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Introduction 

Abstract 

 

Cloud computing is getting more popular day by day. Nowadays, we have an energy 

shortage worldwide. Thus, more researches concern about finding ways to improve the 

energy efficiency and sustainability of cloud computing. This thesis presents a performance 

analysis of the cloud computing system based on the energy-efficient task scheduling 

strategy. This strategy consists of waking up threshold policy and a sleep delay timer. 

To model the system in an energy-efficient task scheduling strategy, we use a 

vacation queue system with an N-policy threshold. in this work, the system considered as 

a physical machine with a limited buffer, this physical machine contains a set of virtual 

machines that represent the servers in our modelization, as well we constructed a 

continuous-time Markov chain and an infinitesimal generator that allows us to calculate 

stationary distribution vector. After that, we analyze the steady-state system to calculate 

the system's different performance measures like energy consumption and the delay of the 

system. 

We tested our system with different scenarios and with different parameter values 

to discover the proposed strategy performance and validate the system model according to 

the performance measure. 

The experimental study has proven that the proposed solution improves energy 

efficiency and latency without affecting availability in the system  

 

Key words: Cloud Computing, energy efficiency, task scheduling, waking up threshold 

sleep delay, queue system, Markov chain 

 

 

 



 

 
 

Introduction 

 ملخص

 

تزداد شعبية الحوسبة السحابية يومًا بعد يوم. واليوم أصبح لدينا نقص في الطاقة في أنحاء    

العالم. وبالتالي، فإن المزيد من الأبحاث تهتم بإيجاد طرق لتحسين كفاءة استهلاك الطاقة واستدامة  

الحوسبة السحابية. تقدم هذه المذكرة تحليلاً للأداء لنظام الحوسبة السحابية بناءً على استراتيجية  

جدولة المهام من اجل توفير الطاقة. تتألف هذه الاستراتيجية من سياسة تنبيه الرجوع للخوادم الى 

 العمل ومؤقت تأخير الاطفاء الجزئي للخواد م. 

 

لنمذجة النظام في استراتيجية جدولة مهام فعالة من حيث استهلاك الطاقة، نستخدم نظام قائمة 

انتظار تسمح باخذ عطل مع تنبيه الرجوع للخوادم. وفي هذا العمل، نعتبر النظام جهازًا فعليًا مزود 

بمخزن محدود، ويحتوي هذا النظام على مجموعة من الأجهزة الافتراضية التي تمثل الخوادم في 

النمذجة المتبعة، فضلاً عن ذلك فقد قمنا ببناء سلسلة ماركوف ذات الوقت المتواصل حتى يتسنى لنا  

حساب احتمالات الحالة الثابتة للنظام. وبعد ذلك، نقوم بتحليل نظام احتمالات الحالة الثابتة لحساب  

 مقاييس الأداء المختلفة للنظام مثل استهلاك الطاقة و التاخيرات الحاصلة داخل النظام.

 

لقد قمنا باختبار نظامنا باستخدام سيناريوهات مختلفة وبقيم مختلفة لاكتشاف أداء  

الاستراتيجية المقترحة والتحقق من نموذج النظام وفقاً لماعيير قياس الاداء وقد أثبتت الدراسة  

التجريبية أن الحل المقترح يحسن من كفاءة استهلاك الطاقة ويقلل من وقت التاخيرات الحاصلة داخل  

 النظام دون التأثير على امكانية توفر النظام للاستعمال. 

 

الكلمات المفتاحية : الحوسبة السحابية, كفاءة استهلاك الطاقة, جدولة المهام, سياسة تنبيه  

 الرجوع للخوادم,  ومؤقت تأخير الاطفاء الجزئي للخواد م, نظام قائمة انتظار, سلسلة ماركوف 

 



 

 
 

Introduction 

Résume 

 

Cloud computing devient de plus en plus populaire. Aujourd'hui, nous connaissons 

une pénurie d'énergie dans le monde entier. C'est pour cette raison que de plus en plus de 

chercheurs se préoccupent de trouver des moyens d'améliorer l'efficacité énergétique et la 

durabilité de cloud computing. Cette thèse présente une analyse des performances du 

système de cloud computing basée sur la stratégie d'ordonnancement des tâches à faible 

consommation d'énergie. Cette stratégie consiste en une politique de seuil de réveil et une 

minuterie de retardement du sommeil.  

Pour modéliser le système dans une stratégie de planification des tâches économe 

en énergie, nous utilisons un système de file d'attente de vacances avec un seuil de politique 

N. Dans ce travail, le système considéré comme une machine physique avec un tampon 

limité, cette machine physique contient un ensemble de machines virtuelles qui 

représentent les serveurs dans notre modélisation, ainsi nous avons construit une chaîne de 

Markov en temps continu et un générateur infinitésimal qui nous permet de calculer un 

vecteur de distribution stationnaire. Ensuite, nous analysons le système en état stationnaire 

pour calculer les différentes mesures de performance du système comme la consommation 

d'énergie et le retard du système. 

Nous avons testé notre système avec différents scénarios et avec différentes valeurs 

de paramètres pour découvrir la performance de la stratégie proposée et valider le modèle 

du système en fonction de la mesure de performance. 

L'étude expérimentale a prouvé que la solution proposée améliore l'efficacité 

énergétique et le temps de latence sans affecter la disponibilité dans le système  

Mots clés : Cloud Computing, l'efficacité énergétique, ordonnancement des tâches, 

politique de seuil de réveil, minuterie de retardement du sommeil, file d'attente de vacances, 

chaîne de Markov 
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 Introduction   
 

Cloud Computing has become an increasingly used concept referring to memory, 

computing capacity, computers, and servers distributed worldwide and linked by the 

network. 

Cloud is an On-demand self-service that provides users with high network access 

and allows them to request more additional computing resources and pay per use basis with 

make it a powerful technology to do any required tasks. Although the cloud provides a 

good performance and service time, Cloud data center consumes much energy. In this work, 

we try to lower the amount of energy consumption and get better performance. 

Problematic 

Energy consumption and latency are two of the leading cloud computing factors. 

Generally, energy consumption and latency have an inverse relationship while ensuring 

better energy consumption latency will be affected. And the same with latency. If we ensure 

a better latency, we will consume more energy. 

In this work, the problem is that we try to reduce the energy consumption of cloud 

computing and minimize the latency of tasks. 

Objectives 

The objectives pursued through this work are the following: 

• Studying cloud computing services in general. and concentrate on infrastructure as 

a service  

• Examine Markov chains and queue models concentrating on queues with vacation 

and queue with a threshold. 

• Define a solution in cloud computing infrastructure as a service that represents a 

system of a queue with vacation and sleep-delay timer as well as threshold policy. 
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• Validation of the proposed model solution, through an experimental study, using c-

sharp an application and Matlab tools.  

 

Thesis organization 

This document consists of a general introduction, four chapters, and a general 

conclusion. this work will begin with a general introduction, in which we have explained 

the general concept of this paper, specified the problem, and set the different objectives. 

First chapter:  the first chapter is a chapter of generalities. It represents a global view of 

the Cloud Computing domain. It includes definitions for the different concepts, and it gives 

the characteristics, models, advantages, and disadvantages of the cloud, as well as the 

evolution of Cloud Computing. 

 

Second chapter:  in the second chapter, we talked about some mathematical concepts like 

Markov chain, random variable, probability, stochastic process…e.g., Then we talked 

about queueing theory models  like a queue with vacation, queue with threshold policy. We 

also talked about the infinitesimal generator and performance measures. 

 

Third chapter: in this chapter, we define model 1 and model 2, specifying each model 

CTMC, infinitesimal generator, and the methods we use to find the system steady-state 

solution. 

 

Fourth chapter: this chapter is the last, dedicated to experiments. It starts with a 

presentation of the tools and the development environment. After that, we test different 

experimentation scenarios when measuring model 1 and model 2 performances, then 

discussing the results obtained. At the end of this brief, a general conclusion presented as 

a summary of this work. 
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Introduction to Cloud Computing systems 

 

 

1.1 Introduction 

 

Cloud computing is a novel paradigm for the provision of computing infrastructure, 

on the cloud we move the location of infrastructure and machine from our location to the 

network in order to reduce the costs of management and maintenance of hardware and 

software resources. The cloud providers by shifting resources to the network transfers 

management, maintenance, and investment from the customer to the provider. Cloud 

computing is a model for enabling on-demand network access to a shared pool of 

configurable computing resources (e.g., high-speed network, on-demand self-service, 

measured service (pay-per-use), resource pooling and rapid elasticity) to any customers in 

the word that can rapidly provisioned and released with minimal management effort or 

service provider interaction, largest cloud provider companies are amazon, google and 

Microsoft  

We introduce the fundamentals required to understand cloud computing in this 

chapter. We describe basic cloud properties, cloud service models (IaaS, PaaS, SaaS), 

deployment models and the virtualization technology that used to provide powerful virtual 

machines. It is essential to understand why the cloud has these properties, how these 

properties delivered on different levels and how its benefits attract customers to use cloud 

computing rather than traditional computing.  

 

1.2 History of Cloud Computing 

 

At around in 1961, John MacCharty suggested in a speech at MIT that computing 

can be sold like a utility, just like electricity  on a monthly basis. Back then it was a new 

and brilliant idea, but in that time this idea, it was ahead of its time, as for the next few 

decades, despite people and technology industry interest in the model, the technology was 

not ready for it. However, of course, many years later the technology developed and caught 

that idea and began to work on it, after a few years we mentioned that: 
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In 1999, Salesforce.com started delivering applications to users using a simple 

website. Enterprises use Salesforce applications over the Internet by paying monthly rate 

price, and this way, the old idea of computing sold as a utility was right (1). 

In 2002, Amazon started Amazon Web Services, providing services like storage, 

database, computation and even human intelligence. However, only starting with the launch 

of the Elastic Compute Cloud in 2006 commercial service open to everybody existed. 

Elastic Compute Cloud was a considerable success (1). 

In 2009, Google Apps started Google Cloud to provide cloud computing enterprise 

applications. Google now provide some free cloud services such as google drive(1). 

In 2009, Microsoft started Windows Azure, and big technology companies like 

Oracle and HP have all joined the game trying to dominate the market. Today this proves 

that cloud computing has become mainstream(1). 

 

1.3 Cloud Computing 

 

 

Figure 1-1.1 Data center (30) 



 

6 
 

Introduction to Cloud Computing systems 

Cloud computing is delivering hosted services like servers, networking storage, databases, 

software, analytics and intelligence over the internet to offer faster innovation, flexible 

resources, and economies of scale. You typically pay only for computing services you use, 

For the duration you used it actively (pay-per-use), which lower your costs, menage 

infrastructure more efficiently and scale as your business needs change due to flexible 

resources offering. 

1.4 Essential Cloud Computing properties 
 

The following Properties make cloud computing technology so powerful and overcome 

a lot of its disadvantages:  

• On-demand self-service (2): customers may reserve and release computing 

resources independently exactly as needed, which allows the customer to reduce the 

cost. 

• High network access (2): the integration of distributed computing resources in an 

application need high speed and low latency network in order to reduce data access 

times and become less dependent on the physical location where data is stored. 

• Pay-per-use (2): the use of cloud computing resources storage, processing, or data 

exchange is measured. This metering is used to enable pay-per-use pricing models 

the benefit of measured service, and the enabled pay-per-use pricing models for the 

customer is quite evident as no more investments in non-used or under-utilized IT 

resources is necessary. However, the cloud provider must deal with the fact that 

resources can be returned by customers when they do not need them and make sure 

they available to be assigned to other customers. 

• Rapid elasticity(2): rapid elasticity allows users to automatically request additional 

space in the cloud or other types of services. Because cloud infrastructure setup, 

provisioning can be seamless for the customer or organization. Cloud provider 

allocation and de-allocation of computing resources are often irrelevant on the 

customer's side. This is an essential aspect of cloud technology. In a sense, cloud 

computing resources appear to be infinite or automatically available. 
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• Resource pooling(2): to deal with the demand for pay-per-use, cloud providers 

offers IT resources using a large IT resource pool that is shared by multiple 

customers. To be able to assign resources of the resource pool dynamically to 

customers, it required that the resource pool supports elasticity, i.e., customers can 

rapidly grow or shrink the share of the resource pool assigned to them. The cloud 

provider can automatically detect underutilized IT resources or increased demand 

of customers and assigns IT resources accordingly. 

 

1.5 Cloud service models 

 

 

Figure 1-2 Application stack and associated cloud service models (2) 

 

There are different cloud service models according to the layers of the application stack for 

which they provide cloud resources. 

 

1.5.1 Infrastructure as a service (IaaS)  

 

Infrastructure as a service means only the infrastructure is given to you, you control 

everything else and manage it the way you want it, and when you use it. IaaS provides 

computing architecture and infrastructure apart from that data storage, virtualization 

servers, and networking. 
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Figure 1-3 Infrastructure as a service (30) 

 

1.5.2 Platform as a service (PaaS) 

 

 

Figure 1-4 Platform as a service (30) 

 

Platform as a Service (PAAS) is a cloud computing model that delivers 

infrastructure software over the internet. A cloud provider hosts the hardware, operating 

systems and software on its infrastructure. As a result, PAAS users do not worry about 

installing in-house hardware, operating system and software to develop or run a new 

application. Instead, they focus only on application development. PAAS providers for key 

services, such as Java development, website or application hosting. A PAAS provider, 

however, supports all the underlying computing and software; users then login and start 

using the platform usually through a Web browser interface. PAAS providers then charge 

users on a pay-per-use basis or on a monthly basis(3). 
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1.5.3 Software as a service (SaaS) 

 

In SAAS, cloud provider offers a complete software application to customers who 

may use it on-demand via a self-service interface (2). The provider, therefore, provides 

customers with an entire application stack with GUI to support their business.  Users log in 

and access only to the application software, and they use it the way you want it, but do not 

have to install and manage an application required to support these processes. Accesses to 

this application billed on a pay-per-use basis. 

 

Figure 1-5 Software as a Service (30) 

 

 

1.6 Cloud deployment models 

 

1.6.1 Public cloud  

 

This type of cloud deployment model can support all users who want to benefit 

from computing on a pay-per-use basis or a subscription basis. Customers connect to the 

cloud through a public network which means security is a significant risk in this cloud. 

Most common uses of public clouds are for non-mission-critical tasks such as file sharing, 

e-mail service, application development and testing, simulation labs (4). 
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Figure 1-6 Public Cloud (30) 

 

 

1.6.2 Private cloud  

 

Cloud infrastructure is used by a single organization in private cloud environment. 

