

République Algérienne Démocratique et Populaire

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université de Blida -1-(Saad Dahleb)

Faculté des Sciences

Département d'Informatique

Mémoire de fin d’étude présenté en vue d’obtention du diplôme

MASTER EN INFORMATIQUE

Option : Systèmes Informatiques & Réseaux

 Thème

An energy saving model for Cloud

Computing

Présenté par :

El hadj Khalaf Abderrahmane

Djemai Zakarya

Devant le jury:

Ould-Khaoua Mohamed (President of the jury)

Benyahia Mohamed (Examinator)

Boutoumi Bachira (Promoter)

The graduation year 2019/2020

Introduction

Abstract

Cloud computing is getting more popular day by day. Nowadays, we have an energy

shortage worldwide. Thus, more researches concern about finding ways to improve the

energy efficiency and sustainability of cloud computing. This thesis presents a performance

analysis of the cloud computing system based on the energy-efficient task scheduling

strategy. This strategy consists of waking up threshold policy and a sleep delay timer.

To model the system in an energy-efficient task scheduling strategy, we use a

vacation queue system with an N-policy threshold. in this work, the system considered as

a physical machine with a limited buffer, this physical machine contains a set of virtual

machines that represent the servers in our modelization, as well we constructed a

continuous-time Markov chain and an infinitesimal generator that allows us to calculate

stationary distribution vector. After that, we analyze the steady-state system to calculate

the system's different performance measures like energy consumption and the delay of the

system.

We tested our system with different scenarios and with different parameter values

to discover the proposed strategy performance and validate the system model according to

the performance measure.

The experimental study has proven that the proposed solution improves energy

efficiency and latency without affecting availability in the system

Key words: Cloud Computing, energy efficiency, task scheduling, waking up threshold

sleep delay, queue system, Markov chain

Introduction

 ملخص

تزداد شعبية الحوسبة السحابية يومًا بعد يوم. واليوم أصبح لدينا نقص في الطاقة في أنحاء

العالم. وبالتالي، فإن المزيد من الأبحاث تهتم بإيجاد طرق لتحسين كفاءة استهلاك الطاقة واستدامة

الحوسبة السحابية. تقدم هذه المذكرة تحليلاً للأداء لنظام الحوسبة السحابية بناءً على استراتيجية

جدولة المهام من اجل توفير الطاقة. تتألف هذه الاستراتيجية من سياسة تنبيه الرجوع للخوادم الى

 العمل ومؤقت تأخير الاطفاء الجزئي للخواد م.

لنمذجة النظام في استراتيجية جدولة مهام فعالة من حيث استهلاك الطاقة، نستخدم نظام قائمة

انتظار تسمح باخذ عطل مع تنبيه الرجوع للخوادم. وفي هذا العمل، نعتبر النظام جهازًا فعليًا مزود

بمخزن محدود، ويحتوي هذا النظام على مجموعة من الأجهزة الافتراضية التي تمثل الخوادم في

النمذجة المتبعة، فضلاً عن ذلك فقد قمنا ببناء سلسلة ماركوف ذات الوقت المتواصل حتى يتسنى لنا

حساب احتمالات الحالة الثابتة للنظام. وبعد ذلك، نقوم بتحليل نظام احتمالات الحالة الثابتة لحساب

 مقاييس الأداء المختلفة للنظام مثل استهلاك الطاقة و التاخيرات الحاصلة داخل النظام.

لقد قمنا باختبار نظامنا باستخدام سيناريوهات مختلفة وبقيم مختلفة لاكتشاف أداء

الاستراتيجية المقترحة والتحقق من نموذج النظام وفقاً لماعيير قياس الاداء وقد أثبتت الدراسة

التجريبية أن الحل المقترح يحسن من كفاءة استهلاك الطاقة ويقلل من وقت التاخيرات الحاصلة داخل

 النظام دون التأثير على امكانية توفر النظام للاستعمال.

الكلمات المفتاحية : الحوسبة السحابية, كفاءة استهلاك الطاقة, جدولة المهام, سياسة تنبيه

 الرجوع للخوادم, ومؤقت تأخير الاطفاء الجزئي للخواد م, نظام قائمة انتظار, سلسلة ماركوف

Introduction

Résume

Cloud computing devient de plus en plus populaire. Aujourd'hui, nous connaissons

une pénurie d'énergie dans le monde entier. C'est pour cette raison que de plus en plus de

chercheurs se préoccupent de trouver des moyens d'améliorer l'efficacité énergétique et la

durabilité de cloud computing. Cette thèse présente une analyse des performances du

système de cloud computing basée sur la stratégie d'ordonnancement des tâches à faible

consommation d'énergie. Cette stratégie consiste en une politique de seuil de réveil et une

minuterie de retardement du sommeil.

Pour modéliser le système dans une stratégie de planification des tâches économe

en énergie, nous utilisons un système de file d'attente de vacances avec un seuil de politique

N. Dans ce travail, le système considéré comme une machine physique avec un tampon

limité, cette machine physique contient un ensemble de machines virtuelles qui

représentent les serveurs dans notre modélisation, ainsi nous avons construit une chaîne de

Markov en temps continu et un générateur infinitésimal qui nous permet de calculer un

vecteur de distribution stationnaire. Ensuite, nous analysons le système en état stationnaire

pour calculer les différentes mesures de performance du système comme la consommation

d'énergie et le retard du système.

Nous avons testé notre système avec différents scénarios et avec différentes valeurs

de paramètres pour découvrir la performance de la stratégie proposée et valider le modèle

du système en fonction de la mesure de performance.

L'étude expérimentale a prouvé que la solution proposée améliore l'efficacité

énergétique et le temps de latence sans affecter la disponibilité dans le système

Mots clés : Cloud Computing, l'efficacité énergétique, ordonnancement des tâches,

politique de seuil de réveil, minuterie de retardement du sommeil, file d'attente de vacances,

chaîne de Markov

Introduction

Table of content

Introduction .. 1

Chapter 1 Introduction to Cloud Computing systems 3

1.1 Introduction .. 4

1.2 History of Cloud Computing .. 4

1.3 Cloud Computing ... 5

1.4 Essential Cloud Computing properties .. 6

1.5 Cloud service models ... 7

1.5.1 Infrastructure as a service (IaaS) ... 7

1.5.2 Platform as a service (PaaS) .. 8

1.5.3 Software as a service (SaaS) .. 9

1.6 Cloud deployment models.. 9

1.6.1 Public cloud ... 9

1.6.2 Private cloud .. 10

1.6.3 Hybrid cloud .. 11

1.6.4 Community cloud .. 11

1.7 Cloud workload types .. 12

1.7.1 Static workloads ... 12

1.7.2 Periodic workloads .. 13

1.7.3 Unpredictable workloads ... 13

1.7.4 Hybrid Workloads ... 14

1.8 Cloud virtualization .. 14

1.8.1 Hypervisor ... 15

1.9 Advantages and disadvantages of Cloud Computing 17

1.10 Energy consumption in Cloud Computing .. 17

1.11 Conclusion .. 18

Chapter 2 Studies of Markov chain and queueing models 19

2.1 Introduction .. 20

Introduction

2.2 Markov chains .. 20

2.2.1 Random variables .. 20

2.2.2 Stochastic process .. 21

2.2.3 Poisson process .. 22

2.2.4 Definition of Markov chains .. 22

2.2.5 Types of Markov chains .. 23

2.2.6 Conditional probability .. 23

2.2.7 Discrete-time Markov chain .. 24

2.2.8 Continuous-time Markov chain ... 28

2.3 Queueing models .. 34

2.3.1 Kendall’s notation .. 35

2.3.2 Little’s law ... 36

2.3.3 Standard queueing models ... 36

2.3.4 Queues with call-back .. 39

2.3.5 Vacation queueing models ... 41

2.3.6 Queuing systems with threshold policies 42

2.3.7 Arrivals and service ... 42

2.3.8 Poisson arrivals and exponential service 46

2.3.9 Performance measures ... 47

2.3.10 Birth-Death processes: The M/M/1 queue 49

2.3.11 Description and steady-state solution .. 50

2.3.12 Matrix formulation of the M/M/1 queue 51

2.3.13 The M/M/c queue .. 52

Chapter 3 : Modeling of the system... 54

3.1 Introduction .. 55

3.2 Related works ... 55

3.3 Cloud model with n-policy... 57

3.3.1 Description ... 57

Introduction

3.3.2 Continuous time Markov chain of system Cloud model with n-

policy... 60

3.3.3 Resolution .. 62

3.3.4 Analysis of Cloud model with n-policy ... 62

3.3.5 Infinitesimal generators ... 65

3.4 Cloud model with n policy and sleep delay state 67

3.4.1 Description: .. 67

3.4.2 Continuous time Markov chain of system Cloud model with n-

policy and sleep delay state .. 70

3.4.3 Resolution .. 73

3.4.4 Infinitesimal generator ... 75

3.5 Performance measures ... 76

3.6 Conclusion .. 80

Chapter 4 Experimental ... 81

4.1 Introduction .. 82

4.2 Experimental studies .. 82

4.3 Development tools.. 83

4.3.1 C-sharp ... 83

4.3.2 Visual studio .. 83

4.3.3 Matlab .. 84

4.4 Model 1 (Cloud model with n-policy) ... 85

4.5 Model 2 (Cloud model with n-policy and sleep delay state) 88

4.6 Model 1 and model 2 comparison .. 91

4.7 Model2 with different sleep delay parameter value 94

4.8 Conclusion .. 97

Conclusion ... 98

Bibliography .. 99

Introduction

Table of Figures

Figure 1-1.1 Data center .. 5

Figure 1-2 Application stack and associated cloud service models 7

Figure 1-3 Infrastructure as a service .. 8

Figure 1-4 Platform as a service .. 8

Figure 1-5 Software as a Service ... 9

Figure 1-6 Public Cloud .. 10

Figure 1-7 Privat cloud .. 10

Figure 1-8 Hybrid cloud .. 11

Figure 1-9 Community cloud .. 12

Figure 1-10 Static workloads example .. 13

Figure 1-11 Periodic workloads example .. 13

Figure 1-12 Unpredictable workloads example .. 14

Figure 1-13 Mainframe Virtualization Architecture 15

Figure 1-14 Hypervisor types using virtualization and para-virtualization .. 16

Figure 2-1 example of n-step transition ... 27

Figure 2-2 example of reachable and communicating states 30

Figure 2-3 example of absorbing states ... 31

Figure 2-4 Example of Periodic and aperiodic states 32

Figure 2-5 Little’s Law representations .. 36

Figure 2-6 Finite population queue model .. 37

file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069873
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069874
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069875
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069876

Introduction

Figure 2-7 Infinite population queue model .. 37

Figure 2-8 The M/M/1 queue .. 50

Figure 2-9 The M/M/C queue .. 52

Figure 3-1 The general representation of the system 57

Figure 3-2 description of some model 1 transition .. 59

Figure 3-3 Model 1 CTMC with 5 dimensions ... 61

Figure 3-4 Model 1 CTMC with 3 dimensions ... 64

Figure 3-5 description of somme model 2 transition 69

Figure 3-6 Model 2 CTMC with 6 dimensions ... 71

Figure 3-7 Model 2 CTMC with 4 dimensions ... 74

Figure 4-1energy consumption in model 1 .. 85

Figure 4-2: mean waiting time in model 1 .. 86

Figure 4-3: blocking probability in model 1 .. 87

Figure 4-4: energy consumption in model 2.. 88

Figure 4-5: mean waiting time in model 2 .. 89

Figure 4-6: blocking probability in model 2 .. 90

Figure 4-7: energy consumption in model 1 and 2 .. 91

Figure 4-8: mean waiting time in model 1 and 2... 92

Figure 4-9: blocking probability in model 1 and 2 .. 93

Figure 4-10: energy consumption in model 2 varying sleep delay 94

Figure 4-11: mean waiting time in model 2 varying sleep delay 95

Figure 4-12: blocking probability in model 2 varying sleep delay 96

file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069886
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069887
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069888
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069894
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069895
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069898
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069899
file:///C:/Users/zaki/Desktop/memo%20final/thesis%20v1.docx%23_Toc58069900

Introduction

List of acronyms and abbreviations

CTMC: continuous time Markov chain

DTMC: discrete time Markov chain

DVFS: dynamic voltage frequency scaling

DVS: dynamic voltage scaling

FIFO: first in first out

IaaS: infrastructure as a service

LIFO: last in first out

PaaS: platform as a service

PM: physical machine

SaaS: software as a service

VM: virtual machine

1

Introduction

 Introduction

Cloud Computing has become an increasingly used concept referring to memory,

computing capacity, computers, and servers distributed worldwide and linked by the

network.

Cloud is an On-demand self-service that provides users with high network access

and allows them to request more additional computing resources and pay per use basis with

make it a powerful technology to do any required tasks. Although the cloud provides a

good performance and service time, Cloud data center consumes much energy. In this work,

we try to lower the amount of energy consumption and get better performance.

Problematic

Energy consumption and latency are two of the leading cloud computing factors.

Generally, energy consumption and latency have an inverse relationship while ensuring

better energy consumption latency will be affected. And the same with latency. If we ensure

a better latency, we will consume more energy.

In this work, the problem is that we try to reduce the energy consumption of cloud

computing and minimize the latency of tasks.

Objectives

The objectives pursued through this work are the following:

• Studying cloud computing services in general. and concentrate on infrastructure as

a service

• Examine Markov chains and queue models concentrating on queues with vacation

and queue with a threshold.

• Define a solution in cloud computing infrastructure as a service that represents a

system of a queue with vacation and sleep-delay timer as well as threshold policy.

2

Introduction

• Validation of the proposed model solution, through an experimental study, using c-

sharp an application and Matlab tools.

Thesis organization

This document consists of a general introduction, four chapters, and a general

conclusion. this work will begin with a general introduction, in which we have explained

the general concept of this paper, specified the problem, and set the different objectives.

First chapter: the first chapter is a chapter of generalities. It represents a global view of

the Cloud Computing domain. It includes definitions for the different concepts, and it gives

the characteristics, models, advantages, and disadvantages of the cloud, as well as the

evolution of Cloud Computing.

Second chapter: in the second chapter, we talked about some mathematical concepts like

Markov chain, random variable, probability, stochastic process…e.g., Then we talked

about queueing theory models like a queue with vacation, queue with threshold policy. We

also talked about the infinitesimal generator and performance measures.

Third chapter: in this chapter, we define model 1 and model 2, specifying each model

CTMC, infinitesimal generator, and the methods we use to find the system steady-state

solution.

Fourth chapter: this chapter is the last, dedicated to experiments. It starts with a

presentation of the tools and the development environment. After that, we test different

experimentation scenarios when measuring model 1 and model 2 performances, then

discussing the results obtained. At the end of this brief, a general conclusion presented as

a summary of this work.

3

Introduction to Cloud Computing systems

Chapter 1 Introduction to Cloud Computing systems

4

Introduction to Cloud Computing systems

1.1 Introduction

Cloud computing is a novel paradigm for the provision of computing infrastructure,

on the cloud we move the location of infrastructure and machine from our location to the

network in order to reduce the costs of management and maintenance of hardware and

software resources. The cloud providers by shifting resources to the network transfers

management, maintenance, and investment from the customer to the provider. Cloud

computing is a model for enabling on-demand network access to a shared pool of

configurable computing resources (e.g., high-speed network, on-demand self-service,

measured service (pay-per-use), resource pooling and rapid elasticity) to any customers in

the word that can rapidly provisioned and released with minimal management effort or

service provider interaction, largest cloud provider companies are amazon, google and

Microsoft

We introduce the fundamentals required to understand cloud computing in this

chapter. We describe basic cloud properties, cloud service models (IaaS, PaaS, SaaS),

deployment models and the virtualization technology that used to provide powerful virtual

machines. It is essential to understand why the cloud has these properties, how these

properties delivered on different levels and how its benefits attract customers to use cloud

computing rather than traditional computing.

