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Abstract

This work presents a comparison between Firsov and the Lindhard-Scharff-Schiott
(LSS) stopping power models and experimental data. Firstly the background and the results of
the Thomas-Fermi model on which the Firsov and Lindhard-Sharff-Schiott (LSS) stopping
power models are based are discussed before presenting the Firsov and LSS models and
comparing between them. In a second time, the results of the stopping powers of some
projectiles, obtained by using LSS model, Firsov’s model, the SRIM program and available
data, each one in 3 or 4 different targets are discussed, and we finish by discussing the Z

oscillations which are due to the shell structure of the atoms.
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Chapter I

Introduction

In this chapter we present a general description of the slowing down of swift ions in
matter, a historical review of the existing theories of the slowing down of swift ions in matter,
the motivation of studying of the slowing down of swift heavy ions at low energies and frame

the work in its scientific context.

1. General description of the slowing down of swift ions in matter:

Whenever an energetic charged particle, passes through a matter, it loses a certain
fraction of its energy by collision with atoms of the stopper material. This loss depends on the
stopper material nature, and energy of the incident ions.

Conceptually, for a quantitative understanding, the slowing down of energetic ions in matter
is described by a fundamental parameter, S, alternatively called stopping force or stopping
power or linear energy transfer (LET).

When an ion of energy E cross an infinitesimal thickness Ax in the matter, it losses some of

its energy, AE, by collision with target atoms (See Fig. L.1).

Ax

E E-AE

s

Fig. I.1: Energy loss of an ion after crossing matter

The mean of energy loss by path length is called the stopping power of this ion in this

matter at the energy E:

S(E) = — %ﬁ—i (p is the density of the target)  (L1)

The stopping power has a force dimension, which is why it is also referred to as the stopping

force' [Sig-2000]. Energy loss and linear energy transfer are used alternatively as well.

. Stopping power is an historical phrase, and Stopping Force would be more accurate.
Chapter I: Introduction Page 7




The loss of energy results from various interaction processes such as:
1. Excitation and ionization of target electrons,
2. Projectile excitation and ionization,
3. Electron capture,
4. Recoil loss (‘nuclear stopping’),
5. Electromagnetic radiation.

For light ions electromagnetic radiation (the 5™ process) is negligible up to very high
velocities and process 1 dominates except at very low-speed. But for heavier ions, the
processes 2 and 3 cannot be neglected in general and, moreover, nuclear stopping becomes
relatively more important at low and moderate velocities. Radiative processes become

dominating at extremely high velocities [Sig-2004].
It is customary to distinguish two different mechanisms of energy loss:

1) Nuclear stopping power, in which energy is transmitted as translatory motion to a target

atom as a whole.

2) Electronic stopping power, in which the moving particle loses its kinetic energy by exciting

or ejecting atomic electrons.

For most purposes, this separation into elastic (nuclear) and inelastic (electronic) collisions is

: - dE
a convenient one [Nas-2015]. The energy-loss rate -, can thus be expressed as:

dE
n  dx

dE_dE
dx ~ dx

e

Where the subscripts n and e denote nuclear and electronic collisions, respectively.

In both cases, the interaction is basically of a Coulomb type; for the electronic case, it
is pure Coulomb, while in the nuclear case, it is a form of screened Coulomb potential at low

energy [Ter-2007].

Nuclear collisions can involve discrete energy losses and significant angular deflection
of the trajectory of the ion. This process is responsible for the production of lattice disorder by
the displacement of atoms from their positions in the lattice as well as direct backscattering

events in Rutherford backscattering spectrometry. Electronic collisions involve negligible

Chapter I: Introduction Page 8



deflection of the ion trajectory, and negligible lattice disorder [Nas-2015]. The relative
importance of the two energy-loss mechanisms changes with the velocity and atomic number
Z1 of the projectile. The nuclear stopping predominates for low velocity and high Z1, and

electronic stopping predominates for high velocity and low Z1.

A comparison of the nuclear and electronic energy loss rates expressed is shown in Fig. L. 2.

Mgin Ag

electronic stopping

S (MeV / (mg/em?))

™ nuclear stopping

Fig. I. 2: Comparison between nuclear and electronic stopping power. The maximum of the

nuclear stopping curve typically occurs at energies between 10-100 keV (Drawn by the
program SRIM).

In this work only the electronic stopping power is concerned, so in the following we shall

write stopping power and we don’t have to specify that it is the electronic stopping power

except when confusion is possible.

Another classification according to the ion energy is essential to highlight a physical
model of energy loss (see Fig. 1.). The low energies region (region I) contain the LSS
(Lindhard, Sharff and Schiott) domain of energies where the stopping power is approximately
proportional to the ion velocity i.e. the square root of the ion energy [Gue-2016]. In this work
we try to explore the stopping power in the LSS domain. We distinguish also the intermediate
region (region II) and the Bethe-Bloch region for high energies of ions (region III) [Nas-
2015].

Chapter I: Introduction
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Fig. 1.2: Electronic stopping power as a function of ion velocity and the LSS, intermediate and

Bethe-Bloch regions.

2. Historical review:

The history of the penetration of a particle into matter might begin 400 years ago with
the study of projectile ballistics, since the understanding of cannonballs in a viscous medium
which is similar to the penetration of particles in matter [Zie-2008]. However, the subject of
the stopping power and energy dissipation of charged particles through matter begin only the
last century, from the discovery of radioactivity (in 1896 by Henri Becquerel while working
with phosphorescent materials [All-1996]) which has offered well-defined beams with
energies of several orders; before that, some experimental observations were made around
1850 in gas-discharge tubes, also the contribution of the identification of “cathode rays” and
“canal rays” by Thomson in 1897 and Goldstein in 1902, and the observation of numerous
phenomena [Sig-2006]. In 1900 Marie Curie is the first who speculates that alpha rays are
material projectiles likely to lose their speed through the material. By changing the thickness
of a metallic film she was able to find the energy loss of the alpha particles emitted from
radium as a function of the density of the metal. Since such experiments have been carried out
by scientists but these early studies were unable to create an energy deposition theory because

there was not yet an accurate proposed model of the atom [Zie-2008].
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The first theoretical treatment about scattering of electrically charged particles was
published by J. J. Thomson in his classic book on electricity ‘Conduction of electricity
through gases’, where he did not demonstrate the calculations of the energy loss in direct way,
but he was interested in the problem of charged particle stopping [Hab-2011]. In 1911
Rutherford published his famous analysis leading to the structure of the atom as being made
up of a heavy nucleus surrounded by electrons also this analysis established the concept of
scattering cross section in order to describe statistically the interaction of fast particles with

matter [Sig-2006].

These were the earlier studies in the domain, after that Niels Bohr and Hans Bethe
proposed the first accurate and acceptable theories to study the energy deposition phenomena.
In fact, they have succeeded in solving many limitations and problems corresponding to in the

previous work carried out by Thomson and Darwin [Shu-2015].

In 1913 Bohr’s classical approach for the electronic stopping power was unstable and
served as a basis for the quantum mechanically description of the stopping problem. The
discovery of the nuclear fission in 1938 [Hil-1989] gave the possibility for a detailed search
on the penetration of high speed particles through matter [Kor-2006]. Bohr and Lindhard
understood the difficulty and complexity of describing both the ion and the target particles
during the collision. They connected the energy loss of fission ions along stopping path with
the capture and loss of electrons by such particles [Boh-1954]. Bohr also recognized that the
study of the stopping process is limited by knowledge of the ion charge state inside matter,

which is estimated by the balance between electron capture and loss processes.

In the 1920s with the advent of quantum mechanics, Bohr’s classical stopping model
showed inconsistencies to explain the atomic phenomena because the transfer of energy
occurs in discrete quantities. By using Bohr’s approximation, Hans Bethe recreated the
classical result in the quantum-mechanical treatment. The calculations in his new version are

valid for relativistic energies.

Later Felix Bloch investigated the classical and quantum-mechanical approaches and
found conditions in which these theories could be used. Bloch made corrections to Bethe’s

model and got the formula, which is valid for Bethe’s result as well as for Bohr’s [Kor-2006].

In 1958 Firsov used numerical techniques to derive the interatomic potentials of two
colliding atoms treated by the Thomas-Fermi atomic model, then he adapted these potentials
using the Thomas-Fermi screening length in order to get his stopping power formula for low

velocities [Fir-1958-a,b]. Another important model for low velocities was the lindhard,
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scharff and schiott theory (commonly called LSS theory) [Lin-1963]. LSS theory was the
peak of stopping and range theory based on statistical atoms [Zie-2008]. In this work, we are

interested in the tow last theories which will be well described in the next chapter.
3. Motivation:

The stopping power parameter is an indispensable and critical quantity in several fields of
technology using the interaction of an ion beam with a target [Gue-2014]. Let us mention

some of uses area:
3.1. Ion beam analytical techniques for surface and rear surface characterization:

Materials analysis by ion beams is developing day by day as a powerful tool based on a

variety of physical mechanisms, for example:

e The Rutherford Backscattering Spectrometry (RBS) which is used to determine
the structure and composition of materials by measuring the backscattering of a beam
of ions,

e The Particle-Induced X-ray Emission (PIXE) which is used to determine the
elemental composition of a sample, when it is exposed to an ion beam, its atomic
interactions give rise to electromagnetic radiation of the wavelengths in the X-ray part
of the electromagnetic spectrum.

e Nuclear reaction analysis NRA) which is based on the study of gamma
electromagnetic radiations or particles emitted during nuclear interactions between a
beam of high-energy incident ions and the nuclei of the atoms of the target to be
studied.