This infrastructure managed by the organization itself to support various user groups or a 

cloud provider could manage it. Users connect to this cloud model through a private 

network. Private clouds are more expensive than public clouds due to the extra cost 

involved in maintaining them (4). However, private clouds are better in security and 

privacy to organizations. We can use this cloud in critical tasks that contain sensitive data. 

 

 

Figure 1-7 Privat cloud (30) 
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1.6.3 Hybrid cloud  

 

In a hybrid cloud, we use interconnected private and public cloud infrastructure. 

Many organizations use this model when they need to scale up their IT infrastructure 

rapidly. For example, if an organization hosting Web application on the cloud needs more 

computing resources during the holiday season to run the application, it may attain those 

resources via public clouds (4). 

 

 

Figure 1-8 Hybrid cloud (30) 

 

 

 

1.6.4 Community cloud  

 

In the community cloud, multiple organizations that are part of a community 

sharing computing resources, examples include universities cooperating in big research 

projects, or police departments within a county or state sharing computing resources. 

Access to a community cloud environment (4) is restricted only to the members of the 

community. 
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Figure 1-9 Community cloud (30) 

 

 

 

1.7 Cloud workload types 

 

 

1.7.1 Static workloads 

 

Customers in static workload have predictable and pre-determine workload, 

meaning there are no surprises, no traffic spikes & rushes. This kind of workload can be a 

utility deployed on the cloud have a limited number of users in a private network, for 

example, an organization-wide tax-calculation utility or the enterprises with few numbers 

of customers. 
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Figure 1-10 Static workloads example (2) 

1.7.2 Periodic workloads 

 

The utilization in these types of workloads happens at specific times only known to 

the cloud providers, maybe like an electricity bill payment app happen in a few days in a 

month. The best cloud models for these kinds of applications is Serverless compute models; 

customers do not need to pay for idle resources without using them, pay for the compute 

utilized. 

 

Figure 1-11 Periodic workloads example (2) 

 

1.7.3 Unpredictable workloads 

 

Popular huge apps like social networks have these workloads include based on the 

fact that many classes worldwide of customers use them at any moment, online multiplayer 
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games, video, game streaming apps etc. Traffic can spike by any amount exponentially. 

Pokémon Go surpassed all traffic expectations by growing up to 50x the anticipated traffic. 

Likewise, on social networks, traffic spikes when any major global worldwide event 

occurs. The auto-scaling cloud ability and rapid elasticity in these kinds of scenarios save 

the day by dynamically adding additional instances when required. 

 

Figure 1-12 Unpredictable workloads example (2) 

 

1.7.4 Hybrid Workloads 

 

Hybrid workloads can be the mix of the above-stated workloads. Well, there is no 

limit to the architectural complexity in scalable applications. 

 

1.8 Cloud virtualization  

 

A virtual machine (VM) is an image file managed by the hypervisor that exhibits 

the behaviour of a separate computer, capable of performing tasks such as running 

applications and programs like a separate computer(5). In other words, a VM is a software 

application that performs most functions of a physical computer, actually behaving like a 

separate computer system. 
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Deploying applications directly on physical servers presents several risks. It makes 

the application directly dependent on physical hardware failures, also known as a single 

point of failure if so many applications or VMs fail due to physical hardware fail. It leads 

to unavailability if the hardware has to be re-configured for updates or replacement. 

Virtualization: in virtualization, we create a virtual version of hardware (physical), such as 

a server, CPU, a storage device, or network resources". 

In cloud environments, Virtualization is a technique, which allows multiple customers to 

share a single hardware instance of a resource or an application. Assigning a logical name 

to physical storage and providing a pointer to that physical resource when demanded. By 

virtualization, we can install different operating systems on the same physical machine 

without any problems. 

 

Figure 1-13 Mainframe Virtualization Architecture (30) 

 

1.8.1 Hypervisor  

 

A hypervisor is a software that makes virtualization technology possible. It abstracts 

the physical server into virtualized hardware where different operating systems and 
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middleware installed to host applications sharing the physical server while being isolated 

from each other regarding the use of physical hardware(6). 

 

Figure 1-14 Hypervisor types using virtualization and para-virtualization (6) 

 

• Type-1 Hypervisor: hypervisor runs directly on physical hardware. Known also as 

“Native Hypervisor” or “Bare metal hypervisor”. It does not require any operating 

system. It has direct access to hardware resources. We use this type in a cloud 

environment due to its smooth performance. Examples of Type 1 hypervisors 

include VMware ESXi, Citrix XenServer and Microsoft Hyper-V hypervisor (2). 

 

• Type-2 Hypervisor: hypervisor runs on an underlying host operating system. It is 

also known as “Hosted Hypervisor”. It is software installed on an operating system. 

Hypervisor asks the operating system to make hardware calls. Example of Type 2 

hypervisor includes VMware Player, virtual box or Parallels Desktop. Hosted 

hypervisors often found on endpoints like PCs (2). 
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1.9 Advantages and disadvantages of Cloud Computing 

 

From what we have addressed earlier, we can conclude that  Cloud has its 

advantages and disadvantages. Some of the cloud advantages are cost efficiency, High 

speed deploy and network, anywhere accessibility and On-demand computing resources. 

Biggest cloud disadvantages are security and Energy consumption. The energy 

consumption of under-utilized resources, particularly in a cloud environment, accounts for 

a substantial amount of the actual energy use (7). 

 

1.10 Energy consumption in Cloud Computing  

The use of cloud computing is becoming widespread. Data centers have increased 

energy requirements for power and cooling. In 2012, for every $1 spent on hardware there 

was $1 spent for power and cooling. That is why reducing consumption has a substantial 

economic impact. Besides, there is also an ecological impact because the environmental 

footprint is not negligible. Indeed, in 2008, data centers emitted 116 million tons of carbon 

dioxide, which is more than Algeria's total emissions. 

Researches of Cloud computing in the section of reducing energy has focused lately 

on reducing it physically like dynamic voltage and frequency scaling DVFS .and it is 

implemented in the architecture of cloud allowing the system to supply the voltage and 

adjust the frequency to a particular component within the physical system and this method 

shows a significant power and energy saving that means that those parts was before this 

method wasting a big amount of energy, with the same idea but with the system model of 

the cloud researchers searched for the gabs that waste energy in the system of cloud and try 

to optimize it. 

By using the concept of VMs and introducing sleep state, sleep time, and many 

other concepts, researchers in both the physical field and the software field are trying to 

reduce the energy consumption in cloud computing. 



 

18 
 

Introduction to Cloud Computing systems 

 

 

 

1.11 Conclusion  

 

 

In this chapter, we introduced cloud computing and brought up the essential cloud 

computing properties. We talked about cloud service models, Infrastructure as a service is 

one of the services models that we focus about in our work, after that, we address 

virtualization and its massive benefit to the cloud, and in the end, we talked about the 

problem of energy consumption in cloud computing. 

In the next chapter, we will bring some mathematical concepts and speak about 

queueing theories and Markov chains 
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Chapter 2 Studies of Markov chain and queueing models 
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2.1 Introduction 

 

Today, most systems have become more complex. It is necessary to check whether the 

future system meets the specified requirements described in our agenda. It is also necessary 

to modify or improve a system, which is already operational, by modifying or improving 

specific parameters of performance, such as the energy consumed in the system, the mean 

waiting time of tasks in the buffer, the system service throughout or the blocking probability 

in a system. The system can be used to determine the capacity, throughput and condition 

of the various machines in a production system, etc. 

The process for determining the various performance parameters of the systems is known 

as performance evaluation or analysis. However, before to do this, we must go through a 

modelling phase that allows us to deduce a model, which represents a mathematical 

abstraction of the system. After we got our model, we can easily analyze it and figure out 

the performance of the reel model; thus, we try to improve it. 

 Our study on the performance of cloud machines, which will be addressed in the next 

chapter. Is essentially based on these mathematical formalisms: the queues and continuous-

time Markov chain. However, the analysis of these models requires the mastery of 

stochastic processes and more particularly of Markov chains steady state. 

 

2.2 Markov chains 

 

2.2.1 Random variables 

Any variable x defined on a sample space S for which the cumulative 

probabilities 𝑃𝑟 {x ≤ a} can be defined for all real values of a, −∞ <  𝑎 <  ∞, is called a 

real random variable x. (8) 
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A discrete random variable has a countable number of possible values, any random 

variable x which takes individually distinct values with nonzero probabilities is called a 

discrete random variable and in this case, the probability function, denoted by 𝑓(𝑥), is 

given by (8) 

𝑓(𝑥) = {
𝑃𝑟{𝑋 = 𝑥},          𝑥 ∈ 𝑆 
0,                          𝑥 ∉ 𝑆

       ...( 2-1 

A continuous random variable takes all values in an interval of numbers, Any 

random variable x which is defined on a continuum of points, where the probability that x 

takes a specific value x’ is zero, is called a continuous random variable and the density 

function is available from the cumulative density by differentiation, when differentiable, or 

the cumulative density is available by integration of the density. (8) That is: 

 

𝐹𝑥(𝑎) = ∫ 𝑓𝑥(𝑡) 𝑑𝑡
𝑎

0
    ...( 2-2 

 

2.2.2 Stochastic process 

 

A stochastic process is also called a random process. It describes how random 

variables evolve. (9) 

Let 𝑋𝑡  be the value of some characteristic at time t,  𝑋𝑡 represents a random 

variable, and it is not known with certainty before time t, an example of 𝑋𝑡, is the number 

of students in the classroom at t minutes after the class starts, some students may come in 

late, so we do not know the value of 𝑋𝑡 for sure before time t. (10) 

𝑋𝑡 is called the state of the stochastic process. If a stochastic process can be 

observed at discrete time instants, it is called a discrete-time stochastic process. If the state 

of a stochastic process can be observed at any continuous time, it is called a continuous-

time stochastic process (9) 
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For example, the function f: R≥0 →R given by   𝑓(𝑡) = 𝑡    is a deterministic process, but 

a random function f: R ≥0 → R given by   𝑓(𝑡) = 𝑡   with probability 1/2 and   𝑓(𝑡) = −𝑡   

with probability 1/2 is a stochastic process. 

 

2.2.3 Poisson process  

 

The Poisson process is one of the most important models used in queueing theory. 

Often the arrival process of customers can be described by a Poisson process. In telegraphic 

theory, the “customers” may be calls or packets. The Poisson process is a viable model 

when the calls or packets originate from a large population of independent users. (8) 

Mathematically the process is described by the counter process Nt or N(t). The 

counter tells the number of arrivals that have occurred in the interval (0, t) or, more 

generally, in the interval (t1, t2). 

In mathematics, a Markov chain is a Markov process with discrete-time, or 

continuous time, and discrete state space. A Markov process is a stochastic process with 

the Markov property: the information useful for predicting the future is entirely contained 

in the present state of the process, and it is not dependent on previous states (the system 

has no "memory"). Markov processes named after their inventor, Andrei Markov. (9) 

 

2.2.4 Definition of Markov chains 

 

The defining property of a Markov chain is the prediction of the future from the 

present only, it is not more precise by additional information about the past, because all the 

information that is useful for predicting the future is contained in the present state of the 

process. Its future and past states are independent. (11) 

A Markov chain is a type of Markov process with either a discrete state space or a 

set of discrete indices (often representing time), but the precise definition of a Markov chain 

varies. For example, it is common to define a Markov chain as a discrete or continuous-
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time Markov process with a space of countable states (independent of the nature of time), 

but it is also common to define a Markov chain as having a discrete-time in the space of 

countable or continuous states (independent of the space of states). (11) 

 

2.2.5 Types of Markov chains 

 

The system time parameter and state space are specified in Markov chains. So, we 

have variation in parameters of the chains between the discrete-time and continuous-time 

(time parameter). The countable state space and the continuous state space, so we conclude 

the four deferent Markov chain types. In this study, we focus only on countable state space, 

so we have: 

• Discrete-time Markov chain  

• Continuous-time Markov chain  

 

2.2.6 Conditional probability 

 

The conditional probability of event A is the probability that the event will occur 

given the knowledge that B has already occurred. This probability is written P(A|B), the 

notation for the probability of A given B. In the case where 

events A and B are independent (where event B does not affect the probability of event A), 

the conditional probability of event A given event B is simply the probability of event A, 

that is, P(A). (12) 

If events A and B are not independent, then the probability of the intersection of A 

and B (the probability that both events occur) is defined by: 

𝑃(𝐴 𝑎𝑛𝑑 𝐵)  =  𝑃(𝐴|𝐵) 𝑃(𝐵).         ...( 2-3 

From this definition, the conditional probability P(A|B) is easily obtained by dividing 

by P(B): 



 

24 
 

Studies of Markov chain and queueing models 

𝑃(𝐴|𝐵) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃(𝐵)
...( 2-4 

 

 

2.2.7 Discrete-time Markov chain 

A discrete-time Markov process is an  𝑋0, 𝑋1, 𝑋2,𝑋3,…. a sequence of random var-

iables with values in state spaces, and E represents this sequence of random variables. The 

value 𝑋𝑛 is the state of the process at the moment 𝑛. The applications where the state space 

of E is finite or countable are innumerable. In this study, the essential properties of general 

Markov processes, such as recurrence and ergodicity, are more simply stated or 

demonstrated in the case of discrete space Markov chains, in this study we focus, on 

discrete space Markov chains.  

A discrete-time stochastic process is a Markov chain if, for t = (0, 1, 2…) And so on, the 

states have the following relation: 

 

𝑃(𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡 , 𝑋𝑡−1 = 𝑖𝑡−1. 𝑋1 = 𝑖1 , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡)...(2-5 

 

Last equation is an equation where the left-hand side is a conditional probability. It 

represents the probability that at a time t+1, the state is 𝑖𝑡+1, given that at a time 0, the state 

is 𝑖0At time 1 the state is 𝑖1 and at time t the state is 𝑖𝑡. On the right-hand side, the equation 

is also a conditional probability. It represents the probability that at time t+1, the state is 

𝑖𝑡+1, given that at time t the stat is 𝑖𝑡. 

This equation means the probability distribution of the state at time t+1 depends 

only on the state at time t. it does not depend on the states before time t. 

• Initial probability distribution 

An initial probability distribution can describe the initial state of the Markov chain  
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𝑞𝑖: the probability that the chain is in a state 𝑖 at time 0: 𝑃(𝑋0 = 𝑖) = 𝑞𝑖 

If we have a total of s different states, then we call the vector  𝑞 = [𝑞1, 𝑞2, … , 𝑞𝑆] the initial 

probability distribution of the Markov chain where    ∑ 𝑞𝑖 = 1𝑆
𝑖=1  . 

