simulation. We then outlined the system model, including the

node model and the switching and routing techniques used in our study.

The subsequent chapter presents the implementation of the simulation model for the 2D mesh

using discrete-event simulation. The model is then extended to include the other topologies that

are used in the comparison notably the unidirectional and bidirectional torus.

Chapter 3: Implementation of the simulation model

40

Chapter 3: Implementation of the simulation model

This chapter provides an overview of the implementation of the simulation model. The coding of

the program is written using C in the Codeblocks IDE. In this section we present pseudo code for

the main program of the simulator along with a description of the events involved in the

simulation. The events and pseudo code described below applies to the 2D mesh, however the

other topologies and their higher dimensional variants all share similar characteristics except

with differences in some events, and the higher dimensional topologies also have larger data

structures. The nodes are each given a distinct address (x,y) where x<N and y<M. N and M being

the number of nodes on the x and y dimensions respectively. Our description is kept at an

abstract level as much as possible for the sake of clarity for the reader; Much coding details such

as the linked lists, the manipulation of the associated pointers and the models of queues have

not been included due to space limitations.

3.1 Data structures
The simulation model uses different structures (which are mostly built on dynamic linked lists).

Event: This data structure stores information related to a single event in this simulation. It

contains a field for the type of the event, its time, the location (i.e. the node), the input and the

output.

EventQueue: This is a queue of type Event that stores events that occur in this simulation. The

events in the queue are sorted in order of time, with events sooner to occur given higher priority

for processing.

Message: This data structure stores information related to a single message. It contains a field

for the ID of the message, a field for its time of arrival and a field for its destination.

MessageQueue: This queue is similar to the EventQueue however it is used for storage of

messages. Unlike the EventQueue, this queue does not sort the messages in order and operates

a first-come-first-serve policy.

Node: This data structure represents a single node in the 2D mesh. A node contains two

MessageQueues per dimension of the topology and an additional queue for the PE, thus totaling

5 queues in the case of the 2D mesh. The entire topology is represented as matrix of size NxM

nodes. The node also contains 5 arrays, one associated with each output. These outputs are used

to store requests for these outputs when the outputs are busy.

3.2 Simulation events
The simulator program is composed of the following events:

Chapter 3: Implementation of the simulation model

41

• Arrival: Primary event to generate the traffic load on the network.

• DecideRoute: Conditional event that is used to route messages to their destination.

• StartTransmit: Conditional event that occurs at the start of the transmission of a

message over a given output link.

• EndTransmit: Conditional event that occurs at the end of the transmission of a message.

Each event is associated with a procedure that describes how the event changes the state

variables and advances time, possibly generating other events. In addition to these procedures,

there is a procedure for initialisation that is called once at the start of the program for

initialisation of the system variables (including the status of the output links, the buffers, the

queues etc.). There is also a procedure for collection of statistics such as the mean response time

and throughput. In what follows we will describe the procedures mentioned in more detail.

3.2.1 Initialisation

Procedure Initialisation() {

Tnow = 0;

Set lambda;

Initialize EventQueue;

for (i=0;i<n;i++) {

for (j=0;j<m;j++) {

Initialize PE queue;

Initialize x queues;

Initialize y queues;

Set request for PE output to idle;

Set request for x output to idle;

Set request for Xprev output to idle;

 Set request for y output to idle;

Set request for Yprev output to idle;

}

}

Schedule Arrival at t=Tnow

Chapter 3: Implementation of the simulation model

42

}

The system variables are initialized. Tnow is the global clock which is set to 0 (i.e. the start of the

simulation time).

3.2.2 Main

Initialisation ();

while (Total number of transferred messages < max) do

Get event from the event queue;

Tnow = time of event;

case type of event of:

Arrival: Arrival (x,y);

DecideRoute: DecideRoute (x,y,input);

StartTransmit: StartTransmit (x,y,input,output);

EndTransmit: EndTransmit (x,y,input,output);

 end case;

end while;

ReportStatistics ();

End;

In the main program, a call is made to the initialisation procedure to initialize the state variables.

After that the program fetches events from the event queue, updates the global simulation time

tnow and then calls the procedure associated with the event. This is repeated until a certain

number of messages have reached their destination.

3.2.3 Arrival

Procedure Arrival(x,y) {

Create message;

Select random destination for message;

Place message in PE queue;

if (message at the head of the queue)

Chapter 3: Implementation of the simulation model

43

Schedule DecideRoute at t=Tnow

end if;

Schedule Arrival at t = Tnow - (lambda*log(1-r));

}

This procedure generates a message in node (x,y). The destination of the message is randomly

selected according to the traffic pattern used. The message is then placed in the PE queue of

node (x,y). If the message is at the head of the PE queue a DecideRoute is scheduled at

time=tnow. The scheduling of the following arrival in that node then follows which occurs at

time=tnow-(lambda*ln(1-r)) where lambda represents the mean arrival time and r is a random

number uniformly generated between 0 and 1.

3.2.4 DecideRoute

Procedure DecideRoute (x,y,input) {

Check the head of InputQueue;

if (DestinationX of message at the head of InputQueue = x and DestinationY of message

at the head of InputQueue = y) {

if (StatusPE=idle) Set a request for PE output;

else

Schedule event StartTransmit with t = Tnow with x=x,y=y, input=input and

output=x;

}

else if (DestinationX of message > x) {

if (StatusX=idle) Schedule event StartTransmit with t= Tnow with x=x, y=y,

input=input and output=x;

else

Set a request for x output;

}

else if (DestinationX of message < x) {

if (StatusXprev=idle) Schedule event StartTransmit with t= Tnow with x=x, y=y,

input=input and output=Xprev;

else

Chapter 3: Implementation of the simulation model

44

Set a request for Xprev output;

}

If (DestinationY of message > y) {

if (StatusY=idle) Schedule event StartTransmit with t=Tnow with x=x y=y

input=input and output=y;

else

Set a request for y output;

}

If (DestinationY of message < y) {

if (StatusYprev=idle) Schedule event StartTransmit with t=Tnow with x=x y=y

input=input and output=Yprev

else

Set a request for Yprev output;

}

}

Once the message is at the head of a queue and is ready for transmission, DecideRoute selects

an appropriate output for the message by comparing the address of the current node to that of

the destination node. Once the appropriate output is determined the procedure checks for

whether the output link is idle or not. In the case of the channel being idle a StartTransmit is

scheduled with time=Tnow with the output set to the chosen output. If the output is busy the

message registers a request to that output.