In all these analysis methods and others using ion beams, knowing the stopping power
of the beam ions with good accuracy, is extremely necessary to get reliable results [Msi-

2009].

3.2. Ion implantation:
It is used to implant the beam ions of one material into another solid, thereby changing
the physical, chemical or electrical properties of target. In order to get good results, a well
control of two important experimental parameters is extremely necessary: the beam intensity

which determines the number of implanted ions and the beam energy which determines the
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of two important experimental parameters is extremely necessary: the beam intensity which
determines the number of implanted ions and the beam energy which determines the implant
depth [Msi-2014]. Tt is clear that the second parameter has no sense without knowing the

implanted ion range (including energy loss).

3.3. Radiation protection and radiation therapy:

Since the discovery radioactivity, undesired radiation effects on living tissue have been a
major problem for radiation research. Radiation protection and dosimetry and the
development of standards involve measurements with charged-particle beams at all stages,

and highly advanced theoretical calculations enter here [Sig-2006].

Also in radiation therapy which is a type of cancer treatment that uses ion beams to destroy
the tumor cells. The energy loss and ranges need to fore carefully studied before setting up the
radiation treatment to maximize the damage for the tumor and minimize the potential damage

to the healthy tissue.

Performing an experiment to determine the stopping power of a projectile at a well-
defined energy using thin films is very expensive, and although many experimental data have
been published for the last decades, many deficiencies and discrepancies appear in these data,
thus they become often incapable of satisfying many needs of the different fields of
applications [Gue-2015]. For example, in radiation therapy, tumor treatment with heavy ion
beams exhibits several advantages, for example range straggling and lateral scattering are
small [Lan-1996]. Therefore, an accurate theoretical expression of stopping power is

extremely needed in order to fill the gaps in experimental data.

In this chapter, we have presented a general description of the slowing down of swift ions in
matter and two ways to classify the stopping power according to the interaction processes and
the ion energy, and then we have presented a historical review of the existing theories of the
slowing down of swift ions in matter, and we have finish by introducing some applications of

the stopping power parameter.

Chapter I: Introduction Page 13



Chapter II

Fundamental Theories of the Stopping Power at Low Velocities

1. Introduction
In this chapter we begin by presenting the cross section concept and a general

expression of the stopping power as a function of the cross section. A short discussion of the
background of the Atomic Thomas-Fermi model on which the Firsov and Lindhard-Sharff-
Schiott (LSS) stopping power models are based, will be doing. We present the Firsov and
LSS models and a comparison between them, and we finish by discussing the widely used

software package SRIM (Stopping and Range of Ions in Matter).

2. The cross section concept
The general theories of the stopping power are fundamentally based on the concept of

transfer cross section.

A detailed description of the concept of cross section can be found in course of
Interaction of ions with matter [GUE-2016]. The cross section is a fundamental concept in all
theories of penetration of ions in matter. In order to understand easily the concept of the cross
section we begin the simple case of collision of point projectile with a hard sphere of radius a
(see Fig. I1.1)

Fig. I1.1: Cross section for collision between
a point projectile and hard sphere

It is clear that, all incident point projectile which are in the area wa® make a collision

with the target sphere, this cross area is called the collision cross section.

Microscopically, we have not a simple relationship between the cross section and the
physical size of the particles. The magnitude of a given cross section depends on the target,
the projectile, and their relative velocity, and also on the process that we want to watch it, for
example ionization, excitation, nuclear reaction, emission of specific particles and so on [Sig-
2006].
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In order to define the cross-section, let some microscopic target of thickness Ax and
atomic density N to be bombarded by a beam of projectiles of flux I spread homogeneously
over an area A (Fig. I1.2).

L —
Ax

Fig. I1.2: Macroscopic target bombarded by a beam.

We consider that the thickness Ax of the target is very small and the particles of the
target are sufficiently distant from each other, so that an incident particle interacts almost with
one target particle. We thus neglect the processes of multiple scattering. Let o; the cross
section for some process i (excitation, ionization, scattered, recoiled ...). With this
consideration, everything happens as if we have a surface A containing NAxA diffusing
centers and these centers occupy an effective section equal to o;NAxA . Thus, there is only
one part of the surface A that interacts, so we can deduce the probability of interaction of the
beam:

__ (NAxA)a; _ the effective area
1= A - the total area

= NAxo; (IL.1.a)

Experimentally the last probability can be measured by the number, Ninteract rir» of particles
detected (interact: excite, scattered, recoiled...) over the space per unit time, divided by the
number, Nipcigens, Of incident ions by unit of time. The number Nipterace sir i €qual to the
product of the incident flux I (I is defined as the number of particles per unit time crossing a

unit area normal to direction of incidence) by the area A.
p; = N intel'r':ct 1ir (II 1 b)
The comparison of Egs. (IL.1.a) and (IL. 1.b) gives the cross section for all interactions:

— Ninteract ;
g == (I1.2)
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Note that for theoretical calculation of the total cross section the last equation is considered by
taking the number of target particles NAxA equal to one, then the total cross section is given

as:

o= Nint;zract (113)

3. General expression of the stopping power
Consider a very thin layer of thickness Ax in the matter in the sense that one incident ion can

produce almost one particular energy transfer.

If N ions of energy E traverse one by one a thickness Ax in the matter or we realize N times

the experiment of traversing of one ion in matter of thickness Ax, for each experiment j j = 1,

2...) we have a number n{ of particular energy transfer T;.

The process of particular transfer energy T; induces a mean energy loss by traversing one ion

is given by:

N _J
z:j=1 i

N

(AE); = =¥, nlTi = T; (IL.4)

It is clear that Z?’=1 nlj represent the number of particular transfer of energy T; for N incident

ions, where n{ can take only the values 0 or 1 (the probability of a particular energy transfer

T;is very small). So, from II.1.a, we can write:
(AE)l = TiNAJCO'i (IIS)
Where o;is the cross section for the specific particular energy transfer i.

For all particular transfer, the mean energy loss for one collision is given by:

(AE) = NAx ZiTiai (116)
The stopping power is then, given by:
1(AE) _ 1
;(Tx = >N T, (IL7)

In the literature S = Y,; T;0; is called stopping power parameter [Sig-2006]
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4. Thomas-Fermi atomic model
The Thomas-Fermi model is a semi classical theory that describes the electronic

structure of atoms. The development of the Thomas-Fermi model is based on the
determination of an average potential V(r) acting on the atomic electrons with electron
density p(r). [Gal-1990]

4.1. The free electron gas
Before introducing the Thomas-Fermi model for the ground state of multielectron

atoms, we start by recalling the results of the quantum study of a system constituted of N free

electrons confined in a cube of side L, called Fermi electron gas.

The wave function of a free electron in a box is given by:

/2 . ) '
Wi, (1) = (%) sin(k,x) sin(k,y) sin (k,z) (11.8)
where ky =25k, =25 k, =™E with ne,ny,n, = 1,20 (IL9)

the energy E of one free electron is given:

E(R) =2 (2 + 1% + 1,7 =2 (IL.10)

2
2m
The vector k = kye, + kyey + ke, is called the wave vector.

3
From the boundary condition (IL.9) each volume of 1;—3 in k-space contains one state, then the

number of possible state containing in a sphere of radius k in space is equal to:

NS—ZX'B' = —;_L_-;V (IL.11)

L3

The factor 1/8 in the expression I1.11 appears because ky, ky and k, are positives and

the factor 2 describe the two spin directions.

The substitution of Eq. (I1.10) in Eq. (IL.11) gives:

1 .2
Ny=m G PVES” (I1.12)

The density of states D(E) describes the number of electron quantum states per unit of
energy, and D(E) d E represents the number of electron states inside the interval of

energy [E, E + dE]. Thus, the density of states D (E) is obtained by deriving Ns(E):
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dNg 1,2
D(E) = =2 = — (5)*/*VEY/? (IL.13)

At absolute zero temperature, it is well know that all the states are occupied up to the
Fermi energy Er, so the number N of electrons is given by:
E 1 2m 3/2

N = [["D(E) dE = — (-)*/*VEr / (11.14)

Then, the Fermi energy is given by:
Ep = 1= (3n%p)?/3 (IL15)
F=o. p .

where p is the electronic density (p = -}‘;).

The electron velocity corresponding to the Fermi energy is called the Fermi velocity
vr Where

v = /%—’flﬁ =L (3n2p)*/? (IL16)

The wave vector corresponding to E r is k  (the Fermi wave vector), from (IL.11) and
(IL.15) we deduce:

ke = Y = (3n2p)1/3 (IL.17)

If we suppose that E = %mv2 we deduce from (II.13) the density of state as a function of the

velocity v

D) = [Z—(CD¥V v (IL.18)

2 2m2 ~h?
The mean value of the electron velocity (v, ) is obtained by using (II.17) where

) fovF vD (v)dv
Vel =~ oF po~ 1
Jy D(w)dv
We get after inserting the vy formula (equation (I1.16))
(ve) = 2 (3n%p)*/? (IL19)

Noting that the total energy of a Fermi electron gas in the ground state is obtained by the
integral

Evor = [, " ED(E)dE = ZNEy (11.20)
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4.2. The Thomas-Fermi atomic model
Consider an atom of N electrons, the potential ¢(r) acting on one electron is
generated by the nucleus and the other electrons. The Thomas-Fermi treatment of the atom
consists to suppose that the variation of the potential ¢(r)is very slow. According to
Merzbacher [Mer-1961] this later condition is verified if the potential verify the following
condition:

_1 de@ 1
g Rl (I1.20)

where the A(r) is the de Broglie associated associate wavelength to the electron at the
position r. the eq (I1.20) indicate that the potential ¢(r) must be practically constant over a
distance of wavelength A(r) range. Then over a distance of wavelength range each electron

2
can be considered as an electro of the Fermi gas of energy 5—m —ep(r).