1.2 History of Cloud Computing

At around in 1961, John MacCharty suggested in a speech at MIT that computing

can be sold like a utility, just like electricity on a monthly basis. Back then it was a new

and brilliant idea, but in that time this idea, it was ahead of its time, as for the next few

decades, despite people and technology industry interest in the model, the technology was

not ready for it. However, of course, many years later the technology developed and caught

that idea and began to work on it, after a few years we mentioned that:

5

Introduction to Cloud Computing systems

In 1999, Salesforce.com started delivering applications to users using a simple

website. Enterprises use Salesforce applications over the Internet by paying monthly rate

price, and this way, the old idea of computing sold as a utility was right (1).

In 2002, Amazon started Amazon Web Services, providing services like storage,

database, computation and even human intelligence. However, only starting with the launch

of the Elastic Compute Cloud in 2006 commercial service open to everybody existed.

Elastic Compute Cloud was a considerable success (1).

In 2009, Google Apps started Google Cloud to provide cloud computing enterprise

applications. Google now provide some free cloud services such as google drive(1).

In 2009, Microsoft started Windows Azure, and big technology companies like

Oracle and HP have all joined the game trying to dominate the market. Today this proves

that cloud computing has become mainstream(1).

1.3 Cloud Computing

Figure 1-1.1 Data center (30)

6

Introduction to Cloud Computing systems

Cloud computing is delivering hosted services like servers, networking storage, databases,

software, analytics and intelligence over the internet to offer faster innovation, flexible

resources, and economies of scale. You typically pay only for computing services you use,

For the duration you used it actively (pay-per-use), which lower your costs, menage

infrastructure more efficiently and scale as your business needs change due to flexible

resources offering.

1.4 Essential Cloud Computing properties

The following Properties make cloud computing technology so powerful and overcome

a lot of its disadvantages:

• On-demand self-service (2): customers may reserve and release computing

resources independently exactly as needed, which allows the customer to reduce the

cost.

• High network access (2): the integration of distributed computing resources in an

application need high speed and low latency network in order to reduce data access

times and become less dependent on the physical location where data is stored.

• Pay-per-use (2): the use of cloud computing resources storage, processing, or data

exchange is measured. This metering is used to enable pay-per-use pricing models

the benefit of measured service, and the enabled pay-per-use pricing models for the

customer is quite evident as no more investments in non-used or under-utilized IT

resources is necessary. However, the cloud provider must deal with the fact that

resources can be returned by customers when they do not need them and make sure

they available to be assigned to other customers.

• Rapid elasticity(2): rapid elasticity allows users to automatically request additional

space in the cloud or other types of services. Because cloud infrastructure setup,

provisioning can be seamless for the customer or organization. Cloud provider

allocation and de-allocation of computing resources are often irrelevant on the

customer's side. This is an essential aspect of cloud technology. In a sense, cloud

computing resources appear to be infinite or automatically available.

7

Introduction to Cloud Computing systems

• Resource pooling(2): to deal with the demand for pay-per-use, cloud providers

offers IT resources using a large IT resource pool that is shared by multiple

customers. To be able to assign resources of the resource pool dynamically to

customers, it required that the resource pool supports elasticity, i.e., customers can

rapidly grow or shrink the share of the resource pool assigned to them. The cloud

provider can automatically detect underutilized IT resources or increased demand

of customers and assigns IT resources accordingly.

1.5 Cloud service models

Figure 1-2 Application stack and associated cloud service models (2)

There are different cloud service models according to the layers of the application stack for

which they provide cloud resources.

1.5.1 Infrastructure as a service (IaaS)

Infrastructure as a service means only the infrastructure is given to you, you control

everything else and manage it the way you want it, and when you use it. IaaS provides

computing architecture and infrastructure apart from that data storage, virtualization

servers, and networking.

8

Introduction to Cloud Computing systems

Figure 1-3 Infrastructure as a service (30)

1.5.2 Platform as a service (PaaS)

Figure 1-4 Platform as a service (30)

Platform as a Service (PAAS) is a cloud computing model that delivers

infrastructure software over the internet. A cloud provider hosts the hardware, operating

systems and software on its infrastructure. As a result, PAAS users do not worry about

installing in-house hardware, operating system and software to develop or run a new

application. Instead, they focus only on application development. PAAS providers for key

services, such as Java development, website or application hosting. A PAAS provider,

however, supports all the underlying computing and software; users then login and start

using the platform usually through a Web browser interface. PAAS providers then charge

users on a pay-per-use basis or on a monthly basis(3).

9

Introduction to Cloud Computing systems

1.5.3 Software as a service (SaaS)

In SAAS, cloud provider offers a complete software application to customers who

may use it on-demand via a self-service interface (2). The provider, therefore, provides

customers with an entire application stack with GUI to support their business. Users log in

and access only to the application software, and they use it the way you want it, but do not

have to install and manage an application required to support these processes. Accesses to

this application billed on a pay-per-use basis.

Figure 1-5 Software as a Service (30)

1.6 Cloud deployment models

1.6.1 Public cloud

This type of cloud deployment model can support all users who want to benefit

from computing on a pay-per-use basis or a subscription basis. Customers connect to the

cloud through a public network which means security is a significant risk in this cloud.

Most common uses of public clouds are for non-mission-critical tasks such as file sharing,

e-mail service, application development and testing, simulation labs (4).

10

Introduction to Cloud Computing systems

Figure 1-6 Public Cloud (30)

1.6.2 Private cloud

Cloud infrastructure is used by a single organization in private cloud environment.

This infrastructure managed by the organization itself to support various user groups or a

cloud provider could manage it. Users connect to this cloud model through a private

network. Private clouds are more expensive than public clouds due to the extra cost

involved in maintaining them (4). However, private clouds are better in security and

privacy to organizations. We can use this cloud in critical tasks that contain sensitive data.

Figure 1-7 Privat cloud (30)

11

Introduction to Cloud Computing systems

1.6.3 Hybrid cloud

In a hybrid cloud, we use interconnected private and public cloud infrastructure.

Many organizations use this model when they need to scale up their IT infrastructure

rapidly. For example, if an organization hosting Web application on the cloud needs more

computing resources during the holiday season to run the application, it may attain those

resources via public clouds (4).

Figure 1-8 Hybrid cloud (30)

1.6.4 Community cloud

In the community cloud, multiple organizations that are part of a community

sharing computing resources, examples include universities cooperating in big research

projects, or police departments within a county or state sharing computing resources.

Access to a community cloud environment (4) is restricted only to the members of the

community.

12

Introduction to Cloud Computing systems

Figure 1-9 Community cloud (30)

1.7 Cloud workload types

1.7.1 Static workloads

Customers in static workload have predictable and pre-determine workload,

meaning there are no surprises, no traffic spikes & rushes. This kind of workload can be a

utility deployed on the cloud have a limited number of users in a private network, for

example, an organization-wide tax-calculation utility or the enterprises with few numbers

of customers.

13

Introduction to Cloud Computing systems

Figure 1-10 Static workloads example (2)

1.7.2 Periodic workloads

The utilization in these types of workloads happens at specific times only known to

the cloud providers, maybe like an electricity bill payment app happen in a few days in a

month. The best cloud models for these kinds of applications is Serverless compute models;

customers do not need to pay for idle resources without using them, pay for the compute

utilized.

Figure 1-11 Periodic workloads example (2)

1.7.3 Unpredictable workloads

Popular huge apps like social networks have these workloads include based on the

fact that many classes worldwide of customers use them at any moment, online multiplayer

14

Introduction to Cloud Computing systems

games, video, game streaming apps etc. Traffic can spike by any amount exponentially.

Pokémon Go surpassed all traffic expectations by growing up to 50x the anticipated traffic.

Likewise, on social networks, traffic spikes when any major global worldwide event

occurs. The auto-scaling cloud ability and rapid elasticity in these kinds of scenarios save

the day by dynamically adding additional instances when required.

Figure 1-12 Unpredictable workloads example (2)

1.7.4 Hybrid Workloads

Hybrid workloads can be the mix of the above-stated workloads. Well, there is no

limit to the architectural complexity in scalable applications.

1.8 Cloud virtualization

A virtual machine (VM) is an image file managed by the hypervisor that exhibits

the behaviour of a separate computer, capable of performing tasks such as running

applications and programs like a separate computer(5). In other words, a VM is a software

application that performs most functions of a physical computer, actually behaving like a

separate computer system.

15

Introduction to Cloud Computing systems

Deploying applications directly on physical servers presents several risks. It makes

the application directly dependent on physical hardware failures, also known as a single

point of failure if so many applications or VMs fail due to physical hardware fail. It leads

to unavailability if the hardware has to be re-configured for updates or replacement.

Virtualization: in virtualization, we create a virtual version of hardware (physical), such as

a server, CPU, a storage device, or network resources".

In cloud environments, Virtualization is a technique, which allows multiple customers to

share a single hardware instance of a resource or an application. Assigning a logical name

to physical storage and providing a pointer to that physical resource when demanded. By

virtualization, we can install different operating systems on the same physical machine

without any problems.

Figure 1-13 Mainframe Virtualization Architecture (30)

1.8.1 Hypervisor

A hypervisor is a software that makes virtualization technology possible. It abstracts

the physical server into virtualized hardware where different operating systems and

16

Introduction to Cloud Computing systems

middleware installed to host applications sharing the physical server while being isolated

from each other regarding the use of physical hardware(6).

Figure 1-14 Hypervisor types using virtualization and para-virtualization (6)

• Type-1 Hypervisor: hypervisor runs directly on physical hardware. Known also as

“Native Hypervisor” or “Bare metal hypervisor”. It does not require any operating

system. It has direct access to hardware resources. We use this type in a cloud

environment due to its smooth performance. Examples of Type 1 hypervisors

include VMware ESXi, Citrix XenServer and Microsoft Hyper-V hypervisor (2).

• Type-2 Hypervisor: hypervisor runs on an underlying host operating system. It is

also known as “Hosted Hypervisor”. It is software installed on an operating system.

Hypervisor asks the operating system to make hardware calls. Example of Type 2

hypervisor includes VMware Player, virtual box or Parallels Desktop. Hosted

hypervisors often found on endpoints like PCs (2).

17

Introduction to Cloud Computing systems

1.9 Advantages and disadvantages of Cloud Computing

From what we have addressed earlier, we can conclude that Cloud has its

advantages and disadvantages. Some of the cloud advantages are cost efficiency, High

speed deploy and network, anywhere accessibility and On-demand computing resources.

Biggest cloud disadvantages are security and Energy consumption. The energy

consumption of under-utilized resources, particularly in a cloud environment, accounts for

a substantial amount of the actual energy use (7).

1.10 Energy consumption in Cloud Computing

The use of cloud computing is becoming widespread. Data centers have increased

energy requirements for power and cooling. In 2012, for every $1 spent on hardware there

was $1 spent for power and cooling. That is why reducing consumption has a substantial

economic impact. Besides, there is also an ecological impact because the environmental

footprint is not negligible. Indeed, in 2008, data centers emitted 116 million tons of carbon

dioxide, which is more than Algeria's total emissions.

Researches of Cloud computing in the section of reducing energy has focused lately

on reducing it physically like dynamic voltage and frequency scaling DVFS .and it is

implemented in the architecture of cloud allowing the system to supply the voltage and

adjust the frequency to a particular component within the physical system and this method

shows a significant power and energy saving that means that those parts was before this

method wasting a big amount of energy, with the same idea but with the system model of

the cloud researchers searched for the gabs that waste energy in the system of cloud and try

to optimize it.

By using the concept of VMs and introducing sleep state, sleep time, and many

other concepts, researchers in both the physical field and the software field are trying to

reduce the energy consumption in cloud computing.

18

Introduction to Cloud Computing systems

1.11 Conclusion

In this chapter, we introduced cloud computing and brought up the essential cloud

computing properties. We talked about cloud service models, Infrastructure as a service is

one of the services models that we focus about in our work, after that, we address

virtualization and its massive benefit to the cloud, and in the end, we talked about the

problem of energy consumption in cloud computing.

In the next chapter, we will bring some mathematical concepts and speak about

queueing theories and Markov chains

19

Studies of Markov chain and queueing models

Chapter 2 Studies of Markov chain and queueing models

20

Studies of Markov chain and queueing models

2.1 Introduction

Today, most systems have become more complex. It is necessary to check whether the

future system meets the specified requirements described in our agenda. It is also necessary

to modify or improve a system, which is already operational, by modifying or improving

specific parameters of performance, such as the energy consumed in the system, the mean

waiting time of tasks in the buffer, the system service throughout or the blocking probability

in a system. The system can be used to determine the capacity, throughput and condition

of the various machines in a production system, etc.

The process for determining the various performance parameters of the systems is known

as performance evaluation or analysis. However, before to do this, we must go through a

modelling phase that allows us to deduce a model, which represents a mathematical

abstraction of the system. After we got our model, we can easily analyze it and figure out

the performance of the reel model; thus, we try to improve it.

 Our study on the performance of cloud machines, which will be addressed in the next

chapter. Is essentially based on these mathematical formalisms: the queues and continuous-

time Markov chain. However, the analysis of these models requires the mastery of

stochastic processes and more particularly of Markov chains steady state.

2.2 Markov chains

2.2.1 Random variables

Any variable x defined on a sample space S for which the cumulative

probabilities 𝑃𝑟 {x ≤ a} can be defined for all real values of a, −∞ < 𝑎 < ∞, is called a

real random variable x. (8)

21

Studies of Markov chain and queueing models

A discrete random variable has a countable number of possible values, any random

variable x which takes individually distinct values with nonzero probabilities is called a

discrete random variable and in this case, the probability function, denoted by 𝑓(𝑥), is

given by (8)

𝑓(𝑥) = {
𝑃𝑟{𝑋 = 𝑥}, 𝑥 ∈ 𝑆
0, 𝑥 ∉ 𝑆

 ...(2-1

A continuous random variable takes all values in an interval of numbers, Any

random variable x which is defined on a continuum of points, where the probability that x

takes a specific value x’ is zero, is called a continuous random variable and the density

function is available from the cumulative density by differentiation, when differentiable, or

the cumulative density is available by integration of the density. (8) That is:

𝐹𝑥(𝑎) = ∫ 𝑓𝑥(𝑡) 𝑑𝑡
𝑎

0
 ...(2-2

2.2.2 Stochastic process

A stochastic process is also called a random process. It describes how random

variables evolve. (9)

Let 𝑋𝑡 be the value of some characteristic at time t, 𝑋𝑡 represents a random

variable, and it is not known with certainty before time t, an example of 𝑋𝑡, is the number

of students in the classroom at t minutes after the class starts, some students may come in

late, so we do not know the value of 𝑋𝑡 for sure before time t. (10)

𝑋𝑡 is called the state of the stochastic process. If a stochastic process can be

observed at discrete time instants, it is called a discrete-time stochastic process. If the state

of a stochastic process can be observed at any continuous time, it is called a continuous-

time stochastic process (9)

22

Studies of Markov chain and queueing models

For example, the function f: R≥0 →R given by 𝑓(𝑡) = 𝑡 is a deterministic process, but

a random function f: R ≥0 → R given by 𝑓(𝑡) = 𝑡 with probability 1/2 and 𝑓(𝑡) = −𝑡

with probability 1/2 is a stochastic process.

2.2.3 Poisson process

The Poisson process is one of the most important models used in queueing theory.

Often the arrival process of customers can be described by a Poisson process. In telegraphic

theory, the “customers” may be calls or packets. The Poisson process is a viable model

when the calls or packets originate from a large population of independent users. (8)

Mathematically the process is described by the counter process Nt or N(t). The

counter tells the number of arrivals that have occurred in the interval (0, t) or, more

generally, in the interval (t1, t2).