3.2.5 StartTransmit

Procedure StartTransmit (x,y,input,output) {

if (output=PE) {

StatusPE =busy;

}

if (output=x) {

StatusX=busy;

}

Chapter 3: Implementation of the simulation model

45

if (output=y) {

StatusY =busy;

}

if (output=Xprev) {

StatusXprev=busy;

}

if (output=Yprev) {

StatusYprev=busy;

}

}

After the output is chosen this procedure prepares the message for transmission by setting the

appropriate output to busy. EndTransmit is then scheduled with time= Tnow + transmission time

of the message.

3.2.6 EndTransmit

Procedure EndTransmit(x,y,input,output) {

if (output=PE) {

if (input=x) {

Remove the message from x queue of node(x,y);

Collect response time of message;

Free the message;

}

if (input=Xprev) {

Remove the message from Xprev queue of node(x,y);

Collect response time of message;

Free the message;

}

if (input=y) {

Remove the message from y queue of node(x,y);

Chapter 3: Implementation of the simulation model

46

Collect response time of message;

Free the message;

}

if (input=Yprev) {

Remove the message from Yprev queue of node(x,y);

Collect response time of message;

Free the message;

}

Check requests for PE for node(x,y);

if (there is request for output PE from node(x,y) from x or Xprev or y or Yprev) {

Schedule StartTransmit with input from the requested input queue and

with output PE;

}

}

if (output=x) {

if (input=PE) {

Remove the message from PE queue of node(x,y);

Place message in x queue of node(x+1,y);

if (message is at the head of Xqueue in node(x+1,y) {

Schedule DecideRoute with input from the requested input queue

and with output x;

}

}

if (input=x) {

Remove the message from x queue of node(x,y);

Place message in x queue of node(x+1,y);

if (message is at the head of Xqueue in node(x+1,y) {

Chapter 3: Implementation of the simulation model

47

Schedule DecideRoute with input from the requested input queue

and with output x;

}

}

if (there is request for output x from node(x,y) from PE or x){

Schedule StartTransmit with input from the requested input queue and

with output x;

}

}

if (output=Xprev) {

if (input=PE) {

Remove the message from PE queue of node(x,y);

Place message in Xprev queue of node(x-1,y);

if (message is at the head of Xprevqueue in node(x-1,y) {

Schedule DecideRoute with input from the requested input queue

and with output Xprev;

}

}

if (input=Xprev) {

Remove the message from Xprev queue of node(x,y);

Place message in Xprev queue of node(x+1,y);

if (message is at the head of Xprevqueue in node(x+1,y) {

Schedule DecideRoute with input from the requested input queue

and with output Xprev;

}

}

if (there is request for output Xprev from node(x,y) from PE or x) {

Chapter 3: Implementation of the simulation model

48

Schedule StartTransmit with input from the requested input queue and

with output Xprev;

}

}

if (output=y) {

if (input=PE) {

Remove the message from PE queue of node(x,y+1);

Place message in y queue of node(x-1,y);

if (message is at the head of Yqueue in node(x+1,y) {

Schedule DecideRoute with input from the requested input queue

and with output y;

}

}

if (input=x) {

Remove the message from x queue of node(x,y);

Place message in x queue of node(x,y+1);

if (message is at the head of Yqueue in node(x,y+1) {

Schedule DecideRoute with input from the requested input queue

and with output y;

}

}

if (input=Xprev) {

Remove the message from Xprev queue of node(x,y);

Place message in y queue of node(x,y+1);

if (message is at the head of Yqueue in node(x,y+1) {

Schedule DecideRoute with input from the requested input queue

and with output y;

}

Chapter 3: Implementation of the simulation model

49

}

if (input=y) {

Remove the message from y queue of node(x,y);

Place message in y queue of node(x,y+1);

if (message is at the head of Yqueue in node(x,y+1) {

Schedule DecideRoute with input from the requested input queue and

with output y;

}

}

if (there is request for output y from node(x,y) from PE or x or Xprev or y) {

Schedule StartTransmit with input from the requested input queue and

with output y;

}

}

if (output=Yprev) {

if (input=PE) {

Remove the message from PE queue of node(x,y);

Place message in Yprev queue of node(x,y-1);

if (message is at the head of Yprevqueue in node(x,y-1) {

Schedule DecideRoute with input from the requested InputQueue

and with output Yprev;

}

}

if (input=x) {

Remove the message from x queue of node(x,y);

Place message in Yprev queue of node(x,y-1);

if (message is at the head of Yprevqueue in node(x,y-1) {

Chapter 3: Implementation of the simulation model

50

Schedule DecideRoute with input from the requested InputQueue

and with output Yprev;

}

}

if (input=Xprev) {

Remove the message from Xprev queue of node(x,y);

Place message in Yprev queue of node(x,y-1);

if (message is at the head of Yprevqueue in node(x,y-1) {

Schedule DecideRoute with input from the requested input queue

and with output Yprev;

}

}

if (input=Yprev) {

Remove the message from Yprev queue of node(x,y);

Place message in Yprev queue of node(x,y-1);

if (message is at the head of Yprevqueue in node(x,y-1) {

Schedule DecideRoute with input from the requested input queue

and with output Yprev;

}

}

if (there is request for output y from node(x,y) from PE or x or Xprev or Yprev) {

Schedule StartTransmit with input from the requested input queue and

with output Yprev;

}

}

}

This procedure moves the message from the input queue of the sender node and puts it in the

input queue of the next node along the path. If that message is at the head of the queue, the

Chapter 3: Implementation of the simulation model

51

event DecideRoute is scheduled at time=tnow. If the message is at the final destination, the

message is sent to the local PE where statistics are collected and the message record destroyed.

The output link then checks for requests from any messages that are waiting to use the output

link. If any requests are found, a StartTransmit is scheduled at time=tnow.

