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Abstract 

 

The main objective of this project is to evaluate the performance of some well-known topologies 

that have been proposed for Networks-on-Chip including the mesh and torus. Whereas existing 

studies have focused on the graph-theoretical merits of such topologies, our study examines the 

performance of networks-on-chip taking into account the constraints imposed by 

implementation technology. The most relevant constraint for networks-on-chip is the wiring 

density of the chip. To achieve our goal, we have developed a simulation model using the 

discrete-event simulation technique. Extensive simulation experiments have been performed 

and the collected results indicate that while the bidirectional torus has superior performance 

when technological constraints are ignored due to its richer connectivity, its performance 

degrades considerably compared to the mesh once technological constraints are considered. Our 

results also indicate that the 2D topologies are more suitable for networks-on-chip than their 3D 

counterparts as they are a better fit for practical implementations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Résumé 

 

L'objectif principal de ce projet est d'évaluer les performances de certaines topologies bien 

connues pour les réseaux sur puce, y compris le mesh et le torus alors que les topologies existants 

se sont concentrés sur les propriétés théoriques des graphes de telles topologies, notre étude 

examine les performance des réseaux sur puce en tenant compte des contraintes imposées par 

la technologie de mise en œuvre. La contrainte la plus importante pour les réseaux sur puce est 

la densité de câblage de la puce. Pour atteindre notre objectif, nous avons développé un modèle 

de simulation utilisant la technique de simulation par événements discrets. De nombreuses 

expériences de simulation ont été réalisées et les résultats collectés ont indiqué que si le torus 

bidirectionnel a des performances supérieures lorsque les contraintes technologiques sont 

ignorées, ses performances se dégradent considérablement par rapport au mesh une fois les 

contraintes technologiques incluses. Les résultats indiquent également que les topologies 2D 

sont bien mieux adaptées aux réseaux sur puce que leurs homologues 3D car elles conviennent 

mieux aux implémentations pratiques. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ملخص
 

و    meshالهدف الرئيسي من هذا المشروع هو تقييم أداء بعض الطوبولوجيا المعروفة للشبكات على الشريحة بما في ذلك  

torus  ،تفحص دراستنا أداء   في حين ركزت الهياكل الحالية على مزايا الخصائص النظرية للرسم البياني لهذه الطوبولوجيا

الشريحة  على  كثافة    الشبكات  للرقاقة هي  بالنسبة  الصلة  ذات  القيود  أكثر  التنفيذ.  تكنولوجيا  تفرضها  التي  القيود  مع مراعاة 

الأسلاك الخاصة بها. لتحقيق هدفنا ، قمنا بتطوير نموذج محاكاة باستخدام تقنية محاكاة الحدث المنفصل. تم إجراء تجارب  

يتمتع بأداء متفوق عند    bidirectional torusجمعها إلى أنه في حين أن  محاكاة واسعة النطاق ، وقد أشارت النتائج التي تم  

بمجرد إدراج القيود التكنولوجية. تشير النتائج   meshتجاهل القيود التكنولوجية ، فإن أداءه يتدهور إلى حد كبير مقارنة مع  

لأنها مناسبة 3D من نظيراتها ثلاثية الأبعاد  ةللشبكات على الشريحمناسبة بشكل أفضل  D2أيضًا إلى أن الهياكل ثنائية الأبعاد 

 بشكل أفضل للتطبيقات العملية. 
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Introduction 

 

Much research and development have been aimed at increasing processing power by 

incorporating concurrent computations such as parallel processing. This has largely been aided 

by Moore’s law which has been the driving force behind improvements in integrated chip 

technology for the past five decades. Although the exponential trend is expected to slow down 

considerably within the next few years, it is still currently in force [1]. VLSI technology has 

matured to such a point that it has enabled a paradigm shift that allowed the introduction of 

entire systems consisting of a large number of processing elements of different computation 

capabilities (CPUs, GPUs, DSPs, etc.) to be integrated on a single chip. These are often referred 

to as Systems-on-Chip (SoCs) [1].  

SoCs have been widely recognized as a possible and cost-effective means for achieving 

performance beyond that achievable from a single processor [1]. In such systems, concurrent 

tasks inherent in applications are distributed over a group of processing elements to run 

simultaneously. These processing elements are connected by an interconnection network, and 

exchange information in their activities to solve a common problem. In order to permit 

processing elements to focus on computation and allow the overlap of computation and 

communication, each processing element is associated with a routing element that is responsible 

for handling message communication. The assembly of the processing and routing elements is 

called a node [2].  

The performance of SoCs can be affected by considerations of different levels, ranging from the 

way application processes are distributed among the various processing elements, to the 

efficiency of the underlying interconnection network. The latter has been the focus of much 

recent research activities as any interaction between the processing elements highly depends on 

the efficiency of the underlying network, often referred to as a Network-on-Chip (NoC). 

The performance of NoCs is usually measured in terms of response time and throughput. The first 

metric represents the speed of the network, and is the time taken for a message to cross the 

network. Throughput, on the other hand, is the number of delivered messages in the network 

per unit of time, and represents the load handling capacity of the network. Ideally, an NoC should 

provide low response times and high throughput. However, there are many factors that can 

affect NoC performance of which the most important are, topology, switching, routing and 

implementation constraints [2]. 

The manner in which nodes are connected via communication links in an NoC is referred to as a 

topology. Widely used topologies for NoCs include the mesh, torus and fat-tree topologies [1]. 

The properties of NoC topologies have been extensively researched over the past few decades. 

Most of these studies have focused on the graph-theoretical properties of the NoC topologies 

and have ignored the constraint imposed by implementation technology. For NoCs where the 
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whole system is implemented on a single chip, the most relevant constraint is the wiring density 

used by a given topology. Wiring density describes the number of wires required by the topology. 

This wiring density is usually fixed and limited by the implementation technology. Dally [3] has 

introduced the bisection width as a means for quantifying the wiring density requirement of a 

given topology when laid out on a 2D VLSI chip. The bisection width is the number of wires that 

cross the center of the chip. Assuming a fixed wiring density, a topology with more links crossing 

the center ends up with less wires per link, and as a consequence, lower channel width 

(bandwidth) for each link. 

The purpose of our project is to revisit the relative performance merit of well-known topologies 

for NoCs including the mesh and the torus when implementation constraints are taken into 

account. In order to achieve this, a software simulator has been developed for the well-known 

topologies notably the mesh and the torus using the discrete–event simulation technique. The 

simulation models are then used to carry out an extensive comparison among such topologies 

for both unconstrained implementations as well as constrained implementations. 

Outline of the report 
Chapter 1 provides a technical background on NoCs and the important factors that affect their 

performance, including topology, switching and routing. 

Chapter 2 provides an overview on the existing the related research work which has compared 

the performance of various NoC topologies along with a critical summary of these studies and 

also gives justification for adopting the simulation approach in order to conduct our study, then 

presents the system model that has been used for developing the simulator. 

Chapter 3 describes the simulation model (in pseudocode) using the discrete-event simulation 

technique. 

Chapter 4 uses the simulation model in order to conduct extensive comparison between the well-

known NoC topologies under various operating conditions and discusses the obtained 

performance results. 
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Chapter 1: Background on networks-on-chip 

 

The performance of NoCs can be affected by several factors including topology, switching and 

routing [2]. This chapter provides an overview of these factors. Our aim is to provide the 

necessary technical background required for understanding the subsequent chapters in this 

project report. 

1.1  Network-on-Chip topologies 
A topology of an NoC is typically modeled as a graph G=(V, E), where V, the set of vertices, 

represent the nodes, which contain the processing and routing elements, and E, the set of edges,  

represent the communication links interconnecting the nodes. 

The topology depicts how nodes are connected with each other via communication links. A 

topology can be "logical" and/or "physical". The logical topology illustrates how data flows among 

the nodes within the network whereas the physical topology indicates the placement of the 

various nodes on the chip area.  

Existing topologies for NoCs can be classified into direct or indirect, and can also be classified as 

regular and irregular [1]. The choice of a given topology for an SoC often depends on the 

application’s communication requirements. 

A typical node is composed of a processing element that can include CPUs, GPUs, DSPs, etc., local 

memory, and a router with input and output links. A generic node architecture is depicted in 

Figure 1.1, and will be used in the subsequent sections in this work. 

 

 

 

 

 

 

 

 

 

Figure 1.1 An example of a generic node architecture for NoCs. 
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1.1.1  Direct and indirect topologies 
In direct topologies, each node is directly connected to a subset of other nodes in the network. 

Nodes in a direct topology contain both processing and routing elements. This class of topologies 

is known for its high scalability [2]. Examples of well-known direct topologies include meshes, 

tori, spidergon and trees [3].  

On the other hand, nodes in indirect topologies separate the processing elements and routing 

elements (which are referred to as switches [4]). For processing elements to communicate with 

each other they must pass through the switches. Each processing element has a network adapter 

which allows it to connect to a switch. A switch has a set of ports, each having an input and output 

link. Ports are used to connect with processing elements or other switches. The interconnections 

of these switches define the various topologies. Indirect topologies are useful when specific 

patterns are required for specific applications, for example image/video processing. Examples of 

well-known indirect topologies include butterflies, deBruin, and Clos networks [2]. Figure 1.2(a) 

and Figure 1.2(b) depict an example of a direct and indirect topology respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 An example of: (a) Direct and (b) Indirect topology [1]. 

(a) 

(b) 
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1.1.2  Regular and irregular topologies 

Each node in regular NoC topologies has a comparable number of neighboring nodes. They are 

simple to implement since they are not designed for any specific application. This also comes 

with a drawback which is that these topologies are not optimized for specific applications [5]. On 

the other hand, nodes in irregular topologies have highly varying number of neighbors. This can 

allow them to be dedicated for specific applications, but are more difficult to implement in 

practice. 

 

 

 

 

 

 

 

 

 

Figure 1.3 An example of: (a) Regular and (b) Irregular topology [1]. 

 

Figure 1.3(a) and Figure 1.3(b) depict an example of a regular and irregular topology respectively. 