In mathematics, a Markov chain is a Markov process with discrete-time, or

continuous time, and discrete state space. A Markov process is a stochastic process with

the Markov property: the information useful for predicting the future is entirely contained

in the present state of the process, and it is not dependent on previous states (the system

has no "memory"). Markov processes named after their inventor, Andrei Markov. (9)

2.2.4 Definition of Markov chains

The defining property of a Markov chain is the prediction of the future from the

present only, it is not more precise by additional information about the past, because all the

information that is useful for predicting the future is contained in the present state of the

process. Its future and past states are independent. (11)

A Markov chain is a type of Markov process with either a discrete state space or a

set of discrete indices (often representing time), but the precise definition of a Markov chain

varies. For example, it is common to define a Markov chain as a discrete or continuous-

23

Studies of Markov chain and queueing models

time Markov process with a space of countable states (independent of the nature of time),

but it is also common to define a Markov chain as having a discrete-time in the space of

countable or continuous states (independent of the space of states). (11)

2.2.5 Types of Markov chains

The system time parameter and state space are specified in Markov chains. So, we

have variation in parameters of the chains between the discrete-time and continuous-time

(time parameter). The countable state space and the continuous state space, so we conclude

the four deferent Markov chain types. In this study, we focus only on countable state space,

so we have:

• Discrete-time Markov chain

• Continuous-time Markov chain

2.2.6 Conditional probability

The conditional probability of event A is the probability that the event will occur

given the knowledge that B has already occurred. This probability is written P(A|B), the

notation for the probability of A given B. In the case where

events A and B are independent (where event B does not affect the probability of event A),

the conditional probability of event A given event B is simply the probability of event A,

that is, P(A). (12)

If events A and B are not independent, then the probability of the intersection of A

and B (the probability that both events occur) is defined by:

𝑃(𝐴 𝑎𝑛𝑑 𝐵) = 𝑃(𝐴|𝐵) 𝑃(𝐵). ...(2-3

From this definition, the conditional probability P(A|B) is easily obtained by dividing

by P(B):

24

Studies of Markov chain and queueing models

𝑃(𝐴|𝐵) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃(𝐵)
...(2-4

2.2.7 Discrete-time Markov chain

A discrete-time Markov process is an 𝑋0, 𝑋1, 𝑋2,𝑋3,…. a sequence of random var-

iables with values in state spaces, and E represents this sequence of random variables. The

value 𝑋𝑛 is the state of the process at the moment 𝑛. The applications where the state space

of E is finite or countable are innumerable. In this study, the essential properties of general

Markov processes, such as recurrence and ergodicity, are more simply stated or

demonstrated in the case of discrete space Markov chains, in this study we focus, on

discrete space Markov chains.

A discrete-time stochastic process is a Markov chain if, for t = (0, 1, 2…) And so on, the

states have the following relation:

𝑃(𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡 , 𝑋𝑡−1 = 𝑖𝑡−1. 𝑋1 = 𝑖1 , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡)...(2-5

Last equation is an equation where the left-hand side is a conditional probability. It

represents the probability that at a time t+1, the state is 𝑖𝑡+1, given that at a time 0, the state

is 𝑖0At time 1 the state is 𝑖1 and at time t the state is 𝑖𝑡. On the right-hand side, the equation

is also a conditional probability. It represents the probability that at time t+1, the state is

𝑖𝑡+1, given that at time t the stat is 𝑖𝑡.

This equation means the probability distribution of the state at time t+1 depends

only on the state at time t. it does not depend on the states before time t.

• Initial probability distribution

An initial probability distribution can describe the initial state of the Markov chain

25

Studies of Markov chain and queueing models

𝑞𝑖: the probability that the chain is in a state 𝑖 at time 0: 𝑃(𝑋0 = 𝑖) = 𝑞𝑖

If we have a total of s different states, then we call the vector 𝑞 = [𝑞1, 𝑞2, … , 𝑞𝑆] the initial

probability distribution of the Markov chain where ∑ 𝑞𝑖 = 1𝑆
𝑖=1 .

• Stationary assumption

We will describe when the Markov chain is called a stationary Markov chain

Given:

𝑃(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖) ...(2-6

The probability that the system will be in state j at time t+1, given it is in state 𝑖 at

time t.

A Markov chain is called a stationary Markov chain if this probability is

independent of time t. that means the probability that the system will be in state j at time

t+1, given it is in state 𝑖 at time t+1 is equal to the probability that the system will be in

state j at time t, given it is in state 𝑖 at time t-1, which is also equal to the probability that

the system will be in state j at time 1 given it is in state 𝑖 a time 0:

𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) = 𝑃(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖) = ⋯ = 𝑃(𝑋1 = 𝑗 |𝑋0 = 𝑖) = 𝑃𝑖,𝑗 ...(2-7

Since his probability does not change, we give it a shorter name 𝑃𝑖,𝑗 that is called the

transition probability from state 𝑖 at a previous time to state j at the current time. If we have

a total of s states, the transition probability from one state to another can be displayed as an

𝑠 × 𝑠 matrix:

 𝑃 =

[

𝑃11 𝑃1,2

𝑃2,1 𝑃2,2
⋯

𝑃1,𝑠−1 𝑃1,𝑠

𝑃2,𝑠−1 𝑃2,𝑠

⋮ ⋮ ⋱ ⋮ ⋮
𝑃𝑠−1,1 𝑃𝑠−1,2

𝑃𝑠,1 𝑃𝑠,2
⋯

𝑃𝑠−1,𝑠−1 𝑃𝑠−1,𝑠

𝑃𝑠,𝑠−1 𝑃𝑠,𝑠]

And:

26

Studies of Markov chain and queueing models

∑ 𝑃𝑖,𝑗 = 1
𝑗=𝑠

𝑖=1
 ...(2-8

As all these 𝑃𝑖,𝑗 are probabilities they should all be greater or equal to 0, and less

than or equal to 1. Also, the probability of each row must sum to 1. That means that if the

Markov chain is in state 𝑖 at time t, it must transit to one of the s states at time t+1. So, the

sum should be equals to 1, and there is no such requirement for the columns.

• n-step transition probability:

if a Markov chain is in state i at time t, the probability that it will be in state j after

n periods called the n-step probability.

𝑃(𝑋𝑡+𝑛 = 𝑗|𝑋𝑡 = 𝑖) = 𝑃(𝑋𝑛 = 𝑗|𝑋0 = 𝑖) = 𝑃𝑖,𝑗(𝑛) ...(2-9

For a stationary Markov chain, this probability will be independent of t, so the

probability that the chain is in state j at time 𝑡 + 𝑛 given that it is in state 𝑖 at time t is equal

to the probability that the Markov chain is in state j at time n given that it is in state 𝑖 at

time 0, this n-step transition probability from state 𝑖 to state j is denoted by 𝑃𝑖,𝑗(𝑛) .

27

Studies of Markov chain and queueing models

 example 1:

𝑃 = [

𝑃11 𝑃1,2

𝑃2,1 𝑃2,2

⋯
⋯

𝑃2,1

𝑃2,1

⋮ ⋮ ⋱ ⋮
𝑃2,1 𝑃2,1 ⋯ 𝑃𝑠,𝑠

]

Assume that we know the one-step transition matrix, which is shown here we can

think of a 2-step transition from i to j as two 1-step transition from i to an intermediate state

K, and then from K to j. we have a total of s states so K can be any value between 1 and s.

• if the path i-1-j is followed from 𝑖 to j the probability is:

 𝑃𝑖1 × 𝑃1𝑗

• if the path i-2-j is followed from 𝑖 to j the probability is:

 𝑃𝑖2 × 𝑃2𝑗

 ⋮

• if the path i-K-j is followed from 𝑖 to j the probability is:

 𝑃𝑖𝐾 × 𝑃𝐾𝑗

i

s

2

1

j

𝑃𝑖,2

𝑃𝑖,𝑠 𝑃𝑠,𝑗

𝑃2,𝑗

𝑃1,𝑗 𝑃𝑖,1

⋮

K J
I

Figure 2-1 example of n-step transition

28

Studies of Markov chain and queueing models

it is possible to go through any of the intermediate state, and the 2-step transition probability

is equal to:

𝑃𝑖𝑗(2) = ∑ 𝑃𝑖𝑘𝑃𝑘𝑗

𝑘=𝑠

𝑘=1

= 𝑖𝑗𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃2 . . . (2-10

This equation can be generalized as follow:

𝑃𝑖𝑗(𝑛) = 𝑖𝑗𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃𝑛 𝑛 = 1,2,3, … . . . (2-11

2.2.8 Continuous-time Markov chain

 In probability theory, a continuous-time Markov process, or continuous-

time Markov chain, is a continuous-time variant of the Markov process. More precisely, it

is a mathematical model with a value in a countable set of states, in which the time spent

in each of the states is a positive real random variable, following an exponential law. (9)

A continuous-time (𝑋𝑡)t≥0 Markov chain is characterized by:

• a finite or countable set S of states.

• An initial distribution that represent the set of states.

• A matrix Q of transition rates, also called an infinitesimal generator.

For i ≠ j, the elements 𝑞𝑖𝑗 of the matrix, Q is positive real numbers that quantify the speed

of transition from state i to state j. The elements 𝑞𝑖𝑖 are chosen so that the columns of each

row sum to zero.

29

Studies of Markov chain and queueing models

𝑞𝑖𝑖 = ∑𝑞𝑖𝑗

𝑗≠𝑖

. . . (2-12

Considering Continuous-time stochastic process {𝑋(𝑡)} where for t ≥ 0 And state

space E is either finite or countable

 {𝑋(𝑡)} is called a continuous-time Markov chain if given time instances

 𝑡1 < 𝑡2 < 𝑡3 < ⋯ < 𝑡𝑛 < 𝑠 < 𝑠 + 𝑡 and integers 𝑖1, 𝑖2, ⋯ , 𝑖𝑛, 𝑖, 𝑗 ∈ 𝐸 we have:

𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖, 𝑋(𝑡𝑘) = 𝑖𝑘, 𝑘 = 1,2,⋯ , 𝑛)) = 𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖)

 The probability 𝑝𝑖𝑗(𝑠, 𝑡) = 𝑃({𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖}) is called the transition

probability.

• homogenous continuous-time Markov chain

 if 𝑝𝑖𝑗(𝑠, 𝑡) is independent of s but dependent on t we call the chain homogeneous

continuous-time Markov chain, if {𝑋(𝑡), 𝑡 ≥ 0}, then

 𝑝𝑖𝑗(𝑡) = 𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖

 = 𝑃(𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖)

 𝑝𝑗(𝑡) = 𝑃(𝑋(𝑡) = 𝑗)

 = ∑ 𝑝(0)𝑝𝑖𝑗(𝑡)
𝑘=0

 ...(2-13

• State holding time

When the continuous-time Markov chain enters a state 𝑖, the time is spending before

it leaves the state 𝑖 is called the holding time in the state 𝑖 that holding time t is a continuous

random variable.

• Structure of a homogenous CTMC

30

Studies of Markov chain and queueing models

 1.CTMC enters at state 𝑖. It stays at the state for a time t.

 2.Ones the CTMC leaves state 𝑖, it enters one of the states let us say j with the

transition probability 𝑝𝑖𝑗 where j≠ 𝑖 and ∑ 𝑝𝑖𝑗 = 1
𝑗≠𝑖

(2-14

The two events of leaving state 𝑖 and entering the state j are independent because

of Markov property.

• Reachable and communicating states:

 In Markov chain, a path from state 𝑖 to state j is a sequence of transitions that begins

in 𝑖 the sequence has a positive probability

• A state j is reachable from state 𝑖 fi there is a path leading from 𝑖 to j

• the state 𝑖 and the state j can communicate if j is reachable from 𝑖, and 𝑖 is

reachable from j

• a set of states S in a Markov chain is closed set if no state outside of s is

reachable from any state in S.

Example 2:

 𝑃 =

[

0
0

𝑥
0

0
𝑦

0
0

0
0

𝑧
0

0
0

0 0
0 0

0
𝑣

0 0 0 𝑤 0]

2

1

3
5

4

x

y z
w

v

Figure 2-2 example of reachable and

communicating states

31

Studies of Markov chain and queueing models

This Markov chain has 5 states, and P is the state transition matrix. In this example state 3

is reachable from state 1 via the path 1-2-3 but state 5 is not reachable from state 1, the is

not path from 1 to 5, here we can say that states 1,2,3 are reachable from each other so S1

which contain 3 states 1,2 and 3 is a closed set. And set S2 which contains states 4 and 5 is

closed set.

• Absorbing state

State 𝑖 is an absorbing state if 𝑝𝑖𝑖 = 1

That means the probability of the transition from i to itself is 1, so whenever we enter an

absorbing state, and we never leave the state. An absorbing state is also a closed set

containing only one state.

here is an example:

example 3:

Figure 2-3 example of absorbing states

32

Studies of Markov chain and queueing models

in this Markov chain both the state 1 and the state 5 are absorbing states, other states are

not absorbing states

• Transition and recurrent states:

 A state 𝑖 is a transient state if there exists a state j that is reachable from 𝑖, but state

𝑖 is not reachable from state j, it means ones whenever we leave a transient state, it is

possible that we will never return to this state.

 If a state is not transient, then it is called a recurrent state.

In the last example of Markov chain, there are 3 transient states 2,3 and 4, for

example, we can go from 3 to 2 and then from to 1 then we get trapped in state 1 and will

never come back to state 3 again, the other two states 1 and 5 are not transient states, so

they are recurrent states.

• Periodic and aperiodic states:

 A state 𝑖 is periodic with period k>1, if k is the smallest number such that all paths

leading from state 𝑖 back to the state have a length that is multiple of k.

 Absorbing states are aperiodic.

 If we can return to a recurrent state at irregular times, it is aperiodic.

Example 4:

In this example we have 3 states they are all

recurrent states, there is no absorbing state, all states

are periodic with a period of 3

Figure 2-4 Example of Periodic

and aperiodic states

33

Studies of Markov chain and queueing models

For example, starting from state 1 we need 3,6 ,9… steps to come back to state 1

Now we lock at example 3 we know that the absorbing states 1 and 5 are not periodic, the

transient states 2,3 and 4 are not periodic because we may not come back to these states

again.

• Ergodic Markov chain

 If all states in a Markov chain are recurrent, aperiodic, and communicate with each

other, then this Markov chain is ergodic. (13)

 In example 3 is not ergodic because it has some transient states 2,3 and 4 and state

1 cannot communicate with state 5.

 In example 2 S1 is ergodic because none of the states is transient, there is no period,

and every state can communicate with other states

 S2 is ergodic also for the same reasons

But S that is represented from 1 to 5 is not ergodic because 1,2 and 3 cannot communicate

with states 4 and 5

• infinitesimal generator and Stationary Distributions

An infinitesimal generator is a stochastic calculation tool, used in particular for

continuous-time Markov chains.

That is constructed as follow:

𝑄 [𝑖, 𝑗] = {

𝑞(𝑖, 𝑗), 𝑖𝑓 𝑖 ≠ 𝑗

−∑𝑄 [𝑖, 𝑎]

𝑎≠𝑖

, 𝑖𝑓 𝑖 = 𝑗 . . . (2-15

Where 𝑄 [𝑖, 𝑗] is the transition rate from 𝑖 𝑡𝑜 𝑗

34

Studies of Markov chain and queueing models

A probability distribution 𝜋 = 𝜋𝑖 𝑖 ∈ 𝑠 is said a stationary for the probability transition

matrix 𝑃(𝑡) if only:

𝜋𝑃(𝑡) = 𝜋 ...(2-16

And the stationary distribution 𝜋 = 𝜋𝑖 𝑖 ∈ 𝑠 is stationary if and only if it satisfies the

equation:

𝜋𝑄 = 0 ...(2-17

Q is the infinitesimal generator matrix.

2.3 Queueing models

• Queues: is a system where units or customers arrive at a waiting area and wait at the

end to acquire a service from a service channel if the service is not immediately

available, and at the end, for their service to leave this system is called a queue system.

The theory of queuing models is a form of probability that refers to the waiting tasks.

It allows the analysis of incoming and outgoing tasks in a queued files system, and to

calculate various system performance parameters, such as the probability that the

service is immediately available to a new incoming customer, the average number of

units in the system and waiting, and the time spent waiting in the system. In this way,

decisions can be made based on system parameters, such as the number of resources

making up the service, for example.

Historically, the theory of waiting files goes back to the beginning of the previous

century, when Anger Kramp Erlang, a Danish engineer who worked for the company of

Copenhagen, formulated a mathematical solution which made it possible to determine the

number of lines necessary to handle a given number of telephone calls. Subsequently, he

published several articles that represented the birth of the waiting line theory files. This

theory is used in many fields such as commerce, engineering, computer systems and

networks, etc. It is also used in the field of computer systems and networks.