The allowed energies of an electron can be written as:
E=E —ep(r)

Where E; is one allowed level of the Fermi gas.

If an electron is at the edge of the Fermi Sea, its momentum is py so that its total energy is.
Epox = Er —eq@(r) (IL.21)

The maximum energy must be the same throughout the atom; otherwise the electrons
will move to decrease their total energy, it means that Er must be now a function of r.

Using (I1.15) and (I1.21) we get:

3

p() = = (35)? Emax + e (1))%/? (1.22)
We denote by
ed(r) = Epgr + e(r) (I1.23)

So that the previous equation will be

1
312

3 3
p(r) = (i_m) (ed(r)? ford =0 (I1.24)
No electron is confined for ® < 0, consequently,

p=0for¢p <0 (IL.25)

We consider the charge density —ep(r) of electron as continuous, so that we can use
the Poisson’s equation of electrostatics to write

Apr) =22 (r220) = £ p(r) (I1.26)

€9
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By inserting (I1.24) in (I1.26) we obtain

3 3
1d 2dp() _ e 2m\2 =
:2-5 (7‘ T) - 3m2gg (hz) (ed)(?‘))z
Also we get from (I1.25) and (11.26)

ii(1'231-9@) =0 for$p <0

r2 dr dr

when approaching the nucleus (i.e. r — 0), the potential ¢(r)approaches 4%—2-‘:—2-
0

(electrostatic potential of point charge) consequently

. 1 Ze?
hmr_)o ¢(T) = 4mEy T
Let us put
1 z
¢ (T) = 41TER Te X

So,

do(r) Ze 1 dy

dr Aol 12 dr

Then it follows that

E_(rz i‘&@) I,

dr dr 4ey  dr?

(IL.27)

(11.28)

(IL.29)

(I.30)

(IL31)

By setting r = bx where x is a dimensionless variable, (I.27) take the new form

dx2 3w ag3/? x1/2

dzx _ 27/2 1 1/2 N ){3/2

B :
where a, = 4me, =8 the Bohr radius.

we put
b = ;fz i, S
It follows that
by B ap
T 27/3 zi/3
1
b = —70.885a,

It is clear from (I1.35) that b has the dimension of length. So (I1.32) is simplified to

dzx _ X3/2
dxz ~ x1/2 for x=0

(IL32)

(IL33)

(IL34)

(IL.35)

(IL36)
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This equation is known as the Thomas-Fermi equation. We deduce from (I1.28) and

(IL31) that 327)2( = 0 for y < 0. Thus the Thomas-Fermi equation becomes:

d2 3/2

#g = ’; = for x=0 (IL.37.a)
d?y

=t 0 for <0 (I1.37.b)

We get for the boundary condition at r = 0 from (I1.29) and (I1.30)
x(x)=1 at x=0 (1I1.38)
It is clear that the potential vanishes when r — oo that means
lim,_, ¢p(r) =0 (IL39)
So that we get the second boundary condition for the T-F equation
¥(x)=0 at x=wo (IL.40)

The solution of equation in (IL37.b) is C(x — x) where C is negative constant, and
we must have

C = x (xp) (IL41)

It means that y(x) has one zero at most in the interval (0, +o0) and y is positive in the
interval (0, x,) and negative in (xg, +0).

The number of electron in the atom is obtained by integrating p(r) in the space
A fgop(r)rzdr =N (11.42)
By using (I1.24) and (11.34) equation (I1.42) becomes
N = Z [ °Vax(x)*/?dx (IL.43)

By inserting (I1.37.a) in (IL.43) it becomes
Xp .
dx
N=Z f xaﬁdx

0
dy =
N =Z[x e x1o
xox (0) = = (I1.44)

We consider first a neutral atom i.e. N = Z, so the derivative y vanishes at the same
point as y, therefore the point x, must be at infinity. Thus the graph of the numerical solution
for neutral atom is given by:
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Fig. I1.3: Graph of y(x) for neutral atoms

Since y(x) is known, we can deduce the potential energy (11.30)

1 Ze?

—x (IL45)

4TMEq T

¢(r) =—

For the case of ions, i.e. N # Z, we remark from equation (I1.41) that x, ¥ (x0) <0, s0
according to (I1.42) we must have N < Z.thus we conclude that the T-F model cannot be
applied to negative ions [Gal-1990].

5. Firsov Stopping power model

Consider an ion of low velocity v (v < Z1§v0)1, energy E, chargeZ,, and mass m,
collide an atom of mass m, at rest with impact parameter py. According to the Firsov’s
picture [Fir-1959] the transfer of energy AE, from the ion to the atom is due to the exchange
of electrons between particles. The electrons pull out from the ion have the speed v of the ion;
take place on the atom at higher energy levels. This exchange leads to an excitation of the
target atoms by receiving energetic electrons and giving up slow electron to the ion. Thus the
momentum of the ion decreases due to this process of interaction. The treatment of the
momentum exchange between the incident ion and the atom electrons is subject to the

following perceptions and approximations:

1. The motion and the distribution of electrons for both ion and atom are describing by

the Thomas-Fermi model of the atom.
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2. There is a minimum of the T-F potential on the surface joining the two particles (the
superposition of the two T-F potential of the two atoms), this “Firsov’s surface” S 1S
perpendicular to the equipotential surfaces containing the minimum potential point.

Thus the normal component of the electric field vanishes everywhere at the surface S.

, atom

Fig. I1.4: sketch of the equipotential surfaces during approaching of the ion and atom.
Note that near the two nuclei the equipotential surfaces are spheres.

3. By using the Gauss theorem in case of a neutral quasimolecule (constitute by the two
atoms: case treated by Firsov in his paper which consider the collision of two atom not
ion-atom), the mean value of the electronic charge present in one side of the surface S
is equal to the mean value of the charge of the corresponding nucleus [Fir-1959]. That
is the reason why S divides the regions of the action of each atom during the collision.
We can say that the Firsov’s picture of the collision allow us the separation of the two
teams (particle with its electrons) during any instant of the collision.

4. 1f electrons pass through the Firsov’s surface, they interact strongly with the potential
of the corresponding atom and lose their momentums which correspond on the

average to the velocity of the ion.

The random electron flux across surface S in one direction r from the atom center is

given (according to Maxwell distribution) by

Iy = [ & £(3,7, 0.0 = 2000 (1L47)

where T is the unit vector normal to the surface S, f velocity distribution function, (v, (7)) is

the mean value of the electron velocity related to the electron density p(r) according to the T-

F model (equation (II.18)) by the following relation:

(e (1)) = (BT PR(p(r)? (IL48)

where m is the electron mass. The force acting on the ion will be given by the expression
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= m%?- [ elee) (”‘Ze“” ds (1L49)

N—————— ——
number of e~ traversing S by second

where f;—f is the velocity of the ion relatively to the atom.

The total work of slowing down of the ion is:

T = dR[

f P(T)(ve ™), ds]

By using equation (I1.49) we obtain

T == (3n2)Y3h [ SR [ (p(r))?ds] (IL50)

By inserting equation (I1.24) which relies the potential ¢ and the electron density p, in
equation (IL.50) we get

zhaf dR[[ ¢?ds] (IL51)

To perform the calculation of the energy lost in a single collision at impact parameter p the

following additional assumption were made:

1. The loss of kinetic energy is small, thus we assume that the velocity of the projectile
does not change during the collision so the relative motion of collisions partners was
taken as rectilinear and uniform

155 l=v (IL52)

2. The Firsov’s surface is considered plane perpendicular and placed on the midway of

the segment joining the tow nuclei, as it is showed in Fig. IL5.

Ton

P

atom

Fig. I1.5: Geometry consideration Firsov’s calculation
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With these considerations we can write:

dR =3

'—dR = —'dR“ = vdx (H53)
By inserting (IL.53) in (IL.51) we get

27‘13 j[f ¢?ds]dx

In addition to all considerations, Firsov choose the potential ¢(r) in the space between atoms

as given by the expression of interaction potential of atom [Fir 1958-a]:

¢(r) =
Where y is the universal T-F screening functlon where 7 1s expressed in atomic unit(la.u =

ap = 0.529 K).