3.3 Model validation
To validate the simulation model, the simulation was run over a number of smaller, easily

predictable cases. For instance, in the 2D mesh topology under low traffic the response time for

a message can be given by [3]

D x L

Where D is the number of hops between the sender and destination nodes and L is the message

length. For instance, a message of length 32 phits sent from node (0,0) to (2,2) would take 4 hops

and as a consequence the response time for the message would be 4x32=128 cycles. We compare

this value against that supplied by the simulation to check agreement. We have found that in all

tested cases under light traffic and moderate traffic, the agreement between the calculated

result and the results from simulation are in satisfactory agreement.

3.4 Conclusions
In this chapter, the implementation of the simulation model, including the simulation events and

data structures, for the 2D mesh topology has been described. The program for the simulation

model has been described in pseudocode. The different events including Arrival, DecideRoute,

StartTransmit and EndTransmit describe the operation of the network starting from the time a

message is generated in a node with a given destination and placed in a local buffer for

transmission from node to node until it arrives at its destination. The simulation model has been

specified for deterministic routing and packet switching.

The following chapter presents the various parameters and assumptions used in this work, then

introduces the various different comparisons carried out along with the presentations of results

and discussion.

Chapter 4: Performance comparison of network-on-chip topologies

52

Chapter 4: Performance comparison of network-on-chip

topologies

In this chapter, we will use the simulation model described in Chapter 4 to carry out the

performance comparison between the well-known NoC topologies namely the mesh, the torus

with its unidirectional and bidirectional variants. In the first stage, the comparison is carried out

assuming no technological constraints imposed on system implementation. The three topologies

are compared in their 2D and 3D versions. Both the uniform traffic and hotspot traffic patterns

have been considered in the comparison. In the second stage, the same performance comparison

has been conducted between these topologies taking into account the physical constraints

imposed by the implementation technology, notably the bisection width which is relevant to the

implementation of NoCs in VLSI technology [12, 13].

In what follows, we will start by outlining the assumptions used in this study, then describing the

method for collecting the simulation results. After that we present the performance results along

with discussions.

4.1 Assumptions

The assumptions which have been used throughout this simulation study have widely adopted in

existing studies [24, 25]:

1) Message generation at a node is independent of all other nodes.

2) The message arrival rate at each node follows a Poisson distribution with a mean inter-

arrival rate 1/λ messages/cycle. Thus, the message inter-arrival time follows an

exponential distribution with a mean arrival time λ cycles.

3) The generated messages are of fixed length.

4) Propagation delay across the links is negligible.

5) Routing time (time for a router to decide which output to select for a given message) is

negligible.

6) No nodes or links break down during the simulation.

Chapter 4: Performance comparison of network-on-chip topologies

53

4.2 Simulation parameters
The simulation model includes various parameters described below.

4.2.1 Traffic pattern
The traffic pattern in general describes how nodes communicate among each other. In this study

we have used two traffic patterns, namely uniform and hotspot. These traffic patterns have been

widely used in existing comparison studies [23, 24, 25, 27, 28].

• Uniform: Each node has an equal probability of sending a message to any other node.

• Hotspot: Nodes favor sending messages to a specific node with probability p, other

messages are sent following a uniform traffic pattern.

4.2.2 Message arrival rate
This parameter refers to the number of messages that can be produced during a given period of

time. The arrival rate is gradually changed to reflect the network operating different operating

conditions including light, moderate and heavy traffic.

4.2.3 Network size
The network size is a parameter which is useful for evaluating the properties of networks such as

scalability. In this study, we examine different network sizes including 8x8 and 32x32 nodes for

the 2D topologies, and 4x4x4 and 10x10x10 nodes for the 3D topologies. Due to limitations in

computing resources and time, larger network sizes could not be examined.

4.3 Performance metrics
The comparison among the different topologies have been based on the following performance

metrics

4.3.1 Mean response time
The response time is a qualitative measure of network performance. The response time for a

single message is the elapsed time from sending a message from a source node until it arrives at

its destination node. The response time is measured in number of cycles, where a cycle is the

amount of time to send a phit across a link.

R=𝑡𝑛𝑜𝑤 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙

Where 𝑡𝑛𝑜𝑤 is the time at which a message reaches the destination node, and 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is the time

of generation of the message at the source node. The mean response time is then found by

averaging the response time over all delivered messages. This can be written as

�̅�=
∑ 𝑅𝑖

𝑁
𝑖=1

𝑁

Where 𝑅𝑖 is the response time of an individual message i.

Chapter 4: Performance comparison of network-on-chip topologies

54

4.3.2 Mean throughput
Throughput is the average amount of messages delivered per unit of time. This is a quantitative

measure of network performance that describes the raw output of the network. In this case it is

measured in the number of messages per cycle. This is given by

𝑇ℎ =
𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

4.4 Batch means method for result collection
In the batch means method [29], the simulation is run once over an extended period of time. The

simulation is then divided into a number batches of a specific number of delivered messages (let’s

say 10000), and measures are collected over each batch to form a single point estimate of the

performance measure of interest (e.g. response time or throughput).

As every message arrives at its destination, the response time for that message is collected and

added to the overall response time, and a counter that tallies the total number of messages

delivered is incremented. When a batch is completed, the mean response time and throughput

for that specific batch are calculated and stored. The variables related to the collection of

statistics are then reset without stopping the running of the simulation. The same process is

repeated for each batch, and after the last batch is complete the overall mean (mean of the

means of the batches) for both the response time and throughput are computed. The batch

means method is useful because it enables us to ensure that the results reflect the system in a

steady-state behavior. Furthermore, it allows us to avoid the warm-up effect on the simulation

results [29].