35

Studies of Markov chain and queueing models

In fact, the files queuing theory described above is called classical or standard

queuing theory, in which a new client arriving and finding the server(s) busy or unavailable

behaves according to one of the two following scenarios:

• The client leaves the system without being served; this corresponds to the Erlang model

with loss;

• or it waits to be served after the release of one of the servers, according to a certain

discipline (FIFO, LIFO, ...).

There is another scenario, which corresponds to an intermediate situation, in which the

customer calls back later to get the service, as many times as necessary and at time intervals

distributed according to a certain law of probability. These systems are called call-back

systems or systems with repeated calls.

In some situations, the service becomes temporarily unavailable to the customer.

Such a system is called a standby system with vacation. In the next sections, we will discuss

the models of the standard queueing system files, the call-back queueing system files and

the vacation queueing system files

2.3.1 Kendall’s notation

In 1951, David George Kendall introduced a set of notations, which have become

standard in queuing models, which is a system of notation according to which the various

characteristics of a queuing model are identified.

Kendall’s notation is denoted by a/b/c/d/e/f where,

• a: describe the distribution time of the arrival process

• b: describe the distribution time of the service process

• c: the number of servers (service channels)

• d: the number of places in the queue (length of the queue)

• e: the calling population (the size of which the customers comes from)

• f: the queue’s discipline (it is how the queue is ordering service: FCFS, LCFS,

SIRO, PQ)

36

Studies of Markov chain and queueing models

2.3.2 Little’s law

In 1961, John Little published an article showing that the average number of units in

the system, L, is related to the average time spent in the system, 𝑊 , 𝐿 = 𝜆.𝑊 , where λ is

the client arrival rate. In the same way, the following two relationships are established:

• 𝐿𝑠 = 𝜆.𝑊 𝑠, the average number of customers in service.

• 𝐿𝑞 = 𝜆.𝑊 𝑞, the average number of customers in the waiting file.

𝑊 𝑠 and 𝑊 𝑞 represent the average time spent in the waiting area and the average time

spent in service, respectively.

Figure 2-5 Little’s Law representations (14)

2.3.3 Standard queueing models

Queueing models is often used in the simulation analysis, it provides the analyst

with a powerful tool for designing and evaluating the performance of queueing systems.

Key elements of queueing systems:

• Customer: refers to anything that arrives at a facility and requires service, e.g.,

people, machines, trucks, emails, packets and frames (14).

• Server: refers to any resource that provides the requested service, e.g., machines,

runways at the airport, host, switch, router, disk drive, algorithm.

37

Studies of Markov chain and queueing models

• Calling population: the population of potential customers may be assumed to be

finite or infinite (15).

• Finite population model: if the arrival rate depends on the number of customers

being served and waiting

• Infinite population model: if the arrival rate is not affected by the number of

customers being served and waiting

Note: if the calling population is not mentioning then it is assumed to be infinite by

default system capacity: a limit on the number of customers that may be in the waiting line

or Limited system capacity, e.g., a buffer of a NIC only has room for N packets to wait in

line to enter the processing phase, if a system is full no packets are accepted anymore.

Figure 2-6 Finite population queue model

Unlimited capacity, e.g., concert ticket sales with no limit on the number of people allowed

to wait to purchase tickets.

Figure 2-7 Infinite population queue model

For infinite-population model :

38

Studies of Markov chain and queueing models

Arrival types are:

• Random arrival: arrival times usually characterized by a probability

distribution, most important model in random arrivals is Poisson arrival process

that we talked about before (with rate λ), where a time represents the interarrival

time between customer n-1 and customer n, and is exponentially distributed

(with mean 1/λ)(16).

• Scheduled arrivals: interarrival times can be constant or constant plus or minus

a

small random amount to represent early or late arrivals.

Queue behaviour: the actions of customers in a queue while waiting for a service to begin,

for example:

• Balk: leaving in the case when they see that the line is too long

• Renege: leaving after being in line when it is moving too slow

• Jockey: moving from one line to another shorter line

Queue discipline: the logical ordering of customers in a queue that determines which

customer is chosen for service when a server becomes free, for example:

• First -in-first -out (FIFO) t (FIFO)

• Last-in-first-out (LIFO)

• Service in random order (SIRO)

• Shortest processing time first (SPT)

• Service according to priority (PR)

Service times of successive arrivals are denoted by S1, S2, S3 it may be constant or

random, it is usually characterized as a sequence of (IID) independent and identically

distributed random variables, e.g.: exponential distribution.

A queueing system consists of a number of service centers and interconnected queues,

each service center consists of some number of servers working in parallel upon getting to

the head of the line a customer takes the in parallel, upon getting to the head of the line, a

customer takes the 1st available server(14).

39

Studies of Markov chain and queueing models

2.3.4 Queues with call-back

In the classical queuing theory seen in the previous section, we have found that a

new client who arrives on the system and cannot be served immediately. The user either

joins the waiting area and waits his turn, or leaves the final system. However, in reality,

this is only a first approximation to real situations, where usually such a client returns to

the system after a random amount of time and tries to acquire the information. This is

known as the recall phenomenon.

Queues with recall have been introduced to address this deficiency, and have been

widely used for several model problems in telephone systems, systems and networks in the

field of telecommunications.

Since the former works of Kosten, Cohen, Wilkinson, and Riordan, a variety of

techniques and results have been developed to resolve some particular problems.

Because of the complexity of queues with call-backs due to the presence of two streams of

calls, analytical results are quite difficult to obtain and only exist for specific models, with

binding assumptions on certain parameters, such as the number of servers, their reliability,

etc... To this end, the researchers oriented towards numerical methods (algorithms),

approximation methods, and simulation.

• General model of queues with call-back:

A system of file standby with call-back is composed of s (s ≥ 1) parallel, and

independent servers, available for processing clients and an imaginary space called an orbit.

A client arriving at the system for the first time is considered a primary client (primary

call). If a primary call finds at least one free server, it occupies it immediately and leaves

the system as soon as its service is finished. If all the servers are busy, then this client will

be blocked, and in this case, it joins the orbit and forms a source of secondary (repeated)

40

Studies of Markov chain and queueing models

calls and becomes a client in orbit. Each in-orbit client will call back for service at random

time intervals until one server is free. In this case, the client is served and then leaves the

system. Secondary clients are treated in the same way as primary calls. The time interval

between two consecutive attempts made by the same client in orbit is called the call-back

time. This time is independent of all previous call-back times.

• Features of queues with call-back:

A standby with callback system at file is characterized by a client arrival mechanism, a

service mechanism, a callback mechanism, the number of servers, orbit capacity, and the

size of the client source. Client arrival times, service times, and callback times are random,

making the process described by this model a stochastic process. When the service station

consists of a single server, the model is said to be single-server. When it is formed by two

or more parallel servers, the model is said to be multi-server. On the other hand, there are

two main types of standby with callback systems :

• Open systems (infinite sources): they are fed by a population Infinite. Thus, the

number of arrivals is unlimited. As an example, we cite the number of programs

submitted to a computer.

• Closed systems (finite sources): they are rather fed by a maximum number of fixed

units, corresponding, for example, to the number of subscribers in a telephone

network.

This model has several variants, among others the model of files on hold with callback

and buffer.

41

Studies of Markov chain and queueing models

2.3.5 Vacation queueing models

Servers are always available in the classical queueing model, but in many practical

queueing systems and due to a variety of reasons servers may become unavailable for a

period of time. This period of server absence may represent the servers working on some

additional jobs being checked for maintenance or only taking a break.

• Vacation policies:

The classical queueing model has three main parts, which is the arrival process, the

service process and the queue discipline; however, a vacation queueing model has an

additional part, the vacation process controlled by a vacation policy that can be

characterized by three aspects:

• The vacation start-up rule: This rule determined when the server starts a vacation,

in this rule, there is to main types the exhaustive and the non-exhaustive services,

in the exhaustive service, the server cannot take a vacation until the service finished

and the system becomes empty. In a non-exhaustive service, the server can take a

vacation even if the system is not empty. In a multi-server system, a semi-

exhaustive service rule can be used for a part of servers that take a vacation. We

can put in mind that the service interruption during the progress service is another

vacation start-up rule. The service interruption may be a hardware failure.

• Vacation termination rule: This rule means how the server resumes serving the

queue. There are two main rules which are the multiple vacation policy and the

single vacation policy. A multiple vacation policy requires the server to keep taking

vacations until it finds at least one customer waiting in the system at a vacation

completion instant, and under a single vacation policy, the server takes only one

vacation at the end of each busy period (17). After this vacation, the server either

serves the waiting customers if there are customers or stays idle. There are more

rules, such as the threshold policy (also called N-policy), more vacation termination

rules are possible.

42

Studies of Markov chain and queueing models

In addition to start-up and termination rules in multi-server systems. There are other

characteristics of a vacation policy. For example, all servers may take vacations together

(synchronous vacations or servers may take vacations individually independently

(asynchronous vacations). Another possible feature of a vacation policy is to allow some

servers to take a vacation to ensure a minimum number of servers are always available

• vacation duration distribution: Vacations in the servers are assumed to be I.D.D

(independent and identically distributed) random variables with a general

distribution function. Beside some vacation, models require different types of

vacation and follow different distributions.

2.3.6 Queuing systems with threshold policies

In recent years queuing models under various thresholds have been the subject of

great interest for the queue theorists due to its significant role in performance prediction of

various congestion systems.

In N-policy queuing system, the server (repairman) starts service (repair) to arriving

customers or items when the number reaches up to some fixed value say ‘N. The various

applications of thresholds models can be made in day-to-day as well as industrial scenarios

which motivate us for implementing this model in our work(18).

2.3.7 Arrivals and service

Congestion in a queueing system refers to the traffic customers on the system and

depend on the system irregularities not just on average properties. In other words, the

number of customers in the queue depends on the complete probabilistic description of the

arrival and service processes. The customers placed on the queue then the server treat these

demands. It would seem evident that, if the average arriving capacity of customers is greater

than the system service capacity, the system will break down since unbounded queues will

form. On the other hand, if the average arrival rate is less than the system service capacity,

43

Studies of Markov chain and queueing models

then, the current customers being served before new customer arrives; thus, we still get

queues. Even when the average arrival and service rates are held constant, an increase in

the variation of arrivals or service increases or decrease the congestion. Furthermore, as the

average demand tends to the system service capacity, the effects of the fluctuations are

magnified(14).

These fluctuations are described in terms of probability distributions. Thus, we use

elementary probability theory to predict average waiting times, average queue length,

distribution of queue length, etc., on the basis of

• The arrival pattern of customers to the resource.

• The service pattern of customers.

• The scheduling algorithm or the manner in which the next customer to be served

is chosen.

In standard queueing models, the buffer size to hold customers waiting for service is

limited. When the queue has reached its maximum capacity, it is said to be “full” customers

who arrive to find the queue full are said to be “lost”.

• The Arrival Process:

The customer arrival process may be described in two ways:

• the number of arrivals per unit time (the arrival rate);

• the time between successive arrivals (the interarrival time).

We use the variable λ to denote the mean arrival rate. In this case, 1/λ denotes the

mean time between arrivals. If the arrival pattern is not deterministic, the input process is

a stochastic process, in that case, we need the associated probability distribution. The

probability distribution of the interarrival time of customers is denoted by A(t) where

𝐴(𝑡) = 𝑃𝑟𝑜𝑏 {𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 ≤ 𝑡} ...(2-18

And

1

λ
 = ∫ 𝑡𝑑𝐴(𝑡)

∞

0
 ...(2-19

44

Studies of Markov chain and queueing models

Where 𝑑𝐴(𝑡) is the probability that the interarrival time is between 𝑡 and 𝑡 + 𝑑𝑡, here we

assume that these interarrival times are independent and identically distributed, which

means that only A(t) is of significance. If there are different types of customers, meaning

each customer has its class, then each class may have its probability distribution function

to describe its arrival process. The manner in which the arrival pattern changes in time may

be important (e.g., the number of customers who arrive at a supermarket may be greater in

the late afternoon than in the early morning.) when arrival pattern that does not change with

time (i.e., the form and values of the parameters of A(t) are time-independent) is said to be

a homogeneous arrival process. If it is invariant to shifts in the time origin, it is said to be

a stationary arrival process(19).

• The Service Process

Like we describe the arrival pattern, the service pattern may be described by a rate, the

number of customers served per unit time, or by the time required to serve a new customer.

The parameter μ is used to denote the mean service rate, and hence 1/μ denotes the mean

service time per one customer. We shall use B(x) to denote the probability distribution of

the demand placed on the system, i.e.,

𝐵(𝑥) = 𝑃𝑟𝑜𝑏{𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 ≤ 𝑥}. ...(2-20

Thus

1

μ
 = ∫ 𝑥𝑑𝐴𝐵(𝑥)

∞

0
 ...(2-21

Where 𝑑𝐵(𝑥) is the probability that the service time is between 𝑥 and 𝑥 + 𝑑𝑥, notice that

the service time is equal to the length of time spent in service and does not include the time

spent waiting in the queue. Furthermore, service rates are conditioned on the fact that the

system is not empty. If the system is empty, then the server must be idle.

45

Studies of Markov chain and queueing models

Although it is usual to associate the service time distribution with the server, the

service time is actually the time that is requested or needed by the customer who is taken

into service. Obviously, it does not make sense for a server to arbitrarily dispense service

to customers without regard for their needs(19).

The service may be batch or single. For the batch service, several customers can be

served simultaneously as is the case, for example, of customers who wait in line for taxis

or buses, customers in the market. Also, the service rate may depend on the following

factors:

• The number of customers present in the queue (called state-dependent or load-

dependent service). For example, a server may speed up when the queue grows or

starts to become full or slow down as it starts to empty.

• The time (called time-dependent or nonhomogeneous service). This is, for example,

the case of a server that in the morning starts slowly and during the day start to

become faster because of its workload.

• The total number of servers available at a queueing system is denoted by c. When

there are more than one server two cases are possible:

• Each server has its queue or buffer. For example, each supermarket

checkout lane has its queue. However, the effect of jockeying and lane

changing need that a supermarket checkout system to be more accurately

modelled as a single queue in front of all checkout lanes.

• There are fewer queues than servers. In most cases, there is a single queue

for all servers. For example, a single queue usually forms in front of multiple

bank tellers. The servers may or may not be identical, i.e., B(x) may be

different for different servers. Also, given multiple classes of customers, the

same server may give different service to different classes.

The capacity that a service facility has to hold waiting for customers (called the

system capacity) in many cases or models taken to be infinite. When this is not the case,

then the system is referred to as a finite queueing system.

46

Studies of Markov chain and queueing models

2.3.8 Poisson arrivals and exponential service

In stochastic modelling, numerous random variables are frequently modelled as

exponentials.

This is because it close to the real-world scenarios These include

• interarrival time λ,

• service time µ,

• time to failure of a component, and

• time required to repair a component.

The assertion that the above distributions are exponential should not be taken as fact,

but as an assumption. Experimental verification of this assumption should be sought before

relying on the results of any analyses that use them. the cumulative distribution function

for an exponential random variable, X, with parameter λ > 0, is given by:

𝐹(𝑥) = { 1 − 𝑒−λx, x≥0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. . . (2-22

And its corresponding probability density function obtained simply by taking the

derivative of F(x).

with respect to x, is:

𝐹(𝑥) = { λ𝑒−λx, x≥0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. . . (2-23

If the Poisson provides an appropriate description of the number of occurrences per interval

of time, then the exponential will provides a description of the length of time between

occurrences (19).

47

Studies of Markov chain and queueing models

2.3.9 Performance measures

When we analyze a queueing system, we do so for the purpose of evaluating the values

of certain system properties. For example, we may want to find:

• the number of customers in the system;

• the mean waiting time in the buffer;

• the length of a busy or idle period;

• the duration of one cycle.

These are called measures of effectiveness. They are all random variables and, whereas

we might wish to know their complete probabilistic descriptions (i.e., their PDFs).