1Zz

x(1.13(Z; + Z,)s —) (I1.54)

From fig(C) we get the relations:

R? =p? +x2

2 % g wd
2R, _P°F 2
¥ 4+p Z +p

Finally, the electronic energy loss for one collision at impact parameter p can be written:

+o0
1= LU (e 2 2npdpds (IL55)
The Firsov [Fir-1959] calculatlon of (I1.55) by using the expression (I1.54) for the potential ¢

gives
-3 5/3
T = A3x10 (Zl+122) (I1.56)
[1+3.1(Z; +Z5)3107p]5
Where v is expressed in cm/sec and p in centimeters.
Thus, the Firsov’s stopping power is obtained by the integral
S, = [doT(p) (IL.57)

Where do = 2mpdp represent the differential cross section, so by using (IL.56) the equation
(IL.57) becomes

5 o0
Se = 2m (4.3 X 1078(Z; + 2)%) s L —dp) v (IL58)
[1+3.1(Zl+22)§107p

In order to resolve the above integral, we put

lo=["—2—dp (I1.59)

[1+ap]ls

1
Where a = 3.1(Z; + Z,)3107
Decomposing the integrant

p ___® . B
[L+apl® [1+ap]* [1+apl®
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We get by identification

4 i |
a S —_— e e
and B .
So
p _ 1 i
[1+ap]® a[l+apl* all+ap]®
Thus
[—E—dx=[——dx— [ ——= dx (11.60)
[1+ap]s al1+ap]* a[1+ap]® )
We put
L= prEEw—T dx and I, = [ TitonF (I1.61)
IFweputu=ax+1sodx = %du the tow integrals become
1 1
LL=[==dx and I, = J = dx (IL62)
Thus we get the solutions
1 1 11
I = e +C, and I; = —ZZ-EF-F Cy (I1.63)
So
-1 _1 S B W
11 = 302 [1+ap]® + C1 and 12 = 2a? [1+apl* + CZ (H64)
Where C, and C, are constants.
Then we get
D =1 1 a1 1
f [1+ap]l® dx = 11 Iz 3a2 [1+ap]® + 4a2? [1+ap]* (H'65)
Where C is a constant
The simplification of the above equation gives:
D — 4ap+1
f [1+ap]® dx = 12a2[1+apl* (1L.66)
So,
_r__ 4apti o 1
le =1 12a2[1+ap]4]0 1242 (11.67)
1
I, = T (I1.68)
12X (3.1(Z1 +Z,)3%107)?
By inserting the solution obtained in equation (I1.68) in (IL.58) we get
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5
2n<4.3x10'8 z, +zz)§>
Se =

v (IL69)

12x(3.1(21+22)%x107)2
The simplification of S, gives:

., =234%x10723(Z;+ Z,) v (I11.70)
If we introduce the Bohr velocity vy = 2.2 108 cm/s we get

Se =5.15x1071%(Zy + Z,) — (in eV.cm?/atom) (IL71)
0

6. Lindhard-Sharff-Schiott Stopping power model

Based on the statistical atomic model of Thomas and Fermi and other physical
approaches, the LSS model is a theoretical rough description of ion implantation by Jens
Lindhard, Morten Scharff and Hans E. Schiott [Lin-1963]. It offers analytical formula for the
nuclear and the electronic stopping power of particles through matter in the low-velocity
region v < vto /3 (LSS region), where v, represents the Bohr velocity and Z, the projectile
atomic number. Recall that in this work, we are interested in the electronic stopping power.
The LSS model supposes that quasi-elastic collisions occur between the ion and the target
electrons as well as between the target atom and projectile electrons [Sig-2008]. The
derivation of the LSS formula was never published, however some reasonable account are
published later (for example Sugiyama who has shown that the LSS form for electronic
stopping can be obtained following the procedure of Firsov (1981), and Tilinin in more recent
papers (1995) [Nas-1996 & Sig-2008]).

According to [Lin-1963] the electronic stopping cross section per atom S, is given by

1 dE 237 v 2/3
S, =—=—=¢§, -8meay—5—5%— —,v <V =Vl 11.72
e N dx Ee 0 (21§+ZZ%)3/2 g 1 041 ( )
where N is the atomic density and the constanté, was added as a fitting function to

experimental data, it is of order of Z:/ ® Note that fluctuations around the constant &, can
occur, especially for Z; < 10 [Lin-1963].

In order to get the stopping power formula as S(E) = -:;3—i where the unit of S(E) is in
MeV - cm? - mg~! and the kinetic energy of incident particle is in MeV per nucleon instead
of its velocity v (v is proportional to the square root of the kinetic energy of the incident
particle \/E}), we must carry out the development below:

Ng
10~3M,

since N = p SO

1dE N, 1dE N,
N =i e 2B o g
pP dx 10 3M2 N dx 10 3M2

. 1 M .
and since E = Emlvz, where m; = F-l-, we obtain
A

v=1+/2-103N, - JEx/My = /2 103N, - VE
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where E = E,/M;. After introducing the constant ;:—: =9-10°(SI) we get finally (in
0
MeV.cm? /mg):

1/6
S(E) = —252 = 73.226 % 2% \E (IL73)
2 (5455

The most important new feature of the LSS-theory was the clear recognition and
identification of a wide range of particle energies where electronic and nuclear stopping were
competing processes [Sig-1983].

7. Firsov verses LSS models

Both the Firsov and LSS formulas are proportional to the ion velocity i.e. the square

root of the ion energy. The primary difference between the development of the Firsov and

LSS models can be found in the choice of interatomic potential [Nas-1996].

The Firsov model assumes neutral collision partners and ignores ionization. Moreover,
the electron current is assumed isotropic on the Firsov surface. This implies the stopping
power reciprocity i.e. S(Zy inZ,) = S(Zz inZy) [Sig-2008]. On the other hand, it is clear

that the empirical factor Ee~Zi/ 6 appearing in the explicit LSS formula destroys the Z; — Z,
symetry.

8. The software package SRIM (Stopping and Range of Ions in Matter)

Stopping and Range of Tons in Matter (SRIM) is a group of computer programs which
calculate interaction of ions with matter [Zie-2013]. SRIM calculates the stopping and range
of ions (10 eV - 10 GeV/amu) into matter using a full quantum mechanical treatment of ion-
atom collisions. This calculation is made very efficient by the use of statistical algorithms
which allow the ion to make jumps between calculated collisions and then averaging the
collision results over the intervening gap. During the collisions, the ion and atom have a
screened Coulomb collision, including exchange and correlation interactions between the
overlapping electron shells. The ion has long range interactions creating electron excitations
and plasmons within the target. These are described by including a description of the target's
collective electronic structure and interatomic bond structure when the calculation is setup
(tables of nominal values are supplied). The charge state of the ion within the target is
described using the concept of effective charge, which includes a velocity dependent charge
state and long range screening due to the collective electron sea of the target. A full
description of the calculation is found in the tutorial book "The Stopping and Range of Ions
in Solids" [7ie-2008].

SRIM will accept complex targets made of compound materials with up to eight

layers, each of different materials. It will calculate all kinetic phenomena associated with the
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ion's energy loss: target damage, sputtering, ionization, and phonon production. All target

atom cascades in the target are followed in detail.

8.1. Stopping and Range Tables

The ion Stopping Tables gives values which are the same as those used in the Monte
Carlo program TRIM. You may request stopping for any ion, with energies from 10 eV - 10
GeV, in both solid and gaseous targets made of complex materials. A variety of stopping units
can be selected. The stopping powers were originally derived in 1984 using theoretical and

experimental methods (see [Zie-2008]).

The ion Range Tables include both lists of the stopping powers, and also estimates of
the ion range and its longitudinal and lateral straggle. These ranges are calculated using the
program PRAL(Projected Range Algorithm) by J. P. Biersack. This range calculation is
remarkably accurate, and usually is within a few percent of the range values found using
TRIM. The ranges calculated with TRIM should always be considered the benchmark, since
the physical interaction between the ion and target atoms is considered in much more detail
than in PRAL. If one wishes a table of ion ranges, one should consider obtaining a few ranges
using Monte-Carlo TRIM and then interpolating using the tables of ranges produced by
PRAL. The straggling values produced by PRAL are variable in accuracy, perhaps 20% for

light ions, but up to 2 times for heavy ions.

8.2. Various versions of SRIM / TRIM

In this part we present different version of SRIM / TRIM with mention of changes in basic

calculation without necessarily addressing the upgrade changes.

TRIM-85: Original release in 8/85.

TRIM-86: Major change made in definition of cascade displacements and vacancies to make
it agree closely with the assumptions of Kinchin and Pease.

TRIM-87: Added transverse straggling of the ions, and ion sputtering of the surface.
Corrected many small bugs in various plots. Changed ion stopping in silicon for Z1<19
because of much new data.

TRIM-88: TRIM has been converted to Turbo-BASIC from the original FORTRAN. This
will allow the use of Enhanced Graphics for future versions. A table of common compounds
has been added for convenience. Ion energies up to 2 GeV/amu now available.

TRIM-89: A large dictionary of COMPOUNDS has been integrated into the programs. The
stopping of ions in compounds is executed using the formalism described in "The Stopping of
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Ions in Compounds".

TRIM-90: EGA three-dimensional TRIM- First general release, Feb.,1990.

SRIM-91: Corrected bug in COLLISON.TXT which listed wrong primary collison atom.
Added lateral distribution to file COLLISON.TXT.

Corrected statistical range distribution moments (H. Glawishnig, Siemens).

Revised Skewness and Kurtosis to fit VLSI modelling conventions.

Remark:

"TRIM-xx" renamed "SRIM-xx" in 1991 to end confusion between the Monte Carlo
program TRIM and package of programs titled TRIM-xx.

SRIM-95: Comprehensive change in all Ton Stopping Powers. New theory for heavy ions.
Reluctantly, stopping in gases is also included, although not too accurate.

SRIM-2000: Incorporated new high energy stopping power theory (E>1 MeV/u) in SR.
Corrected bug in SR calculation of He, Li stopping in heavy gases.

SRIM-2003: Totally new stopping powers, with significant improvement for Heavy Ions.
Introduction of Nuclear Stopping using specific atom/atom calculations. Extended Max
Energy to 10 GeV/u, plus fixed a few small bugs.