What follows is a brief description of well-known topologies used in NoCs.  

1.1.3  N-dimensional mesh 
The n-dimensional mesh is one of the most widely used topologies. It is strictly orthogonal [6]; a 

topology is orthogonal if and only if nodes can be arranged in an orthogonal n-dimensional space, 

and every link can be arranged in such a way that it produces a displacement in a single 

dimension. Strictly orthogonal means that every node has at least one link per dimension. The 

advantage of holding this property is the ease of implementing routing algorithms which makes 

this topology one of the easiest to implement [6]. Below are the figures of the 1D mesh, 2D mesh 

and 3D mesh. However, the mesh does suffer from some drawbacks including its large network 

diameter (i.e. the longest distance between two nodes) and the accumulation of traffic towards 

the center because the mesh topology is asymmetric. Figure 1.4(a), 1.4(b) and 1.4(c) depict the 

1D, 2D and 3D mesh respectively. 
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Figure 1.4 An example of: (a) 1D Mesh, (b) 2D Mesh and (c) 3D Mesh [1]. 

  

(a) 

(b) 

(c) 
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1.1.4  N-dimensional torus 

The torus is another strictly orthogonal topology that is similar to the mesh. However, the ends 

of the rows and columns are connected with each other. The links can be unidirectional or 

bidirectional. This is a workaround for one of the shortcomings of the mesh which is its large 

diameter and its unbalanced traffic. Thus, it provides advantages over the mesh as it has a lower 

diameter that reduces latency and makes the topology symmetric which reduces traffic pressure 

in the center. Such benefits however come at the cost of increased wiring density and the need 

for more complex routing algorithms due to its long wraparound links [7].  Figures 1.5(a), 1.5(b) 

and 1.5(c) show the 1D, 2D and 3D torus. 
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(b) 
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Figure 1.5 An example of: (a) 1DTorus, (b) 2D Torus and (c) 3D Torus [1]. 

 

Folded torus: This is a proposed variation of the torus to remedy the problem of its long wrap-

around links. In this variation, the links are folded in order to create the same physical length for 

all links between nodes and this is very useful for practical implementations. However, this comes 

at the expense of requiring a larger surface area on the chip and an increased amount of links 

crossing the center of the chip [8]. Figure 1.6 shows the folded torus. 

 

 

 

 

 

 

 

 

 

Figure 1.6 An example of folded torus [1]. 

(c) 
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1.1.5  Trees 
Many topologies are structured around trees. A tree [9] is composed of a root node connected to 

a disjoint set of descendants. A node without descendants is called a leaf node. An interesting 

property of trees is that every node except the root has only one parent, this means that trees 

do not allow for cycles, making it easier to avoid detrimental issues such as deadlocks. However, 

one of the main drawbacks of trees is that the root node and its closest descendants can form a 

bottleneck as most of the traffic tends to accumulate there. Figure 1.7 depicts an example of a 

tree. 

 

 

 

 

 

 

 

Figure 1.7 An example of a tree topology [1].  

Fat-tree: is one of the common tree topologies adopted in NoC architectures [10]. It attempts to 

work around the core issue of bottleneck near the root by using gradually higher bandwidth as 

the links get closer to the root node, with the highest bandwidth links starting directly from the 

root node. As seen in the figure below, the links represented with a larger number of arrows 

represent higher bandwidth. Figure 1.8 illustrates an example of the fat-tree. 

 

 

 

 

 

 

 

 

 

Figure 1.8 An example of a fat tree topology [1]. 
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1.1.6  Butterfly 
The butterfly [11] is an example of an indirect topology. It has a simple recursive structure that 

takes full advantage of its high number of routes and reduced network latency overhead which 

produces overall good performance. The links can be either uni or bidirectional and generally 

consist of input and output ports and router stages that contain routers. Each packet that arrives 

to the input of a router is directed (routed) to the proper output. Figure 1.9 shows an example of 

the butterfly. 

 

 

 

 

 

 

 

 

Figure 1.9 An example of a butterfly with 4 input ports, 4 output ports and 2 router stages each 
contains 2 routers [1]. 

 

1.2  Topological properties 
In this work, we will focus on direct and regular topologies because they have been widely used 

for NoCs compared to the other classes of topologies. Direct regular topologies have various 

important characteristics such as degree, diameter, average distance and bisection width. Such 

characteristics are often used to analyse the difference in performance among competing 

topologies in comparative evaluation studies [12].  

1.2.1  Node degree 
It is the maximum number of neighboring nodes that are connected to a given node. A network 

is only called regular if all nodes have the same fixed degree; otherwise, it is irregular.  

The node degree can be constant or varies as the network scales up. Higher node degree reduces 

the average distance whilst a smaller node degree reduces hardware implementation costs. This 

creates a constraint on node degree when it comes to implementing NoC topologies [12, 13].  
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1.2.2  Diameter 
The diameter of a network is the maximum shortest path between any two nodes [12, 13]. If 

there is no direct connection between two nodes, a message has to travel through intermediate 

nodes which introduces hop delay. Since the message delay is proportional to the number of 

hops, the length of the maximum shortest path becomes an important factor in determining 

network performance. A small network diameter can provide predictable routing paths and 

traffic flow and thus low latency.  

1.2.3 Average distance 
The average distance provides an indication of the average number of hops that exist between 

any given pair of nodes in the topology. This also gives an indication on the delay that a packet 

experiences when the traffic is uniformly distributed (i.e. a message is equally likely to be 

destined to any other node in the network).  

1.2.4  Bisection width 

Bisection width is an important characteristic that reflects the number of links that cross the 

center of the topology when it is laid out on a plane. A large bisection width is preferable, because 

it provides more paths between the two halves of the network and thus improves overall 

performance. Table 1.1 depicts a comparison of the mesh, unidirectional and bidirectional torus 

based on several graph-theoretic properties. 

Table 1.1 Comparison of the topological properties of the mesh, unidirectional and bidirectional 

torus with 𝑁 = 𝑘𝑛 nodes where k is the number of nodes per dimensions and n is the number of 

dimensions (please see [2] for more details). 

 

1.3  Switching  
Switching determines how packets are transferred between different routing elements and how 

they are buffered. Data can be divided into several categories depending on size [1]: 

• Messages: Group of packets that makes the entire data. 

• Packets: Group of sequential flits with the same destination. 

• Flow Control Units (flits): unit of synchronization between routers. 

• Phits (physical units): unit of data transferred through the physical link in a given cycle. 

Network Degree Diameter Average distance Bisection width 
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Listed below are brief descriptions of the more common switching techniques. 

Circuit switching:   
In circuit switching [14], a physical link is established between source and destination prior to 

data transmission. The routing header is injected into the network. The header contains the 

destination address and is called the routing probe. The routing probe progresses through the 

network to the destination reserving physical links as it is transmitted through the routers. Once 

it arrives at the destination, the connection is fully established and an acknowledgement is sent 

back to the source. The full bandwidth supported by the links is now available for data 

transmission.  

Circuit switching is most advantageous when messages are large in size and with large time 
periods in between consecutive message arrivals at routers. However, a major downside of this 
technique is that the entire physical path is blocked during transmission which can block other 
messages. 
 

Packet switching: 
In packet switching, a message is split into packets. The first few bytes of a packet contain routing 
and control information and is called the packet header. Each packet is individually routed from 
the source to the destination. A packet is stored in a buffer in each intermediate node before 
being transmitted to the next node. This is the reason this technique is also called Store-and-
Forward [15].  
 
In contrast to circuit switching, this technique is at its most advantageous when messages are 
short and frequent. Also contrary to circuit switching, links are fully utilized as multiple packets 
belonging to different messages can be in the network simultaneously and no physical links are 
blocked. However, the buffering and packet assembly/de-assembly can lead to overhead and a 
reduction in overall throughput. 
 

Virtual cut-through: 
Packet switching assumes that a packet must be received and buffered at a node in its entirety 
before any decisions can be made on where to forward it [16]. Given that the first few bytes of a 
packet contain routing information, virtual cut-through allows a packet to be forwarded to the 
next node whilst it has not even been fully received at the current node. The message can be 
effectively pipelined to its destination in low and moderate traffic loads.  
 
Assuming there is no blocking the latency experienced by the header at each node is the routing 
latency through the node and propagation delay along the physical channels. If the header is 
blocked on a busy output channel, the entire message is buffered in that node. Under high 
network loads, virtual cut-through behaves increasingly similar to packet switching. 
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Wormhole: 
The need to buffer entire packets can make it expensive and difficult to create fast and small 
routing elements. Similar to virtual cut-through, in wormhole switching [17] messages are also 
pipelined across the network. However, the major difference compared to the above-mentioned 
techniques is the largely reduced buffer size requirement at the nodes. A packet is broken into 
flits. The flit is the unit of message flow control, and input and output buffers at a node are 
typically large enough to store a few flits. The message is pipelined through the network at the 
flit level whilst the message is typically too large to store in a node.  
 
At any given time, a message can be occupying several different nodes at once. The primary 
difference between this and virtual cut-through is that, in the former, the unit of message flow 
control is a single flit and, as a consequence, smaller buffers can be used. Just a few flits need to 
be buffered at a node. The major drawback of this technique is the fact that a single message can 
be spread out across multiple nodes and thus occupying multiple buffers which may lead to 
blocking and deadlock problems [2]. 
 
Table 1.2 Comparison of the switching techniques. 

 
1.4  Routing 
Routing algorithms determine the path followed by each message or packet between source and 

destination [18]. Properties that are desirable from routing algorithms include: 

• Connectivity:  Ability for a packet to be sent from any source to any destination. 

• Adaptivity: Ability to find alternative paths in case of faulty components or congestion. 

• Guaranteed to be deadlock and livelock free: These issues can prove detrimental to a 

network and thus routing algorithms must be guaranteed to be free of these. 

Routing can be categorized into three classes: Deterministic, adaptive and stochastic [6, 20, 21]. 