• Number of customers

N is a random variable that represents a number of customers in the system at steady

state. The probability that at steady state the number of customers present in the system is

n is denoted by 𝑝𝑛 (14),

and the average number in the system at steady state is

Within the queueing system, customers may be present in the queue waiting for their

turn to receive service, or they may be receiving service. We shall let Nq be the random

variable that describes the number of customers waiting in the queue and we shall denote

its mean by 𝐿𝑞 = E [𝑁𝑞] (14).

48

Studies of Markov chain and queueing models

• System Time and Queueing Time

The time that a customer spends in the system, from the instant of its arrival to the

queue to the instant of its departure from the server, is called the response time or sojourn

time. We shall denote the random variable that describes response time by R, and its mean

value by 𝐸[𝑅]. The response time is composed of the time that the customer spends waiting

in the queue, called the waiting time, plus the time the customer spends receiving service,

called the service time. We shall let 𝑊𝑞 be the random variable that describes the time the

customer spends waiting in the queue, and it is mean will be denoted by 𝐸[𝑊𝑞]. (14)

• System Utilization

In a queueing system with a single server (𝑐 = 1), the utilization U is defined as the

fraction of time that the server is busy. If the rate at which customers arrive at, and are

admitted into, a queueing facility is 𝜆 and if μ is the rate at which these customers are

served, then the utilization is equal to 𝜆 / 𝜇. Over a period of time T, this queueing system,

in steady state, receives an average of 𝜆𝑇 customers, which are served in an average of

𝜆𝑇/𝜇 seconds. In many queueing systems, the Greek letter ρ is defined as 𝜌 = 𝜆/𝜇

and consequently is identified with the utilization.

However, λ is generally defined as the arrival rate to the system, and this may or may

not be the rate at which customers actually enter the queuing facility. Thus, it is not always

the case that 𝜆/𝜇 correctly defines utilization. Some customers may be refused admission

(they are said to be “lost” customers) so that the effective arrival rate into the queueing

facility is less than λ and hence the utilization is less than 𝜌 = 𝜆/𝜇. However, unless

stated otherwise, we assume that all customers who arrive at a queueing facility are

admitted. In a G/G/1 queue where 𝑝0 is the probability that the system is empty, it must

follow that 𝑈 = 1 − 𝑝0. In a stable system (i.e., one in which the queue does not grow

without bound), the server cannot be busy 100% of the time. This implies that we must

have 𝜆/𝜇 < 1 for the queueing system to be stable. Thus, in any time interval, the average

number of customers that arrive must be strictly less than the average number of customers

that the server can handle.

49

Studies of Markov chain and queueing models

In the case of queueing systems with multiple servers (c > 1), the utilization is defined as

the average fraction of servers that are active—which is just the rate at which work enters

the system divided by the maximum rate (capacity) at which the system can perform this

work, i.e., 𝑈 = 𝜆/(𝑐𝜇). In multiserver systems, it is usual to define ρ as 𝜌 = 𝜆/(𝑐𝜇)

with the same caveat as before concerning the identification of ρ as the utilization (14).

• System Throughput

The throughput of a queueing system is equal to its departure rate, i.e., the average

number of customers that are processed per unit time. It is denoted by X. In a queueing

system in which all customers that arrive are eventually served and leave the system, the

throughput is equal to the arrival rate, λ. This is not the case in queueing systems with finite

buffer, since arrivals may be lost before receiving service (14).

• Traffic Intensity

We define the traffic intensity as the rate at which work enters the system, so it is

therefore given as the product of the average arrival rate of customers and the mean service

time, i.e., 𝜆𝑥̅ = 𝜆/𝜇, where 𝑥 ̅ = 1/𝜇 and μ is the mean service rate. Notice that in

single-server systems, the traffic intensity is equal to the utilization. For multiple servers,

the traffic intensity is equal to 𝑐𝑈 (14).

2.3.10 Birth-Death processes: The M/M/1 queue

Birth–death processes are continuous-time Markov chains with a very special

structure. If the states of the Markov chain states are indexed by the integers 0, 1, 2, . . ., if

we are in the state we permitted only to move from this state to its nearest neighbours,

namely, states 𝑖 − 1 𝑎𝑛𝑑 𝑖 + 1. As for state 𝑖 = 0, on exiting this state, the Markov

chain must enter state 1. Such processes are also called skip-free processes because to go

from any state i to any other state j, and each intermediate state must be visited: no state

between these two can be skipped. Birth-death processes arise in a variety of simple single-

server queueing systems, and due to its particular structure makes finding their stationary

distributions states relatively easy to compute(19).

50

Studies of Markov chain and queueing models

Figure 2-8 The M/M/1 queue (14)

2.3.11 Description and steady-state solution

the state of an M/M/1 queue at any time is completely described by specifying the

number of customers present in the system. We shall use the integers 0, 1, 2, . . . to represent

these states accurately: n denotes the state in which there are n customers in the system,

including the one in service. We would like to be able to compute the state probabilities,

i.e., the probability that the system is in any given state n at any time t. We write these as

𝑝𝑛(𝑡) = 𝑃𝑟𝑜𝑏{𝑛 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡}.

This is often a difficult task, even for this simplest of queueing processes. Instead,

at least for the moment, we shall look for the steady-state probabilities,

If this limit exists, then the probability of finding the system in any particular state

eventually becomes independent of the starting state, so that no matter when we query the

system after it settles into a steady state, the probability of finding n customers present does

not change. The steady state probabilities 𝑝𝑛 can be interpreted as the probability of finding

n customers in the system at an arbitrary point in time after the process has reached a steady

state. It is not true that all systems reach steady state, i.e., for some queueing systems it is

possible that 𝑙𝑖𝑚
𝑡→∞

 𝑝𝑛(𝑡) may not yield a true probability distribution. Finding steady state

by calculating limit is difficult and complex task instead, we can use an infinite

infinitesimal generator to find it. (20)

51

Studies of Markov chain and queueing models

2.3.12 Matrix formulation of the M/M/1 queue

The M/M/1 queue with service rate μ and arrival rate λ has the following infinite

infinitesimal generator:

In the notation used for Markov chains, we have 𝜋𝑄 = 0 (with 𝜋𝑖 = 𝑝𝑖 for all i),

∑𝜋𝑖 = 1 and it is obvious that −𝜆𝜋0 + 𝜇𝜋1 = 0, 𝑖. 𝑒. , 𝑡ℎ𝑎𝑡 𝜋1 = (𝜆/𝜇)𝜋0 .

In general, we have 𝜆𝜋𝑖−1 – (𝜆 + 𝜇)𝜋𝑖 + 𝜇𝜋𝑖+1 = 0,

from which, by induction, we may derive

𝜋𝑖+1 = ((𝜆 + 𝜇)/𝜇)𝜋𝑖 − (𝜆/𝜇)𝜋𝑖−1 = (𝜆/𝜇)𝜋𝑖 .

Thus, once 𝜋0 is known, the remaining values 𝜋𝑖, i = 1, 2, . . ., maybe determined

recursively just as before. For the M/M/1 queue it has already been shown that the

probability that the system is empty is given by 𝜋0 = (1 − 𝜆/𝜇).

Observe that the coefficient matrix is tridiagonal. and that once 𝑝0 is known, the solution

is just a forward elimination procedure(14). However, we show this formulation at this time

because it will become useful in other, more complex cases.

• Performance Measures

We now turn our attention to computing various performance measures concerning the

M/M/1 queue, such as mean number in system, mean queue length, and so on

• Traffic intensity: 𝑝 = 𝜆/𝜇

52

Studies of Markov chain and queueing models

• Probability of n jobs in the system: 𝑝𝑛 = (1 − 𝜌)𝜌𝑛

• Mean number of jobs in the system: 𝐸[𝑛] = 𝜌/(1 − 𝜌)

• Mean number of jobs in the queue: 𝐸[𝑛𝑞] = 𝜌2/(1 − 𝜌)

• Mean response time: 𝐸[𝑟] = (1/𝜇)/(1 − 𝜌)

• Mean waiting time: 𝐸[𝑤] = 𝜌(1/𝜇)/(1 − 𝜌)

• Mean number of jobs served in one busy period:
1

1−𝑝

• Mean busy period duration:
1

𝜇(1−𝜌)

2.3.13 The M/M/c queue

An M/M/C queue is a shorthand notation for Markovian arrival rate, Markovian

Service Rate, and C the number of resources is a system where arrivals form a single

queue and are governed by a Poisson process, and job service times are

exponentially distributed. (21)

Figure 2-9 The M/M/C queue (14)

• Performance Measures for the M/M/c Queue

• Traffic intensity: 𝜌 = 𝜆/(𝑚𝜇)

53

Studies of Markov chain and queueing models

• Probability of n jobs in the system: 𝑝𝑛 = {
𝑝0

(𝑚𝜌)𝑛

𝑛!
 𝑛 < 𝑚

𝑝0
𝜌𝑛𝑚m

𝑚!
 𝑛 ≥ 𝑚

• Mean response time: 𝐸[𝑟] =
1

𝜇
(1 +

𝜚

𝑚(1−𝜌)
)

Conclusion

 In this chapter, we have presented mathematical concepts necessary to the

understanding of and Markov chain and queuing patterns. We introduce Markov chains and

define some of its characteristics then we talked about the deferent types of Markov chains

discrete-time Markov chain and continuous-time Markov chain and their characteristics so

as concepts like ergodicity, infinitesimal generator and stationary distribution

And then We did see some models of queueing systems. We addressed the classical

queue theory, and we have seen that the queueing model's standards do not allow to

describe the real behaviour of the servers, where does the need to use vacation queueing

models for modelling the vacation. We have seen why we use vacations, and it

implemented in the real world, we also define the queueing policies and present the queuing

system with a threshold.

54

Modeling of the system

Chapter 3 Modeling of the system

55

Modeling of the system

3.1 Introduction

Cloud computing is becoming a dominant field. The cloud computing services

section is a need, especially for businesses as well as individuals. This is due to the

divergence of the services.

In the first chapter we talked about cloud computing and the various services and

the main architecture of the cloud we also talked about energy in the cloud section and this

to understand the field and can describe a model with the cloud needs. Then we present

Markov chains in the second chapter and focused on CTMC proprieties and also queueing

models, and this chapter is the key that we can model the system correctly and can resolve

the system.

In this chapter we are going to do two models, the first model, we represent the

system with a working vacation and threshold policy, and the second model is the same as

the first one with the addition of sleep-delay timer.

3.2 Related works

Cloud Computing is gaining much popularity nowadays, and it is getting

implemented in many organizations very fast, and that need for cloud computing leads to

many new ideas, and this section keeps in innovation, which leads to various research in

the cloud computing section. One of the most trending cloud computing research topics is

green cloud computing, which is saving energy and reducing the Carbone footprint.

E. Feller, L. Ramakrishnan, C. Morin, in "Performance and energy efficiency of big

data applications in cloud environments: A Hadoop case study." They evaluate Hadoop

56

Modeling of the system

performance in the traditional model of collocated data and compute services considering

the impact of separating the services. Their evaluation shows that: performance on physical

clusters is significantly better than on virtual clusters, and application completion progress

correlates with the power consumption. (22)

Xia, Y.; Zhou uses Dynamic voltage scaling (DVS) by exploiting the cloud data

center's hardware characteristics to save energy by lowering the supply voltage and

operating frequency. (23)

 Chen, Y et al. also used dynamic voltage and scaling frequency DVFS that predicts

the best voltage/frequency setting for the system. Their results show that the proposed

DVFS could predict the suitable frequency wish gives significant energy consumption and

performance. (24)

All those previous researches talked about reducing energy without engaging the

idea that the VMs could go to sleep stat, which reduces energy. The next researches

highlight this idea with various models.

Lawanyashri, M, uses energy-saving based on threshold activation in a wireless

sensor network, based on a finite buffer queueing model with N-policy, which means that

initialization of transmission starts after reaching the n packets waiting in the buffer.

Balusamy, B et al., proposed a system that uses both vacation and a threshold policy

to control the workload level of each virtual machine in the data center, and reduces the

energy consumption and cost accordingly. (25)

Xi, Wang et al, present a performance analysis and a system optimization of a cloud

computing system with an energy efficient task scheduling strategy for satisfying the

service level agreement of cloud users while at the same time improving the energy

57

Modeling of the system

efficiency in cloud computing system.so they proposed an energy-aware task scheduling

strategy based on a sleep-delay timer and a waking-up threshold.so they combine a

vacation-delay with a N-policy. (26)

Based on these related works we study a performance analysis and a system

optimization of a cloud computing system with an energy efficient scheduling strategy, so

we propose a strategy based on sleep-delay timer and a threshold policy with a limited

buffer and no sleep period which mean that the only condition for sleep to awake is the

threshold. And to observe the impact of the sleep delay timer on energy and performance,

we model two models the first without the sleep delay timer and the second within the sleep

delay time.

3.3 Cloud model with n-policy

3.3.1 Description

Figure 3-1 The general representation of the system

We propose in this section modelling of the physical machine on cloud system with

infrastructure as a service (IaaS) using the formalism of queues with vacation and threshold

58

Modeling of the system

policies. Our model is general and does not fit to a specific cloud model, cloud topology or

cloud provider company. Moreover, it concerns a general physical machine on the cloud,

so that is valid for any machine on the cloud.

Each physical machine on the cloud have a limited size buffer (N) and a group of

servers (S), these s servers represent the virtual machines (VMs) include in the physical

machine, each one of these servers can handle a single task from the internet. To simplify

the model, we assume that the tasks have equal size and the same service time. Each server

from physical machine receives a task from buffer meaning one buffer for all the servers

after it handles that task goes back to an idle state waiting for the arrival a new task to

handle it.

The new characteristics in this model are that we take into consideration the

limitation of physical machine buffer with n tasks only. If any task comes after the buffer

having n task, this task will be lost. The queue also has a threshold policy; in this case, the

servers in our model stay in a sleep state until a specific number of tasks n enter the buffer

then all servers go to an idle state. The choice of the limited buffer size is motivated by the

fact that in the real physical machine cloud buffer size is big but still limited. Thus, our

model combines buffer limiting, queue with vacation and threshold policy.

Let's take a physical machine. In the initial state, our servers (VMs) are in a sleep

state, and the buffer is empty, the tasks arrive with exponential arrival rate λ, once n task

enters the buffer, all

servers in our model shift from the sleep state to the idle state. After that, each server

starts to handle one task moving from idle to busy state with Poisson service rate µ in FIFS

policy, and then once the complete server is handling that task, it moves again to an idle

state waiting for a new task to come. On the other hand, if the buffer is full, all task arrive

after that are lost, until the buffer becomes empty again then server shift from idle to sleep

state thus, we return back to our initial state.

59

Modeling of the system

Figure 3-2 description of some model 1 transition

60

Modeling of the system

3.3.2 Continuous time Markov chain of system Cloud model with n-policy

As we talked above about some possible transition and states from our model, now

we going to provide the Continuous-time Markov chain of system model that contain all

possible state and transitions that can accrue in a real-world scenario, meaning, it is a

complete model description.

We model our system using 5 different variables. Thus, every Markov chain state

is described by the 5 variables: capacity, buffer, sleep, idle, busy.

For abbreviation, we can index each one of these variables by a single letter. Our 5-

dimension Markov chain state will be described by these letters (I, j, k, l, m)

• I: represent the limited size (capacity) of the buffer, a maximum of l task can be saved

in the buffer.

• J: represent the current number of tasks in the buffer

• k: represent that a server (VM) is in sleep state, that state consumes the minimum

energy to switch to busy when n task enters the buffer

• l: represent that a server (VM) is in idle state, server move to that state after completing

the task, waiting for the arrival of a new task to start immediately handling it.

• m: represent that a server (VM) is in a busy state, in that state server start to handling

the task.