• Stationary assumption 

We will describe when the Markov chain is called a stationary Markov chain 

Given: 

𝑃(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖)        ...( 2-6 

The probability that the system will be in state j at time t+1, given it is in state 𝑖 at 

time t. 

A Markov chain is called a stationary Markov chain if this probability is 

independent of time t. that means the probability that the system will be in state j at time 

t+1, given it is in state  𝑖 at time t+1 is equal to the probability that the system will be in 

state j at time t, given it is in state 𝑖 at time t-1, which is also equal to the probability that 

the system will be in state j at time 1 given it is in state 𝑖 a time 0: 

𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) = 𝑃(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖 ) = ⋯ = 𝑃(𝑋1 = 𝑗 |𝑋0 = 𝑖) = 𝑃𝑖,𝑗       ...( 2-7 

Since his probability does not change, we give it a shorter name  𝑃𝑖,𝑗 that is called the 

transition probability from state 𝑖 at a previous time to state j at the current time. If we have 

a total of s states, the transition probability from one state to another can be displayed as an 

𝑠 × 𝑠 matrix: 

 

 𝑃 =

[
 
 
 
 

𝑃11 𝑃1,2

𝑃2,1 𝑃2,2
⋯

𝑃1,𝑠−1 𝑃1,𝑠

𝑃2,𝑠−1 𝑃2,𝑠

⋮          ⋮ ⋱ ⋮              ⋮
𝑃𝑠−1,1 𝑃𝑠−1,2

𝑃𝑠,1 𝑃𝑠,2
⋯

𝑃𝑠−1,𝑠−1 𝑃𝑠−1,𝑠

𝑃𝑠,𝑠−1 𝑃𝑠,𝑠 ]
 
 
 
 

       

And:   
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∑ 𝑃𝑖,𝑗 = 1
𝑗=𝑠

𝑖=1
       ...( 2-8 

 

As all these 𝑃𝑖,𝑗 are probabilities they should all be greater or equal to 0, and less 

than or equal to 1. Also, the probability of each row must sum to 1. That means that if the 

Markov chain is in state 𝑖 at time t, it must transit to one of the s states at time t+1. So, the 

sum should be equals to 1, and there is no such requirement for the columns. 

 

• n-step transition probability: 

 

if a Markov chain is in state i at time t, the probability that it will be in state j after 

n periods called the n-step probability. 

𝑃(𝑋𝑡+𝑛 = 𝑗|𝑋𝑡 = 𝑖) = 𝑃(𝑋𝑛 = 𝑗|𝑋0 = 𝑖 ) = 𝑃𝑖,𝑗(𝑛)       ...( 2-9 

For a stationary Markov chain, this probability will be independent of t, so the 

probability that the chain is in state j at time 𝑡 + 𝑛 given that it is in state 𝑖 at time t is equal 

to the probability that the Markov chain is in state j at time n given that it is in state 𝑖 at 

time 0,  this n-step transition probability from state 𝑖 to state j is denoted by 𝑃𝑖,𝑗(𝑛) . 
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 example 1: 

𝑃 = [

𝑃11 𝑃1,2

𝑃2,1 𝑃2,2

⋯
⋯

𝑃2,1

𝑃2,1

⋮          ⋮ ⋱ ⋮
𝑃2,1 𝑃2,1 ⋯ 𝑃𝑠,𝑠

]       

 

 

 

 

Assume that we know the one-step transition matrix, which is shown here we can 

think of a 2-step transition from i to j as two 1-step transition from i to an intermediate state 

K, and then from K to j. we have a total of s states so K can be any value between 1 and s.  

• if the path i-1-j is followed from 𝑖 to j the probability is: 

 𝑃𝑖1 × 𝑃1𝑗 

• if the path i-2-j is followed from 𝑖 to j the probability is: 

 𝑃𝑖2 × 𝑃2𝑗 

            ⋮ 

• if the path i-K-j is followed from 𝑖 to j the probability is: 

 𝑃𝑖𝐾 × 𝑃𝐾𝑗 

 

 

i 

s 

2 

1 

j 

𝑃𝑖,2 

𝑃𝑖,𝑠  𝑃𝑠,𝑗  

𝑃2,𝑗  

𝑃1,𝑗  𝑃𝑖,1 

⋮ 

K J 
I 

Figure 2-1 example of n-step transition 
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it is possible to go through any of the intermediate state, and the 2-step transition probability 

is equal to: 

 

𝑃𝑖𝑗(2) = ∑ 𝑃𝑖𝑘𝑃𝑘𝑗

𝑘=𝑠

𝑘=1

= 𝑖𝑗𝑡ℎ    𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃2         . . . ( 2-10   

       

This equation can be generalized as follow: 

 
𝑃𝑖𝑗(𝑛) = 𝑖𝑗𝑡ℎ    𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃𝑛  𝑛 = 1,2,3, … . . . ( 2-11  

       

 

2.2.8 Continuous-time Markov chain 

 In probability theory, a continuous-time Markov process, or continuous-

time Markov chain, is a continuous-time variant of the Markov process. More precisely, it 

is a mathematical model with a value in a countable set of states, in which the time spent 

in each of the states is a positive real random variable, following an exponential law. (9) 

 

A continuous-time (𝑋𝑡)t≥0 Markov chain is characterized by: 

• a finite or countable set S of states. 

• An initial distribution that represent the set of states. 

• A matrix Q of transition rates, also called an infinitesimal generator. 

For i ≠ j, the elements 𝑞𝑖𝑗 of the matrix, Q is positive real numbers that quantify the speed 

of transition from state i to state j. The elements 𝑞𝑖𝑖 are chosen so that the columns of each 

row sum to zero. 
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𝑞𝑖𝑖 = ∑𝑞𝑖𝑗      

𝑗≠𝑖

. . . ( 2-12  

       

     

Considering Continuous-time stochastic process {𝑋(𝑡)} where for t ≥ 0 And state 

space E is either finite or countable  

 {𝑋(𝑡)} is called a continuous-time Markov chain if given time instances 

 𝑡1 < 𝑡2 < 𝑡3 < ⋯ < 𝑡𝑛 < 𝑠 < 𝑠 + 𝑡 and integers 𝑖1, 𝑖2, ⋯ , 𝑖𝑛, 𝑖, 𝑗 ∈ 𝐸 we have: 

𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖, 𝑋(𝑡𝑘) = 𝑖𝑘, 𝑘 = 1,2,⋯ , 𝑛)) = 𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖) 

 The probability 𝑝𝑖𝑗(𝑠, 𝑡) = 𝑃({𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖}) is called the transition 

probability. 

 

• homogenous continuous-time Markov chain  

 if   𝑝𝑖𝑗(𝑠, 𝑡) is independent of s but dependent on t we call the chain homogeneous 

continuous-time Markov chain, if {𝑋(𝑡), 𝑡 ≥ 0}, then  

 𝑝𝑖𝑗(𝑡) = 𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖 

  = 𝑃(𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖) 

 𝑝𝑗(𝑡) = 𝑃(𝑋(𝑡) = 𝑗) 

  = ∑ 𝑝(0)𝑝𝑖𝑗(𝑡)
𝑘=0

        ...( 2-13 

• State holding time  

When the continuous-time Markov chain enters a state 𝑖, the time is spending before 

it leaves the state 𝑖 is called the holding time in the state 𝑖 that holding time t is a continuous 

random variable. 

• Structure of a homogenous CTMC 



 

30 
 

Studies of Markov chain and queueing models 

 1.CTMC enters at state 𝑖. It stays at the state for a time t. 

 2.Ones the CTMC leaves state 𝑖, it enters one of the states let us say j with the 

transition probability 𝑝𝑖𝑗 where j≠ 𝑖 and ∑ 𝑝𝑖𝑗 = 1
𝑗≠𝑖

 .       ...( 2-14 

The two events of leaving state 𝑖 and entering the state j are independent because 

of Markov property. 

• Reachable and communicating states: 

 In Markov chain, a path from state 𝑖 to state j is a sequence of transitions that begins 

in 𝑖 the sequence has a positive probability  

• A state j is reachable from state 𝑖 fi there is a path leading from 𝑖 to j 

• the state 𝑖 and the state j can communicate if j is reachable from 𝑖, and 𝑖 is 

reachable from j 

• a set of states S in a Markov chain is closed set if no state outside of s is 

reachable from any state in S. 

Example 2: 

 

 

 

  

 𝑃 =

[
 
 
 
 
0
0

𝑥
0

0
𝑦

0
0

0
0

𝑧
0

0
0

0 0
0 0

0
𝑣

0 0 0 𝑤 0]
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Figure 2-2 example of reachable and 

communicating states 
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This Markov chain has 5 states, and P is the state transition matrix. In this example state 3 

is reachable from state 1 via the path 1-2-3 but state 5 is not reachable from state 1, the is 

not path from 1 to 5, here we can say that states 1,2,3 are reachable from each other so S1 

which contain 3 states 1,2 and 3 is a closed set. And set S2 which contains states 4 and 5 is 

closed set. 

• Absorbing state 

State 𝑖 is an absorbing state if 𝑝𝑖𝑖 = 1 

That means the probability of the transition from i to itself is 1, so whenever we enter an 

absorbing state, and we never leave the state. An absorbing state is also a closed set 

containing only one state. 

here is an example: 

example 3: 

 

 

Figure 2-3 example of absorbing states 
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in this Markov chain both the state 1 and the state 5 are absorbing states, other states are 

not absorbing states 

 

• Transition and recurrent states: 

 A state 𝑖 is a transient state if there exists a state j that is reachable from 𝑖, but state 

𝑖 is not reachable from state j, it means ones whenever we leave a transient state, it is 

possible that we will never return to this state. 

 If a state is not transient, then it is called a recurrent state. 

In the last example of Markov chain, there are 3 transient states 2,3 and 4, for 

example, we can go from 3 to 2 and then from to 1 then we get trapped in state 1 and will 

never come back to state 3 again, the other two states 1 and 5 are not transient states, so 

they are recurrent states. 

• Periodic and aperiodic states: 

 A state 𝑖 is periodic with period k>1, if k is the smallest number such that all paths 

leading from state 𝑖 back to the state have a length that is multiple of k. 

 Absorbing states are aperiodic. 

 If we can return to a recurrent state at irregular times, it is aperiodic. 

Example 4: 

 

 

In this example we have 3 states they are all 

recurrent states, there is no absorbing state, all states 

are periodic with a period of 3  

 

Figure 2-4 Example of Periodic 

and aperiodic states 
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For example, starting from state 1 we need 3,6 ,9… steps to come back to state 1  

Now we lock at example 3 we know that the absorbing states 1 and 5 are not periodic, the 

transient states 2,3 and 4 are not periodic because we may not come back to these states 

again. 

 

 

• Ergodic Markov chain  

 If all states in a Markov chain are recurrent, aperiodic, and communicate with each 

other, then this Markov chain is ergodic. (13) 

 

 In example 3 is not ergodic because it has some transient states 2,3 and 4 and state 

1 cannot communicate with state 5. 

 In example 2 S1 is ergodic because none of the states is transient, there is no period, 

and every state can communicate with other states  

 S2 is ergodic also for the same reasons  

But S that is represented from 1 to 5 is not ergodic because 1,2 and 3 cannot communicate 

with states 4 and 5  

• infinitesimal generator and Stationary Distributions 

An infinitesimal generator is a stochastic calculation tool, used in particular for 

continuous-time Markov chains. 

That is constructed as follow: 

𝑄 [𝑖, 𝑗] = {

𝑞(𝑖, 𝑗),             𝑖𝑓 𝑖 ≠ 𝑗

−∑𝑄 [𝑖, 𝑎]

𝑎≠𝑖

,      𝑖𝑓 𝑖 = 𝑗     . . . ( 2-15   

       

Where 𝑄 [𝑖, 𝑗] is the transition rate from 𝑖 𝑡𝑜 𝑗 
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A probability distribution 𝜋 = 𝜋𝑖  𝑖 ∈ 𝑠 is said a stationary for the probability transition 

matrix 𝑃(𝑡) if only: 

𝜋𝑃(𝑡) = 𝜋        ...( 2-16 

And the stationary distribution 𝜋 = 𝜋𝑖 𝑖 ∈ 𝑠 is stationary if and only if it satisfies the 

equation: 

𝜋𝑄 = 0        ...( 2-17 

Q is the infinitesimal generator matrix. 

 

2.3 Queueing models 

• Queues:   is a system where units or customers arrive at a waiting area and wait at the 

end to acquire a service from a service channel if the service is not immediately 

available, and at the end, for their service to leave this system is called a queue system.  

The theory of queuing models is a form of probability that refers to the waiting tasks. 

It allows the analysis of incoming and outgoing tasks in a queued files system, and to 

calculate various system performance parameters, such as the probability that the 

service is immediately available to a new incoming customer, the average number of 

units in the system and waiting, and the time spent waiting in the system. In this way, 

decisions can be made based on system parameters, such as the number of resources 

making up the service, for example. 

Historically, the theory of waiting files goes back to the beginning of the previous 

century, when Anger Kramp Erlang, a Danish engineer who worked for the company of 

Copenhagen, formulated a mathematical solution which made it possible to determine the 

number of lines necessary to handle a given number of telephone calls. Subsequently, he 

published several articles that represented the birth of the waiting line theory files. This 

theory is used in many fields such as commerce, engineering, computer systems and 

networks, etc. It is also used in the field of computer systems and networks. 
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In fact, the files queuing theory described above is called classical or standard 

queuing theory, in which a new client arriving and finding the server(s) busy or unavailable 

behaves according to one of the two following scenarios: 

• The client leaves the system without being served; this corresponds to the Erlang model 

with loss; 

• or it waits to be served after the release of one of the servers, according to a certain 

discipline (FIFO, LIFO, ...). 

There is another scenario, which corresponds to an intermediate situation, in which the 

customer calls back later to get the service, as many times as necessary and at time intervals 

distributed according to a certain law of probability.  These systems are called call-back 

systems or systems with repeated calls. 

In some situations, the service becomes temporarily unavailable to the customer. 

Such a system is called a standby system with vacation. In the next sections, we will discuss 

the models of the standard queueing system files, the call-back queueing system files and 

the vacation queueing system files 

 

2.3.1 Kendall’s notation 

In 1951, David George Kendall introduced a set of notations, which have become 

standard in queuing models, which is a system of notation according to which the various 

characteristics of a queuing model are identified. 