 

Switching Performance 
properties 

Design 
complexity 

Buffering Cost Adaptability 
to traffic 

Circuit 
switching 

Good under light 
traffic 

Low 1 flit  Low None 

Packet 
switching 

Good under 
moderate/heavy 
traffic 

Low Packet High High 

Virtual cut-
through 

Good under 
light/moderate/heavy 
traffic 

High Packet High High 

Wormhole Good under light 
traffic 

Low A few flits Low Low 
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Deterministic routing: 
This creates a path as a function of the destination address. This means that between any two 

nodes the path created will always be the same regardless of the state of the network. The main 

advantage of this type of routing is the simplicity of the design of routing elements which creates 

a low latency when traffic is low. The drawback however, is lower flexibility in dealing with 

changing traffic conditions. 

Adaptive routing: 
Adaptive routing takes into consideration the state of the network before making any routing 

decisions. This leads to increased flexibility at the cost of more difficult implementation due to 

higher routing complexity. 

Stochastic routing: 
Routing decisions are made without knowledge on the state of the network. Whilst at first this 

might sound similar to deterministic routing which also does not take the state of the network 

into account, the main difference is that deterministic routing always takes the same choices. 

Stochastic routing may use a different manner (randomly or cyclic) to make its choices which is 

independent of the state of the network. 

More on routing: 
Routing algorithms can also be minimal or non-minimal [21]. Minimal algorithms always choose 

the shortest path between any two nodes. This leads to reduced latency however avoiding 

deadlock can prove to be a challenge. 

Non-minimal routing allows a message to move away from its destination. One of the reasons 

for this could be to avoid creation of cycles and deadlocked configurations however the major 

downside is the threat of livelock. 

Another technique associated with routing calculation is the distinction between source routing 

and distributed routing [1]. 

• Source: The source node calculates the proper path and stores it in the packet header, since 

the header must be forwarded through the network to reach the destination. The 

intermediate nodes do not make any routing judgments thus allowing for simpler routing 

elements. 

• Distributed: The packet header only contains the destination address which makes the 

routing path determined by each node on its way to the destination. Distributed routing can 

be adaptive to network changes. 

Deadlock and livelock [2] are fundamental problems that can appear in networks and 

consequently routing algorithms must be able to effectively deal with them. 

In a typical NoC, buffers are used to store packets or fragments of packets. Since buffers offer a 
limited size a situation can occur where packets cannot progress to their destination because the 



Chapter 1: Background on networks-on-chip 
 

28 
 

buffers, they need to go through are fully occupied. Meanwhile those buffers are occupied by 
packets which cannot progress either since the buffers they are requesting are also occupied. 
Packets in a deadlocked configuration end up being permanently blocked. This is why avoiding 
deadlocks is extremely important for a routing algorithm otherwise packets would end up never 
reaching their destination. A simple solution for deadlock is to use deterministic routing [2] or 
drop packets similar to what is done currently in the internet. 
 
Livelock occurs when packets continue to move through the network and spin around its 

destination without ever reaching it. Usually appears when non-minimal routing algorithms are 

used. A simple solution to avoid livelock is to use minimal routing (such as deterministic) or 

dropping packets. 

1.5 Conclusions 
This chapter has presented the most critical factors that affect the performance of NoCs. These 

include topology, switching and routing. We have presented the topological properties of NoCs 

and described some well-known topologies including the mesh and torus. We have also described 

several switching techniques including packet switching, circuit switching, virtual cut-through and 

wormhole switching.  After that we described the routing techniques commonly used in NoCs 

including deterministic and adaptive routing. 

The next chapter will present the related research work on the performance evaluation of some 

well-known NoC topologies which have been reported in the literature. 
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Chapter 2: Related research work and simulation 

modeling 

 

2.1  Related research work 

This section surveys a number of existing comparative studies that have been carried out on 

various topologies for NoCs either using analytical modeling or simulation. Our aim is to provide 

an updated review of the research carried out in this area. 

2.1.1  2D Mesh vs. 2D Torus 
The simplicity and popularity of the 2D mesh and 2D torus has made them a common choice for 

comparisons. In [22], the metrics used to determine the overall performance of the 2D mesh and 

2D torus are throughput, latency, and power consumption. The study used as parameters the 

hop count, bisection width and wire length for interconnections which in turn are decisive factors 

for determining power consumption/dissipation. The comparison has been performed 

analytically using the basic concepts of graph theory and the results have been validated through 

the simulation of the two topologies. The performance results reported in [22] indicate that as 

the network size increases, the performance of the 2D mesh worsens considerably compared to 

the 2D torus. However, it can be noted that the area and power requirements are higher in the 

torus due to the increase in wire length in practical implementations. 

In [23], a different analysis of the two topologies has been carried out using software simulation. 

The metrics used in this evaluation were latency, power consumption and power-throughput 

ratio.  The evaluation was performed using deterministic, partially adaptive, and fully adaptive 

routing whilst the traffic was modeled using uniform and hotspot distributions. Similar to the 

analytical comparison of [22], the simulation results have shown that the torus has reduced 

latency compared to the mesh, whilst exhibiting higher power consumption.  

2.1.2  2D Mesh vs. Fat-tree vs. Butterfly fat-tree 
In the work of [24], three area-efficient topologies have been compared, and these were the 2D 

mesh, fat-tree (FT) and butterfly fat-tree (BFT). The OPNET simulator was used which provides a 

convenient environment for hierarchical modeling of networks. It was assumed that the 

networks use wormhole and virtual cut-through switching. 

The metrics examined in this evaluation were latency and throughput. A finite buffer size was 

assumed and a uniform traffic pattern with different injection rates was used to obtain different 

communication scenarios. The results have revealed that FT exhibits the lowest latency and the 

highest throughput. This is due to its higher bandwidth links near the root. Even though BFT has 

lower throughput and higher latency, the lower number of routing elements and links lead to a 
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lower area overhead and energy dissipation. The results have also indicated that virtual cut-

through outperforms wormhole in all three topologies. The main conclusion from this analysis is 

that using FT in tandem with virtual cut-through could be an effective solution for NoC design. 

2.1.3  2D Mesh vs. Torus vs. Spidergon 
Whilst most existing comparisons have been conducted on regular topologies, one of the first 
studies involving irregular topologies such as the spidergon [25] against the 1D torus and 2D mesh 
[26]. The simulation modeling of the NoC architectures was performed using the OMNeT++ 
simulation framework. Figure 2.1 shows an example of the spidergon and 1D torus. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 An example of: (a) Spidergon and (b) Ring Topologies 

 
Packet inter-arrivals at a given node follow a Poisson distribution. Packets are of fixed length. The 
evaluation assumed limited buffer sizes and wormhole switching was used in all three topologies. 
The metrics considered were NoC throughput and latency. The topologies taken into 
consideration were put to the test under uniform workloads.  
 
Results were collected for three traffic scenarios: single hotspot, double hotspot and uniform. 
The single hotspot scenario has one node acting as the destination node for all messages. The 
double hotspot has two nodes act as destinations whilst the uniform has all nodes have an equal 
probability of being the destination.  
 
The conclusion drawn from the results of the three traffic scenarios is that the spidergon, given 
its ease of implementation could be an attractive solution as it delivers performance results and 
scalability comparable to that of more complex solutions. 

 

 

(a) (b) 
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2.1.4  2D Mesh vs. Square-octagon 
In the study of [27], the square-octagon was introduced and compared against the 2D mesh. 

 

 

 

 

 

 

 

 

 

Figure 2.2 An example of the Square-Octagon  

Figure 2.2 shows a basic module of the square-octagon (SONoC) with 16 nodes which are 

connected using 24 bidirectional links. SONoC is built by using 4 squares and one octagon to 

connect them using diagonal links in between. Each square is considered a cluster, and each 

cluster contains four nodes.  

The performance comparison between the SONoC and 2D mesh was carried out by using the 

OPNET simulator software. The considered metrics were throughput and latency. The topologies 

were tested under different traffic patterns such as uniform and hotspot. The considered 

parameters were the degree of the network, diameter, average hop count, path diversity, 

number of links and bisection width. 

The comparison shows that the SONoC displays better results than the mesh for different 

network sizes as SONoC performs better as the network size increases. Final results show that 

the SONoC outperforms the 2D mesh in terms of latency and throughput due to the octagon 

clusters that provide diagonal links which affect the diameter of the topology as well as the 

degree which provides rich path diversity. 

2.1.5  2D mesh vs. Honeycomb  
The authors in [28] have introduced the honeycomb as an alternative to the mesh and torus. Also 

known as honeycomb mesh, it is composed of a number of hexagons as indicated in Figure 2.3. 

The comparison was carried out against the 2D mesh. 

The simulation was performed by using a simulator called Orion 2. The used metrics are power 

consumption, area cost in addition to latency. The considered parameters are the network 
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diameter and the node degree. 

The results show that the honeycomb has better overall performance than that of the mesh; the 

honeycomb has a lower network cost, consumes less power and saves more area than the mesh.  

It was also found that the communication delay is reduced compared to the mesh which makes 

the honeycomb a preferable choice for NoC architectures. 

 

 

 

 

 

 

 

 

Figure 2.3 An example of the honeycomb mesh. 

Table 2.1 provides a summary of the existing works mentioned above. 

Table 2.1: Summary of related work 
 

Authors Topologies Metrics Parameters Findings 

 
V. Sanju, 
Niranjan 
Chiplunkar, 
M. Khalid, 
Sujata Josh 
and J. S. 
Nirmala 
(2013) 

 
 
 
 
2D mesh vs 

2D torus  

 
 
 
 
Throughput, latency, 
and power 
consumption 

 
 
 
Maximum hop 
count, average 
hop count, 
number of wires 
and wire length 

 
As the size of the mesh 
increases, the maximum hop 
count and the average hop 
count increases, which leads 
to worse performance. In 
torus’ case the performance 
does not worsen but the 
increase in wire length and 
quantity lead to higher 
power consumption 
 

 
M. Mirza 
Aghatabar, 
S.Koohi, S. 

 
 
2D mesh vs 

2D torus 

 
 
Latency, Power 
consumption and 

 
Routing 
algorithms, 
traffic model 

  
The torus has better latency 
than the mesh at cost of 
higher power consumption. 
For latency the torus is the 
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Hessabi and 
M. Pedram 
(2007) 

Power/Throughput 
ratio 

and number of 
virtual channels 

better option and for power 
consumption the mesh is a 
superior choice 
 

 
Wu Ning, Ge 
Fen and 
Wang Qi 
(2007) 

 
2D mesh vs 

fat-tree vs 
butterfly fat-

tree 

 
 
 
Throughput, latency 

 
Wormhole and 
virtual cut-
through 
switching 
techniques 

 
Fat-tree shows the best 
results with the lowest 
latency and highest 
throughput out of the three 
topologies.  
 