SRIM-2006: Upgrade but no changes to basic calculation of SRIM-2003

SRIM-2008: Made changes to sputtering of targets Z=13 to21 to omit discontinuity in
treatment.

SRIM-2013: Several bugs corrected, including bugs in Compound Dictionary.

It is clear that SRIM is in a remarkable changes and developments according to the
availability and development of theoretical and empirical data, which in turn still know a great
shortage and discrepancies.

9. Conclusion
In this chapter, we have presented the cross section concept and a general expression
of the stopping power, then the two models of Firsov and Lindhard-Sharff-Schiott (LSS) of
stopping power at low ion velocities that represent the subject of this work, and a comparison
between them. Finally, we give a presentation of the software package SRIM (Stopping and
Range of Ions in Matter) which is based on theoretical treatment of ion-atom collisions and

available data.
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Chapter III

Results and Discussion

1. Introduction

In this chapter, we calculate the stopping power values generated by the Firsov and
LSS model and compare them to those published by H. Paul data base as well as to those
predicted with SRIM programm for ions-targets couples Mg in °C, Mg in *Ti, Mg in
“IAg Clin °C, Cl in Al V'Cl in %Ni, "Cl in "Au, *Ti in °C, **Ti in "*Al, *Ti in *’Cu,
27 in Au, *Cu in °C, ®Cu in Al *Cu in *Cu, 2Cu in *Au, **Kr in °C, **Kr in **Ni, **Kr
in ?Au, VAg in®Al, 47Ag in 3°Zn, and 47Ag in *Pd. We discuss also the Z oscillations which

are due to the shell structure of the atoms.

2. Stopping powers of the projectile Mg

In figure II1.1 we plot the stopping power of Mg in °C, *Mg in 22Ti and Mg in VAg
deduced from LSS and Firsov calculation. To compare the calculate values of stopping power
we introduce in Fig. III.1 some available data of stopping power. The experimental data of
stopping power are taken from ref. [Fas-1966] for Mg in °C and from ref. [Ars-1990] for
2Mg in *Ti and Mg in YAg.

From Fig. III. 1, we can conclude that:

e In general, no discrepancies between SRIM simulation and available data,

o At low velocity region a good correlation between the Firsov’s models and
available dada as well as with SRIM simulation for *Mg in °C and Mg in
pg.

e For “Mg in **Ti a deviation up to 20% between Firsov model and available data.

e An appreciable deviation between LSS and available data for Mg in °C and
Mg in “Ag as well as Mg in **Ti.

Can we conclude, for a projectile like magnesium (from point of view atomic

number Z,), that the two models are more compatible with the relatively lighter atoms (Z,
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relatively close to carbon) and relatively heavier atoms (Z, relatively close to *’Ag) contrary

to the intermediate atoms between them (e.g. *Ti)?
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Fig. I1L.1 : Comparison of stopping power data [Paul-2013] (circle) for Mg in c, "Mgin
227, and *Mg in 41 A g with Firsov theory (dashed lines), LSS formula (solid lines) and the
well knows SRIM code [Zei-2013].

3. Stopping powers of the projectile cl

In figure II1.2 we plot the stopping power of Clin °C, 'Cl in Al "Cl in 2Ni and
1701 in " Au deduced from LSS and Firsov calculation. For comparison of the calculate values
of stopping power we include in Fig. IIL.2 some available experimental data from different
references data. The experimental of stopping power data of 17C1 in ®C are obtained by direct
transmission method using carbon foils of about 20 pg.cm™ of thicknesses [Fas-1966] and
[Boo-1965]. The stopping power data of 701 in BAL YCl in ®Ni and '"Cl in Au are

obtained by direct transmission using uniform foils with 2% thickness uncertainty and with
calibration uncertainties 3% [Boo-1965].

From Fig. II1.2, in the same manner as Fig. II. 1, we can conclude that:
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e In general, no discrepancies between SRIM simulation and available data.

o At low velocity region a good correlation

between the Firsov’s models and

available dada as well as with SRIM simulation for 7C1 in °C and ''Cl in “Au

with a slight deviation for P Au.

Both models are identical for \’Cl in *Al and '"Cl in **Ni, but the compatibility

with experimental dada as well as with SRIM simulation is higher for Cl in

28Ni than ""Clin PAL

Since the two models are based on the statistical Thomas-Fermi atomic model, is this

behavior due to the difference between the two atoms in the shell structure?

30 , . T
ot v SRIM-2013
Rt @ Exp Data
25 & /v/v LSS Theory
5wy - - - Firsov Theory
e
20 o - =
& /ﬂ Cal
ko)) 13 e |
= Al e "_-:-; \vi ve V L 4 Y
- --/‘ @ W
g = v Y v ?/\%‘»J st
o -
> R T eV ¥ Y
[ vV
=, 10 A p
n
5 ; o
0 ! | 1 | I ] 1
04 06 038 1,0
Energy [MeVin]

Fig. T11.2: Same as in Fig. IIL1, but for ’Clin °C, ""Clin Al ""Cl in **Ni and "’Cl in "Au.

4. Stopping powers of the projectile 27

In figure IIL.3 we plot the stopping power of ik
22Ti in ”Au deduced from LSS and Firsov calculation

with SRIM computation.

in °C, 2Ti in Al %Ti in *Cu and

as well as available data in parallel
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The stopping power of 227Tj in °C was deduced from the measurement of the ranges of

Ti/C for 26 different implantation energies [Sch-1991].

The stopping power data of 2274 in Al %Ti in ®Cu and **Ti in " Au are measured by
direct transmission [Gei-1983]. The stopping power at an energy E is obtained by dividing the
energy loss AE in the target by the target thickness AE. The energy E is obtained from the
incident energy E, by: E=Eo-AE/2. Some of stopping power data of 227 in Al are obtained
by using a time of flight spectrometer [Gei-1982]. The overall uncertainty of the measured
stopping powers (S) in solids was obtained from the variance of S for different targets of the

same element and found to be smaller than 5%.
From Fig. II.3, we can conclude that:

o In general, the LSS and Firsov’s models give identical results except for T1in C,
where the Firsov’s model is in good agreement with available dada as well as
with SRIM predictions and the LSS model goes farther away.

o At low velocity region there is good correlation between the two models and
available dada as well as with SRIM predictions for 27Tj in ®Cu and *Ti in
" Au.

o For 2Tiin Al there is relatively large deviation from experimental dada as well
as with SRIM predictions.

Can we conclude that this deviation is due to the shells effect of Al?
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Fig IT1.3: Same as in Fig. IIL.1, but for 2Tiin °C, ®Tiin BAL Tiin 2Cy and **Ti in Au.

5. Stopping powers of the projectile PCu

In figure I11.4 we plot the stopping power of for $Cuin *C, ®*Cu in ¥Al ®Cu in ®Cu

and ©Cu in " Au deduced from LSS and Firsov calculation as well as available data in

parallel with SRIM computation.

The experimental data of stopping power for 8Cu in '*C are obtained by using modified
time-of-flight-energy elastic recoil detection analysis (ToF-E ERDA) set-up [Zha-2002]. For
3Cu in %Cu, the experimental procedure consist of using non-conventional ERDA methods,
and spectrometers to separate signals of different elements and isotopes from each other
[Jok-1997]. The experimental data of $Cu in "’Au are obtained by interposing thin self-
supporting foils of known areal density in the trajectory of the secondary beam. The stopping

data are assigned an uncertainty of 5 % [Abd-1992-c].
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Fig. 1L4: Same as in Fig. TIL1, but for “Cu in "*C, ®Cuin Al Cuin ®*Cu and ®Cuin
197
Au.

From Fig. I11.4, we can conclude that:

o TFor ®Cu in °C the Firsov’s model always in agreement with experimental data
as well as SRIM predictions while the LSS model deviates considerably.

o For 2Cuin Au, the two models are approaching the experimental data as well
as the SRIM predictions.

e For 2Cu in ?Cu the LSS model only approaches, while for »Cu in “Al the

two models are identical but not in agreement with available data as well as

SRIM predictions.

6. Stopping powers of the projectile SKr

In figure IIL.5 we plot the stopping power of in Kr in °C, **Kr in *®Ni, and %Kr in
9 Au deduced from LSS and Firsov calculation as well as available data in parallel with SRIM

computation. The experimental data of stopping power are taken from ref. [Pap-1978] for

%Kr in °C and from ref. [Gei-1982 & Gei-1983] for *Kr in **Ni and **Kr in Au. The
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experimental protocol followed by [Gei-1982] and [Gei-1983] is well discussed above in

section 4.
,/
5 | Krypton: *Kr g J v SRIM2013
R @ ExpData
S g0 0 o0 ° LSS Theory

40 - - - Firsov Theory
"_Oj
E
£
a | N S 9200 _guVie 7 -
= 15/ v
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= "

10

N

Energy [MeV/n]

Fig. IIL.5: Same as in Fig. I1I.1 but for 36Kr in 2C, **Krin 2Ni, and **Kr in PAu.

From Fig. IIL.5, we can conclude that:

e For the stopping power of 36Kr in °C, the Firsov’s model is nearly in agreement
with the SRIM predictions but not with experimental data which show some
discrepancies, while the LSS model shows significant deviation from the SRIM
predictions.

e For °Kr in Au, the two models are identical and almost in agreement with
available data as well as SRIM predictions.

e For *°Kr in Ni the LSS model does not go too far the experimental and the

SRIM predictions while the Firsov’s model goes farther away.