Kendall’s notation is denoted by a/b/c/d/e/f where, 

• a: describe the distribution time of the arrival process 

• b: describe the distribution time of the service process 

• c: the number of servers (service channels) 

• d: the number of places in the queue (length of the queue) 

• e: the calling population (the size of which the customers comes from) 

• f: the queue’s discipline (it is how the queue is ordering service: FCFS, LCFS, 

SIRO, PQ) 
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2.3.2 Little’s law 

In 1961, John Little published an article showing that the average number of units in 

the system, L, is related to the average time spent in the system, 𝑊 , 𝐿 =  𝜆.𝑊 , where λ is 

the client arrival rate. In the same way, the following two relationships are established: 

• 𝐿𝑠 =  𝜆.𝑊 𝑠, the average number of customers in service. 

• 𝐿𝑞 =  𝜆.𝑊 𝑞, the average number of customers in the waiting file. 

𝑊 𝑠  and  𝑊 𝑞 represent the average time spent in the waiting area and the average time 

spent in service, respectively. 

 

Figure 2-5 Little’s Law representations (14) 

 

2.3.3 Standard queueing models  

Queueing models is often used in the simulation analysis, it provides the analyst 

with a powerful tool for designing and evaluating the performance of queueing systems. 

Key elements of queueing systems: 

• Customer: refers to anything that arrives at a facility and requires service, e.g., 

people, machines, trucks, emails, packets and frames (14). 

• Server: refers to any resource that provides the requested service, e.g., machines, 

runways at the airport, host, switch, router, disk drive, algorithm. 
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• Calling population: the population of potential customers may be assumed to be 

finite or infinite (15). 

 

• Finite population model: if the arrival rate depends on the number of customers 

being served and waiting 

• Infinite population model: if the arrival rate is not affected by the number of 

customers being served and waiting 

 

Note: if the calling population is not mentioning then it is assumed to be infinite by 

default system capacity: a limit on the number of customers that may be in the waiting line 

or Limited system capacity, e.g., a buffer of a NIC only has room for N packets to wait in 

line to enter the processing phase, if a system is full no packets are accepted anymore. 

 

Figure 2-6 Finite population queue model 

 

Unlimited capacity, e.g., concert ticket sales with no limit on the number of people allowed 

to wait to purchase tickets. 

 

Figure 2-7 Infinite population queue model 

 

For infinite-population model : 
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Arrival types are: 

• Random arrival: arrival times usually characterized by a probability 

distribution, most important model in random arrivals is Poisson arrival process 

that we talked about before (with rate λ), where a time represents the interarrival 

time between customer n-1 and customer n, and is exponentially distributed 

(with mean 1/λ)(16). 

• Scheduled arrivals: interarrival times can be constant or constant plus or minus 

a  

small random amount to represent early or late arrivals. 

Queue behaviour: the actions of customers in a queue while waiting for a service to begin, 

for example:   

• Balk: leaving in the case when they see that the line is too long 

• Renege: leaving after being in line when it is moving too slow 

• Jockey: moving from one line to another shorter line  

Queue discipline: the logical ordering of customers in a queue that determines which 

customer is chosen for service when a server becomes free, for example:  

• First -in-first -out (FIFO) t (FIFO)  

• Last-in-first-out (LIFO)  

• Service in random order (SIRO) 

• Shortest processing time first (SPT)  

• Service according to priority (PR) 

Service times of successive arrivals are denoted by S1, S2, S3 it may be constant or 

random, it is usually characterized as a sequence of (IID) independent and identically 

distributed random variables, e.g.: exponential distribution.  

A queueing system consists of a number of service centers and interconnected queues, 

each service center consists of some number of servers working in parallel upon getting to 

the head of the line a customer takes the in parallel, upon getting to the head of the line, a 

customer takes the 1st available server(14). 
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2.3.4 Queues with call-back 

In the classical queuing theory seen in the previous section, we have found that a 

new client who arrives on the system and cannot be served immediately. The user either 

joins the waiting area and waits his turn, or leaves the final system. However, in reality, 

this is only a first approximation to real situations, where usually such a client returns to 

the system after a random amount of time and tries to acquire the information. This is 

known as the recall phenomenon. 

Queues with recall have been introduced to address this deficiency, and have been 

widely used for several model problems in telephone systems, systems and networks in the 

field of telecommunications. 

Since the former works of Kosten, Cohen, Wilkinson, and Riordan, a variety of 

techniques and results have been developed to resolve some particular problems. 

Because of the complexity of queues with call-backs due to the presence of two streams of 

calls, analytical results are quite difficult to obtain and only exist for specific models, with 

binding assumptions on certain parameters, such as the number of servers, their reliability, 

etc... To this end, the researchers oriented towards numerical methods (algorithms), 

approximation methods, and simulation. 

 

 

• General model of queues with call-back: 

A system of file standby with call-back is composed of s (s ≥ 1) parallel, and 

independent servers, available for processing clients and an imaginary space called an orbit.  

A client arriving at the system for the first time is considered a primary client (primary 

call). If a primary call finds at least one free server, it occupies it immediately and leaves 

the system as soon as its service is finished.  If all the servers are busy, then this client will 

be blocked, and in this case, it joins the orbit and forms a source of secondary (repeated) 
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calls and becomes a client in orbit.  Each in-orbit client will call back for service at random 

time intervals until one server is free. In this case, the client is served and then leaves the 

system. Secondary clients are treated in the same way as primary calls.  The time interval 

between two consecutive attempts made by the same client in orbit is called the call-back 

time. This time is independent of all previous call-back times. 

 

• Features of queues with call-back: 

A standby with callback system at file is characterized by a client arrival mechanism, a 

service mechanism, a callback mechanism, the number of servers, orbit capacity, and the 

size of the client source.  Client arrival times, service times, and callback times are random, 

making the process described by this model a stochastic process. When the service station 

consists of a single server, the model is said to be single-server.  When it is formed by two 

or more parallel servers, the model is said to be multi-server.  On the other hand, there are 

two main types of standby with callback systems : 

• Open systems (infinite sources): they are fed by a population Infinite. Thus, the 

number of arrivals is unlimited. As an example, we cite the number of programs 

submitted to a computer. 

 

• Closed systems (finite sources): they are rather fed by a maximum number of fixed 

units, corresponding, for example, to the number of subscribers in a telephone 

network. 

This model has several variants, among others the model of files on hold with callback 

and buffer. 
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2.3.5 Vacation queueing models 

 

Servers are always available in the classical queueing model, but in many practical 

queueing systems and due to a variety of reasons servers may become unavailable for a 

period of time. This period of server absence may represent the servers working on some 

additional jobs being checked for maintenance or only taking a break. 

• Vacation policies: 

The classical queueing model has three main parts, which is the arrival process, the 

service process and the queue discipline; however, a vacation queueing model has an 

additional part, the vacation process controlled by a vacation policy that can be 

characterized by three aspects: 

• The vacation start-up rule: This rule determined when the server starts a vacation, 

in this rule, there is to main types the exhaustive and the non-exhaustive services, 

in the exhaustive service, the server cannot take a vacation until the service finished 

and the system becomes empty. In a non-exhaustive service, the server can take a 

vacation even if the system is not empty. In a multi-server system, a semi-

exhaustive service rule can be used for a part of servers that take a vacation. We 

can put in mind that the service interruption during the progress service is another 

vacation start-up rule. The service interruption may be a hardware failure. 

 

• Vacation termination rule: This rule means how the server resumes serving the 

queue. There are two main rules which are the multiple vacation policy and the 

single vacation policy. A multiple vacation policy requires the server to keep taking 

vacations until it finds at least one customer waiting in the system at a vacation 

completion instant, and under a single vacation policy, the server takes only one 

vacation at the end of each busy period (17). After this vacation, the server either 

serves the waiting customers if there are customers or stays idle. There are more 

rules, such as the threshold policy (also called N-policy), more vacation termination 

rules are possible. 
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In addition to start-up and termination rules in multi-server systems. There are other 

characteristics of a vacation policy. For example, all servers may take vacations together 

(synchronous vacations or servers may take vacations individually independently 

(asynchronous vacations). Another possible feature of a vacation policy is to allow some 

servers to take a vacation to ensure a minimum number of servers are always available  

• vacation duration distribution: Vacations in the servers are assumed to be I.D.D 

(independent and identically distributed) random variables with a general 

distribution function. Beside some vacation, models require different types of 

vacation and follow different distributions. 

 

2.3.6 Queuing systems with threshold policies 

 

In recent years queuing models under various thresholds have been the subject of 

great interest for the queue theorists due to its significant role in performance prediction of 

various congestion systems. 

In N-policy queuing system, the server (repairman) starts service (repair) to arriving 

customers or items when the number reaches up to some fixed value say ‘N. The various 

applications of thresholds models can be made in day-to-day as well as industrial scenarios 

which motivate us for implementing this model in our work(18). 

 

2.3.7 Arrivals and service 

Congestion in a queueing system refers to the traffic customers on the system and 

depend on the system irregularities not just on average properties. In other words, the 

number of customers in the queue depends on the complete probabilistic description of the 

arrival and service processes. The customers placed on the queue then the server treat these 

demands. It would seem evident that, if the average arriving capacity of customers is greater 

than the system service capacity, the system will break down since unbounded queues will 

form. On the other hand, if the average arrival rate is less than the system service capacity, 
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then, the current customers being served before new customer arrives; thus, we still get 

queues. Even when the average arrival and service rates are held constant, an increase in 

the variation of arrivals or service increases or decrease the congestion. Furthermore, as the 

average demand tends to the system service capacity, the effects of the fluctuations are 

magnified(14).  

These fluctuations are described in terms of probability distributions. Thus, we use 

elementary probability theory to predict average waiting times, average queue length, 

distribution of queue length, etc., on the basis of 

• The arrival pattern of customers to the resource. 

• The service pattern of customers. 

• The scheduling algorithm or the manner in which the next customer to be served 

is chosen. 

In standard queueing models, the buffer size to hold customers waiting for service is 

limited. When the queue has reached its maximum capacity, it is said to be “full” customers 

who arrive to find the queue full are said to be “lost”. 

• The Arrival Process: 

 

The customer arrival process may be described in two ways: 

• the number of arrivals per unit time (the arrival rate); 

• the time between successive arrivals (the interarrival time). 

We use the variable λ to denote the mean arrival rate. In this case, 1/λ denotes the 

mean time between arrivals. If the arrival pattern is not deterministic, the input process is 

a stochastic process, in that case, we need the associated probability distribution. The 

probability distribution of the interarrival time of customers is denoted by A(t) where 

𝐴(𝑡)  =  𝑃𝑟𝑜𝑏 {𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 ≤  𝑡}       ...( 2-18 

And 

1

λ
 = ∫ 𝑡𝑑𝐴(𝑡)

∞

0
       ...( 2-19 
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Where 𝑑𝐴(𝑡) is the probability that the interarrival time is between 𝑡 and 𝑡 +  𝑑𝑡, here we 

assume that these interarrival times are independent and identically distributed, which 

means that only A(t) is of significance. If there are different types of customers, meaning 

each customer has its class, then each class may have its probability distribution function 

to describe its arrival process. The manner in which the arrival pattern changes in time may 

be important (e.g., the number of customers who arrive at a supermarket may be greater in 

the late afternoon than in the early morning.) when arrival pattern that does not change with 

time (i.e., the form and values of the parameters of A(t) are time-independent) is said to be 

a homogeneous arrival process. If it is invariant to shifts in the time origin, it is said to be 

a stationary arrival process(19). 

 

• The Service Process 

Like we describe the arrival pattern, the service pattern may be described by a rate, the 

number of customers served per unit time, or by the time required to serve a new customer. 

The parameter μ is used to denote the mean service rate, and hence 1/μ denotes the mean 

service time per one customer. We shall use B(x) to denote the probability distribution of 

the demand placed on the system, i.e., 

𝐵(𝑥)  =  𝑃𝑟𝑜𝑏{𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 ≤  𝑥}.       ...( 2-20 

Thus 

1

μ
 = ∫ 𝑥𝑑𝐴𝐵(𝑥)

∞

0
       ...( 2-21 

 

Where 𝑑𝐵(𝑥) is the probability that the service time is between 𝑥 and 𝑥 +  𝑑𝑥, notice that 

the service time is equal to the length of time spent in service and does not include the time 

spent waiting in the queue. Furthermore, service rates are conditioned on the fact that the 

system is not empty. If the system is empty, then the server must be idle.  



 

45 
 

Studies of Markov chain and queueing models 

Although it is usual to associate the service time distribution with the server, the 

service time is actually the time that is requested or needed by the customer who is taken 

into service. Obviously, it does not make sense for a server to arbitrarily dispense service 

to customers without regard for their needs(19).  

The service may be batch or single. For the batch service, several customers can be 

served simultaneously as is the case, for example, of customers who wait in line for taxis 

or buses, customers in the market. Also, the service rate may depend on the following 

factors: 

• The number of customers present in the queue (called state-dependent or load-

dependent service). For example, a server may speed up when the queue grows or 

starts to become full or slow down as it starts to empty. 

• The time (called time-dependent or nonhomogeneous service). This is, for example, 

the case of a server that in the morning starts slowly and during the day start to 

become faster because of its workload. 

• The total number of servers available at a queueing system is denoted by c. When 

there are more than one server two cases are possible: 

 

• Each server has its queue or buffer. For example, each supermarket 

checkout lane has its queue. However, the effect of jockeying and lane 

changing need that a supermarket checkout system to be more accurately 

modelled as a single queue in front of all checkout lanes. 

• There are fewer queues than servers. In most cases, there is a single queue 

for all servers. For example, a single queue usually forms in front of multiple 

bank tellers. The servers may or may not be identical, i.e., B(x) may be 

different for different servers. Also, given multiple classes of customers, the 

same server may give different service to different classes. 

The capacity that a service facility has to hold waiting for customers (called the 

system capacity) in many cases or models taken to be infinite. When this is not the case, 

then the system is referred to as a finite queueing system. 
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2.3.8 Poisson arrivals and exponential service 

In stochastic modelling, numerous random variables are frequently modelled as 

exponentials. 

This is because it close to the real-world scenarios These include 

• interarrival time λ, 

• service time µ, 

• time to failure of a component, and 

• time required to repair a component. 

 

The assertion that the above distributions are exponential should not be taken as fact, 

but as an assumption. Experimental verification of this assumption should be sought before 

relying on the results of any analyses that use them. the cumulative distribution function 

for an exponential random variable, X, with parameter λ > 0, is given by: 

𝐹(𝑥) =  {  1 − 𝑒−λx,                                x≥0

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
. . . ( 2-22   

       

And its corresponding probability density function obtained simply by taking the 

derivative of F(x). 

with respect to x, is: 

𝐹(𝑥) =  { λ𝑒−λx,                                     x≥0

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
. . . ( 2-23 

 

If the Poisson provides an appropriate description of the number of occurrences per interval 

of time, then the exponential will provides a description of the length of time between 

occurrences (19). 
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2.3.9 Performance measures 

When we analyze a queueing system, we do so for the purpose of evaluating the values 

of certain system properties. For example, we may want to find: 

• the number of customers in the system; 

• the mean waiting time in the buffer; 

• the length of a busy or idle period; 

• the duration of one cycle. 