 
 
Luciano 
Bononi and 
Nicola 
Concer 
 

 
 
 
2D mesh vs 

ring vs 
spidergon 

 
 
 
 
Throughput, latency 

 
 
 
 
Wormhole 

 
Out of the three topologies, 
spidergon has displayed best 
results, and as an irregular 
topology, spidergon appear 
to have trade-off solution for 
getting same performance 
as the complex architectures 
 

 
Meaad 

Fadhel Ali 
Qasem and 

Huaxi Gu 
(2014) 

 
 
2D mesh vs 

square 
octagon 

 
 

Throughput and 
end-to-end delay 

 
Degree, 

diameter, 
average hop 

count and path 
diversity 

 
 

The square-octagon has 
higher throughput and lower 

end-to-end delay than the 
2D mesh 

 
 

Alexander 
Yin, Nan 

Chen, Pasi 
Liljeberg 

and Hannu 
Tenhunen 

(2011) 

 
 
 

2D mesh vs 
honeycomb 

 
 
 

Power consumption, 
area cost and 

communication 
delay 

 
 
 
 

Degree and 
diameter 

 
As an alternative 

implementation of NoC 
based systems, the 

honeycomb displayed better 
performance than the 2D 
mesh. It exhibited lower 

communication delay, less 
power consumption and 
almost half the area cost 

 

 

2.1.6 Summary 
In this section we have reviewed some research studies that have compared the performance of 

some well-known topologies for NoCs. These comparisons include mesh versus torus, mesh 

versus fat-tree and butterfly fat-tree and mesh versus ring versus Spidergon. However, these 
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comparisons have based on the topological properties but have not taken into account the 

constraints imposed by implementation technology such as the wiring density. This constraint 

can severely limit the bandwidth of channels in a given topology which may greatly impact 

network performance including message delay and throughput.  

The aim of our study is to convincingly show that implementation constraints have to be taken 

into account when comparing the relative merit of NoC topologies as they may greatly impact 

the outcome of any comparative study. 

The next section presents the different types of simulations and discusses in detail the discrete-

event simulation technique which has been adopted in our study. 
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2.2  Simulation modeling 

 
This section starts off with a justification as to why simulation has been adopted in our study, 

followed by a presentation of various simulation techniques. We then discuss the discrete-event 

simulation technique in detail. After that we present the system model that we used in our 

simulation. 

2.2.1  Justification of the method of study 
In order to perform the performance comparison between the competing topologies, software 

simulation has been selected. Simulation was chosen over the analytical approach because the 

analytical models often resort to simplifying assumptions and ignore many system details which 

results in reduced prediction accuracy [29]. Moreover, some studies [22] have analyzed the static 

properties of NoC topologies using for instance graph theory. However, such studies do not 

consider time dependent behavior of the system which may not be captured by the static 

analysis. Furthermore, it is a complex undertaking to capture analytically the dependencies 

between system parameters when determining system performance. A real-life implementation 

of the system is not an option in our case due to lack of funding and computing resources.  

Simulation has been used to conduct our study as it provides a good trade-off between 

implementation cost and accuracy of prediction. Various NoC simulation environments exist 

(including OPNET [24, 27], OMNeT++ [25], Orion 2 [28]). However, these simulators are either 

proprietary, or not widely used by the research community on NoCs. This has made resources on 

how to operate these simulators scarce.  Moreover, these simulators often contain unnecessary 

details which are irrelevant to our present study. Besides, adapting existing simulators for the 

purpose of our comparisons may prove time consuming and a challenging task. Consequently, it 

has been decided to develop our own simulator from the ground up using the discrete event 

simulation technique [30].  

In what follows, we will briefly review the different types of simulations. Then we will present 

the system model of a node in an NoC. 

2.2.2  Types of simulation models 
Simulations are useful because they allow prediction of how systems operate without having to 

implement them in the real world. They also allow prediction of various possible failures in the 

system design due to the impact of different modifications to the system. 

Monte-carlo simulation: 
Monte-Carlo models probabilistic phenomenon that do not change over time [31]. This type of 

simulation is inherently static (i.e. it is assumed that time is fixed). It utilizes statistical tools to 

mathematically model a real-life system or process and then estimates the probability of 

obtaining a successful outcome. It entails using random numbers as a tool to compute a function 
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that is not random. Possible applications of this technique include the simulation of random and 

stochastic processes (such as traffic flow) and evaluation of integrals. However, this technique is 

not suitable for our research study as it cannot model the system behavior over time. 

Trace-driven simulation: 
This type refers to system simulations performed by looking at traces of program execution or 

system component access with the purpose of predicting performance. Trace-driven simulation 

[33] uses time-ordered records of events on real systems as an input. It usually has two 

components: one that executes actions and stores the results and another which reads the log 

files of traces and inserts them into new scenarios. Possible applications include scheduling, 

caches and analysis of solid-state disks. 

Discrete event simulation: 
Discrete event simulation is a technique which can be used on systems that can be represented 

by a queuing model. The purpose of discrete event simulation is to analyse the behavior of the 

system over time. The system is characterized by a group of state variables and by operators that 

manipulate these variables [30, 32]. 

In discrete event simulation the system is only studied when a change in state occurs. This is 

usually a result of an event taking place. The simulator examines the system at discrete time 

intervals, processes any events that might have occurred and changes the state variables 

accordingly. New events are then generated as a result of transitioning to the new state. 

The events are stored in a queue known as the event list where each item in the queue contains 

the time of the event, the type of the event and the location where it occurs. The events in the 

queue are sorted in order of when they occur, with sooner events having a higher priority in the 

queue. There are generally two types of events: primary events, events that do not depend on 

any event other than time, and conditional events which are triggered as a result of other events. 

Each event refers to a procedure which is executed when that event is processed. Table 3.1 shows 

a comparison between the different classes of software simulation. 
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Table 2.2: Comparison between simulation models 

 Monte-Carlo 
simulation 

Discrete-event 
simulation 

Trace-driven 
simulation 

 
 
 
 

 
 

 
Advantages 

 
 
 
 
 
 
 
 
 

 
Disadvantages 

Using MC simulation 
is straightforward. 

Allows study and 
experimentation with a 
complex system. 

Less randomness - 
deterministic input 
reduces output 
randomness. 

Provides approximate 
solutions to many 
mathematical 
problems. 

Enables the feasibility 
testing of any hypothesis 
about how or why 
certain phenomena 
occur. 

Detailed tradeoffs - 
possible to evaluate 
small changes in 
model. 

Provides statistical 
sampling for 
numerical 
experiments using a 
computer. 

Evaluates the different 
circumstances of 
simulation by changing 
the inputs and observing 
the resultant outputs. 

Easy validation 

The results are only 
an approximation of 
the true value. 

 Complexity - 
requires detailed 
simulation of system 

Simulation results can 
show large variance. 

 High level of detail - 
simulations can be 
costly. 

A single sample 
cannot be used is 
simulation; many 
samples are required 
to obtain results. 

 Hard to evaluate 
changes in workload 
characteristics - 
need another trace. 

 

2.2.3  System model 
For the purpose of our study, the NoCs are modeled as a set of nodes connected with links. Each 

node is given a designated address which consists of n components, with n being the number of 

dimensions in the topology. In each dimension, there are k nodes, and therefore the network size 

is N=kn. For example, in the case of a 2D topology the address for any given node is designated 

as (x,y) with 0≤x,y<k . In a 3D topology the address for any given node is (x,y,z) with 0≤x,y,z<k. 

For the sake of brevity, we will describe the node structure for the 2D mesh only. This is because 

the description also applies to the node structure in the other topologies (such as the torus) and 

higher dimensions with only minor modifications. 
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Node model: 
In the 2D mesh, each node contains a processing element (PE), and a routing element. The node 

consists of five input buffer queues and five output links connected by a crossbar switch. The role 

of the crossbar switch is to connect every input to every possible output. There is a dedicated 

buffer queue for messages that arrive from the PE, and two dedicated buffers per dimension, so 

in this case two buffers for the x dimension and two for the y dimension (one per direction). The 

outputs depict the direction in which the messages can travel, the messages can travel either 

forward, or in reverse in any given direction. When a message arrives at its destination, 

transmission to the local PE for consumption is also considered as an output. The basic structure 

of a node can be seen in Figure 2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Switching and routing: 
The nodes use packet switching with input buffer queues of large capacity. This is realistic due to 

Moore's Law [34], where limited memory is no longer a significant issue. In this technique 

messages are fully buffered at each hop. Upon arrival at a node, the message header is read and 

a routing decision is made to which output buffer the message is retransmitted through.  

The nodes use deterministic routing to send messages to one another. Deterministic routing in 

the 2D mesh works as follows: a message only moves along the x-axis until it reaches a node with 

the same x value as the destination node. It then starts moving along the y-axis until it finally 

arrives at a node with the same y value as that of the destination node. For example, Figure 2.5 

illustrates how a message at source (0,0) destined to the node (2,2) would first keep going along 

Figure 2.4 A node structure in the 2D mesh. 
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the x-axis until it reaches (2,0). It then goes along the y-axis until it reaches the destination node 

(2,2). 

The main advantage of using deterministic routing is its ease of implementation compared to 

adaptive routing [19], and more importantly it avoids the issue of deadlock during message 

routing. 

 

 

 

 

 

 

 

 

 

Figure 2.5 An example of a message route from source to destination using deterministic 

routing in the 2D mesh. 