4.5 Confidence interval
The confidence interval calculates the range for the possible values of a specific performance

measure. That is, for a 95% confidence for instance, if the simulation were to be run 100 times,

the mean of that performance measure would fall within that interval on 95 occasions [29]. In

order to calculate the confidence interval for a given performance measure, the overall mean

and the standard deviation must be computed. The overall mean is given by

�̅�=
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁

where 𝑥𝑖 is the mean of a single batch and N is the total number of batches. On the other hand,

the standard deviation calculates the average distance of each batch mean from the overall

mean, and it is given by [29]

s=√
∑ (𝑥𝑖−�̅�)2𝑁

𝑖=1

𝑁−1

Once the standard deviation is found the confidence interval is then found by

Chapter 4: Performance comparison of network-on-chip topologies

55

�̅� ± 1.96
𝑠

√𝑛

4.6 Results and Discussion
This section presents first the simulation results for comparing the three topologies under

unconstrained and constrained implementations, followed by the results of the 2D vs 3D

comparison under constrained and unconstrained implementations.

4.6.1 Mesh vs unidirectional torus vs bidirectional torus: Unconstrained

implementation
In this case, the topologies are not be subjected to any physical constraints imposed by

implementation technology. As a consequence, we assume that the different network topologies

all have the same channel width (i.e. channel bandwidth) irrespective of the network size. This

enables us to assess the impact of the graph-theoretical properties of the various topologies on

system performance.

Scenario 1: Uniform traffic
In this scenario, the mesh and the unidirectional as well as the bidirectional torus are subjected

to various traffic rates using the uniform traffic pattern, where a sender node has an equal

probability of sending a message to any other destination node.

Before presenting the performance results for the three topologies, we show first in Table 4.1 for

the sake of illustration the confidence intervals obtained for the response time and throughput

for the 2D mesh with 8x8 nodes. Each performance result in the table and in all the figures below

has been collected from 10 batches where each batch reflects the statistics of at least 2500

delivered messages. However, the results for the confidence interval will not be shown for the

other scenarios and topologies for the sake of clarity of the figures and due to space limitations.

Table 4.1 Results for the confidence interval for the 8x8 2D mesh.

Injection rate Lower bound
response time

Upper bound
response time

Lower bound
throughput

Upper bound
throughput

400 202.4 203.6 0.156 0.16
350 203.1 204.4 0.172 0.178
300 206 207.3 0.207 0.211
250 208.8 210 0.245 0.251
200 217 219 0.312 0.319
180 219.5 221.7 0.338 0.346
160 227.5 230 0.385 0.395
150 233.8 236.8 0.414 0.422
100 349.1 367.2 0.623 0.637
90 481.2 507.8 0.674 0.688

80 2178.2 2981.8 0.738 0.753

Chapter 4: Performance comparison of network-on-chip topologies

56

Figure 4.1 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under

unconstrained uniform traffic for 8x8 nodes (a) Response time, (b) Throughput.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640 0.800 1.067

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

0

100

200

300

400

500

600

700

800

900

1000

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
e

sp
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus(a)

(b)

Chapter 4: Performance comparison of network-on-chip topologies

57

Figure 4.2 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under

unconstrained uniform traffic for 32x32 nodes (a) Response time, (b) Throughput.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160 0.320

R
e

sp
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

(a)

(b)

Chapter 4: Performance comparison of network-on-chip topologies

58

Figure 4.3 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under

unconstrained uniform traffic for 4x4x4 nodes (a) Response time, (b) Throughput.

0

500

1000

1500

2000

2500

3000

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640 1.067

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640 1.067 3.200

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

(a)

(b)

Chapter 4: Performance comparison of network-on-chip topologies

59

Figure 4.4 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under

unconstrained uniform traffic for 10x10x10 nodes (a) Response time, (b) Throughput.

0

500

1000

1500

2000

2500

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320 0.640 1.067

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320 0.640 1.067

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

(a)

(b)

Chapter 4: Performance comparison of network-on-chip topologies

60

The 2D versions of the networks are compared amongst each other. The same comparison is also

conducted for the 3D versions. The simulation results are depicted below for network sizes of

8x8 and 32x32 nodes for the 2D versions and 4x4x4 and 10x10x10 nodes for their 3D

counterparts. In all the figures, the x-axis represents the rate of messages injected into the

network (measured by messages/cycle where the cycle is the time to send a phit across a link).

In the figures 4.1(a) to 4.22(a) the y-axis represents the mean message response time (measured

in cycles) whereas in figures 4.1(b) to 4.22(b) the y-axis represents the mean throughput

(measured in messages/cycle).

The figures 4.1 to 4.4 reveal that regardless of the network size or dimensions, similar trends in

performance can be observed. The bidirectional torus exhibits the lowest response times and

highest throughput under most traffic load conditions. As the bandwidth of the links is the same

in all the topologies this can be attributed to the bidirectional torus’ lower average message

distance in comparison to the unidirectional torus. This means that messages take less time to

cross from source to destination in the bidirectional torus. The mesh showing lower performance

in terms of response time and throughput than the bidirectional torus can be attributed to its

topological asymmetry, which results in larger amounts of traffic congestion towards the center.

The disparity becomes more and more apparent with the increase in network size indicating

better scalability properties of the bidirectional torus.

Scenario 2: Hotspot traffic
The same simulation experiment performed in the above Scenario 1 has been repeated

considering the hotspot traffic pattern where a sender node sends a message to the hotspot node

located in the center of network with probability α and a probability of 1-α to any other node

with equal probability. In the figures 4.5 to 4.8 are the results for network sizes of 8x8 and 32x32

nodes for 2D and 4x4x4 and 10x10x10 nodes for the 3D networks where α is set to 0.1.

The figures reveal that the same conclusions as scenario 1 are reached in that the bidirectional

torus exhibits superior performance for both response time and throughput followed by the

mesh and then by the unidirectional torus. This is due to the bidirectional torus being a

symmetrical topology and having a lower average message distance.

Chapter 4: Performance comparison of network-on-chip topologies

61

Figure 4.5 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under

unconstrained hotspot traffic for 8x8 nodes (a) Response time, (b) Throughput.

0

200

400

600

800

1000

1200

0.064 0.071 0.080 0.091 0.094 0.097 0.100 0.107 0.128 0.160 0.213

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.064 0.071 0.080 0.091 0.094 0.097 0.100 0.107 0.128 0.160 0.213 0.320 0.640 1.067

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

(a)

(b)

v

Chapter 4: Performance comparison of network-on-chip topologies

62

Figure 4.6 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under

unconstrained hotspot traffic for 32x32 nodes (a) Response time, (b) Throughput.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.003 0.0036 0.004 0.0046 0.005 0.006 0.011 0.064 0.107 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.003 0.0036 0.004 0.0046 0.005 0.006 0.011 0.064 0.107 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

(a)

(b)

v

Chapter 4: Performance comparison of network-on-chip topologies

63

Figure 4.7 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under

unconstrained hotspot traffic for 4x4x4 nodes (a) Response time, (b) Throughput.