These are called measures of effectiveness. They are all random variables and, whereas 

we might wish to know their complete probabilistic descriptions (i.e., their PDFs). 

• Number of customers 

N is a random variable that represents a number of customers in the system at steady 

state. The probability that at steady state the number of customers present in the system is 

n is denoted by 𝑝𝑛 (14), 

 

and the average number in the system at steady state is 

 

Within the queueing system, customers may be present in the queue waiting for their 

turn to receive service, or they may be receiving service. We shall let Nq be the random 

variable that describes the number of customers waiting in the queue and we shall denote 

its mean by 𝐿𝑞 = E [𝑁𝑞] (14). 
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• System Time and Queueing Time 

The time that a customer spends in the system, from the instant of its arrival to the 

queue to the instant of its departure from the server, is called the response time or sojourn 

time. We shall denote the random variable that describes response time by R, and its mean 

value by 𝐸[𝑅]. The response time is composed of the time that the customer spends waiting 

in the queue, called the waiting time, plus the time the customer spends receiving service, 

called the service time. We shall let 𝑊𝑞 be the random variable that describes the time the 

customer spends waiting in the queue, and it is mean will be denoted by 𝐸[𝑊𝑞]. (14) 

• System Utilization 

In a queueing system with a single server (𝑐 =  1), the utilization U is defined as the 

fraction of time that the server is busy. If the rate at which customers arrive at, and are 

admitted into, a queueing facility is 𝜆 and if μ is the rate at which these customers are 

served, then the utilization is equal to  𝜆 / 𝜇.  Over a period of time T, this queueing system, 

in steady state, receives an average of  𝜆𝑇  customers, which are served in an average of  

𝜆𝑇/𝜇  seconds. In many queueing systems, the Greek letter ρ is defined as     𝜌 =  𝜆/𝜇  

and consequently is identified with the utilization. 

However, λ is generally defined as the arrival rate to the system, and this may or may 

not be the rate at which customers actually enter the queuing facility. Thus, it is not always 

the case that  𝜆/𝜇  correctly defines utilization. Some customers may be refused admission 

(they are said to be “lost” customers) so that the effective arrival rate into the queueing 

facility is less than λ and hence the utilization is less than 𝜌 =  𝜆/𝜇.  However, unless 

stated otherwise, we assume that all customers who arrive at a queueing facility are 

admitted. In a G/G/1 queue where 𝑝0 is the probability that the system is empty, it must 

follow that  𝑈 =  1 −  𝑝0.  In a stable system (i.e., one in which the queue does not grow 

without bound), the server cannot be busy 100% of the time. This implies that we must 

have  𝜆/𝜇 <  1  for the queueing system to be stable. Thus, in any time interval, the average 

number of customers that arrive must be strictly less than the average number of customers 

that the server can handle. 
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In the case of queueing systems with multiple servers (c > 1), the utilization is defined as 

the average fraction of servers that are active—which is just the rate at which work enters 

the system divided by the maximum rate (capacity) at which the system can perform this 

work, i.e.,  𝑈 =  𝜆/(𝑐𝜇).  In multiserver systems, it is usual to define ρ as  𝜌 =  𝜆/(𝑐𝜇)  

with the same caveat as before concerning the identification of ρ as the utilization (14). 

• System Throughput 

The throughput of a queueing system is equal to its departure rate, i.e., the average 

number of customers that are processed per unit time. It is denoted by X. In a queueing 

system in which all customers that arrive are eventually served and leave the system, the 

throughput is equal to the arrival rate, λ. This is not the case in queueing systems with finite 

buffer, since arrivals may be lost before receiving service (14). 

• Traffic Intensity 

We define the traffic intensity as the rate at which work enters the system, so it is 

therefore given as the product of the average arrival rate of customers and the mean service 

time, i.e.,  𝜆𝑥̅  =  𝜆/𝜇,  where   𝑥 ̅ =  1/𝜇   and μ is the mean service rate. Notice that in 

single-server systems, the traffic intensity is equal to the utilization. For multiple servers, 

the traffic intensity is equal to 𝑐𝑈 (14). 

 

2.3.10 Birth-Death processes: The M/M/1 queue 

Birth–death processes are continuous-time Markov chains with a very special 

structure. If the states of the Markov chain states are indexed by the integers 0, 1, 2, . . ., if 

we are in the state we permitted only to move from this state to its nearest neighbours, 

namely, states 𝑖 −  1 𝑎𝑛𝑑 𝑖 +  1. As for state 𝑖 =  0, on exiting this state, the Markov 

chain must enter state 1. Such processes are also called skip-free processes because to go 

from any state i to any other state j, and each intermediate state must be visited: no state 

between these two can be skipped. Birth-death processes arise in a variety of simple single-

server queueing systems, and due to its particular structure makes finding their stationary 

distributions states relatively easy to compute(19). 
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Figure 2-8 The M/M/1 queue (14) 

 

2.3.11 Description and steady-state solution 

the state of an M/M/1 queue at any time is completely described by specifying the 

number of customers present in the system. We shall use the integers 0, 1, 2, . . . to represent 

these states accurately: n denotes the state in which there are n customers in the system, 

including the one in service. We would like to be able to compute the state probabilities, 

i.e., the probability that the system is in any given state n at any time t. We write these as 

𝑝𝑛(𝑡)  =  𝑃𝑟𝑜𝑏{𝑛 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡}. 

This is often a difficult task, even for this simplest of queueing processes. Instead, 

at least for the moment, we shall look for the steady-state probabilities, 

 

If this limit exists, then the probability of finding the system in any particular state 

eventually becomes independent of the starting state, so that no matter when we query the 

system after it settles into a steady state, the probability of finding n customers present does 

not change. The steady state probabilities 𝑝𝑛 can be interpreted as the probability of finding 

n customers in the system at an arbitrary point in time after the process has reached a steady 

state. It is not true that all systems reach steady state, i.e., for some queueing systems it is 

possible that  𝑙𝑖𝑚
𝑡→∞

 𝑝𝑛(𝑡)  may not yield a true probability distribution. Finding steady state 

by calculating limit is difficult and complex task instead, we can use an infinite 

infinitesimal generator to find it. (20) 
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2.3.12 Matrix formulation of the M/M/1 queue 

The M/M/1 queue with service rate μ and arrival rate λ has the following infinite 

infinitesimal generator: 

 

 

In the notation used for Markov chains, we have 𝜋𝑄 = 0  (with 𝜋𝑖 = 𝑝𝑖 for all i), 

∑𝜋𝑖 = 1  and it is obvious that  −𝜆𝜋0  +  𝜇𝜋1  =  0, 𝑖. 𝑒. , 𝑡ℎ𝑎𝑡 𝜋1  =  (𝜆/𝜇)𝜋0 .  

In general, we have   𝜆𝜋𝑖−1 – (𝜆 +  𝜇)𝜋𝑖  +  𝜇𝜋𝑖+1  =  0, 

from which, by induction, we may derive 

𝜋𝑖+1  =  ((𝜆 +  𝜇)/𝜇)𝜋𝑖  −  (𝜆/𝜇)𝜋𝑖−1  =  (𝜆/𝜇)𝜋𝑖 . 

Thus, once 𝜋0 is known, the remaining values 𝜋𝑖, i = 1, 2, . . ., maybe determined 

recursively just as before. For the M/M/1 queue it has already been shown that the 

probability that the system is empty is given by  𝜋0  =  (1 −  𝜆/𝜇). 

Observe that the coefficient matrix is tridiagonal. and that once 𝑝0 is known, the solution 

is just a forward elimination procedure(14). However, we show this formulation at this time 

because it will become useful in other, more complex cases. 

 

• Performance Measures 

We now turn our attention to computing various performance measures concerning the 

M/M/1 queue, such as mean number in system, mean queue length, and so on 

• Traffic intensity:   𝑝 =  𝜆/𝜇    
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• Probability of n jobs in the system:    𝑝𝑛 = (1 − 𝜌)𝜌𝑛 

• Mean number of jobs in the system:   𝐸[𝑛] = 𝜌/(1 − 𝜌) 

• Mean number of jobs in the queue:  𝐸[𝑛𝑞] = 𝜌2/(1 − 𝜌) 

• Mean response time:  𝐸[𝑟] = (1/𝜇)/(1 − 𝜌) 

• Mean waiting time: 𝐸[𝑤] = 𝜌(1/𝜇)/(1 − 𝜌) 

• Mean number of jobs served in one busy period:  
1

1−𝑝
 

• Mean busy period duration:  
1

𝜇(1−𝜌)
 

 

2.3.13 The M/M/c queue 

An M/M/C queue is a shorthand notation for Markovian arrival rate, Markovian 

Service Rate, and C the number of resources is a system where arrivals form a single 

queue and are governed by a Poisson process, and job service times are 

exponentially distributed. (21) 

 

Figure 2-9 The M/M/C queue (14) 

 

 

• Performance Measures for the M/M/c Queue 

 

• Traffic intensity:   𝜌 = 𝜆/(𝑚𝜇) 
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• Probability of n jobs in the system:     𝑝𝑛 = {
𝑝0

(𝑚𝜌)𝑛

𝑛!
    𝑛 < 𝑚

𝑝0
𝜌𝑛𝑚m

𝑚!
    𝑛 ≥ 𝑚

   

• Mean response time: 𝐸[𝑟] =
1

𝜇
(1 +

𝜚

𝑚(1−𝜌)
) 

 

 

 

 

Conclusion 

 In this chapter, we have presented mathematical concepts necessary to the 

understanding of and Markov chain and queuing patterns. We introduce Markov chains and 

define some of its characteristics then we talked about the deferent types of Markov chains 

discrete-time Markov chain and continuous-time Markov chain and their characteristics so 

as concepts like ergodicity, infinitesimal generator and stationary distribution 

And then We did see some models of queueing systems. We addressed the classical 

queue theory, and we have seen that the queueing model's standards do not allow to 

describe the real behaviour of the servers, where does the need to use vacation queueing 

models for modelling the vacation. We have seen why we use vacations, and it 

implemented in the real world, we also define the queueing policies and present the queuing 

system with a threshold. 
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Chapter 3 Modeling of the system 
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3.1 Introduction 

 

Cloud computing is becoming a dominant field. The cloud computing services 

section is a need, especially for businesses as well as individuals. This is due to the 

divergence of the services.  

In the first chapter we talked about cloud computing and the various services and 

the main architecture of the cloud we also talked about energy in the cloud section and this 

to understand the field and can describe a model with the cloud needs. Then we present 

Markov chains in the second chapter and focused on CTMC proprieties and also queueing 

models, and this chapter is the key that we can model the system correctly and can resolve 

the system. 

In this chapter we are going to do two models, the first model, we represent the 

system with a working vacation and threshold policy, and the second model is the same as 

the first one with the addition of sleep-delay timer.  

3.2 Related works 

 

Cloud Computing is gaining much popularity nowadays, and it is getting 

implemented in many organizations very fast, and that need for cloud computing leads to 

many new ideas, and this section keeps in innovation, which leads to various research in 

the cloud computing section. One of the most trending cloud computing research topics is 

green cloud computing, which is saving energy and reducing the Carbone footprint. 

E. Feller, L. Ramakrishnan, C. Morin, in "Performance and energy efficiency of big 

data applications in cloud environments: A Hadoop case study." They evaluate Hadoop 
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performance in the traditional model of collocated data and compute services considering 

the impact of separating the services. Their evaluation shows that: performance on physical 

clusters is significantly better than on virtual clusters, and application completion progress 

correlates with the power consumption. (22) 

Xia, Y.; Zhou uses Dynamic voltage scaling (DVS) by exploiting the cloud data 

center's hardware characteristics to save energy by lowering the supply voltage and 

operating frequency. (23) 

 Chen, Y et al. also used dynamic voltage and scaling frequency DVFS that predicts 

the best voltage/frequency setting for the system. Their results show that the proposed 

DVFS could predict the suitable frequency wish gives significant energy consumption and 

performance. (24) 

All those previous researches talked about reducing energy without engaging the 

idea that the VMs could go to sleep stat, which reduces energy. The next researches 

highlight this idea with various models. 

Lawanyashri, M, uses energy-saving based on threshold activation in a wireless 

sensor network, based on a finite buffer queueing model with N-policy, which means that 

initialization of transmission starts after reaching the n packets waiting in the buffer. 

Balusamy, B et al., proposed a system that uses both vacation and a threshold policy 

to control the workload level of each virtual machine in the data center, and reduces the 

energy consumption and cost accordingly. (25) 

Xi, Wang et al, present a performance analysis and a system optimization of a cloud 

computing system with an energy efficient task scheduling strategy for satisfying the 

service level agreement of cloud users while at the same time improving the energy 
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efficiency in cloud computing system.so they proposed an energy-aware task scheduling 

strategy based on a sleep-delay timer and a waking-up threshold.so they combine a 

vacation-delay with a N-policy. (26) 

Based on these related works we study a performance analysis and a system 

optimization of a cloud computing system with an energy efficient scheduling strategy, so 

we propose a strategy based on sleep-delay timer and a threshold policy with a limited 

buffer and no sleep period which mean that the only condition for sleep to awake is the 

threshold. And to observe the impact of the sleep delay timer on energy and performance, 

we model two models the first without the sleep delay timer and the second within the sleep 

delay time.  

 

3.3 Cloud model with n-policy 

 

3.3.1 Description 

 

 

Figure 3-1 The general representation of the system 

 

We propose in this section modelling of the physical machine on cloud system with 

infrastructure as a service (IaaS) using the formalism of queues with vacation and threshold 
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policies. Our model is general and does not fit to a specific cloud model, cloud topology or 

cloud provider company. Moreover, it concerns a general physical machine on the cloud, 

so that is valid for any machine on the cloud. 

Each physical machine on the cloud have a limited size buffer (N) and a group of 

servers (S), these s servers represent the virtual machines (VMs) include in the physical 

machine, each one of these servers can handle a single task from the internet. To simplify 

the model, we assume that the tasks have equal size and the same service time. Each server 

from physical machine receives a task from buffer meaning one buffer for all the servers 

after it handles that task goes back to an idle state waiting for the arrival a new task to 

handle it. 