2.2.4  Conclusions 
We have in this chapter presented the argument for choosing simulation as a tool to conduct our 

study. After that we have reviewed the different types of simulations including Monte-Carlo, 

trace-driven and discrete-event simulation. We then outlined the system model, including the 

node model and the switching and routing techniques used in our study. 

The subsequent chapter presents the implementation of the simulation model for the 2D mesh 

using discrete-event simulation. The model is then extended to include the other topologies that 

are used in the comparison notably the unidirectional and bidirectional torus. 
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Chapter 3: Implementation of the simulation model  

               

This chapter provides an overview of the implementation of the simulation model. The coding of 

the program is written using C in the Codeblocks IDE. In this section we present pseudo code for 

the main program of the simulator along with a description of the events involved in the 

simulation. The events and pseudo code described below applies to the 2D mesh, however the 

other topologies and their higher dimensional variants all share similar characteristics except 

with differences in some events, and the higher dimensional topologies also have larger data 

structures. The nodes are each given a distinct address (x,y) where x<N and y<M. N and M being 

the number of nodes on the x and y dimensions respectively. Our description is kept at an 

abstract level as much as possible for the sake of clarity for the reader; Much coding details such 

as the linked lists, the manipulation of the associated pointers and the models of queues have 

not been included due to space limitations. 

3.1  Data structures 
The simulation model uses different structures (which are mostly built on dynamic linked lists). 

Event: This data structure stores information related to a single event in this simulation. It 

contains a field for the type of the event, its time, the location (i.e. the node), the input and the 

output. 

EventQueue: This is a queue of type Event that stores events that occur in this simulation. The 

events in the queue are sorted in order of time, with events sooner to occur given higher priority 

for processing. 

Message: This data structure stores information related to a single message. It contains a field 

for the ID of the message, a field for its time of arrival and a field for its destination. 

MessageQueue: This queue is similar to the EventQueue however it is used for storage of 

messages. Unlike the EventQueue, this queue does not sort the messages in order and operates 

a first-come-first-serve policy. 

Node: This data structure represents a single node in the 2D mesh. A node contains two 

MessageQueues per dimension of the topology and an additional queue for the PE, thus totaling 

5 queues in the case of the 2D mesh. The entire topology is represented as matrix of size NxM 

nodes. The node also contains 5 arrays, one associated with each output. These outputs are used 

to store requests for these outputs when the outputs are busy. 

3.2  Simulation events 
The simulator program is composed of the following events:  
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• Arrival:  Primary event to generate the traffic load on the network.  

• DecideRoute: Conditional event that is used to route messages to their destination. 

• StartTransmit:  Conditional event that occurs at the start of the transmission of a 

message over a given output link. 

• EndTransmit: Conditional event that occurs at the end of the transmission of a message. 

 

Each event is associated with a procedure that describes how the event changes the state 

variables and advances time, possibly generating other events. In addition to these procedures, 

there is a procedure for initialisation that is called once at the start of the program for 

initialisation of the system variables (including the status of the output links, the buffers, the 

queues etc.). There is also a procedure for collection of statistics such as the mean response time 

and throughput. In what follows we will describe the procedures mentioned in more detail. 

 

3.2.1  Initialisation 

Procedure Initialisation() { 

Tnow = 0;  

Set lambda; 

Initialize EventQueue; 

for (i=0;i<n;i++) { 

for (j=0;j<m;j++) { 

Initialize PE queue; 

Initialize x queues; 

Initialize y queues; 

Set request for PE output to idle; 

Set request for x output to idle; 

Set request for Xprev output to idle; 

                            Set request for y output to idle; 

Set request for Yprev output to idle; 

} 

} 

Schedule Arrival at t=Tnow 
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} 

The system variables are initialized. Tnow is the global clock which is set to 0 (i.e. the start of the 

simulation time). 

3.2.2  Main 

Initialisation (); 

while (Total number of transferred messages < max) do 

Get event from the event queue; 

Tnow = time of event; 

 

case type of event of: 

Arrival: Arrival (x,y); 

DecideRoute: DecideRoute (x,y,input); 

StartTransmit: StartTransmit (x,y,input,output); 

EndTransmit: EndTransmit (x,y,input,output); 

 end case; 

end while; 

ReportStatistics (); 

End; 

In the main program, a call is made to the initialisation procedure to initialize the state variables. 

After that the program fetches events from the event queue, updates the global simulation time 

tnow and then calls the procedure associated with the event. This is repeated until a certain 

number of messages have reached their destination. 

3.2.3  Arrival 

Procedure Arrival(x,y) { 

Create message; 

Select random destination for message; 

Place message in PE queue; 

if (message at the head of the queue) 
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Schedule DecideRoute at t=Tnow 

end if; 

Schedule Arrival at t = Tnow - (lambda*log(1-r)); 

} 

This procedure generates a message in node (x,y). The destination of the message is randomly 

selected according to the traffic pattern used. The message is then placed in the PE queue of 

node (x,y). If the message is at the head of the PE queue a DecideRoute is scheduled at 

time=tnow. The scheduling of the following arrival in that node then follows which occurs at 

time=tnow-(lambda*ln(1-r)) where lambda represents the mean arrival time and r is a random 

number uniformly generated between 0 and 1. 

3.2.4  DecideRoute 

Procedure DecideRoute (x,y,input) { 

Check the head of InputQueue; 

if (DestinationX of message at the head of InputQueue = x and DestinationY of message 

at the head of InputQueue = y) { 

if (StatusPE=idle) Set a request for PE output; 

else 

Schedule event StartTransmit with t = Tnow with x=x,y=y, input=input and 

output=x; 

} 

else if (DestinationX of message > x) { 

if (StatusX=idle) Schedule event StartTransmit with t= Tnow with x=x, y=y, 

input=input and output=x; 

else 

Set a request for x output; 

} 

else if (DestinationX of message < x) { 

if (StatusXprev=idle) Schedule event StartTransmit with t= Tnow with x=x, y=y, 

input=input and output=Xprev; 

else 
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Set a request for Xprev output; 

} 

If (DestinationY of message > y) { 

if (StatusY=idle) Schedule event StartTransmit with t=Tnow with x=x y=y 

input=input and output=y; 

else 

Set a request for y output;  

} 

If (DestinationY of message < y) { 

if (StatusYprev=idle) Schedule event StartTransmit with t=Tnow with x=x y=y 

input=input and output=Yprev 

else 

Set a request for Yprev output;  

} 

} 

Once the message is at the head of a queue and is ready for transmission, DecideRoute selects 

an appropriate output for the message by comparing the address of the current node to that of 

the destination node. Once the appropriate output is determined the procedure checks for 

whether the output link is idle or not. In the case of the channel being idle a StartTransmit is 

scheduled with time=Tnow with the output set to the chosen output. If the output is busy the 

message registers a request to that output. 

3.2.5  StartTransmit 

Procedure StartTransmit (x,y,input,output) { 

if (output=PE) { 

StatusPE =busy; 

} 

if (output=x) { 

StatusX=busy; 

} 
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if (output=y) { 

StatusY =busy; 

} 

if (output=Xprev) { 

StatusXprev=busy; 

} 

if (output=Yprev) { 

StatusYprev=busy; 

} 

} 

After the output is chosen this procedure prepares the message for transmission by setting the 

appropriate output to busy. EndTransmit is then scheduled with time= Tnow + transmission time 

of the message. 

3.2.6  EndTransmit 

Procedure EndTransmit(x,y,input,output) { 

if (output=PE) { 

if (input=x) { 

Remove the message from x queue of node(x,y); 

Collect response time of message; 

Free the message; 

} 

if (input=Xprev) { 

Remove the message from Xprev queue of node(x,y); 

Collect response time of message; 

Free the message; 

} 

if (input=y) { 

Remove the message from y queue of node(x,y); 
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Collect response time of message; 

Free the message; 

} 

 

if (input=Yprev) { 

Remove the message from Yprev queue of node(x,y); 

Collect response time of message; 

Free the message; 

} 

Check requests for PE for node(x,y); 

if (there is request for output PE from node(x,y) from x or Xprev or y or Yprev) { 

Schedule StartTransmit with input from the requested input queue and 

with output PE; 

} 

} 

if (output=x) { 

if (input=PE) { 

Remove the message from PE queue of node(x,y); 

Place message in x queue of node(x+1,y); 

if (message is at the head of Xqueue in node(x+1,y) { 

Schedule DecideRoute with input from the requested input queue 

and with output x; 

} 

} 

if (input=x) { 

Remove the message from x queue of node(x,y); 

Place message in x queue of node(x+1,y); 

if (message is at the head of Xqueue in node(x+1,y) { 
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Schedule DecideRoute with input from the requested input queue 

and with output x; 

} 

} 

if (there is request for output x from node(x,y) from PE or x){  

Schedule StartTransmit with input from the requested input queue and 

with output x; 

} 

} 

 

if (output=Xprev) { 

if (input=PE) { 

Remove the message from PE queue of node(x,y); 

Place message in Xprev queue of node(x-1,y); 

if (message is at the head of Xprevqueue in node(x-1,y) { 

Schedule DecideRoute with input from the requested input queue 

and with output Xprev; 

} 

} 

if (input=Xprev) { 

Remove the message from Xprev queue of node(x,y); 

Place message in Xprev queue of node(x+1,y); 

if (message is at the head of Xprevqueue in node(x+1,y) { 

Schedule DecideRoute with input from the requested input queue 

and with output Xprev; 

} 

} 

if (there is request for output Xprev from node(x,y) from PE or x) { 
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Schedule StartTransmit with input from the requested input queue and 

with output Xprev; 

} 

} 

if (output=y) { 

if (input=PE) { 

Remove the message from PE queue of node(x,y+1); 

Place message in y queue of node(x-1,y); 

if (message is at the head of Yqueue in node(x+1,y) { 

Schedule DecideRoute with input from the requested input queue 

and with output y; 

} 

} 

if (input=x) { 

Remove the message from x queue of node(x,y); 