0

50

100

150

200

250

300

350

400

450

500

0.011 0.013 0.016 0.021 0.032 0.064 0.107 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.011 0.013 0.016 0.021 0.032 0.064 0.107 0.320 0.640 1.067

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

64

Figure 4.8 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under

unconstrained hotspot traffic for 10x10x10 nodes (a) Response time, (b) Throughput.

0

100

200

300

400

500

600

700

800

900

1000

0.0016 0.0021 0.0032 0.0040 0.0053 0.0080 0.0107

R
e

sp
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.0016 0.0021 0.0032 0.0040 0.0053 0.0080 0.0107 0.0160 0.0320 0.0640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

3D Mesh 3D Uni Torus 3D Bid Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

65

4.6.2 Mesh vs unidirectional torus vs bidirectional torus: Constrained

implementation
Whilst the graph-theoretical properties of networks have great influence on system performance

[35], they may not reveal the full story once systems are physically implemented onto a chip as

is the case for NoCs [35]. In this study, we have used the bisection width constraint imposed by

VLSI implementation technology [35, 36] to evaluate the impact of the physical implementation

constraints on network performance. Incorporating such implementation constraints may lead

to different conclusions to the above conclusions reached in the scenarios on “unconstrained

implementation” regarding the relative performance merits of the different competing network

topologies.

In order to determine the bandwidth of the links for a given network topology, we have used the

bisection width that has been suggested for VLSI implementation technology [35, 36]. According

to Dally’s work [35], the bisection width for the mesh is given by

𝐵𝑚𝑒𝑠ℎ = 2√𝑁𝑘
𝑛
2

−1𝑊𝑚𝑒𝑠ℎ

with N=𝑘𝑛 being the network size, k being the number of nodes per dimension and n being the

number of dimensions and 𝑊𝑚𝑒𝑠ℎ being the channel width (i.e., the number of wires per link).

On the other hand, Dally has found the bisection width for the bidirectional torus to be [35]

𝐵𝑏𝑖𝑡𝑜𝑟𝑢𝑠 =
4𝑁

𝑘
𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠

With 𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 being the channel width. Given that the unidirectional torus has only one link per

dimension, its bisection width is half of that of the bidirectional torus and is found to be [35]

𝐵𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 =
2𝑁

𝑘
𝑊𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠

Assuming a fixed bisection width across the three networks in order to reflect the physical

constraints (In this case wiring limitations) imposed by implementation technology, it can be

deduced that the channel width of a link in the bidirectional torus in terms of the channel width

of that of the mesh is as follows [35]

𝐵𝑏𝑖𝑡𝑜𝑟𝑢𝑠 = 𝐵𝑚𝑒𝑠ℎ , thus

4𝑁

𝑘
𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 = 2√𝑁𝑘

𝑛
2

−1𝑊𝑚𝑒𝑠ℎ

Therefore, the channel width of a link in the bidirectional torus 𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 can be expressed in

terms of that of the mesh as [35]

𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 =
1

2
𝑊𝑚𝑒𝑠ℎ

Chapter 4: Performance comparison of network-on-chip topologies

66

Using the same arguments, it can be shown that the channel width of a link in the unidirectional

torus 𝑊𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 can be written as [35]

𝑊𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 = 𝑊𝑚𝑒𝑠ℎ

Given that the channel width (i.e. the number of wires) is directly proportional to the bandwidth

(given by phits/cycle) of the link, the above equations reveal that the bandwidth of the link in the

mesh and unidirectional torus are equal. However, the bandwidth of the link in the bidirectional

torus is half of that of the mesh and unidirectional torus. As a result, the message length in the

bidirectional torus is double the message length in the other two topologies. To illustrate this,

for instance if a message is 32 phits long and therefore takes 32 cycles to be transmitted on a link

in the mesh or unidirectional torus, it will take 64 cycles in the bidirectional torus. The following

scenarios will compare the 2D topologies amongst each other with physical constraints taken

into account over different network sizes.

Scenario 1: Uniform traffic
The three topologies are subjected to a uniform traffic pattern. The following figures depict the

results of the comparisons.

In figures 4.9 to 4.10, the impact of the reduction in the channel bandwidth of the bidirectional

torus can be clearly observed as it is now outperformed by the mesh across the considered

network sizes in terms of both response time and throughput. This is in contrast to the

performance outcome of the previous scenarios where the bidirectional torus exhibited the best

performance out of the three topologies. However, the bidirectional torus still outperforms the

unidirectional torus despite its reduction in channel bandwidth. This might be attributed to the

difference in average message distance between the two topologies which is large enough to the

point where a reduction in bandwidth is not enough to offset the difference in channel

bandwidth. However, the bidirectional torus being symmetrical is not enough to compensate for

its reduced channel bandwidth when compared to the mesh.

It’s worth mentioning that the performance results of the 3D versions of the three topologies

have revealed similar performance trends as for the 2D case. However, the results have not been

presented due to space limitations.

Chapter 4: Performance comparison of network-on-chip topologies

67

Figure 4.9 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under

constrained uniform traffic for 8x8 nodes (a) Response time, (b) Throughput.

0

500

1000

1500

2000

2500

3000

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640 0.800 1.067

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

68

Figure 4.10 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under

constrained uniform traffic for 32x32 nodes (a) Response time, (b) Throughput.

0

500

1000

1500

2000

2500

3000

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 2D Uni Torus 2D Bid Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

69

4.6.3 2D vs 3D topologies: Unconstrained implementation
In this comparison the focus is on the impact of increasing the number of dimensions in a network

on the overall system performance. This comparison evaluates the 2D versions of each topology

against its 3D counterpart for an unconstrained implementation. The purpose of this is to assess

the influence of the graph-theoretical properties of 2D topologies on performance when

compared to those of their 3D counterparts.