The new characteristics in this model are that we take into consideration the 

limitation of physical machine buffer with n tasks only. If any task comes after the buffer 

having n task, this task will be lost. The queue also has a threshold policy; in this case, the 

servers in our model stay in a sleep state until a specific number of tasks n enter the buffer 

then all servers go to an idle state. The choice of the limited buffer size is motivated by the 

fact that in the real physical machine cloud buffer size is big but still limited. Thus, our 

model combines buffer limiting, queue with vacation and threshold policy. 

Let's take a physical machine. In the initial state, our servers (VMs) are in a sleep 

state, and the buffer is empty, the tasks arrive with exponential arrival rate λ, once n task 

enters the buffer, all 

servers in our model shift from the sleep state to the idle state. After that, each server 

starts to handle one task moving from idle to busy state with Poisson service rate µ in FIFS 

policy, and then once the complete server is handling that task, it moves again to an idle 

state waiting for a new task to come. On the other hand, if the buffer is full, all task arrive 

after that are lost, until the buffer becomes empty again then server shift from idle to sleep 

state thus, we return back to our initial state. 
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Figure 3-2 description of some model 1 transition 
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3.3.2 Continuous time Markov chain of system Cloud model with n-policy 

 

As we talked above about some possible transition and states from our model, now 

we going to provide the Continuous-time Markov chain of system model that contain all 

possible state and transitions that can accrue in a real-world scenario, meaning, it is a 

complete model description. 

We model our system using 5 different variables. Thus, every Markov chain state 

is described by the 5 variables: capacity, buffer, sleep, idle, busy. 

 

 

 

For abbreviation, we can index each one of these variables by a single letter. Our 5-

dimension Markov chain state will be described by these letters (I, j, k, l, m) 

• I: represent the limited size (capacity) of the buffer, a maximum of l task can be saved 

in the buffer. 

• J: represent the current number of tasks in the buffer  

• k: represent that a server (VM) is in sleep state, that state consumes the minimum 

energy to switch to busy when n task enters the buffer 

• l: represent that a server (VM) is in idle state, server move to that state after completing 

the task, waiting for the arrival of a new task to start immediately handling it. 

• m: represent that a server (VM) is in a busy state, in that state server start to handling 

the task. 
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Figure 3-3 Model 1 CTMC with 5 dimensions 

 

The initial Markov (0, S,0,0, K) state describe our system when we first started it, in 

that state, we have 0 task in the buffer, and all servers are in sleep state, we can see that 

transitions from state to state happen only with the arrival rate λ and service rate µ. From 

initial state we keep moving by λ from state to the next state until we reach the state (K-N, 

N-S, 0, 0, S), that state represents that n number of tasks enter in the buffer(number of tasks 

in the buffer reached the threshold), in that state, servers shift from a sleep state to busy 

state begin to handle s tasks from the buffer one by one in the duration of service rate µ 

leaving the only n-s task in the buffer. Thus, we have to transition available: 

transition with µ: when we move to the next state with µ transition, we finish serving 

the current task in the server allowing another task to be handled next. With this transition 

from state to the next state buffer decrease each transition until it becomes empty meaning, 

we service all the tasks, and then servers start to decrease each time going from busy to idle 

until we reach our initial state. We can go back from the next state to the current state at 

any of these transition by λ. 
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Transition with λ: or we can go the next state by λ transition, with this transition, new 

tasks are coming to the buffer before we finish serving the current ones. In each transition, 

the number of tasks in the buffer increase by one and servers stays in busy state until We 

reach to blocking state (0, K-S, 0, 0, S) like we seed earlier every task coming in this state 

are lost (buffer overflow). We can go back from the next state to the current state at any of 

these transition by µ. 

 

3.3.3 Resolution 

 

Now, after we have our continuous-time Markov chain model, now, we want to find 

a system in the steady state.  To do this, we have to analyze the CTMC in the steady-state. 

One of the key steps is to construct an infinitesimal generator.  Since the state space 

increases as a function of the buffer size and the queue threshold. we seek to reduce the 

system solution cost, by designing algorithms that compute the infinitesimal generator Q 

directly as a function of the VM parameters and reduce Markov chain dimension. 

 

3.3.4 Analysis of Cloud model with n-policy 

 

Considering the proposed Model, whatever the value of K (The buffer size) and 

based on the fact that the VM can alternate between idle, busy and sleep states, we derive 

the following equations: 

{ 
  𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) + 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) + 𝑉𝑖(𝐵𝑢𝑠𝑦) = 𝐾    

𝑉𝑖(𝐼𝑑𝑒𝑙) + 𝑉𝑖(𝐵𝑢𝑠𝑦) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝) = 𝑆  
                   ...( 3-1 

Where:  

• K is the buffer size, and S is the number of servers. 

• Let 𝑇𝑖(X) represent the number of tasks in state 𝑖 in X (X= {capacity, buffer}) 

• Let 𝑉𝑖 (X) represent the number of servers in state 𝑖 in X (X= {idle, busy, sleep, sleep-

delay}) 
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Using equation 1, we notice that the system state at steady-state can be described by 

means of 3 components (𝑖, 𝑗, 𝑙) where: 

• i: represents the number of tasks in the buffer.                           ……  0 ≤  𝑖 ≤  𝐾 

• j: represents the number of servers in the place sleep.             ……...  0 ≤  𝑗 ≤  𝑆 

• l: represents the number of servers in the place busy.                 …….  0 ≤  𝑙 ≤  𝑆 

 

Thereby, having the (𝑖, 𝑗, 𝑙) we are able to deduce the capacity and idle, given that: 

 

{
 𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) =  𝐾 − 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) − 𝑉𝑖(𝐵𝑢𝑠𝑦)

𝑉𝑖(𝐼𝑑𝑒𝑙)  =  𝑆 − 𝑉𝑖(𝐵𝑢𝑠𝑦) − 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝)
                                                   ...( 3-2 

 

 

 

 

After reduction, we got this Markov chain with 3 dimensions (𝑖, 𝑗, 𝑙) and with the 

same number of states. 
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Figure 3-4 Model 1 CTMC with 3 dimensions 

 

By analyzing the CTMC above, we have recognized that the total number of states 

of the CTMC is equal to M, where 𝑀 =  𝐾 +  𝑁. Hence, the infinitesimal generator is an   

𝑀 ×  𝑀 matrix Q, which can be constructed as follows: 

 

𝑄[(𝑖, 𝑗, 𝑙), (𝑥, 𝑦, 𝑧)] = {

𝑞[(𝑖, 𝑗, 𝑙), (𝑥, 𝑦, 𝑧)]    𝑖𝑓(𝑖, 𝑗, 𝑙) ≠ (𝑥, 𝑦, 𝑧)

− ∑  
(𝑖,𝑗,𝑙)≠(𝑘,𝑚,𝑛)

𝑞[(𝑖, 𝑗, 𝑙), (𝑘,𝑚, 𝑛)]    𝑖𝑓(𝑖, 𝑗, 𝑙) = (𝑥, 𝑦, 𝑧) . . . ( 3-3 

       

 

The rates 𝑞[(𝑖, 𝑗, 𝑙), (𝑥, 𝑦, 𝑧)] are the transition rates from the state (𝑖, 𝑗, 𝑙) to state (𝑥, 𝑦, 𝑧), 

and are given by: 
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• [0 ≤ 𝑖 ≤ 𝑁 − 1, 𝑗 = 𝑠, 𝑙 = 0]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙): The VM is in sleep state and 

number of tasks is less than the threshold N; 

 

• [𝑖 = 𝑁, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙) and (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖 − 1, 𝑗, 𝑙); 

• [𝑁 < 𝑖 < 𝐾, 𝑗 = 0, 𝑙 = 𝑠 ]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙) and (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖 − 1, 𝑗, 𝑙); 

• [𝑖 = 𝐾, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖 − 1, 𝑗, 𝑙); 

• [0 < 𝑖 < 𝑁, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙) and (𝑖 + 1, 𝑗, 𝑙) ⟶
𝜇1

(𝑖, 𝑗, 𝑙); 

• [𝑖 = 0, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙), (𝑖 + 1, 𝑗, 𝑙) ⟶
𝜇1

(𝑖, 𝑗, 𝑙 − 1) ; 

• [𝑖 = 0, 𝑗 = 0, 𝑙 = 0 < 𝑙 < 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖, 𝑗, 𝑙 + 1), (𝑖, 𝑗, 𝑙 + 1) ⟶
𝜇1

(𝑖, 𝑗, 𝑙); 

• [𝑖 = 0, 𝑗 = 0, 𝑙 = 1]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖, 𝑗, 𝑙 + 1), (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖, 𝑠, 𝑙 − 1); 

 

Therefore, the infinitesimal generator Q can be computed by mean of the algorithm below: 

 

3.3.5 Infinitesimal generators 

 

𝒇𝒐𝒓    𝐿   ←    0  , 𝑆    𝒅𝒐 

        𝒊𝒇     ( 𝐿  =    0)   𝒕𝒉𝒆𝒏  

                 𝑗   ←    𝑠 

                 𝒇𝒐𝒓   𝑖    ←    0   𝒕𝒐    𝑛 − 1   𝒅𝒐 

                  𝑄 [ ( 𝑖 , 𝑗 , 𝐿 ) , ( 𝑖 +  1 , 𝑗 , 𝐿 ) ]     ←     𝜆 

  𝒆𝒏𝒅 𝒇𝒐𝒓 

        𝒆𝒍𝒔𝒆 

                 𝑖   ←    𝑛  −   𝑠 ,   𝑗     ←     0   ,    𝐿    ←     𝑠 
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                              𝒇𝒐𝒓     𝑖   ←     𝑁  −   𝑆    𝒕𝒐    𝐾  −   𝑆  −   1    𝒅𝒐  

            𝑄 [  ( 𝑖 , 𝑗 , 𝐿 )  , (  𝑖 +  1 , 𝑗 , 𝐿  )  ]    ←     𝜆 

            𝑄 [  ( 𝑖 , 𝑗 , 𝐿 )  , ( 𝑖  −   1 , 𝑗  , 𝐿 )  ]    ←  µ 

                 𝒆𝒏𝒅 𝒇𝒐𝒓 

                 𝑖   ←     𝐾  −   𝑆 

                 𝑄 [  (  𝑖  , 𝑗  , 𝐿  )  , (  𝑖  −    1  , 𝑗  , 𝐿  )  ]    ←  µ 

                  𝑖    ←    𝑁  −   𝑆  −   1 

                 𝒇𝒐𝒓   𝑖  ←    𝑁  −   𝑆  −   1  𝒕𝒐  1    𝑑𝑜 

            𝑄 [ ( 𝑖  , 𝑗  , 𝐿) , ( 𝑖 +  1 , 𝑗 , 𝐿 ) ]    ←     𝜆 

            𝑄 [ ( 𝑖  , 𝑗 , 𝐿) , ( 𝑖 −   1 , 𝑗 , 𝐿 ) ]    ←  µ 

                 𝒆𝒏𝒅 𝒇𝒐𝒓 

                 𝑖 ←  0 , 𝐿 ←  𝑠 

                𝑄 [  (  𝑖  , 𝑗  , 𝐿 )  , (  𝑖  +   1  , 𝑗  , 𝐿 )  ]    ←     𝜆 

                𝑄 [  (  𝑖  , 𝑗  , 𝐿 )  , (  𝑖   , 𝑗  , 𝐿 −  1 )  ]    ←  µ 

                𝑭𝒐𝒓   𝐿   ←    𝑆  −   1  𝒕𝒐   2    𝒅𝒐 

                    𝑄 [  (  𝑖  , 𝑗  , 𝐿 ) , (  𝑖   , 𝑗  , 𝐿 −  1 )]   ←  µ 

                    𝑄 [  (  𝑖  , 𝑗  , 𝐿 )  , (  𝑖   , 𝑗  , 𝐿 +  1) ]    ←     𝜆 

                𝒆𝒏𝒅 𝒇𝒐𝒓 

               𝐿 ←  1, 𝑖 ← 0, 𝑗 ← 0 

               𝑄 [  (  𝑖  , 𝑗  , 𝐿 )  , (  𝑖   , 𝑗 + 𝑠  , 𝐿 −  1 ) ]    ←  µ 

                𝑄 [  (  𝑖  , 𝑗  , 𝐿 )  , (  𝑖   , 𝑗  , 𝐿 +  1) ]    ←     𝜆 

 

      𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅 𝒇𝒐𝒓 
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3.4  Cloud model with n policy and sleep delay state 

 

3.4.1 Description: 

 

As we did in model 1 our system is remaining the same with some changeset, we 

did propose in model 1 a modulization of a single physical machine on cloud system with 

infrastructure as a service using the formalism of queues with vacation and threshold 

policies. And we did say that Our model is general and does not fit to a specific cloud 

model, cloud topology or cloud provider company. so, it concerns a general physical 

machine on the cloud, so that is valid for any machine on the cloud. 

In model 2 we introduce sleep-delay parameter β, so now our model consists of a 

queue with vacation and threshold policy as well as a sleep-delay parameter β. 

After that we describe the system as follow, each physical machine on the cloud 

have a limited size buffer (K) and a number of servers (S), these S servers represent are 

virtual machines in the physical machine, and we did assume that the tasks have equal size 

and the same service time. Each server from physical machine receives a task from the 

buffer after it handles that task the virtual machine goes back to sleep state waiting for a 

new task to arrive and handle it. 

Moreover, we talked about the characteristics that we take into consideration which 

are the limitation of physical machine buffer with n tasks only. If any task comes after the 

buffer is saturated with k tasks, the system is going to drop that task. We did say the queue 

have a threshold policy, and in this case, the servers in the first model and also the second 

model stay in a sleep state until a specific number of tasks N (the threshold) enter the buffer 

then all servers go to the idle state. Furthermore, we assume that the limited buffer size is 

related with the fact that in the real physical machine, the cloud buffer size is limited, so in 

addition to what we did mention before we suggest the sleep-delay period, so when the 

servers are busy, and the tasks end the servers go to sleep-delay state for taking some time 

before goes to a sleep state in the meanwhile if any tasks are arriving the servers go back 

too busy to handle the tasks and if the timer expires the tasks goes to sleep   Thus, our 
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model combines the first model characteristics, buffer limiting, queue with vacation, 

threshold policy, and adding the sleep-delay timer. 