61

Modeling of the system

Figure 3-3 Model 1 CTMC with 5 dimensions

The initial Markov (0, S,0,0, K) state describe our system when we first started it, in

that state, we have 0 task in the buffer, and all servers are in sleep state, we can see that

transitions from state to state happen only with the arrival rate λ and service rate µ. From

initial state we keep moving by λ from state to the next state until we reach the state (K-N,

N-S, 0, 0, S), that state represents that n number of tasks enter in the buffer(number of tasks

in the buffer reached the threshold), in that state, servers shift from a sleep state to busy

state begin to handle s tasks from the buffer one by one in the duration of service rate µ

leaving the only n-s task in the buffer. Thus, we have to transition available:

transition with µ: when we move to the next state with µ transition, we finish serving

the current task in the server allowing another task to be handled next. With this transition

from state to the next state buffer decrease each transition until it becomes empty meaning,

we service all the tasks, and then servers start to decrease each time going from busy to idle

until we reach our initial state. We can go back from the next state to the current state at

any of these transition by λ.

62

Modeling of the system

Transition with λ: or we can go the next state by λ transition, with this transition, new

tasks are coming to the buffer before we finish serving the current ones. In each transition,

the number of tasks in the buffer increase by one and servers stays in busy state until We

reach to blocking state (0, K-S, 0, 0, S) like we seed earlier every task coming in this state

are lost (buffer overflow). We can go back from the next state to the current state at any of

these transition by µ.

3.3.3 Resolution

Now, after we have our continuous-time Markov chain model, now, we want to find

a system in the steady state. To do this, we have to analyze the CTMC in the steady-state.

One of the key steps is to construct an infinitesimal generator. Since the state space

increases as a function of the buffer size and the queue threshold. we seek to reduce the

system solution cost, by designing algorithms that compute the infinitesimal generator Q

directly as a function of the VM parameters and reduce Markov chain dimension.

3.3.4 Analysis of Cloud model with n-policy

Considering the proposed Model, whatever the value of K (The buffer size) and

based on the fact that the VM can alternate between idle, busy and sleep states, we derive

the following equations:

{
 𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) + 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) + 𝑉𝑖(𝐵𝑢𝑠𝑦) = 𝐾

𝑉𝑖(𝐼𝑑𝑒𝑙) + 𝑉𝑖(𝐵𝑢𝑠𝑦) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝) = 𝑆
 ...(3-1

Where:

• K is the buffer size, and S is the number of servers.

• Let 𝑇𝑖(X) represent the number of tasks in state 𝑖 in X (X= {capacity, buffer})

• Let 𝑉𝑖 (X) represent the number of servers in state 𝑖 in X (X= {idle, busy, sleep, sleep-

delay})

63

Modeling of the system

Using equation 1, we notice that the system state at steady-state can be described by

means of 3 components (𝑖, 𝑗, 𝑙) where:

• i: represents the number of tasks in the buffer. …… 0 ≤ 𝑖 ≤ 𝐾

• j: represents the number of servers in the place sleep. ……... 0 ≤ 𝑗 ≤ 𝑆

• l: represents the number of servers in the place busy. ……. 0 ≤ 𝑙 ≤ 𝑆

Thereby, having the (𝑖, 𝑗, 𝑙) we are able to deduce the capacity and idle, given that:

{
 𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 𝐾 − 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) − 𝑉𝑖(𝐵𝑢𝑠𝑦)

𝑉𝑖(𝐼𝑑𝑒𝑙) = 𝑆 − 𝑉𝑖(𝐵𝑢𝑠𝑦) − 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝)
 ...(3-2

After reduction, we got this Markov chain with 3 dimensions (𝑖, 𝑗, 𝑙) and with the

same number of states.

64

Modeling of the system

Figure 3-4 Model 1 CTMC with 3 dimensions

By analyzing the CTMC above, we have recognized that the total number of states

of the CTMC is equal to M, where 𝑀 = 𝐾 + 𝑁. Hence, the infinitesimal generator is an

𝑀 × 𝑀 matrix Q, which can be constructed as follows:

𝑄[(𝑖, 𝑗, 𝑙), (𝑥, 𝑦, 𝑧)] = {

𝑞[(𝑖, 𝑗, 𝑙), (𝑥, 𝑦, 𝑧)] 𝑖𝑓(𝑖, 𝑗, 𝑙) ≠ (𝑥, 𝑦, 𝑧)

− ∑  
(𝑖,𝑗,𝑙)≠(𝑘,𝑚,𝑛)

𝑞[(𝑖, 𝑗, 𝑙), (𝑘,𝑚, 𝑛)] 𝑖𝑓(𝑖, 𝑗, 𝑙) = (𝑥, 𝑦, 𝑧) . . . (3-3

The rates 𝑞[(𝑖, 𝑗, 𝑙), (𝑥, 𝑦, 𝑧)] are the transition rates from the state (𝑖, 𝑗, 𝑙) to state (𝑥, 𝑦, 𝑧),

and are given by:

65

Modeling of the system

• [0 ≤ 𝑖 ≤ 𝑁 − 1, 𝑗 = 𝑠, 𝑙 = 0]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙): The VM is in sleep state and

number of tasks is less than the threshold N;

• [𝑖 = 𝑁, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙) and (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖 − 1, 𝑗, 𝑙);

• [𝑁 < 𝑖 < 𝐾, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙) and (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖 − 1, 𝑗, 𝑙);

• [𝑖 = 𝐾, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖 − 1, 𝑗, 𝑙);

• [0 < 𝑖 < 𝑁, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙) and (𝑖 + 1, 𝑗, 𝑙) ⟶
𝜇1

(𝑖, 𝑗, 𝑙);

• [𝑖 = 0, 𝑗 = 0, 𝑙 = 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖 + 1, 𝑗, 𝑙), (𝑖 + 1, 𝑗, 𝑙) ⟶
𝜇1

(𝑖, 𝑗, 𝑙 − 1) ;

• [𝑖 = 0, 𝑗 = 0, 𝑙 = 0 < 𝑙 < 𝑠]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖, 𝑗, 𝑙 + 1), (𝑖, 𝑗, 𝑙 + 1) ⟶
𝜇1

(𝑖, 𝑗, 𝑙);

• [𝑖 = 0, 𝑗 = 0, 𝑙 = 1]: (𝑖, 𝑗, 𝑙) →
𝜆

(𝑖, 𝑗, 𝑙 + 1), (𝑖, 𝑗, 𝑙) ⟶
𝜇1

(𝑖, 𝑠, 𝑙 − 1);

Therefore, the infinitesimal generator Q can be computed by mean of the algorithm below:

3.3.5 Infinitesimal generators

𝒇𝒐𝒓 𝐿 ← 0 , 𝑆 𝒅𝒐

 𝒊𝒇 (𝐿 = 0) 𝒕𝒉𝒆𝒏

 𝑗 ← 𝑠

 𝒇𝒐𝒓 𝑖 ← 0 𝒕𝒐 𝑛 − 1 𝒅𝒐

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 + 1 , 𝑗 , 𝐿)] ← 𝜆

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝒆𝒍𝒔𝒆

 𝑖 ← 𝑛 − 𝑠 , 𝑗 ← 0 , 𝐿 ← 𝑠

66

Modeling of the system

 𝒇𝒐𝒓 𝑖 ← 𝑁 − 𝑆 𝒕𝒐 𝐾 − 𝑆 − 1 𝒅𝒐

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 + 1 , 𝑗 , 𝐿)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 − 1 , 𝑗 , 𝐿)] ← µ

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝑖 ← 𝐾 − 𝑆

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 − 1 , 𝑗 , 𝐿)] ← µ

 𝑖 ← 𝑁 − 𝑆 − 1

 𝒇𝒐𝒓 𝑖 ← 𝑁 − 𝑆 − 1 𝒕𝒐 1 𝑑𝑜

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 + 1 , 𝑗 , 𝐿)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 − 1 , 𝑗 , 𝐿)] ← µ

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝑖 ← 0 , 𝐿 ← 𝑠

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 + 1 , 𝑗 , 𝐿)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 , 𝑗 , 𝐿 − 1)] ← µ

 𝑭𝒐𝒓 𝐿 ← 𝑆 − 1 𝒕𝒐 2 𝒅𝒐

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 , 𝑗 , 𝐿 − 1)] ← µ

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 , 𝑗 , 𝐿 + 1)] ← 𝜆

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝐿 ← 1, 𝑖 ← 0, 𝑗 ← 0

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 , 𝑗 + 𝑠 , 𝐿 − 1)] ← µ

 𝑄 [(𝑖 , 𝑗 , 𝐿) , (𝑖 , 𝑗 , 𝐿 + 1)] ← 𝜆

 𝒆𝒏𝒅𝒊𝒇

𝒆𝒏𝒅 𝒇𝒐𝒓

67

Modeling of the system

3.4 Cloud model with n policy and sleep delay state

3.4.1 Description:

As we did in model 1 our system is remaining the same with some changeset, we

did propose in model 1 a modulization of a single physical machine on cloud system with

infrastructure as a service using the formalism of queues with vacation and threshold

policies. And we did say that Our model is general and does not fit to a specific cloud

model, cloud topology or cloud provider company. so, it concerns a general physical

machine on the cloud, so that is valid for any machine on the cloud.

In model 2 we introduce sleep-delay parameter β, so now our model consists of a

queue with vacation and threshold policy as well as a sleep-delay parameter β.

After that we describe the system as follow, each physical machine on the cloud

have a limited size buffer (K) and a number of servers (S), these S servers represent are

virtual machines in the physical machine, and we did assume that the tasks have equal size

and the same service time. Each server from physical machine receives a task from the

buffer after it handles that task the virtual machine goes back to sleep state waiting for a

new task to arrive and handle it.

Moreover, we talked about the characteristics that we take into consideration which

are the limitation of physical machine buffer with n tasks only. If any task comes after the

buffer is saturated with k tasks, the system is going to drop that task. We did say the queue

have a threshold policy, and in this case, the servers in the first model and also the second

model stay in a sleep state until a specific number of tasks N (the threshold) enter the buffer

then all servers go to the idle state. Furthermore, we assume that the limited buffer size is

related with the fact that in the real physical machine, the cloud buffer size is limited, so in

addition to what we did mention before we suggest the sleep-delay period, so when the

servers are busy, and the tasks end the servers go to sleep-delay state for taking some time

before goes to a sleep state in the meanwhile if any tasks are arriving the servers go back

too busy to handle the tasks and if the timer expires the tasks goes to sleep Thus, our

68

Modeling of the system

model combines the first model characteristics, buffer limiting, queue with vacation,

threshold policy, and adding the sleep-delay timer.

Our system model is still working the same, a physical machine, in the initial state

the servers (VMs) are in sleep state and the buffer is empty, the tasks arrive with

exponential arrival rate λ, once the number of tasks reaches n task in the buffer, all servers

change their state from sleep idle state. After that, servers start to handle tasks moving from

idle to busy state with Poisson service rate µ in FIFS policy, then once the servers complete

handling tasks in the buffer and the buffer is empty, the servers star a sleep-delay timer if

any tasks arrive before the timer ends the servers goes back to the idle state and doing the

same thing, in another hand if the sleep-delay timer is expired then the servers change their

state to sleep so the system goes back to the initial state, and the servers will not be idle

until the threshold is reaching again. On the other hand, if the buffer is full, all tasks arrive

after that are dropped.

69

Modeling of the system

 Figure 3-5 description of somme model 2 transition

70

Modeling of the system

3.4.2 Continuous time Markov chain of system Cloud model with n-policy and sleep

delay state

For simplify more and represent all the state of the system, we use a continuous-time

Markov chain, and after explaining the system, we conclude that the system is a

combination of:

• Capacity: which are the number of tasks that arrive with the rate

• Buffer: which represent the number of tasks in the buffer

• Sleep: represent the number of virtual machines that are sleep

• Idle: represent the number of servers that are awake ready to work

• Busy: represent the number of servers that are handling tasks

• Sleep-delay: represent the number of servers that are waiting for a timer to expire or a

task to arrive

• S: is the number of servers in the physical machine

• K: is the number of tasks

• N: the threshold

Those 6 variables can represent one state as follow

The changeset in values of each variable in this representation represent another

state.

Next, we represent the Markov chain with this modulization

71

Modeling of the system

The initial state is (K,0,S,0,0,0) witch mean that we have K available tasks that is

note in the buffer yet, the number of tasks in the buffer is 0 and there is S servers that are

sleep, all the rest places are empty so there is no servers in Idle, busy, and sleep-delay.

Next with the arriving of a task the capacity is k-1 and that task appear in buffer

and there are no changeset in the rest of the system, tasks still arriving to the buffer by a

rate of λ until it reaches the threshold N.

 Figure 3-6 Model 2 CTMC with 6 dimensions

72

Modeling of the system

Now the system changes its behaviour, so the capacity again is now k-n, and the

buffer reaches N in the same time servers are awake, and every server take a task to handle

it, so the number that appears in the buffer is N-S, and all servers are busy so busy=S and

sleep remain 0, and others rest the same

We are now in the state that the service is started, from this state, the next step is

either serving tasks with the rate µ or arriving tasks with the rate λ.

Let us take the approach of arriving tasks first the system stay receiving tasks and

capacity -1 and buffer + 1 until capacity is 0 then the buffer is full, so we reaches the

blocking state any other task arrives now will be dropped or lost in our system we do not

represent this to be obvious when capacity is 0 that means that the system has no other

capacity to store or receive tasks.

 When we take the service approach from the blocking state, and in every µ the

system serve a task, after that it release space in the system, capacity+1 and buffer-1 the

system keep serve until the buffer became empty here the capacity is K-S because there is

S tasks that are in busy with the servers, from knowing the servers that are handling tasks

start to reduce so busy-1 capacity +1 and the servers that not busy is now idle do idle+1 the

system keep like that until capacity=k, busy=0, idle=s int the same time servers start sleep-

delay timer so idle=0 and sleep-delay=S.

If no task arrives within the sleep-delay timer servers, go to sleep again, so the

system is back to the initial state. Else the servers go back to busy again.

 After modelling the system, we came to propose the resolution for this system in

the next section.

73

Modeling of the system

3.4.3 Resolution

After understanding the system model, we denote that we can reduce our system variable

with:

{
𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) + 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) + 𝑉𝑖(𝐵𝑢𝑠𝑦) = 𝐾 … (3)

𝑉𝑖(𝐼𝑑𝑒𝑙) + 𝑉𝑖(𝐵𝑢𝑠𝑦) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝 − 𝑑𝑒𝑙𝑎𝑦) = 𝑆 … (4)
 ...(3-4

We add 𝑉𝑖(𝐵𝑢𝑠𝑦) to the equation (4) because in our system, the busy means the Vm is

handling a task so without the tasks in busy the tasks in buffer and capacity less than K.