Scenario 1: Uniform traffic
The three topologies are compared once again under the uniform traffic pattern. Figures 4.11

to 4.16 depict the results of the comparison.

The previous figures indicate that the 3D topologies generally outperform their 2D counterparts

when subjected to similar traffic loads. This can be attributed to their larger number of paths

which allows for a lower average message distance. For instance, in the 3D bidirectional torus

with 10x10x10 nodes the average message distance is 7.5 hops whilst in its 2D counterpart with

a similar network size (I.e. 32x32) the average message distance is 16 hops. This results in a lower

latency for the 3D bidirectional torus compared to its 2D counterpart. The same justifications can

be extended to the mesh and unidirectional torus.

Chapter 4: Performance comparison of network-on-chip topologies

70

Figure 4.11 Performance results for the 2D vs 3D mesh for network sizes 8x8 vs 4x4x4 nodes

under unconstrained uniform traffic. (a) Response time, (b) Throughput.

0

100

200

300

400

500

600

700

800

900

1000

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640 1.067 3.200

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

71

Figure 4.12 Performance results for the 2D vs 3D unidirectional torus for network sizes 8x8 vs

4x4x4 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

0

100

200

300

400

500

600

700

800

900

1000

0.064 0.080 0.091 0.107 0.128 0.160 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640 1.067 3.200

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

72

Figure 4.13 Performance results for the 2D vs 3D bidirectional torus for network sizes 8x8 vs

4x4x4 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

0

100

200

300

400

500

600

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640 1.067 3.200

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

73

Figure 4.14 Performance results for the 2D vs 3D mesh for network sizes 32x32 vs 10x10x10

nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

74

Figure 4.15 Performance results for the 2D vs 3D uni-torus for network sizes 32x32 vs 10x10x10

nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

0

500

1000

1500

2000

2500

3000

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

75

Figure 4.16 Performance results for the 2D vs 3D bi-torus for network sizes 32x32 vs 10x10x10

nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput.

0

200

400

600

800

1000

1200

1400

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

76

4.6.4 2D vs 3D topologies: Constrained implementation
The purpose of this comparison is to assess the impact of the physical constraints imposed by

implementation technology on channel width when attempting to implement a 3D topology on

a 2D chip. When a 3D topology is mapped on a 2D plane, the topology has to be stretched, causing

more links to cross the center of the plane and thus increasing its bisection width. Each topology

will have its 2D version compared against its 3D counterpart for a fixed bisection bandwidth as

in Dally’s study [35]. Due to space limitations only four distinct network sizes are examined,

notably 8x8 versus 4x4x4 and 32x32 versus 10x10x10 to ensure a similar number of nodes across

the 2D and 3D topologies.

Assuming a fixed bisection width and using the previously mentioned equations we can compute

the channel width in a 3D topology in terms of the channel width of its 2D equivalent. The table

below summarizes the channel width for the network sizes examined in our scenarios.

Table 4.2 The ratio of the channel width for 3D topologies to that of 2D topologies

Topology 8x8 versus 4x4x4 32x32 versus 10x10x10

Mesh, unidirectional torus,
bidirectional torus

𝑊3𝐷 =
1

2
𝑊2𝐷 𝑊3𝐷 =

1

3
𝑊2𝐷

Scenario 1: Uniform traffic
The 2D and 3D topologies are assessed under the uniform traffic pattern with physical constraints

taken into account.

In figures 4.17 to 4.22, similar conclusions can be drawn from the simulation results for all three

topologies. That is, the 2D topologies clearly outperform their 3D counterparts under all traffic

loads when it comes to response time. When it comes to the throughput however the 2D and 3D

topologies seem to show similar performance under light and moderate traffic, however the

difference can be seen under heavy traffic where the 2D topologies have better performance.

The conclusion that can be drawn from this is that despite the 3D topologies having superior

graph-theoretical properties in terms of average distance, they are not enough to offset the

reduction in channel bandwidth caused by physical constraints imposed by implementation

technology.

Chapter 4: Performance comparison of network-on-chip topologies

77

Figure 4.17 Performance results for the 2D vs 3D mesh for network sizes 8x8 vs 4x4x4 nodes

under constrained uniform traffic. (a) Response time, (b) Throughput.

0

100

200

300

400

500

600

700

800

900

1000

0.040 0.046 0.053 0.064 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400

R
es

p
o

se
 T

im
e

(C
yc

le
s)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.046 0.053 0.064 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

78

Figure 4.18 Performance results for the 2D vs 3D unidirectional torus for network sizes 8x8 vs

4x4x4 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.040 0.046 0.053 0.064 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.040 0.046 0.053 0.064 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

79

Figure 4.19 Performance results for the 2D vs 3D bidirectional torus for network sizes 8x8 vs

4x4x4 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.046 0.053 0.064 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus

0

100

200

300

400

500

600

700

800

900

1000

0.053 0.064 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

80

Figure 4.20 Performance results for the 2D vs 3D mesh for network sizes 32x32 vs 10x10x10

nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

0

500

1000

1500

2000

2500

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

81

Figure 4.21 Performance results for the 2D vs 3D unidirectional torus for network sizes 32x32 vs

10x10x10 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

0

500

1000

1500

2000

2500

3000

3500

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Uni Torus 3D Uni Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

82

Figure 4.22 Performance results for the 2D vs 3D bidirectional torus for network sizes 32x32 vs

10x10x10 nodes under constrained uniform traffic. (a) Response time, (b) Throughput.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160 0.320

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.008 0.011 0.013 0.016 0.021 0.032 0.040 0.053 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Bid Torus 3D Bid Torus

(a)

(b)

vv

Chapter 4: Performance comparison of network-on-chip topologies

83

4.7 Conclusions
In order to compare the performance merits of three well-known topologies, namely the mesh,

unidirectional, and bidirectional torus, simulation results for the mean response time and

throughput have been reported for a number of scenarios. For an unconstrained implementation

on channel bandwidth, the bidirectional torus shows the best performance in terms of response

time and throughput compared to the others. This is due to the combination of its good average

distance along with it being a symmetrical topology. The mesh exhibits performance than the

unidirectional torus thanks to its better average distance. In contrast, when implementation

constraints on channel bandwidth are taken into consideration the mesh demonstrates superior

performance over the unidirectional as well as bidirectional torus. This is mainly due to its higher

channel bandwidth manages to offset the detrimental effects of it being an asymmetrical

topology and higher average distance in comparison to the bidirectional torus.