7. Stopping powers of the projectile YAg

In figure I11.6 we plot the stopping power of “Ag in PAl, Y'Ag in **Zn, and YAg in
g

4pq deduced from LSS and Firsov calculation calculation as well as available data in parallel
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with SRIM computation. The experimental data of “TAg in Al were measured in the
transmission mode by interposing thin foils of known thickness into the trajectory of a
secondary beam [Abd-1992-a] The experimental data of stopping power are taken from ref.

[Rib-1983] for “’Ag in **Zn, and “’Ag in **Pd.
From Fig. I11.6, we can conclude that:

e For the stopping powers of T Ag projectile, we observe a greater divergence between
the two models and experimental data as well as SRIM predictions compared to the
previous projectiles.

e For “’Ag in"*Al, there are discrepancies between SRIM predictions and experimental
data.

o Tor YAgin*Zn, and “Ag in %pq, the Firsov’s model goes farther from the available
data as well SRIM predictions than the LSS model.

o TFor “’Ag in"Al, the LSS model go farther from the available data as well SRIM

predictions than the Firsov’s model.

60 — ;
v SRIM2013 | Silver: "Ag |
@ ExpData ° 3 -9
kid LSS Theory %0 o LT A
- - - Firsov Theory .
v -7
__ 4ot -7
‘TD'J
£
NE 30
Q
>
()
2. 20
@)
10

Energy [MeV/n]

Fig. II1.6: Same as in Fig. ITL.1 but for for Yagin PAl Y Agin *Zn, and T Ag in *°Pd.
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8. Numerical tables of the previous data

These tables present the numerical values of the experimental data schematized in the

previous graphs and the deviation percentages of the two models in relation to the available

data.

0,0054
0,0074
0,0094
0,0114
0,0150
0,0229
0,0306

Data [Fas-1966] Mg on C (all S units are in MeV.cm?. mg™)

1,69
1,96
2,23
2,48
2,89
3,75
4,55

1,50
1,82
2,21
2,49
2,89
3,67
4,68

1,95
2.98
2,57
2,83
3,25
4,01
4,64

217
2,54
2,87
3,15
3,61
4,46
5,16

01

Table II1.1.a: Numerical comparison of stopping power data [Paul-2013] for Mg in °C with

Firsov theory and LSS formula
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Data [Ars-1990]Mg on Ti (all S units are in MeV.cm? mg™)

0,0010 0,25 0,57 0,40 0,44 29 23
0,0040 0,61 1,15 0,81 0,38 30 23
0,0089 0,94 172 1,21 132 29 23
0,0159 1,47 2,29 1,62 1,76 29 23
0,0248 2,09 2,87 2,02 2,20 29 23
0,0357 2,75 3,44 2,43 2,64 29 23
0,0486 3,44 4,01 2,83 3,08 29 23
0,0635 4,15 4,59 3,24 3,52 29 23
0,0804 4,38 5,30 3,64 3,96 31 25
0,0992 5,61 6,15 4,05 4,40 34 28
0,1200 6,33 6,93 4,45 4,84 36 30
0,1429 7,03 7,63 4,86 5,28 36 31
0,1677 7,68 8,22 5,26 5,72 36 30
0,1944 8,28 8,72 5,67 6,16 35 29
0,2232 8,81 9,13 6,07 6,60 34 28
0,2540 9,27 9,46 6,48 7,04 32 26
0,2867 9,67 9,73 6,88 7,48 29 23
0,3214 9,98 9,94 7,28 7,92 27 20
0,3581 10,24 1024 = 7.69 8,36 25 18
0,3968 10,44 10,53 8,09 8,80 23 16
0,4375 10,59 10,78 8,50 9,25 21 14
0,4801 10,69 10,98 890 9,69 19 12
0,5248 10,75 11,15 931 1013 17 09
0,5714 10,77 1128 o7l 1057 14 06
0,6200 10,76 1138 1012 1101 11 03

Table II1.1.b: Numerical comparison of stopping power data [Paul-2013] for *Mg in *Ti with
Firsov theory and LSS formula

From table III.1.a we can see that the deviation percentages are up to 30 % for the LSS

model and up to 44 % for the Firsov’s model. At very low velocities, where the nuclear

stopping power is not negligible, the deviations of the two models from available data are

much higher; this is probably due to fact that in the Firsov’s and LSS’s models the nuclear

stopping power is not taken into account.

From table IIL.1.b we can see that the deviation percentages are up to 36 % for the LSS
model and up to 31 % for the Firsov’s model. Also we remark considerable deviations for

very low velocities.
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Data [Ars-1990]Mg on Ag (all S units are in MeV. cm?mg™)

0,0010 0,13 0,31 0,23 0,34 25 -09
0,0040 0,31 0,61 0,47 0,68 24 -11
0,0089 0,47 0,92 0,70 1,02 24 -11
0,0159 0,74 1,23 0,93 1,36 24 -10
0,0248 1,08 1,53 1,16 1,70 24 -11
0,0357 1,44 1,84 1,40 2,03 24 -11
0,0486 1,83 2,15 1,63 2,37 24 -10
0,0635 2:22 2,45 1,86 2,71 24 -11
0,0804 2,62 2,76 2,10 3,05 24 -11
0,0992 3,02 3,08 2,33 3,39 24 -10
0,1200 3,41 3.52 2,56 3,73 27 -06
0,1429 3,80 3,95 2:99 4,07 29 -03
0,1677 4,17 4,35 3,03 4,41 30 -01
0,1945 4,51 4,72 3,26 4,75 31 -01
0,2232 4,84 5,05 3,49 5,09 31 -01
0,2540 5,14 5,33 3,73 5,42 30 -02
0,2867 5,41 5,58 3,96 5,76 29 -03
0,3214 5,65 5,78 4,19 6,10 27 -06
0,3581 5,86 6,04 4,42 6,44 27 -07
0,3968 6,05 6,27 4,66 6,78 26 -08
0,4375 6,21 6,46 4,89 712 24 -10
0,4802 6,34 6,62 5,12 7,46 23 -13
0,5248 6,45 6,75 5,36 7,80 21 -16
0,5714 6,54 6,86 3:59 8,14 19 -19
0,6201 6,61 6,95 5,82 8,48 16 -22

Table II1.1.c: Numerical comparison of stopping power data [Paul-2013] for “Mgin “Ag
with Firsov theory and LSS formula.
From table IIL.1.c we can see that the deviation percentages are up to 31 % for the LSS
model and up to 22 % for the Firsov’s model. We see that in many cases the Firsov’s

deviations are smaller than the LSS deviations.

Data [Fas—1966] ClonC (all S units are in MeV.cm?mg™)

0,004 3,44 2,34 1,97 2,33 16 00
0,005 3,54 2,82 2,31 2,73 18 03
0,007 3,66 3,21 2,61 3,09 19 04
0,008 3,79 3,53 2,86 3,39 19 04
0,010 4,08 3,87 3,24 3,83 16 01
0,013 4,46 4,34 3,64 4,31 16 01

Table I1.2.a: Numerical comparison of stopping power data [Paul-2013] for Cl in °C with
Firsov theory and LSS formula.
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From table IT1.2.a we can see that the deviation percentages are up to 19 % for the LSS
model and up to 04 % for the Firsov’s model. It seems that the Firsov’s deviations are smaller
than the LSS deviations and that the Firsov’s model is in good agreement with available data,
but it should not be forgotten that these are the ranges of low energies, where the nuclear

stopping powers take non-negligible values compared to the electronic stopping powers.

s | sew | sis

Data [Boo-1965] Cl on Al (all S units are in MeV.cm? mg™)

0,114 9,85 9,26 7,66 7,40 17 20
0,229 12,90 12,20 10,83 10,46 11 14
0,343 14,59 13,70 13,26 12,81 03 06
0,457 15,60 14,80 15,31 14,79 -03 00
0,571 16,24 15,60 17,12 16,54 -10 -06

Table 1L 2.b: Numerical comparison of stopping power data [Paul-2013] for 7C1 in Al with
Firsov theory and LSS formula.

From table II1.2.b we can see that the deviation percentages are up to 17 % for the LSS

model and up to 20 % for the Firsov’s model.

G e, | s, o

Data [Boo-1965] Cl on Ni (all S units are in MeV.cm?mg™)

0,114 5:57 5,76 5,09 5,10 12 11
0,229 8,27 8,40 7,20 7,21 14 14
0,343 10,12 9,90 8,82 8,83 11 11
0,457 11,36 11,00 10,18 10,20 07 07
0,571 12,17 11,80 11,38 11,41 04 03
0,686 12,70 12,40 12,47 12,49 -01 -01
0,800 13,03 12,90 13,47 13,49 -04 -05

Table II1.2.c: Numerical comparison of stopping power data [Paul-2013] for 1C1 in ®Ni with
Firsov theory and LSS formula.

From table TIT.2.c we can see that the deviation percentages are up to 14 % for the LSS

model and up to 20 % for the Firsov’s model.
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0,914

2,55
3,90
4,81
5,44
5,87
6,18
6,39
6,55

2,89
4,20
5,10
5,75
6,13
6,40
6,58
6,72

2,15
3,05
3,73
431
4,82
5,28
5,70
6,09

Data [Boo-1965] Cl on Au

3,24
4,59
5,62
6,48
7.25
7,94
8,58
9,17

18

13
09

-36

Table II1.2.d: Numerical comparison of stopping power data [Paul-2013] for 7Cl in " Au with

Firsov theory and LSS formula.