 

 

 

Our system model is still working the same, a physical machine, in the initial state 

the servers (VMs) are in sleep state and the buffer is empty, the tasks arrive with 

exponential arrival rate λ, once the number of tasks reaches n task in the buffer, all servers 

change their state from sleep idle state. After that, servers start to handle tasks moving from 

idle to busy state with Poisson service rate µ in FIFS policy, then once the servers complete 

handling tasks in the buffer and the buffer is empty, the servers star a sleep-delay timer if 

any tasks arrive before the timer ends the servers goes back to the idle state and doing the 

same thing, in another hand if the sleep-delay timer is expired then the servers change their 

state to sleep so the system goes back to the initial state, and the servers will not be idle 

until the threshold is reaching again. On the other hand, if the buffer is full, all tasks arrive 

after that are dropped.  
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 Figure 3-5 description of somme model 2 transition 
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3.4.2 Continuous time Markov chain of system Cloud model with n-policy and sleep 

delay state 

 

For simplify more and represent all the state of the system, we use a continuous-time 

Markov chain, and after explaining the system, we conclude that the system is a 

combination of: 

• Capacity: which are the number of tasks that arrive with the rate  

• Buffer: which represent the number of tasks in the buffer  

• Sleep: represent the number of virtual machines that are sleep 

• Idle: represent the number of servers that are awake ready to work   

• Busy: represent the number of servers that are handling tasks  

• Sleep-delay: represent the number of servers that are waiting for a timer to expire or a 

task to arrive 

• S: is the number of servers in the physical machine  

• K: is the number of tasks 

• N: the threshold 

Those 6 variables can represent one state as follow 

  

 

 

The changeset in values of each variable in this representation represent another 

state. 

Next, we represent the Markov chain with this modulization  
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The initial state is (K,0,S,0,0,0) witch mean that we have K available tasks that is 

note in the buffer yet, the number of tasks in the buffer is 0 and there is S servers that are 

sleep, all the rest places are empty so there is no servers in Idle, busy, and sleep-delay.  

Next with the arriving of a task the capacity is k-1 and that task appear in buffer 

and there are no changeset in the rest of the system, tasks still arriving to the buffer by a 

rate of λ until it reaches the threshold N. 

 Figure 3-6 Model 2 CTMC with 6 dimensions 
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Now the system changes its behaviour, so the capacity again is now k-n, and the 

buffer reaches N in the same time servers are awake, and every server take a task to handle 

it, so the number that appears in the buffer is N-S, and all servers are busy so busy=S and 

sleep remain 0, and others rest the same 

We are now in the state that the service is started, from this state, the next step is 

either serving tasks with the rate µ or arriving tasks with the rate λ. 

Let us take the approach of arriving tasks first the system stay receiving tasks and 

capacity -1 and buffer + 1 until capacity is 0 then the buffer is full, so we reaches the 

blocking state any other task arrives now will be dropped or lost in our system we do not 

represent this to be obvious when capacity is 0 that means that the system has no other 

capacity to store or receive tasks. 

 When we take the service approach from the blocking state, and in every µ the 

system serve a task, after that it release space in the system, capacity+1 and buffer-1 the 

system keep serve until the buffer became empty here the capacity is K-S because there is 

S tasks that are in busy with the servers, from knowing the servers that are handling tasks 

start to reduce so busy-1 capacity +1 and the servers that not busy is now idle do idle+1 the 

system keep like that until capacity=k, busy=0, idle=s int the same time servers start sleep-

delay timer so idle=0 and sleep-delay=S. 

If no task arrives within the sleep-delay timer servers, go to sleep again, so the 

system is back to the initial state. Else the servers go back to busy again. 

 After modelling the system, we came to propose the resolution for this system in 

the next section. 
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3.4.3 Resolution 

 

After understanding the system model, we denote that we can reduce our system variable 

with: 

{
𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) + 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) + 𝑉𝑖(𝐵𝑢𝑠𝑦) = 𝐾       … (3)

𝑉𝑖(𝐼𝑑𝑒𝑙) + 𝑉𝑖(𝐵𝑢𝑠𝑦) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝 − 𝑑𝑒𝑙𝑎𝑦) = 𝑆 … (4)
    ...( 3-4  

 

We add 𝑉𝑖(𝐵𝑢𝑠𝑦) to the equation (4) because in our system, the busy means the Vm is 

handling a task so without the tasks in busy the tasks in buffer and capacity less than K. 

Using equations (3): 

 

𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 𝐾 − (𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) + 𝑉𝑖(𝐵𝑢𝑠𝑦))        ...( 3-5 

𝑉𝑖(𝐼𝑑𝑒𝑙) = 𝑆 − (𝑉𝑖(𝐵𝑢𝑠𝑦) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝 − 𝑑𝑒𝑙𝑎𝑦))       ...( 3-6 

 

Since we can get capacity and idle from busy, sleep, buffer and sleep delay, we can 

represent the model by following: 

 

Where: 

• i: represent the number of tasks in the buffer 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟)  0 ≥ 𝑖 ≥ 𝐾  

• j: represent the number of servers that are sleep 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝)  0 ≥ 𝑗 ≥ 𝑆  

• l: represent the number of servers that are busy 𝑉𝑖(𝐵𝑢𝑠𝑦)  0 ≥ 𝑙 ≥ 𝑆  

• d: represent the number of servers that are in sleep-delay 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝 − 𝑑𝑒𝑙𝑎𝑦) 0 ≥ 𝑑 ≥ 𝑠 
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after reducing the representation of the system, the CTMC is as follow: 

 

   After analysing this CTMC, we conclude that the total number of tangible marking 

states M is: M = K + N+1, and the infinitesimal generator Q dimensions equal to M × M 

which constructed as follows: 

 

𝑄[(𝑖, 𝑗, 𝑙, 𝑑), (𝑥, 𝑦, 𝑧, 𝑣)] = {
𝑞((𝑖, 𝑗, 𝑙, 𝑑), (𝑥, 𝑦, 𝑧, 𝑣)),           𝑖𝑓 (𝑖, 𝑗, 𝑙, 𝑑) ≠ (x, y, z, v)

−∑ 𝑄[(𝑖, 𝑗, 𝑙, 𝑑), (𝑎, 𝑏, 𝑐, 𝑑)](𝑖,𝑗,𝑙,𝑑)≠(a,b,c,d) 𝑖𝑓 (𝑖, 𝑗, 𝑙, 𝑑) = (x, y, z, v)
    ...( 3-7 

 

 

 

 Figure 3-7 Model 2 CTMC with 4 dimensions 
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3.4.4 Infinitesimal generator 

 

𝒇𝒐𝒓    𝐿   ←    0  , 𝑆    𝒅𝒐 

        𝒊𝒇     ( 𝐿  =    0)   𝒕𝒉𝒆𝒏  

                 𝑗   ←    𝑠 

                𝑑 ←  0 

                 𝒇𝒐𝒓   𝑖    ←    0   𝒕𝒐    𝑛 − 1   𝒅𝒐 

                  𝑄 [ ( 𝑖 , 𝑗 , 𝐿, 𝑑 ) , ( 𝑖 +  1 , 𝑗 , 𝐿, 𝑑 ) ]     ←     𝜆 

                 𝒆𝒏𝒅 𝒇𝒐𝒓 

        𝒆𝒍𝒔𝒆 

                 𝑖   ←    𝑛  −   𝑠 ,   𝑗     ←     0   ,    𝐿    ←     𝑠 

                 𝒇𝒐𝒓     𝑖 ← 𝑁 − 𝑆    𝒕𝒐    𝐾 −   𝑆 − 1    𝒅𝒐  

            𝑄 [  ( 𝑖 , 𝑗 , 𝐿, 𝑑 )  , (  𝑖 +  1 , 𝑗 , 𝐿, 𝑑  )  ]    ←     𝜆 

            𝑄 [  ( 𝑖 , 𝑗 , 𝐿, 𝑑 )  , ( 𝑖  −   1 , 𝑗  , 𝐿, 𝑑 )  ]    ←  µ 

                 𝒆𝒏𝒅 𝒇𝒐𝒓 

                 𝑖   ←     𝐾  −   𝑆 

                 𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (𝑖 − 1  , 𝑗  , 𝐿, 𝑑  )  ]    ←  µ 

                  𝑖    ←    𝑁  −   𝑆  −   1 

                 𝒇𝒐𝒓   𝑖  ←    𝑁  −   𝑆  −   1  𝒕𝒐  1    𝑑𝑜 

            𝑄 [ ( 𝑖  , 𝑗  , 𝐿, 𝑑) , ( 𝑖 +  1 , 𝑗 , 𝐿, 𝑑 ) ]    ←     𝜆 

            𝑄 [ ( 𝑖  , 𝑗 , 𝐿, 𝑑) , ( 𝑖 −   1 , 𝑗 , 𝐿, 𝑑 ) ]    ←  µ 

                 𝒆𝒏𝒅 𝒇𝒐𝒓 

                 𝑖 ←  0 , 𝐿 ←  𝑠 

                𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (  𝑖  +   1  , 𝑗  , 𝐿, 𝑑 )  ]    ←     𝜆 

                𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (  𝑖  −    1  , 𝑗  , 𝐿 –  1, 𝑑 )  ]    ←  µ 

                𝑭𝒐𝒓   𝐿   ←   𝑆  −   1  𝒕𝒐   2    𝒅𝒐 

           𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (  𝑖   , 𝑗  , 𝐿 –  1, 𝑑 ) ]    ←  µ 

                       𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (  𝑖, 𝑗  , 𝐿 +  1, 𝑑) ]    ←     𝜆 

                𝒆𝒏𝒅 𝒇𝒐𝒓 

                 𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (  𝑖   , 𝑗  , 𝐿 +  1, 𝑑) ]    ←     𝜆 

                 𝑄 [  (  𝑖  , 𝑗  , 𝐿 − 1, 𝑑 )  , (  𝑖   , 𝑗  , 𝐿 –  2, 𝑑 + 𝑆 ) ]    ←  µ 

                 𝐿 ←     0 

                 𝑑 ←     𝑆 

 

                 𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (  𝑖   , 𝑗  , 𝐿 +  1, 𝑑 − 𝑆) ]    ←     𝜆 

                 𝑄 [  (  𝑖  , 𝑗  , 𝐿, 𝑑 )  , (  𝑖   , 𝑗 + 𝑆  , 𝐿 , 𝑑 ) ]    ←     𝜷 

      𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅 𝒇𝒐𝒓 
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3.5 Performance measures 

 

The states of the CTMC are all reachable and communicating states and none of the 

states is an absorbing state, as well as the states, are all recurrent and aperiodic then this 

CTMC is an ergodic Markov chain. 

Based on the ergodicity of this CTMC, we can have the solution of this CTMC at 

steady-state by computing the stationary probability vector 𝜋 = (𝜋1, 𝜋2, 𝜋3, … ) which is 

the solution of the linear system of equations: 

{
𝜋𝑄 = 0

∑ 𝜋𝑖 = 1
𝑖𝜖𝐸

   . . . ( 3-8 

       

• 𝜋𝑖: steady state probability that the process in state 𝑖 

• Q: the infinitesimal generator correspondent to the CTMC 

• E: the states of the CTMC 

Having a steady state victor, we can now calculate the various performance measures as 

follow: 

 

• The blocking probability of tasks (𝑃𝐵): It corresponds to the buffer saturation 

probability. 

𝑃𝐵 = ∑ 𝜋𝑖           

𝑖:𝑇𝑖 (𝑏𝑢𝑓𝑓𝑒𝑟)=𝑘−𝑠

. . . ( 3-9  

Where: 

π Represent the steady vector, and i is the number of states 

𝑇𝑖(𝑋) Represent the number of tasks in the state i in place X 
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• The Probability that a VM is on busy state 𝑷𝒔: It corresponds to the probability that 

the place Busy contains at least one token. 

𝑃𝑠 = ∑ 𝜋𝑖       . . . ( 3-10

𝑖:𝑉𝑖 (𝑏𝑢𝑠𝑦)≠0

 

 

Vi(X): represent the number of servers in state i in place X 

 

• The probability that the VM is on sleep state 𝑷𝒔𝒍: It corresponds to the probability 

that the place sleep contains at least one token. 

𝑃𝑠𝑙 = ∑ 𝜋𝑖           . . . ( 3-11

𝑖:𝑉𝑖 (𝑠𝑙𝑒𝑒𝑝)≠0

 

 

• The probability that the VM is on sleep-delay state 𝑷𝒔𝒍−𝒅 

Psl−d = ∑ 𝜋𝑖

𝑖:𝑉𝑖 (𝑠𝑙𝑒𝑒𝑝−𝑑𝑒𝑙𝑎𝑦)≠0

            . . . ( 3-12 

 

• The mean number of tasks in the VM (Q): It represents the mean number of waiting 

tasks in the VM, including the tasks being transmitted. This corresponds to the mean 

number of tokens in the place Buffer 

𝑄̅ =  ∑ 𝑇𝑖(𝑏𝑢𝑓𝑓𝑒𝑟). 𝜋𝑖         . . . ( 3-13

𝑖:𝑇𝑖∈𝐴

 

Where A represents the set of reachable states in the system. 

 

 

• The task reception throughput λ: It corresponds to the effective rate of 

tasks reception by the VM. 

𝜆̅ =  𝜆. ∑ 𝜋𝑖             . . . ( 3-14

𝑖:𝑇𝑖∈𝐸(𝑇_𝑎𝑟𝑟)
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Where E(T_Arr) represents the set of tasks where the transition T_Arr is enabled. 

 

 

• The Task service throughput during busy state (𝝁̅): 

𝜇̅ = 𝑆. 𝜇. ∑ 𝜋𝑖        . . . ( 3-15

𝑖:𝑉𝑖∈𝐸(𝑇_𝑠𝑒𝑟𝑣)

 

Where: 

 E(T_Serv) represents the set of servers where the transition T_Serv is enabled. And S is 

the number of servers 

 

 

• The average length of a sleep period 𝑺̅: It corresponds to the average duration of time 

of the system during the sleep period  

𝑆̅ =
𝑁

 𝜆
      . . . ( 3-16       

 

• The average length of a busy period 𝑩̅: It corresponds to the average duration  of 

service time  

 

𝐵̅ =
𝑄̅

𝑆. 𝜇
        . . . ( 3-17        

 

 

 

 

 

• The mean sojourn time of tasks in the buffer W: 
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𝑊̅ =  
𝑄̅

𝜆̅
       . . . ( 3-18 

 

 

• The Average duration of a cycle 𝑪̅: from the previous equations we have 

 

  

𝐶̅ = 𝐵̅ + 𝑆̅       . . . ( 3-19 

 

• The number of cycles (𝑵𝒄): It corresponds to the number of transitions from sleep to 

busy per time unit. 