Another comparison between the 2D and 3D topologies for the case of the mesh, unidirectional

and bidirectional torus has also been carried out. Simulation results have revealed that the 3D

topologies deliver better performance in the unconstrained scenarios owing to their superior

graph-theoretical properties relative to their 2D counterparts. However once implementation

constrains are considered the significant reduction in channel bandwidth for the 3D topologies

caused their performance to deteriorate. This allows the 2D versions to exhibit better

performance. It is worth mentioning that the observed performance trends are applicable for

both uniform and hotspot traffic patterns.

84

Conclusions and future directions

Much research activities on Systems-on-Chip (SoCs) have gained momentum over the past

decades due to the exponential increase in transistor integration into chips as predicted by

Moore’s Law [1]. This has enabled the implementation of many processing elements inside a

single chip. These processing elements are often interconnected by means of routing elements

via links forming what is usually known as a Network-on-Chip (NoC).

Numerous research studies have proposed various topologies for NoCs, including the mesh,

torus, fat-tree and spidergon. Many of the existing studies have compared the relative

performance of these topologies [22, 23, 24, 25, 27, 28]. However, most of these studies have

concentrated on the graph-theoretical properties of these topologies and have largely ignored

the impact of the constraints imposed by implementation technology on channel bandwidth. The

most relevant constraint in the case of NoCs is the wiring density [35]. This is often measured in

terms of the bisection width [35].

The aim of our project has been to compare the performance of some well-known topologies

notably the mesh and the torus (with its unidirectional and bidirectional variants) while taking

into account the implementation constraints. To achieve this, a discrete-event simulation model

for these networks has been designed and implemented in C using the Codeblocks IDE. The

simulator has been validated using known test cases where the outcomes can be easily predicted.

The simulation model has been used to perform extensive simulation experiments to analyse the

performance of the mesh, unidirectional and bidirectional torus under various operating

scenarios. When implementation constraints on channel bandwidth are ignored, the simulation

results have indicated that the bidirectional torus exhibits the best performance over the mesh

and unidirectional torus (for both the 2D and 3D versions) under uniform as well as hotspot traffic

patterns. This can be justified by the fact that the bidirectional torus has a lower average distance

in comparison to the unidirectional torus and mesh, and having a topology that is symmetric

allowing it to distribute the network traffic evenly across its links.

When implementation constraints on channel bandwidth are taken into consideration the mesh

and unidirectional torus end up with higher channel bandwidth than the bidirectional torus. The

simulation results have revealed that the mesh (for both the 2D and 3D versions) can take

advantage of its wider channel bandwidth to mitigate the negative effects of its asymmetrical

topology and higher average distance in comparison to the bidirectional torus. The unidirectional

torus, however, does not manage to exploit its higher channel bandwidth to compensate for its

higher average distance. In other words, the mesh exhibits lower response times and higher

throughput when subjected to uniform and hotspot traffic patterns.

85

Another comparison between the 2D and 3D topologies for the case of the mesh, unidirectional

and bidirectional torus has also been carried out. Simulation results have shown that the 3D

topologies deliver better performance in the unconstrained scenarios. This has been attributed

to their larger number of paths which in turn allows for a significantly lower average distance

relative to their 2D counterparts.

When implementation constraints are imposed on channel bandwidth the performance of the

3D topologies worsens significantly compared to the 2D versions. This is because of the large

reduction in channel bandwidth as a result of fixing the bisection width. This allows the 2D

versions to exhibit better performance. It is worth mentioning that the observed performance

trends are applicable for both uniform and hotspot traffic patterns.

There are a number of possible directions that can be pursued in order to further extend our

work and these are listed below.

If the necessary computing resources were available it would be interesting to run simulations

for large network sizes (e.g. thousands of nodes). This is motivated by Moore’s Law that predicts

that NoCs with thousands of nodes would be a reality in the foreseeable future.

Many adaptive routing algorithms have been proposed in the literature [2] which can take

advantage of the various paths that exist in a given topology to improve network performance.

A possible extension of this work would be to extend our simulation model to incorporate

adaptive routing and evaluate its influence on the performance properties of the mesh and torus

networks.

A popular alternative to packet switching is virtual cut-through as it enables the reduction of

response time under light to moderate traffic by avoiding the necessary buffering at intermediate

routing elements. It would be interesting to adapt our simulation model to include this switching

technique and quantify its influence on the outcome of any comparative study of competing NoC

topologies.

Applications typically exhibit various communication patterns between the processing elements

including broadcast and multicast. A natural extension of our work would be to develop the

simulation model further to accommodate these traffic patterns and assess their impact on the

performance of NoC topologies.

86

References

[1] Konstantinos Tatas, Kostas Siozios, Dimitrios Soudris and Axel Jantsch, "Designing 2D and 3D

Network-on-Chip Architectures," Springer Science+Business, 2014.

[2] Jose Duato, Sudhakar Yalamanchili and Lionel M. Ni, "Interconnection Networks - An

Engineering Approach," Elsevier Science (USA), 2003.

[3] Rajeev Kamal, Pankaj Goyal and Vikas Nehra, "Network on Chip: Topologies, Routing,

Implementation," International Journal of Advances in Science and Technology, vol. 4, no. 1, pp.

24-34, January 2012.

[4] Mehdi Baboli, Nasir Shaikh Husin and Muhammad Nadzir Marsono, "A Comprehensive

Evaluation of Direct and Indirect Network-On-Chip Topologies," International Conference on

Industrial Engineering and Operations Management , January 2014.

[5] Salem Umamaheswari, Raja Paul Perinbam, K. Monisha and Jahir Ali, "Comparing the

Performance Parameters of Network on Chip with Regular and Irregular Topologies," Springer-

Verlag Berlin Heidelberg, pp. 177-186, 2011.