Place message in x queue of node(x,y+1); 

if (message is at the head of Yqueue in node(x,y+1) { 

Schedule DecideRoute with input from the requested input queue 

and with output y; 

} 

} 

if (input=Xprev) { 

Remove the message from Xprev queue of node(x,y); 

Place message in y queue of node(x,y+1); 

if (message is at the head of Yqueue in node(x,y+1) { 

Schedule DecideRoute with input from the requested input queue 

and with output y; 

} 
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} 

if (input=y) { 

Remove the message from y queue of node(x,y); 

Place message in y queue of node(x,y+1); 

if (message is at the head of Yqueue in node(x,y+1) { 

Schedule DecideRoute with input from the requested input queue and 

with output y; 

} 

} 

 

if (there is request for output y from node(x,y) from PE or x or Xprev or y) { 

Schedule StartTransmit with input from the requested input queue and 

with output y; 

} 

} 

if (output=Yprev) { 

if (input=PE) { 

Remove the message from PE queue of node(x,y); 

Place message in Yprev queue of node(x,y-1); 

if (message is at the head of Yprevqueue in node(x,y-1) { 

Schedule DecideRoute with input from the requested InputQueue 

and with output Yprev; 

} 

} 

if (input=x) { 

Remove the message from x queue of node(x,y); 

Place message in Yprev queue of node(x,y-1); 

if (message is at the head of Yprevqueue in node(x,y-1) { 
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Schedule DecideRoute with input from the requested InputQueue 

and with output Yprev; 

} 

} 

if (input=Xprev) { 

Remove the message from Xprev queue of node(x,y); 

Place message in Yprev queue of node(x,y-1); 

if (message is at the head of Yprevqueue in node(x,y-1) { 

Schedule DecideRoute with input from the requested input queue 

and with output Yprev; 

} 

} 

if (input=Yprev) { 

Remove the message from Yprev queue of node(x,y); 

Place message in Yprev queue of node(x,y-1); 

if (message is at the head of Yprevqueue in node(x,y-1) { 

Schedule DecideRoute with input from the requested input queue 

and with output Yprev; 

} 

} 

 

if (there is request for output y from node(x,y) from PE or x or Xprev or Yprev) { 

Schedule StartTransmit with input from the requested input queue and 

with output Yprev; 

} 

} 

} 

This procedure moves the message from the input queue of the sender node and puts it in the 

input queue of the next node along the path. If that message is at the head of the queue, the 
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event DecideRoute is scheduled at time=tnow. If the message is at the final destination, the 

message is sent to the local PE where statistics are collected and the message record destroyed. 

The output link then checks for requests from any messages that are waiting to use the output 

link. If any requests are found, a StartTransmit is scheduled at time=tnow. 

3.3  Model validation 
To validate the simulation model, the simulation was run over a number of smaller, easily 

predictable cases. For instance, in the 2D mesh topology under low traffic the response time for 

a message can be given by [3] 

D x L 

Where D is the number of hops between the sender and destination nodes and L is the message 

length. For instance, a message of length 32 phits sent from node (0,0) to (2,2) would take 4 hops 

and as a consequence the response time for the message would be 4x32=128 cycles. We compare 

this value against that supplied by the simulation to check agreement. We have found that in all 

tested cases under light traffic and moderate traffic, the agreement between the calculated 

result and the results from simulation are in satisfactory agreement. 

 

3.4  Conclusions 
In this chapter, the implementation of the simulation model, including the simulation events and 

data structures, for the 2D mesh topology has been described. The program for the simulation 

model has been described in pseudocode. The different events including Arrival, DecideRoute, 

StartTransmit and EndTransmit describe the operation of the network starting from the time a 

message is generated in a node with a given destination and placed in a local buffer for 

transmission from node to node until it arrives at its destination. The simulation model has been 

specified for deterministic routing and packet switching. 

The following chapter presents the various parameters and assumptions used in this work, then 

introduces the various different comparisons carried out along with the presentations of results 

and discussion.  
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Chapter 4: Performance comparison of network-on-chip 

topologies 

 

In this chapter, we will use the simulation model described in Chapter 4 to carry out the 

performance comparison between the well-known NoC topologies namely the mesh, the torus 

with its unidirectional and bidirectional variants. In the first stage, the comparison is carried out 

assuming no technological constraints imposed on system implementation. The three topologies 

are compared in their 2D and 3D versions. Both the uniform traffic and hotspot traffic patterns 

have been considered in the comparison. In the second stage, the same performance comparison 

has been conducted between these topologies taking into account the physical constraints 

imposed by the implementation technology, notably the bisection width which is relevant to the 

implementation of NoCs in VLSI technology [12, 13].  

In what follows, we will start by outlining the assumptions used in this study, then describing the 

method for collecting the simulation results. After that we present the performance results along 

with discussions. 

4.1  Assumptions 

The assumptions which have been used throughout this simulation study have widely adopted in 

existing studies [24, 25]: 

1) Message generation at a node is independent of all other nodes. 

2) The message arrival rate at each node follows a Poisson distribution with a mean inter-

arrival rate 1/λ messages/cycle. Thus, the message inter-arrival time follows an 

exponential distribution with a mean arrival time λ cycles. 

3) The generated messages are of fixed length. 

4) Propagation delay across the links is negligible. 

5) Routing time (time for a router to decide which output to select for a given message) is 

negligible. 

6) No nodes or links break down during the simulation. 
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4.2  Simulation parameters 
The simulation model includes various parameters described below. 

4.2.1  Traffic pattern 
The traffic pattern in general describes how nodes communicate among each other. In this study 

we have used two traffic patterns, namely uniform and hotspot. These traffic patterns have been 

widely used in existing comparison studies [23, 24, 25, 27, 28]. 

• Uniform: Each node has an equal probability of sending a message to any other node. 

• Hotspot: Nodes favor sending messages to a specific node with probability p, other 

messages are sent following a uniform traffic pattern. 

4.2.2  Message arrival rate  
This parameter refers to the number of messages that can be produced during a given period of 

time. The arrival rate is gradually changed to reflect the network operating different operating 

conditions including light, moderate and heavy traffic. 

4.2.3  Network size 
The network size is a parameter which is useful for evaluating the properties of networks such as 

scalability. In this study, we examine different network sizes including 8x8 and 32x32 nodes for 

the 2D topologies, and 4x4x4 and 10x10x10 nodes for the 3D topologies. Due to limitations in 

computing resources and time, larger network sizes could not be examined. 

4.3  Performance metrics 
The comparison among the different topologies have been based on the following performance 

metrics 

4.3.1  Mean response time 
The response time is a qualitative measure of network performance. The response time for a 

single message is the elapsed time from sending a message from a source node until it arrives at 

its destination node. The response time is measured in number of cycles, where a cycle is the 

amount of time to send a phit across a link. 

R=𝑡𝑛𝑜𝑤 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙  

Where 𝑡𝑛𝑜𝑤 is the time at which a message reaches the destination node, and 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is the time 

of generation of the message at the source node. The mean response time is then found by 

averaging the response time over all delivered messages. This can be written as 

�̅�=
∑ 𝑅𝑖

𝑁
𝑖=1

𝑁
 

Where 𝑅𝑖 is the response time of an individual message i. 
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4.3.2  Mean throughput 
Throughput is the average amount of messages delivered per unit of time.  This is a quantitative 

measure of network performance that describes the raw output of the network. In this case it is 

measured in the number of messages per cycle. This is given by 

𝑇ℎ =
𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

4.4  Batch means method for result collection 
In the batch means method [29], the simulation is run once over an extended period of time. The 

simulation is then divided into a number batches of a specific number of delivered messages (let’s 

say 10000), and measures are collected over each batch to form a single point estimate of the 

performance measure of interest (e.g. response time or throughput). 

As every message arrives at its destination, the response time for that message is collected and 

added to the overall response time, and a counter that tallies the total number of messages 

delivered is incremented. When a batch is completed, the mean response time and throughput 

for that specific batch are calculated and stored. The variables related to the collection of 

statistics are then reset without stopping the running of the simulation.  The same process is 

repeated for each batch, and after the last batch is complete the overall mean (mean of the 

means of the batches) for both the response time and throughput are computed. The batch 

means method is useful because it enables us to ensure that the results reflect the system in a 

steady-state behavior. Furthermore, it allows us to avoid the warm-up effect on the simulation 

results [29]. 

 

4.5  Confidence interval 
The confidence interval calculates the range for the possible values of a specific performance 

measure. That is, for a 95% confidence for instance, if the simulation were to be run 100 times, 

the mean of that performance measure would fall within that interval on 95 occasions [29]. In 

order to calculate the confidence interval for a given performance measure, the overall mean 

and the standard deviation must be computed. The overall mean is given by 

�̅�=
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 

where 𝑥𝑖  is the mean of a single batch and N is the total number of batches. On the other hand, 

the standard deviation calculates the average distance of each batch mean from the overall 

mean, and it is given by [29] 

s=√
∑ (𝑥𝑖−�̅�)2𝑁

𝑖=1

𝑁−1
 

Once the standard deviation is found the confidence interval is then found by 
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�̅� ± 1.96 
𝑠

√𝑛
 

4.6  Results and Discussion 
This section presents first the simulation results for comparing the three topologies under 

unconstrained and constrained implementations, followed by the results of the 2D vs 3D 

comparison under constrained and unconstrained implementations. 

4.6.1 Mesh vs unidirectional torus vs bidirectional torus: Unconstrained 

implementation 
In this case, the topologies are not be subjected to any physical constraints imposed by 

implementation technology. As a consequence, we assume that the different network topologies 

all have the same channel width (i.e. channel bandwidth) irrespective of the network size. This 

enables us to assess the impact of the graph-theoretical properties of the various topologies on 

system performance. 

Scenario 1: Uniform traffic 
In this scenario, the mesh and the unidirectional as well as the bidirectional torus are subjected 

to various traffic rates using the uniform traffic pattern, where a sender node has an equal 

probability of sending a message to any other destination node.  