Using equations (3):

𝑇𝑖(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 𝐾 − (𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) + 𝑉𝑖(𝐵𝑢𝑠𝑦)) ...(3-5

𝑉𝑖(𝐼𝑑𝑒𝑙) = 𝑆 − (𝑉𝑖(𝐵𝑢𝑠𝑦) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝) + 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝 − 𝑑𝑒𝑙𝑎𝑦)) ...(3-6

Since we can get capacity and idle from busy, sleep, buffer and sleep delay, we can

represent the model by following:

Where:

• i: represent the number of tasks in the buffer 𝑇𝑖(𝐵𝑢𝑓𝑓𝑒𝑟) 0 ≥ 𝑖 ≥ 𝐾

• j: represent the number of servers that are sleep 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝) 0 ≥ 𝑗 ≥ 𝑆

• l: represent the number of servers that are busy 𝑉𝑖(𝐵𝑢𝑠𝑦) 0 ≥ 𝑙 ≥ 𝑆

• d: represent the number of servers that are in sleep-delay 𝑉𝑖(𝑆𝑙𝑒𝑒𝑝 − 𝑑𝑒𝑙𝑎𝑦) 0 ≥ 𝑑 ≥ 𝑠

74

Modeling of the system

after reducing the representation of the system, the CTMC is as follow:

 After analysing this CTMC, we conclude that the total number of tangible marking

states M is: M = K + N+1, and the infinitesimal generator Q dimensions equal to M × M

which constructed as follows:

𝑄[(𝑖, 𝑗, 𝑙, 𝑑), (𝑥, 𝑦, 𝑧, 𝑣)] = {
𝑞((𝑖, 𝑗, 𝑙, 𝑑), (𝑥, 𝑦, 𝑧, 𝑣)), 𝑖𝑓 (𝑖, 𝑗, 𝑙, 𝑑) ≠ (x, y, z, v)

−∑ 𝑄[(𝑖, 𝑗, 𝑙, 𝑑), (𝑎, 𝑏, 𝑐, 𝑑)](𝑖,𝑗,𝑙,𝑑)≠(a,b,c,d) 𝑖𝑓 (𝑖, 𝑗, 𝑙, 𝑑) = (x, y, z, v)
 ...(3-7

 Figure 3-7 Model 2 CTMC with 4 dimensions

75

Modeling of the system

3.4.4 Infinitesimal generator

𝒇𝒐𝒓 𝐿 ← 0 , 𝑆 𝒅𝒐

 𝒊𝒇 (𝐿 = 0) 𝒕𝒉𝒆𝒏

 𝑗 ← 𝑠

 𝑑 ← 0

 𝒇𝒐𝒓 𝑖 ← 0 𝒕𝒐 𝑛 − 1 𝒅𝒐

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 + 1 , 𝑗 , 𝐿, 𝑑)] ← 𝜆

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝒆𝒍𝒔𝒆

 𝑖 ← 𝑛 − 𝑠 , 𝑗 ← 0 , 𝐿 ← 𝑠

 𝒇𝒐𝒓 𝑖 ← 𝑁 − 𝑆 𝒕𝒐 𝐾 − 𝑆 − 1 𝒅𝒐

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 + 1 , 𝑗 , 𝐿, 𝑑)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 − 1 , 𝑗 , 𝐿, 𝑑)] ← µ

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝑖 ← 𝐾 − 𝑆

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 − 1 , 𝑗 , 𝐿, 𝑑)] ← µ

 𝑖 ← 𝑁 − 𝑆 − 1

 𝒇𝒐𝒓 𝑖 ← 𝑁 − 𝑆 − 1 𝒕𝒐 1 𝑑𝑜

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 + 1 , 𝑗 , 𝐿, 𝑑)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 − 1 , 𝑗 , 𝐿, 𝑑)] ← µ

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝑖 ← 0 , 𝐿 ← 𝑠

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 + 1 , 𝑗 , 𝐿, 𝑑)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 − 1 , 𝑗 , 𝐿 – 1, 𝑑)] ← µ

 𝑭𝒐𝒓 𝐿 ← 𝑆 − 1 𝒕𝒐 2 𝒅𝒐

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 , 𝑗 , 𝐿 – 1, 𝑑)] ← µ

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖, 𝑗 , 𝐿 + 1, 𝑑)] ← 𝜆

 𝒆𝒏𝒅 𝒇𝒐𝒓

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 , 𝑗 , 𝐿 + 1, 𝑑)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿 − 1, 𝑑) , (𝑖 , 𝑗 , 𝐿 – 2, 𝑑 + 𝑆)] ← µ

 𝐿 ← 0

 𝑑 ← 𝑆

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 , 𝑗 , 𝐿 + 1, 𝑑 − 𝑆)] ← 𝜆

 𝑄 [(𝑖 , 𝑗 , 𝐿, 𝑑) , (𝑖 , 𝑗 + 𝑆 , 𝐿 , 𝑑)] ← 𝜷

 𝒆𝒏𝒅𝒊𝒇

𝒆𝒏𝒅 𝒇𝒐𝒓

76

Modeling of the system

3.5 Performance measures

The states of the CTMC are all reachable and communicating states and none of the

states is an absorbing state, as well as the states, are all recurrent and aperiodic then this

CTMC is an ergodic Markov chain.

Based on the ergodicity of this CTMC, we can have the solution of this CTMC at

steady-state by computing the stationary probability vector 𝜋 = (𝜋1, 𝜋2, 𝜋3, …) which is

the solution of the linear system of equations:

{
𝜋𝑄 = 0

∑ 𝜋𝑖 = 1
𝑖𝜖𝐸

 . . . (3-8

• 𝜋𝑖: steady state probability that the process in state 𝑖

• Q: the infinitesimal generator correspondent to the CTMC

• E: the states of the CTMC

Having a steady state victor, we can now calculate the various performance measures as

follow:

• The blocking probability of tasks (𝑃𝐵): It corresponds to the buffer saturation

probability.

𝑃𝐵 = ∑ 𝜋𝑖

𝑖:𝑇𝑖 (𝑏𝑢𝑓𝑓𝑒𝑟)=𝑘−𝑠

. . . (3-9

Where:

π Represent the steady vector, and i is the number of states

𝑇𝑖(𝑋) Represent the number of tasks in the state i in place X

77

Modeling of the system

• The Probability that a VM is on busy state 𝑷𝒔: It corresponds to the probability that

the place Busy contains at least one token.

𝑃𝑠 = ∑ 𝜋𝑖 . . . (3-10

𝑖:𝑉𝑖 (𝑏𝑢𝑠𝑦)≠0

Vi(X): represent the number of servers in state i in place X

• The probability that the VM is on sleep state 𝑷𝒔𝒍: It corresponds to the probability

that the place sleep contains at least one token.

𝑃𝑠𝑙 = ∑ 𝜋𝑖 . . . (3-11

𝑖:𝑉𝑖 (𝑠𝑙𝑒𝑒𝑝)≠0

• The probability that the VM is on sleep-delay state 𝑷𝒔𝒍−𝒅

Psl−d = ∑ 𝜋𝑖

𝑖:𝑉𝑖 (𝑠𝑙𝑒𝑒𝑝−𝑑𝑒𝑙𝑎𝑦)≠0

 . . . (3-12

• The mean number of tasks in the VM (Q): It represents the mean number of waiting

tasks in the VM, including the tasks being transmitted. This corresponds to the mean

number of tokens in the place Buffer

𝑄̅ = ∑ 𝑇𝑖(𝑏𝑢𝑓𝑓𝑒𝑟). 𝜋𝑖 . . . (3-13

𝑖:𝑇𝑖∈𝐴

Where A represents the set of reachable states in the system.

• The task reception throughput λ: It corresponds to the effective rate of

tasks reception by the VM.

𝜆̅ = 𝜆. ∑ 𝜋𝑖 . . . (3-14

𝑖:𝑇𝑖∈𝐸(𝑇_𝑎𝑟𝑟)

78

Modeling of the system

Where E(T_Arr) represents the set of tasks where the transition T_Arr is enabled.

• The Task service throughput during busy state (𝝁̅):

𝜇̅ = 𝑆. 𝜇. ∑ 𝜋𝑖 . . . (3-15

𝑖:𝑉𝑖∈𝐸(𝑇_𝑠𝑒𝑟𝑣)

Where:

 E(T_Serv) represents the set of servers where the transition T_Serv is enabled. And S is

the number of servers

• The average length of a sleep period 𝑺̅: It corresponds to the average duration of time

of the system during the sleep period

𝑆̅ =
𝑁

 𝜆
 . . . (3-16

• The average length of a busy period 𝑩̅: It corresponds to the average duration of

service time

𝐵̅ =
𝑄̅

𝑆. 𝜇
 . . . (3-17

• The mean sojourn time of tasks in the buffer W:

79

Modeling of the system

𝑊̅ =
𝑄̅

𝜆̅
 . . . (3-18

• The Average duration of a cycle 𝑪̅: from the previous equations we have

𝐶̅ = 𝐵̅ + 𝑆̅ . . . (3-19

• The number of cycles (𝑵𝒄): It corresponds to the number of transitions from sleep to

busy per time unit.

𝑁𝑐 =
1

𝐶̅
 . . . (3-20

• The energy consumption physical machine PM (EC):

𝐸𝐶1 = 𝐸𝐶𝑆. 𝑃𝑆 + 𝐸𝐶𝑏 . (1 − 𝑃𝑆) + 𝐸𝐶𝑆𝑊. 𝑁𝑐 + 𝐸𝐶𝑠𝑟 . 𝑄̅ .…model 1

𝐸𝐶2 = 𝐸𝐶𝑆. 𝑃𝑆 + 𝐸𝐶𝑏 . (1 − 𝑃𝑆 − 𝑃𝑠𝑙−𝑑) + 𝐸𝐶𝑆𝑊. 𝑁𝑐 + 𝐸𝐶𝑠𝑟 . 𝑄̅ +

𝑃𝑠𝑙−𝑑 . 𝐸𝐶𝑠𝑙−𝑑 ..…. Model 2

Where

• 𝐸𝐶𝑆 : the energy consumption while the PM is in sleep.

• 𝐸𝐶𝑏 : the energy consumption while the PM is in busy.

• 𝐸𝐶𝑠𝑙−𝑑 : the energy consumption while the PM is in sleep delay

• 𝐸𝐶𝑆𝑊 : the energy consumption when the PM switch from sleep to busy.

• 𝐸𝐶𝑠𝑟 : the energy consumption for handling 1 task

80

Modeling of the system

3.6 Conclusion

In this chapter we talked about related works to our work and then modelized two

systems the first one with threshold policy and working vacation and the second one with

working vacation, threshold policy and sleep-delay timer using the Knowledge that we

previously acquired in chapter 1 and 2.

We represent the systems using the CTMC graphs, and then we make a reduction

for simplifying the resolution, in the resolution, we construct the infinitesimal generator

and declare the sets of linear equations for calculating the stationary distribution. That

allows us to calculate the various system performance.

In the next chapter we are going to set values for the parameters of the two systems

and observe the changeset and compare the two models in specific performance and even

compare the same system with deferent values of parameters.

81

Experimental

Chapter 4 Experimental

82

Experimental

4.1 Introduction

After the modelling of the system with 2 different models approaches, we arrive

now to implementation of the proposed solutions to test them according to different

scenarios, retrieval of results for comparison between the two models, analysis and

discussion.

In this chapter we will also see the tools and methods used to retrieve and these

results.

4.2 Experimental studies

In this section, first, we are going to test model 1 and 2 separately in energy, mean

waiting time in the buffer and blocking probability with different parameter values, then

compare between them.

To measure these performance values, here are the steps and methods we followed:

• In our program implementation, we map each a state to a number (state number) to

easily determine the states and find with the one we deal with.

• We define the Infinitesimal generator algorithm with show all the possible

transition and save the Infinitesimal matrix Q.

• Based on the Infinitesimal matrix Q, we solve the linear system of equations:

{
𝜋𝑄 = 0

∑ 𝜋𝑖 = 1
𝑖𝜖𝐸

 . . . (4-1

• As we said in the previous chapter using MATLAB to find the steady state of our

CTMC model

• After that, we calculate the performance measures of our system using the steady

state.

83

Experimental

4.3 Development tools

In our work, we used c-sharp as a programming language and visual studio as an

IDE for c-sharp, with those we also used MATLAB for the Equation solutions and the

operations on matrices.

4.3.1 C-sharp

C# is an object-oriented programming language, strongly typed, derived from C and

C++, resembling the Java language. It is used to develop web applications, as well as

desktop applications, web services, commands, widgets or class libraries. In C#, an

application is a set of classes where one of the classes has a Main method, as it is done in

Java.

C# is intended to develop on the .NET platform, a technology stack created by

Microsoft to succeed COM.

C# Executables in C# are subdivided into assemblies, namespaces, classes and

class4 members. An assembly is the compiled form, which can be a program (an

executable) or a class library. An assembly contains the executable code and symbols. The

code is translated into machine language at runtime by the just-in-time function of the .NET

platform.(27)

4.3.2 Visual studio

Designed by Microsoft. The latest version is called Visual Studio 2019. Visual

Studio is a complete set of development tools for generating ASP.NET web applications,

XML web services, desktop and mobile applications. Visual Basic, Visual C++, Visual C#

all use the same integrated development environment (IDE), which allows them to share

tools and facilitates the creation of solutions using several languages. In addition, these

languages enable them to better leverage the functionality of the .NET framework, which

provides access to key technologies that simplify the development of ASP web applications

and XML web services through Visual Web Developer.(28)

84

Experimental

4.3.3 Matlab

Matlab or matrix laboratory is a scripting language emulated by a development

environment of the same name; it is used for numerical computation. Developed by The

MathWorks Company, Matlab allows users to manipulate matrices, display curves and

data, implement algorithms, create user interfaces, and can interface with other languages

such as C, C++, and Java. Matlab users come from a wide variety of backgrounds, including

engineering, science, and economics in both industrial and research settings. (29)

System parameters

Note: We assume that energy is calculated with millijoule (mJ) and the time with

millisecond (mS).

parameter value

Capacity of buffer (K) 40

Number of servers 10

Queue threshold Range from 1 to K-1

Arrival rate From 0.25 to 0.75

Service rate 2

Sleep delay rate From 0.001 to 0.5

𝐸𝐶𝑆 10

𝐸𝐶𝐵 300

𝐸𝐶𝑆𝐿−𝐷 30

𝐸𝐶𝑆𝑅 5

𝐸𝐶𝑆𝑊 100

85

Experimental

4.4 Model 1 (Cloud model with n-policy)

• Energy consumption:

Figure 4-1energy consumption in model 1

Those charts represent the energy consumption by the threshold N while varying

the arrival rate λ between (0.25, 0.5, 0.75) while the threshold N is between (1-40).

From the above chart, we test the average energy consumption with a different value

of threshold n and arrival rate λ. We see that when λ = 0.25 the system consumes the

minimum energy, while λ = 0.75 the system consumes the highest energy meaning the

average energy consumption increases with the increase of λ.

For the threshold n, we see that when n range from 0 to 3 the average energy

consumption decreases (n =3 is the lowest value) but from 3 to 40, the average energy

consumption increases with the increase of n. Because when λ and n increase the busy

probability increase, thus the energy increase

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

en
er

gy

threshold n

λ = 0.25

λ = 0.5

λ = 0.75

86

Experimental

• Mean waiting time:

Figure 4-2: mean waiting time in model 1

In the same way, we test the mean waiting time in the buffer, We notice in those

charts that when the threshold n is 1 the waiting time is 0 so there is no waiting because in

every arrival the server’s wakeup and this for any value of the given λ values, we see that

when λ increase the mean waiting time decrease, from the chart λ= 0.75 registers the

minimum waiting time. That is because when λ = 0.75 the interval between λ and µ

decrease.

For the threshold n, in each increase of n the mean waiting time increase.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40

m
ea

n
 w

ia
ti

n
g

ti
m

e

threshold n

λ = 0.25

λ = 0.5

λ = 0.75

87

Experimental

• Blocking probability:

Figure 4-3: blocking probability in model 1

These charts represent the blocking probability by the threshold N while always

varying λ (0.25, 0.5, 0.75) and the threshold N between 1 and 40.

We see in that the blocking probability is 0 from N= 1 to N equals 30 and this is

because the buffer is going to be saturated if N= 30

when λ increase the probability decrease and when the threshold n increases the

blocking probability increase.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 5 10 15 20 25 30 35 40

b
lo

ck
in

g
p

ro
b

threshold n

λ = 0.25

λ = 0.5

λ = 0.75

88

Experimental

4.5 Model 2 (Cloud model with n-policy and sleep delay state)

• Energy consumption:

In these tests, the values of parameters of the system are the same, and beta is equal

to 10−3

Figure 4-4: energy consumption in model 2

Those charts represent the energy consumption by the threshold N while varying

the arrival rate λ between (0.25, 0.5, 0.75) while the threshold N is between (1-40)

We notice in this charts that the energy is in its highest level when the threshold is

1 and that means that whenever a task came the servers all going to be awake so there is so

much energy waisted. After that and with the rise of the threshold N we notice that the

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

en
er

gy

threshold n

λ =0.25

λ = 0.5

λ =0.75

89

Experimental

energy goes down, and when the threshold reaches 10 which is the number of servers, we

observe that the charts are stable and goes slightly up, with the increasing of the threshold.

By varying λ we see the differences between the three charts, so we note that

with the increasing of λ, the system consumes more energy.

• Mean waiting time:

The same in these tests the values of parameters of the system are the same and beta

is equal to 10−3

Figure 4-5: mean waiting time in model 2

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40

m
ea

n
 w

ai
ti

n
g

ti
m

e

threshold n

λ = 0.25

λ = 0.5

λ = 0.75

90

Experimental

Those three charts represent the mean waiting time of the task in the buffer by the

threshold N every chart represent mean waiting time with the change of λ. At the same

time, N is between 1 and 40.