[6] Vikram S. Adve and Mary K. Vernon, "Performance analysis of mesh interconnection networks

with deterministic routing," IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 3,

pp. 225–246, March 1994.

[7] Cruz Izu, "A router node architecture for cut-through torus networks." Technical Report,

Departamento deArquitectura y Tecnologia de Computadores,Universidad del Pais Vasco, Spain,

1994.

[8] Lei Yang, Weichen Liu, Weiwen Jiang, Mengquan Li, Peng Chen and Edwin Hsing-Mean Sha,

"FoToNoC: A Folded Torus-Like Network-on-Chip Based Many-Core Systems-on-Chip," IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 7, pp. 1905-1918, December 2016.

[9] Ali Rezaei Aliabad, "Tree Topology," Int. J. Contemp. Math. Sciences, vol. 5, no. 21, pp. 1045-

1054, January 2010.

[10] Arpit Jain, Alok Kumar Gahlot, Rakesh Dwivedi, Adesh Kumar and Sanjeev Kumar Sharma,

"Fat Tree NoC Design and Synthesis," pp. 1749-1756, January 2018.

[11] John Kim, James Balfour and William J. Dally, "Flattened Butterfly Topology for On-Chip

Networks," IEEE Computer Architecture Letters, March 2007.

[12] Suyog K. Dahule, Pallavi D. Tiware and Sagar Soitk, "Review on Network on Chip (NoC)

Topology," International Journal of Innovative Research in Computer and Communication

Engineering, vol. 4, no. 5, May 2016.

87

[13] Jie Chen and Cheng Li, "Network-on-Chip (NoC) Topologies and Performance: A Review,"

2011.

[14] Andrew S. Tanenbaum, "Computer networks", Prentice-Hall Int., Inc. (2nd Ed.), 1989.

[15] Suyog K. Dahule, Sagar Soitkar and Vaishali Ingle, "A Review Paper on Different Switching

Techniques in NOC Router Architecture," International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 4, no. 11, pp. 227-229, November 2014.

[16] Parviz Kermani and Leonard Kleinrock, "Virtual cut-through: A new computer

communication switching technique", Comp. Networks, Vol. 3, pp 267-286, 79.

[17] Charles L. Seitz, "The hypercube communication chip", Dep. Comp. Sci., CalTech, Display File

5182:DF:85, March 85.

[18] Ville Rantala, Teijo Lehtonen and Juha Plosila, "Network on Chip Routing Algorithms," Turku

Center for Computer Science, August 2006.

[19] Patrick T. Gaughan, "Adaptive routing protocols for hypercube interconnection networks",

IEEE Computer, May 93.

[20] Seth Abraham, "Issues in the architecture of direct interconnection schemes for

multiprocessors", Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 90.

[21] Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Masoud Daneshtalab, Pankaj, Seok-Bum Ko

and Mark Zwolinski, "A Novel Non-minimal/Minimal Turn Model for Highly Adaptive Routing in

2D NoCs," IEEE Computer, 2014.

[22] Niranjan Chiplunkar, Muhammed Khalid, V. Sanju, Sujata Joshi and Jaya. S. Nirmala, "A

Performance Study of 2D Mesh & Torus for Network on Chip Based System," Elsevier Publications,

vol. 1, 2013.

[23] Mohammed Mirza Aghatabar, Somayyeh Koohi, Shaahin Hessabi and Massoud Pedram, "An

Empirical Investigation of Mesh and Torus NoC Topologies Under Different Routing Algorithms

and Traffic Models," IEEE Computer Society, 2007.

[24] Wu Ning, Ge Fen and Wang Qi, "Simulation and Performance Analysis of Network on Chip

Architectures Using OPNET," IEEE Computer Society, 2007.

[25] Luciano Bononi and Nicola Concer, "Simulation and Analysis of Network on Chip

Architectures: Ring, Spidergon and 2D Mesh," IEEE Transactions on, 2006.

[26] International Journal of Computer Applications, "A Comparative Study of Different

Topologies for Network-On-Chip Architecture," Computer Networks, 2013.

[27] Meaad Fadhel, Ali Qasem and Huaxi Gu, "Square-Octagon Interconnection Architecture for

Network -on- Chips," Network IEEE, 2014.

88

[28] Alexander Yin, Nan Chen, Pasi Liljeberg and Hannu Tenhunen, "Comparison of Mesh and

Honeycomb Network-on-Chip Architectures," IEEE Computer Society, 2011.

[29] Raj Jain, "The Art of Computer Systems Performance Analysis: Techniques for Experimental

Design, Measurement, Simulation, and Modeling," WILEY PROFESSIONAL COMPUTING, April

1991.

[30] Prateek Sharma, "Discrete-Event Simulation," INTERNATIONAL JOURNAL OF SCIENTIFIC &

TECHNOLOGY RESEARCH, vol. 4, no. 4, pp. 136-140, April 2015.

[31] Adekitan Aderibigbe, "MONTE CARLO SIMULATION," Proceedings of the 2008 Winter

Simulation Conference, September 2014.

[32] Nejib Mediouni, Salem Hasnaoui, Samir Ben Abid and Oussama Kallel, "Modeling and

Performance Evaluation of 2D and 3D NoCs using Discrete Event Simulation," International

Journal of Computer Applications, vol. 137, no. 12, March 2016.

[33] Gopan S. Sangeetha, Vignesh Radhakrishnan, Prabhu Prasad, Khyamling Parane and

Basavaraj Talawar, "Trace-Driven Simulation and Design Space Exploration of Network-on-Chip

Topologies," IEEE/ACM Transactions on Networking, December 2018.

[34] Khaled Salah Mohamed, "Work Around Moore’s Law: Current and Next Generation

Technologies," Applied Mechanics and Materials, Vols. 110-116, pp. 3278-3283, 2012.

[35] William J. Dally, Performance analysis of k-ary n-cubes interconnection networks, IEEE Trans.

Comp., Vol. 39, No. 6, June 90.

[36] Kajal Agrawal, Milind Shah and Gaurav Asari, "A Review Paper on Multiplier Algorithms for

VLSI Technology," International Journal of Scientific Research in Science, Engineering and

Technology, vol. 4, no. 2, pp. 205-209, January 2018.