𝑁𝑐 = 
1

𝐶̅
        . . . ( 3-20   

 

 

• The energy consumption physical machine PM (EC):  

 

𝐸𝐶1 = 𝐸𝐶𝑆. 𝑃𝑆 + 𝐸𝐶𝑏 . (1 − 𝑃𝑆) + 𝐸𝐶𝑆𝑊. 𝑁𝑐 + 𝐸𝐶𝑠𝑟 . 𝑄̅       .…model 1 

𝐸𝐶2 = 𝐸𝐶𝑆. 𝑃𝑆 + 𝐸𝐶𝑏 . (1 − 𝑃𝑆 − 𝑃𝑠𝑙−𝑑) + 𝐸𝐶𝑆𝑊. 𝑁𝑐 + 𝐸𝐶𝑠𝑟 . 𝑄̅ +

𝑃𝑠𝑙−𝑑 . 𝐸𝐶𝑠𝑙−𝑑    ..…. Model 2 

 

Where  

• 𝐸𝐶𝑆 : the energy consumption while the PM is in sleep. 

• 𝐸𝐶𝑏 : the energy consumption while the PM is in busy. 

• 𝐸𝐶𝑠𝑙−𝑑 : the energy consumption while the PM is in sleep delay 

• 𝐸𝐶𝑆𝑊 : the energy consumption when the PM switch from sleep to busy. 

• 𝐸𝐶𝑠𝑟  : the energy consumption for handling 1 task 
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3.6 Conclusion 

 

In this chapter we talked about related works to our work and then modelized two 

systems the first one with threshold policy and working vacation and the second one with 

working vacation, threshold policy and sleep-delay timer using the Knowledge that we 

previously acquired in chapter 1 and 2. 

We represent the systems using the CTMC graphs, and then we make a reduction 

for simplifying the resolution, in the resolution, we construct the infinitesimal generator 

and declare the sets of linear equations for calculating the stationary distribution. That 

allows us to calculate the various system performance.  

In the next chapter we are going to set values for the parameters of the two systems 

and observe the changeset and compare the two models in specific performance and even 

compare the same system with deferent values of parameters. 
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4.1 Introduction 

 

After the modelling of the system with 2 different models approaches, we arrive 

now to implementation of the proposed solutions to test them according to different 

scenarios, retrieval of results for comparison between the two models, analysis and 

discussion. 

In this chapter we will also see the tools and methods used to retrieve and these 

results. 

 

4.2 Experimental studies 

 

In this section, first, we are going to test model 1 and 2 separately in energy, mean 

waiting time in the buffer and blocking probability with different parameter values, then 

compare between them. 

To measure these performance values, here are the steps and methods we followed: 

• In our program implementation, we map each a state to a number (state number) to 

easily determine the states and find with the one we deal with. 

• We define the Infinitesimal generator algorithm with show all the possible 

transition and save the Infinitesimal matrix Q. 

• Based on the Infinitesimal matrix Q, we solve the linear system of equations: 

{
𝜋𝑄 = 0

∑ 𝜋𝑖 = 1
𝑖𝜖𝐸

       . . . ( 4-1   

• As we said in the previous chapter using MATLAB to find the steady state of our 

CTMC model 

• After that, we calculate the performance measures of our system using the steady 

state. 
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4.3 Development tools 

 

In our work, we used c-sharp as a programming language and visual studio as an 

IDE for c-sharp, with those we also used MATLAB for the Equation solutions and the 

operations on matrices. 

4.3.1 C-sharp 

 

C# is an object-oriented programming language, strongly typed, derived from C and 

C++, resembling the Java language. It is used to develop web applications, as well as 

desktop applications, web services, commands, widgets or class libraries. In C#, an 

application is a set of classes where one of the classes has a Main method, as it is done in 

Java. 

C# is intended to develop on the .NET platform, a technology stack created by 

Microsoft to succeed COM. 

C# Executables in C# are subdivided into assemblies, namespaces, classes and 

class4 members. An assembly is the compiled form, which can be a program (an 

executable) or a class library. An assembly contains the executable code and symbols. The 

code is translated into machine language at runtime by the just-in-time function of the .NET 

platform.(27) 

4.3.2 Visual studio 

 

Designed by Microsoft. The latest version is called Visual Studio 2019. Visual 

Studio is a complete set of development tools for generating ASP.NET web applications, 

XML web services, desktop and mobile applications. Visual Basic, Visual C++, Visual C# 

all use the same integrated development environment (IDE), which allows them to share 

tools and facilitates the creation of solutions using several languages. In addition, these 

languages enable them to better leverage the functionality of the .NET framework, which 

provides access to key technologies that simplify the development of ASP web applications 

and XML web services through Visual Web Developer.(28) 
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4.3.3 Matlab 

 

Matlab or matrix laboratory is a scripting language emulated by a development 

environment of the same name; it is used for numerical computation. Developed by The 

MathWorks Company, Matlab allows users to manipulate matrices, display curves and 

data, implement algorithms, create user interfaces, and can interface with other languages 

such as C, C++, and Java. Matlab users come from a wide variety of backgrounds, including 

engineering, science, and economics in both industrial and research settings.  (29) 

 

System parameters 

 

Note: We assume that energy is calculated with millijoule (mJ) and the time with 

millisecond (mS).  

 

 

parameter value 

Capacity of buffer (K) 40 

Number of servers  10 

Queue threshold Range from 1 to K-1 

Arrival rate From 0.25 to 0.75 

Service rate 2 

Sleep delay rate From 0.001 to 0.5 

𝐸𝐶𝑆 10 

𝐸𝐶𝐵 300 

𝐸𝐶𝑆𝐿−𝐷 30 

𝐸𝐶𝑆𝑅 5 

𝐸𝐶𝑆𝑊 100 
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4.4 Model 1 (Cloud model with n-policy) 

 

• Energy consumption: 

 

Figure 4-1energy consumption in model 1 

 

Those charts represent the energy consumption by the threshold N while varying 

the arrival rate λ between (0.25, 0.5, 0.75) while the threshold N is between (1-40). 

 

From the above chart, we test the average energy consumption with a different value 

of threshold n and arrival rate λ. We see that when λ = 0.25 the system consumes the 

minimum energy, while λ = 0.75 the system consumes the highest energy meaning the 

average energy consumption increases with the increase of λ. 

For the threshold n, we see that when n range from 0 to 3 the average energy 

consumption decreases (n =3 is the lowest value) but from 3 to 40, the average energy 

consumption increases with the increase of n. Because when λ and n increase the busy 

probability increase, thus the energy increase 
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• Mean waiting time: 

 

Figure 4-2: mean waiting time in model 1 

 

 

In the same way, we test the mean waiting time in the buffer, We notice in those 

charts that when the threshold n is 1 the waiting time is 0 so there is no waiting because in 

every arrival the server’s wakeup and this for any value of the given λ values, we see that 

when λ increase the mean waiting time decrease, from the chart λ= 0.75 registers the 

minimum waiting time. That is because when λ = 0.75 the interval between λ and µ 

decrease. 

For the threshold n, in each increase of n the mean waiting time increase. 
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• Blocking probability: 

 

 

Figure 4-3: blocking probability in model 1 

 

 

These charts represent the blocking probability by the threshold N while always 

varying λ (0.25, 0.5, 0.75) and the threshold N between 1 and 40. 

We see in that the blocking probability is 0 from N= 1 to N equals 30 and this is 

because the buffer is going to be saturated if N= 30 

when λ increase the probability decrease and when the threshold n increases the 

blocking probability increase. 
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4.5 Model 2 (Cloud model with n-policy and sleep delay state) 

 

• Energy consumption:  

In these tests, the values of parameters of the system are the same, and beta is equal 

to 10−3 

 

Figure 4-4: energy consumption in model 2 

Those charts represent the energy consumption by the threshold N while varying 

the arrival rate λ between (0.25, 0.5, 0.75) while the threshold N is between (1-40) 

We notice in this charts that the energy is in its highest level when the threshold is 

1 and that means that whenever a task came the servers all going to be awake so there is so 

much energy waisted. After that and with the rise of the threshold N we notice that the 
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energy goes down, and when the threshold reaches 10 which is the number of servers, we 

observe that the charts are stable and goes slightly up, with the increasing of the threshold. 

By varying λ we see the differences between the three charts, so we note that  

with the increasing of λ, the system consumes more energy. 

 

• Mean waiting time: 

The same in these tests the values of parameters of the system are the same and beta 

is equal to 10−3 

 

Figure 4-5: mean waiting time in model 2 
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Those three charts represent the mean waiting time of the task in the buffer by the 

threshold N every chart represent mean waiting time with the change of λ. At the same 

time, N is between 1 and 40. 

We notice in those charts that when the threshold is 1 the waiting time is 0 so there 

is no waiting because in every arrival the server’s wakeup and this for any value of the 

given λ values. 

With the increase of the threshold, we note that there is increase also of the waiting 

time in the buffer and the differences between the charts begin to expend we also notice 

that the less waiting time is in the chart with λ=0.75 and λ=0.25 gets the biggest value of 

the mean waiting time.  

• Blocking probability: 

 

We still the same, in these tests the values of parameters of the system are the same 

and beta is equal to 10−3 
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Figure 4-6: blocking probability in model 2 
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These charts represent the blocking probability by the threshold N while always 

varying λ (0.25, 0.5, 0.75) and the threshold N between 1 and 40. 

We see in these charts that the probability that the system is in blocking state is 0 

from N= 1 to N equals 30, and this is because that the buffer is going to be saturated if N= 

30 then the system is not working until 30 tasks arrive which increase the probability the 

system is in blocking state, expend we also notice that the less probability of being in 

blocking state is in the chart with  λ=0.75 and λ=0.25 gets the biggest value of that 

probability. 

4.6 Model 1 and model 2 comparison 

Now we going to compare these to model side by side to determine with one is more 

useful in the same pervious performance measure. 

• Energy consumption: 

Figure 4-7: energy consumption in model 1 and 2 
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Those charts represent the energy consumption of model1 (Cloud model with n-

policy) and model2 (Cloud model with n-policy and sleep delay state) side by side by the 

threshold N while varying the arrival rate λ between (0.25, 0.5, 0.75) while the threshold N 

is between (1-40) 

We start by comparing the mean energy consumption between the two models. By 

comparing each graph from model1 (Cloud model with n-policy) and model2 (Cloud model 

with n-policy and sleep delay state) with the same λ, we see clearly that model2 (Cloud 

model with n-policy and sleep delay state) consume less energy 

• Mean waiting time: 

 

Figure 4-8: mean waiting time in model 1 and 2 

 

In the same way with the same value of n and λ, we compare the mean waiting time in 

the buffer between model1 (Cloud model with n-policy) and model2 (Cloud model with n-
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policy and sleep delay state). We can see that all three graphs from model2 (with λ=0.25, 

0.5, 0.75) are spending less time waiting in buffer compare to the rest graph from model1 

(Cloud model with n-policy) 

• Blocking probability: 

 

Figure 4-9: blocking probability in model 1 and 2 

 

Those charts represent the blocking probability of model1 (Cloud model with n-

policy) and model2 side by side by the threshold N while varying the arrival rate λ between 

(0.25, 0.5, 0.75) while the threshold N is between (1-40) 

The same case as means waiting time happen in blocking probability, all three 

graphs from model2 have less blocking probability compare to model1 (Cloud model with 

n-policy). 

Model 2 with different sleep delay (𝛽) 

Now that we know the differences between model 1 (Cloud model with n-policy) 

and model 2, we are going to make tests on model 2 (Cloud model with n-policy and sleep 
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delay state) with the variation of beta with (0.001, 0.01, 0.5) with every of energy 

consumption, mean waiting time and the blocking probability. 

4.7 Model2 with different sleep delay parameter value 

 

• Energy consumption: 

 

These charts represent the energy consumption by the threshold N while varying 𝛽 

and every chart represent one value of 𝛽 and the threshold N between 1 and 40. 

We notice in these charts that the energy is the same until N reaches 20. At that value, 

we see the difference between the charts where 0.001 is the best energy consumption, and 

0.5 is the worst energy consumption from the given values. 
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• Mean waiting time: 

 

 

These charts represent the mean waiting time in the buffer by the threshold N while 

varying 𝛽 and every chart represent one value of 𝛽 and the threshold N between 1 and 40. 

 We notice in those charts that when the threshold is 1, the waiting time is 0 

so there is no waiting. 

 With the increase of the threshold, we note that there is increase also of the waiting 

time in the buffer and the differences between the charts begin to expend we also notice 

that the less waiting time is in the chart with β =0.001 and β =0.5 gets the biggest value of 

the mean waiting time. 
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• Blocking probability: 

 

These charts represent the blocking probability by the threshold N while always 

varying  𝛽  and the threshold N between 1 and 40. 

 We see in these charts that the probability that the system is in blocking state is 0 

from N= 1 to N equals 30, and this is because that the buffer is going to be saturated if N= 

30 then the system is not working until 30 tasks arrive which increase the probability the 

system is in blocking state, expend we also notice that the less probability of being in 

blocking state is the usage of β= 0,001 and when we rise β  the probability of blocking 

increase and that according to the other 2 charts (β=0.01 and β=0.5). 
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4.8 Conclusion 

 

At the end of this chapter and after we measure the performance analysis of each 

model which are energy consumption and mean waiting time of the tasks in the buffer and 

the blocking probability. 

We see that the model 1 and model 2 has different results which we observe after 

comparing the two models that the model 2 is better in those performances analysis and 

after that, we did compare the same model 2 with itself while changing the sleep delay 

parameter β, we find that whenever β is smaller in our tests, we get better latency and lower 

energy consumption.  

In the end, we conclude that model 2 is better than model 1, and we did discover 

the better range values of the parameters to use to get the best results. 
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Conclusion 
 

 

Cloud computing is becoming a hotline topic in the information technology section, 

and it is scaling at an intense rate. This scalability demands more resources than ever. Also, 

one of the critical factors of using more resources is energy. At the same time, it is a major 

problem in cloud computing. 

Dominating cloud providers like amazon web service and google cloud are 

consuming a significant amount of energy to provides their services. Thus, cloud customers 

pay a more amount of money to get their work done with less period of time on the cloud. 

To have a better experience for providers and customers on the cloud, we introduce 

an energy-efficient task scheduling strategy in a cloud computing system using a woking 

up threshold and adding sleep delay parameter. 

We firstly model our solution. After that, we compare it to other related work 

through different test scenarios and find that our proposed solution gives lower energy and 

better latency with a specific set of parameters. 

At the same time, we tested the blocking state of our solution, and we fund that this 

solution does not affect the availability of the system, but it gives a minimum improvement  

This work opens perspectives for reducing energy consumption and latency in cloud 

data centers. 
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