Before presenting the performance results for the three topologies, we show first in Table 4.1 for 

the sake of illustration the confidence intervals obtained for the response time and throughput 

for the 2D mesh with 8x8 nodes. Each performance result in the table and in all the figures below 

has been collected from 10 batches where each batch reflects the statistics of at least 2500 

delivered messages. However, the results for the confidence interval will not be shown for the 

other scenarios and topologies for the sake of clarity of the figures and due to space limitations.  

Table 4.1 Results for the confidence interval for the 8x8 2D mesh. 

Injection rate Lower bound 
response time 

Upper bound 
response time 

Lower bound 
throughput 

Upper bound 
throughput 

400 202.4 203.6 0.156 0.16 
350 203.1 204.4 0.172 0.178 
300 206 207.3 0.207 0.211 
250 208.8 210 0.245 0.251 
200 217 219 0.312 0.319 
180 219.5 221.7 0.338 0.346 
160 227.5 230 0.385 0.395 
150 233.8 236.8 0.414 0.422 
100 349.1 367.2 0.623 0.637 
90 481.2 507.8 0.674 0.688 

80 2178.2 2981.8 0.738 0.753 
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Figure 4.1 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under 

unconstrained uniform traffic for 8x8 nodes (a) Response time, (b) Throughput. 
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Figure 4.2 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under 

unconstrained uniform traffic for 32x32 nodes (a) Response time, (b) Throughput. 
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Figure 4.3 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under 

unconstrained uniform traffic for 4x4x4 nodes (a) Response time, (b) Throughput. 
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Figure 4.4 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under 

unconstrained uniform traffic for 10x10x10 nodes (a) Response time, (b) Throughput. 
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The 2D versions of the networks are compared amongst each other. The same comparison is also 

conducted for the 3D versions. The simulation results are depicted below for network sizes of 

8x8 and 32x32 nodes for the 2D versions and 4x4x4 and 10x10x10 nodes for their 3D 

counterparts. In all the figures, the x-axis represents the rate of messages injected into the 

network (measured by messages/cycle where the cycle is the time to send a phit across a link). 

In the figures 4.1(a) to 4.22(a) the y-axis represents the mean message response time (measured 

in cycles) whereas in figures 4.1(b) to 4.22(b) the y-axis represents the mean throughput 

(measured in messages/cycle). 

The figures 4.1 to 4.4 reveal that regardless of the network size or dimensions, similar trends in 

performance can be observed. The bidirectional torus exhibits the lowest response times and 

highest throughput under most traffic load conditions. As the bandwidth of the links is the same 

in all the topologies this can be attributed to the bidirectional torus’ lower average message 

distance in comparison to the unidirectional torus. This means that messages take less time to 

cross from source to destination in the bidirectional torus. The mesh showing lower performance 

in terms of response time and throughput than the bidirectional torus can be attributed to its 

topological asymmetry, which results in larger amounts of traffic congestion towards the center. 

The disparity becomes more and more apparent with the increase in network size indicating 

better scalability properties of the bidirectional torus. 

Scenario 2: Hotspot traffic 
The same simulation experiment performed in the above Scenario 1 has been repeated 

considering the hotspot traffic pattern where a sender node sends a message to the hotspot node 

located in the center of network with probability α and a probability of 1-α to any other node 

with equal probability.  In the figures 4.5 to 4.8 are the results for network sizes of 8x8  and 32x32 

nodes for 2D and 4x4x4 and 10x10x10 nodes for the 3D networks where α is set to 0.1. 

The figures reveal that the same conclusions as scenario 1 are reached in that the bidirectional 

torus exhibits superior performance for both response time and throughput followed by the 

mesh and then by the unidirectional torus. This is due to the bidirectional torus being a 

symmetrical topology and having a lower average message distance. 
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Figure 4.5 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under 

unconstrained hotspot traffic for 8x8 nodes (a) Response time, (b) Throughput. 
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Figure 4.6 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under 

unconstrained hotspot traffic for 32x32 nodes (a) Response time, (b) Throughput. 
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Figure 4.7 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under 

unconstrained hotspot traffic for 4x4x4 nodes (a) Response time, (b) Throughput. 
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Figure 4.8 Performance results for the 3D mesh vs unidirectional vs bidirectional torus under 

unconstrained hotspot traffic for 10x10x10 nodes (a) Response time, (b) Throughput. 
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4.6.2  Mesh vs unidirectional torus vs bidirectional torus: Constrained 

implementation 
Whilst the graph-theoretical properties of networks have great influence on system performance 

[35], they may not reveal the full story once systems are physically implemented onto a chip as 

is the case for NoCs [35]. In this study, we have used the bisection width constraint imposed by 

VLSI implementation technology [35, 36] to evaluate the impact of the physical implementation 

constraints on network performance. Incorporating such implementation constraints may lead 

to different conclusions to the above conclusions reached in the scenarios on “unconstrained 

implementation” regarding the relative performance merits of the different competing network 

topologies. 

In order to determine the bandwidth of the links for a given network topology, we have used the 

bisection width that has been suggested for VLSI implementation technology [35, 36]. According 

to Dally’s work [35], the bisection width for the mesh is given by  

𝐵𝑚𝑒𝑠ℎ = 2√𝑁𝑘
𝑛
2

−1𝑊𝑚𝑒𝑠ℎ 

with N=𝑘𝑛 being the network size, k being the number of nodes per dimension and n being the 

number of dimensions and 𝑊𝑚𝑒𝑠ℎ being the channel width (i.e., the number of wires per link). 

On the other hand, Dally has found the bisection width for the bidirectional torus to be [35] 

𝐵𝑏𝑖𝑡𝑜𝑟𝑢𝑠 =
4𝑁

𝑘
𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 

With 𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 being the channel width. Given that the unidirectional torus has only one link per 

dimension, its bisection width is half of that of the bidirectional torus and is found to be [35]  

𝐵𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 =
2𝑁

𝑘
𝑊𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 

Assuming a fixed bisection width across the three networks in order to reflect the physical 

constraints (In this case wiring limitations) imposed by implementation technology, it can be 

deduced that the channel width of a link in the bidirectional torus in terms of the channel width 

of that of the mesh is as follows [35] 

𝐵𝑏𝑖𝑡𝑜𝑟𝑢𝑠 =  𝐵𝑚𝑒𝑠ℎ , thus  

4𝑁

𝑘
𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 =  2√𝑁𝑘

𝑛
2

−1𝑊𝑚𝑒𝑠ℎ 

Therefore, the channel width of a link in the bidirectional torus 𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 can be expressed in 

terms of that of the mesh as [35] 

𝑊𝑏𝑖𝑡𝑜𝑟𝑢𝑠 = 
1

2
𝑊𝑚𝑒𝑠ℎ 
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Using the same arguments, it can be shown that the channel width of a link in the unidirectional 

torus 𝑊𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 can be written as [35]  

𝑊𝑢𝑛𝑖𝑡𝑜𝑟𝑢𝑠 = 𝑊𝑚𝑒𝑠ℎ 

Given that the channel width (i.e. the number of wires) is directly proportional to the bandwidth 

(given by phits/cycle) of the link, the above equations reveal that the bandwidth of the link in the 

mesh and unidirectional torus are equal. However, the bandwidth of the link in the bidirectional 

torus is half of that of the mesh and unidirectional torus. As a result, the message length in the 

bidirectional torus is double the message length in the other two topologies. To illustrate this, 

for instance if a message is 32 phits long and therefore takes 32 cycles to be transmitted on a link 

in the mesh or unidirectional torus, it will take 64 cycles in the bidirectional torus. The following 

scenarios will compare the 2D topologies amongst each other with physical constraints taken 

into account over different network sizes. 

Scenario 1: Uniform traffic 
The three topologies are subjected to a uniform traffic pattern. The following figures depict the 

results of the comparisons. 

In figures 4.9 to 4.10, the impact of the reduction in the channel bandwidth of the bidirectional 

torus can be clearly observed as it is now outperformed by the mesh across the considered 

network sizes in terms of both response time and throughput. This is in contrast to the 

performance outcome of the previous scenarios where the bidirectional torus exhibited the best 

performance out of the three topologies. However, the bidirectional torus still outperforms the 

unidirectional torus despite its reduction in channel bandwidth. This might be attributed to the 

difference in average message distance between the two topologies which is large enough to the 

point where a reduction in bandwidth is not enough to offset the difference in channel 

bandwidth. However, the bidirectional torus being symmetrical is not enough to compensate for 

its reduced channel bandwidth when compared to the mesh.  

It’s worth mentioning that the performance results of the 3D versions of the three topologies 

have revealed similar performance trends as for the 2D case. However, the results have not been 

presented due to space limitations. 
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Figure 4.9 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under 

constrained uniform traffic for 8x8 nodes (a) Response time, (b) Throughput. 
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Figure 4.10 Performance results for the 2D mesh vs unidirectional vs bidirectional torus under 

constrained uniform traffic for 32x32 nodes (a) Response time, (b) Throughput. 
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4.6.3  2D vs 3D topologies: Unconstrained implementation 
In this comparison the focus is on the impact of increasing the number of dimensions in a network 

on the overall system performance. This comparison evaluates the 2D versions of each topology 

against its 3D counterpart for an unconstrained implementation. The purpose of this is to assess 

the influence of the graph-theoretical properties of 2D topologies on performance when 

compared to those of their 3D counterparts. 

Scenario 1: Uniform traffic 
The three topologies are compared once again under the uniform traffic pattern. Figures 4.11 

to 4.16 depict the results of the comparison. 

The previous figures indicate that the 3D topologies generally outperform their 2D counterparts 

when subjected to similar traffic loads. This can be attributed to their larger number of paths 

which allows for a lower average message distance. For instance, in the 3D bidirectional torus 

with 10x10x10 nodes the average message distance is 7.5 hops whilst in its 2D counterpart with 

a similar network size (I.e. 32x32) the average message distance is 16 hops. This results in a lower 

latency for the 3D bidirectional torus compared to its 2D counterpart. The same justifications can 

be extended to the mesh and unidirectional torus. 
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Figure 4.11 Performance results for the 2D vs 3D mesh for network sizes 8x8 vs 4x4x4 nodes 

under unconstrained uniform traffic. (a) Response time, (b) Throughput. 