From table I11.2.d we can see that the deviation percentages are up to 27 % for the LSS

model and up to 36 % for the Firsov’s model. We remark that in contrary to the results of the

LSS model, the deviations of the results of the Firsov’s model in relation to the available data

increase as a function of the energy of the incident particle (CI).

0,01
0,02
0,04
0,06
0,09
0,12
0,15
0,18
0,22
0,26
0,32
0,39
0,46
0,54

4,39

5,93

8,52

10,86
1,40

16,28
18,42
20,33
2217
23,72
25,70
27,28
28,56
29,45

4,15
5,88
8,57
10,79
13,69
16,20
18,64
20,85
22,99
25,35
28,04
30,51
32,61
34,26

3,21
5,31
7,40
8,92
10,88
12,36
13,83
15,27
16,80
18,23
20,36
22,45
24,55
26,37

4,09

6,77

9,42

11,36
13,86
15,74
17,62
19,45
21,39
23,22
25,93
28,59
31,26
33,57

Data [Sch-1991] Tion C (all S units are in MeV.cm?* mg?)

23
10
14
17
21
24
26
27
27
28
27
26
29
23

02
Table I11.3.a;: Numerical comparison of stopping power data [Paul-2013] for 22Ti in °C with
Firsov theory and LSS formula.

From table II1.3.a we can see that the deviation percentages are up to 28 % for the LSS

model and up to 15 % for the Firsov’s model.
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0,15
0,17
0,18
0,19
0,34
0,36
0,37
0,39
0,45
0,47
0,50
0,80
0,83

12,88
13,55
13,67
14,18
17,35
17,74
17,80
18,10
18,89
19,21
19,49
21,83
22,01

1222
12,74
13,56
13,22
16,81
17,02
17,62
19,52
18,32
18,33
20,39
22,41
21,97

Firsov theory and LSS formula.

10,32
10,94
11,06
11,56
15,36
15,91
15,99
16,44
17,69
18,21
18,71
23,63
24,11

[ siss |

9,97

10,56
10,68
11,16
14,82
15,35
15,43
15,87
17,07
17,58
18,06
22,81
2327

16
14
18
13
09
07
09
16
03
01
08
-05
-10

Data [Gei-1982 & Gei-1983] Ti on Al (all S units are in MeV.cm? mg™)

18
17
21
16
12
10
12
19
07
04
11

-02
-06
Table IIL.3.b: Numerical comparison of stopping power data [Paul-2013] for 227 in Al with

From table IT1.3.b we can see that the deviation percentages are up to 18 % for the LSS

model and up to 21 % for the Firsov’s model.

Data [Gei

0,17 7,10
0,18 7,50
0,18 7,56
0,35 11,05
0,37 11,37
0,37 11,42
0,46 12,61
0,48 12,89
0,49 12,93
0,82 15,51
0,84 15,64
0,85 15,66

7,60

8,00

8,05

10,90
11,26
11,19
12,52
12,74
12,74
15,02
15,55
15,38

s b

6,93
7,23
7,28
10,08
10,37
10,41
11.57
11,86
11,90
15,40
15,64
15,69

6,42
6,70
6,75
9,33
9,60
9,65
10,71
10,98
11,02
14,26
14,49
14,53

09
10
10
08
08
07
08

-02

-1982 & Gei-1983] Tion Cu (all S units are in MeV.cm?2.mg™)

16
16
16
14
15
14
14
14
13
05
07
06

Table IIL.3.c: Numerical comparison of stopping power data [Paul-2013] for 22T} in ®Cu with

Firsov theory and LSS formula.

From table II1.3.c we can see that the deviation percentages are up to 10 % for the LSS

model and up to 16 % for the Firsov’s model.

The same conclusion as before we can see from the following table II1.3.d that the

deviation percentages are up to 22 % for the LSS model and up to 11 % for the Firsov’s

model.
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Data [Gei-1982 & Gei-1983] Ti on Au (all S units are in MeV.cm?® mg?)

0,1774
0,1862
0,1912
0,3646
0,3768
0,3842
0,4474
0,4602
0,4684
0,4756
0,8344
0,8506
0,8608

3,905
4,029
4,097
5,916
6,017
6,037
6,535
6,624
6,68

6,726
8,353
8,398
8,426

3,98
4,23
421
5,9
6,22
6,05
6,48
1

6,81
6,67
8,25
8,84
8.4

3,37
3,45
3,50
4,33
4,91
4,96
5,35
5,43
5,48
5,52
7.31
7,38
7,43

4,25
4,35
4,41
6,09
6,19
6,25
6,75
6,85
6,91
6,96
9,22
9,31
9,36

sEre |

15
18
17
18
21
18
17
22
20
17
11
16
12

-11

Table I1.3.d: Numerical comparison of stopping power data [Paul-2013] for 27i in " Au with
Firsov theory and LSS formula.

0,30

0,62

12,37
13,81
15,19
16,50
17,73
18,92
20,05
21,11
2012
23,08
23,99
24,84
25,65
26,42
27,16
27,85
28,50
29,13
29,73
30,27
30,49
38,98

13,22
14,79
16,24
17,61
18,93
20,21
21,44
22,62
23,74
24,79
25,78
26,71
27,58
28,41
29,21
29,98
30,71
31,39
31,97
32,37
32,45
39,53

10,96
11,82
12,62
13,37
14,09
14,76
15,41
16,04
16,64
17.91
17,77
18,32
18,84
19,36
19,85
20,34
20,82
21,28
21,74
22,18
22,36
3212

15,43
16,64
19.77
18,83
19,83
20,79
21,70
22,58
23,42
24,23
25,02
25,79
26,53
27,25
27,95
28,64
29,31
29,96
30,60
31,23
31,48
45,22

Data [Zha-2002] Cu on C (all S units are in MeV.cm?mg™)

17
20
22
24
26
27
28
29
30
31
31
31
32
32
32
32
32
32
32
31
31
19

03

-14

Table II1.4.a: Numerical comparison of stopping power data [Paul-2013] for $Cu in "*C with
Firsov theory and LSS formula.

Chapter III: results and discussion

Page 45



Also from the table IIL.4.a, the deviation percentages are up to 32 % for the LSS model

and up to 17 % for the Firsov’s model.

0,07
0,08
0,09
0,11
0,12
0,13
0,14
0,16
0,17
0,18
0,20
0,21
0,22
0,24
0,25
0,26
0,28
0,29
0,30
0,32
0,33

8,25
9,39

10,45
11,42
12,32
13,16
13,94
14,67
15,34
15,98
16,57
17,14
17,67
18,17
18,65
19,10
19,53
19,94
20,33
20,72
21,00

8,95

10,03
11,04
11,98
12,85
13,64
14,36
15,02
15,62
16,18
16,70
17,19
17,64
18,05
18,43
18,77
19,09
19,37
19,65
19,95
20,22

7,88

8,64

9,35

10,00
10,61
11,19
11,74
12,27
12,78
13,26
13,73
14,18
14,62
15,05
15,46
15,86
16,26
16,64
17,02
17,39

17,67

782
8,58
9,28
9,93
10,54
11,11
11,66
12 18
12,68
13,17
13,63
14,08
14,52
14,94
15,35
15,75
16,14
16,52
16,90
17,26
17,55

Data [Zha-2002] Cu on Al (all S units are in MeV.cm?mg™)

12
14
15
17
17
18
18
18
18
18
18
17
17
17
16
15
15
14
13
13
13

13
14
16
17
18
18
19
19
19
19
18
18
18
17
17
16
15
15
14
13
13

Table II1.4.b: Numerical comparison of stopping power data [Paul-2013] for 3Cu in ¥’ Al with

Firsov theory and LSS formula.

The table III.4.b indicates that the deviation percentages are up to 18 % for the LSS

model and up to 19 % for the Firsov’s model.

0,07
0,09
0,13
0,16
0,19
0,22
0,25

3,75
4,92
6,49
7,98
9,08
9,85
10,82

5,11
6,07
7,34
8,68
9,75
10,55
11,59

5,26
6,21
735
8,37
9,10
9,61
10,25

4,58
5,41
6,40
7,28
7,92
8,36
8,92

Data [Jok-1997] Cu on Cu (all S units are in MeV.cm?. mg™)

-03
-02
00
04
07
09
12

10

11
13
16
19
21
23

Table II1.4.c: Numerical comparison of stopping power data [Paul-2013] for $3Cu in ®Cu with

Firsov theory and LSS formula.

Also the table IIL4.c indicates that the deviation percentages are up to 12 % for the

LSS model and up to 23 % for the Firsov’s model (same remarks as in Table II1.2.a).

Chapter III: results and discussion

Page 46



Data [Abd-1992-c] Cu on Au (all S units are in MeV.cm”mg™)

0,43 8,06 7,94 6,64 7,08 16 11
0,71 10,33 10,57 8,53 9,09 19 14
0,80 10,84 9,80 9,05 9,65 08 02
1,02 11,81 11,12 10,22 10,90 08 02
1,13 12,17 12,25 10,76 11,47 12 06

Table IIL.4.d: Numerical comparison of stopping power data [Paul-2013] for $Cuin "Au
with Firsov theory and LSS formula.

Table I1L.4d, indicates that the deviation percentages are up to 19 % for the LSS model
and up to 14 % for the Firsov’s model.