We notice in those charts that when the threshold is 1 the waiting time is 0 so there

is no waiting because in every arrival the server’s wakeup and this for any value of the

given λ values.

With the increase of the threshold, we note that there is increase also of the waiting

time in the buffer and the differences between the charts begin to expend we also notice

that the less waiting time is in the chart with λ=0.75 and λ=0.25 gets the biggest value of

the mean waiting time.

• Blocking probability:

We still the same, in these tests the values of parameters of the system are the same

and beta is equal to 10−3

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 5 10 15 20 25 30 35 40

b
lo

ck
in

g
p

ro
b

ab
ili

ty

threshold n

λ = 0.25

λ = 0.5

λ = 0.75

Figure 4-6: blocking probability in model 2

91

Experimental

These charts represent the blocking probability by the threshold N while always

varying λ (0.25, 0.5, 0.75) and the threshold N between 1 and 40.

We see in these charts that the probability that the system is in blocking state is 0

from N= 1 to N equals 30, and this is because that the buffer is going to be saturated if N=

30 then the system is not working until 30 tasks arrive which increase the probability the

system is in blocking state, expend we also notice that the less probability of being in

blocking state is in the chart with λ=0.75 and λ=0.25 gets the biggest value of that

probability.

4.6 Model 1 and model 2 comparison

Now we going to compare these to model side by side to determine with one is more

useful in the same pervious performance measure.

• Energy consumption:

Figure 4-7: energy consumption in model 1 and 2

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

en
er

gy

threshold n

λ =0.25
model2

λ = 0.5
model2

λ =0.75
model2

λ = 0.25
model1

λ = 0.5
model1

λ = 0.75
model1

92

Experimental

Those charts represent the energy consumption of model1 (Cloud model with n-

policy) and model2 (Cloud model with n-policy and sleep delay state) side by side by the

threshold N while varying the arrival rate λ between (0.25, 0.5, 0.75) while the threshold N

is between (1-40)

We start by comparing the mean energy consumption between the two models. By

comparing each graph from model1 (Cloud model with n-policy) and model2 (Cloud model

with n-policy and sleep delay state) with the same λ, we see clearly that model2 (Cloud

model with n-policy and sleep delay state) consume less energy

• Mean waiting time:

Figure 4-8: mean waiting time in model 1 and 2

In the same way with the same value of n and λ, we compare the mean waiting time in

the buffer between model1 (Cloud model with n-policy) and model2 (Cloud model with n-

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40

m
ea

n
 w

ia
ti

n
g

ti
m

e

threshold n

λ =0.25
model1

λ = 0.5 model
1

λ = 0.75
model1

λ = 0.25
model2

λ = 0.5 model2

λ = 0.75
model2

93

Experimental

policy and sleep delay state). We can see that all three graphs from model2 (with λ=0.25,

0.5, 0.75) are spending less time waiting in buffer compare to the rest graph from model1

(Cloud model with n-policy)

• Blocking probability:

Figure 4-9: blocking probability in model 1 and 2

Those charts represent the blocking probability of model1 (Cloud model with n-

policy) and model2 side by side by the threshold N while varying the arrival rate λ between

(0.25, 0.5, 0.75) while the threshold N is between (1-40)

The same case as means waiting time happen in blocking probability, all three

graphs from model2 have less blocking probability compare to model1 (Cloud model with

n-policy).

Model 2 with different sleep delay (𝛽)

Now that we know the differences between model 1 (Cloud model with n-policy)

and model 2, we are going to make tests on model 2 (Cloud model with n-policy and sleep

0

0.005

0.01

0.015

0.02

0.025

0.03

0 5 10 15 20 25 30 35 40

b
lo

ck
in

g
p

ro
b

threshold n

λ = 0.25
model2

λ = 0.5
model2

λ = 0.75
model2

λ = 0.25
model1

λ = 0.5
model1

λ = 0.75
model1

94

Experimental

delay state) with the variation of beta with (0.001, 0.01, 0.5) with every of energy

consumption, mean waiting time and the blocking probability.

4.7 Model2 with different sleep delay parameter value

• Energy consumption:

These charts represent the energy consumption by the threshold N while varying 𝛽

and every chart represent one value of 𝛽 and the threshold N between 1 and 40.

We notice in these charts that the energy is the same until N reaches 20. At that value,

we see the difference between the charts where 0.001 is the best energy consumption, and

0.5 is the worst energy consumption from the given values.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40

en
er

gy

threshold n

β = 0.001

β = 0.01

β = 0.5

Figure 4-10: energy consumption in model 2 varying sleep delay

95

Experimental

• Mean waiting time:

These charts represent the mean waiting time in the buffer by the threshold N while

varying 𝛽 and every chart represent one value of 𝛽 and the threshold N between 1 and 40.

 We notice in those charts that when the threshold is 1, the waiting time is 0

so there is no waiting.

 With the increase of the threshold, we note that there is increase also of the waiting

time in the buffer and the differences between the charts begin to expend we also notice

that the less waiting time is in the chart with β =0.001 and β =0.5 gets the biggest value of

the mean waiting time.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

m
ea

n
 w

ai
ti

n
g

ti
m

e

threshold n

β = 0.001

β = 0.01

β = 0.5

Figure 4-11: mean waiting time in model 2 varying sleep delay

96

Experimental

• Blocking probability:

These charts represent the blocking probability by the threshold N while always

varying 𝛽 and the threshold N between 1 and 40.

 We see in these charts that the probability that the system is in blocking state is 0

from N= 1 to N equals 30, and this is because that the buffer is going to be saturated if N=

30 then the system is not working until 30 tasks arrive which increase the probability the

system is in blocking state, expend we also notice that the less probability of being in

blocking state is the usage of β= 0,001 and when we rise β the probability of blocking

increase and that according to the other 2 charts (β=0.01 and β=0.5).

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25 30 35 40

b
lo

ck
in

g
p

ro
b

threshold n

β = 0.001

β = 0.01

β = 0.5

Figure 4-12: blocking probability in model 2 varying sleep delay

97

Experimental

4.8 Conclusion

At the end of this chapter and after we measure the performance analysis of each

model which are energy consumption and mean waiting time of the tasks in the buffer and

the blocking probability.

We see that the model 1 and model 2 has different results which we observe after

comparing the two models that the model 2 is better in those performances analysis and

after that, we did compare the same model 2 with itself while changing the sleep delay

parameter β, we find that whenever β is smaller in our tests, we get better latency and lower

energy consumption.

In the end, we conclude that model 2 is better than model 1, and we did discover

the better range values of the parameters to use to get the best results.

98

Conclusion

Conclusion

Cloud computing is becoming a hotline topic in the information technology section,

and it is scaling at an intense rate. This scalability demands more resources than ever. Also,

one of the critical factors of using more resources is energy. At the same time, it is a major

problem in cloud computing.

Dominating cloud providers like amazon web service and google cloud are

consuming a significant amount of energy to provides their services. Thus, cloud customers

pay a more amount of money to get their work done with less period of time on the cloud.

To have a better experience for providers and customers on the cloud, we introduce

an energy-efficient task scheduling strategy in a cloud computing system using a woking

up threshold and adding sleep delay parameter.

We firstly model our solution. After that, we compare it to other related work

through different test scenarios and find that our proposed solution gives lower energy and

better latency with a specific set of parameters.

At the same time, we tested the blocking state of our solution, and we fund that this

solution does not affect the availability of the system, but it gives a minimum improvement

This work opens perspectives for reducing energy consumption and latency in cloud

data centers.

99

Bibliography

Bibliography

1. History of Cloud Computing - javatpoint [Internet]. [cited 2020 Dec 3]. Available

from: https://www.javatpoint.com/history-of-cloud-computing

2. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P, Fehling C, et al. Cloud

Offering Patterns. In: Cloud Computing Patterns. Springer Vienna; 2014. p. 79–

150.

3. PLATFORM AS A SERVICE [Internet]. [cited 2020 Dec 3]. Available from:

https://sites.google.com/site/platformasaservice3/

4. Cloud Deployment Model - an overview | ScienceDirect Topics [Internet]. [cited

2020 Dec 3]. Available from: https://www.sciencedirect.com/topics/computer-

science/cloud-deployment-model

5. What is a Virtual Machine (VM)? - Definition from Techopedia [Internet]. [cited

2020 Dec 3]. Available from: https://www.techopedia.com/definition/4805/virtual-

machine-vm

6. Hypervisor | Cloud Computing Patterns [Internet]. [cited 2020 Dec 3]. Available

from: https://www.cloudcomputingpatterns.org/hypervisor/

7. (PDF) Energy efficient utilization of resources in Cloud computing systems

[Internet]. [cited 2020 Dec 3]. Available from:

https://www.researchgate.net/publication/225140382_Energy_efficient_utilization

_of_resources_in_Cloud_computing_systems

8. Mathai AM, Haubold HJ. 9. Collection of random variables. In: Probability and

Statistics. 2017.

9. Bas E, Bas E. An Introduction to Markov Chains. In: Basics of Probability and

Stochastic Processes. 2019.

10. Cassandras CG, Lafortune S. Introduction to discrete event systems. Introduction

to Discrete Event Systems. 2008.

11. Nicolas P. Understanding Markov Chains: Examples and Applications. Numerical

Methods for Partial Differential Equations. 2004.

12. Grinstead CM, Snell JL. Introduction to Probability: Second Revised Edition. Am

Math Soc. 1997;

13. Sarig O. Lecture Notes on Ergodic Theory. Preprint [Internet]. 2008;2019:1–115.

Available from:

100

Bibliography

http://www.math.psu.edu/sarig/506/ErgodicNotes.pdf%5Cnpapers2://publication/u

uid/65795CDF-EEB0-4AF8-83CD-59F8BE88915E

14. William J. Stewart. Probability, Markov Chains, Queues, and Simulation: The

Mathematical Basis of Performance Modeling. Princeton, NJ: Princeton University

Press41 William St. Princeton, NJUnited States; 2009. 717 p.

15. 08_Queueing_Models.pdf | Mathematical Model | Markov Chain [Internet]. [cited

2020 Dec 3]. Available from: https://www.scribd.com/document/441495851/08-

Queueing-Models-pdf

16. Queueing | Markov Chain | Poisson Distribution [Internet]. [cited 2020 Dec 3].

Available from: https://www.scribd.com/presentation/260926259/Queueing

17. Ke JC, Lin CH, Huang HI, Zhang ZG. An algorithmic analysis of multi-server

vacation model with service interruptions. Comput Ind Eng. 2011 Nov

1;61(4):1302–8.

18. - MedCrave online [Internet]. [cited 2020 Dec 3]. Available from:

https://medcraveonline.com/OAJMTP/OAJMTP-01-00036

19. Probability, Markov chains, queues, and simulation. The mathematical basis of

performance modeling - PDF Free Download [Internet]. [cited 2020 Dec 3].

Available from: https://epdf.pub/probability-markov-chains-queues-and-

simulation-the-mathematical-basis-of-perfor.html

20. Network Modeling | Stochastic Process | Markov Chain [Internet]. [cited 2020 Dec

3]. Available from: https://www.scribd.com/document/71801211/Network-

Modeling

21. Zhao W, Wang X, Jin S, Yue W, Takahashi Y. An energy efficient task scheduling

strategy in a cloud computing system and its performance evaluation using a two-

dimensional continuous time markov chain model. Electron. 2019;8(7).

22. Feller E, Ramakrishnan L, Morin C. Performance and energy efficiency of big data

applications in cloud environments: A Hadoop case study. J Parallel Distrib

Comput. 2015;

23. Xia YN, Zhou MC, Luo X, Pang SC, Zhu QS. A stochastic approach to analysis of

energy-aware DVS-enabled cloud datacenters. IEEE Trans Syst Man, Cybern Syst.

2015;

24. Chen YL, Chang MF, Liang WY, Lee CH. Performance and energy efficient

dynamic voltage and frequency scaling scheme for multicore embedded system. In:

2016 IEEE International Conference on Consumer Electronics, ICCE 2016. 2016.

25. LawanyaShri M, Balusamy B, Subha S. Threshold-based workload control for an

under-utilized virtual machine in cloud computing. Int J Intell Eng Syst. 2016;9(4).

26. Zhao W, Wang X, Jin S, Yue W, Takahashi Y. An energy efficient task scheduling

101

Bibliography

strategy in a cloud computing system and its performance evaluation using a two-

dimensional continuous time markov chain model. Electron. 2019;8(7).

27. Tutorialspoint. C# Programing tutorial. Tutorialspoint. 2014;

28. Visual Studio Code. Documentation for Visual Studio Code. Visual Studio Code

Documentation. 2015.

29. Keviczky L, Bars R, Hetthéssy J, Bányász C. Introduction to MATLAB. Advanced

Textbooks in Control and Signal Processing. 2019.

30. Jackson, C., Jackson, C. and Wasko, S., 2017. CCNA Cloud CLDADM 210-455

Official Cert Guide. Indianapolis, IN: Cisco Press.

	Introduction
	Chapter 1 Introduction to Cloud Computing systems
	1.1 Introduction
	1.2 History of Cloud Computing
	1.3 Cloud Computing
	1.4 Essential Cloud Computing properties
	1.5 Cloud service models
	1.5.1 Infrastructure as a service (IaaS)
	1.5.2 Platform as a service (PaaS)
	1.5.3 Software as a service (SaaS)

	1.6 Cloud deployment models
	1.6.1 Public cloud
	1.6.2 Private cloud
	1.6.3 Hybrid cloud
	1.6.4 Community cloud

	1.7 Cloud workload types
	1.7.1 Static workloads
	1.7.2 Periodic workloads
	1.7.3 Unpredictable workloads
	1.7.4 Hybrid Workloads

	1.8 Cloud virtualization
	1.8.1 Hypervisor

	1.9 Advantages and disadvantages of Cloud Computing
	1.10 Energy consumption in Cloud Computing
	1.11 Conclusion

	Chapter 2 Studies of Markov chain and queueing models
	2.1 Introduction
	2.2 Markov chains
	2.2.1 Random variables
	2.2.2 Stochastic process
	2.2.3 Poisson process
	2.2.4 Definition of Markov chains
	2.2.5 Types of Markov chains
	2.2.6 Conditional probability
	2.2.7 Discrete-time Markov chain
	2.2.8 Continuous-time Markov chain

	2.3 Queueing models
	2.3.1 Kendall’s notation
	2.3.2 Little’s law
	2.3.3 Standard queueing models
	2.3.4 Queues with call-back
	2.3.5 Vacation queueing models
	2.3.6 Queuing systems with threshold policies
	2.3.7 Arrivals and service
	2.3.8 Poisson arrivals and exponential service
	2.3.9 Performance measures
	2.3.10 Birth-Death processes: The M/M/1 queue
	2.3.11 Description and steady-state solution
	2.3.12 Matrix formulation of the M/M/1 queue
	2.3.13 The M/M/c queue

	Chapter 3 Modeling of the system
	3.1 Introduction
	3.2 Related works
	3.3 Cloud model with n-policy
	3.3.1 Description
	3.3.2 Continuous time Markov chain of system Cloud model with n-policy
	3.3.3 Resolution
	3.3.4 Analysis of Cloud model with n-policy
	3.3.5 Infinitesimal generators

	3.4 Cloud model with n policy and sleep delay state
	3.4.1 Description:
	3.4.2 Continuous time Markov chain of system Cloud model with n-policy and sleep delay state
	3.4.3 Resolution
	3.4.4 Infinitesimal generator

	3.5 Performance measures
	3.6 Conclusion

	Chapter 4 Experimental
	4.1 Introduction
	4.2 Experimental studies
	4.3 Development tools
	4.3.1 C-sharp
	4.3.2 Visual studio
	4.3.3 Matlab

	4.4 Model 1 (Cloud model with n-policy)
	4.5 Model 2 (Cloud model with n-policy and sleep delay state)
	4.6 Model 1 and model 2 comparison
	4.7 Model2 with different sleep delay parameter value
	4.8 Conclusion

	Conclusion
	Bibliography