0

100

200

300

400

500

600

700

800

900

1000

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640

R
es

p
o

n
se

 T
im

e 
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.064 0.080 0.091 0.107 0.128 0.160 0.320 0.640 1.067 3.200

Th
ro

u
gh

p
u

t 
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

(a) 

(b)

vv



Chapter 4: Performance comparison of network-on-chip topologies 

 

71 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Performance results for the 2D vs 3D unidirectional torus for network sizes 8x8 vs 

4x4x4 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.13 Performance results for the 2D vs 3D bidirectional torus for network sizes 8x8 vs 

4x4x4 nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.14 Performance results for the 2D vs 3D mesh for network sizes 32x32 vs 10x10x10 

nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

R
es

p
o

n
se

 T
im

e 
(C

yc
le

s)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.011 0.016 0.021 0.032 0.064 0.107 0.160 0.320

Th
ro

u
gh

p
u

t 
(M

es
sa

ge
s/

C
yc

le
)

Injection rate (Messages/Cycle/Node)

2D Mesh 3D Mesh

(a) 

(b)

vv



Chapter 4: Performance comparison of network-on-chip topologies 

 

74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Performance results for the 2D vs 3D uni-torus for network sizes 32x32 vs 10x10x10 

nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.16 Performance results for the 2D vs 3D bi-torus for network sizes 32x32 vs 10x10x10 

nodes under unconstrained uniform traffic. (a) Response time, (b) Throughput. 
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4.6.4  2D vs 3D topologies: Constrained implementation 
The purpose of this comparison is to assess the impact of the physical constraints imposed by 

implementation technology on channel width when attempting to implement a 3D topology on 

a 2D chip. When a 3D topology is mapped on a 2D plane, the topology has to be stretched, causing 

more links to cross the center of the plane and thus increasing its bisection width. Each topology 

will have its 2D version compared against its 3D counterpart for a fixed bisection bandwidth as 

in Dally’s study [35]. Due to space limitations only four distinct network sizes are examined, 

notably 8x8 versus 4x4x4 and 32x32 versus 10x10x10 to ensure a similar number of nodes across 

the 2D and 3D topologies.  

Assuming a fixed bisection width and using the previously mentioned equations we can compute 

the channel width in a 3D topology in terms of the channel width of its 2D equivalent. The table 

below summarizes the channel width for the network sizes examined in our scenarios. 

Table 4.2 The ratio of the channel width for 3D topologies to that of 2D topologies 

Topology 8x8 versus 4x4x4 32x32 versus 10x10x10 

Mesh, unidirectional torus, 
bidirectional torus 

𝑊3𝐷 =
1

2
𝑊2𝐷 𝑊3𝐷 =

1

3
𝑊2𝐷 

 

Scenario 1: Uniform traffic 
The 2D and 3D topologies are assessed under the uniform traffic pattern with physical constraints 

taken into account. 

In figures 4.17 to 4.22, similar conclusions can be drawn from the simulation results for all three 

topologies. That is, the 2D topologies clearly outperform their 3D counterparts under all traffic 

loads when it comes to response time. When it comes to the throughput however the 2D and 3D 

topologies seem to show similar performance under light and moderate traffic, however the 

difference can be seen under heavy traffic where the 2D topologies have better performance. 

The conclusion that can be drawn from this is that despite the 3D topologies having superior 

graph-theoretical properties in terms of average distance, they are not enough to offset the 

reduction in channel bandwidth caused by physical constraints imposed by implementation 

technology. 
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Figure 4.17 Performance results for the 2D vs 3D mesh for network sizes 8x8 vs 4x4x4 nodes 

under constrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.18 Performance results for the 2D vs 3D unidirectional torus for network sizes 8x8 vs 

4x4x4 nodes under constrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.19 Performance results for the 2D vs 3D bidirectional torus for network sizes 8x8 vs 

4x4x4 nodes under constrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.20 Performance results for the 2D vs 3D mesh for network sizes 32x32 vs 10x10x10 

nodes under constrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.21 Performance results for the 2D vs 3D unidirectional torus for network sizes 32x32 vs 

10x10x10 nodes under constrained uniform traffic. (a) Response time, (b) Throughput. 
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Figure 4.22 Performance results for the 2D vs 3D bidirectional torus for network sizes 32x32 vs 

10x10x10 nodes under constrained uniform traffic. (a) Response time, (b) Throughput. 
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4.7 Conclusions 
In order to compare the performance merits of three well-known topologies, namely the mesh, 

unidirectional, and bidirectional torus, simulation results for the mean response time and 

throughput have been reported for a number of scenarios. For an unconstrained implementation 

on channel bandwidth, the bidirectional torus shows the best performance in terms of response 

time and throughput compared to the others. This is due to the combination of its good average 

distance along with it being a symmetrical topology. The mesh exhibits performance than the 

unidirectional torus thanks to its better average distance. In contrast, when implementation 

constraints on channel bandwidth are taken into consideration the mesh demonstrates superior 

performance over the unidirectional as well as bidirectional torus. This is mainly due to its higher 

channel bandwidth manages to offset the detrimental effects of it being an asymmetrical 

topology and higher average distance in comparison to the bidirectional torus. 

Another comparison between the 2D and 3D topologies for the case of the mesh, unidirectional 

and bidirectional torus has also been carried out. Simulation results have revealed that the 3D 

topologies deliver better performance in the unconstrained scenarios owing to their superior 

graph-theoretical properties relative to their 2D counterparts. However once implementation 

constrains are considered the significant reduction in channel bandwidth for the 3D topologies 

caused their performance to deteriorate. This allows the 2D versions to exhibit better 

performance. It is worth mentioning that the observed performance trends are applicable for 

both uniform and hotspot traffic patterns. 
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Conclusions and future directions 

 

Much research activities on Systems-on-Chip (SoCs) have gained momentum over the past 

decades due to the exponential increase in transistor integration into chips as predicted by 

Moore’s Law [1]. This has enabled the implementation of many processing elements inside a 

single chip. These processing elements are often interconnected by means of routing elements 

via links forming what is usually known as a Network-on-Chip (NoC).  

Numerous research studies have proposed various topologies for NoCs, including the mesh, 

torus, fat-tree and spidergon. Many of the existing studies have compared the relative 

performance of these topologies [22, 23, 24, 25, 27, 28]. However, most of these studies have 

concentrated on the graph-theoretical properties of these topologies and have largely ignored 

the impact of the constraints imposed by implementation technology on channel bandwidth. The 

most relevant constraint in the case of NoCs is the wiring density [35]. This is often measured in 

terms of the bisection width [35]. 

The aim of our project has been to compare the performance of some well-known topologies 

notably the mesh and the torus (with its unidirectional and bidirectional variants) while taking 

into account the implementation constraints. To achieve this, a discrete-event simulation model 

for these networks has been designed and implemented in C using the Codeblocks IDE. The 

simulator has been validated using known test cases where the outcomes can be easily predicted. 

The simulation model has been used to perform extensive simulation experiments to analyse the 

performance of the mesh, unidirectional and bidirectional torus under various operating 

scenarios. When implementation constraints on channel bandwidth are ignored, the simulation 

results have indicated that the bidirectional torus exhibits the best performance over the mesh 

and unidirectional torus (for both the 2D and 3D versions) under uniform as well as hotspot traffic 

patterns. This can be justified by the fact that the bidirectional torus has a lower average distance 

in comparison to the unidirectional torus and mesh, and having a topology that is symmetric 

allowing it to distribute the network traffic evenly across its links.  

When implementation constraints on channel bandwidth are taken into consideration the mesh 

and unidirectional torus end up with higher channel bandwidth than the bidirectional torus. The 

simulation results have revealed that the mesh (for both the 2D and 3D versions) can take 

advantage of its wider channel bandwidth to mitigate the negative effects of its asymmetrical 

topology and higher average distance in comparison to the bidirectional torus. The unidirectional 

torus, however, does not manage to exploit its higher channel bandwidth to compensate for its 

higher average distance. In other words, the mesh exhibits lower response times and higher 

throughput when subjected to uniform and hotspot traffic patterns. 
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Another comparison between the 2D and 3D topologies for the case of the mesh, unidirectional 

and bidirectional torus has also been carried out. Simulation results have shown that the 3D 

topologies deliver better performance in the unconstrained scenarios. This has been attributed 

to their larger number of paths which in turn allows for a significantly lower average distance 

relative to their 2D counterparts. 

When implementation constraints are imposed on channel bandwidth the performance of the 

3D topologies worsens significantly compared to the 2D versions. This is because of the large 

reduction in channel bandwidth as a result of fixing the bisection width. This allows the 2D 

versions to exhibit better performance. It is worth mentioning that the observed performance 

trends are applicable for both uniform and hotspot traffic patterns. 

There are a number of possible directions that can be pursued in order to further extend our 

work and these are listed below. 

If the necessary computing resources were available it would be interesting to run simulations 

for large network sizes (e.g. thousands of nodes). This is motivated by Moore’s Law that predicts 

that NoCs with thousands of nodes would be a reality in the foreseeable future. 

Many adaptive routing algorithms have been proposed in the literature [2] which can take 

advantage of the various paths that exist in a given topology to improve network performance. 

A possible extension of this work would be to extend our simulation model to incorporate 

adaptive routing and evaluate its influence on the performance properties of the mesh and torus 

networks. 

A popular alternative to packet switching is virtual cut-through as it enables the reduction of 

response time under light to moderate traffic by avoiding the necessary buffering at intermediate 

routing elements. It would be interesting to adapt our simulation model to include this switching 

technique and quantify its influence on the outcome of any comparative study of competing NoC 

topologies.  

Applications typically exhibit various communication patterns between the processing elements 

including broadcast and multicast. A natural extension of our work would be to develop the 

simulation model further to accommodate these traffic patterns and assess their impact on the 

performance of NoC topologies. 
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