Data [Pap-1978] Kr on C (all S units are in MeV.cm2mg™)

0,77 4863 4430 @ 3912 6046 12 -36
0,65 4712 @ 4520 3593 5552 21 23
0,58 4579 4440 ° 3385 5232 24 -18
0,54 4498 | 4400 3272 @ 5057 26 -15
0,41 4086 3830 2848 4401 26 -15
0,35 3806 3490 | 2634 4071 25 17
0,32 3628 3320 2503 3868 25 17

Table TI1.5.a: Numerical comparison of stopping power data [Paul-2013] for 3%Kr in *C with
Firsov theory and LSS formula.

Table IIL5.a, indicates that the deviation percentages are up to 26 % for the LSS

model and up to 36 % for the Firsov’s model.

T I T

Data [Gei-1982 & Gei-1983] Kr on Ni (all S units are in MeV.cm*mg™)

. Dev/Fir %

Dev/LSS %

0,51 21,92 20,72 18,03 15,34 13 26
0,88 27,08 25471 23,62 20,10 08 22
0,92 27,42 26,83 24,16 20,56 10 23
1,28 29,39 29,63 28,56 24,30 04 18

Table II1.5.b: Numerical comparison of stopping power data [Paul-2013] for 36Kt in **Ni with
Firsov theory and LSS formula.

Table IIL5.b, indicates that the deviation percentages are up to 13 % for the LSS

model and up to 26 % for the Firsov’s model.
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’ DesILSS% in

Data [Ge1-1982 & Gei- 1983] Kr on Au (all S units are in MeV.cm? mg )

0,54 10,89 11,21 8,90 8,48 21 24
0,55 10,90 11,07 8,91 8,49 20 23
0,92 13,58 13,22 11,58 11,03 12 17
0,97 13,81 13,83 11,87 11,31 14 18
1,34 15,05 14,71 13,93 13,27 05 10

Table IIL5.c: Numerical comparison of stopping power data [Paul-2013] for 36Kr in " Au with
Firsov theory and LSS formula.

Table IIL5.c indicates also that the deviation percentages are up to 21 % for the LSS

model and up to 24 % for the Firsov’s model.

| DeviLss % | Dev:

Data [Abd-1992-a] Ag on Al (all S units are in MeV.cm? mg™)

0,41 3241 2847 | 2515 | 2302 12 02
0,53 3612 3360 2859 = 13186 15 05
0,67 3966 8831 3014 3582 16 07
0,80 4243 4257 0 3512 3914 17 08
094 | 4502 4615 | 3807 4243 17 08
104 4664 5010 . 4005 = 4463 20 11
1,08 4724 4989 4081 45,48 18 09
1,21 4905 5336 4320 4814 19 10
1,35 5073 53,03 4563 50,84 14 04
1,35 5073 5225 4563 50,84 13 03
1,52 5049 | s3%0 | ARAD | 5305 10 00
1,60 5392 © 5597 4967 5535 11 01
1,67 5382 5374 5075 56,55 06 05
1,81 5485 5388 52,83 58,87 02 09

Table IIL.6.a: Numerical comparison of stopping power data [Paul-2013] for “1Ag in Al with
Firsov theory and LSS formula.

From table II1.6.a we can see that the deviation percentages are up to 20 % for the LSS

model and up to 11 % for the Firsov’s model.

Data [Rib-1983] Ag on Zn (all S units are in MeV.cm?mg™)

0,06 3,82 5,71 6,55 5,49 -15 04
0,07 4,98 6,99 1,57 6,34 -08 09
0,09 6,13 8,17 8,46 7,09 -04 13
0,11 7,25 9,28 921 7,76 00 16
0,14 8,87 10,85 10,36 8,68 05 20
0,17 10,40 12,33 11,35 9,51 08 23
0,20 11,85 13,73 12,26 10,27 11 25

Table II1.6.b: Numerical comparison of stopping power data [Paul-2013] for Y Ag in *°Zn with
Firsov theory and LSS formula.
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Also from the table IIL.6.b the deviation percentages are up to 15 % for the LSS model
and up to 25 % for the Firsov’s model.

Data [Rib-1983] Ag on Pd (all S units are in MeV.cm?.mg™)

0,06 318 3,52 5,07 4,07 -44 -16
0,07 4,18 4,43 5,85 4,70 -32 -06
0,09 5,26 5,30 6,54 5,26 03 01
0,11 6,33 6,13 7,17 5,76 b, 06
0,14 7,89 7,33 8,02 6,44 -09 12
0,17 9,35 8,48 8,78 7,05 04 19
0,20 10,69 9,60 9,48 7,62 01 21
0,22 11,93 10,68 10,14 8,14 05 24

Table II1.6.c: Numerical comparison of stopping power data [Paul-2013] for YAgin °pd with
Firsov theory and LSS formula.
The deviation percentages are up to 44 % for the LSS model and up to 24 % for the

Firsov’s model especially at low energies. We remark high deviations for low velocities.

In conclusion, we can say that in the majority of cases the deviation of the two models
does not exceed 20% if we ignore the low velocities deviations (due contribution of nuclear
stopping power). The average values of the deviations are relatively large for the lighter and
heavier projectiles compared to the intermediate projectiles. Is this due to the fact that the
Thomas-Fermi atomic model is much more reliable for relatively high Z, and that heavy

projectiles are likely to lose more electrons than intermediate projectiles?

9. The Z oscillations
According to the LSS model and the Firsov model, the rate of energy loss is
proportional to the square root of the energy of the projectile, and the stopping powers are
monotonic functions of the atomic numbers of the projectiles and targets, however
experimental indicates a Z1 and Z2 oscillation of the stopping power for many types of
projectiles and targets. Both models violate this experimental phenomenon of Z1 and Z2
oscillation [Den-1977].

In following we study the Z2 oscillation for Mg, Cu and Ag incident ions for fixed
value of energy. We consider that the data given by SRIM computation are in agreement with

the experimental data.

The graphs data are obtained from the semi empirical SRIM program, which often gives
great agreement with experimental data, by fixing the projectile energy and varying the

atomic number of the target, to obtain the stopping power as a function of the target Z.
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These graphs show clearly the Z2 oscillation phenomenon:
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Fig. I11.7: Stopping power of 4.8-MeV Mg projectile in targets with various atomic number Z

show the Z oscillations.
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Fig. I11.8: Stopping power of 20-MeV Cu projectile in targets with various atomic number Z

show the Z oscillations.
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show the Z oscillations.

So this is one of the shortcomings of the two theories. The Thomas-Fermi atomic
model on which the LSS Firsov’s models are based is a statistical model, consequently, the

atomic shells do not intervene and its effect does not appear in the results of the calculations.

In this chapter, we have presented, compared and discussed by using figures and
tables, the results of the stopping powers of some projectiles, obtained by the SRIM program,
LSS theory, Firsov’s theory and available data, Then we have discussed the Z oscillations

which are due to the shell structure of the atoms.
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Conclusion

In this work we have presented a comparison between Firsov and the Lindhard-
Scharff-Schiott (LSS) stopping power models and experimental data. The stopping power
phenomenon results from various physical interaction processes (excitation, ionization...).
From the physical point of view of the projectile-target atom interactions, we distinguish two
different mechanisms of energy loss: 1) Nuclear stopping power, in which energy is
transmitted as translatory motion to a target atom; 2) Electronic stopping power, in which the
moving particle loses its kinetic energy by exciting or ejecting atomic electrons. For another
classification according to the ion energy we distinguish: 1) The low energies region which
contains the LSS (Lindhard, Sharff and Schiott) domain of energies where the stopping power
is approximately proportional to the ion velocity i.e. the square root of the ion energy, this
region is the interesting region of this work, 2) the intermediate region, and 3) the Bethe-
Bloch region for high energies of ions.

Many reasons lead to the need of looking for an accurate theoretical expression of
stopping power. First of all, the stopping power represents an indispensable and critical
quantity in several fields of technology (such as ion beam analysis, ion implantation, radiation
therapy...). Also, large deficiencies and discrepancies appear in available data. Moreover,
performing experiments to determine the stopping power of a projectile at a well-defined
energy using thin films is very expensive.

In 1957 Firsov obtains an interatomic potential for statistical Thomas-Fermi atoms. By
assuming that the transfer of electrons between the projectile and target atoms is the
mechanism for energy loss, Firsov obtains in 1959 an expression for the energy loss in a

single collision at low-velocity region v < 170212/ 3 (LSS region).

The Lindhard-Scharff-Schiott model (LSS model) is also based on Thomas-Fermi
atomic model, it offers analytical formula the electronic stopping power of particles through
matter as the Firsov’s model in the low-velocity region (LSS region).

For the comparison between the two models, both the Firsov and LSS formulas are
proportional to the ion velocity i.e. the square root of the ion energy. The choice of
interatomic potential is different. The Firsov’s model assumes neutral collision partners and
ignores ionization. The stopping power reciprocity (i.e. S(Zy in Z;) = S(Z; in Z1))1s
verified in the Firsov’s model but not in the LSS model.

From the comparison between the two theoretical models and experimental data in the
chapter III, we can say that in the majority of cases the deviation of the two models does not
exceed 20% if we ignore the low velocities deviations (due contribution of nuclear stopping
pOWEer).

The Z oscillations phenomenon is one of the shortcomings of the two theories. The
Thomas-Fermi atomic model on which the LSS Firsov’s models are based is a statistical
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model, consequently, the atomic shells do not intervene and its effect does not appear in the
results of the calculations.

Although the theoretical results of the Firsov and LSS models are somewhat similar to
the experimental data, the work in the field remains insufficient and much more effort is
required in order to get more reliable theoretical expression for the stopping power.
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